PoPETs

Proceedings on Privacy Enhancing Technologies ;

2022 (3):606-629

Janus Varmarken*, Jad Al Aaraj, Rahmadi Trimananda, and Athina Markopoulou

FingerprinTV: Fingerprinting Smart TV Apps

Abstract: This paper proposes FINGERPRINTV, a fully
automated methodology for extracting fingerprints from
the network traffic of smart TV apps and assessing
their performance. FINGERPRINTV (1) installs, repeat-
edly launches, and collects network traffic from smart
TV apps; (2) extracts three different types of net-
work fingerprints for each app, i.e., domain-based fin-
gerprints (DBF), packet-pair-based fingerprints (PBF),
and TLS-based fingerprints (TBF); and (3) analyzes the
extracted fingerprints in terms of their prevalence, dis-
tinctiveness, and sizes. From applying FINGERPRINTV
to the top-1000 apps of the three most popular smart
TV platforms, we find that smart TV app network fin-
gerprinting is feasible and effective: even the least preva-
lent type of fingerprint manifests itself in at least 68%
of apps of each platform, and up to 89% of fingerprints
uniquely identify a specific app when two fingerprinting
techniques are used together. By analyzing apps that ex-
hibit identical fingerprints, we find that these apps often
stem from the same developer or “no code” app gen-
eration toolkit. Furthermore, we show that many apps
that are present on all three platforms exhibit platform-
specific fingerprints.

Keywords: Smart TV, connected TV, network measure-
ment, privacy, fingerprinting

DOI 10.56553/popets-2022-0088
Received 2021-11-30; revised 2022-03-15; accepted 2022-03-16.

1 Introduction

A smart TV (or connected TV) is an Internet-connected
TV with computational capabilities. These enhance-
ments to the traditional TV set enables the smart TV
to stream content from the Internet and run interactive
applications. Smart TVs come in two flavors: (1) built-

*Corresponding Author: Janus Varmarken: University
of California, Irvine, E-mail: jvarmark@uci.edu

Jad Al Aaraj: University of California, Irvine, E-mail:
jalaaraj@uci.edu

Rahmadi Trimananda: University of California, Irvine, E-
mail: rtrimana@uci.edu

Athina Markopoulou: University of California, Irvine, E-
mail: athina@uci.edu

in smart TVs, where the hardware and software is in-
tegrated in a traditional TV set; and (2) over-the-top
streaming devices, which are external dongles or boxes
that transform a TV into a smart TV. In this paper, we
use “smart TV” to refer to both flavors.

Over the past decade, consumers have increasingly

adopted smart TV devices: between 2011 and 2021, the
percentage of U.S. TV households with at least one
smart TV has increased from 30% to 82% [1], and smart
TV sets now outnumber traditional TV sets in Amer-
ican homes [2]. Smart TVs offer convenient access to
streaming services such as Netflix and Hulu, a rich se-
lection of games, and are also increasingly used as a
central hub for entertainment in general, such as music
streaming and social media [3]. While appealing from
an entertainment standpoint, smart TVs also introduce
new privacy risks. For example, researchers have shown
that tracking is pervasive on smart TVs [4, 5]—even
if the user opts to limit ad tracking [4]—and blocklists
only provide limited protection against exposure of per-
sonally identifiable information [4, 5].
Motivation. In this paper, we set out to further char-
acterize the privacy exposures of smart TVs by studying
if a passive, in-network observer can identify what ap-
plication (“app”) is in use on a smart TV from the net-
work traffic it generates, even if the traffic is encrypted.
This type of problem is commonly referred to as net-
work fingerprinting and has been studied extensively in
the context of websites [6-24], desktop and mobile ap-
plications [25-28], and Internet of Things (IoT) devices
with narrow functionality, such as smart light bulbs and
smart plugs [29-33]. However, to the best of our knowl-
edge, no work has explored the feasibility of smart TV
app fingerprinting at scale. This constitutes a significant
gap in the literature for the following reasons.

First, in the context of smartphones, app usage has
been shown to be indicative of the user’s demograph-
ics, personality, interests, preferences, and habits [34].
Assuming this carries over to smart TVs, and consid-
ering that viewing history is regarded a cornerstone of
programmatic TV advertising [35], smart TV app usage
data is arguably a valuable asset for businesses engaged
in targeted advertising. Since Internet Service Providers
(ISP) are known to collect and use rich information
about their customers for advertising purposes [36], it

[®) ov-ne-np |

FINGERPRINTV: Fingerprinting Smart TV Apps = 607

Legend

Contribution
[o ou'p‘"]

Third-Party Code

App Selection Network Traffic Collection

Fingerprint Extraction

-
Controller

tcpdump / tshark l—>\

App Store Crawler
Apple App Store

Amazon Appstore

Packet Captures }->

Fingerprint Member (FM)
Candidate Extraction
(Cisco Mercury, PingPong)

Post Processing
App Fingerprints
(Domain- / Packet-Pair- / [T
TLS-based fingerprints)

Roku Channel Store

Smart TV

'

(Apple TV / Fire TV / Roku)

Top-1000 Apps HH e _
p pp > Arp

(Domains / Packet Pairs /

(Prevalence, Distinctiveness, Sizes)

FM Candidates [Performance Assessment]

TLS Fingerprints)

Fig. 1. Overview of FINGERPRINTYV, a system for assessing the feasibility of fingerprinting smart TV apps. The Controller is a com-

puter with both a wired and a wireless network interface, which is configured as a wireless access point with NAT. The smart TV

is associated with this wireless network. FINGERPRINT'V first crawls the app store of the smart TV platform to determine a list of
apps to test (see Section 3.1). Next, FINGERPRINTV collects multiple samples of the “on-launch” traffic of each app in this list (see
Section 3.2). FINGERPRINTV then processes the collected traffic samples to identify consistently occurring traffic, referred to as fin-
gerprints (see Section 4.1). Finally, FINGERPRINTV assesses the resulting fingerprints’ discriminative power using a methodology we
devise that is based on agglomerative (hierarchical) clustering (see Sections 4.2 and 5).

is important to quantify to what extent they can track
their customers’ smart TV app usage as well.

Second, recognizing that television viewing history
may reveal sensitive information about the viewer, such
as religion and sexual orientation, the U.S. Congress has
enacted laws that obligate (cable) companies to obtain
consent from consumers before they collect and/or dis-
close viewing history, e.g., the Cable Privacy Act and
the Video Privacy Protection Act [36]. Although the
smart TV app in use may not reveal the exact con-
tent the user is watching in that respective app, it may
still reveal the content’s theme (e.g., religious, political,
adult etc.) as many smart TV apps limit their offerings
to a certain genre. Furthermore, for smart TV apps that
offer access to a single live stream, the smart TV app
in use is synonymous with the content being watched.
Smart TV app fingerprinting may thus potentially con-
stitute a violation of said laws.

Third, privacy concerns aside, smart TV app finger-
printing may have potential security implications, and
can also be used for quality-of-service optimization. For
example, an attacker who is aware of a vulnerability in
a certain smart TV app can, by observing the mani-
festation of its fingerprint in live traffic, time when to
launch their attack. Additionally, since most smart TV
app traffic is bandwidth intensive, as it often involves
video streaming, network operators may be interested in
the ability to dynamically prioritize traffic from smart
TVs when certain apps are in use.

Contributions. In order to empirically assess the fea-
sibility of fingerprinting smart TV apps, we take the
following steps.

First, we design and implement FINGERPRINTV,
a fully automated system for assessing the feasibility

and effectiveness of fingerprinting smart TV apps. An
overview of FINGERPRINTV is provided in Figure 1.
FINGERPRINTV (1) automatically installs, and repeat-
edly launches apps, while collecting their network traf-
fic; (2) extracts a domain-based fingerprint (DBF), a
packet-pair-based fingerprint (PBF), and a TLS-based
fingerprint (TBF) from the network traffic of each app;
and (3) assesses the extracted fingerprints’ performance,
in terms of their prevalence, distinctiveness, and sizes.
To that end, we propose a methodology based on ag-
glomerative clustering that (i) provides flexibility to
make a trade-off between a fingerprint’s size and its reli-
ability, and (ii) is general enough to be applicable across
all three types of fingerprints. We consider DBFs, PBFs,
and TBFs because they are lightweight and only rely on
a few packets per network flow, yet remain applicable
even if an app’s traffic is encrypted using TLS.

Second, we deploy FINGERPRINTV to collect net-
work traffic from the top-1000 most reviewed smart TV
apps of the three most widely used smart TV platforms,
namely Apple TV, Fire TV, and Roku [37]. To the best
of our knowledge, this is the first large-scale smart TV
traffic dataset that also includes traffic from Apple TV
apps. The dataset comprises 30K packet captures, 10K
per platform.

Third, we analyze this dataset and provide the fol-
lowing findings and insights. We find that smart TV app
fingerprinting is highly feasible and effective: even the
least prevalent type of fingerprint manifests itself in at
least 68% of apps of each platform. However, a finger-
print is only effective if it is distinct among other finger-
prints. With this in mind, only DBFs and PBF's have
merit, as up to 63% and 88% of the apps that exhibit
DBFs and PBFs, respectively, have DBFs/PBFs that

are distinct among those of other apps of the same plat-
form. We also find that if DBFs and PBF's are used in
conjunction, 78%, 89%, and 76% of Apple TV, Fire TV,
and Roku apps, respectively, have distinct fingerprints.
Furthermore, our results show that when multiple apps
exhibit an identical fingerprint, a common explanation
is that these apps stem from the same developer, or
have been generated using the same “no code” toolkit.
Finally, we find that among 80 apps that are made avail-
able on all three smart TV platforms, 76% exhibit a
different fingerprint on each platform, thus making it
possible to not only fingerprint the smart TV app itself,
but also to identify which platform it is being used on.

Network traffic features, such as destinations,
packet sizes, and TLS configuration parameters, have
been used to create fingerprints in other contexts [32,
38-46], but this paper is the first to consider them for
smart TV apps. Our main contributions are the appli-
cation and adaptation of existing families of techniques
to smart TV apps, and a methodology that allows for
automated extraction and evaluation of a range of fin-
gerprints (i.e., DBFs, PBFs, and TBFs), in a uniform
way and at scale. The implementation of our method-
ology can be used to repeat such assessments in the
future, as smart TV apps and their fingerprints evolve.
To that end, we plan to make the FINGERPRINTV code
and dataset publicly available [47].

Outline. The remainder of this paper is structured as
follows. Section 2 summarizes related work. Section 3
describes how we selected what apps to include in our
study, and how FINGERPRINTYV instruments the three
smart TV platforms. Section 4 introduces the three fin-
gerprinting techniques we consider, and explains the
methodology we devise for assessing their performance.
Section 5 presents the results for how well the three
fingerprinting techniques perform. Section 6 compares
fingerprints across platforms, and examines the benefits
of using different fingerprinting techniques in conjunc-
tion. Section 7 discusses possible defenses, limitations,
and future directions. Section 8 concludes the paper.

2 Background & Related Work

A network fingerprint (or signature) is network traffic
that is characteristic for certain software (or hardware)
and that may thus be used to identify the presence of
such software (hardware) on the network. Fingerprint-
ing has been studied by academics and professionals
for decades, because it enables valuable services such

FINGERPRINTV: Fingerprinting Smart TV Apps =—— 608

as Network Intrusion Detection Systems and traffic pri-
oritization schemes, yet at the same time also introduces
privacy risks as it allows network operators to “spy” on
individual users’ computer usage.

Early fingerprinting techniques relied on applica-
tions’ use of well known ports, but this approach had
limited accuracy and granularity, which paved the way
for proposals that relied on inspection of packet pay-
load [48, 49]. Techniques based on payload inspection
also proved applicable to recent emerging technologies,
such as smartphones [50] and IoT [51], but their rele-
vance is declining as the use of encryption is becoming
more widespread in these technologies [52-54].

Fingerprinting Encrypted Traffic. With the intro-
duction of SSL, the predecessor to TLS, researchers
began exploring what information could (still) be in-
ferred from network traffic, despite the payload be-
ing encrypted. For example, Bernaille and Teixeira [44]
demonstrated that the application layer protocol used
on top of SSL could be identified by analyzing the sizes
and directions of the first few packets of an SSL session.
Researchers have also reconstructed even more granular
information from encrypted network traffic by finger-
printing HTTP User-Agent strings [55], websites [6, 7]
(even in the presence of additional privacy enhancing
technologies, such as encryption of domain names, tun-
neling, onion routing, and traffic morphing [8-24]), in-
dividual webpages on social media websites [56], desk-
top [25] and mobile [26-28] applications, and even in-
dividual user actions in mobile applications [57, 58] as
well as voice commands on smart speakers [59-62] and
individual functionality on IoT devices [29-33].

Some work has even shown that it is possible to
fingerprint video content [63, 64]. Content fingerprint-
ing provides more granular information than smart TV
app fingerprinting, but is not as lightweight as the fin-
gerprinting techniques we consider for smart TV apps.
For example, Schuster et al. [64] employ Convolutional
Neural Networks, and also note that data collection is a
bottleneck as content must be played back in real-time,
multiple times, and the technique proposed in [63] needs
access to at least 30 Application Data Units, which
equates to two minutes of video playback, before any
inference attempts can be made.

Privacy of Smart TVs. While the literature on fin-
gerprinting is evidently rich, to the best of our knowl-
edge, no prior work has studied smart TV app finger-
printing at scale. A few papers have investigated finger-
printing in the context of smart TVs (alongside other
IoT devices) [31, 32, 40, 51, 65]. However, these pa-

pers are concerned with fingerprinting the smart TV
“as a whole”, i.e., identifying its presence on the net-
work [40, 51, 65], or with fingerprinting basic events on
smart TVs, e.g., returning to the menu screen [31, 32],
but do not attempt to fingerprint individual smart TV
apps. Furthermore, since the network traffic profiles of
smart TV apps differ from those of simpler smart home
devices, existing fingerprinting techniques, such as Ping-
Pong [32], need to be modified accordingly. We discuss
this in further detail in Section 4.1.2.

The work closest to ours is that of Moghaddam et
al. [4] and our own prior work [5]. These papers were the
first to study smart TV apps at scale, but focused on
advertising and tracking on smart TVs. Our work con-
tinues the effort of understanding the privacy of smart
TVs by focusing on fingerprinting smart TV apps. While
we draw inspiration from [4, 5] w.r.t. how we instru-
ment Fire TV and Roku, large-scale assessment of fin-
gerprinting techniques on smart TV apps was not possi-
ble with prior work, and no dataset with multiple sam-
ples of apps’ on-launch traffic previously existed. Addi-
tionally, whereas the instrumentation tools [66, 67] pub-
lished alongside [5] only cover Fire TV and Roku, and
still require manual intervention, FINGERPRINTV fully
automates app testing, and adds support for Apple TV.

Other work that addresses the privacy of smart
TVs includes: a qualitative assessment of the privacy
of 10 popular streaming apps and five popular smart
TVs [68]; a study that used crowd-sourcing to investi-
gate what tracking domains smart TVs in real users’
homes contact [54]; studies of the privacy risks of
HbbTV (a technology for overlaying web content over
regular TV channels), such as the broadcasters’ abil-
ity to track users’ viewing habits [69-71]; and two sur-
veys [72, 73] of consumers’ understanding of the privacy
risks and practices of smart TVs that found clear evi-
dence of widespread unawareness and confusion.

3 Data Collection

This section describes the design of FINGERPRINTV’s
data collection functionality (the App Selection and
Network Traffic Collection boxes in Figure 1), and how
we use FINGERPRINTV to collect network traffic from
the top-1000 apps of each of the three most widely used
smart TV platforms [37], namely Apple TV, Fire TV,
and Roku. Section 3.1 explains how we use FINGER-
PRINTYV to determine what apps to test. Section 3.2 ex-
plains how FINGERPRINTV automates interaction with

FINGERPRINTV: Fingerprinting Smart TV Apps = 609

the smart TVs. We summarize the dataset we collect
using FINGERPRINTV in Section 3.3.

3.1 App Selection

To assess the feasibility of fingerprinting smart TV apps,
we must test a large number of popular apps. To this
end, we first use FINGERPRINTV to crawl the web inter-
faces of the app stores of the three smart TV platforms
to obtain metadata for all available free apps of each
platform. Drawing inspiration from [4, 5], we then use
the number of user ratings submitted for an app as a
gauge for the number of users of that app, and pick the
1000 free apps with the most ratings for each platform.
We refer to this selection as the respective platform’s
top-1000 apps. Below, we briefly discuss the crawlers
and, to add context to the top-1000s, report how many
apps they discovered.

Apple TV. The Apple TV platform was not covered
in [4, 5]. We implement our own crawler that traverses
Apple’s “iTunes Preview” website [74], which lists meta-
data for all apps (across all Apple platforms) that are
made available on Apple’s App Store. The crawl was
performed in January 2021 and returned a total of 3,841
free Apple TV apps.

Fire TV. We also implement our own crawler for Fire
TV since [5] does not provide a crawler, and since the
crawler [75] provided alongside [4] does not log all app
metadata necessary for our purposes. Our crawler de-
termines the free apps that are compatible with our
Fire TV model (“Fire TV Cube 2nd Generation”). This
crawl was performed in March 2021 and returned a total
of 6,870 free Fire TV apps.

Roku. For Roku, we use the scripts [67] provided along-
side [5] to crawl the Roku Channel Store. The crawl was
performed in May 2021 and returned a total of 14,246
free Roku apps.

3.2 Automation

To enable collection of apps’ on-launch network traffic at
scale, FINGERPRINTV instruments the Apple TV, Fire
TV, and Roku platforms to repeatedly launch each app
while collecting the smart TV’s network traffic. In this
section, we first provide a platform-agnostic overview of
the hardware setup and the instrumentation procedure,
followed by platform-specific implementation details.

Hardware Setup. The general setup for the instru-
mentation is depicted in the Network Traffic Collection

box of Figure 1. The Controller is a computer with a
wired and a wireless network interface that runs a Unix-
based operating system. It is configured as a wireless ac-
cess point (with NAT), and the smart TV under test is
associated with this wireless network. The Controller is
also responsible for executing the instrumentation code
and logging the network traffic from/to the smart TV.

Instrumentation Procedure. Each app is subjected
to the same four-step instrumentation procedure:

1. The instrumentation first installs the app.

2. Next, it performs three “warm-up” launches of the
app, without logging any network traffic. In each
warm-up launch, the instrumentation emulates one
of three sequences of key presses on the smart TV’s
physical remote. The purpose of these warm-up
launches is to dismiss any terms of service and/or
initial setup screens (e.g., for selecting viewing pref-
erences) that only appear at first launch or until the
user has made their choice(s); this way, we finger-
print how the app behaves during daily use, and not
during first use. Drawing inspiration from [4], we pick
the three most common key press sequences for deal-
ing with terms of service and initial setup screens
among the top-100 apps.

3. The instrumentation then enters its main phase
where it collects L samples of the on-launch traffic
for the app. For each sample, the instrumentation
(1) kills the app to ensure it is not already running;
(2) starts capturing traffic on the Controller’s wire-
less interface; (3) launches the app; (4) waits for ap-
proximately 45 seconds; and (5) terminates the traf-
fic capture. This produces L traffic captures (PCAP
files), each of which contains all the traffic that oc-
curred during a single launch of the app. We use the
term launch sample to refer to such a capture.

4. Finally, the instrumentation uninstalls the app to
free up space on the smart TV.

Apple TV Implementation Details. We use a Mac-
Book Pro Retina (15 inch, Mid 2012), running macOS
Catalina, as the Controller in Figure 1. We use an Ap-
ple Thunderbolt-to-Ethernet adapter to transform one
of the MacBook’s Thunderbolt ports into an Ethernet
port, and connect this interface to the WAN. The Mac-
Book’s wireless interface is configured as a wireless ac-
cess point, to which the Apple TV is connected. The in-
strumentation procedure is implemented using Apple’s
testing framework, XCUITest [76], (for controlling the
Apple TV programmatically) and tshark (for capturing
all network traffic passing through the wireless interface

FINGERPRINTV: Fingerprinting Smart TV Apps =— 610

of the MacBook). We note that for Apple TV, the Con-
troller must be a macOS-based system as the XCUITest
APIs are only supported on macOS.

Fire TV Implementation Details. We use a Rasp-
berry Pi 4 (8GB RAM) as the Controller in Figure 1.
During data collection, the Raspberry Pi’s onboard
wireless radio proved unreliable, so we replaced it with
a TP-Link Archer T3U Plus Wi-Fi adapter. The in-
strumentation is realized through a Python implemen-
tation [77] of the Android Debug Bridge [78] (for con-
trolling the Fire TV programmatically) and tcpdump
(for capturing all network traffic passing through the
wireless interface of the Raspberry Pi).

Roku Implementation Details. We use a Raspberry
Pi 4 (8GB RAM) with a TP-Link Archer T3U Plus Wi-
Fi adapter, as the Controller in Figure 1. The instru-
mentation is realized using the Roku External Control
Protocol [79] (for controlling the Roku device program-
matically) and tcpdump (for capturing all network traf-
fic at the wireless interface of the Raspberry Pi).

3.3 Dataset Summary

We deploy FINGERPRINTV and collect L = 10 samples
of the network traffic generated at launch time by each
of the 1000 most widely used apps on Apple TV, Fire
TV, and Roku. The resulting dataset comprises 30K
packet captures, 10K per platform.

4 Data Analysis

This section describes how FINGERPRINTV analyzes
network traffic to assess the feasibility of fingerprint-
ing smart TV apps. Section 4.1 introduces the three
fingerprinting techniques we consider in this paper.
Section 4.2 introduces the methodology that FINGER-
PRINTV uses to assess the performance of each finger-

printing technique in a uniform manner.

4.1 Fingerprinting Techniques

In the context of this paper, a fingerprinting technique
is any algorithm that identifies what network traffic (if
any) consistently occurs whenever a specific smart TV
app is launched. In other words, a fingerprinting tech-
nique extracts fingerprints from a training network traf-
fic dataset, and the extracted fingerprints can then later

be used to identify the corresponding apps in live traf-
fic. This section introduces the three fingerprinting tech-
niques we consider in this paper and implement support
for in FINGERPRINTV (each fingerprinting technique is
responsible for carrying out the steps in the Fingerprint
Extraction box of Figure 1). We pick these particular
techniques because they are lightweight, as they only
rely on a few packets per flow, yet applicable even if
an app’s communication is encrypted using TLS. While
the research community has explored these fingerprint-
ing techniques in other contexts [32, 38—46], our work is
the first to apply them to smart TV apps at scale.

4.1.1 Domain-Based Fingerprints (DBF)

The first fingerprinting technique we consider identifies
an app based on the set of domains the app consistently
contacts when it is launched. The intuition is that apps
are likely to contact the same set of servers at launch
time, for example to fetch featured content. Moreover,
past work [4, 5] has shown that smart TV apps con-
tact a large number of distinct domains, suggesting that
domain access patterns may be a useful fingerprint for
smart TV apps. We refer to this type of fingerprint as
a domain-based fingerprint (DBF):

Definition 4.1. The domain-based fingerprint (DBF)
of app A, Fp(A), is the set S of domains s.t. for every
domain d in S, d appears at least once in at least U
launch samples of A. The size of Fp(A) is the number
of domains in S.

Throughout Section 4, we refer to the parameter U (in
Definitions 4.1, 4.2, and 4.3) as the usage threshold. Let
F(A) denote the fingerprint of app A (of any type, i.e.,
DBF, PBF, or TBF). U controls the trade-off between
the size of F(A) and its reliability, i.e., the likelihood
that F(A) will manifest itself in live traffic of A.

For example, the size of Fp(A) decreases as U in-
creases, as domains that are only contacted occasionally
when A is launched (e.g., if the app has cached some
of its resources) will then not become part of Fp(A).
Intuitively, and as shown in Section 5, the discrimina-
tive power of Fp(A) decreases with the size of Fp(A),
as a smaller DBF is less likely to be distinct from other
DBFs. On the other hand, a large U implies that Fp(A)
manifests itself in most live traffic of A, making it more
likely that A can be consistently detected.

Throughout the remainder of this paper, and for
all three fingerprinting techniques, we choose the most

FINGERPRINTV: Fingerprinting Smart TV Apps = 611

conservative approach: we set U = L = 10, where L is
the number of launch samples, i.e., we report results for
fingerprints that are always present.

Domain Extraction. As all launch samples for the
same app A are collected back-to-back (see Section 3.2),
any on-device DNS caching will significantly reduce the
size of S if domains are only extracted from DNS traf-
fic. FINGERPRINTV therefore constructs S based on
domains found in (1) the answers section of DNS re-
sponses, (2) the Host header field of HTTP requests (if
sent as plaintext), and (3) the TLS SNI extension.

4.1.2 Packet-Pair-Based Fingerprints (PBF)

The second fingerprinting technique we consider iden-
tifies an app based on packet sizes and packet direc-
tions in packet exchanges that consistently occur when
the app is launched. The motivation for this technique
came from an observation initially made through vi-
sual inspection of the packet captures for Roku apps:
the Roku communicates with scribe.logs.roku.com over
TLS every time any app is launched, and the size of one
client-to-server packet in this communication appears to
be correlated with the number of digits in the launched
app’s ID (e.g., the packet’s size is 881 bytes if the app
ID is a two-digit number, 882 bytes if the app ID is a
three-digit number etc.). While the immediate implica-
tion of this observation is that Roku is likely tracking
the user’s app usage, this packet exchange also enables
an in-network observer to infer the number of digits in
the ID of the app that is launched. If an app exhibits
other such consistently occurring packet exchanges, it
may be possible to identify the app from observing these
packet exchanges happening jointly.

A similar observation was made in our prior
work [32], where we introduced the concept of packet-
level signatures (PLS) for smart home devices. A smart
home device exhibits a PLS if the invocation of some
specific functionality consistently results in packet ex-
changes between the device and some endpoint(s),
where the packets’ sizes (with slight variations) and di-
rections stay consistent across all invocations. In [32], we
detail a multi-step methodology for extracting a PLS,
where the first step separates packets in TCP connec-
tions into packet pairs, and later steps reassemble ad-
jacent, consistently occurring packet pairs into longer
packet sequences and enforce inter-sequence temporal
ordering. Informally, a packet pair is two sequential
packets that go in opposite directions, or a single packet

paired with a nil value, if the subsequent packet goes in
the same direction; see [32] for the formal definition.
In the technique considered here, we essentially ter-
minate the PLS methodology early, namely when it has
identified the consistently occurring packet pairs. This
set of packet pairs then constitutes the fingerprint, re-
ferred to as a packet-pair-based fingerprint (PBF):

Definition 4.2. The packet-pair-based fingerprint
(PBF) of app A, Fp(A), is the set S of packet pairs
such that for every packet pair p in S, p appears U
times across L launch samples of A. The size of Fp(A)
is the number of packet pairs in S.

We use the PingPong tool [32] to extract the consis-
tently occurring packet pairs from our dataset; see Fig-
ure 1. We treat the L launch samples of each smart TV
app A as corresponding to the smart home events that
are triggered L times in [32]. To convert our dataset to
the format expected by PingPong, we concatenate the
L launch samples of A into one. Then, given that trace
as input, PingPong produces clusters of packet pairs of
similar sizes and matching directions.

We use the default parameters given in [32], with
two modifications. First, we only consider packet pairs
with identical packet sizes as candidates for inclusion
in Fp(A) (i.e., clusters without any variability in the
packet pair sizes), while PingPong allows for small vari-
ations in packet sizes in the same cluster. We make
this conservative choice to align design choices for PBF's
with DBFs: domains used in DBFs have no variation.
However, less conservative choices can also be accommo-
dated by our methodology, as discussed in Appendix A.
Second, we do not attempt to temporally order packet
pairs to create longer packet sequences, as the traffic
profiles of smart TV apps are more complex than those
of the simpler smart home devices studied in [32]. In
particular, there is often a causal explanation for the
temporal order of packet sequences in PLS: the device
first receives a control command, e.g., “turn off”, in one
packet sequence, and then updates the cloud with its
new state in another packet sequence [32]. On the other
hand, a smart TV app may parallelize resource down-
loads, which makes the temporal order of packet pairs
on different connections less predictable.

4.1.3 TLS-Based Fingerprints (TBF)

The third fingerprinting technique we consider attempts
to identify an app based on the set of TLS fingerprints

FINGERPRINTV: Fingerprinting Smart TV Apps = 612

the app consistently exhibits when it is launched. We
refer to this type of fingerprint as a TLS-based finger-
print (TBF). A TBF is conceptually identical to a DBF
(see Definition 4.1), but where individual TLS finger-
prints assume the role of domains. A TLS fingerprint,
originally due to Risti¢ [45, 46], is the concatenation of
a subset of the information that is contained in the TLS
Client Hello message that the client sends to the server
in order to initiate a TLS session. Since Risti¢’s work,
various implementations have surfaced [80-82]. These
mainly differ in terms of what components of the Client
Hello they include in the TLS fingerprint. We opt for
Mercury [82] because it considers the most comprehen-
sive set of Client Hello components (see [25] for the for-
mal definition), which, presumably, increases the TLS
fingerprints’ discriminative power. For consistency, we
formalize TBFs in Definition 4.3.

Definition 4.3. The TLS-based fingerprint (TBF) of
app A, Fr(A), is the maximal set S of TLS fingerprints
such that for every TLS fingerprint s in S, s appears at
least once in at least U launch samples of A. The size
of Fp(A) is the number of TLS fingerprints in S.

4.2 Fingerprint Performance Assessment

In this section, we define a methodology that forms the
basis for how FINGERPRINT'V assesses the performance
of a fingerprinting technique F' (see the Post Processing
box in Figure 1). For F' to enable reliable identification
of app A, the fingerprint F(A) that F extracts for A
must be unique among all other apps’ fingerprints. Now,
recall from Definitions 4.1, 4.2, and 4.3 in Section 4.1
that at their core, the three types of fingerprints we
consider in this paper are essentially just sets with dif-
ferent types of members, namely domains, packet pairs,
and TLS fingerprints. Thus, performance assessment of
F is fundamentally a set difference problem.

We tackle this problem using agglomerative cluster-
ing [83], as it enables us to compute the (dis)similarity
of individual apps’ fingerprints (i.e., fingerprint member
sets) in a structured, yet extensible, way. More precisely,
when performed as described below, agglomerative clus-
tering enables us to (1) identify apps that have distinct
fingerprints, i.e., when the set of fingerprint members
that make up F(A) is different from all the sets of fin-
gerprint members of all other apps; and (2) identify apps
that share the same fingerprint, i.e., when the set of fin-
gerprint members that make up F(A) is identical to the

set of fingerprint members that make up the fingerprint,
F(B), of some other app B.

Clustering Procedure. The agglomerative clustering
is performed as follows. We first form a fingerprint-
member-by-app matrix M such that M[m;, A;] holds
the number of launch samples of app A; that finger-
print member m; was observed in. Next, M is pruned
by dropping all rows (fingerprint members) that are not
present in at least U (the usage threshold, see Defini-
tions 4.1, 4.2, and 4.3) launch samples for at least one
app, i.e., row i is removed iff M[m;, A;] < U for every
j. M is then converted to a binary matrix by setting
M[mi,Aﬂ = 0 if M[mi7Aj] < U and M[mi,Aj] =1
if M[m;, A;] > U, for all combinations of ¢ and j. In
Sections 5 and 6, we use U = L = 10 to conservatively
report results for fingerprints that are always present,
i.e., we set U to be equal to the number of launch sam-
ples L we perform (see Section 3.3).

Figure 2 shows an example of the matrix M for the
DBFs of 10 popular Fire TV apps. A blue cell indicates
that the cell’s value is 1, which means that the domain
appeared in all U = 10 launch samples of the respective
app and is therefore part of that app’s DBF. A white
cell indicates that the cell’s value is 0, i.e., the domain
appeared in less than 10 launches of the respective app
and is therefore not part of that app’s DBF. The DBF
of an app is the binary vector of the corresponding col-
umn. For example, the “Facebook” app contacts three
domains and we say it has a DBF of size 3; see Defi-
nition 4.1. The example also illustrates that DBFs can
vary significantly in size: the DBF of “ES File Explorer
File Manager” contains a single domain, while the DBF
of “NBC” contains 24 domains.

We then compute the agglomerative clustering of
the columns (i.e., apps) in M using SciPy [84]. We use
cosine distance, defined as 1 — m7 where a-b is the
dot product of a and b, the fingerprint member vectors
for apps A and B respectively, and ||z||2 is the 2-norm of
x, to compute the distance between two apps [85]. For
example, we can see in Figure 2 that the “Lifetime”,
“A&E”, and “HISTORY” apps exhibit the same DBF
and, thus, the distance between these apps is 0, and
they will be in the same cluster. Since the values in the
fingerprint member vectors for apps A and B are bi-
nary, a fingerprint member m; decreases the cosine dis-
tance iff m; is part of both F(A) and F(B). Notice that
this implies that the cosine distance will be > 0 when
one fingerprint is a subset of another. We consider such
fingerprints distinct from one another, since fingerprint

FINGERPRINTV: Fingerprinting Smart TV Apps =—— 613

update.estrongs.com
api.amazonalexa.com
scontent-lax3-2.xx.focdn.net
www.facebook.com
graph.facebook.com

r wmff.warnermediacdn.com

F securepubads.g.doubleclick.net
F nativesdks.mparticle.com

F events.claspws.tv

I api.auth.adobe.com

F dpm.demdex.net

I identity.mparticle.com

- b.scorecardresearch.com

F turnerclassicmovies.d2.sc.omtrdc.net
F tvem.cdn.turner.com

- in.appcenter.ms

I config.claspws.tv

F tbstnt.helpshift.com

F config2.mparticle.com

I telemetry.api.wmcdp.io

F pubsub-1.pubnub.com

F codepush.azurewebsites.net

F api2.branch.io

- beacon.krxd.net

F sp.auth.adobe.com

F cdn.branch.io

F cdn-mvpdmanager.video.aetnd.com
I yoga.appsvcs.aetnd.com

F smetrics.aetn.com

F api.pluto.tv

F service-channels.clusters.pluto.tv
F imasdk.googleapis.com

F service-stitcher.clusters.pluto.tv
F ngs.nice264.com

I launches.appsflyer.com

F insight.adsrvr.org

I inapps.appsflyer.com

F sp.pluto.tv

F telegraph.api.hbo.com

- comet.api.hbo.com

F commerce.api.hbo.com

F ws-cloudpath.media.nbcuni.com
F nbcapp.nbc.co

I api.amplitude.com

F nbcume.sc.omtrdc.net

F crashlyticsreports-pa.googleapis.com
F clientstream.launchdarkly.com
- api.iterable.com

- api.nbc.com

I friendship.nbc.co

F mvpd-admin.nbcuni.com

I stream.nbcsports.com

I assets.adobedtm.com

F conveyor.nbc.co

- nbcu.demdex.net

- mobile.launchdarkly.com

F amc-api-br.svc.ds.amcn.com

F api-um.svc.ds.amcn.com

r databuf.svc.ds.amcn.com

- mobile-collector.newrelic.com

F cdn.optimizely.com

- ssl.google-analytics.com

F consumer.krxd.net

Domain

I 3 > z . » I m T
UJEQE:ZWE“Q’GU)%
© g 5 0 0 =z m 4 1 o
§ 23 i 258
x T o= = o g
— el
2 F 5
g)
o
3 8 =
2 2 il
I’d @
=z]
o
< |
= 2
3
App

Fig. 2. Example: DBFs of 10 popular Fire TV apps. Rows corre-
spond to domains, columns correspond to apps, and the dendro-
gram on top corresponds to the clustering of apps based on the
similarity of their DBF. A blue cell indicates that the domain is
contacted U = 10 times and, thus, part of the respective app's
DBF; a white cell indicates otherwise. The DBF of an app is
the binary vector of the corresponding column. For example, the
“Facebook” app has a DBF of size 3 and it is part of a cluster
with size 1. The “HISTORY"”, “A&E", and “Lifetime” apps con-
tact the same nine domains. This means that they have the exact
same DBF of size 9, they have distance 0 from each other, and
are together in a cluster of size 3.

subsumption can be accounted for by enforcing timing
constraints when examining live traffic.

We use the Nearest Point Algorithm for computing
the inter-cluster distances when merging clusters [84]
(but the Farthest Point and UPGMA Algorithms pro-

FINGERPRINTV: Fingerprinting Smart TV Apps =— 614

Platform DBF PBF TBF DBF or PBF DBF and PBF
Prevalence Distinct. Prevalence Distinct. Prevalence Distinct. Prevalence Distinct. Prevalence Distinct.
Apple TV 96% 59% 68% 7% 95% 3% 96% 78% 68% 89%
Fire TV 88% 63% 95% 88% 86% 7% 99% 89% 85% 95%
Roku 100% 46% 100% 2% 100% 1% 100% 76% 100% 76%

Table 1. Summary of the three fingerprinting techniques’ performance on the top-1000 apps of the three smart TV platforms. Preva-
lence is the percentage of apps among the top-1000 that exhibit a fingerprint. Distinctiveness (Distinct.) is the percentage of apps that
exhibit a fingerprint that is distinct from all other apps’ fingerprints of the same type, among the total number of apps that exhibit a

fingerprint of that type (i.e., each distinctiveness column is computed using the raw numbers behind the prevalence percentage values

immediately to its left as the baseline).

duce similar results). When extracting clusters from the
agglomerative clustering, we use a distance threshold
t = 0 [86] such that F'(A) and F(B) have to be identi-
cal to end up in the same cluster. The choice of ¢t = 0
also ensures that if F'(A) is distinct among all other fin-
gerprints, it will end up in a singleton cluster, and the
number of distinct fingerprints is thus simply the num-
ber of singleton clusters formed.

We note that we make conservative choices for the
parameters in our methodology (e.g., U and t). Even un-
der these strict choices, fingerprints are highly prevalent
and have significant discriminative power. Furthermore,
the methodology is flexible enough to accommodate less
conservative choices, e.g., one can use U < L = 10 when
extracting DBFs to make a trade-off between its size
and reliability, as described in Section 4.1.1.

5 Fingerprinting Results

In this section, we use FINGERPRINTV to assess the
performance of the three fingerprinting techniques in-
troduced in Section 4.1, when applied to the top-1000
Apple TV, Fire TV, and Roku apps (see Section 3.3).
Section 5.1 reports the prevalence, distinctiveness, and
sizes of the extracted fingerprints. Section 5.2 examines
why some apps have identical fingerprints.

5.1 Prevalence, Distinctiveness, and Sizes

This section reports the prevalence, distinctiveness, and
sizes of the fingerprints extracted from the dataset de-
scribed in Section 3.3 using the fingerprinting techniques
defined in Section 4.1. We first introduce the three terms
and how FINGERPRINTV computes them, and then pro-
ceed to report the numbers for each smart TV platform.
The results are summarized in the left part of Table 1.

Prevalence. The prevalence of a fingerprint type is the
percentage of smart TV apps (from a single platform)
that exhibit that type of fingerprint. Recall from Sec-
tion 4.2 that apps with distinct fingerprints end up in
singleton clusters, that apps that have identical finger-
prints end up in the same cluster, and that apps that
do not exhibit a fingerprint are discarded during clus-
tering. The number N of apps that exhibit a fingerprint
is thus the sum of the number of members (i.e., apps) of
all clusters in the clustering. The prevalence P is then
P= % x 100% (as there are 1000 apps per platform).

Distinctiveness. The percentage of apps with distinct
fingerprints is arguably the most important metric for
assessing how well a fingerprinting technique works. We
use the term distinctiveness to refer to this metric. As
explained in Section 4.2, if the fingerprint, F(A), of app
A is distinct, A will end up in a singleton cluster, and
the number M of apps with distinct fingerprints is thus
equal to the number of clusters with size x = 1. The dis-
tinctiveness D is then D = % x 100%, i.e., the percent-
age of apps that exhibit a distinct fingerprint of a given
type, taken among all apps that exhibit a fingerprint of
that type. A large D thus means that the fingerprinting
technique produces fingerprints that are generally able
to uniquely identify apps without ambiguity, but is only
meaningful if the prevalence is also high.

Sizes. Recall from Definitions 4.1, 4.2, and 4.3 that the
size of a fingerprint is the number of fingerprint mem-
bers it contains, e.g., the number of domains in a DBF.
We report the fingerprint sizes to give insights as to how
many fingerprint members the general fingerprint con-
tains, and to test the intuition that a larger fingerprint
is more likely to be distinct (see Section 4.1.1).

5.1.1 Domain-Based Fingerprints (DBF)

Prevalence. Figures 3a, 3b, and 3c show the number
of clusters, grouped by cluster size, for DBFs for the

FINGERPRINTV: Fingerprinting Smart TV Apps = 615

(a) Apple TV (a) Apple TV
103 22 7 140
564]
2042
1916 120
oo J
G 102 4
9 1742
= 1644 100
5 1544
@ 1447 w
-2101_ o 13415 2 80 2
E S1227 3 bS]
=z 2 o
& 11411 g
2 S 10415 -60 E
9415 2 32 =
10° 4 1 1 1 1 =B 2
7 7/ 7/ 7 7 7432 4 |
SFNMSTNDON~N0O O © o~ o~ n n 40
— - — N m m in 6F 4 6 6 22
Cluster size 5488l 6 3 4 7 11 18 35
) 440 10 3 22 35 -20
(b) Fire TV 30 6 4 5 12 8
24 10 9 5 9 10
1430 6 3 8 55 o
AN M TN oM ®Oo O (@ N N e ¢
— o o~ m m Ton
Cluster size
[
% (b) Fire TV
3
] 241 140
bS] 2341
g 2241 4
120
g 204 3
z 191 2
184 2 3 100
174 2
164 6
154 4 2
J 80
HNMmYno~®©a g N ™ N N 5 “~’147 s
@ 1345 5
Cluster size 412410 3
o
114 8 3 -60 E
(c) Roku 1049 4 17 3
9418 3
8419 2
7439 2 - 40
649 8
5 2 3 4 8
4 4 6 3 8 5 6 12 13 -20
% 3K 2 3 4 5 9 17 22 24
3 2BE 12 3 8 20 10
: 1 18 12 8 14 12
6 R -0
— - N M < 1N O N~ 0 O O N m ~ TN H
[— N — — o~ o~
'g Cluster size
3
z (c) Roku
140
211
1111 1 1 1 2091
ooHN © o~ o~ 1842 120
e — — o~ n — o~
. - 1742
Cluster size 1644
100
(d) All platforms as one large dataset 1514 6
47
571 1;{ 5 a
g 12412 8 &
N 5
214 5
2 2 10412 10 [, 2
E 9419 6 E]
2 8418 2 5
u 7423 2
a -40
o 6444 4 7
Q 9
IS 5 4 45 15
=} 4 4 8 6 9 11 19 22
z -20
5 38 3 4106 h
> 2 20 9 5 7 12 16
11110 fii 2 12 R S . SV
Z111 D A, Z 1 i me ool oo ad tne fo ia im ot
e R - R N A R
—AONMNM<FLNON0O—NM LNWO000Y o<t o n n o o~ — -
Hede Hedee NN M o moin A o Cluster size
Cluster size . P
Fig. 4. Distribution of DBF sizes per cluster size. The DBF size is
Fig. 3. Distribution of clusters by cluster size for DBFs. The clus- the number of domains in a DBF. The cluster size is the number
ter size is the number of apps in a cluster (i.e., apps with the ex- of apps in a cluster. App counts are shown for each point. For

act same DBF; see Section 4.2). For instance, the bar at z =2 in jnstance, the point at (2, 2) in Figure 4a indicates that there are
Figure 3a indicates that there are 28 clusters that each contains 2 10 apps that each has a DBF that contains 2 domains, and these
apps, for a total of 56 apps. 10 apps reside in clusters that each contains 2 apps.

three smart TV platforms (Figure 3d is discussed in
Section 6.1.2). We find that 96% (N = 961) of the top-
1000 Apple TV apps exhibit a DBF; 88% (N = 884) of
the top-1000 Fire TV apps exhibit a DBF; and 100%
(N =1000) of the top-1000 Roku apps exhibit a DBF.

Distinctiveness. The number of apps with distinct
DBFs per platform is the number of clusters with size
x =1 in Figures 3a, 3b, and 3c. On all three platforms,
the DBF is distinct for about half of the apps that ex-
hibit a DBF: the DBF is distinct for 564 (59%) of the
961 Apple TV apps that exhibit a DBF, 555 (63%) of
the 884 Fire TV apps that exhibit a DBF, and 462 (46%)
of the 1000 Roku apps that exhibit a DBF.

Sizes. Figure 4 shows the distribution of DBF sizes per
cluster size (the label on top of each point is the app
count) for the three smart TV platforms. In summary,
we find that the median DBF size is four on all three
platforms. We also observe that DBF sizes are generally
larger for clusters with fewer members, thus the intu-
ition that larger fingerprints are generally more distinct
seems to hold true for DBFs.

The three most common DBF sizes are are 4, 5, and
3 for Apple TV; 3, 4, and 2 for Fire TV; and 3, 5, and
4 (tied with 2) for Roku. The median DBF size is 4
across the board. For all three platforms, there appears
to be some correlation between a DBF’s size and its
distinctiveness as the majority of DBFs that are larger
than the median DBF are distinct DBF's: 296 of the 463
(64%) Apple TV DBFs, 248 of the 311 (80%) Fire TV
DBFs, and 231 of the 420 (55%) Roku DBF's that are
larger than the median DBF are distinct.

5.1.2 Packet-Pair-Based Fingerprints (PBF)

Prevalence. Figures 9a, 9b, and 9c (deferred to Ap-
pendix B) show the number of clusters, grouped by
cluster size, for PBF's for the three smart TV platforms
(Figure 9d is discussed in Section 6.1.2). We find that
68% (N = 678) of the top-1000 Apple TV apps exhibit
a PBF; 95% (N = 952) of the top-1000 Fire TV apps
exhibit a PBF; and 100% (N = 1000) of the top-1000
Roku apps exhibit a PBF.

Distinctiveness. The number of apps with distinct
PBFs per platform is the number of clusters with size
x = 1 in Figures 9a, 9b, and 9c. PBFs have more dis-
criminative power than DBFs: among the apps that ex-
hibit PBFs, 77% of Apple TV apps, 88% of Fire TV
apps, and 72% of Roku apps exhibit distinct PBFs.

FINGERPRINTV: Fingerprinting Smart TV Apps =—— 616

Sizes. Figure 10 (deferred to Appendix B) shows the
distribution of PBF sizes per cluster size (the label on
top of each point is the app count) for the three smart
TV platforms. The median PBF sizes are 2, 4, and 5 for
Apple TV, Fire TV, and Roku, respectively. Like for
DBFs, we also observe a strong correlation between a
PBF’s size and its distinctiveness: 270 of the 272 (99%)
Apple TV PBFs, all of the 403 (100%) Fire TV PBFs,
and 444 of the 472 (94%) Roku PBFs that are larger
than the median PBF are distinct.

5.1.3 TLS-Based Fingerprints (TBF)

We find that TBFs have very little discriminative power
and therefore only briefly summarize the results, omit-
ting the diagrams to conserve space. In total, our find-
ings for smart TVs align with those of other work on
TLS fingerprinting [25]: (sets of) TLS fingerprints are
not sufficiently unique on their own to fingerprint apps.

Prevalence and Sizes. TBFs are about as widespread
as DBFs: 95%, 86%, and 100% of the top-1000 Apple
TV, Fire TV, and Roku apps, respectively, exhibit a
PBF. The median TBF size is 2 across all platforms.
While prevalence is large for TBFs, this also bears the
positive message that most smart TV apps encrypt
(part of) their communication. The TBF prevalence ob-
served for Roku is in line with what is reported in the
appendix of [4], but we observe slightly fewer TBF's for
Fire TV, possibly because we only consider “on-launch”
traffic, whereas [4] also inject user actions post launch.

Distinctiveness. While TBFs are prevelant on all
three platforms, they have little discriminative power:
only 3%, 7%, and 1% of the Apple TV, Fire TV, and
Roku apps that exhibit TBF's, exhibit distinct TBF's.
Furthermore, a few TBF's are shared by a large number
of apps; e.g., for both Apple TV and Roku, the cluster-
ing outputs two clusters with over 300 apps.

5.1.4 Takeaways

DBFs, PBFs, and TBFs are all prevalent among Ap-
ple TV, Fire TV, and Roku apps. However, only DBFs
and PBFs have enough discriminative power to reliable
identify apps, and we therefore omit TBFs from the dis-
cussion going forward. We also observe a correlation be-
tween a fingerprint’s size and its discriminative power.
Overall, PBFs seem to have more discriminative power
than DBF's, but they are also more likely to change

over time: even small changes to an app’s communica-
tion protocol(s) directly affect packet sizes [32]. In Ap-
pendix B.1, we provide additional details on DBFs’ and
PBF's’ distinctiveness by considering increasingly larger
portions of each platform’s dataset.

5.2 Identical Fingerprints

This section examines to what extent apps with iden-
tical fingerprints stem from the same developer. If a
developer releases multiple apps for the same platform,
they may opt to use some of the same backend servers
to deliver content, which could make these apps exhibit
identical fingerprints. We investigate this by examin-
ing the number of distinct developers present in clus-
ters with size x > 1, i.e., clusters of apps that share the
same fingerprint. We consider developers to be identical
if they are part of the same parent organization. For ex-
ample, the Fire TV app developers “Scripps Networks,
LLC”, “Discovery Communications” and “OWN, LLC”
are identical, since Discovery, Inc. owns a majority stake

in these companies.

5.2.1 Domain-Based Fingerprints

Summary. Figure 5 shows the number of clusters of
size x (for DBFs) that contain apps from @ distinct
developers for the three smart TV platforms. In sum-
mary, we find that a sizeable fraction of identical DBFs
are indeed attributable to apps from the same devel-
oper. We also find many examples of apps that appear
to be generated using “no code” toolkits provided by
consulting firms, and apps that are generated using the
same toolkit tend to have identical DBFs.

Apple TV Details. For Apple TV, 142 of the 397 apps
(37%) that share their DBF with other app(s) only share
it with other apps from the same developer. We note
that while the apps in the two clusters of size x = 35 in
Figure 5a are officially published by completely differ-
ent developers (@ = 35 for these clusters), they all ap-
pear to be due to the same consulting firm, Subsplash,
Inc., (who offers a “no code” toolkit for generating and
publishing apps) since their DBFs contain subdomains
of subsplash.com and (most of) their bundle IDs be-
gin with “com.subsplash”. Further, they are all religious
apps, which is Subsplash’s specialty. Similarly, all apps
in one of the three clusters of size x = 11, in one of the
two clusters of size x = 4, and in one of the 28 clus-
ters of size x = 2 appear to be due to MAZ Systems

FINGERPRINTV: Fingerprinting Smart TV Apps = 617

(a) Apple TV

Number of distinct developers
26 M1 W2 3 W4 W5 W7 Mg W10 M1l M35 m48

12 1
10 A
8_
6.
4
2_
0 ,47/,47/,47/,47/,4-

wamwl\mmo.—c
—

Number of clusters

Cluster size

(b) Fire TV

Number of distinct developers
26 M1 W2 W3 W4 W5 W6 W7 M8 W12

14 4
124
10 4
8
6
4
2
0- /4“7’/4*7’/4*7’/4*—

wamor\wmg

Number of clusters

Cluster size

(c) Roku

Number of distinct developers
26 M1 W2 53 M4 W5 M6 M9 M1l M15 W46 W59

Number of clusters

Cluster size

Fig. 5. Distribution of the number of developers responsible for
apps in clusters of size x > 1 for DBFs. For instance, the bar at
x = 2 in Figure 5a indicates that 12 of the 28 clusters of size

x = 2 (see Figure 3a) only contain apps from the same developer,
while the remaining 16 contain apps from 2 developers.

Inc.; all apps in one of the two clusters of size z = 8
and in one of the 28 clusters of size x = 2 appear to be
due to UscreenTV, LLC; and RadioKing and Streann
Media Inc each appear to be behind all apps in one of
the 28 clusters of size x = 2. If we treat these cases as
the same developer, we instead get that 243 of the 397

apps (61%) that share their DBF with other app(s) only
share it with other apps from the same developer.

Fire TV Details. For Fire TV, 187 of the 329 apps
(57%) that share their DBF with other app(s) only share
it with other apps from the same developer. We observe
that when a DBF is shared among many apps, those
apps generally stem from the same developer: notice
that @ = 1 for many of the clusters of size x > 8 in
Figure 5b. We note that we suspect that the Q = 3
distinct developers responsible for the apps in one of
the two clusters of size z = 17 are the same (or closely
related) entities as these apps (1) have custom made,
yet similar, privacy policies; (2) use the same pattern
for their contact emails; and (3) are all ambience apps
that use the same app naming scheme.

As for Apple TV, we again find many clusters of
apps that are officially published by multiple develop-
ers (and shown as such in Figure 5b), but where the
domains in their DBFs and/or their package names sug-
gest that they are from the same consulting firms. If we
treat these cases as the same developer, 227 of the 329
apps (69%) that share their DBF with other app(s) only
share it with other apps from the same developer.

Roku Details. For Roku, 107 of the 538 apps (20%)
that share their DBF with other app(s) only share it
with other apps from the same developer. We again find
many clusters of apps that are officially published by
multiple developers (and shown as such in Figure 5c),
but where the domains in the DBF's suggest that they
are due to the same consulting firms. If we treat these
cases as the same developer, 143 of the 538 apps (27%)
that share their DBF with other app(s) only share it
with other apps from the same developer.

5.2.2 Packet-Pair-Based Fingerprints

We do not find evidence that identical PBFs primarily
stem from apps from the same developer. For Apple
TV, 10 of the 153 apps (16%) that share their PBF
with other app(s) only share it with other apps from
the same developer. This also only applies to 7 of 119
(6%) Fire TV apps, and 42 of 283 (15%) Roku apps.

5.2.3 Takeaways

When multiple apps exhibit identical fingerprints, an in-
network observer can only make ambiguous inferences
about app usage. However, apps with identical DBFs

FINGERPRINTV: Fingerprinting Smart TV Apps =—— 618

primarily stem from the same developer. As some devel-
opers focus their efforts on building apps with a certain
theme (e.g., religious apps), it may thus still be possible
to infer what type of content the user is consuming. The
same does not hold true for PBF's, but identical PBFs
are less widespread (see Section 5.1.2).

6 Mix & Match Fingerprints

This section provides a cross-platform analysis of fin-
gerprints and examines combined use of fingerprints.
Section 6.1 compares DBFs and PBFs across the three
smart TV platforms. Section 6.2 examines to what ex-
tent combining DBFs and PBFs improves discrimina-
tive power. We omit TBFs from the discussion because
of their poor performance (see Section 5.1.3).

6.1 Fingerprints Across Platforms

This section compares how fingerprints of apps that are
present on all three platforms differ across platforms and
extends the evaluation in Section 5.1 of the extracted
fingerprints’ distinctiveness by considering the datasets
of the three platforms as a single, large dataset.

6.1.1 Multi-Platform Apps

We first compare the DBFs and PBFs of apps in our
dataset that are present on all three platforms, re-
ferred to as multi-platform apps. Drawing inspiration
from [5], we identify 80 multi-platform apps through
fuzzy matching on the app and developer names, as
the same app can have slightly different names on each
platform, e.g., “YouTube” on Fire TV and Roku, but
“YouTube: Watch, Listen, Stream” on Apple TV.

DBFs. Figure 6 shows, using one color-coded bar per
platform per app, the sizes of the DBFs of 60 of the 80
multi-platform apps; due to space constraints, we only
show the 60 multi-platform apps with the largest DBFs
in descending order. The textured part of each bar indi-
cates domains in the DBF that are unique to the corre-
sponding platform, i.e., domains that are not present in
the DBFs of the same app on the other two platforms.
Most multi-platform apps have at least one platform-
specific domain in their DBFs for all three versions of
the app (Apple TV, Fire TV, and Roku). In fact, only
19 of the 80 multi-platform apps (24%) have version(s)

FINGERPRINTV: Fingerprinting Smart TV Apps = 619

204

154

Domains

104

oOomwAcCcoo0oom I OmMz TN IVTZ<ITZTZOIZZ®
P C2g8 8555938820283 238¢GE25%¢F
9 §3:z28zp,2898882,98=2538"5%03 52723
z " §ER2yp28c3c 5350385632283 2 229783
c32vw2sc 443288 <=25 = <z 012
C2:85figs®s5z3=z=233 @573 = Jog 2
5°8a’2o® g -F3cc-28 § <28 E£7F
w AZZx¥ 2 £33 “es=z8 <= - 23 Zsg
3 T © ° § w S 7 5 223] FC >3
I Ao 03 Es ~ 3 %2509 " 2 > -
3 888e £ 22 G825 3 Z § =g
H o~ 8 H ° HEE R o € 4
gt 2 i ; H : :

EZA Unique for Apple TV
Apple TV

ZZ3 Unique for Fire TV
Fire TV

ZZ Unique for Roku
Roku

y i
fl
Z C I Z20I>»0>»2>0Zz2W0VzZLgz o nw v owvwr wvwdocodos
a-v-wmﬁ'amﬁgmgmvmggzg—!ﬂ’*e.aicmvzl—mi
~ %32 m 0 2= 8 = 5 223 3c3 3<% 68 5
z 3 39 El El S:25%55:3%z25¢853 - Z
3233738 7% 3& i 2 a 258 32 327 3 o 28
38 X< 7 R T e B= e B = G $2838%3s23238206z &
° X F2322328z% 78 = > o < vz o > g7 29
o Q vgo 27 =28 9 El 3 0Oy 2T =0 > 3 o o
= Q=23 39 c 3 =87 2 S > % ma3 o S 2sS 5
253 22822285355 3 g:T8s57%223¢
@ < w2ma8035 083 32 3 =23zd83a9mZg
32 3 a2 czz 2y s o 2 9>-5g26832
2 o @ S8 8 23 PN F] ~ 0z < ¢ < o g 2
iz s538s32% = g 28 2 R
]
2 2 e €@ ° 32 3T 5 = 2 B
: 2o ° : H @ H
App

Fig. 6. DBF sizes for the 60 multi-platform apps that exhibit the largest DBFs in descending order. The size of the DBF for each ver-
sion (Apple TV, Fire TV, and Roku) of an app is indicated using color-coded bars. The textured part of each bar indicates domains in

the DBF that are unique to the corresponding platform.

with no unique domains in their DBFs; and in 18 cases
this only applies to a single version of the app. Inter-
estingly, it is primarily the Fire TV version that lacks
platform-specific domains in its DBF. The Roku version
always has at least one unique domain in its DBF, as
all Roku apps communicate with scribe.logs.roku.com
when they are launched (see Section 4.1.2).

PBFs. All apps, except the Apple TV version of two
apps, have platform-specific packet pairs in their PBFs
for all versions of the app (we defer the PBF variant of
Figure 6 to Figure 11 in Appendix C). In fact, the vast
majority—and in many cases all—packet pairs in the
PBFs are platform-specific.

6.1.2 Distinctiveness of Fingerprints Across Platforms

To further assess the distinctiveness of fingerprints
across platforms, we perform a similar analysis as in
Section 5.1, but where we consider fingerprints of apps
on all three platforms as a single, large dataset. We refer
to apps with the same fingerprint as having a “collision”.

DBFs. Figure 3d shows the number of clusters, grouped
by cluster size, when the DBF's of apps of all three plat-
forms are considered as a single, large dataset. The im-
pact this merging of datasets has on the DBF's’ distinc-
tiveness is understood by comparing Figure 3d and the
sum of Figures 3a, 3b, and 3c. If the DBFs are less dis-
tinct in the merged dataset, the bar corresponding to
the number of clusters with size x = 1 in Figure 3d will

be smaller than the sum of the corresponding bars at
x =1 in Figures 3a, 3b, 3c. Similarly, increases in DBF
collisions would be reflected as larger values in Figure 3d
compared to the sum of the values at the respective =
in Figures 3a, 3b, and 3c, for z > 1.

We observe a very slight decrease in the number of
distinct DBFs: there are 564 + 555 + 462 = 1581 dis-
tinct DBFs when the platforms are considered individ-
ually (Figures 3a, 3b, and 3c), and 1571 distinct DBFs
when the three platforms are considered together (Fig-
ure 3d). DBF collisions also only change slightly: the
number of clusters with size > 1 are mostly the same
across Figure 3d and the sum of Figures 3a, 3b, and 3c.
We note that all additional DBF collisions that arise in
the merged dataset are among Apple TV and Fire TV
apps. This is because all Roku apps’ DBFs include one
Roku domain (see Section 4.1.2). Furthermore, the col-
lisions are attributable to DBF's that are smaller than or
equal to the median DBF size, which further confirms
the intuition that larger DBF's have more discriminative
power (see Sections 4.1.1 and 5.1.1).

PBFs. Due to space constraints, we defer the PBF ana-
log of Figure 3d to Figure 9d in Appendix C. We ob-
serve no change in the number of distinct PBFs when
the three individual datasets are considered as one: the
sum of distinct fingerprints across Figures 9a, 9b, and 9c
is 2075, which is also the number of distinct fingerprints
in Figure 9d. There is also hardly any change to PBF
collisions as the number of clusters with size x > 1 are
almost identical across Figure 9d and the sum of Fig-

ures 9a, 9b, and 9c. In fact, the only change is that a
cluster of two Fire TV apps is merged with a cluster that
contains 12 Apple TV apps. The PBF's of these apps are
comprised of a single MTU-sized client-to-server packet,
likely because the client is sending data in bulk. This re-
sults in single-packet pairs (see Section 4.1.2 and [32]),
which have little discriminative power.

6.1.3 Takeaways

The DBFs and PBFs of apps that are made available
on all three platforms are often platform-specific. Thus,
it is generally possible to not only fingerprint smart TV
apps themselves, but also (as a side-effect) to identify
which smart TV platform they are being used on. Addi-
tionally, the distinctiveness of DBFs and PBFs appears
to hold steady when the three datasets are considered
as one large dataset. This provides some indication that
the fingerprints are likely to retain their discriminative
power in an open world setting.

6.2 Combining Fingerprints

This section considers the benefits of combining DBFs
and PBFs. To establish to what extent smart TV apps
can be fingerprinted in general, using any technique, we
first examine how many apps exhibit a DBF or a PBF
(or both). Since larger fingerprints have more discrimi-
native power (as confirmed in Section 5.1.4), we examine
how many apps exhibit both a DBF and a PBF.

DBF or PBF. The “DBF or PBF” column of Table 1
lists the prevalence and distinctiveness of fingerprints
that are comprised of a DBF or a PBF (at least one,
or both). The reported distinctiveness is based on the
distinctiveness of the individual components considered
separately. That is, a fingerprint is not considered dis-
tinct if neither the DBF nor the PBF are distinct on
their own, even if the combination of them is exclusive
to one app. This is to remain conservative in our report-
ing, as confusion could arise if another app that exhibits
the same DBF is launched at the same time as a third
app that exhibits the same PBF, e.g., on different smart
TVs in the same household.

The results show that nearly all apps on all three
platforms exhibit either a DBF or a PBF (or both): the
prevalence is > 96% across the board. More importantly,
most of these fingerprints are distinct: the fingerprint is
distinct for 78% (750) of the Apple TV apps, 89% (884)
of the Fire TV apps, and 76% (760) of the Roku apps

FINGERPRINTV: Fingerprinting Smart TV Apps = 620

that exhibit a DBF or a PBF (or both). It is worth
noting that even for Apple TV, where DBFs contribute
significantly to the prevalence (PBFs on their own only
achieve 68% prevalence, whereas this joint fingerprint
achieves 96%), the distinctiveness is in line with that of
PBF's on their own (recall from Section 5.1.4 that PBFs
have more discriminative power than DBF's). Thus, the
extra coverage that can be achieved by also considering
DBFs appear to primarily stem from distinct DBF's.

DBF and PBF. The “DBF and PBF” column of Ta-
ble 1 lists the prevalence and distinctiveness of finger-
prints that are comprised of both a DBF and a PBF.
The reported distinctiveness is computed in the same
way as for “DBF or PBF”, described above.

The results show that DBFs and PBFs generally
co-occur: notice that the prevalence for this joint fin-
gerprint almost equals its upper bound, i.e., the mini-
mum prevalence of DBFs and PBFs individually. This
implies that almost all Apple TV apps that exhibit a
PBF must also exhibit a DBF, and vice versa for Fire
TV (all Roku apps exhibit both DBFs and PBFs). The
fingerprints also have high discriminative power: the fin-
gerprint is distinct for 89% (599) of the Apple TV apps,
95% (802) of the Fire TV apps, and 76% (760) of the
Roku apps that exhibit both a DBF and a PBF.

6.2.1 Takeaways

Nearly all apps across all three smart TV platforms can
be fingerprinted if one uses either a DBF or a PBF (or
both) on a per-app basis. Moreover, these joint finger-
prints have high discriminative power, but fingerprints
for Roku apps fall slightly short of those of Apple TV
apps and Fire TV apps in this respect.

7 Discussion

This section briefly discusses how to mitigate the infer-
ences that can be made using DBFs and PBFs, as well
as the limitations of our work, and future directions.

Possible Defenses. As DBF's rely on access to domain
names in cleartext, DNS-over-HTTPS (DoH) [87] and
DNS-over-TLS (DoT) [88] are perhaps the most obvi-
ous potential defenses. However, as evident from the
results reported in Section 5.1.3, most smart TV apps
consistently communicate over TLS at every launch. If
the smart TV app uses the TLS Server Name Indication
(SNI) [89] extension for these sessions, the domain can

be recovered from the TLS session alone, which negates
the defense provided by DoH/DoT. To test this, we ran
a modified version of FINGERPRINTV that would disre-
gard all DNS data, and confirmed that the results were
almost identical to those reported in Section 5.1.1. In
essence, to be effective against DBFs, DoH/DoT must
be paired with Encrypted SNI (ESNI), but this requires
that the apps’ backend servers add support for ESNI,
which likely lies years ahead.

Network-level blockers, such as Pi-hole, that block
traffic to select domains can prevent identification of
an app via its DBF, if the DBF includes one or more
domains from the blocklist, as the adversary will only
observe a partial DBF match. The adversary can easily
counter such protection by removing domains that are
present in popular blocklists from the DBF they extract
for the app during training, and then (also) examine live
traffic for the manifestation of this reduced DBF. Since
smaller DBF's have less discriminative power (see Sec-
tions 4.1.1 and 5.1.4), network-level blockers may add
uncertainty to the adversary’s inferences, but may also
introduce app breakage.

For complete protection against DBFs, the smart
TV’s traffic can be tunneled through a VPN. Assum-
ing the adversary is somewhere on the path from the
smart TV to the VPN server, this defense nullifies the
effectiveness of DBF's entirely, as the tunnel encrypts
the three protocol fields that domains can be extracted
from (see Section 4.1.1). The downsides are that tun-
neling adds additional network overhead, and that the
VPN server may become a bottleneck (e.g., if it enforces
per-user rate limits that the smart TV can saturate).

For defenses against PBFs, we refer to our prior
work [32]. There, we argue that packet padding is effec-
tive against fingerprints that rely on packet sizes, at the
cost of some overhead, which also applies to the spe-
cial case of PBFs considered in this paper. In summary,
a VPN that pads packets provides an effective defense
against inference attacks based on DBFs (by hiding the
destination) and/or PBFs (by obfuscating packet sizes).

Limitations. While our assessment of the feasibility
of fingerprinting smart TV apps is made against the
largest smart TV dataset to date, it is not without limi-
tations. In particular, some smart TV apps require that
the user logs in, e.g., subscription-based apps such as
Netflix. As FINGERPRINTV does not attempt to create
accounts and log in, the fingerprints it extracts for these
apps may be different from what can be observed in the
wild as the on-launch traffic may differ depending on the
login state. This is a common limitation of automated

FINGERPRINTV: Fingerprinting Smart TV Apps = 621

measurement studies, e.g., [4, 5, 90, 91], as automating
account creation and login is a difficult problem. Some
studies approach this limitation by manually logging in
to a subset of the tested apps and/or by relying on third-
party authentication such as Google [90, 92, 93], while
others record the key presses involved in the login proce-
dure s.t. future versions of the same app can be tested
automatically [94]. An adversary intent on extracting
(more) precise fingerprints for select smart TV apps can
adopt a similar strategy using FINGERPRINTV.
Future Directions. In this paper, we purposely opted
for the most conservative design choices to extract re-
liable fingerprints. For example, we require that a do-
main must be present at least once in all launch sam-
ples of some app A for it to be included in A’s DBF,
and, unlike in [32], we do not allow for small varia-
tions in packet sizes when considering packet pairs for
inclusion in a PBF. It may be possible to increase fin-
gerprint prevalence and sizes by relaxing these strict
requirements, possibly at the cost of fingerprint reliabil-
ity and/or distinctiveness. Future work can study these
trade-offs by adjusting existing parameters of our FIN-
GERPRINTV framework (both in pre-processing and in
the clustering algorithm).

Since network traffic fingerprints may change over
time, it would be interesting to perform a longitudinal
analysis to see how the extracted fingerprints evolve,
and how often fingerprints need to be extracted. FIN-
GERPRINTYV facilitates such studies through its auto-
mated data collection, fingerprint extraction, and fin-
gerprint assessment features: the clustering that is in-
herently unsupervised in our methodology will identify
and extract any updated fingerprints.

8 Conclusion

We presented FINGERPRINTV, a methodology and im-
plementation we devised for automatically extracting
and evaluating network fingerprints of smart TV apps.
By deploying FINGERPRINTV to the top-1000 Apple
TV, Fire TV, and Roku apps, we showed that smart TV
app fingerprinting is highly feasible and effective on all
three platforms, as most apps exhibit a fingerprint, and
most fingerprints are distinct. We plan to make the FIN-
GERPRINTYV code and dataset publicly available [47].

Acknowledgments

This work is supported by NSF Awards 1815666 and
1956393. The authors would like to thank our shepherd,
Liang Wang, and the anonymous PETS reviewers for

their insightful feedback that helped improve the paper.

References

(1]

(4]

(8]

(9]

(10]

Leichtman Research Group, Inc. 39% of Adults Watch
Video via a Connected TV Device Daily. https://www.
leichtmanresearch.com/39-of-adults-watch-video-via-a-
connected-tv-device-daily/. [Online; accessed 2021-10-27].
Hub Research LLC. 2021 Connected Home. https:
//hubresearchllc.com/reports/?category=2021&title=2021-
connected-home, 2021. [Online; accessed 2021-10-27].

Hub Research LLC. 2021 Evolution of the TV Set. https:
//hubresearchllc.com/reports/?category=2021&title=2021-
evolution-of-the-tv-set, 2021. [Online; accessed 2021-10-27].
Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess,
Arunesh Mathur, Danny Yuxing Huang, Nick Feamster,
Edward W. Felten, Prateek Mittal, and Arvind Narayanan.
Watching You Watch: The Tracking Ecosystem of Over-the-
Top TV Streaming Devices. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS '19, page 131-147, New York, NY,
USA, 2019. Association for Computing Machinery.

Janus Varmarken, Hieu Le, Anastasia Shuba, Athina
Markopoulou, and Zubair Shafiq. The TV is Smart and Full
of Trackers: Measuring Smart TV Advertising and Tracking.
Proceedings on Privacy Enhancing Technologies, 2020(2),
2020.

Andrew Hintz. Fingerprinting websites using traffic analysis.
In Roger Dingledine and Paul Syverson, editors, Privacy
Enhancing Technologies, pages 171-178, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

Qixiang Sun, D.R. Simon, Yi-Min Wang, W. Russell, V.N.
Padmanabhan, and Lili Qiu.
encrypted web browsing traffic. In Proceedings 2002 IEEE

Statistical identification of

Symposium on Security and Privacy, pages 19-30, 2002.
George Dean Bissias, Marc Liberatore, David Jensen, and
Brian Neil Levine. Privacy vulnerabilities in encrypted http
streams. In George Danezis and David Martin, editors, Pri-
vacy Enhancing Technologies, pages 1-11, Berlin, Heidel-
berg, 2006. Springer Berlin Heidelberg.

Marc Liberatore and Brian Neil Levine. Inferring the source
of encrypted http connections. In Proceedings of the 13th
ACM Conference on Computer and Communications Secu-
rity, CCS '06, page 255-263, New York, NY, USA, 2006.
Association for Computing Machinery.

Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath.
Website fingerprinting: Attacking popular privacy enhancing
technologies with the multinomial naive-bayes classifier. In
Proceedings of the 2009 ACM Workshop on Cloud Comput-
ing Security, CCSW '09, page 31-42, New York, NY, USA,
2009. Association for Computing Machinery.

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

FINGERPRINTV: Fingerprinting Smart TV Apps = 622

Liming Lu, Ee-Chien Chang, and Mun Choon Chan. Web-
site fingerprinting and identification using ordered feature
sequences. In Dimitris Gritzalis, Bart Preneel, and Marianthi
Theoharidou, editors, Computer Security — ESORICS 2010,
pages 199-214, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing based
anonymization networks. In Proceedings of the 10th Annual
ACM Workshop on Privacy in the Electronic Society, WPES
'11, page 103-114, New York, NY, USA, 2011. Association
for Computing Machinery.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-Boo, | Still See You: Why Effi-
cient Traffic Analysis Countermeasures Fail. In 2012 IEEE
Symposium on Security and Privacy, pages 332-346, 2012.
Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson,
and lan Goldberg. Effective attacks and provable defenses
for website fingerprinting. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 143-157, San Diego, CA,
August 2014. USENIX Association.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas
Engel, Andreas Zinnen, Martin Henze, and Klaus Wehrle.
Website fingerprinting at internet scale. In Proceedings

of the Network and Distributed System Security (NDSS)
Symposium, 2016.

Jamie Hayes and George Danezis. k-fingerprinting: A robust
scalable website fingerprinting technique. In 25th USENIX
Security Symposium (USENIX Security 16), pages 1187—
1203, Austin, TX, August 2016. USENIX Association.
Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew
Wright. Deep fingerprinting: Undermining website finger-
printing defenses with deep learning. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS '18, page 1928-1943, New York, NY,
USA, 2018. Association for Computing Machinery.

Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper. pl-
fp: Extraction, classification, and prediction of website fin-
gerprints with deep learning. Proceedings on Privacy En-
hancing Technologies, 2019(3), 2019.

Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas.
Var-CNN: A Data-Efficient Website Fingerprinting Attack
Based on Deep Learning. Proceedings on Privacy Enhancing
Technologies, 4:292-310, 2019.

Payap Sirinam, Nate Mathews, Mohammad Saidur Rah-
man, and Matthew Wright. Triplet Fingerprinting: More
Practical and Portable Website Fingerprinting with N-Shot
Learning. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS '19,
page 1131-1148, New York, NY, USA, 2019. Association for
Computing Machinery.

Se Eun Oh, Nate Mathews, Mohammad Saidur Rahman,
Matthew Wright, and Nicholas Hopper. GANDaLF: GAN
for Data-Limited Fingerprinting. Proceedings on Privacy
Enhancing Technologies, 2021(2):305-322, 2021.
Jean-Pierre Smith, Prateek Mittal, and Adrian Perrig. Web-
site Fingerprinting in the Age of QUIC. Proceedings on
Privacy Enhancing Technologies, 2021(2):48-69, 2021.
Xiaobo Ma, Mawei Shi, Bingyu An, Jianfeng Li, Daniel Xi-
apu Luo, Junjie Zhang, and Xiaohong Guan. Context-aware

https://www.leichtmanresearch.com/39-of-adults-watch-video-via-a-connected-tv-device-daily/
https://www.leichtmanresearch.com/39-of-adults-watch-video-via-a-connected-tv-device-daily/
https://www.leichtmanresearch.com/39-of-adults-watch-video-via-a-connected-tv-device-daily/
https://hubresearchllc.com/reports/?category=2021&title=2021-connected-home
https://hubresearchllc.com/reports/?category=2021&title=2021-connected-home
https://hubresearchllc.com/reports/?category=2021&title=2021-connected-home
https://hubresearchllc.com/reports/?category=2021&title=2021-evolution-of-the-tv-set
https://hubresearchllc.com/reports/?category=2021&title=2021-evolution-of-the-tv-set
https://hubresearchllc.com/reports/?category=2021&title=2021-evolution-of-the-tv-set

(24]

(25]

26]

(27]

(28]

(29]

(30]

(31]

(32]

33]

(34]

website fingerprinting over encrypted proxies. In IEEE IN-
FOCOM 2021 - IEEE Conference on Computer Communica-
tions, pages 1-10, 2021.

Nguyen Phong Hoang, Arian Akhavan Niaki, Phillipa Gill,
and Michalis Polychronakis. Domain name encryption is
not enough: privacy leakage via IP-based website finger-
printing. Proceedings on Privacy Enhancing Technologies,
2021(4):420-440, 2021.

Blake Anderson and David McGrew. Accurate TLS Finger-
printing using Destination Context and Knowledge Bases,
2020.

Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and lvan
Martinovic. Appscanner: Automatic fingerprinting of smart-
phone apps from encrypted network traffic. In 2016 IEEE
European Symposium on Security and Privacy (EuroS P),
pages 439-454, 2016.

Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and lvan
Martinovic. Robust smartphone app identification via en-
crypted network traffic analysis. IEEE Transactions on Infor-
mation Forensics and Security, 13(1):63-78, 2018.

Thijs van Ede, Riccardo Bortolameotti, Andrea Continella,
Jingjing Ren, Daniel J Dubois, Martina Lindorfer, David
Choffnes, Maarten van Steen, and Andreas Peter. Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted net-
work traffic. In Proceedings of the Network and Distributed
System Security (NDSS) Symposium, 2020.

Bogdan Copos, Karl Levitt, Matt Bishop, and Jeff Rowe.

Is anybody home? inferring activity from smart home net-
work traffic. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 245-251, 2016.

TJ OConnor, Reham Mohamed, Markus Miettinen, William
Enck, Bradley Reaves, and Ahmad-Reza Sadeghi. HomeS-
nitch: Behavior Transparency and Control for Smart Home
loT Devices. In Proceedings of the 12th Conference on Se-
curity and Privacy in Wireless and Mobile Networks, WiSec
'19, page 128-138, New York, NY, USA, 2019. Association
for Computing Machinery.

Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria
Mandalari, Roman Kolcun, and Hamed Haddadi. Infor-
mation Exposure From Consumer loT Devices: A Multidi-
mensional, Network-Informed Measurement Approach. In
Proceedings of the Internet Measurement Conference, IMC
'19, page 267-279, New York, NY, USA, 2019. Association
for Computing Machinery.

Rahmadi Trimananda, Janus Varmarken, Athina
Markopoulou, and Brian Demsky. Packet-Level Signatures
for Smart Home Devices. In Proceedings of the Network and
Distributed System Security (NDSS) Symposium, February
2020.

Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Ku-
mar Sikder, Markus Miettinen, Hidayet Aksu, Mauro Conti,
Ahmad-Reza Sadeghi, and Selcuk Uluagac. Peek-a-boo: |
see your smart home activities, even encrypted! In Proceed-
ings of the 13th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, WiSec '20, page 207-218,
New York, NY, USA, 2020. Association for Computing Ma-
chinery.

Sha Zhao, Shijian Li, Julian Ramos, Zhiling Luo, Ziwen
Jiang, Anind K. Dey, and Gang Pan. User profiling from
their use of smartphone applications: A survey. Pervasive

(35]

[36]

37]

(38]

39]

[40]

[41]

(42]

43]

(44]

[45]

[46]

[47]

(48]

49]

FINGERPRINTV: Fingerprinting Smart TV Apps = 623

and Mobile Computing, 59:101052, 2019.

Edward C. Malthouse, Ewa Maslowska, and Judy U. Franks.
Understanding programmatic TV advertising. International
Journal of Advertising, 37(5):769-784, 2018.

FTC Staff. A Look at What ISPs Know About You: Ex-
amining the Privacy Practices of Six Major Internet Service
Providers, October 2021.

Alex Sherman. How Roku used the Netflix playbook to beat
bigger players and rule streaming video. https://www.cnbc.
com/2021/06/18/how-roku-dominated-streaming-anthony-
woods- new-content-obsession.html, 2021.

Srinivas Krishnan and Fabian Monrose. DNS Prefetching
and Its Privacy Implications: When Good Things Go Bad.
In Proceedings of the 3rd USENIX Conference on Large-
Scale Exploits and Emergent Threats: Botnets, Spyware,
Worms, and More, LEET'10, page 10, USA, 2010. USENIX
Association.

Noah Apthorpe, Dillon Reisman, and Nick Feamster. A
Smart Home is No Castle: Privacy Vulnerabilities of En-
crypted loT Traffic, 2017.

Hang Guo and John Heidemann. IP-Based loT Device De-
tection. In Proceedings of the 2018 Workshop on loT Secu-
rity and Privacy, loT S&P '18, page 36—42, New York, NY,
USA, 2018. Association for Computing Machinery.

Franck Le, Jorge Ortiz, Dinesh Verma, and Dilip Kandlur.
Policy-Based Identification of loT Devices’ Vendor and Type
by DNS Traffic Analysis, pages 180-201. Springer Interna-
tional Publishing, Cham, 2019.

Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and
Manos Antonakakis. loTFinder: Efficient Large-Scale Iden-
tification of loT Devices via Passive DNS Traffic Analysis.
In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 474-489, 2020.

Laurent Bernaille, Renata Teixeira, and Kave Salamatian.
Early application identification. In Proceedings of the 2006
ACM CoNEXT Conference, CONEXT '06, New York, NY,
USA, 2006. Association for Computing Machinery.

Laurent Bernaille and Renata Teixeira. Early recognition

of encrypted applications. In Steve Uhlig, Konstantina Pa-
pagiannaki, and Olivier Bonaventure, editors, Passive and
Active Network Measurement, pages 165—-175, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

lvan Risti¢. HTTP client fingerprinting using SSL handshake
analysis. https://blog.ivanristic.com/2009/06/http-client-
fingerprinting-using-ssl-handshake-analysis.html.

Qualys SSL Labs. HTTP Client Fingerprinting Using SSL
Handshake Analysis. https://www.ssllabs.com/projects/
client-fingerprinting/.

UCI Networking Group. FingerprinTV. https://github.com/
UCI-Networking-Group/fingerprintv.

Andrew W. Moore and Konstantina Papagiannaki. Toward
the accurate identification of network applications. In Con-
stantinos Dovrolis, editor, Passive and Active Network Mea-
surement, pages 41-54, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan
Savage, and Geoffrey M. Voelker. Unexpected means of
protocol inference. In Proceedings of the 6th ACM SIG-
COMM Conference on Internet Measurement, IMC '06, page
313-326, New York, NY, USA, 2006. Association for Com-

https://www.cnbc.com/2021/06/18/how-roku-dominated-streaming-anthony-woods-new-content-obsession.html
https://www.cnbc.com/2021/06/18/how-roku-dominated-streaming-anthony-woods-new-content-obsession.html
https://www.cnbc.com/2021/06/18/how-roku-dominated-streaming-anthony-woods-new-content-obsession.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://blog.ivanristic.com/2009/06/http-client-fingerprinting-using-ssl-handshake-analysis.html
https://www.ssllabs.com/projects/client-fingerprinting/
https://www.ssllabs.com/projects/client-fingerprinting/
https://github.com/UCI-Networking-Group/fingerprintv
https://github.com/UCI-Networking-Group/fingerprintv

(50]

(51]

(52]

53]

(54]

(55]

(56]

57]

(58]

59]

[60]

puting Machinery.

Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario
Baldi. Appprint: Automatic fingerprinting of mobile ap-
plications in network traffic. In Jelena Mirkovic and Yong
Liu, editors, Passive and Active Measurement, pages 57—69,
Cham, 2015. Springer International Publishing.

Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. Acqui-
sitional rule-based engine for discovering internet-of-things
devices. In 27th USENIX Security Symposium (USENIX
Security 18), pages 327-341, Baltimore, MD, August 2018.
USENIX Association.

Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Johanna Amann, and
Phillipa Gill. Studying TLS Usage in Android Apps. In
Proceedings of the 13th International Conference on Emerg-
ing Networking EXperiments and Technologies, CONEXT
'17, page 350-362, New York, NY, USA, 2017. Association
for Computing Machinery.

Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian
Monrose. SoK: Security Evaluation of Home-Based loT
Deployments. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1362-1380, 2019.

Danny Yuxing Huang, Noah Apthorpe, Frank Li, Gunes
Acar, and Nick Feamster. loT Inspector: Crowdsourcing
Labeled Network Traffic from Smart Home Devices at Scale.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
4(2), June 2020.

Martin Husik, Milan Cermak, Tomag Jirsik, and Pavel
Celeda. HTTPS Traffic Analysis and Client Identification
Using Passive SSL/TLS Fingerprinting. EURASIP J. Inf.
Secur., 2016(1), December 2016.

Kailong Wang, Junzhe Zhang, Guangdong Bai, Ryan Ko,
and Jin Song Dong. It's Not Just the Site, It's the Contents:
Intra-Domain Fingerprinting Social Media Websites Through
CDN Bursts. In Proceedings of the Web Conference 2021,
WWW 21, page 2142-2153, New York, NY, USA, 2021.
Association for Computing Machinery.

Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor,
and Nino Vincenzo Verde. Analyzing android encrypted
network traffic to identify user actions. IEEE Transactions
on Information Forensics and Security, 11(1):114-125, 2016.
Brendan Saltaformaggio, Hongjun Choi, Kristen Johnson,
Yonghwi Kwon, Qi Zhang, Xiangyu Zhang, Dongyan Xu,
and John Qian. Eavesdropping on fine-grained user activities
within smartphone apps over encrypted network traffic. In
10th USENIX Workshop on Offensive Technologies (WOOT
16), Austin, TX, August 2016. USENIX Association.

Sean Kennedy, Haipeng Li, Chenggang Wang, Hao Liu,
Boyang Wang, and Wenhai Sun. | Can Hear Your Alexa:
Voice Command Fingerprinting on Smart Home Speakers.

In 2019 IEEE Conference on Communications and Network
Security (CNS), pages 232-240, 2019.

Chenggang Wang, Sean Kennedy, Haipeng Li, King Hud-
son, Gowtham Atluri, Xuetao Wei, Wenhai Sun, and Boyang
Wang. Fingerprinting encrypted voice traffic on smart speak-
In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec '20, page 254-265, New York, NY, USA,
2020. Association for Computing Machinery.

ers with deep learning.

[61]

[62]

[63]

64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

FINGERPRINTV: Fingerprinting Smart TV Apps = 624

Batyr Charyyev and Mehmet Hadi Gunes. Voice command
fingerprinting with locality sensitive hashes. In Proceedings
of the 2020 Joint Workshop on CPS&IloT Security and Pri-
vacy, CPSIOTSEC'20, page 87-92, New York, NY, USA,
2020. Association for Computing Machinery.

Jack Hyland, Conrad Schneggenburger, Nick Lim, Jake
Ruud, Nate Mathews, and Matthew Wright. What a
SHAME: Smart Assistant Voice Command Fingerprinting
Utilizing Deep Learning. In Proceedings of the 20th Work-
shop on Privacy in the Electronic Society, WPES '21, page
237-243, New York, NY, USA, 2021. Association for Com-
puting Machinery.

Andrew Reed and Michael Kranch. Identifying HTTPS-
Protected Netflix Videos in Real-Time. In Proceedings of
the Seventh ACM on Conference on Data and Application
Security and Privacy, CODASPY '17, page 361-368, New
York, NY, USA, 2017. Association for Computing Machin-
ery.

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty
and the Burst: Remote ldentification of Encrypted Video
Streams. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1357-1374, Vancouver, BC, August
2017. USENIX Association.

Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun,
Hamed Haddadi, Daniel J. Dubois, David Choffnes, Geor-
gios Smaragdakis, and Anja Feldmann. A Haystack Full of
Needles: Scalable Detection of loT Devices in the Wild. In
Proceedings of the ACM Internet Measurement Conference,
IMC '20, page 87-100, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

Janus Varmarken, Hieu Le, Anastasia Shuba, Athina
Markopoulou, and Zubair Shafiq. Firetastic. https:
//github.com /UCI-Networking- Group /firetastic, 2020.
Janus Varmarken, Hieu Le, Anastasia Shuba, Athina
Markopoulou, and Zubair Shafiq. Rokustic. https:
//github.com /UCI-Networking- Group/rokustic, 2020.
Girard Kelly, Jeff Graham, Jill Bronfman, and Steve Garton.
Privacy of Streaming Apps and Devices: Watching TV that
Watches Us. San Francisco, CA: Common Sense Media,
2021.

Marco Ghiglieri and Erik Tews. A privacy protection system
for HbbTV in Smart TVs. In 2014 IEEE 11th Consumer
Communications and Networking Conference (CCNC), pages
357-362, 2014.

Marco Ghiglieri. | Know What You Watched Last Sunday -
A New Survey Of Privacy In HbbTV. In Web 2.0 Security
and Privacy Workshop (W2SP) 2014, W2SP '14, 2014.
Marco Ghiglieri and Michael Waidner. HbbTV Security and
Privacy: Issues and Challenges. IEEE Security & Privacy,
14(3):61-67, 2016.

Marco Ghiglieri, Melanie Volkamer, and Karen Renaud. Ex-
ploring Consumers’ Attitudes of Smart TV Related Privacy
Risks. In Theo Tryfonas, editor, Human Aspects of Infor-
mation Security, Privacy and Trust, pages 656—-674, Cham,
2017. Springer International Publishing.

Nathan Malkin, Julia Bernd, Maritza Johnson, and Serge
Egelman. “What Can’t Data Be Used For?” Privacy Expec-
tations about Smart TVs in the US. In Proceedings of the
3rd European Workshop on Usable Security (EuroUSEC),
London, UK, 2018.

https://github.com/UCI-Networking-Group/firetastic
https://github.com/UCI-Networking-Group/firetastic
https://github.com/UCI-Networking-Group/rokustic
https://github.com/UCI-Networking-Group/rokustic

[74]

[75]

[76]

[77]
(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

Apple Inc. iTunes Preview. https://apps.apple.com/us/
genre/ios/id36.

Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess,
Arunesh Mathur, Danny Yuxing Huang, Nick Feamster,
Edward W. Felten, Prateek Mittal, and Arvind Narayanan.
ott-tracking. https://github.com/citp/ott-tracking, 2019.
Apple Inc. User Interface Testing. https://developer.
apple.com/library/archive/documentation/DeveloperTools/
Conceptual /testing_with_xcode/chapters/09-ui__testing.
html, 2017.

Jeff Irion. adb_shell. https://github.com/JeffLIrion/adb_
shell.

Google LLC. Android Debug Bridge (adb). https:

/ /developer.android.com /studio/command-line/adb.

Roku, Inc. External Control Protocol (ECP). https://
developer.roku.com/docs/developer-program /debugging/
external-control-api.md.

Lee Brotherston. TLS Fingerprinting: Smarter Defending
& Stealthier Attacking. https://blog.squarelemon.com/tls-
fingerprinting/, 2015.

John Althouse, Jeff Atkinson, and Josh Atkins. JA3. https:
//sithub.com /salesforce /ja3.

David McGrew, Brandon Enright, Blake Anderson, Lucas
Messenger, Adam Weller, and Shekhar Acharya. Mercury.
https://github.com/cisco/mercury.

Lior Rokach and Oded Maimon. Clustering methods. In
Data mining and knowledge discovery handbook, pages 321—
352. Springer, 2005.
The SciPy community. scipy.cluster.hierarchy.linkage.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.
cluster.hierarchy.linkage.html.

The SciPy community. scipy.spatial.distance.pdist. https://
docs.scipy.org/doc/scipy/reference/generated /scipy.spatial.
distance.pdist.html.
The SciPy community. scipy.cluster.hierarchy.fcluster.
https://docs.scipy.org/doc/scipy/reference/generated /scipy.
cluster.hierarchy.fcluster.html.

P. Hoffman and P. McManus. DNS Queries over HTTPS
(DoH). RFC 8484, RFC Editor, October 2018.

Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and
P. Hoffman. Specification for DNS over Transport Layer
Security (TLS). RFC 7858, RFC Editor, May 2016.

D. Eastlake. Transport Layer Security (TLS) Extensions:
Extension Definitions. RFC 6066, RFC Editor, January 2011.
http://www.rfc-editor.org/rfc/rfc6066.txt.

Haojian Jin, Minyi Liu, Kevan Dodhia, Yuanchun Li, Gau-
rav Srivastava, Matthew Fredrikson, Yuvraj Agarwal, and
Jason I. Hong. Why Are They Collecting My Data? Infer-
ring the Purposes of Network Traffic in Mobile Apps. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 2(4),
dec 2018.

Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max Van
Kleek, and Nigel Shadbolt. Are iPhones Really Better for
Privacy? Comparative Study of iOS and Android Apps,
2021.

Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Choffnes. ReCon: Revealing and Con-
trolling PIl Leaks in Mobile Network Traffic. In Proceed-
ings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys '16, page

(93]

[94]

FINGERPRINTV: Fingerprinting Smart TV Apps = 625

361-374, New York, NY, USA, 2016. Association for Com-
puting Machinery.

Irwin Reyes, Primal Wijesekera, Abbas Razaghpanah, Joel
Reardon, Narseo Vallina-Rodriguez, Serge Egelman, Chris-
tian Kreibich, et al. "Is Our Children's Apps Learning?"
Automatically Detecting COPPA Violations. In Workshop
on Technology and Consumer Protection (ConPro 2017), in
conjunction with the 38th IEEE Symposium on Security and
Privacy (IEEE S&P 2017), 2017.

Jingjing Ren, Martina Lindorfer, Daniel J Dubois, Ashwin
Rao, David Choffnes, and Narseo Vallina-Rodriguez. Bug
Fixes, Improvements, ... and Privacy Leaks: A Longitudinal
Study of PII Leaks Across Android App Versions. In Pro-
ceedings of the Network and Distributed System Security
(NDSS) Symposium, 2018.

https://apps.apple.com/us/genre/ios/id36
https://apps.apple.com/us/genre/ios/id36
https://github.com/citp/ott-tracking
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/09-ui_testing.html
https://github.com/JeffLIrion/adb_shell
https://github.com/JeffLIrion/adb_shell
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.roku.com/docs/developer-program/debugging/external-control-api.md
https://developer.roku.com/docs/developer-program/debugging/external-control-api.md
https://developer.roku.com/docs/developer-program/debugging/external-control-api.md
https://blog.squarelemon.com/tls-fingerprinting/
https://blog.squarelemon.com/tls-fingerprinting/
https://github.com/salesforce/ja3
https://github.com/salesforce/ja3
https://github.com/cisco/mercury
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
http://www.rfc-editor.org/rfc/rfc6066.txt

Appendix

Appendix A supplements Section 4.1.2, Appendix B
supplements Section 5, and Appendix C supplements
Section 6.

A PingPong Characterization

In Section 4.1.2; we discuss how we use PingPong to ex-
tract packet pairs, which are then used as input for our
clustering algorithm that analyzes the PBFs of smart
TV apps. Most notably, (1) we treat app launch samples
as equivalent to smart home device events: we merge
the per-app launch samples into one trace and analyze
it using PingPong; (2) from the output of PingPong’s
pair clustering step that uses DBSCAN, we make the
conservative choice to only consider DBSCAN clusters
that consist of identical packet pairs, i.e., we allow no
variability in packet sizes in the pairs of a PBF; and
(3) we use PingPong’s default configuration that sets
DBSCAN'’s € parameter, which informally specifies how
far a packet pair can reside from an existing DBSCAN
cluster of packet pairs to become part of that cluster, to
10 [32]. However, our methodology for clustering apps
based on their fingerprints is flexible enough to accom-
modate other design choices for the underlying packet
pair extraction performed by PingPong. Next, we elab-
orate on the aforementioned choices (2) and (3).

(2) Packet Size Variations. In [32], PingPong is de-
signed to allow the sizes of packets in a pair of a PLS
to vary slightly. As evident from our results, in a lot of
cases, smart TV apps exhibit deterministic packet pairs
that always appear with identical packet sizes, e.g., C-
882 S-219. However, in some cases, packet sizes can have
slight variations, e.g., C-882 S-219, C-892 S-219, etc. In
this paper, we make the most conservative choice and
only consider packet sizes with no variations as candi-
dates for inclusion in a PBF, discarding the remaining
packet pairs that have slight variations. This choice is
consistent with DBFs: Fully Qualified Domain Names
(FQDN) considered as candidates for inclusion in a DBF
are unique.

By loosening this strict requirement, one can poten-
tially increase the PBFs’ sizes and/or PBF prevalence,
but this may come at the cost of additional PBF col-
lisions. Our approach may be generalized to accommo-
date packet size variations by fine-tuning ¢ and modi-
fying the logic that decides what clusters (as output by

FINGERPRINTV: Fingerprinting Smart TV Apps =—— 626

10° 4 750
4
3102 4
1%l
=}
]
“—
s)
:
1] 10
g 10 ;
=
2 2 2 2
100 4 1 I 1 1 1 1
© o © ~ I <
— ~ m < <

— NM T N o

Cluster size

Fig. 7. Distribution of clusters by cluster size for PBFs for Roku
when PingPong's € parameter is set to 0.

PingPong) are considered for inclusion in a PBF. In fact,
one could even consider distance of domains in DBF's by
considering not only exactly matching FQDNs, but also
common effective second-level domains (eSLD).

(3) Interaction Between Pair Clustering by Ping-
Pong and PBF Clustering by FingerprinTV.
Throughout this paper, we use PingPong with its de-
fault DBSCAN parameter € = 10 to cluster packet pairs.
When we observe the output of PingPong, we sometimes
find clusters that contain two different packet pairs that
are within a distance of 10. For instance, we observe
this phenomenon for Roku apps: the omnipresent Roku-
specific packet pair described in Section 4.1.2 is some-
times clustered (by PingPong) together with other pairs
that are within a distance of 10, e.g., C-882 S-219 and C-
892 S-219. Since FINGERPRINTV discards clusters that
are not exclusively comprised of identical packet pairs,
it only includes the Roku-specific pair in the PBFs of
834 of the 1000 Roku apps when € = 10.

To eliminate this behavior, one may set ¢ = 0 so
as to force PingPong to only output clusters consisting
of identical packet pairs. To examine what effect this
has on the inclusion of the omnipresent Roku-specific
packet pair in the PBF's of Roku apps, we also run Ping-
Pong with € = 0 and then use FINGERPRINTV to per-
form PBF extraction and performance analysis on this
PingPong output. With this configuration change, the
Roku-specific packet pair becomes part of the PBF for
974 Roku apps. For the remaining 26 apps, the Roku-
specific packet pair appears more than L times across
the L launch samples of each app and is therefore dis-
carded (see Definition 4.2 and recall that U = L = 10).
Compared to Figure 9c¢ that shows 717 apps with dis-
tinct PBFs, namely apps in clusters of size 1, when we
run PingPong with € = 10, Figure 7 shows that we have

‘Apple TV DBF +-Apple TV PBF “@-Fire TV DBF -Fire TV PBF ©*Roku DBF --Roku PBF
100% A
90% A
8 80%-
c
o
2
=]
5}
£ 70%
2
[a]
60%
50%
— T T T T T T T T T T T T T T T T T
O 0O 000000000000 00 0 QO O 9
N ONoOnmMowmOowmomOowmOowmOowmnmOonao
A H A NMMY ¥IHN00RNN®O®O 0 QS

Apps in dataset

Fig. 8. Distinctiveness of DBFs and PBFs as a function of the
number of apps in the dataset. Apps are added to the dataset
based on the number of reviews submitted for each app. That
is, x = 50 is a dataset comprised of the 50 most reviewed apps,
x = 100 is a dataset comprised of the 100 most reviewed apps,
and so forth.

750 apps that have distinct PBFs when we run Ping-
Pong with € = 0.

In summary, changing the value of ¢ in PingPong’s
DBSCAN clustering is a design choice. More generally, a
careful co-design of DBSCAN clustering in the underly-
ing PingPong with PBF clustering by FINGERPRINT'V is
required to achieve the desired trade-off between preva-
lence and distinctiveness of the extracted PBFs.

B Fingerprinting Results

This appendix includes the figures that form the basis
for the results reported in Section 5.1.2 and provides fur-
ther analysis of the distinctiveness of DBFs and PBFs.
Figures 9a, 9b, and 9c show the number of clusters,
grouped by cluster size, for PBFs for the three smart
TV platforms. Figure 10 shows the distribution of PBF
sizes per cluster size (the label on top of each point is
the app count) for the three smart TV platforms.

B.1 Distinctiveness & Dataset Size

In Table 1, and throughout the main body of this paper,
we report the distinctiveness of DBFs and PBFs for the
top-1000 Apple TV, Fire TV, and Roku apps. To shed
further light on the potential for fingerprint collisions,

FINGERPRINTV: Fingerprinting Smart TV Apps =—— 627

(a) Apple TV

103 E

525
102 4
13
101 4
6
3
2 2 2
10 /—*.—//jv/ﬁﬁ%ﬁﬁ%ﬁﬁ—
~ o o o~ n ~
— — — —

Number of clusters

N MmN

Cluster size

(b) Fire TV

Number of clusters

Cluster size
(c) Roku
3 g
10 717
4
£ 107
=]
S
e
o
5 16
2 1014
E 10 ,
= 4
2 2 2
100 4 11 1 1 1 1
s ANMm T N O~ 0 o 0 [=)] m ~
— o~ m < <
Cluster size
(d) All platforms as one large dataset
2075
103 4
o
o]
5 107 4
o
-
o
h
9
Q
£ 10
=z
4
2
100 i 1 1 I 1 1 1 1 1
o o~ < un ~ 0 [=)] m ~
— — — — o~ m < <

—ONM <N O~ 00

Cluster size

Fig. 9. Distribution of clusters by cluster size for PBFs. The clus-
ter size is the number of apps in a cluster. For instance, the bar
at x = 2 in Figure 9a indicates that there are 13 clusters that
each contains 2 apps, for a total of 26 apps.

(a) Apple TV

160

-

184
174 1
140

e 120

100

80

PBF size
Number of apps

74 13 - 60

54 43 - 40

-20

1
2
3
4
5
7
8
104 5
12415
1541 &
17419

Cluster size

(b) Fire TV

160

140

120

100

134 12 80

PBF size
Number of apps

109 30 - 60

71 46 -40

-20

4
3 18 5 6
2
1

32 12 6

1546

Cluster size

(c) Roku

160

140

120

100

80

Number of apps

- 60

-40

-20

T
© : o

3
4

54
6 4
74w
28
39 4
43 {
47 4

Cluster size

Fig. 10. Distribution of PBF sizes per cluster size. The PBF

size is the number of packet pairs in a PBF. The cluster size

is the number of apps in a cluster. App counts are shown for
each point. For instance, the point at (2,2) in Figure 10a indi-
cates that there are 12 apps that each has a PBF that contains 2
packet pairs and that reside in clusters that each contains 2 apps.

FINGERPRINTV: Fingerprinting Smart TV Apps =—— 628

in Figure 8, we split each of the three datasets into in-
creasingly larger subsets and show how the distinctive-
ness evolves as the number of apps considered increases.
Apps are included in the subsets based on the number
of user reviews submitted for each app. That is, in Fig-
ure 8, x = 50 is a dataset comprised of the 50 most
reviewed apps, ©+ = 100 is a dataset comprised of the
100 most reviewed apps, etc.

Figure 8 shows that the distinctiveness decreases
slowly as the number of apps considered increases be-
yond 500 apps, especially for PBFs. In particular, the
distinctiveness of PBFs of Apple TV apps appear to
plateau. Moreover, the distinctiveness of PBFs gener-
ally declines slower than the distinctiveness of DBFs.
The distinctiveness of PBFs is also generally greater
than the distinctiveness of DBF's, which is in line with
the observation made in Section 5.1.4.

C Mix & Match Fingerprints

This appendix includes the figures for PBFs that were
omitted from Section 6.1. Figure 9d shows the number of
clusters, grouped by cluster size, when the PBFs of apps
of all three platforms are considered as a single, large
dataset. Figure 11 shows, using one color-coded bar per
platform per app, the sizes of (i.e., the number of packet
pairs in) the PBFs of 60 of the 80 multi-platform apps.

— 629

FINGERPRINTV: Fingerprinting Smart TV Apps

EZA Unique for Apple TV

Apple TV
ZZ3 Unique for Fire TV

Topic: Watch TV & Mo...

SHOWTIME: TV, Movies...

Fire TV
ZZ Unique for Roku
Roku

201
154
0
5
0

siied 342ed

Movies Anywher
Thirteen Explore
Amazon Prime Video

o Spotify: Music and p...
DisneyNOW, Episodes ...

TED

Food Network GO: 10k...

Fox Business: Invest...

- Destination America ...

Animal Planet GO
NHK WORLD-JAPAN

S Hallmark Movies Now

Bleacher Report Live
Science Channel GO
TLC GO - Full Eps an...

Amazon Music: Songs ...

Nat Geo TV: Live & O...
DIY Network GO
Philo

3 FXNOW: Movies, Shows...

MT GO

Cartoon Network App
Crunchyroll

A&E - TV Shows & Ful...
Lifetime: TV Shows &...

3 HISTORY: TV Shows on...

Investigation Discov...
BritBox by BBC & ITV

Gaia TV Conscious Me...

Smithsonian Channel
Hulu: Stream movies ...
Disney+

Pandora: Music & Pod...
Nick

sling: Live TV, Show...

CBS News: Live Break...
FOX NOW: Watch TV & ...

FilmRise

3 Fox News: Live Break...
NewsON - Local News ...

Netflix

Fawesome

GoNoodle - Kids Vide...
Watch TNT

CBS Sports App Score...

VH1

Nick Jr.

Paramount Network
Noggin Preschool Lea...
Comedy Central
OXYGEN

USA Network

ESPN: Live Sports & ...

CNBC: Stock Market &...

E!
Bravo - Live Stream ...
Telemundo
NBC Sports

App

Fig. 11. PBF sizes for the 60 multi-platform apps that exhibit the largest PBFs in descending order. The size of the PBF for each

version (Apple TV, Fire TV, and Roku) of an app is indicated using color-coded bars. The textured part of each bar indicates packet

pairs in the PBF that are unique to the corresponding platform.

	FingerprinTV: Fingerprinting Smart TV Apps
	1 Introduction
	2 Background & Related Work
	3 Data Collection
	3.1 App Selection
	3.2 Automation
	3.3 Dataset Summary

	4 Data Analysis
	4.1 Fingerprinting Techniques
	4.1.1 Domain-Based Fingerprints (DBF)
	4.1.2 Packet-Pair-Based Fingerprints (PBF)
	4.1.3 TLS-Based Fingerprints (TBF)

	4.2 Fingerprint Performance Assessment

	5 Fingerprinting Results
	5.1 Prevalence, Distinctiveness, and Sizes
	5.1.1 Domain-Based Fingerprints (DBF)
	5.1.2 Packet-Pair-Based Fingerprints (PBF)
	5.1.3 TLS-Based Fingerprints (TBF)
	5.1.4 Takeaways

	5.2 Identical Fingerprints
	5.2.1 Domain-Based Fingerprints
	5.2.2 Packet-Pair-Based Fingerprints
	5.2.3 Takeaways

	6 Mix & Match Fingerprints
	6.1 Fingerprints Across Platforms
	6.1.1 Multi-Platform Apps
	6.1.2 Distinctiveness of Fingerprints Across Platforms
	6.1.3 Takeaways

	6.2 Combining Fingerprints
	6.2.1 Takeaways

	7 Discussion
	8 Conclusion
	A PingPong Characterization
	B Fingerprinting Results
	B.1 Distinctiveness & Dataset Size

	C Mix & Match Fingerprints

