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Abstract: The rapid adoption of Smart TVs has re-
sulted in them becoming another app-based ecosystem.
In this context, Android TV is one of the major play-
ers as it is widely available across multiple TV manu-
facturers and has a high integration with other Google
products. Yet, the Android TV ecosystem has remained
unexplored. This paper presents a deep analysis of the
Android TV ecosystem using a large dataset of TV
apps. We give an insight into the stakeholder ecosys-
tem, including developers, streaming services, and third-
party libraries. We analyze the behavior of TV apps
in terms of sensitive data collection and communica-
tion with other devices using a pipeline of static analy-
sis tools, network traffic collection, and verification via
manual analysis. We compare the mobile and TV ver-
sion of popular streaming apps and found a significant
degradation of TV apps in terms of quality and dif-
ferent data collection practices. Our study shows that
most TV apps present potentially harmful behaviors,
and in most cases, these can be attributed to tracking
and advertisement services. We found a prevalence of
static identifiers for tracking purposes despite this not
being the recommendation. This finding suggests that
Google’s new policies limiting advertising identifiers will
not have a tangible effect on the TV ecosystem.
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1 Introduction
In recent years, Internet-based TV has gained popu-
larity to the detriment of traditionally broadcast TV
model [9]. The popularity of streaming services, afford-
able prices, and enhanced user experience have con-
tributed to the rise of the Smart TV market, which is
expected to reach $193 billion by 2021 [67].

In addition to Smart TVs, it is possible to use an
OTT (over-the-air) device to convert almost any device
with a screen and HDMI port into a Smart TV capable
of delivering content over the Internet. Smart TVs rely
on TV apps or channels to deliver streaming content to
users. However, TV apps can also be used to play games,
browse the web, and other general-purpose utilities.

Smart TVs offer enhanced capabilities and con-
nectivity in comparison to traditional TVs. However,
the additional capabilities also introduce vulnerabili-
ties [1, 36, 46, 51, 68] and potential privacy violations
[14, 17, 49]. Users’ Personal Identifiable Information
(PII) such as unique identifiers, hardware address, or
viewing habits can be exposed to TV providers and an-
alytics/advertising services.

A big part of the Smart TV business relies on ana-
lytics and advertising [45, 57]. In a similar way to mo-
bile apps, TV apps can embed third-party libraries for
these purposes. Media providers use personal data to
personalize video content, and advertisers use personal
data to better target ads to the viewers. Some compa-
nies provide both services, streaming via a Content De-
livery Network (CDN) and analytics services. Despite
this heavy dependency on personal data, many users
are unaware that TV apps can access and share their
data with third parties, even when most consider such
practices unacceptable [41].

Recent works [45, 57] have focused on traffic anal-
ysis and the detection of tracker domains on the Roku
and Amazon Fire platforms. In this paper, we are inter-
ested in measuring the Android TV ecosystem and un-
derstanding the threats to user’s security and privacy.
We selected the Android TV ecosystem because of its
availability across TV brands and high integration with
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Android, which facilitates consumer adoption but also
access to their applications for analysis. In this context,
we want to identify privacy-invasive behaviors in TV
apps and identify the stakeholders behind such prac-
tices. Additionally, we want to analyze the interaction
of TV apps with other devices and their relationship
with tracking and advertising services. In particular, we
make the following contributions:
– We provide a detailed study of the Android TV

ecosystem. We collected more than 4.5k TV apps
from different markets. The dataset is four times
larger than previous evaluations [45, 57], contains
streaming apps and a myriad of TV-compatible util-
ity apps and games that have proven to be equally
invasive regarding sensitive data collection. Addi-
tionally, we compare the TV and mobile version
of streaming popular apps and present main differ-
ences between them.

– We develop a static analysis pipeline for TV apps
analysis complemented with traffic analysis experi-
ments and manual analysis. Our framework also in-
cludes a novel categorization of sources and sinks in
the Android and TV ecosystem. We find that most
TV apps present potentially harmful and privacy-
invasive behaviors and that tracking and advertis-
ing libraries are responsible for a significant part of
these cases.

– By analyzing inter-device communication patterns
in TV apps, we found that developers typically rely
on old APIs to communicate with other devices and
do not implement best practices to secure commu-
nication channels when using new APIs. We observe
that around 50% TV apps include the code to open
ports; this number is significantly greater than pre-
vious reports in the mobile ecosystem [34, 69].

– We find malware and apps with invasive behav-
ior in our dataset. We responsibly disclose our re-
sults so security and privacy can be improved in
the app ecosystem. We notified Google of applica-
tions having abusive practices not included in their
privacy policies. We also notified developers using
non-secure practices so they can fix their apps and
make them more secure.

We make our framework publicly available1, along with
our results, so that other researchers can benefit from
this data.

1 https://gitlab.com/s3lab-rhul/watch-over-your-tv-paper

2 Background
Android TV is a Smart TV platform developed by
Google on top of Android OS. Android TV has been
designed to be highly coupled with Android. In other
words, TV apps follow the same implementation pat-
tern of other platforms such as Android mobile. TV apps
offer an additional abstraction that enables the interac-
tion with media content from the Internet and Smart
TV hardware.

2.1 TV Apps

TV apps are similar to mobile apps as they possess the
same structure and use the same languages and develop-
ment tools. Code and resources are packed into a single
file (APK), although Google is enforcing a new publish-
ing format in the Play Store from August 20212. The
most important difference with other platforms resides
in the user interaction. Users are expected to watch TV
from medium distances, and the input is based on a
directional pad and a select button.

Fig. 1. Android TV Home screen

Another difference is that Smart TV users inter-
act with the apps through the Home screen. The Home
screen (Figure 1) is the Android TV’s main interface
that provides access to apps, content recommendations,
and global search. Users can access apps directly via the
Apps menu or by searching channels or programs that
apps add to the Home screen. In Figure 1, each row is

2 The Bundle format does not affect our results as
users still install APKs on their devices https://android-
developers.googleblog.com/2021/06/the-future-of-android-
app-bundles-is.html

 https://gitlab.com/s3lab-rhul/watch-over-your-tv-paper
https://android-developers.googleblog.com/2021/06/the-future-of-android-app-bundles-is.html
https://android-developers.googleblog.com/2021/06/the-future-of-android-app-bundles-is.html
https://android-developers.googleblog.com/2021/06/the-future-of-android-app-bundles-is.html
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a channel containing cards for each available program.
When a user selects a program, the Home screen inter-
acts with the corresponding app.

TV apps require custom configurations in the APK
Manifest to run on Android TV [25]: 1) The APK must
not declare unsupported hardware such as a touch-
screen. 2) It must declare a launcher TV activity. 3) It
can optionally declare support of the Leanback library
that provides user interface templates, paging, and other
features that are exclusively for Android TV.

TV apps deliver media content or provide standard
utilities. Like other Android apps, TV apps have access
to the file system, sensors, and network connections.
However, developers are restricted by the limitations
of the underlying hardware, e.g., no precise geolocation
due to the lack of GPS chipsets or telephony services.

The TV Input Framework (TIF) is a set of libraries
that facilitates the interaction of TV apps with media
source providers [25]. Examples of TV apps implement-
ing the TIF are Netflix, HBO, and Disney+. The TIF of-
fers an interface to build apps emulating the TV broad-
cast style. It specifies channels, programs, track infor-
mation, sessions, and other components required to dis-
play media content in a TV broadcast style.

2.2 Communications

TV apps can establish connections with other hosts. For
instance, a TV app can exchange data with a remote
server or with a device connected to the same network
or in close proximity. For this, developers can use plain
sockets [16, 34, 69] or high-level Android APIs like the
Nearby platform [6, 27].

The Nearby platform is available for proximity
communication since Android 4.0. It provides the
NearbyConnection and NearbyMessage APIs to commu-
nicate with nearby devices that are not required to be
connected to the same network. The NearbyConnection
API offers the capability to discover and connect
with other devices using multiple protocols, while the
NearbyMessage provides a publish/subscribe communi-
cation model. Similarly, the WifiDirect API allows two
devices to communicate even if the two are not con-
nected to the same network. The Cast-TV API allows
mobile apps to display content on a Smart TV, but this
interaction is handled internally by Android TV.

2.3 Security Model and Threats in
Android TV

Android TV apps are subject to the same security model
as Android mobile apps: each app runs on a sandbox
with minimum permissions by default. Android permis-
sions are broadly divided into normal and dangerous.
Normal permissions are granted automatically at instal-
lation time, and users can grant dangerous permissions
at run time. Additionally, manufacturers and develop-
ers can create custom permissions to protect their apps’
resources or share them with other apps.

As with regular mobile apps, developers of TV apps
can use third-party libraries (TPL) to add services or
functions to their apps. Such services include analytics,
advertising and social networks, among others. Libraries
inherit all permissions from the host app, which might
give them access to sensitive data. Previous works re-
ported multiple TPL collecting sensitive data such as
unique identifiers, geolocation, and user data [12, 37].
More concerning, developers might be unaware of these
data collection practices and other threats to the user’s
privacy [52].

While the Android apps ecosystem has been exten-
sively studied, previous studies on Smart TV applica-
tions have focused on applications available for other
platforms such as Roku and Amazon Fire TV [45, 57]3.
In this work, we analyze the Android TV ecosystem to
provide the community with a better understanding of
the security and privacy risks of Android TV and com-
pare the risks of these apps with their mobile counter-
parts. Because of this, our work does not describe new
threats within the ecosystem but specifically focuses on
the TV environment and, in particular, the following
issues:
– Bad development practices. This includes incom-

plete or false information in signing certificates
and permission misuses, such as inconsistent def-
initions caused by porting code across platforms.
Over-privileged apps request more permissions than
they need [10, 70] and are problematic because they
increase the attack surface on Smart TVs, amplify
the impact of bugs and vulnerabilities, and violate
the principle of least privilege [63]. Additionally, de-
sign shortcomings of custom permissions can lead to
privilege escalation attacks by exploiting duplicate
names vulnerabilities [38].

3 While Amazon Fire TV is heavily based on Android, their
apps cannot make use of all the APIs available on Android TV.
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– Sensitive data leakage. Particularly, PII collected
by third-party services. TV apps also have access
to personal data specific to Android TV, for in-
stance, the title and genre of programs defined in
the TIF. This information about users’ viewing be-
havior can be used for user profiling [51, 57, 73]. A
previous study shows that more than 70% of Smart
TV users consider it unacceptable that advertisers
access their viewing history [41].

– Vulnerable inter-device communications. This inter-
action poses security and privacy implications for
consumers [1, 51]. Smart TV users are exposed to
eavesdroppers listening to vulnerable communica-
tions that can be exploited [44].

– Malicious applications. TV app can present ma-
licious behavior. This can be due to developers
adding malicious code or malware exploiting some
vulnerability [6, 11].

3 Dataset Collection and
Characterization

Identifying and collecting TV apps at scale is challeng-
ing because the official Android market does not provide
platform-specific metadata (TV, Mobile, Wear). There-
fore, we use a initial seed of well-known TV apps to
search related apps in the Play Store. We collect all iden-
tified package names and then download the last version
of each app (as of August 2020) from AndroZoo [4], a
well-known repository of Android apps widely used in
the literature [3, 47, 65, 66] that includes a VirusTo-
tal evaluation summary. We inspect the manifest of all
downloaded apps to verify they can be run on Android
TV. We also search for TV apps in APKMirror [7] using
filters and pattern matching and download them with a
crawler. In total, we collected 4745 TV apps with unique
package names from both repositories.

Touchscreen TV TV TIF
disable Activity Libraries

TV-only √ √ √
×

TV-enabled √ √
× ×

TV-streaming √ √ √ √

Mobile-streaming × × × ×

Table 1. Categorization of apps included in our dataset.

We classify the 4745 TV apps in four categories ac-
cording to the configurations shown in Table 1:
– TV-only. This group includes apps that can run

exclusively on Smart TVs. They require: 1) touch-
screen disabled 2) declare a TV activity 3) include li-
braries that are specific to Android TV (Leanback).

– TV-streaming. The primary purpose of these TV
apps is to show streaming content. These apps re-
quire the same configuration as the TV-only apps,
plus they implement the TV Input Service. We in-
spect the APK bytecode to detect this feature.

– TV-enabled. These apps can run on Smart TVs or
other devices like smartphones. Apps in this cate-
gory only require to declare a TV activity and the
touchscreen disabled.

– Mobile-streaming includes mobile apps whose pri-
mary purpose is to show streaming content, for in-
stance, the Netflix mobile version. These apps do
not require any setting from Table 1.

It is worth mentioning that we assign a TV app in the
TV-streaming category if the app implements the TIF.
Although the TIF is the standard way to communicate
with a media provider, it is possible that some develop-
ers use a custom implementation for this interaction.

Table 2 shows a summary of the apps in the dataset.
Even though our focus is on supposedly benign TV
apps, there are 34 TV APKs that are flagged as malware
in VirusTotal by more than 5 antivirus engines, of which
60% are considered malicious by more than 10. We use
the malware threshold similar to other works [3, 47]. We
expand the discussion of malware in Section 6.

TV-only TV-enabled TV-streaming Mobile-streaming

831 3911 100 90

Table 2. Dataset classification. Note that one TV app can be in
the TV-only and TV-Streaming group at the same time.

4 Ecosystem Overview
This section provides an overview of the ecosystem of
Android TV, which includes developers, permissions,
and third-party libraries, including tracking, and ad-
vertising services. Our analysis is based on features ex-
tracted via static analysis.
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4.1 Developers

We start the ecosystem analysis by examining the de-
velopers behind the apps signing certificates. This infor-
mation allows us to attribute apps to the same devel-
oper and identify the ones that incur heavily on privacy
invasive behavior. While self-signed certificates cannot
be trusted as an identity source, they can be used to
identify apps that have been developed by the same or-
ganization.

First, we use Androguard [21] to extract the
SHA256 fingerprint from the certificates to identify
unique developers. Then, we use the field Issuer to at-
tribute one certificate to its organization. In total, we
identify 3623 unique fingerprints. 75% of the develop-
ers own only one app in our dataset. In the remaining
group, 50% publish two apps and only 12% more than
five apps. This trend shows that most developers publish
one or two TV apps, similar to other studies [20, 62].

Figure 2 shows developers with multiple apps sorted
by number of apps. Notably, the name in the Issuer field
tends to differ from the real name of the organization or
the name published in the Play Store. Most developers
have apps from the same category, e.g., games or radio.
Although there are some exceptions like the developers
“Andromo” and “Android”. Andromo is an app-builder
platform which suggests that apps built with this plat-
form are signed with a certificate owned or generated by
the platform. The developer “Android” is not related to
Google, and it uses different names such as Italy-games,
Play Station Mobile Inc, and Google Commerce in the
Play Store.

Considering the TV-streaming category, there are
only 4 developers with multiple apps. Likewise, devel-
opers from the TV-only group tend to publish a single
app, and developers with multiple apps correspond al-
most exclusively to the game category. We further inves-
tigate if there are developers in the Mobile-Streaming
and TV-only and found that the groups are largely dis-
joint with only 3 developers in both groups.

Looking at the supposedly Country field of the cer-
tificates, we detected that United States organizations
sign 47% of the APKs, following by China (6%), Canada
(4%), and the United Kingdom (3%). Interestingly, we
found 85 APKs without information about the signing
organization, including empty fields or completed with
irrelevant strings. 1234 apps use the same information
as the Google apps excluding the signature. We check
this list against the apps published by Google in its Play
Store profile and determine that Google indeed devel-
ops only 30 of these apps. These results show that the

Fig. 2. Top 10 developers. Names correspond to the ones found
in the certificate which may not relate to the name of the com-
pany behind the certificate as they are self-signed.

bad practice of using irrelevant information, already re-
ported in the mobile ecosystem [20, 53], it is also present
in the Android TV ecosystem.

4.2 Third-Party Libraries

In this section, we analyze the presence of third-party
libraries (TPL) in our dataset. Identifying TPL allows
us to distinguish between data exposure to first/third
parties, where the latter represents a more significant
risk to user’s privacy [43, 57]. Additionally, it allows us
to characterize tracking and advertising services in the
Android TV ecosystem.

First, we use Libscout [12], a library detection tool
that is resilient to common obfuscation techniques to
search the signature of embedded libraries in the APKs.
Libscout relies on a repository that contains 402 unique
library profiles with more than 8K signatures consider-
ing all versions[39].

Second, we implemented a lightweight analysis us-
ing Androguard to detect libraries not present in the
Libscout repository. Our approach consists of several
steps: 1) We disassemble each APK, extract all package
name prefixes, and filter out irrelevant packages, e.g.,
well-known Android packages. 2) We cluster the pack-
ages according to the prefixes, and we keep the ones
that appear in at least 10 apps. 3) We add the libraries
to our repository, and we manually classify them using
the categories from previous works [12, 37] and Privacy
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Grade [31]. Note that some libraries might fit in more
than one category, but we decided to assign one category
per library. We discuss the limitations of our approach
in Section 7.

Table 3 summarizes the 843 TPL libraries identi-
fied in our dataset, of which 64 are not present in other
well-known repositories [12, 37]. We detected Social Me-
dia libraries in 88% of the apps, with multiple Facebook
libraries occupying the top 5. Similarly, we found that
75% of the apps contain analytics libraries and 77% con-
tain advertising libraries. 66% of the apps include ad-
vertising, analytics, and social media libraries together.
Our analysis detected cloud libraries in 223 APKs, most
of them owned by Amazon.

Category # Libs # Apps Examples

Advertising 47 3637(77%) Ogury, Appodeal
Analytic 16 3595(76%) Firebase-analytics
Cloud 23 210(4%) Amazon-Kinesis-Streams
Social Media 10 4195(88%) Facebook, Twitter, VK
Utilities 747 4591(97%) OkHttp, Stetho

Total 843 4745

Table 3. Third-party library summary

We focus particularly on analytics and advertising
libraries given recent ad spending spikes in Android due
to changes in iOS privacy policies [13]. In this context,
Google Play Services ads (2502 APKs) and Firebase an-
alytics 4 (2407 APKs) are the most popular libraries.
Other ad libraries found include Vungle, Tapjoy, and
Jirbo. Smaato and FreeWheel are platforms specialized
in video advertising and connected TV services. In total,
we detected 70 tracking and advertising libraries, many
of which were linked to data violation policies in the
past [18, 58], some examples are Appodeal (84 APKs)
and Umeng (27 APKs). Our static analysis show that a
large number of data flows correspond to these libraries
and we were able to confirm these findings with network
traffic analysis experiments (more details in Section 5).

We also detected atypical libraries such as Javassist
(11 APKs) that could affect the accuracy of static analy-
sis. This library can modify Java bytecode and obfuscate
Android apps, which is the case in some TV apps that
we manually analyzed, e.g., com.funkidslive.action.
Similarly, previous studies found that the game engine
Unity reads and uploads hardware addresses to a remote

4 Renamed Google analytics 4

server using covert channels [50] and persistently re-
quests information about installed apps [52]. Our static
analysis results indicate that this library might be col-
lecting similar information in 278 APKs.

4.3 Permissions

Permissions specify the system-protected resources that
TV apps are allowed to access. In this section, we ana-
lyze Android (AOSP) and custom permissions, focusing
on user’s privacy and user awareness.

We leverage Androguard to extract and analyze
permissions from the TV apps. We identify a total of
225 AOSP permissions and 2600 custom permissions.
Although the number of permissions per app varies
greatly, Table 4 shows the average and maximum per-
mission request per type. Next, we show data about the
permission usage to understand the current state in our
dataset.

AOSP Custom Total
Normal Dangerous - -

avg 6.05 2.1 4.7 12.9
max 91 20 123 234

Table 4. Permissions summary

AOSP Permissions. Figure 3 shows the top 10 dan-
gerous and normal permissions requested by TV apps.
As one might expect, permissions related to network
connectivity are at the top of the list. TV apps request
6 normal and 2 dangerous permissions on average. Al-
though we focus on the use of dangerous permission, we
discuss in section 6 some aspects of normal permission.

Fig. 3. Top 10 normal and dangerous permissions

Dangerous Permission. These permissions protect
the most sensitive system resources. The most requested
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dangerous permissions are related to external stor-
age, location, record, audio, and account information
(see Figure 3). We note that multiple TV apps re-
quest permissions not available in Android TV, such
as telephony-services, and sensors. This peculiarity sug-
gests that developers are porting mobile apps to TV
without considering security aspects, leading to incon-
sistent apps.
User Consent. We analyze if TV apps
are following the guidelines when requesting
dangerous permissions. In Android, the API
shouldShowRequestPermissionRationale returns a
boolean indicating whether the app should show UI
with rationale before requesting a dangerous permis-
sion. The official Android developer guidelines indicate
that the app should explain the reason for requesting
a permission and the effects of the user denying the
request [24].

Therefore, we implemented a lightweight static
analysis to detect if developers explain the ra-
tionale behind a permission request. Our analysis
searches in the bytecode: 1) strings with the per-
mission value, 2) API methods to request permis-
sion, for instance requestPermissions 3) the API
method shouldShowRequestPermissionRationale and
UI methods to show dialog, e.g., alerts, banners. Then
we infer if the app is showing a rationale by matching
the context of the results.

Table 5 shows the results for the top 5 dangerous
permissions found in our dataset. Our results indicate
that only a small percentage of TV apps display the
rationale behind dangerous permission and that most
developers are not following the guidelines. While our
work has limitations due to the usage of the static analy-
sis, our results are in line with a recent work that showed
that only 8% of mobile apps provide extra information
when requesting permission using dynamic analysis [19].
The authors of this work also argue that timing might
be a better strategy than showing a rationale (e.g., re-
questing the GPS permission just before accessing the
location). In fact, previous works show that people are
more careful in giving consent when they are presented
with more information about data collection and shar-
ing behaviors [5, 56].

We manually check 10 popular TV apps to verify
if they show this rationale. In half of the cases, we de-
tected potentially over-privileged apps where we could
not find the functionality associated with a particu-
lar permission, e.g., the app com.mlbam.wwe_asb_app
requests the microphone permission, but we did not
find such option. Note that TV apps UI are much sim-

pler than mobile apps, which makes manual exploration
more feasible. In the successful cases, we only observed
the default request and no rationale. Some examples are
com.ted.android.tv and com.disney.disneyplus that
request the record_audio permission. Additionally, the
default request tells the user that this permission can
be revoked in the app’s settings, but we could not find
such option.

Dangerous Permissions #Apps # show context

ACCESS_COARSE_LOCATION 686 22 (3%)
GET_ACCOUNTS 492 6 (1%)
RECORD_AUDIO 672 37 (5%)
READ_EXTERNAL_STORAGE 2091 62 (1%)
WRITE_EXTERNAL_STORAGE 2881 186 (6%)

Table 5. TV App showing rationale when requesting dangerous
permissions

Custom Permissions. We identify 2600 unique cus-
tom permissions requested across all APKs. 1809 per-
missions are declared by apps present in our dataset,
while external apps declare the remaining 791 permis-
sions. After using pattern-matching, searching in the
web, and matching with the list of third-party libraries
(Section 4.2), we were able to attribute 522 permis-
sions to well-known developers such as Google, Ama-
zon, Nvidia, HTC, and 22 permissions to third-party
libraries. It is worth noting that naming convention is
not enforced in Android which can result in attribution
mismatch. However, these heuristics give us a notion of
custom permission owners.

Considering TV-enabled apps, around 35% declare
and 90% request at least one custom permission. 87%
are signature-level permissions, and the remaining part
is divided between mixed, normal, and dangerous in this
order. Previous studies give the number of apps using
custom permissions between 25% and 65% [38, 55]. We
attribute this difference to the target apps included in
this study (Android TV). Our work shows that Android
TV apps normally require resources from other apps to
work.

Interestingly, most apps do not complete the de-
scription field with meaningful information. The de-
scription field should describe the behavior in case a
permission is granted or denied [26]. Over 94% of the
apps leave this field empty, including four apps declar-
ing dangerous custom permissions showing how most
developers ignore this policy.
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We found multiple cases of custom permis-
sions with duplicated names, e.g., the permissions5

READ_EXTERNAL_STORAGE (AOSP), and MAN-
AGE_DOCUMENT (custom), declared by 2 and 6
apps, respectively. Duplicated permissions open the
space to confuse deputy attacks and custom permission
upgrade attacks [55] since the second permission is ig-
nored by the OS [26]. Moreover, this scenario can lead
to dangling and inconsistent permissions that can be
exploited by attackers [38].
Particular Cases. We found 34 apps that request the
custom permission ACCESS_SUPERUSER. This per-
mission, although currently deprecated, is declared by
a well known app (Superuser) to allow users to get root
privileges. Most apps requesting this permission are file
managers and operating system utilities. However, we
also found streaming apps (com.mobzapp.camstream),
TV remote control (com.cetusplay.remoteservice),
screen cast (com.mobzapp.screencast), and screen
recorder apps (com.mobzapp.recme.free) requesting it.
At the moment of writing this paper, most of the apps
still declare this permission.

The permission QUERY_ALL_PACKAGES pro-
tects the list of packages installed in a device. This in-
formation was unprotected before Android 11. The doc-
umentation specifies a policy for acceptable use of this
permission, which includes device search, antivirus, file
managers, and browsers [23]. We found 10 APKs using
this permission, of which all but one meet the policy6.
com.ultimateguitar.tabs is an app to learn how to
play the guitar and other musical instruments, and it
is not clear why this app requires access to this type of
information as it is not mentioned within their privacy
policy7.

5 Behavioral Analysis
The Android TV ecosystem analysis provides intuitive
information about specific app features such as permis-
sions and their libraries. However, this information is
not enough to determine if TV apps are capable of
disseminating sensitive information or using vulnerable
communications channels. In this section, we use static

5 android.permission omitted in the name.
6 The enforcement of this policy was postponed until March
2022.
7 While reporting this to Google we found out that an update
released on 11 Dec 2021 removed this permission request.

analysis tools to analyze these threats, and we verify
some of our results with dynamic analysis and network
captures.

5.1 Intra-Device Analysis

Static Analysis. We use taint tracking to detect po-
tential sensitive data leaks. This analysis gives infor-
mation about the propagation of data from a sensitive
sources to a sensitive sink. We use Flowdroid [8] be-
cause it provides a good balance between accuracy and
performance on real-world apps [15, 48]. We customized
Flowdroid by adding sources and sinks that are specific
to Android TV. The sources include media metadata,
identifiers, and other methods added in the latest An-
droid releases. Additionally, we added callbacks from
the Leanback library and other media-related libraries
to enable the creation of a more accurate control flow
graph.
Dynamic Analysis. The traffic analysis experiment
executes TV and mobile apps on real devices and then
analyzes their network traces, searching for identifiers
and user-sensitive data. We rely on Charles [60], an
HTTP proxy, to intercept and decrypt network traf-
fic. We instrumented the APKs using the mitm-proxy
script [32] to add Charles certificate and remove certifi-
cate pinning checks. This instrumentation is only nec-
essary for TV apps as there is no way to install custom
certificates on Android TV. For the mobile apps, we use
smartphones with Android 6 where the apps trust user-
installed certificates. We created testing credentials to
log in on each app (if possible) as previous work [57]
showed that apps contact more third-party domains af-
ter login. Then we explore the app for 15 minutes trying
to stream content and trigger ads.

5.2 Experimental Results

We run the static analyses on the entire dataset of 4745
APK files. For the dynamic analysis, we downloaded 65
popular streaming APKs directly from the Play Store;
we called this group Streaming-popular. This group
contains 1) 25 pairs of Mobile-TV apps (50 APKs). 2)
15 APKs compatible for both platforms. Additionally,
we also use these APKs to compare the TV/mobile ver-
sion of popular streaming apps. Note that we only run
the traffic analysis on the Streaming-popular group as
manual exploration does not scale, mainly because we
decided to log in on each app during the testing and the
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exploration timeout. The list of apps can be found in
the Appendix.

5.2.1 Static Analysis

We run Flowdroid with a timeout of 8 minutes per anal-
ysis. The experiment was conducted on a server with 46
cores Intel Xeon CPU E5-2697 v3 @ 2.60GHz, and 92
GB of memory. The analysis failed for a small number
APKs. 29 timed out after doubling the original time
limit. In our experience, analysis that surpasses this
timeout runs for hours. Another 18 failed for other rea-
sons such as errors while parsing APK resources or un-
expected bytecode.

The analysis found at least one sensitive data flow
in 78% of the files. The number of sensitive data flows
varies greatly: for instance, 313 APKs contain only one
result. In contrast, 470 APKs contain more than 50 sen-
sitive flows, and on the extreme side, we could observe
78 APKs having more than 100. The percentage of sen-
sitive data flows per app category is as follows: TV-
only (81%), TV-enabled (75%), TV-streaming (83%),
and Mobile-streaming (92%).

Figure 4 shows data flows for a selected number of
sources. We limit the output due to space constraints
and to help with visualization. Full results are shown in
tables 6 and 7. The results show that a large percentage
of sensitive flows happen in TPL, including categories
such as Tracking_ID (52%), Hardware_ID (45%), and
Wireless_ID (48%).

Fig. 4. Sankey diagram of sensitive data flows

Note that many flows reach non-Internet sinks.
Even though these channels do not necessarily indi-
cate data leaks, they could expose sensitive data to a
second data flow. We were able to detect 1398 extra
data flows using SharedPreferences and File API meth-
ods as connectors. However, understanding indirect data
flows requires modeling each potential connector and
more complex analysis. Moreover, we found data flows
in 1256 APKs logging sensitive data, of which 80% cor-
respond to TPL. One example is the Kochava SDK log-
ging UUIDs, SSID, and geolocation in apps like Sling
and NBC Sports. It is important to mention that log-
ging sensitive data is discouraged by Google because of
risk exposure and performance [28].

Now, we focus our discussion on selected categories
that are common targets of abusive and malicious de-
velopers and the prevalence of trackers.
Identifiers. It is well known that tracking and profiling
are pervasive in the Android ecosystem [14, 20, 49, 63].
We investigate what identifiers are being used by TV
apps by checking the the data flows sources. The most
used identifier is a globally unique ID (GUID) gen-
erated with the java.util.UUID package (3031 APKs).
The most common sinks for this source are Logs (48%),
Shared_Preferences (33%), File_Write (8%), and Net-
work_Traffic (5%). The sources are collected by app’s
component only in 10% of the cases while advertisement
libraries are responsible for 72% these data flows.

We highlight that resettable identifiers are largely
absent from our results. In contrast, we found 285 APKs
with data flows reading MAC-Address and SSID identi-
fiers, of which around half of these cases correspond to
TPL, despite the Google recommendation of not using
hardware identifiers for tracking purposes [29]. Most of
the APKs (88%) with static identifiers data flows share
this data with at least one third-party library. For in-
stance, the Facebook SDK has data flows in 58% of these
apps, Tapjoy 11% and Presage 4%.
User Private data. From the category User_Info the
most requested sources are the list of accounts, fol-
lowed by display-name and email. The most popular
sink categories are Logs (66%), File_Write and Shared-
Preferences (11% each), and a few instances of Net-
work_Traffic and system Broadcast. Around half of the
cases correspond to information flows in third-party li-
braries. 725 APKs (18%) contain information flows from
the Package_Manager, including the list of installed
packages (169 APKs). 83% of these calls are made from
TPL, of which AppsFlyer (47%) and Bytedance (11%)
are the most noticeable.
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Category Method example count# apps# Comp% Lib % Indet %

Tracking_ID UUID: randomUUID() 34395 3031 10 52 38

User_Info GoogleSignInAccount: getAccount() 294 154 32 42 23

File_Read File: getCanonicalFile() 1256 961 15 75 10

Hardware_ID WifiInfo: getMacAddress() 1018 277 28 46 26

Wireless_ID WifiInfo: getSSID() 399 113 40 49 11

Database_Read Cursor: getString(int) 43551 4392 35 49 16

Package_Manager PackageManager: getInstalledPackages() 1677 725 25 56 19

Media_Info AudioRecord: read(byte[],int,int) 112 31 71 23 6

Network_Connection URLConnection: getInputStream() 13015 3156 15 48 37

Location Locale: getCountry() 5279 1612 35 48 17

Table 6. Sources of sensitive flows. Comp = Component, Lib = Library, Indet = Indetermined. The Method example column shows a
truncated signature: Class: method-name(params)

Category Example methods count# apps# Comp% Lib % Indet%

Database_Write Cursor: update(params) 5198 689 57 30 13

Log Log:int d(params) 39449 2918 21 47 32

Shared_Preferences SharedPreferences: putString(params) 15210 2459 21 35 44

Bundle Bundle:void putParcelable(params) 4041 1700 23 70 7

File_Write OutputStream:void write(byte[]) 23116 3218 15 69 16

Code_Execution Runtime: exec(java.lang.String) 19 6 17 33 50

Network_Traffic HttpURLConnection: getOutputStream() 6359 1453 15 73 12

Media_Out MediaRecorder: start() 8 4 100 0 0

OS_Messages Handler:boolean sendMessage(android.os.Message) 3620 768 32 35 33

Broadcast Context:void sendBroadcast(android.content.Intent) 1509 326 58 25 17

Table 7. Sinks of sensitive flows. Comp = Component, Lib = Library, Indet = Indeterminate. The Method example column shows a
truncated signature: Class: method-name(params)

Although getting the precise geolocation is not always
possible for TV apps due to hardware limitations, we
detected 5279 sensitive flows in 1028 APKs (25%) cor-
responding to the category Location. The most pop-
ular information requested is country, timezone, and
coarse location, usually employed to customize content.
Around 35% of the APKs write location data to the Log
or store it in Shared_Preferences.

We detected 31 APKs potentially exposing media
information with static analysis. From this group, 12%
relates to TV programs IDs, 38% other media metadata,
and 41% audio recordings from hardware input. 70% of
the cases are in the context of app components, but we

also detected data flows that end in libraries such as
Facebook and Flurry.

We detected streaming libraries not listed in any
repository using the static analysis results. For instance,
Penthera is a library that facilitates the delivery of video
content for mobile apps, and Vizbee is a library that
allows a mobile app to stream video to a TV via a
native app. Vizbee’s website mentions that they col-
lect installed applications and constantly scan networks.
They claim the possession of a graph of available devices
across millions of homes, in which they can distinguish
between private homes and public places [59]. Another
library for mobile and TV apps is Nielsen SDK, which
enables measuring live and on-demand TV viewing be-



A Security and Privacy Analysis of the Android TV ecosystem 702

havior. We found this library in the Hulu and Player
TV apps. We detected data flows reading sensitive data
in all cases.

5.2.2 Dynamic Analysis

We captured traffic of 21 TV apps and 22 mobile apps
out of 30 Popular-Streaming apps. In the unsuccess-
ful cases, we failed to collect traffic because the instru-
mentation broke the app, the certificate pinning modi-
fication was not successful, or geographical limitations.
Table 8 summarizes the results of the traffic analysis.
Figure 5 shows the top domain names collecting sensi-
tive data in Android TV. Although some domains cor-
respond to CDNs, most of the domains correspond to
well-known trackers [14, 49, 57]. Finally, we present the
comparison between mobile and TV apps in section 6.

example 1st Trackers CDN

Hardware build fingerprint 11 15 10
Location latitude, longitude 8 3 3
Wireless SSID, provider 3 0 0
Static Ids android ID 5 5 0
TV metadata Program title 11 5 3

Table 8. Traffic analysis. Number of TV apps sending sensitive
data to 1st party domains, trackers, and CDNs

Fig. 5. Top domain names collecting sensitive data.

Identifiers. We searched static identifiers in the net-
work traces and found that 42% of the explored TV
apps (9/21) are using static identifiers. In all but one
case, identifiers are sent to third-party tracking do-
mains such as facebook.com, doubleclick.net, and
yandex.net. In particular, we detected two groups us-
ing the same static value as advertising ID (CBNTV,
RedBull, Hopper and AccuWeather as our first group,

and Radio.UK, YuppTV, HTB and CNN as the sec-
ond one). We also observed that the Mobile-streaming
app com.aetn.lifetime.watch collects Package Man-
ager information and the Android ID.
User Private Data. We observed 10 apps col-
lecting geolocation data. For instance, the TV
app ru.ntv.client.tv shares the location with
doubleclick.net and yandex.ru domains. We discover
that many apps (e.g., com.cnn.mobile.android.tv) use
a third-party service to collect geolocation data based
on the IP address. Although this is a legitimate service,
it can be used as a side-channel to circumvent the An-
droid permission model and user consent (apps do not
declare the location permission).

We detected media metadata in the network traces
of 13 TV apps (65%). It is expected to find this type of
information (e.g. program title) in traffic to the app’s
domain and CDNs that provide multimedia content.
However, several TV apps e.g., TedTalk, WWE, Yup-
pTV, AcornTV and CNN share this information with
well-known trackers such as Doubleclick, Conviva, and
CleverTap. We observed the full title leaked in many
cases, but we also found modified titles, which makes
automated analysis more difficult.
Static VS Dynamic Analysis. The results from
both analyses complement each other. Considering the
Streaming-Popular category (65 APKs), the static
analysis detected sensitive flows in 46 APKs, while the
dynamic analysis captured network traces in 43. The
numbers for each source category varies greatly. For in-
stance, the dynamic analysis was more effective at de-
tecting TV metadata flows (13 vs 2 APKs). In contrast,
the static analysis found more flows (14 vs 10 APKs) for
the location category. Overall, we use the static and dy-
namic analysis result to flag apps that we consider inap-
propriate. For instance, static analysis results shows evi-
dence of potential data leaks involving multiple tracking
libraries for the app com.client.sov.adventure. Af-
ter manual inspection, we also note that this app col-
lects network information. We confirmed that this app
leaks device identifiers and geolocation to third-party
domains with dynamic analysis, and it shows excessive
traffic from 14 tracking domains. None of these behav-
iors are described in their privacy policy. We reported
this app in the Report Inappropriate Apps section
of the Play Store.



A Security and Privacy Analysis of the Android TV ecosystem 703

5.3 Difference Between Apps Categories

We detected 2910 sensitive data flows in 90
Mobile-Streaming apps, and 2190 flows in 100
TV-streaming apps. Both groups share 75% of
the source methods. Information collected only by
Mobile-streaming apps includes the list of installed
packages and Telephony-Service methods. Telephony-
Services classes are not available on Smart TVs. How-
ever, the absence of installed packages sources suggests
that streaming TV apps are not accessing to this infor-
mation. In contrast, we found TV-enabled apps expos-
ing this information. Unique sources in TV-Streaming
apps include Time-Zones and TV metadata from the
Leanback library, which is exclusively for Android TV.
Time-zones are likely used to customize streaming con-
tent.

We note similarities between the apps from the
Mobile-Streaming and TV-enabled categories. How-
ever, the TV version of the popular apps present notable
differences. First, we detected few TV apps with sensi-
tive flows, only 14 out of 25 TV apps (56%) produced
sensitive flows, while the other two groups are close to
90%. Second, TV apps contain considerably less sensi-
tive data flows per APKs in all but one case. For in-
stance, the Netflix analysis result in 10x more sensitive
flows in the mobile version, and the Amazon Video in
3x.

We also looked at the difference between the net-
work traces from the dynamic analysis. We found that
many apps contact different domains for the same ser-
vice (e.g., media content and tracking) on different plat-
forms. For instance, Rakuten mobile uses Akamai as
streaming provider, while the TV version uses the Cen-
turyLink CDN. Ads domains for live streams contacted
only by TV apps are bitmovin.com and ooyala.com.
In contrast, yahoo.ads, and platform.twitter are do-
mains contacted only in the mobile versions. Mobile
apps like YuppTV and WWE contact social networks
domains such as facebook.com and twitter.com only
in the mobile version. Another example is the tracker
domain scorecardresearch.com which is used by the
CNN app in both versions. However, we observed traf-
fic to this tracker only in the mobile version of many
streaming apps. Finally, Table 9 shows a summary of
the domains contacted by both version and the differ-
ence in number of flows and number of apps.

5.4 Inter-Device Communication

Smart TVs are usually in a rich environment where they
can interact with other devices. In this section, we evalu-
ate inter-device communication capabilities of TV apps.
We focus our analysis on Sockets that can open remote
or local connections and high-level APIs for nearby com-
munications.

First, we manually collected all relevant methods to
send/receive messages using the following APIs: Socket,
NearbyConnection, NearbyMessage, and WifiDirect.
Then, we search cross-references of such methods and
classify the context where the methods are called. Note
that our goal is to understand the potential communi-
cation capabilities of TV apps and not to measure these
connections.

Table 10 shows the summary of all communication
methods found in the dataset. The preferred commu-
nication method are sockets by a large margin. While
we found few cases of the NearbyConnection and Near-
byMessage API, we did not find any occurrence of the
WifiDirect API.
Socket Communication. Overall, we detected 2646
APKs (56%) including Socket APIs. Around 90% of the
APKs contain Socket methods in third-party libraries,
while the remaining 10% is split between components
and undetermined contexts. Specifically, we detected
382 APKs calling socket methods within apps com-
ponents and a similar number for undetermined con-
texts. This result indicates that most of the calls to
socket methods are made by third-party libraries. In
fact, around 87% of the APKs contain Sockets APIs
only in libraries.

Regarding to app types, the Mobile-streaming and
TV-streaming categories show high occurrence of Socket
calls with 92 and 95 % respectively. The number is lower
for TV-only apps (70%) and decreases even more for
TV-enable (51%). Previous research [34, 69] reported
the number of mobile apps with open ports to be be-
tween 6 and 15% using static analysis. In contrast, we
found that around half of TV apps contain socket com-
munications.

Table 11 shows the top third-party libraries that
use Sockets. We were able to identify the libraries cor-
responding to 90% of the socket calls using the list of
third-party libraries (Section 4.2) and manual analysis.
The library with the most matches is Okio, a library
that facilitates dealing file access and HTTP requests.

Figure 6 shows an overview of socket usage classified
by library category. One could argue that developers are
aware of sockets for some categories like communication
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domain Description #TV flows #TV apps #Mobile flows #Mobile apps

akamai CDN/streaming 573 6 537 7
doubleclick ads/tracking 44 4 159 9
google-analytics tracking 51 3 98 6
facebook ads/tracking 9 1 144 7
scordcardresearch tracking 36 1 38 4
appsflyer ads/tracking 5 1 41 2

Table 9. Top domains contacted by TV and mobile streaming apps

API methods Total APKs Comp # Lib # Both # Ind # Total calls

Sockets send_data 2644 362 2408 249 574 8378
receive_data 2451 176 2246 113 472 4384

NearbyConnection
send_message 5 5 0 0 0 8
receive_message 8 8 0 0 0 32

discovery/advertise 5 5 0 0 0 10

NearbyMessage publish 3 3 0 0 0 3
subscribe 3 3 0 0 0 3

Table 10. Summary of communication APIs. Comp = Component, Lib = Library, Indet = Indeterminate, Both = Lib and Comp.
These results are independent of the ones in section 5.1

.

Library Description # apps

Okio I/O, networking 1540
Mintegral Ads-Analytics 233
Apache Utilities 227
Facebook Ads-Analytics 218
Yandex Ads-Analytics 178
Fyber Ads-Analytics 169

Table 11. Top libraries using sockets

and security (such as the case of Okio). However, it is
unclear how informed are the developers of other cate-
gories such as advertising and tracking.
Nearby Communications. We found only 12 APKs
using the NearbyConnection and NearbyMessages
APIs. Notably, the difference with sockets is that
all method calls are made within the app’s compo-
nents. Google guidelines’ state that connections es-
tablished without authentication are insecure [27],
so we also check whether the apps are implement-
ing authentication by searching calls to the methods
that read the authentication token in the callback
onConnectionInitiated. Unfortunately, none of the
APKs that use the NearbyConnection API implement
authentication. Although this step is optional, a connec-
tion without authentication opens an insecure channel
that could be exploited [6].

The Nearby platform APIs are a good alternative
to implement two-way communication without requir-

Fig. 6. Libraries using sockets grouped by category

ing an Internet connection, but its adoption is very low
in our dataset. Meftah et al. already reported this trend
in the Play Store [42]. They argue that constant crashes,
battery issues, and testing difficulties contribute to the
lack of adoption, which is exacerbated by bad user re-
views. Overall, TV apps developers still rely on plain
sockets to communicate with other devices.
Old VS New APIs. Many apps we analyzed include
inter-device communication features. Our work shows
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that developers prefer to implement sockets rather than
the new APIs from the Nearby platform, and WiFi Di-
rect. These libraries have been developed since 2014 and
have built-in encryption. In contrast, implementing se-
cure communication over a socket is normally more com-
plex and prone to bugs. The fact that developers are not
taking up efforts made by the manufacturer to develop
more easy-to-use and secure libraries shows flaws in the
approach. What is worse, we showed that the few de-
velopers that use the newer libraries, do not use them
properly. We have notified the apps developers of this
issue. Last, we detected many socket calls in commu-
nication libraries, which suggests that the intention is
well-known, but there are also instances of tracking li-
braries including socket APIs. Although TV apps use
sockets predominantly in TPL, the number of socket
calls in the app’s components vastly exceeds the use of
newer APIs.

6 Discussions
In this section, we reflect on our findings, how they
portray the Android TV ecosystem, and how they are
related to the mobile ecosystem. We also discuss the
prevalence of malware in our dataset.

6.1 TV Apps VS Mobile Apps

Our results show that mobile apps request on average
20% more normal and dangerous AOSP permissions
than TV apps. This is in line with the additional re-
sources requiring permissions in the mobile ecosystem
that are not available in Android TV. In fact, we found
some permissions that are unique to each platform. Per-
missions related to sensors, orientation, and user dictio-
naries are found only in mobile apps (and heavily re-
quested). In contrast, TV apps request permissions for
capturing TV inputs, content rating system, and HDMI
settings.

TV apps request 15%more custom permissions than
mobile apps. This difference indicates more third-party
dependencies in Android TV. Since Android TV and
Android mobile are highly compatible, TPLs are reused
making the TPLs similar on both platforms. Neverthe-
less, some libraries are unique to Android TV, generally
for codec management and TV-related hardware. From
the mobile perspective, we found libraries that facilitate
the interaction with Smart TVs showing abusive data

collection practices. Regarding sensitive data, the most
noticeable difference is that mobile apps rely on precise
geolocation. In contrast, TV apps request coarse loca-
tion and with less frequency.

We see the different categories of TV apps having
similar behaviors, but mobile and streaming TV apps
show a higher occurrence of socket APIs than other
categories. TV apps differ from mobile apps in that
TV apps are updated less frequently. Most of the e
Mobile_streaming apps (94%) were updated in 2021,
while for TV_only this number was 75%.
Popular Streaming Apps. By analyzing the Play
Store metadata we noted a significant degradation in
the quality of the TV version of mobile apps. This
degradation is evident when looking at users’ rating,
reviews, and last app update from developers. For in-
stance, all but one TV app have a lower user rating than
the mobile version. Significantly, 55% have at least 2
points of difference on a scale of 1 to 5 stars. Two ex-
amples of this are the YouTube apps (mobile version
4.3 vs TV 2.2), and CNN apps (mobile 4.5 vs TV 1.3).
This difference is more evident when reading the re-
views on the Play Store where users constantly com-
plain about buggy and unusable apps. We also note
that popular streaming apps perform more regular up-
dates of their TV_only apps with a few months de-
lay compared to their mobile counterpart. Neverthe-
less, there are two TV apps that were left without
updates since 2018 (com.playstation.video.atv and
com.ted.android.tv). Our TPL analysis detected 40%
more libraries in mobile apps, and more matches per li-
brary. For instance, the number of mobile apps with the
Facebook SDK doubles that of TV apps.

6.2 Data Collection Practices

Our results show that TV apps rely heavily
on static identifiers. Google recommends the class
AdvertisingIdInfo for tracking, as it allows users to
easily reset the value [29]. The fact that we found few
resettable identifiers means that policies of restricting
advertising IDs [22] will have no real impact in the
Smart TV ecosystem. In contrast, we found a preva-
lence of static identifiers, such as GUIDs, and hardware
addresses.

Libraries are responsible for around 60% of all sen-
sitive flows transporting identifiers. These flows are
present in 85% of the TV apps. In our analysis, we de-
tected that around 90% of the TV apps include adver-
tisement or analytics libraries, some of them with a bad
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history of exposing sensitive data such as Umeng, Ap-
podeal, and Unity. What is worse, it is well known that
many developers are not aware of the data collection
practices by TPL, which poses an even greater threat
to end users [12, 37, 52].

Our dynamic analysis experiments confirmed that
many TV apps use static identifiers to track users, and
that these IDs are shared with tracker domains. We de-
tected static identifiers in the network traces by com-
paring IDs found across different apps. However, our
analysis cannot identify all dynamic IDs generated by
different tracking SDKs.

A noteworthy example is the TV companion app
xyz.klinker.messenger that sends texts/multimedia
messages. This app claims to be completely free, with no
ads and no personal data collection in its Play Store de-
scription. However, it requests permissions to access the
geolocation, user profile, and custom permissions from
vendors like Huawei and Sony. Moreover, the app’s pri-
vacy policy mentions collecting personal data (in con-
tradiction with its description) such as social media, ge-
olocation, OS information, and the list of third-party
providers. We also noted that this app requests all dan-
gerous permissions immediately after launch, which is
against the best practices [24] because it obscures the
association of run-time permissions with a specific ac-
tion. We also reported this app to Google.

6.3 Malicious Behaviors in Android TV

We detected 34 APKs in our dataset that are flagged as
malware by more than 10 engines in VirusTotal (VT). 6
of these APKs are from the TV_only category, of which
one was removed from the Play Store, three are paid
apps, and two are VPNs. Notably, the APKs with higher
VT score (25-34) are games. These APKs include pay-
loads capable of remote execution, capture inputs, sen-
sitive data collection, fraudulent ads, and silently in-
stall packages according to the VirusTotal evaluation.
In many cases, these apps rely on normal permission
to execute malicious behavior, for instance, to display
a window over other apps, install packages or read the
WiFi state.

We attribute the APKs with malware to 22 devel-
opers using their certificates. Based on this, we were
able to identify an additional set of 44 APKs belonging
to these developers (10 TV_only). Most of the added
APKs have a low VT score. However, one notewor-
thy case is the TV China app that offer IPTV services.
We found this app under two different package names

( com.live.tv.home, and com.cntv.movies). The VT
score are 7 and 9 respectively, and their evaluation is
almost identical, with 7 months of difference between
the evaluations. Both apps were removed from the Play
Store by the time of writing of this paper.

A significant factor limiting user control over these
threats is that the Play Store UI in Android TV does
not provide the same information as the mobile version.
There is no way for the user to check permissions, read
reviews, or the privacy policy of the app. While users
can grant or revoke dangerous permissions, they do not
have control over normal permissions. In view of the ev-
idence of malicious behavior and permission misuse, we
argue that the Android TV app store should include ad-
ditional information on their app pages so users can take
more informed decisions (at least to the same level as
mobile users). Additionally, better TV apps guidelines
for developers can help with problems such as overpriv-
ileged and inconsistent apps.

7 Limitations
Ecosystem. Our dataset is limited to around 4.5k
unique packages. This is larger than previous studies
of Smart TVs [45, 57]. However, the heuristic used to
search TV apps might have missed part of the ecosys-
tem. Particularly, TV apps from underrepresented re-
gions could be included by searching in other markets.
Self-signed certificates provide limited guarantees about
a developer information, but it is still the most reliable
approach to identify developers at a large scale [20].
Alternative approaches rely on fingerprinting and Ma-
chine Learning [35, 64]. These techniques can comple-
ment our approach based on certificate fingerprint and
custom permission.
Permissions. We only consider static definitions when
analyzing custom permissions. Omitting dynamic defi-
nitions can generate incomplete results. However, a pre-
vious study showed that only 3% of custom permission
are declared dynamically [55], making our results rep-
resentative. The permission rationale analysis conserva-
tively assumes that an app shows the rationale if the
context of relevant API calls matches. A more precise
analysis could search data dependencies between the
methods or use dynamic analysis.
Third-Party Libraries The accuracy of the TPL de-
tection using Libscout depends on the completeness of
the library profiles and the limitations of Libscout such
as package flattening and dead code elimination. In con-
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trast to Libscout, our second approach is not resilient to
obfuscated package names, but still our implementation
allow us to detect many common libraries.
Behavioral Analysis. Static analysis abstracts from
user inputs and approximate runtime values which can
be a source of false positives. Additionally, our static
analysis does not consider dynamic code loading, some
cases of reflection, and native code. We detected that 6%
the apps in our dataset load dynamic code, while 60%
include the required classes to do it. While we use dy-
namic analysis to overcome these limitations, our traffic
analysis experiment does not scale, mainly because we
decided to log in on each app during testing to get more
accurate results and the time limit of 15 minutes.

8 Related Work
There are several works that have studied different as-
pects of the mobile ecosystem. Wang et al. presented a
large-scale analysis of the Play Store, where they discov-
ered a 25% increase of ad libraries over a period of three
years and the decrease of paid apps [61]. Similarly, other
studies analyzed Chinese markets [63], mobile ecosystem
in general including TPL [12, 14, 40, 49, 71], tracking
and advertising ecosystem [14, 37, 43, 49, 63], and trust
in the Android ecosystem [20, 62, 64]. Although similar,
the Android TV ecosystem has its peculiarities and has
not been the focus of previous research.

Several studies have used static analysis to detect
potential information leaks and harmful behavior in An-
droid apps [8, 15, 30, 66]. Due to their popularity as a
communication method, there have been previous re-
search efforts looking at sockets to detect vulnerabil-
ities and data leakage [16, 34, 69]. We consider both
approaches to analyze potential information leaks and
vulnerable communication in TV apps.

Previous works reported vulnerabilities and data
leakage in IoT devices, including Smart TVs and
Chromecast devices [33, 36, 46, 51, 54]. Recently, two
papers investigated security and privacy issues on Roku
and Fire TV using traffic analysis [45, 57]. They found
that a large number of TV apps expose PII to third-
party domains. They reported mixed results of DNS-
based blocklist to prevent data leakage, with concern-
ing results on static identifier leaks. In contrast, we use
static analysis which allow us to increase the size of
the dataset and detect information flows carry on static
identifiers and other sensitive data.

Finally, other studies in this area have also analyzed
several attacks on Smart TVs [11, 44], review of privacy
and security aspects [2], and user expectations regarding
privacy [41]. Our paper complements these works by
analyzing several issues regarding the certificate of TV
apps and permission misuse such as inconsistent and
over-privileged apps which are problems reported in the
mobile ecosystem [38, 55, 70, 72].

9 Conclusion
In this work, we have presented the first systematic
study of the Android TV ecosystem. The analysis of
more than 4.5k TV apps reveals pervasive sensitive data
collection and tracking practices. Notably, we detected
the prevalence of static identifiers over identifiers de-
signed to protect users’ privacy. Consequently, policies
such as limiting access to advertising identifiers will have
almost no effect on TV apps. Our measurements show
that tracking and advertising services collect static iden-
tifiers and personal data in a large percentage of the
cases, including TV specific data.

While our static and dynamic analyses show that
TV apps have consistently fewer trackers than mobile
apps, our work also sheds light on the developer ecosys-
tem detecting multiple bad development practices that
leave TV customers vulnerable. Moreover, developers
porting mobile apps to Android TV produced incon-
sistent apps with much lower quality, including popu-
lar streaming services. We expect that our study con-
tributes to the Android TV ecosystem to improve de-
velopment practices and general design. In particular,
we encourage the development of better guidelines to
migrate mobile apps to Android TV and secure usage
of new APIs for inter-device communication. Finally,
we feel that Android TV should improve its UI, allow-
ing users to at least check permissions and read privacy
policies before installing apps on their TVs.
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A Dataset Collection
We collect our app dataset with two crawlers from two
main sources: Google Play Store (via AndroZoo) and
ApkMirror directly. AndroZoo is a repository that con-
stantly crawls the Play Store and other markets and
provide an API to download APKs at high rates. Once
we download an APK, we verify if it can run on Smart
TVs by checking the APK Manifest, and we discard the
file if it does not meet the criteria. We also remove du-
plicate APKs with the same package name.

While the list of all 4745 package names can be
found in the repository, we provide here the names of the
popular streaming apps used for the dynamic analysis
and to compare the mobile/TV version of apps:
– TV/Mobile pairs: BBCPlayer, ITV, Rakuten,

CNN, AcornTV, Lifetime, Amazon Video, CB-
NTV, Christian Channel, Curiosity Stream, Earth-
cam, Eros, YouTube, Stadia, Moviestar, Hulu, Net-
flix, PlayStation, AccuWeather, TedTalk, YuppTV,
WRC, Player, Tvn, HTB

– Unique version: Old Movies, Disney+, Twitch,
Pluto, NFL, Plex, Sling, Natgeo, Espn, Apple TV,
RedBull, Kodi, HayStack, NBC Sports, HBOGo
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