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Abstract: Providing provenance in scientific workflows
is essential for reproducibility and auditability purposes.
In this work, we propose a framework that verifies the
correctness of the aggregate statistics obtained as a re-
sult of a genome-wide association study (GWAS) con-
ducted by a researcher while protecting individuals’ pri-
vacy in the researcher’s dataset. In GWAS, the goal
of the researcher is to identify highly associated point
mutations (variants) with a given phenotype. The re-
searcher publishes the workflow of the conducted study,
its output, and associated metadata. They keep the re-
search dataset private while providing, as part of the
metadata, a partial noisy dataset (that achieves local
differential privacy). To check the correctness of the
workflow output, a verifier makes use of the workflow,
its metadata, and results of another GWAS (conducted
using publicly available datasets) to distinguish between
correct statistics and incorrect ones. For evaluation, we
use real genomic data and show that the correctness of
the workflow output can be verified with high accuracy
even when the aggregate statistics of a small number
of variants are provided. We also quantify the privacy
leakage due to the provided workflow and its associated
metadata and show that the additional privacy risk due
to the provided metadata does not increase the exist-
ing privacy risk due to sharing of the research results.
Thus, our results show that the workflow output (i.e.,
research results) can be verified with high confidence
in a privacy-preserving way. We believe that this work
will be a valuable step towards providing provenance in
a privacy-preserving way while providing guarantees to
the users about the correctness of the results.
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1 Introduction
Provenance refers to the place of origin or earliest known
history of an object in question. In the modern era,
especially in scientific research, it is becoming crucial
to provide provenance to allow reproducibility and au-
ditability. In most applications, provenance is captured
through workflows [3, 13, 32, 43]. For researchers, it
is crucial to verify the correctness of a published re-
search, especially if they are planning to use the re-
search findings in their study. Computational errors
might occur during the workflow (e.g., the published
results/statistics or the metadata may be computed
wrong) or during the quality control [48, 57] (e.g., a
researcher might use low quality data to conduct the
research). It is trivial to verify the correctness of the
research findings if, besides the workflow and its asso-
ciated metadata, the input dataset is provided. How-
ever, the input dataset might not always be released as
it may contain sensitive information about individuals
(e.g., personal records in the dataset). In such cases, ver-
ifying the correctness of the computations becomes non-
trivial. There exist several works in the field of verifiable
computation [50, 56], which aim to do various computa-
tions on the cloud while verifying the correctness of the
returned results. However, the problem we consider can-
not be directly solved using existing verifiable compu-
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tation techniques because in our case, a researcher aims
to verify the correctness of a published research with-
out having access to the dataset. One alternative may
be to use “homomorphic authenticators” [28], but they
are impractical for statistical analysis on large datasets
due to the high computation.

In this work, we propose a framework that efficiently
verifies the correctness of the statistics obtained as an
outcome of a genome-wide association study (GWAS)
while preserving the privacy of the research dataset (i.e.,
individuals’ personal data in the dataset). GWAS is a
popular method for identifying genetic variations (mu-
tations) that are associated with a particular phenotype
(disease). For researchers, showing that discovered as-
sociations are correctly computed and the results are
reproducible is of immense importance. At the same
time, GWAS studies include highly sensitive datasets
that contain genomic and phenotypic information of in-
dividuals that participate in the study. Genomic data
includes privacy-sensitive information about an individ-
ual, such as ethnicity, kinship, and predisposition to cer-
tain diseases, while phenotype data may include their
diagnosis (disease status). Due to such privacy concerns,
the research dataset is typically kept private. We con-
sider a scenario between (i) a researcher, which conducts
GWAS and publishes the research findings (i.e., p-value,
odds ratio, or minor allele frequency) along with the
workflow and its associated metadata and (ii) a veri-
fier, which receives the research results and is willing to
check their correctness. The metadata includes the trait
(phenotype) being studied, the population of the users
in the study, the number of users in the case and control
groups, and the number of genetic variants (single nu-
cleotide polymorphisms - SNPs). In addition to these,
in the proposed framework, we also include (i) a partial
noisy dataset (generated by the researcher to achieve lo-
cal differential privacy - LDP) including only the identi-
fied genetic variants that have high associations with the
studied phenotype and (ii) the distribution of the noise
added to construct the partial dataset (e.g., privacy pa-
rameter of LDP) as a part of the metadata, which helps
for the verification of the GWAS output.

To check the correctness of the provided associa-
tions (i.e., published statistics by the researcher as a
result of GWAS), first, the verifier performs the same
statistical study as the one executed by the researcher
on the received partial noisy dataset. Then, by using
a publicly available dataset, the verifier compares (i)
the deviation between the published statistics and the
ones computed from the received partial noisy dataset
to (ii) the deviation between the statistics computed on

a public dataset and the ones computed from the noisy
version of the same public dataset (the verifier locally
computes the noisy version of the public dataset). We
show that this comparison statistically provides a proof
to the verifier about the correctness of the researcher’s
computation. We observe that if the researcher provides
incorrect results (due to miscalculations) and/or makes
errors during the generation of the provided metadata,
the verifier’s confidence about the incorrectness of such
results increases as the researcher deviates more from
the original results. As we show via simulations, if the
researcher’s published statistics deviate less from the
original values, the verifier’s confidence decreases, but
such small deviations still allow the verifier to receive
high-quality results. We also show that the proposed
scheme is robust for the selection of the public datasets
that are used for verification.

Previous works have shown that aggregate statistics
published as part of GWAS are prone to membership in-
ference attacks [34, 45, 51]. In membership inference at-
tacks, the attacker aims to determine whether the data
of a target victim is part of the research dataset or not.
The power of the membership inference attacks depends
on the number of published statistics. In spite of this
known vulnerability, sharing such statistics is crucial for
research and it is approved by many institutions, includ-
ing the NIH [1]. Thus, one of our goals is to guarantee
that the privacy risk for the dataset participants due to
the partial noisy dataset (provided as part of the meta-
data) does not go beyond the baseline risk that occurs
due to the shared statistics as a result of GWAS.

For evaluation, we use real genome data from Open-
SNP [4] and 1000 Genomes project [2] datasets. We par-
ticularly evaluate the confidence of the verifier about the
correctness of the research output when a researcher
(unintentionally) oversells them (e.g., reports stronger
associations than the original ones). This is essential
because the research findings can be used on other re-
search studies (e.g., personalized medicine). When we
set the number of returned statistics to 100, we show
that the verifier can correctly classify up to 90 out of
100 correct statistics (i.e., p-value, odds ratio, or minor
allele frequency) provided by the researcher. Also, the
verifier can detect at least 90 out of 100 incorrect statis-
tics when, for example, the returned p-values deviate by
at least 0.045 from their correct values (e.g., when the
researcher attempts to oversell or undersell the research
findings). For instance, if the researcher (as a result of
GWAS) obtains a p-value of .09 (widely accepted as a
weak association) for a SNP and (erroneously) reports
a p-value of .045 (widely accepted as a strong associa-
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tion) for the same SNP, the verifier can detect this with
a probability close to 1. We also show that the proposed
framework can correctly classify all the correct statistics
that are highly associated with the considered pheno-
type and all the incorrect statistics that imply a signifi-
cant overselling of the real outcome. Overall, our results
show that verifier’s confidence decreases only when the
returned statistics’ values are close to the correct ones,
which still results in high utility for the provided statis-
tics. We also observe that the shared GWAS statistics
bound the privacy vulnerability (for the research par-
ticipants) and that the provided metadata (as part of
the proposed framework) does not further increase this
vulnerability. Therefore, the proposed framework does
not introduce an additional privacy vulnerability for the
research participants.

2 Related Work
Privacy and Security in Provenance and Work-
flows. Both provenance privacy [16, 21, 29, 30] and se-
curity [14, 33, 40] have been studied in workflows. How-
ever, these works focus specifically on access control.
Chebotko et al. [16] propose a mechanism that provides
a partial view of a scientific workflow respecting the
access privileges on the workflow input/output and the
connections between the modules. However, as discussed
in [14], this is not sufficient to ensure the confidential-
ity of the sensitive information in workflow provenance.
Davidson et al. [21] identify three types of privacy con-
cerns in scientific workflows: data, module, and struc-
tural privacy. They discuss these privacy concerns via an
example, focusing on the users’ access privileges. Man-
aging the access privileges of each user role and ensur-
ing that they use the workflow along with the metadata
in an intended way is challenging. Different from these
works, we consider a scenario, where the workflow and
its associated metadata are publicly available.

Another line of work focuses on provenance saniti-
zation [11, 12, 15, 16, 18, 20, 22, 41]. By provenance
sanitization, researchers refer to the general problem
of ensuring that provenance solutions satisfy disclosure,
privacy, and security requirements. Provenance saniti-
zation is achieved via provenance graph transformation,
where the structure of a scientific workflow is modified
to satisfy all the requirements. A workflow is defined
as a directed graph capturing the steps of a (scientific)
process. A provenance graph is a directed acyclic graph
representing the execution of the workflow. There ex-
ist three main approaches for provenance sanitization:
(i) hiding, which eliminates the sensitive graph compo-

nents, potentially leading to dangling edges and nodes,
(ii) grouping, where several nodes are combined into
one aggregate node, and (iii) anonymization, where the
sensitive attributes of the nodes or edges are removed.
Anonymization provides a better utility (in terms of
how similar the transformed graph is to the original
graph) than grouping because it preserves the struc-
ture of the workflow. Cheney et al. [17] provide a com-
prehensive review of seven approaches for provenance
sanitization. Mohy et al. [42] propose a workflow prove-
nance sanitization approach, called ProvS, which com-
bines both anonymization and grouping. As opposed to
these works, we focus on the verification of the correct-
ness of the workflow output in GWAS, which, to the
best of our knowledge, has not been studied before. At
the same time, we make sure that the vulnerability (in
terms of privacy risk) of the dataset participants does
not increase due to the shared workflow and its associ-
ated metadata.
Verifiable Computation. There exists several
schemes that offer verifiability with different character-
istics. Their goal is to verify the correctness of the com-
putations outsourced to a cloud. Yu et al. [56] provide
a broad review of some of the existing work in verifi-
able computation. Gennaro et al. [27] present a scheme
based on garbled circuits and fully-homomorphic en-
cryption. Backes et al. [10] propose the incorporation of
homomorphic MAC to verify the correctness of the com-
putation done on an untrusted server. Parno et al. [44]
propose a system, called Pinocchio, that uses quadratic
arithmetic programs combined with a highly efficient
cryptographic protocol. Trinoccio [46] improves Pinoc-
chio by providing input privacy. ADSNARK [8] extends
Pinocchio [44] by proving computations done on au-
thenticated data in a privacy-preserving way. Costello
et al. [19] propose Geppetto, a system that aims to
further reduce prover overhead and increase its flexibil-
ity. Fiore et al. [26] extend Geppetto [19] by enabling
the verifier to verify the proof against a commitment
done on some inputs independent of the computation.
However, either these techniques can not be used to
solve the problem we consider or they are not practical
to verify computations performed on large datasets.

3 Background
In this section, we briefly introduce the relevant genetic
concepts, as well as local differential privacy.
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3.1 Genomic Background
The human genome is encoded as a sequence of nu-
cleotides with values in the set {A, T, C, G}. The whole-
genome consists of 3 billion pairs of nucleotides where
99.9% of the genome is identical between any two in-
dividuals and the remaining part is referred to as ge-
netic variation. Single nucleotide polymorphisms (SNPs)
is the most common genetic variation, which stems from
differences in single nucleotides. In the vast majority of
cases, a SNP is biallelic, i.e., it can take two possible
alleles (nucleotides at a variant location).

Genome-wide association studies (GWAS) have be-
come a popular method for identifying genetic varia-
tions that are associated to a particular trait or phe-
notype. The most common approach of GWAS studies
is the case-control setup, where the genomes of the in-
dividuals that carry the trait or phenotype (cases) are
compared with the genomes of the healthy individuals
(controls). As a result, the study identifies the SNPs
that are associated to a certain trait. Assuming that
SNPs are biallelic, they take values 0, 1, and 2, rep-
resenting the number of their minor alleles. Therefore,
GWAS data for each SNP can be summarized as either
a 3×2 or a 2×2 contingency table (as shown in Table 1),
where each cell shows the number of cases and control
users having a particular value (0, 1, or 2) for a given
SNP. For instance, S0 denotes the number of case users
having 0 for a given SNP, C0 denotes the number of
control users having 0 for a given SNP, and so on. The
output of GWAS usually consists of the p-value, odds
ratio, and minor allele frequencies (MAFs) for the most
significant SNPs. The ability of GWAS to identify asso-
ciations of genetic variations to a phenotype depends on
the quality of the data [48, 57]. The usage of low quality
data may lead to false associations. Thus, it is crucial
to follow the quality control (QC) procedure. We briefly
describe the details of the QC procedure in Appendix B.
Although we mainly focus on verification of GWAS re-
sults due to computational errors, the proposed frame-
work can also be used to verify the correctness of QC
steps, as we discuss in Section 7.2.

Table 1. A 3× 2 contingency table (left) and a 2× 2 contingency
table (right).

Genotype
0 1 2 Total

Case S0 S1 S2 S
Control C0 C1 C2 C
Total n0 n1 n2 n

Genotype
0 1 Total

Case S0 S1,2 S
Control C0 C1,2 C
Total n0 n1,2 n

3.2 Local Differential Privacy
Local differential privacy (LDP) [24, 38] is a variation
of traditional differential privacy [25] with additional
restrictions. In this setting, there is no trusted third
party, thus offering a stronger level of protection for
users’ data. Each user perturbs their own data before
sharing it with a data aggregator, so the aggregator only
observes the perturbed data. Formally, an algorithm A

satisfies ε-local differential privacy (ε-LDP) if and only
if for any input v1 and v2:

Pr[A(v1) = y] ≤ eεPr[A(v2) = y],

for all y ∈ Range(A), where Range(A) denotes all the
possible outputs of the algorithm A. The most com-
mon way of achieving ε-LDP is the randomized response
mechanism [54]. In randomized response, a user reports
the true value of a single bit of information with proba-
bility p and flips the true value with probability 1− p,
satisfying (ln p

1−p )-LDP. A data aggregator collects the
perturbed values from users and attempts to determine
the frequencies of values (bits) among the population.

Wang et al. [52] introduced a framework that gen-
eralizes several LDP protocols and proposed a fast and
generic aggregation technique for frequency estimation.
Here, we summarize direct encoding (DE) and integrate
it in our proposed verification framework (in Section 5).
Assume that there are n individuals that have values
from the set [d] = {1, 2, . . . , d}. The goal of the aggre-
gator is to predict the number of individuals having a
value i (i ∈ [d]). In DE, there is no encoding of the val-
ues. For perturbation, each value is reported correctly
with probability p = eε

d−1+eε and is flipped to one of
the remaining d−1 values with probability q = 1

d−1+eε .
The aggregator collects all perturbed values and esti-
mates the value of i (i ∈ {1, 2, . . . , d}) as c̃i = ci−nq

p−q ,
where ci is the number of times i is reported.

4 System and Threat Models
In this section, we introduce our system and threat mod-
els.

4.1 System Model
As shown in Figure 1, we consider a system that in-
cludes two parties: the researcher and the verifier. As
discussed, we consider GWAS, in which the researcher’s
goal is to discover associations between the genetic vari-
ants (SNPs) and a type of trait/phenotype (e.g., can-
cer). For this, the researcher first constructs a dataset
that includes genomic data of individuals that have can-
cer and healthy ones. The researcher creates a case-
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control setup, performs GWAS, and shares its work-
flow along with its associated metadata and the re-
search findings. The research findings (workflow out-
put) include the most highly associated SNPs and their
corresponding statistics (e.g., p-value, odds ratio, and
MAF). The workflow shows all the steps that are needed
to perform GWAS. The metadata includes the pheno-
type being studied (cancer), the demographics of the
research participants, the number of research partici-
pants, the number of SNPs, and a partial noisy dataset
that includes the identified highly associated SNPs (as
discussed in Section 5 the partial noisy dataset is used
in the proposed verification algorithm). The researcher
wants to ensure that the vulnerability of the dataset par-
ticipants to genomic privacy attacks does not increase
due to the provided metadata about the dataset. On the
other hand, the verifier wants to check the correctness of
the provided associations and use them in their research
directly. Thus, it is crucial for the verifier to check the
correctness of the results. The verifier has access to the
workflow, its output, and metadata.

Researcher

R: output 
Mi: module

Metadata

Data

M2 M3

M1

M5

M4

Workflow

Noisy Data

R

Output
Input

 Participants’ demographics
 Assumptions
 Settings
 Model parameters
 Noise parameter z

+ z

Verifier

Verification

Correct/
Incorrect
Output

Fig. 1. Overview of the proposed system model.

4.2 Threat Model
In the following, we summarize potential threats due to
the researcher and the verifier.
Researcher.We assume an honest researcher that uses
a legitimate dataset, rather than intentionally using a
wrong/fake dataset. There is a huge incentive for the
researcher to use a legitimate dataset (as will be dis-
cussed in Section 7.4). Our main goal is to develop
a privacy-preserving and efficient verification tool for
non-malicious researchers and research followers (i.e.,
verifiers), so that the researchers can have their results
validated and adopted (by the verifiers or the research
community) in a fast, privacy-preserving, and efficient
way. Due to computational errors during GWAS or er-
rors during the quality control (QC) steps [48, 57] (as

described in Section 3.1), the researcher may uninten-
tionally provide wrong results as the output of the re-
search (GWAS). In this work we mostly focus on mis-
calculations done by the researcher during GWAS and
discuss how to handle errors during QC in Section 7.2.
Due to such miscalculations, the researcher may unin-
tentionally oversell (e.g., provide IDs of some weakly
associated attributes along with strong statistics for
such attributes) or undersell (e.g., provide the IDs of
strongly associated attributes, but provide the statistics
of some other attributes) the research results. Among
these scenarios, the most harmful one is overselling the
results due to miscalculations, since it may lead other
researchers misuse reported strong associations in criti-
cal tasks (e,g., personalized medicine). Therefore, if the
research reveals some new, strong associations with the
considered trait, the verifier will most likely want to val-
idate them before using in their research study. On the
other hand, if the research does not reveal any new or
strong associations, checking their correctness may not
be equally interesting for the verifier. The verifier might
be interested in checking such results only if they are
also doing a similar study and believe that a stronger
than the reported association should exist between a
particular attribute and the studied trait. Thus, in this
paper, we will mainly focus on a researcher that returns
strong associations with the studied trait. However, as
we will show in Section 6.2, our proposed framework
can also verify the correctness of reported weak associ-
ations. Apart from doing computational errors during
GWAS, the researcher may also compute the partial
noisy dataset (a part of metadata that is used for verifi-
cation, as discussed in Section 4.1) in a wrong way. Since
we consider an honest (but error-prone) researcher, er-
ror due to miscalculations during GWAS and error in
the generation of the partial noisy dataset are indepen-
dent. We explore this in Section 6.2.1.
Verifier. The verifier may misbehave and try to infer
sensitive information about the participants in the re-
search dataset using the research output, metadata, and
workflow. There exist known privacy attacks, such as
membership inference [34, 51], attribute inference [5, 6,
23, 35], and deanonymization attacks [7, 31, 36] that ex-
ploit research results and/or partially provided datasets.
In membership inference attacks, an attacker may at-
tempt to determine whether a target record (victim) is
part of the research dataset or not. In attribute infer-
ence attacks, the attacker aims at inferring additional
private attribute(s) of an individual from the observed
ones. For instance, a misbehaving verifier may try to in-
fer hidden (unrevealed) genomic attributes (SNPs) from
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the SNPs in the partial noisy dataset. Here, the identi-
ties of the research participants are hidden, and hence
attribute inference becomes a feasible attack scenario
only after the attacker infers the membership of a vic-
tim to the research dataset. In deanonymization attacks,
the goal of the attacker is to link the anonymized data
(e.g., genome) of an individual to the individual’s iden-
tity using some auxiliary information about the indi-
vidual (such as observable phenotype or a part of the
individual’s genome). This may be possible due to the
shared partial dataset as part of the metadata. How-
ever, in the proposed framework, the researcher shares
only a small portion of the research dataset and applies
noise to it before sharing. As a result, the most effective
deanonymization attack can be conducted using the vic-
tim’s partial genome as the auxiliary information (which
makes deanonymization harder than membership infer-
ence attacks). Therefore, for our considered scenario,
the most relevant attack for a misbehaving verifier is
membership inference and we consider this attack in
the rest of the paper. It has been shown that mem-
bership inference attacks against statistical biomedical
datasets [9, 34, 45, 51] can be mitigated by adding noise
to the released statistics to achieve differential privacy
(DP) [37, 49, 55]. DP guarantees that the presence or
absence of a data record does not significantly affect
the released statistics. We discuss this extension and
evaluate the performance of the proposed verification
framework for GWAS statistics that are shared under
DP in Section 7.3. On the other hand, even though dif-
ferentially private mechanisms can protect users against
these attacks, they also come with a significant utility
reduction (as also shown in Section 7.3).

5 Proposed Framework
In this section, we first introduce the GWAS statistics
we consider. Then, we describe how the proposed frame-
work works for privacy-preserving verification of GWAS
results. In particular, we present our method for veri-
fying the correctness of the workflow output given the
workflow and its metadata. General notations that are
used in the proposed framework are presented in Table 4
in Appendix A.

5.1 GWAS Statistics
GWAS is a method used to identify genetic variations
that are associated with a particular phenotype (usually
a disease). In a typical GWAS, the researcher quanti-
fies the associations between a disease (or phenotype)
and a SNP using the odds ratio and the correspond-

ing p-value. For a 2x2 contingency table, the odds ra-
tio (OR) is computed as OR = (S1,2)/(C1,2)

S0/C0
= C0(S1,2)

S0(C1,2)
(using the values in Table 1). The 95% confidence in-
terval is from exp(ln(OR) − 1.96 × SE{ln(OR)}) to
exp(ln(OR) + 1.96× SE{ln(OR)}), where the standard
error (SE) of the log odds ratio is SE{ln(OR)} =√

1
S1,2

+ 1
S0

+ 1
C1,2

+ 1
C0

. The p-value is computed as
in [47]. First, the standard normal deviation (z-value)
is computed as ln(OR)/SE{ln(OR)}, and then the p-
value is computed as the area of the normal distribution
that falls outside ±z. The p-value shows if the associ-
ation between a SNP and a phenotype is statistically
significant or not. SNPs whose p-values are low enough
(smaller than a threshold) are considered significant. Fi-
nally, the minor allele frequency (MAF) of the SNPs in
the case group is computed as MAF = S1+2×S2

2×S (using
the values in Table 1). For the SNPs that have a p-value
smaller than a threshold, the researcher publicly releases
their aggregate statistics (p-value, OR, and MAF).

5.2 GWAS and Generation of Metadata
LetD represent the dataset owned by the researcher. We
denote the total number of individuals in the dataset
(that are also involved in GWAS) as n, and the to-
tal number of SNPs as m. In the rest of this paper,
we assume that the number of case and control users
are equal (n/2 cases and n/2 controls). We let t denote
the phenotype being studied. For each SNP j, the re-
searcher computes its association with phenotype t in
terms of the odds ratio (otj) and p-value (ptj). The re-
searcher also computes the minor allele frequency (atj)
of each SNP j in the case group. As a result of GWAS,
the researcher provides to the verifier the statistics of
the l most associated SNPs together with the SNP IDs
as Rt = {Rt1, Rt2, . . . , Rtl}, where Rtj = {otj , ptj , atj}. Note
that sharing the IDs and (non-noisy) statistics of the
most associated top-l SNPs as a result of GWAS is re-
quired and allowed by many institutions, (e.g., NIH [1]).
In Section 7.3, we also consider the scenario where
statistics are shared under DP. The input of the work-
flow consists of the case/control groups, whereas the
workflow output consists of the summary statistics (p-
values, odds ratios, and MAFs) for the strongly associ-
ated SNPs with the studied phenotype.

By using the workflow along with the metadata re-
ceived from the researcher, the verifier can check the
correctness of the provided statistic for each SNP. Thus,
as metadata, the researcher provides (i) the phenotype
that is being studied, (ii) the population of the individ-
uals in the GWAS study, (iii) the number of individuals
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in the case/control groups (n), and (iv) the number of
SNPs in the study (m). As part of the metadata, the
researcher also provides raw data (i.e., part of the origi-
nal dataset) for the k most significant SNPs after adding
noise to it using the randomized response mechanism to
achieve LDP (with parameter ε), as discussed in Sec-
tion 3.2 along with the ε value. We denote this partial
noisy dataset asDεk and we assume that k is greater than
or equal to l. Briefly, for each SNP j in Dεk, its original
value (e.g., 0) is kept intact with probability p and its
value is flipped with probability q (e.g., flipped to 1 or 2
with equal probability), where p = eε

2+eε and q = 1
2+eε .

We opt for randomized response since the total number
of potential values for each SNP is 3 and this mecha-
nism provides the best utility for such few number of
states [52]. Moreover, the randomized response mech-
anism uses the same set of inputs and outputs with-
out an encoding, which allows the data collector to use
perturbed data directly. Via LDP, we provide indistin-
guishability between the original and reported values of
the SNPs in Dεk. We analyze the privacy guarantees of
the proposed framework in Section 6.3. The researcher
does not provide the noisy version of the entire dataset
since we observe that membership inference attacks be-
come more powerful as more SNPs (even after adding
noise) are published, as shown in Section 6.3.3. Further-
more, in Appendix F, we discuss creating the partial
dataset (Dεk) via sampling to further reduce the privacy
risk due to the partial noisy dataset.

5.3 Verification of the Workflow Output
Here, we introduce our methodology for verifying the
correctness of the workflow output. The proposed frame-
work consists of two main parts: (i) selection of cut-off
points (i.e., threshold values to distinguish between cor-
rect and incorrect statistics) for each reported statis-
tic using a publicly available dataset (described in Sec-
tion 5.4); and (ii) determining whether each provided
statistic is computed correctly or not (described here).

First, by using the aggregation technique in [52], the
verifier estimates the actual occurrences of 0, 1, and 2 for
each SNP based on the received noisy dataset Dεk (as de-
scribed in Section 3.2). Then, it performs GWAS on the
estimated counts and calculates the statistics (p-value,
odds ratio, and MAF) for the k SNPs in Dεk, denoted
as Qt = {Qt1, Qt2, . . . , Qtk}, where Qtj = {ôtj , p̂tj , âtj}.
Note that the researcher does not provide Qtk instead
of Dεk because we assume that the researcher might
make computational errors (and such errors will likely
be repeated if the researcher also computes Qtk since
they will be following the same methodology). Next,

the verifier computes the deviation (or distance) of the
computed statistics (in Qt) from the l statistics pro-
vided by the researcher in Rt. To compute the devi-
ation, the verifier uses the relative error (RE) metric
computed between the statistics in Rt and in Qt. For
the p-value, the verifier computes its deviation, denoted
as REp = {REp1 , REp2 , . . . , REpl}, as the fraction of the
logarithm of p-values that is lost due to the randomized
response mechanism. Formally, REpj is computed as:

REpj =
| − ln(ptj)− (−ln(p̂tj))|

−ln(ptj)
,

where j ∈ {1, . . . , l}. For the odds ratio, REoj is com-

puted as REoj = |otj−ô
t
j |

ot
j

. The deviation of the minor
allele frequency (REa) is also computed similarly.

Here, our main assumption (as we validate in Sec-
tion 6) is that independent of the phenotype being stud-
ied, the distance obtained between the statistics com-
puted over Dεk and D follows a similar trend for different
datasets for a given ε value. To utilize this, the verifier
computes the “expected distance” by using a publicly
available genomic dataset E and its noisy version Eε, in
which each data point is obfuscated (by the verifier) us-
ing randomized response to achieve LDP (with the same
privacy parameter that is used by the researcher, ε). Us-
ing the previously introduced distance metrics (for re-
searcher’s statistics), the verifier computes the expected
distance (REEp for p-value, REEo for odds ratio, and
REEa for MAF) for the l most associated SNPs from E

(denoted as Gt′ = {Gt′1 , Gt
′

2 , . . . , G
t′

l }) and Eε (denoted
as Ht′ = {Ht′

1 , H
t′

2 , . . . ,H
t′

l }). The verifier does not need
a labelled dataset for this. Instead, they can randomly
label the dataset to compute the statistics. Here, the
important point is that E contains the same number of
case and control users as in D.

After computing the expected distance of each
statistic (i.e., REEp , REEo , and REEa ) on the public ge-
nomic dataset, the verifier computes the relative change,

error, (e.g., Φpj =
|REDpj−RE

E
pj
|

REEpj
) between the deviation

of each statistic in D (e.g., REDpj ) and the deviation
of that particular statistic in E (e.g., REEpj ). If this
change is smaller than a predefined cut-off point (thresh-
old value), then the statistic provided by the researcher
(e.g., pj) is classified as being computed correctly; oth-
erwise it is classified as incorrect. In Figure 2, we provide
a toy example showing how the verification of received
statistics is done. For each statistic (p-value, odds ratio,
and MAF), the verifier can heuristically set a cut-off
point (τo, τp, and τa, respectively) depending on the er-
ror value (relative change from the expected distance of
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Fig. 2. A toy example showing how the verifier checks whether the released statistics are correct or not. Some of the steps can be done
in parallel, numbering is for clarity. D denotes the researcher’s (private) dataset, E is the public dataset, and F is another labelled
public dataset. Dεk denotes the partial noisy dataset provided as part of the metadata and Eεl is the partial noisy public dataset. Rtl
denotes the statistics provided by the researcher, Qtk is the statistics obtained as a result of GWAS on Dεk, G

t′
l is the statistics ob-

tained as a result of GWAS on E, and Ht′
l is the statistics obtained as a result of GWAS on Eεl . As the released GWAS statistics, o

denotes odds ratio, p is the p-value, and a is the minor allele frequency. Furthermore, REDo denotes the deviation of odds ratio in D,
REDp is the deviation of p-value in D, and REDa is the deviation of minor allele frequency in D. Finally, τa denotes the cut-off point
for minor allele frequency. Rtl and D

ε
k are provided to the verifier by the researcher.

each statistic) they choose to tolerate. In the next sec-
tion, we describe how to compute the cut-off points for
each statistic by using a public dataset.

5.4 Selection of Cut-off Points
To compute the cut-off points, the verifier can use an-
other labelled (publicly available) genomic dataset F ,
whose phenotype does not need to be the same as the
one in D. The verifier uses F to simulate the poten-
tial computational errors done by the researcher (with
dataset D). In contrast to D, which is unknown to the
verifier (except for its partial noisy dataset Dεk), the
verifier knows the ground-truth for each possible consid-
ered scenario in F (i.e., whether the correct statistics are
provided or not). Therefore, for each statistic, the veri-
fier computes the probability distributions of the error
between the statistic’s deviation in F (e.g., REFp ) and
the statistic’s deviation in E (e.g., REEp ) when the cor-
rect and incorrect statistics are provided. For incorrect

statistics, the verifier might consider different scenarios
depending on how much the provided statistics’ values
deviate from the correct ones. Based on these distribu-
tions, the verifier identifies the points, at which both the
false positive and false negative probabilities are mini-
mized and selects these as the cut-off points for each
statistic (τo, τp, and τa, respectively). Here, a false pos-
itive is the outcome, for which an incorrect statistic is
classified as correct, and a false negative is the outcome,
for which a correct statistic is classified as incorrect. In
order to avoid the dependence of the cut-off points on a
single case-control setup (F ), the verifier can partition F
into multiple splits (case-control setups), such that the
SNPs in these splits do not intersect with each-other
and use them to compute the cut-off points.

The performance of the proposed framework mainly
depends on the number of statistics returned by the re-
searcher (l) and the amount of noise added to the partial
dataset (ε). Thus, as we show in Section 6, the researcher
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can fine-tune these two parameters based on the veri-
fier’s confidence and the privacy level of the participants
in researcher’s dataset.

6 Evaluation
In this section, we evaluate the proposed framework by
using real genomic data. We also study the impact of
several factors to (i) the verifier’s confidence for the ver-
ification of the GWAS output and (ii) the privacy of
individuals in the researcher’s dataset.

6.1 Datasets and Evaluation Metrics
We use two different genomic datasets for evaluation:
(i) the OpenSNP dataset [4], which also includes phe-
notype information about the individuals, and (ii) the
1000 Genomes Phase 3 dataset [2]. We assume that the
researcher’s dataset D is the OpenSNP dataset, while
the 1000 Genomes dataset is a public dataset (E). From
OpenSNP, we use the following phenotypes: (i) lactose
intolerance (D1), (ii) hair color (D2), and (iii) handed-
ness (D3). For each phenotype, we extract the genomic
data of 120 randomly selected individuals (n = 120)
where 60 of them carry the trait (phenotype) and 60
do not. From the OpenSNP dataset, we also extract
genomic data of another 120 individuals (that do not
overlap with D1, D2, or D3) and create a case-control
setup (F , which is used to compute the cut-off points, as
discussed in Section 5.4) consisting of 44000 SNPs. To
construct E from the 1000 Genomes dataset, we extract
the SNPs from chromosome 22 of 120 randomly selected
individuals from the European population (CEU). We
randomly label the 1000 Genomes dataset and create a
case-control setup consisting of 41000 SNPs.

To simulate a researcher that makes unintentional
computational errors, first, we conduct GWAS on D

(D1, D2, and D3 in our experiments). Then, we sort
the SNPs based on their increasing p-values. To simu-
late the overselling scenario, we assume that the v-th
SNP in the sorted list is the one with the strongest as-
sociation (with the lowest p-value) in the researcher’s
dataset. We use the p-values of SNPs from 1 to (v − 1)
in the sorted list as the incorrect values reported by the
researcher. Thus, the p-value of the (v−1)-th SNP is the
closest to the correct values, and the p-value of the first
SNP is the one that deviates the most. For the statis-
tics reported by the researcher, we pick l consecutive
p-values that have different deviations from the correct
ones, and hence for each scenario, there are l statistics
that need to be classified (as correct or incorrect). We
follow the same strategy for the other two statistics.

To quantify the success of the proposed verification
scheme (i.e., verifier’s confidence), for each statistic, we
use true positive rate (TPR = TP

TP+FN ) and true nega-
tive rate (TNR = TN

TN+FP ). We consider a true positive
(TP ) as the outcome, in which the provided statistic
is correctly classified as being correct; a false positive
(FP ) as the outcome, in which an incorrect statistic is
classified as correct; a false negative (FN) as the out-
come, in which a correct statistic is classified as incor-
rect; and a true negative (TN) as the outcome, in which
an incorrect statistic is classified as being incorrect. Fur-
thermore, to quantify the impact of the computational
errors done by the researcher, we evaluate the utility
loss of each statistic as a result of the provided incor-
rect values. We compute this as the distance between the
statistics provided by the researcher (Rt) and the ones
that should have been returned as part of the research
(the correct statistics for the same SNP). For instance,
for p-value, we compute its utility loss as

Up = 1
l

l∑
j=1

(
|pj − yj |

Z

)
,

where pj is the p-value of SNP j released by the re-
searcher, yj is the p-value of SNP j when the computa-
tion is done correctly, and Z is a normalization constant
representing the maximum value that the p-value can
take. The utility loss of odds ratio (Uo) and minor allele
frequency (Ua) are also computed similarly.

6.2 Verification Confidence
The verification confidence provided by the proposed
framework can be studied theoretically and empirically.

6.2.1 Experimental Results

To compute the cut-off points, we first randomly split F
into 5 disjoint case-control studies. There is no overlap
between the SNP IDs of any of these case-control setups.
By following the technique described in Section 5.4, we
use these case-control setups and the one created from
the 1000 Genomes dataset (E) to compute the cut-off
points for each statistic (τo, τp, and τa, respectively).
In the rest of this section, we assume that the verifier
always uses these case-control setups to determine the
cut-off points for each l and ε value.

We evaluate the proposed framework using the case-
control setups of the OpenSNP dataset (D1, D2, and
D3). We assume that the researcher provides the top l

most significant SNPs and their corresponding statistics
and that k, i.e., the size of the provided partial dataset,
is equal to l. Note that the researcher provides raw data
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Fig. 3. Variation of TNR in the verification of p-value with respect to its utility loss for different ε values, when the number of released
statistics is 100 in D1, D2, and D3.

(Dεk) only for the independent SNPs (as will be dis-
cussed in Section 6.3). Here, we focus on the overselling
scenario, where the researcher (unintentionally) might
provide stronger associations than the actual ones. Since
there is randomness due to the noise addition via ran-
domized response, we repeat each experiment 5 times
and report the average of the results.

Effect of ε Value. First, we study the impact of
ε value, i.e., the amount of noise added to the original
dataset (via randomized response) by the researcher be-
fore providing it as part of the metadata (Dεk), to the
TPR and TNR values. We fix l (number of returned
SNPs) to 100 and consider ε values in {1, 2, 3, 5}. In Ta-
ble 2, we show the TPR values obtained using the pro-
posed framework for each statistic and for each dataset
(D1, D2, and D3) with varying values of ε. We observe a
TPR of 0.73 (forD1), 0.69 (forD2), and 0.67 (forD3) for
p-value when ε = 3 and when all returned statistics are
correct (as shown in Table 2). For D1, this means that
the verifier can correctly classify 73 out of 100 statistics
provided by the researcher.

Table 2. TPR for verifying the correctness of each statistic for
varying values of ε when the number of released statistics is 100
in D1, D2, and D3.

Dataset statistic ε = 1 ε = 2 ε = 3 ε = 5

D1
o 0.45 0.56 0.62 0.78
p 0.47 0.65 0.73 0.9
a 0.44 0.62 0.7 0.86

D2
o 0.49 0.55 0.6 0.78
p 0.39 0.59 0.69 0.87
a 0.38 0.6 0.66 0.84

D3
o 0.44 0.53 0.59 0.77
p 0.43 0.61 0.67 0.86
a 0.37 0.57 0.67 0.85

In the following, we assume that all returned statis-
tics are incorrectly reported by the researcher to com-

pute the TNR of the proposed scheme. We show the
variation of the TNR values with respect to the utility
loss for each statistic and each dataset (phenotype) in
Figure 3, and Figures 10 - 11 in Appendix C. The pro-
posed framework achieves a TNR of 0.57 and 0.98 (for
D1) for p-value when ε = 3 and when the utility loss
is 0.2 and 0.4, respectively. As discussed, higher util-
ity loss implies that the researcher deviates more from
the correct values of the statistics. To understand more
clearly what these results actually mean, consider an il-
lustrative scenario, in which the researcher has obtained
(as a result of GWAS) a p-value that is in the range
[.09 − .1] and tries to oversell it by incorrectly report-
ing the p-value in the range [.035− .045] (i.e., reporting
a weak association as strong). Note that an association
with a p-value below .05 is typically accepted as a strong
one. Thus, the p-value threshold is .05. However, higher
p-value thresholds may also result in false positives in
GWAS results, and hence later in this section, we also
study how the performance of the proposed framework
changes with varying values of the p-value threshold. In
this case, the utility loss is at least 0.35 and the veri-
fier can successfully detect this incorrect result with a
probability close to 1. For the other scenario, when a
correct p-value is smaller than .01 and the researcher
tries to report it in the range [.05− .06] (i.e., reporting
a strong association as weak), the utility loss is at least
0.32 and again, the verifier can successfully detect that
the provided p-value is incorrect with probability close
to 1. We also observe that as the deviation of the re-
turned statistics (p-value, odds ratio, and minor allele
frequency) from the correct ones (utility loss) increases,
TNR also increases. For instance, for ε = 3, a verifier can
determine with high confidence (a TNR of at least 0.8) if
the researcher has released incorrect p-values when the
utility loss is at least 0.28. Whereas, the verifier obtains
a low TNR (smaller than 0.4) when the released p-values
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are close to the correct ones (when the utility loss is
less than 0.15). In such cases, even though the verifier’s
success in classifying the returned p-values as incorrect
is low, the returned p-values still preserve a high util-
ity. Therefore, the proposed framework successfully (and
with high confidence) detects when a weakly associated
SNP is reported to have a low p-value and vice versa. We
obtained similar results for the other two datasets D2
and D3. We also observe that as ε value decreases (i.e.,
the amount of noise added to the researcher’s dataset in-
creases), TNR decreases. As discussed in Section 6.3.3,
a researcher can set ε based on the privacy risk of the
research participants due to the partial noisy dataset.

The results we showed so far do not consider the p-
values of the returned statistics (they only consider the
classification accuracy of the verifier for the returned
statistics). On the other hand, in practice, the verifier
is only interested in strongly associated SNPs with p-
values smaller than .05. In Figure 4(a), we show the
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Fig. 4. Error of the p-values (Φp) with respect to their reported
p-values for both correct and incorrect statistics for ε = 3 in D1.
For the incorrect statistics, the values in parenthesis (on the y-
axis) show the utility loss for the corresponding reported p-value
when its correct p-value is 0.08.

error (Φp) obtained by the verifier for 100 correctly com-
puted statistics (p-values) by the researcher as a result
of GWAS with respect to τp and their p-values for ε = 3.
We observe that the verifier achieves a TPR of almost 1
for the strong associations (i.e., the ones with p-values
smaller than .05). Also, in Figure 4(b), we show the
error of 100 incorrect statistics and their reported p-
values, whose correct p-value is around .08. We observe
that the verifier obtains a TNR of almost 1 when the
researcher (erroneously) oversells a weak association as
a strong one. In studies with multiple hypothesis, for
higher p-value thresholds (e.g., .05), it is likely to have
false positive GWAS findings by identifying incorrect
SNPs as the associated ones. A common way to reduce
the probability of such false positives and counteract
the problem of multiple comparisons is to use Bonfer-

roni correction, which is also commonly used in GWAS
settings [39]. Therefore, we evaluate the performance of
the proposed framework with varying p-value thresh-
olds. We obtain similar results when we reduce the p-
value threshold for strong associations from .05 to .01 or
5.5 × 10−6 (computed by using Bonferroni correction).
These results show that a verifier can use the proposed
scheme with high confidence, especially for the SNPs
that are highly associated with the studied phenotype
for varying values of the p-value threshold that are be-
low .05. Therefore, even if a researcher uses multi-test
adjustment methods (such as Bonferroni correction) to
minimize the false positives in its findings, the perfor-
mance of the proposed scheme remains intact.

Effect of the Number of Returned Statis-
tics. Next, we fix the ε value to 5 and vary the num-
ber of returned statistics by the researcher (l) for l ∈
{10, 50, 100, 200}. We observe that the number of statis-
tics returned by the researcher (l) does not have a signif-
icant effect in TPR and TNR. Due to space constraints,
we show the results of this experiment in Table 5 and
Figure 12, in Appendix D. The researcher can decide on
the number of returned SNPs (l) by considering the vul-
nerability of the research participants due to the mem-
bership inference attacks (as discussed in Section 6.3.3).

Table 3. TPR for verifying
the correctness of p-value
for different cut-off points
(τp values), when ε = 3
and l = 100 in D1.

Cut-off Point TPR
1.28 0.73
1.29 0.78
1.30 0.83
1.31 0.89
1.32 0.95

The Effect of Cut-off
Points. Another parameter
that affects the performance
of the proposed framework
(especially to TPR) is the cut-
off points selection. Here, we
explore the effect of the cut-off
points to the TPR and TNR
values. For our evaluation, we
useD1 and set l = 100 and ε =
3. The cut-off point, τp = 1.28,
is computed by using datasets
E and F . Table 3 shows the TPR values achieved by
the proposed framework when verifying the correctness
of p-value using different cut-off points and Figure 5
shows the variation of TNR with respect to the utility
loss for different cut-off points. We obtain similar results
(trends) for the other ε values and statistics. As the cut-
off point (τp) increases, TPR increases while TNR de-
creases. However, we observe that the decrease in TNR
is not significant considering that utility loss is small.
Therefore, a verifier can use a higher cut-off point to
have a high TPR performance without compromising
much in terms of TNR and utility.

Considering Error in Metadata. Apart from
unintentional errors during the computation of the
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Fig. 5. Variation of TNR in the verification of p-value with re-
spect to its utility loss for different cut-off points (τp values),
when ε = 3 and l = 100 in D1.

statistics, the researcher may also do errors during the
generation of the partial noisy dataset Dεk (part of meta-
data, used for verification). To simulate this behavior,
we consider a scenario where the researcher, instead of
using the ε value they intend to use to achieve LDP
(εx), they use a smaller or larger value (εy) to compute
the partial noisy dataset Dεyk and provide εx as part
of the metadata (so that the verifier conducts the ver-
ification based on εx). In other words, the researcher
adds either more or less noise than they intend to add
to generate the partial noisy dataset. For evaluation,
we consider a researcher that does errors during both
the computation of the statistics and the generation of
the partial noisy dataset. Overall, we observe that pro-
posed framework detects with high confidence whether
the provided statistics are correct even when there exist
(unintentional) errors in the metadata in addition to the
errors in the calculation of the GWAS statistics. We ob-
serve that the TPR and TNR values are slightly lower
than the ones achieved when the researcher computes
Dεk correctly (when εy = εx for different values of ε).

6.2.2 Theoretical Analysis

Here, we analytically examine the performance of the
proposed verification framework. In particular, we ex-
plore the verification confidence and the robustness of
the proposed scheme for the selection of the public
datasets (e.g., E). In the following, we conduct our anal-
ysis considering a single SNP; the analysis can easily be
generalized for multiple SNPs similarly. Let yj be the
correct p-value of a SNP j in datasetD, and S0, S1,2, C0,
C1,2 be its corresponding counts values (as in Table 1).
Assume that the researcher (due to miscalculations) re-
ports the p-value of SNP j as pj = yj +η, where η is the
distance between the correct p-value and the reported
one. Given the ε value (that will be known by the veri-
fier), to achieve LDP via randomized response, we com-

pute probabilities p and q (as described in Section 3.2).
Thus, we compute the (expected) noisy counts of SNP
j as follows: Sε0 = pS0 + qS1,2, Sε1,2 = pS1,2 + 2qS0,
Cε0 = pC0 + qC1,2, and Cε1,2 = pC1,2 + 2qC0. Then,
we compute p̂j (p-value that is computed by the veri-
fier using the received metadata) from the noisy counts,
as described in Section 5.1. Let λE denote the aver-
age distance between the p-values of the top l SNPs in
datasets D and E (i.e., λE represents the distance be-
tween the research dataset D and the public dataset
E). Since in this analysis, we consider only one SNP in
both datasets D and E, we set pEi = yj + λE , where
i is any of the top l SNPs in E. We also compute p̂iE

by using probabilities p and q, as described before. For
each dataset, we compute the relative error, REDpj and
REEpi (as described in Section 5.2). Finally, we compute

the error as Φp =
|REDpj−RE

E
pi
|

REEpi
=

|−ln(pD
j

)−(−ln(p̂D
j

))|

−ln(pD
j

)

|−ln(pE
i

)−(−ln(p̂E
i

))|

−ln(pE
i

)

−

1 = (|−ln(f(ψ)+η)+ln(f(ψ,p,q))|)ln(f(ψ)+λE)
(|−ln(f(ψ)+λE)+ln(f(ψ,p,q)+λE)|)ln(f(ψ)+η)−1, where

ψ = {S0, S1,2, C0, C1,2} and f(ψ) is the function for
computing the p-value of a SNP given its counts. Note
that when the counts of a SNP are unknown (e.g., the
noisy counts of SNP j), we include the parameters (e.g.,
probabilities p and q) that we use to compute their (ex-
pected) values. So, the error (in this case Φp) depends
on the original counts (ψ), ε value, the distance between
the reported value of the statistic and its original value
(η), and the distance between D and E (λE).

Performance of the Proposed Framework.
First, we analyze the verification performance of the
proposed framework. In Figure 6(a), we show the er-
ror of 100 incorrect p-values and their reported p-values
whose correct p-value is around 0.08 for ε = 3 and
λE = 0.01. Since the error values (Φp) we obtained are
similar to the ones we obtained in our empirical anal-
ysis (in Figure 4), we use the same cut-off point as in
our empirical analysis (τp = 1.28). Alternatively, we can
also compute the cut-off points by modeling dataset F
via a similar analysis, as will be discussed later. We ob-
serve that via the theoretical analysis, one can achieve
a TNR of almost 1 when the researcher oversells a weak
association as a strong one, which is consistent with our
empirical findings. We also did the same evaluation for
the correctly reported p-values (all smaller than .05 to
represent strong associations) and observe that the ver-
ifier achieves a TPR of 1. We obtain similar results for
varying values of the p-value threshold for strong asso-
ciations (e.g., using a p-value threshold of .005, which is
computed after applying the Bonferroni correction).
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Fig. 6. Theoretical analysis. (a) Error of the p-values (Φp) with
respect to their reported p-values for the incorrect statistics for
ε = 3 and λE = 0.01. The values in parenthesis (on the y-axis)
show the utility loss for the corresponding reported p-value when
its correct p-value is .08. (b) Effect of the associations in E to
error (Φp) for the verification of p-values for ε = 3. Higher the
gap between the error bars in correct and wrong statistics, better.

Effect of Dataset E Selection. Next, we explore
the robustness of the proposed scheme with respect to
the selection of public dataset E. That is, we explore the
effect of the strength/weakness of the associations in E,
the dataset used to compute the “expected distance”
of each statistic to the performance of the verification
framework. We focus on the overselling scenario, where
a researcher reports a p-value of .085 as .035 for ε = 3.
For E, we consider five scenarios with different λE val-
ues. In Figure 6 (b), we show the error (Φp) achieved for
each scenario. Overall, we observe that the performance
of the proposed framework is robust for the selection
of dataset E within a large interval for λE . To show
where some real-life datasets stand with respect to this
interval, we analyze the datasets we used for D and E

for our empirical evaluation (in Section 6.2.1). We ob-
serve that the 1000 Genomes dataset, which we used as
dataset E in Section 6.2.1, is within this interval with re-
spect to dataset D (λE = 0.005). We simulate the above
scenario by selecting SNPs from 1000 Genomes dataset
whose distance to D1 are at the same λE values. Our re-
sults support the theoretical analysis. We also obtained
similar results for different p-values and η values.

Selection of Cut-off Points. Similarly, we also
explore the effect of dataset F (and hence, the selection
of cut-off points) to the performance of the proposed
framework. Let λF be the average distance between the
p-values of the top l SNPs in datasets F and D. We
compute the cut-off point for p-value as follows:
1. Given the p-value of a SNP j in dataset D (re-

searcher’s dataset) and its corresponding counts,
compute its correct value yFk = yj + λF , where k
is any of the top l SNPs in F .

2. Compute the reported p-value as pFk = yFk +η, where
η is the distance between the reported p-value and
the correct one.

3. Compute p̂k
F by using probabilities p and q (as

described at the beginning of Section 6.2.2).
4. Compute REFp (as described in Section 5.2).

5. Compute ΦFp =
|REFpk−RE

E
pi
|

REEpi
=

(|−ln(f(ψ)+λF+η)+ln(f(ψ,p,q)+λF )|)ln(f(ψ)+λE)
(|−ln(f(ψ)+λE)+ln(f(ψ,p,q)+λE)|)ln(f(ψ)+λF+η) − 1.

6. Repeat steps 1-5 for different η values.
7. Compute the probability distributions of the er-

ror ΦFp when the correct and incorrect p-values are
given.

8. Select as the cut-off point τp the value which mini-
mizes the false positive and negative probabilities.

Similar to before, we observe that the performance of
the proposed framework is robust for the selection of
dataset F within a large interval for λF . We do not
show results for this analysis due to space constraints.

6.3 Privacy Analysis
As discussed, the researcher provides a part of the raw
dataset after adding noise to it using the randomized
response mechanism to achieve LDP. To preserve the
privacy guarantees of LDP, within Dεk, the researcher
provides data only for the SNPs that are independent
from each-other based on public knowledge (i.e., link-
age disequilibrium, LD).1 Via LDP, we provide indistin-
guishability between the original and reported values of
the SNPs in Dεk. For each SNP in Dεk, the probability of
distinguishing between the correct and reported value
is bounded by eε. Thus, LDP provides formal privacy
guarantees against the attribute inference attack, but it
does not provide such guarantees against the member-
ship inference attack.

In the following, we quantify the power of the mem-
bership inference attacks due to the shared metadata
and compare this privacy risk with the membership in-
ference risk due to the shared GWAS statistics (Rt). As
discussed, our goal is to show that the risk due to the
proposed scheme does not increase the overall privacy
risk due to the sharing of summary statistics, which is
acceptable by many institutions, such as the NIH [1]. We
assume that the verifier has access to the victim’s SNP
profile, which can be extracted from a blood sample.
To quantify the membership inference risk due the re-
leased statistics, we use the likelihood-ratio test (LRT)

1 Linkage disequilibrium is the publicly known pairwise corre-
lations between the SNPs.
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in Sankararaman et al. [45]. A (misbehaving) verifier
might attempt to determine whether a target victim is
in the case group by computing the distance between
the genome of the target victim and the partial noisy
genomes of the users in the case group (part of Dεk).
We refer to this attack as “hamming distance”. In the
following, we briefly describe LRT to quantify the mem-
bership inference risk due to shared GWAS statistics
and the hamming distance attack to quantify the mem-
bership inference risk due to the shared partial noisy
dataset.

6.3.1 Likelihood-Ratio Test
Let xi,j denote the SNP j of individual i, where xi,j =
{0, 1, 2}, aj denote the aggregate allele frequency of SNP
j in the case group, and popj the aggregate allele fre-
quency of SNP j in the reference population. The aggre-
gate allele frequencies of the case group are provided as
a part of the GWAS output, while the population allele
frequencies can be acquired from public data sources,
such as the 1000 Genomes project. Sankararaman et
al. [45] have empirically shown that, in the genomic set-
ting, LRT is more powerful than the attack proposed
by Homer et al. [34], especially when the false-positive
rate is low. We assume that under the null hypothesis,
a target i is not a part of the case group and under
the alternate hypothesis, target i is a part of the case
group. The overall log-likelihood ratio can be computed
as LRT =

∑l
j=1 xi,j log

aj
popj

+ (1− xi,j)log 1−aj
1−popj .

6.3.2 Hamming Distance
Here, a misbehaving verifier wants to find out whether
any individuals’ genome in the partial noisy dataset
(Dεk) provided as a part of the metadata is a match to
that of a target victim. To identify the match (or close-
ness), we propose to use the hamming distance between
the genomes. Hamming distance shows the minimum
number of positions at which the genome sequences are
different. For instance, given X = GCTTACGA and
Y = GTTGACGA, the minimum number of substitu-
tions required to convert X to Y is 2. In the following,
we discuss the power analysis (for membership inference
attack) using hamming distance between genomes. As-
sume the number of SNPs in Dεk is k. First, we use |A|
individuals from a set A that are not in the case group
of dataset D. For each individual in A, we compute the
hamming distance between the target i and all indi-
viduals in the case group of Dεk (only for the k SNPs)
and identify the minimum hamming distance. Then we
identify the “hamming distance threshold” γ as the 5%
false positive rate (for which 95% of individuals in A

are correctly identified as not in the case group of D).
Next, we use |B| individuals from a set B that are in
the case group of dataset D. For each individual in B,
we compute the hamming distance between the target i
and all individuals in the case group of Dεk and identify
the minimum hamming distance. Finally, we check what
fraction of these |B| individuals have minimum ham-
ming distance that is lower than the threshold γ (i.e.,
correctly identified as in D), which gives the power of a
misbehaving verifier.

6.3.3 Results
We use D1 to evaluate the performance of membership
inference attacks. We empirically build the null hypoth-
esis using |A| = 25 individuals that are not part of the
case group. We reject the null hypothesis when LRT
value is greater than a threshold value γ (corresponding
to 5% false-positive rate) and when the minimum ham-
ming distance is smaller than γ, respectively. For test-
ing, we use |B| = 25 randomly selected individuals from
the case group of D1. Figure 7 displays the power curve
for LRT when the number of statistics (l) provided from
D1 by the researcher varies. In the same figure, we also
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Fig. 7. Power of the attacker for the membership inference attack
for (i) different number of returned statistics (l) from D1 and
(ii) varying number of SNPs (k) in the partial noisy dataset Dεk
(k = l) for different ε values. HD stands for hamming distance.

show the power curves for hamming distance for differ-
ent ε values while varying the number of SNPs (k) in the
partial noisy dataset Dεk. For these experiments, we set
k = l. As expected, as the number of provided statistics
(MAF values of SNPs) or the number of SNPs in Dεk
increases, the power of both attacks also increases. We
observe that the power of the hamming distance attack
on the partial noisy dataset is greater than the power of
LRT on the released statistics only when ε = 5 and Dεk
includes at least 60 SNPs. For all other cases, the pri-
vacy risk due to the proposed framework is lower than
the one due to the released GWAS statistics. Thus, we
conclude that to preserve the privacy of dataset partici-
pants, the researcher can pick an ε value that is smaller
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than 5. As we showed in Section 6.2, the verifier also
achieves a high TPR and TNR for ε < 5.

7 Discussion
In this section, we discuss the complexity and the com-
munication costs of the proposed scheme, its potential
extensions, and limitations.

7.1 Complexity and Communication Costs
The overall complexity of the proposed framework is
dominated by the running time of GWAS, in other
words, the computation of Qtk, Gt

′

l , and Ht′

l (steps 1
and 3 in Figure 2), and it can easily be parallelized (i.e.,
each SNP can be processed in parallel). We measured
the running time in seconds with varying number of re-
turned statistics (l) and varying number of users (n).
Figure 8 shows the time (in seconds) required to verify
the correctness of the returned statistics. The proposed
verification framework takes 0.41 sec. to check the cor-
rectness of the statistics of 10 SNPs, 0.52 sec. for 50
SNPs, 0.69 sec. for 100 SNPs, 1.07 sec. for 150 SNPs, and
1.14 sec. for 200 SNPs, respectively, when 120 users are
used to perform GWAS. As the number of statistics re-
turned by the researcher (l) increases, the running time
slightly increases. Same thing holds for the number of
users (case and control users) used to perform GWAS.
Note that we do not process the SNPs in parallel. Also,
a researcher typically returns only the statistics of the
strong associations and that number is typically small.
Thus, the proposed framework is practical and efficient.
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Fig. 8. Running time (in seconds) of the proposed verification
framework with respect to the number of returned statistics by
the researcher (l) for varying number of users (n).

Recall that the researcher provides the statistics and
the partial noisy dataset Dεk to the verifier while the ver-
ifier provides the verification results to the researcher.
Thus, the communication cost of the proposed frame-

work is (la+ knb) bits for the researcher, and l bits for
the verifier, where a is the number of bits used to encode
the statistics, b is the number of bits used to encode each
SNP (typically b = 2).

7.2 Considering Errors During Quality
Control

As discussed, errors in the shared statistics may also
occur during the quality control (QC) steps [48, 57],
which aim to eliminate noise and bias from the research
dataset before GWAS. Similarly, the parameters used by
the researcher for QC may not be enough to meet the
quality standards of a client (another researcher). The
proposed verification framework can also be used to de-
termine if the research dataset is of high quality and
identify the potential errors during the QC steps [48] in
a privacy-preserving way. Most of the sample QC steps,
such as sample relatedness, population substructure and
the marker QC steps (described in Appendix B) require
statistical computations, and they can be (probabilisti-
cally) verified using the partial noisy dataset (Dεk) pro-
vided as part of the metadata. For this, the verifier will
first check if Dεk passes the quality control steps (the
ones that can be statistically checked). If that is the
case, then they will verify the correctness of the pro-
vided statistics following the steps in Figure 2. Other-
wise, they will inform the researcher that the data is not
of high quality. We will integrate the verification of QC
steps into the proposed scheme in future work.

7.3 Adding Noise to the GWAS Statistics
In order to further protect the privacy of the research
participants (especially if the research dataset includes
a sensitive cohort), the researcher might add Lapla-
cian noise to the statistics to achieve differential pri-
vacy - DP (with parameter εDP ) before publicly sharing
them [37, 49]. Here, we evaluate the performance of the
proposed framework in such a setting. We fix ε (used
to generate the partial noisy dataset Dεk under LDP) to
3, l to 100, and consider εDP values from {1, 3, 5}. We
observe that the proposed framework achieves a TPR of
0.4 for εDP = 1, 0.57 for εDP = 3, and 0.68 for εDP = 5
when all the correct p-values are returned after noise ad-
dition. Figure 9 shows the variation of the TNR values
with respect to the utility loss for p-value in D1. For all
εDP values, TPR and TNR are lower than the ones ob-
tained when no noise is added to the p-values (as shown
in Table 2 and Figure 3(a)). We obtain similar results
for the other two statistics: odds ratio and MAF. As
expected, as εDP value decreases, TPR and TNR also
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decrease. At the same time, the utility of the provided
statistics degrades especially for εDP = 1 (as also shown
in [37, 49]) rendering the reported statistics useless for
other researchers. As discussed, the verifier is interested
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Fig. 9. Variation of TNR in the verification of p-value with re-
spect to its utility loss for different εDP values (noise added to
the p-values by the researcher), when ε = 3 (noise added to gen-
erate Dεk under LDP) and l = 100 in D1.

in strongly associated SNPs (with p-values smaller than
.05). Due to space constraints, we show the results for
εDP = 1 and εDP = 3 in Appendix E. We observe that
the verifier can detect with high confidence whether the
provided statistics are correct while ensuring that the
privacy of the research participants is preserved. At the
same time, the utility of the reported statistics is signif-
icantly reduced especially when εDP = 1.

7.4 Limitations of the Proposed
Framework

As discussed, in the proposed framework we do not con-
sider a malicious researcher. It is not possible to solve
the problem we are tackling if a (malicious) researcher
uses a fake dataset or strategically adds noise to the par-
tial datasets. With the knowledge of the proposed ver-
ification algorithm, a malicious researcher can identify
the conditions for which the verification algorithm has
the least confidence and provide its statistics accord-
ingly. Or, they can add the noise to the partial noisy
dataset (Dεk) in such a way that the error in the meta-
data may compensate the error in the computation of
statistics. A verifier can not detect such cases if they do
not have access to the researcher’s dataset. On the other
hand, in case of a fake dataset, people that are involved
in the research, other researchers that work in similar
studies, or verifiers that will have access to the dataset
after signing data usage agreements will eventually iden-
tify that the data is fabricated. Using a fake dataset,
apart from being unethical, if detected, will have seri-
ous consequences for the researcher (e.g., deteriorating

the researcher’s credibility among colleagues and fund-
ing agencies). Therefore, there is a huge incentive for
the researcher to use a legitimate dataset. Thus, in this
work, we do not consider a malicious researcher.

A researcher might (erroneously) publicly provide
the correct statistics of some randomly selected SNPs
rather than the ones with the strongest associations.
These statistics are computed correctly, but they are
not relevant as they do not belong to the SNPs with the
strongest associations. Our proposed framework cannot
identify such scenarios since our goal is to verify the
correctness of the research findings, not their relevance.
A recent work by Wang et al. [53] proposed a method
to verify the relevance of the outsourced GWAS results.
In [53], first, the researcher generates synthetic (fake)
SNPs that have strong associations with the considered
phenotype. Then, they merge the synthetic SNPs with
real ones, and send the dataset to a cloud server for
the computation of GWAS statistics. At the end, the
researcher checks if the synthetic SNPs are within the
top l SNPs returned by the server to verify the relevance
of the returned results. We can integrate the idea of
generating synthetic SNPs to our proposed framework
and ensure that the verifier can check both the relevance
and the correctness of the research findings.

8 Conclusion
Providing provenance is essential for scientific research
as this helps with the reproducibility of the research
findings. In this paper, we have proposed a framework
that can be used by a client (verifier) to efficiently ver-
ify the correctness of the computations in genome-wide
association studies (GWAS) with high confidence. Fur-
thermore, we have empirically evaluated and compared
the privacy risk (in terms of the vulnerability against
membership inference attacks) due to (i) the released
statistics as a result of GWAS, which is accepted by
many research institutions and funding agencies and (ii)
the proposed framework. Notably, we have shown that
the privacy risk of the dataset participants does not in-
crease due to the additional information required by the
proposed framework. As a first step towards a privacy-
preserving and efficient framework to verify the correct-
ness of GWAS statistics, we believe that this work will
enable understanding the tradeoff between verification
confidence of the research results and privacy leakage
due to provenance. It will also help researchers to make
educated decisions before publicly sharing their data.
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A Symbols and Notations
Table 4 summarizes the symbols and the notations used
in this paper.

Table 4. Frequently used symbols and notations.

D researcher’s dataset

n
number of individuals in the GWAS study
conducted by the researcher

m
number of SNPs in the GWAS study conducted
by the researcher

t phenotype (trait) being studied
R GWAS results returned by the researcher
l number of returned SNPs by the researcher
k number of SNPs in the partial noisy dataset
o odds ratio
p p-value
a minor allele frequency
Dεk partial noisy dataset (part of the metadata)
Q GWAS results on Dεk
E public available genomic dataset
G GWAS results on E
H GWAS results on Eεl
F third dataset (the one simulating D)
U utility loss

Φ
error; distance between the deviation of each
statistic in D (or F ) and the deviation of that
particular statistic in E

B Quality Control Procedure
As discussed, it is crucial to follow the quality con-
trol procedure before doing GWAS on a dataset. QC
steps [48] can be divided into three main categories:
(i) sample (individual) QC, which includes sex incon-
sistencies and chromosomal anomalies, sample relat-
edness, population substructure, and sample genotyp-
ing efficiency/call rate, (ii) marker (SNP) QC, which
includes marker genotyping efficiency/call rate, con-
trol sample reproducibility, minor allele frequency, and
Hardy-Weinberg equilibrium, and (iii) batch effects. Sex
inconsistencies is one of the first steps of the QC pro-
tocol where it is checked if there is any inconsistency
between the sex reported by each individual with the
one predicted by the genetic data. Sample relatedness
step helps to examine if there exist duplicate individuals
or relatives of different degrees. By analyzing the popu-
lation substructure one ensures that the study samples
belong to a homogeneous population. In gentoype effi-
ciency, it is checked if any of the individuals or SNPs
should be eliminated due to providing poor quality. In
control sample reproducibility, researchers remove SNPs
that provide low reproducibility. Researchers also fil-
ter SNPs based on the minor allele frequency because
SNPs with low MAFs (rare SNPs) have low statistical
power. Via Hardy-Weinberg equilibrium, it is checked
if allele and genotype frequencies remain constant over
generations. Due to the high number of samples used in
GWAS, samples are generally partitioned into batches.
Inaccuracies during genotyping or an imbalance be-
tween the number of case and control users in each batch
results in batch effect. Thus, researchers should check
their data for potential batch effects. In the end, the
(filtered) data obtained at the end of each category are
combined together to retrieve the post-QC data.

C TNR Values for Different ε
Values

Here, we show the variation of TNR with respect to
its utility loss for different ε values and l = 100 when
verifying the correctness of odds ratio and minor allele
frequencies in Figures 10 and 11, respectively.
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Fig. 10. Variation of TNR in the verification of odds ratio with respect to its utility loss for different ε values, when the number of
released statistics is 100 in D1, D2, and D3.
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Fig. 11. Variation of TNR in the verification of minor allele frequency with respect to its utility loss for different ε values, when the
number of released statistics is 100 in D1, D2, and D3.

D Effect of the Number of
Returned Statistics

We study the effect of the number of statistics re-
turned by the researcher (l) to the TPR and TNR val-
ues. Table 5 shows the TPR values achieved by the
proposed framework for each statistic for ε = 5 and
l ∈ {10, 50, 100, 200}. Figure 12 shows the variation of
TNR with respect to the utility loss when verifying the
correctness of p-values for the same setting. We observe
that TPR and TNR slightly increase as the number of
returned SNPs (l) increases. We obtain similar results
for the other two statistics (odds ratio and minor al-
lele frequency). Thus, we conclude that the number of
statistics returned by the researcher (l) does not have
a significant effect in the TPR and TNR values. As in
previous experiments, it is harder to determine the cor-
rectness of the statistics when the returned incorrect
statistical values are closer to the correct ones, but in
that case, the statistics still have a high utility.

Table 5. TPR for verifying the correctness of p-value for varying
number of returned SNPs (l values), when ε = 5 in D1, D2, and
D3.

Dataset l = 10 l = 50 l = 100 l = 200
D1 0.83 0.86 0.9 0.93
D2 0.81 0.86 0.87 0.9
D3 0.79 84 0.86 0.91

E Adding Noise to the GWAS
Statistics

Here, we evaluate the performance of the proposed
framework when the GWAS statistics are released under
DP (with εDP = 1 or εDP = 3) and when only strong
associations are considered. We select 100 correctly com-
puted statistics whose p-values are in the range [0− .08]
as in Figure 4 (Section 5.3). In Figure 13(a), we show
the p-values provided by the researcher after noise ad-
dition using an εDP of 3 and the error (Φp) obtained
by the verifier with respect to the cut-off point (τp). We
observe that the verifier can correctly classify most of
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Fig. 12. Variation of TNR in the verification of p-value with respect to its utility loss for different l values, when ε = 5 in D1, D2, and
D3.

the strong associations (even when the released statis-
tics are differentially private) achieving a TPR of 0.95.
In Figure 13, we also show the error of 100 incorrect
statistics whose correct p-values are around .08 (before
noise addition). We observe that the verifier achieves a
TNR of 0.94 for εDP = 3 when a researcher erroneously
oversells a weak association as a strong one. The TPR
and TNR values achieved by the proposed framework
when εDP = 3 are slightly lower than the ones achieved
when no noise is added to the p-values (as shown in Fig-
ure 4). Thus, the verifier can detect with high confidence
whether the provided statistics are correct. At the same
time, the researcher can ensure that the privacy of the
research participants is preserved.
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Fig. 13. Error of the p-values (Φp) with respect to their reported
p-values for both correct and incorrect statistics for ε = 3 and
εDP = 3 in D1. For the incorrect statistics, the values in paren-
thesis (on the y-axis) show the utility loss for the corresponding
reported p-value when its correct p-value is .08.

Figure 14(a) shows the p-values provided by the re-
searcher after noise addition using εDP = 1 and the
error (Φp) obtained by the verifier with respect to the
cut-off point (τp). We observe that the verifier achieves
a TPR of 0.7. Also, Figure 14(b) shows the error of 100
incorrect statistics whose correct p-values are around

.08 (before noise addition). We observe that the verifier
achieves a TNR of 0.72 for εDP = 1 when a researcher
erroneously oversells a weak association as a strong one.
The TPR and TNR values achieved by the proposed
framework when εDP = 1 are significantly lower than
the ones achieved when no noise or a smaller amount of
noise (εDP = 3) is added to the p-values (as shown in
Figures 4 and 13, respectively). However, it is worth not-
ing that when εDP = 1, the utility of the shared statis-
tics significantly degrades (as also shown in [37, 49]),
and such statistics become uninformative for other re-
searchers.
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Fig. 14. Error of the p-values (Φp) with respect to their reported
p-values for both correct and incorrect statistics for ε = 3 and
εDP = 1 in D1. For the incorrect statistics, the values in paren-
thesis (on the y-axis) show the utility loss for the corresponding
reported p-value when its correct p-value is .08.

F Constructing Dε
k via Sampling

To reduce the potential privacy loss due to the partial
noisy dataset, the researcher may also create the par-
tial dataset Dεk by (i) first, partitioning D into b par-
titions of approximately equal size, and then (ii) ran-
domly sampling each SNP from these b partitions to
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construct Dεk. This way, the number of case and control
users is smaller than those in D, and k SNPs provided
for each user are sampled from the entire dataset D.
We assume the researcher does not add noise to the
partial dataset after sampling, thus ε → ∞. For eval-
uation, we use D1, fix l to 100, and partition D1 into
b = 3 parts. Figure 15 displays the variation of TNR
when verifying the correctness of p-value with respect
to its utility loss for sampling. In the same figure, we
also show the variation of TNR for ε = 3 and ε = 5
for the LDP-based technique in Section 5.3. We observe
that the proposed framework achieves a TPR of 0.88 for
sampling, 0.73 for ε = 3, and 0.9 for ε = 5, respectively.
At the same time, a (misbehaving) verifier can achieve
a power of only 0.08 via the hamming distance attack
(in Section 6.3.2) on the partial dataset constructed via
sampling. Thus, we conclude that by using sampling,
a researcher can both provide a high confidence to the
verifier and preserve the privacy of the research partici-
pants. On the other hand, sampling provides more room
to a researcher to do computational errors while gener-
ating the partial dataset. We leave the analysis of these
(potential) errors for future work.
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Fig. 15. Variation of TNR in the verification of p-value with re-
spect to its utility loss when the partial dataset is created via
sampling in D1, for l = 100.
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