
Proceedings on Privacy Enhancing Technologies ; 2022 (4):66–85

Kevin Deforth, Marc Desgroseilliers, Nicolas Gama, Mariya Georgieva, Dimitar Jetchev, and
Marius Vuille

XORBoost: Tree Boosting in the Multiparty
Computation Setting
Abstract: We present a novel protocol XORBoost for
both training gradient boosted tree models and for us-
ing these models for inference in the multiparty com-
putation (MPC) setting. Our protocol supports train-
ing for generically split datasets (vertical and horizontal
splitting, or combination of those) while keeping all the
information about features, thresholds, and evaluation
paths private; only tree depth and the number of the bi-
nary trees are public parameters of the model. By using
novel optimization techniques that reduce the number
of oblivious permutation evaluations as well as sorting
operations, we further speedup the algorithm. The pro-
tocol is agnostic to the underlying MPC framework or
implementation.

Keywords: Privacy-preserving machine learning, multi-
party computation, xgboosting

DOI 10.56553/popets-2022-0099
Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

1 Introduction
Gradient boosting is a machine learning technique for
regression and classification problems that yields a pre-
diction model in the form of an ensemble of weak pre-
diction models, typically decision trees [22]. XGBoost
[2, 11], is currently one of the most popular open-source
libraries supporting gradient boosting for various pro-
gramming environments and architectures.

Kevin Deforth: Inpher, Switzerland, E-mail:
kevin.deforth@inpher.io
Marc Desgroseilliers: Inpher, Switzerland, E-mail:
marc@inpher.io
Nicolas Gama: Inpher, Switzerland, E-mail: nico-
las@inpher.io
Mariya Georgieva: Inpher, Switzerland, E-mail:
mariya@inpher.io
Dimitar Jetchev: Inpher, Switzerland, E-mail: dimi-
tar@inpher.io
Marius Vuille: Inpher, Switzerland, E-mail: mar-
ius@inpher.io

Multiparty computation (MPC) is a method for
cryptographic computing allowing several parties hold-
ing private data to evaluate a public function on their
aggregate data while revealing only the output of the
function and nothing else. Recent advances in the area
make these protocols practical and suitable for real-
world applications such as machine and statistical learn-
ing [6, 7, 9, 16, 19, 23–25, 32, 33, 36].

1.1 Our contributions

1.1.1 Setting and threat model

We consider a data distribution setup where input data
comes from two or more private data sources. The data
is either horizontally split among the owners (i.e., every
owner has different samples/rows sharing the same fea-
tures/columns), vertically split (every owner has com-
plete set of features for all the samples/rows) or any
combination of the two. The goal is to train and evalu-
ate a gradient boosted tree model based on [11] in the
MPC setting using the fully stacked dataset and with-
out revealing private information. We will often assume
that the data owners play the role of the compute par-
ties (or players) that train and evaluate the boosting
model, though this is not strictly necessary (i.e., our
framework will support a scenario where private data
owners secret share data among a set of compute parties
that is not necessarily the same as the set of data own-
ers). The compute parties operate in the semi-honest
security model (players execute the exact steps of the
algorithm) with full-threshold security (if all players ex-
cept one decide to collude, the data of the non-colluding
player is still protected).

1.1.2 Contributions

We present a novel protocol, XORBoost, for gradient
boosted tree model training and prediction in the multi-
party computation (MPC) setting. The computing par-
ties in our protocol only learn the shape of the model,
i.e., the tree depth and the number of trees and noth-

XORBoost: Tree Boosting in the Multiparty Computation Setting 67

Table 1. Prior work most closely related to XORBoost. (Clas.:Classification, Reg.:Regression, Num.:Numerical, Cat.:Categorical, Vert.:Vertical,
Horz.:Horizontal).

Task Data Split

Reference Clas. Reg. Num. Cat. Vert. Horz. Leakage Learning Algorithm

[29] ◦ ◦ ◦ ◦ 1st/2nd order stats Federated XGBoost
[12] ◦ ◦ ◦ ◦ 1st/2nd order stats and all instance vectors Federated XGBoost
[30] ◦ ◦ ◦ ◦ leaf weights, thresholds Federated XGboost
[18] ◦ ◦ ◦ ◦ tree depth ID3
[3] ◦ ◦ ◦ ◦ ◦ ◦ tree depth C4.5
[4] ◦ ◦ ◦ ◦ ◦ tree depth/number of trees Random Forest [ID3]

This work ◦ ◦ ◦ ◦ ◦ ◦ tree depth/number of trees XGBoost

ing else about the private input data. The feature in-
dices and the threshold values associated to the non-leaf
nodes as well as the weights (or prediction values) asso-
ciated to the leaf nodes are all secret-shared throughout
the computation. We also ensure that during training,
no information about the relevant first- and second-
order partial derivatives is revealed. Finally, the path
taken by any sample in a decision tree remains secret.

The improvements presented in this paper allow to
efficiently train a gradient boosted tree model of moder-
ate depth (see Section 8). These include the use of a very
efficient sorting algorithms (such as the oblivious quick-
sort from [9]), the precomputation of generator vectors
to apply inverse permutations (Section 3.2), the use of
compressed instance vectors (Section 4.2) and the stor-
age of permuted instance vectors to reduce the number
of times the permutation function is called. The overall
number of oblivious permutations needed after an initial
oblivious bucketing (or preprocessing) phase is (2+D)k
per tree where D is the tree depth and k the number of
features.

The proposed algorithm is agnostic to the choice
of the underlying MPC method or framework. We
used the Manticore MPC framework for several rea-
sons: 1) it provides access to boolean arithmetic as
well as arithmetic with real numbers represented using
modular integers [9] or the prior floating-point num-
bers framework [7]; 2) instantiating with Manticore’s
representation of real numbers via modular integers,
our protocol is information-theoretically secure; 3) we
made use of Manticore’s oblivious sorting and obliv-
ious permutations functionality. However, all MPC li-
braries that support Boolean and real number arith-
metic such as SCALE-MAMBA [1], SecureML [33], ABY [32,
34], SPDZ-2K [15] can be used. In the Manticore frame-
work, the computations are split into an offline (pro-
viding random precomputed data without yet accessing
the private data) and an online phase (the actual com-

putation with the private data). The offline phase can
be performed interactively by the same computing par-
ties that run the online phase using techniques such as
oblivious transfer similarly to the methods proposed in
[8, 15, 33] or by an independent party (different from
the computing parties) called trusted dealer. In the for-
mer case, the MPC protocol is slower but the security
model is stronger. In the latter case, the offline phase
is significantly accelerated but in order to protect the
privacy of the input data, the trusted dealer must not
collude with any of the compute parties. In addition, to
ensure security against malicious external adversaries,
all communications between the trusted dealer as well
as all communication between the players during the
online phase is end-to-end encrypted.

On a training dataset of 25,000 samples and 300
features in the 2-player setting, we train a model con-
sisting of 10 regression trees of depth 4, using histograms
of 128 buckets, in less than 1.5 minutes per tree (total
end-to-end compute time). In our benchmarks, we split
the data-independent offline phase (which differs from
one security model to the next) and the data-dependent
phase (that is similar across most MPC protocols). We
only report the latter.

1.2 Related work

Various attempts have been made to adapt classical
boosting methods to privacy-preserving settings, both
for training and inference [3, 4, 12, 18, 21, 26, 27, 29–
31] (see also [10] for a recent survey of the literature).

In [12, 21, 29] frameworks based on federated learn-
ing and homomorphic encryption are proposed that al-
low for training a boosting model on vertically split
datasets, that is, datasets where for each feature, the
entire data for that feature (or feature column) belongs

XORBoost: Tree Boosting in the Multiparty Computation Setting 68

to a single party1. While this is suitable for applica-
tions where external private features can be added to
enhance the model performance, it does not cover hori-
zontally split data, that is, cases where private datasets
with the same features can be concatenated to build a
larger dataset (a classical federated learning/edge com-
puting scenario). In comparison, data distribution in our
XORBoost framework is as general as it can be (horizon-
tally split, vertically split or a combination of the two),
thus avoiding such limitations.

The framework proposed in [29] computes splits us-
ing secret sharing but avoids computing gains explic-
itly as it requires expensive private division operations.
The security implication, compared to XORBoost, is that
players learn information about the first- and second-
order partial derivatives of the intermediate loss func-
tions (what we call the 1st and 2nd order statistics),
thus, potentially leaking information about the under-
lying training data.

A different method for training that does not re-
quire vertical splitting is proposed in [30]. The proto-
col is based on federated learning, secret sharing and
homomorphic encryption and, in contrast to XORBoost,
for every internal node, the feature and threshold lead-
ing to the maximum reduction of the loss function are
revealed. This can potentially leak sensitive informa-
tion about the original input training data. Even more
information about the underlying input data and the
trained model is revealed in [12]. For more regarding
the training of tree-based ensemble models in the feder-
ated learning setting, see [20, 28, 38–40].

Recent work on XGBoost inference via additive
Somewhat Homomorphic Encryption (SHE) is studied
in [31].

Solutions using secure enclaves are proposed in
[26, 27]. The security model is significantly different
from the one considered here: our approach is based
on information-theoretic security as opposed to hard-
ware security. Even if measures are taken to obfuscate
memory access and thus limit side channel attacks these
approaches remain vulnerable to attacks targeting the
secure enclave.

Finally, there have been multiple efforts to perform
tree-based learning in the MPC setting. The protocol
[3] allows for training and evaluating classification trees

1 The implementation of [12] has been extended to allow
for horizontally split datasets as well. However, we have not
found any accompanying publications or preprints on Homo
SecureBoost [37].

on data split horizontally or vertically (or any mixture
thereof) and is based on the MP-SPDZ framework [23].
The major observation of [3] is that the output of the
chosen tree learning algorithm (C4.5 trees) only depends
on the relative order of the input; this allows to map the
input data to the integer domain in an arbitrary but
order-preserving manner. This skillfully avoids costly
privacy-preserving operations on fixed- or floating-point
numbers. The method of [18] trains a different deci-
sion tree algorithm (ID3) using a stopping mechanism
that does not reveal information. The subsequent work
of [4] builds on top of this and implements the bag-
ging technique (in the MPC setting) leading to Random
Forest model. These works use different learning algo-
rithms, leading to fundamentally different approaches
and tradeoffs in the implementations. XORBoost is based
on XGBoost [11] and is inherently different from CART or
Random Forest. Whereas Random Forest trains many
trees independently on subsampled datasets, XGBoost
iteratively adds trees to the ensemble in order to maxi-
mize the loss reduction. Furthermore, our protocol lever-
ages fixed-point arithmetic. This allows to compute pre-
diction weights accurately and hence, train regression
trees instead of being limited to classification trees with
categorical response variables.

To facilitate the comparisons with prior art, we re-
fer to Table 1 where we outline the closest related works
to XORBoost together with their relevant properties, fea-
tures and leakage.

2 Background and preliminaries
For a detailed review of XGBoost, we refer the reader
to [11]. Consider a datasetX of sizeN×k and a response
variable y (a vector of size N). We use X(j) to refer to
column j of X and Xi to refer to the ith row of X.
Thus, X(j)

i denotes the ith element of the jth column.

2.1 Binary decision trees

A binary decision tree of depth D on the feature
space Rk consists of 2D − 1 inner nodes (referred to
as non-leaf nodes or split nodes) and 2D outer nodes
(referred to as leaf nodes). We denote by N the set of
nodes. Associated to each inner node n is a pair (jn, tn)
of a feature index jn ∈ {1, . . . , k} and a threshold tn (a
real number). Associated to each leaf node ` is a weight

XORBoost: Tree Boosting in the Multiparty Computation Setting 69

value w` (a real number). We thus represent a tree as

Tree = (TreeStructure, TreeWeights),

where

TreeStructure = ((j1, t1), . . . , (j2D−1, t2D−1))

is the list of pairs associated to the (list) of inner nodes
and

TreeWeights = (w1, . . . , w2D)

is the list of weights. It is further assumed that
the TreeStructure is split into D layers at depth
0, 1, . . . , D − 1 and of sizes 20, 21, . . . , 2D−1 respec-
tively, denoted by L0, . . . , LD−1. Thus, the nodes in the
layer at depth d are indexed (from left to right) by
{2d, . . . , 2d+1−1}. We denote by LD the layer containing
the leaf nodes. The following recursive procedure eval-
uates the subtree rooted at a given node n on a given
sample x = (x1, . . . , xk):

eval(x, n) =
if n is a leaf of weight w : return w

else n is an inner node (j, t) :
if xj < t return eval(x, nleft)
else return eval(x, nright),

where nleft and nright denote the left, respectively the
right child of n.

We also define eval(x, Tree) to be the eval proce-
dure called on x and the root node of Tree. In a pre-
diction scenario when the tree is fixed and the sample
varies, we often abbreviate the notation as Tree(x) seen
as a piecewise constant function Tree : Rk → R, and on
training scenario where x is fixed and the tree varies,
we use evalx(Tree), which, for a fixed TreeStructure,
is continuously differentiable over the TreeWeights.

If there are many samples, we write Tree(X) ∈ RN ,
to mean Tree evaluated at each row Xi of X. We let ŷ
be the estimate for the response variable y. Given a tree
ensemble {Tree(1), . . . , Tree(T)} and a learning rate pa-
rameter η, one defines the predictions on X recursively
as

ŷ(t) = ŷ(t−1) + η Tree(t)(X) ∈ RN . (1)

The reason for the learning rate η is to dampen the
contribution of the new tree added to the current model.
Often, one takes η = 1 to obtain the total prediction on
X as

ŷ(T) =
T∑
t=1

Tree(t)(X) ∈ RN . (2)

2.2 Objective function

Gradient tree boosting is an iterative process using a
current prediction ŷ(T) on T trees to greedily (see [22]
for a definition) grow a new (T +1)th tree that most re-
duces a certain objective function. For a given function
loss : R × R → R (e.g., mean-squared error or logistic
loss) and a fixed training set (X, y), consider the func-
tion

L
ŷ(T)(Tree(T+1)) =

N∑
i=1

loss(yi, ŷi(T) + evalXi
(Tree(T+1)))+

Reg(Tree(T+1)). (3)

We add the superscript ŷ(T) = (ŷ(T)
1 , . . . , ŷ

(T)
N) to

indicate the dependency on the predictions of the model
at time t - note that these will be the hyper-parameters
for the optimization problem that calculates the new
tree Tree(T+1) at time T + 1.

Here, a regularization function Reg is used to reduce
overfitting by penalizing large parameter values (simi-
larly to Ridge and Lasso regression models). We use
L2-regularization on the leaf weights

Reg(Tree(t)) = γ|L|+ λ

2
∑
`∈L

w2
` ,

where λ and γ are fixed hyperparameters, L is the set
of leaves of Tree(t) and w` is the leaf weight associated
to the leaf ` ∈ L.

The goal is to perform a greedy optimization, that
is, given the ensemble {Tree(1), . . . , Tree(T)} and the
corresponding vector ŷ(T) of predictions of the ensem-
ble on the training data at time T , find a tree Tree(T+1)

that minimizes the objective function L
ŷ(T) . Note that

for a fixed TreeStructure the restriction of the objec-
tive function L

ŷ(T) on the TreeWeights space is differ-
entiable, convex in the case of logistic loss, and even
quadratic in the case of mean-square loss. The basic
idea of the greedy XGBoost algorithm is to recursively
take a tree (initially a single leaf), replace one of its
leaves by a fixed number of splits, and for each of these
potential tree structures, retain the one that shows the
maximal reduction for L, and repeat the process until
the tree is a full binary decision tree of depth D.

Since TreeStructure has both discrete parameters
(the feature indices) and continuous parameters (the
thresholds), one can discretize the latter by preprocess-
ing/bucketing, to obtain a finite search space for the tree
structure at each step of the above recursive splitting

XORBoost: Tree Boosting in the Multiparty Computation Setting 70

procedure. For a fixed tree structure, we define the score
function to measure the reduction of the loss function
for a given set of tree weights. Under the assumption
that L

ŷ(T) is equal or well-approximated by its second-
order expansion at zero, we define the score function
as

score(TreeStructure) =

= 1
2grad(L

ŷ(T))t · Hess−1(L
ŷ(T)) · grad(L

ŷ(T)), (4)

with gradient and hessian over the TreeWeights space,
all evaluated at zero.

Remark. To justify why the score defined in (4) is
the relevant one, consider a (differentiable) real-valued
function f(x1, . . . , xn) on n variables and a fixed point
x(0) := (x(0)

1 , . . . , x
(0)
n) ∈ Rn. Letting δ be a vector in a

small neighborhood of 0, the second-order approximation
of f(x(0) + δ) around x(0) is given by

f(x(0)+δ) ∼ f(x(0))+grad(f)t|x(0) ·δ+
1
2δ
t·Hess(f)|x(0) ·δ.

The value of δ ∈ Rn that minimizes the above approxi-
mation is

δmin = − Hess(f)−1|x(0) · grad(f)|x(0) ,

and

f(x(0) + δmin) = f(x(0))−

− 1
2 grad(f)|tx(0) · Hess(f)|−1

x(0) · grad(f)|x(0) .

Applying this to f(·) = L
ŷ(T)(TreeStructure, ·) justifies

the definition of score.

The score formula simplifies via the following lemma to
the formula in the original XGBoost paper [11, eq.(6)].
A proof of this equivalence is given in Appendix A:

Lemma 2.1. Let ∂b loss and ∂2
b loss be the first

and second order partial derivatives of the function
loss with respect to the second variable and let gi =
∂b loss(yi, ŷi(T)) and hi = ∂2

b loss(yi, ŷi(T)) for 1 ≤ i ≤
N . One has (see [11]):

score(TreeStructure) =
∑

leaves `

G2
`

2(H` + λ) , (5)

where
G` =

∑
i∈`

gi and H` =
∑
i∈`

hi, (6)

where i ∈ ` denotes summing over all instances that visit
node `.

Between each step, we update the tree structure by pick-
ing the split (feature and threshold value) that maxi-
mizes the score: since we split only one node at a time,
we only need to account for the contribution of the new
left and right leaves in the above score, the rest of the
leaves remaining unchanged.

Consider now splitting a node n, i.e. attaching two
children nodes nleft and nright to n. The gain associated
to this split is the difference in the objective resulting
from attaching these two children nodes:

gain =
G2
nleft

2(Hnleft + λ) +
G2
nright

2(Hnright + λ) −
G2
n

2(Hn + λ) − γ

(7)
Note that the gain needs to take into account −γ,

since splitting a node results in an increment of the total
number of nodes.

2.3 MPC representation of a tree

Our multiparty computation (MPC) protocol is based
on additive secret sharing as defined in [9]. An ele-
ment x is said to be secret shared among the p play-
ers P1, . . . , Pp, if every player Pi holds an xi, such that
x1 + x2 + . . . + xp = x. We use JxK to denote a p-tuple
of secret shares (x1, . . . , xp). According to the context,
these secret shares can be either binary, modular inte-
gers, floating-point numbers, etc.. We apply a classical
approach based on Beaver triples [5] for the evaluation
of linear combinations and multiplications.

The TreeStructure is secret shared. For every in-
ternal node n, the feature index jn is kept secret and en-
coded as an additively secret shared vector en of size k.
Here en is an indicator vector with single one and the
other values set to 0. The set of all these secret shared
vectors is denoted JEK.

To access the jnth column, we simply compute the
matrix multiplication JXK · JenK, thus, keeping the tree
structure private. The thresholds tn and the weights w`
are also kept secret and additively secret shared; we
use the notation JtnK and Jw`K to indicate the secret
shared values and JTK and JWK to denote the set
of secret shared thresholds and weights respectively.
The TreeStructure and TreeWeights are secret shared
throughout training and evaluation.

Several MPC protocols and libraries in the litera-
ture provide a practical method for combining arith-
metic and Boolean shares [9, 19, 23, 32, 33]. We imple-
ment XORBoost leveraging the Manticore efficient con-
versions between fixed-point number representation and
boolean representation [9], but our algorithm is agnostic

XORBoost: Tree Boosting in the Multiparty Computation Setting 71

to the choice of MPC framework. We optimize mem-
ory and runtime with the following choice: the real-
valued TreeWeights and thresholds are secret shared
as real numbers in fixed-point representation while the
feature indices corresponding to the inner node splits
are secret shared as Boolean vectors of length k. Us-
ing the Manticore framework, we achieve full-threshold,
information-theoretic security in semi-honest security
model with an offline trusted dealer.

3 Data preprocessing phase
A major practical challenge for splitting a node into a
left child and a right child in the xgboost algorithm is
that, a priori, the maximal gain is computed over one
discrete variable (the feature index) and one continuous
variable (the threshold value corresponding to that fea-
ture). To discretize the search for the threshold, one uses
histograms for the feature values. Computing these his-
tograms in a privacy-preserving manner is challenging
- it requires to obliviously sort the feature vectors and
extract the (secret) sorting permutations, as explained
in Section 3.1.

There are multiple ways to secret share a permuta-
tion - for instance, one secret sharing method (but not
the only one) used in, e.g., the Manticore framework,
is based on secret sharing of the (binary) states of the
switches of a Benes network. A permutation of N ele-
ments can thus be represented by a Boolean matrix of
dimensions N(2blog2 Nc+1)/2. We use the notation JπK
to indicate a secret sharing of a permutation π.

The secret shared sorting permutations are needed
later for the training procedure (see Algorithm 6).
Obliviously applying a secret shared permutation is
expensive: for an input vector of size N it requires
2 blog2 Nc + 1 element-wise multiplications of two vec-
tors of length N/2. In Section 3.2 we introduce a novel
algorithm that reduces the number of times these per-
mutations are applied, leading to a significant gain in ef-
ficiency (O(log2 B) instead of O(B) per feature, where B
is the number of buckets in the histogram).

3.1 Oblivious sorting of feature vectors
and oblivious histograms

State-of-the-art MPC algorithms and framework enable
for efficient sorting of numerical vectors. For instance,
the Manticore framework achieves this by applying a

precomputed, secret shared, uniformly random permu-
tation to the target vector on which a variant of the
quicksort algorithm is applied [9, §5.2]. Throughout the
computation, the input vector remains secret shared
and nothing about the underlying data is revealed. The
output contains the sorted vector and / or the secret
shared sorting permutation and its inverse. While the
Manticore algorithm supports oblivious sorting of vec-
tors with repeated values, this method is not suited for
categorical feature vectors. For these, we refer the reader
to Section 6.

We now introduce some notation used throughout
this paper: given a permutation σ on N elements and a
vector v = (v1, . . . , vN) ∈ RN , σ acts on v by permuting
the coordinates, i.e.,

σ(v) := (vσ(i))Ni=1.

We define the function obliv_perm, that takes as
input a secret shared vector JvK of size N together with
a list of r > 0 secret shared permutations Jσ1K, . . . , JσrK
and returns a secret shared N × r matrix, whose jth
column corresponds to the vector σj(v).

Finally, let πj , j = 1, . . . , k, be the sorting permu-
tation of the feature column X(j) and π−1

j its inverse
permutation. For a vector v of size N we use the nota-
tion Πv to denote the N × k matrix [π1(v)| . . . |πk(v)].

3.1.1 Bucket vectors

As mentioned earlier, we use histograms to discretize
the search space for the thresholds. More specifically,
given the number of buckets B in the histogram and a
feature vector X(j), we only consider the B − 1 values

t(j)
b := πj

(
X(j)

)
bbN/Bc+1

, b = 1, . . . , B − 1, (8)

as possible threshold candidates for the given feature
(note that t(j)

0 corresponds to an empty split).
Recall that an inner node (j, t) is evaluated for sam-

ple x using the predicate xj < t where j is the feature
index and t is the threshold value.

We assume that all elements in a feature column
X(j) are unique. We have observed empirically that re-
peated values do not have a large impact on the training
or testing loss achieved (5% repetition rate). As such,
we do not take extra steps to mitigate the effect of rep-
etitions. It would be possible to use the technique found
in [3, Section 4.2] to do so.

We introduce the selector vectors, a set of special
binary vectors. For each bucket index b = 1, . . . , B − 1

XORBoost: Tree Boosting in the Multiparty Computation Setting 72

and each feature index j = 1, . . . , k, define the binary
selector vector (of size N)

s
(j)
b := (X(j) < t(j)

b). (9)

This is the characteristic vector of the elements in X(j)

that belong to the first b buckets and it is crucial in
the computation of the node splittings in the training
procedure (see Section 4.3).

Note the following equality of binary vectors of
size N :

s
(j)
b = π−1

j (BVb) , ∀ b = 1, . . . , B − 1, (10)

where

(BVb)i :=

{
1 if i ≤ b bN/Bc
0 otherwise,

∀ i = 1, . . . N. (11)

We refer to BVb as the bth bucket vector.
During training, it is convenient to keep a record of

the path taken by the samples in the training data, and
the selector vectors s(j)

b will play a crucial role, see Sec-
tion 4.2.2. Equality (10) means that one can compute
the secret selector vector s(j)

b by applying the secret per-
mutation π−1

j to the public bucket vector BVb, which can
be written as

Js(j)
b K = Jπ−1

j K(BVb).

3.2 Bucket vectors and permutations

Naïvely, one would compute the selector vectors
π−1
j (BVb) for feature j and buckets b = 1, . . . , B − 1,

with B − 1 calls to obliv_perm. However, it is possible
to do this with only log2 B calls. This optimization is a
major contribution of the paper and leads to practical
speedups.

To achieve this, we first explain how to construct
the bucket vectors BV1, . . . , BVB−1 from a set of log2 B

publicly known generating vectors via Algorithm 1. We
then leverage the fact that Algorithm 1 commutes with
the function obliv_perm, to achieve an efficient gener-
ation of the selector vectors in Algorithm 2.

3.2.1 Generating bucket vectors

For simplicity of the exposition and without loss of gen-
erality, assume that B = 2s and that B divides N , each
bucket of the histogram therefore holding exactly N/B
samples.

Let C be the N×s binary matrix holding the binary
expansion of (B − 1) − b(i− 1)/(N/B)c in row i. For
example, if B = 4 and N = 4, we have

C =


1 1
1 0
0 1
0 0


We write C(m) for column m of C, that is, for i =
1, . . . , N and m = 1, . . . , s, we have

C
(m)
i := [(B − 1)− bi]m−1, (12)

where bi ∈ {0, . . . , B−1} is the quotient of the euclidean
division of i− 1 by N/B and where [·]r denotes the rth
bit of the binary expansion, for r = 0, . . . , B − 1.

The s columns of C are called generating vectors and
can be used to generate any bucket vector as shown in
Algorithm 1, where we are using the notation

b ? a : c =
{

a if b = 1
c if b = 0.

Algorithm 1 bucket_vector

Input: – b - bucket index, 1 ≤ b ≤ B − 1
– C = [C(1)| . . . |C(s)] - matrix from (12)

Output: The bth bucket vector BVb
1: res← 0N×1 . vector of 0s
2: for m = 1, . . . , s do
3: res← [b]m−1 ? res∨C(m) : res∧C(m)

4: end for
5: return res

Lemma 3.1. Algorithm 1 outputs the vector BVb.

A proof is given in Appendix B.

3.2.2 Constructing selector vectors

Since Algorithm 1 only requires AND and OR operations
on the generating vectors C(1), . . . , C(s), the function
obliv_perm and Algorithm 1 commute, i.e., for each
sorting permutation πj , the selector vector π−1

j (BVb) is
given by

π−1
j (BVb) = π−1

j (bucket_vector(b, C))
= bucket_vector(b, π−1

j (C)).

XORBoost: Tree Boosting in the Multiparty Computation Setting 73

where π−1
j (C) is the matrix [π−1

j (C(1))| . . . |π−1
j (C(s))].

Hence, if we define

Cj,m := π−1
j

(
C(m)

)
, j = 1, . . . , k, m = 1, . . . , s, (13)

then one can reconstruct all (B− 1) · k selector vec-
tors via Algorithm 2 using only s ·k calls to obliv_perm
(to compute JCj,mK := Jπ−1

j K
(
C(m))).

Algorithm 2 sel_vec

Input: – b - bucket index, 1 ≤ b ≤ B − 1
– {JCj,mK : m = 1, . . . , s} - secret shared generat-
ing vectors as from (13)

Output: Secret shared selector vector Js(j)
b K

1: JresK← J0N×1K . vector of 0s
2: for m = 1, . . . , s do
3: JresK← [b]m−1 ? JresK ∨ JCj,mK : JresK ∧ JCj,mK
4: end for
5: return JresK

3.3 Oblivious bucketing algorithm
(preprocessing)

We summarize our oblivious bucketing algorithm in 3:

Algorithm 3 obliv_bucket

Input: JXK - secret shared N × k feature matrix
Output: – JΠK = (Jπ1K, . . . , JπkK) - secret shared

bucketing permutations
– {JIDb,jK : b = 1, . . . , B − 1, j = 1, . . . , k} - secret
shared identifiers

1: for j = 1, . . . , k do
2: JπjK, {Jt(j)

b K}B−1
b=1 ← sort(JX(j)K, B)

3: for m = 1, . . . , s do
4: JCj,mK← obliv_perm(Jπ−1

j K, C(m))
5: end for
6: Je(j)K← JδijK . Kronecker delta (in Rk)
7: for b = 1, . . . , B − 1 do
8: Js(j)

b K← sel_vec(b, {JCj,mK}sm=1)
9: JIDb,jK← (Jt(j)

b K, Je(j)K, Js(j)
b K)

10: end for
11: end for
12: return JΠK, {JIDb,jK}b,j

Here, we assume sort is an oblivious sorting pro-
cedure. For further computational gains, we can use a
partial sort at the B threshold positions, see for ex-
ample Manticore’s partial quicksort algorithm from [9,

§5.2] The saving of applying oblivious permutations is
achieved in the body of the main loop (in particular,
lines 4 and 7). The identifier will serve as one of the
inputs to the argmax function.

argmax
Here, the argmax function, similar to [3, A.4], is a recur-
sive divide-and-conquer algorithm, taking as input the
secret shared gain matrix gainsn for a given node n ∈
Ld, as well as the secret-shared identifier matrix ID from
Algorithm 3. The function argmax obliviously computes
the argument of the maximum of gainsn . That is, if
(gainsn)b∗,j∗ is maximal, argmax returns JIDb∗,j∗K.

4 Description of the XORBoost
training algorithm

In general, the input to the training algorithm is the
secret shared feature matrix JXK as well as the secret
shared response vector JyK. To train an ensemble of a
specified number T of binary decision trees, we proceed
as follows: assuming that we have already trained the
first t − 1 trees, to grow the tth tree to a given depth
D we iterate by layers starting from layer zero, the root
node. At each iteration, we ‘split’ each leaf into a left
and a right child via a splitting criterion, a pair of a
feature index and a threshold value, chosen to maximize
the gain (see Algorithm 4).

The data preprocessing phase described in Sec-
tion 3.3 has already discretized the threshold values
by introducing the histogram/buckets, i.e., obliviously
sorting each feature as described in Section 3.1 and
obliviously building the histograms of Section 3.1.1. To
compute the optimal splitting criterion, a plaintext al-
gorithm would first compute a (B − 1)× k gain matrix
of all possible gain values and choose the largest entry.
In order to adapt this optimization procedure to the
MPC setting, we compute the optimal splitting criteria
by first computing the gain matrix obliviously and then
computing (also obliviously) the (secret shared) feature
selector e, the (secret shared) threshold t and the (secret
shared) selector vector s(j)

b corresponding to the feature
index j and the bucket index b of the optimal splitting
criterion. This allows us to decide which samples would
go to the left child and to the right child, thus, defining
the split of the node. We now go into more detail for
each of these steps.

XORBoost: Tree Boosting in the Multiparty Computation Setting 74

Algorithm 4 xorboost_train

Input: – JXK - secret shared feature matrix of size
N × k

– JyK - secret shared response vector of size N
Output: A tree ensemble

{
JTree(1)K, . . . , JTree(T)K

}
.

Each secret shared tree JTreeK consists of the fol-
lowing data:
– JTK - set of secret shared threshold values JtnK

for each non-leaf node n
– JEK - set of secret shared feature selectors JenK

for each non-leaf node n
– JWK - set of secret shared weights Jw`K for each
leaf node `

1: Jŷ(0)K← initialize(JXK, JyK)
2: JΠK, {JIDb,jK}b,j ← obliv_bucket(JXK)
3: for t = 1, . . . , T do
4: Jg(t−1)K← ∂b loss

(
JyK, Jŷ(t−1)K

)
. element-wise

5: Jh(t−1)K← ∂2
b loss

(
JyK, Jŷ(t−1)K

)
. element-wise

6: JTree(t)K, JTree(t)(X)K ←
grow_tree(Jg(t−1)K, Jh(t−1)K, JΠK, {JIDb,jK}b,j)

7: Jŷ(t)K← Jŷ(t−1)K + η · JTree(t)(X)K
8: end for
9: return {JTree(1)K, . . . , JTree(T)K}

4.1 Computing initial predictions

The computation of the first and second order statistics
vectors g and h of the loss function only depends on the
response variable y and the current estimate ŷ(t). Since
the tree ensemble is initially empty, we must provide an
initial estimate ŷ(0) in order to grow the first tree. There
are several possibilities for the initialization of ŷ(0):

– The zero vector.
– The constant vector with value α minimizing

N∑
i=1

loss(yi, α). For instance, for L2-loss function,

this corresponds to α = 1
N

N∑
i=1

yi, and for logis-

tic loss this corresponds to α = σ−1

(
1
N

N∑
i=1

yi

)
,

where σ is the sigmoid function σ(x) = 1
1 + e−x

.
– Leveraging previous work on ridge regression (resp.,

logistic regression) [9], we can use its prediction
to initialize the boosted trees model in the case
of L2-loss (resp., the logistic loss). The aim here
is to bootstrap the gradient boosting procedure by
starting with a better initial value for ŷ(0) (namely

ŷ(0) = X · θ) allowing to eliminate the linear rela-
tion between X and y and reduce the number of
trees required to obtain a model with good predic-
tive power.

In all cases, we assume that we have defined a function
initialize(X, y) that will compute the initial predic-
tions.

4.2 Oblivious permutations and
computing gain matrices

We now explain how to efficiently apply oblivious per-
mutations in order to compute gains and weights. Recall
from Section 3.1 that we have obliviously sorted the fea-
ture columns of X using a set JΠK = {Jπ1K, . . . , JπkK} of k
secret shared sorting permutations. The computation of
the weights and the gain matrices includes two types of
secret shared vectors: instance vectors and the already
introduced bucket vectors from Section 3.2.

Associated to each node n ∈ N is an instance vector
IVn, that is, a binary vector of sizeN indicating which of
the N samples in the training dataset go through node n
when evaluated on the tree. Throughout, we keep these
vectors secret shared and use the notation JIVnK for the
secret-shared vector. Define

JΠnK := obliv_perm(JΠK, JIVnK) (14)
= [Jπ1K(JIVnK)| . . . |JπkK(JIVnK)] (15)

to be the permuted instance matrix for node n, a N × k
binary secret shared matrix.

We grow trees layer-by-layer. For a given depth d,
recall that Ld denotes the set of the 2d nodes at depth d
(L0 consists of the root only, L1 consists of the two
children of the root, etc.). The following two properties
of instance vectors are easy to verify:∑

n∈Ld

IVn = 1N ; (16)

IVn = IVnleft + IVnright . (17)

4.2.1 Computing gain matrices

Recall that computing gain (7) requires computing
the quantities Gn, Hn, Gnleft , Hnleft , Gnright and Hnright

from (6), for a given node n and their left and right
children nodes nleft and nright, respectively. During
training, one must compute these quantities for all the
(B − 1)k possible splits. If we know the instance vec-

XORBoost: Tree Boosting in the Multiparty Computation Setting 75

tor of a node then these quantities can conveniently be
computed as:

G = 〈g, IV〉, H = 〈h, IV〉, (18)

or more generally, if σ is any permutation on N elements
(in particular, any of the bucketing permutations), we
have

G = 〈σ(g), σ(IV)〉, H = 〈σ(h), σ(IV)〉. (19)

Naïvely, one can compute the quantities from (7) as
follows: for each of the (B−1)k possible splits, compute
the corresponding instance vectors of the two children
nodes via the oblivious binary AND operation IVn ∧ s(j)

b

on binary vectors of size N , and then leverage (18) to
compute Gnleft by executing (B − 1)k inner-products of
vectors of length N (and similarly for Hnleft).

Instead, we observe the fact that πj is sorting the
feature column X(j) into buckets. That is, the top
bbB/Nc entries of πj(IVn) are in correspondence with
the samples in node n that satisfy X

(j)
i < t(j)

b . Us-
ing (19), we find

Gnleft = 〈πj(g), πj(IVn)〉
bbN

B
c, Hnleft = 〈πj(h), πj(IVn)〉

bbN
B
c,

(20)
where 〈·, ·〉r : RN ×RN → R denotes the inner-product
over the first r entries. Using (19) and (17) we have

Gnright = Gn −Gnleft , Hnright = Hn −Hnleft .

for every pair of children nodes. We then define a func-
tion partial_inner : RN × RN → RB−1 by

partial_inner(·, ·) :=

 〈·, ·〉bN/Bc
...
〈·, ·〉(B−1)bN/Bc

 , (21)

which extends naturally to a function
partial_inner : RN×k × RN×k → R(B−1)×k.

In Section 4.2.2, we explain how to compute all 2d

permuted instance vectors πj(IVn) for n ∈ Ld us-
ing a single call to obliv_perm. Thus, computing the
2d(B − 1)k quantities Gnleft , Hnleft at depth d with the
naïve strategy results in an asymptotic complexity of
O(N2dBk) oblivious scalar multiplications at depth d

(2dBk multiplications of two vectors of length N each).
In comparison, the asymptotic complexity of our strat-
egy is O(kN(log2 N + 2d)) oblivious scalar multiplica-
tions (2dk multiplications of vectors of length N and a
single call to obliv_perm that requires 2k log2 N mul-
tiplications of length N/2). This allows to choose much
larger values of B.

4.2.2 Efficiently computing instance vectors

We define the compressed instance vector IVC at depth d

IVC :=
⊕
n∈Ld

IVnleft , (22)

where
⊕

is the logical XOR operator.
Using (16), we see that the ⊕ operation in the def-

inition is equivalent to ∨. This allows us to obliviously
compute the permuted instance matrix JΠnleftK for the
left child of a given node n by simply applying the ∧
operator on the permutation instance matrix for n with
the compressed instance vector for that level, i.e., by
combining the identity

JIVnleftK = JIVnK ∧ JIVCK (23)

with the commutativity of permutations and logical op-
erations. Thus,

JΠnleftK = JΠnK ∧ obliv_perm(JΠK, JIVCK) (24)

This explains the interest in IVC: instead of applying JΠK
to each JIVnleftK, we can apply JΠK once to JIVCK and
compute JΠnleftK using a significantly cheaper ∧ opera-
tion for each n ∈ Ld.

Algorithm 5 computes the (B − 1) × k matrix
of gains for each split candidate. Here, the function
priv_div is any element-wise private division in the
multiparty computation setting (see e.g. [9, §4.3] in-
spired by Goldschmidt’s method). The subtraction of
the scalars priv_div(JG2

nK, 2 · (JHnK + λ)) and γ has to
be understood coordinate-wise.

4.3 Growing a tree

We now present the main privacy-preserving algorithm
for growing a tree. The algorithm iterates over the layers
and the nodes in each layer and successively splits each
node until the desired depth D of the tree is achieved.
It then computes the leaf weights to obtain the secret
shared tree JTreeK. For each inner node n, the secret
shared threshold value JtnK and the secret shared fea-
ture selector JenK are computed during the layer split-
ting whereas the secret shared weights Jw`K, for ` ∈ LD,
are computed once the tree has reached its full depth.
See Algorithm 6.

XORBoost: Tree Boosting in the Multiparty Computation Setting 76

Algorithm 5 gain

Input: – JΠgK - secret shared N × k matrix for the
permuted first order statistics vector

– JΠhK - secret shared N × k matrix for the per-
muted second order statistics vector

– JΠnK - secret shared permuted instance matrix
of size N × k for node n (see (14))

Output: JgainsnK - secret shared (B− 1)× k gain ma-
trix for node n, see (7)

1: JGnleftK← partial_inner(JΠgK, JΠnK) . see (21)
2: JG2

nleftK← JGnleftK · JGnleftK . element-wise
3: JGnK← 〈JΠ(1)

g K, JΠ(1)
n K〉 . does not depend on the

choice of permutation
4: JG2

nK← JGnK · JGnK
5: JGnrightK← JGnK− JGnleftK . element-wise
6: JG2

nrightK← JGnrightK · JGnrightK . element-wise
7: JHnleftK← partial_inner(JΠhK, JΠnK)
8: JHnK← 〈JΠ(1)

h K, JΠ(1)
n K〉 . does not depend on the

choice of permutation
9: JHnrightK← JHnK− JHnleftK . element-wise

10: Compute

JgainsnK← priv_div(JG2
nleftK, 2(JHnleftK + λ))

+ priv_div(JG2
nrightK, 2(JHnrightK + λ))

− priv_div(JG2
nK, 2(JHnK + λ))

− γ

. coordinate-wise subtractions of the scalars
11: return JgainsnK

5 Prediction
Our privacy-preserving prediction algorithm provides
the same privacy guarantees as our training protocol:
only the shape of the model is public knowledge (tree
depth and number of trees) while everything else re-
mains secret (threshold values, feature selectors, leaf
weights and prediction values). Similar to [?] we achieve
this by obliviously evaluating the predicate of each node
in the tree and thus hiding the path taken. Previous
work on private and secure decision tree inference was
done in [14] and [17] for passive and active security in
the 2-player settings.

Recall that each non-leaf node consists of a feature
selector e and a threshold value t (both secret shared).
To evaluate a non-leaf node at a sample x (public or
private), the feature selector is used to extract the fea-
ture of interest via an inner-product 〈x, e〉, which is then
compared against the threshold value t. This can be
computed securely, yielding a secret shared bit that in-

dicates if the left or the right subtree is to be evaluated
next. To evaluate a tree of depth D at a sample x we
proceed in two steps. In a first step we compute a binary
unit vector β of size 2D with a 1 at the position of the
index (in LD) of the unique leaf-node the sample visits.
In a second step we compute the inner-product 〈β, wLD

〉,
where wLD

is the vector of weights (w1, . . . , w2D).
Note: Algorithm 7 can easily be adapted to evalu-

ate multiple trees at multiple samples simultaneously.
In practice, we compute line 3 for all split layers in
one matrix-multiplication and one vector-wise oblivious
comparison.

6 Categorical features
Many datasets include categorical features which are
informative and should be handled adequately by the
machine learning model. While the original XGBoost ap-
proach does not support categorical features, there has
been subsequent work on this problem (see [35] for a
survey). Here, we describe an approach that is compat-
ible with the work presented so far.

Given a feature column X(j) with categorical val-
ues drawn from a set A, tree splits for this feature are
obtained by partitioning A into a disjoint union of two
subsets A = A1 t A2. We are interested in finding the
split/partition that produces the greatest reduction in
loss. By the main result of [13], the following procedure
will find the best split if the loss function is either L2
loss or logistic loss. It only considers |A| − 1 possible
splits.

– For each categorical value a ∈ A, compute ya =∑
i,X

(j)
i

=a yi∑
i,X

(j)
i

=a 1 the average response variable over all

samples for a.
– Order the categorical values according to the ya val-

ues, yielding a total order ≺ (breaking ties arbitrar-
ily) on the set A.

– For every a ∈ A besides the minimal element for ≺,
consider the split Sa defined by A1 = {a′ : a′ ≺ a}
and A2 = {a′ : a′ � a}.

Let πA be the sorting permutation for the values ya.
Given M the one hot encoded matrix for X(j), we ap-
ply πA to its columns to obtain MA, the matrix where
the columns are sorted according to the values of ya.
In the context of categorical variables, the bucket vec-
tors’ role is played by indicator vectors for the splits Sa.

XORBoost: Tree Boosting in the Multiparty Computation Setting 77

Algorithm 6 grow_tree

Input: – JgK - first order statistics vector
– JhK - second order statistics vector
– JΠK = (Jπ1K, . . . , JπkK) - secret shared bucketing

permutations
– {JIDb,jK : b = 1, . . . , B − 1, j = 1, . . . , k} - secret
shared identifiers

Output: – JTreeK = {JTK, JEK, JWK}
– JTree(X)K - evaluation of Tree at X

1: JΠgK← obliv_perm(JΠK, JgK)
2: JΠhK← obliv_perm(JΠK, JhK)
3: JIVRootK← J1N×1K . vector of 1s
4: JΠRootK← J1N×kK . matrix of 1s
5: JTree(X)K← J0N×1K . vector of 0s
6: for d = 0, . . . , D − 1 do
7: for n ∈ Ld do
8: JgainsnK← gain (JΠgK, JΠhK, JΠnK)
9: JtnK, JenK, JsnK ← argmax

(
JgainsnK, {JIDb,jK}b,j

)
. Section 3.3

10: JIVnleftK← JIVnK ∧ JsnK . IV of left child

11: JIVnrightK← JIVnK⊕ JIVnleftK. IV of right child
12: end for
13: JIVCK←

⊕
n∈Ld

JIVnleftK . see (22)
14: JΠIVCK← obliv_perm(JΠK, JIVCK)
15: for n ∈ Ld do
16: JΠnleftK← JΠnK ∧ JΠIVCK . see (24)
17: JΠnrightK← JΠnK⊕ JΠnleftK
18: end for
19: JΠnK← JΠnleftK ∪ JΠnrightK
20: end for
21: for ` ∈ LD do
22: Jw`K← priv_div (−〈JgK, JIV`K〉 , 〈JhK, JIV`K〉+ λ)
23: JTree(X)K← JTree(X)K + Jw`K · JIV`K
24: end for
25: JTK← {JtnK : n ∈ Ld, d = 0, . . . , D − 1}
26: JEK← {JenK : n ∈ Ld, d = 0, . . . , D − 1}
27: JWK← {Jw`K : ` ∈ LD}
28: return {JTK, JEK, JWK}, JTree(X)K

Algorithm 7 xorboost_predict

Input: – Tree = {JTK, JEK, JWK} - secret shared tree
of depth D

– x - public or secret shared sample (we therefore
omit the bracket notation)

Output: JTree(x)K
1: JβK← J11×1K
2: for d = 0, . . . , D − 1 do
3: JβLd

K← (〈x, JenK〉 < JtnK : n ∈ LdK)
4: JβleftK← JβK ∧ JβLd

K
5: JβrightK← JβK⊕ JβleftK
6: JβK← (Jβleft,1K, Jβright,1K . . . Jβleft,2dK, Jβright,2dK)
7: end for
8: JTree(x)K← 〈JβK, JwLD

K〉
9: return JTree(x)K

These indicator vectors can be computed as sums over
the rows of the sorted matrix MA. For every a ∈ A be-
sides the smallest element and for every i = 1, . . . , N we
have:

(BVa)i =
∑
a′≺a

(M (a′)
A)i =

{
1 if X(j)

i ∈ {a′ : a′ ≺ a}
0 otherwise.

7 Complexity analysis
Our complexity parameters are the following:

– N - number of training samples
– k - number of features
– D - depth of the tree
– B - number of buckets
– T - number of trees in the ensemble

We need to carefully list these parameters as the
main terms in the various asymptotic complexity anal-
yses would be different for the different ranges of these
parameters. There is another parameter - the number
of compute parties p in the MPC protocol. Since we
will measure the complexity of the overall protocol in
terms of oblivious scalar multiplications, oblivious bi-
nary operators and oblivious comparisons, this param-
eter will determine the complexity of these building
blocks. The complexity grows quadratically with the
number of players.

XORBoost: Tree Boosting in the Multiparty Computation Setting 78

7.1 Training algorithm

The XORBoost training algorithm (Algorithm 4) has the
following major phases adding to the asymptotic com-
plexity:

1. obliv_bucket - Algorithm 3 for oblivious bucketing
– k calls to sort on N elements and B buckets

each
– k log2 B calls to obliv_perm on oblivious per-

mutations of N elements
– kB calls to sel_vec which reduces to

2kNB log2 B oblivious AND operations and
2kNB log2 B oblivious XOR operations; the ma-
jor term in the cost is thus O(kNB log2 B)
oblivious AND operations (on scalars, though our
implementation perform operations directly on
tensors; yet, this does not change the analysis
from an asymptotic complexity perspective)

2. grow_tree - Algorithm 6 for tree growing (this is
called T times)
– 2k calls to obliv_perm on vectors of size N
– 2D − 1 calls to gains
– 2D − 1 calls to argmax
– (2D − 1)N calls to oblivious AND operations on

Boolean scalars and (2D−1)N calls to oblivious
XOR operations (2D − 1 calls to AND and XOR on
Boolean vectors of size N)

– kD calls to obliv_perm on vectors of size N
– (2D − 1)Nk calls to oblivious AND operations on

Boolean scalars and (2D − 1)Nk calls to oblivi-
ous XOR operations (2D − 1 calls to AND and XOR
on Boolean matrices of size N × k)

– 2 × 2D calls to an inner product on vectors of
size N (equivalent to 2× 2DN multiplications)

– 2D calls to priv_div
3. The extra computations such as the procedure

initialize, the computation of the 1st and 2nd
order statistics (Lines 4–5) as well as the T MPC
additions in Line 7 do not change the asymptotic
complexity of the overall algorithm.

Oblivious sorting
Our main oblivious bucketing algorithm is a slight gen-
eralization of the oblivious sorting algorithm based on
quicksort and described in more detail in [9, §5.2].

Oblivious permutations
Obliviously applying a secret shared permutation is
expensive: for an input vector of size N it requires
2 blog2 Nc+1 element-wise multiplications of two vectors
of length N/2. As there are a total of (2 + D)k calls to
obliv_perm, the overall complexity is O(DkN log2 NT)
oblivious scalar multiplications.

argmax
The overall complexity of argmax is given by
O(log2(Bk)) vector comparisons whose sizes are
Bk/2, Bk/22, . . . , Bk/2blog2(Bk)c, respectively, thus, re-
sulting in a total of O(Bk) comparisons and
O(log2(Bk)) vector multiplications (again, of sizes
Bk/2, . . . , Bk/2blog2(Bk)c), resulting in a total of O(Bk)
scalar multiplications. The overall cost of the argmax
calls is O(2DBkT) oblivious scalar multiplications.

private division
One way to perform private division is to use a variant of
Goldschmidt’s algorithm; see [9, §4.3]. In our practical
implementation, we use 10 multiplication and an initial-
ization circuit whose cost is equivalent to three compar-
isons. Thus, the overall cost of the operations priv_div
is O(2DT) oblivious scalar multiplications and O(2DT)
oblivious comparisons.

gain
To complete the complexity analysis, we only need to
analyze the complexity of Algorithm 5:

– The two calls to partial_inner require O(Nk)
oblivious scalar multiplications (Lines 1 and 7).

– Lines 3 and 8 can reuse the oblivious scalar multi-
plications from Lines 1 and 7 respectively.

– Lines 2 and 6 require O(Bk) oblivious scalar multi-
plications, and Line 4 uses one oblivious scalar mul-
tiplication.

– Line 10 requires 2× (B − 1)k+ 1 calls to priv_div
which, by Section 7.1, requires O(Bk) multiplica-
tions.

Hence, assuming N > k, the overall complexity of the
computation of a single gain matrix is O(Nk). Thus,
the overall complexity of the gain calls in the training
algorithm isO(2DNkT) oblivious scalar multiplications.

The total complexity of the training algorithm (Al-
gorithm 4) is

XORBoost: Tree Boosting in the Multiparty Computation Setting 79

– k oblivious sorting of length N
– O(TNk(D log2 N + 2D) + Nk log2 B(B + log2 N))

oblivious scalar multiplications
– O(TBk2D) oblivious scalar comparisons
– O(T2D) oblivious divisions of length (B − 1)k that

corresponds to O(TBk2D) oblivious scalar multipli-
cations

The major term in the cost is thus O(TNk(D log2 N +
2D) +Nk log2 B(B+ log2 N) + TBk2D) oblivious scalar
multiplications. Observe that the optimization of sec-
tion 3.2 allows one to have log2 B instead of log2 N in the
second summand above, which is significant if N >> B.

7.2 Prediction algorithm

The cost of at depth d is

– 2d oblivious inner products of vectors of size k
– an oblivious comparison of two vectors of size 2d

– oblivious AND operation of two vectors of size 2d

– oblivious XOR operation of two vectors of size 2d,

followed by one inner product of two vectors of size 2D.
The overhead is thus O(2dk) oblivious scalar multiplica-
tions and hence, the complexity is bounded by O(2Dk)
oblivious scalar multiplications.

Since this is the complexity of evaluating a single
tree on a single sample, the overall complexity of the
prediction is O(2DNpredkT) oblivious scalar multiplica-
tions, where Npred is the number of samples for predic-
tion.

8 Benchmarks
Most benchmarks have been done on a single
n1-standard-8 (8 vCPUs, 30GB of RAM, SSD drive,
Intel Xeon CPU Skylake 2.00GHz) Google Compute En-
gine virtual machine for 2 players. As such, these re-
ported times do not take into account network transfer
time. On the other hand, the measurements reported in
Figure 5 were made in a distributed deployment (within
the same region of Google Cloud) for 2 and 3 play-
ers and include the communication overhead. We only
show measurements for the training phase since it far
outweighs the prediction phase in terms of resource uti-
lization.

8.1 Parameter scaling

In Figure 1, we show the impact of varying the dataset
size for the utilization of network, memory and time.

Figure 2 highlights the strong dependency on the
depth and the number of buckets. The total process-
ing time remains reasonable to grow 10 trees. We have
verified that the execution time grows linearly with
the number of trees. We show in Figure 5 (Appendix)
the influence of the number of players. As expected,
the amount of data transferred and the wall time in-
crease with the number of players. The memory stays
stable since the matrix dimensions remain the same
and most previous computed matrices can be discarded
when training a new tree.

Figure 3 is a direct analog of [12, Figure 5] using
the parameters defined in this paper 2.

We see that the run time is of the same order while
the privacy guarantees are improved since XORboost
does not reveal intermediary results.

Although our framework leverages a bucketing
strategy to handle larger datasets, we compared it with
[3] where no bucketing is possible by setting the num-
ber of buckets to be equal to the number of samples.
For 8192 samples, tree depth 1 and 2 features, runtime
is around 5 seconds and communication is 25MB for
XORBoost compared to 35 seconds and 3.5GB for the
passive security setting from Abspoel et al. [3, Table 1].

8.2 Comparison with plaintext algorithms

We have also ascertained that minimal predictive power
is lost with respect to plaintext implementations. Since
there is no unique minimum loss model, implemen-
tation decisions such as how the bucketing is per-
formed result in different models even when com-
paring plaintext models. We compared the L2 loss
of the predictions made by XORboost and by several
well-known plaintext implementations on the train-
ing dataset: scikit-learn (with and without bucket-
ing), xgboost, and lightgbm. We generated 50 different
datasets using sklearn’s make_regression functionality
with parameters: n_samples=5000, n_features=30, n
_informative=20, bias=0, noise=1. We trained the
different algorithms on these datasets and computed
the training loss. For the ith dataset, let minLossi be

2 We use their benchmark numbers divided by a factor of 3 to
reflect the difference of hardware

XORBoost: Tree Boosting in the Multiparty Computation Setting 80

Fig. 1. Network Size, RAM usage and Wall time for depth 4,
64 buckets, 10 trees, N ∈ {5K, 25K, 100K} samples and k ∈
{10, 300} features.

Fig. 2. Network size, Memory and Wall time for 2 players working
on a dataset of dimension 20K × 300 and a model with 10 trees.

Fig. 3. Runtime comparison with [12] (dashed line) and our work
(full line)

XORBoost: Tree Boosting in the Multiparty Computation Setting 81

Fig. 4. Logloss comparison with plaintext implementations

smallest loss value across all algorithms and maxLossi
be the largest loss value. Averaging over all 50 datasets,
maxLoss is 12% higher than minLoss and XORBoost’s loss
is 6% higher than minLoss. We conclude from this that
XORBoost behaves similarly to other gradient boosting
implementations with respect to predictive power. Note
that the sklearn algorithm has 2 versions: one with
bucketing and one without. The version without bucket-
ing will typically outperform other algorithms in terms
of performance, and XORboost behaves similarly to
other algorithms with bucketing, as highlighted by Fig-
ure 4. This indicates that the bucketing strategy results
in a minimal loss of predictive power.

We have made a comparison between our implemen-
tation and the xgboost library on a publicly available
dataset related to credit fraud found on Kaggle. We re-
duced the size of the original dataset, by selecting at
random 100 genuine transactions for each of the 492
fraudulent transactions, yielding a new dataset with 99
% of frauds. The dataset, which has 29 features, was
further split into train and test with ratio 80% / 20%.
The training dataset has 39, 753 samples and the test-
ing dataset has 9, 939 samples. Using 50 trees, a depth
of 6 and 256 buckets, the results were very similar, both
yielding an AUC of 0.98. See Table 2 for the respective

confusion matrices. More information can be found on
this blogpost.

Predicted Genuine Predicted Fraud
Total=9939 XORBoost XGBoost XORBoost XGBoost
Genuine 9834 9837 7 4
Fraud 14 14 84 84

Table 2. Confusion matrix for XORBoost (this work) and XGBoost
[22].

9 Conclusion
We presented an efficient protocol for gradient boost-
ing in the multiparty computation setting. Our proto-
col supports both training and prediction for generically
splitted datasets. The models produced by this proto-
col are comparable in accuracy to their plaintext equiva-
lents. Moreover, the time/memory/storage resources re-
quired to train the model remain reasonable, even for
sizable datasets. This is all done without needing to re-
veal any information during the processing.

Acknowledgements
We are grateful to Joan Feigenbaum, Jonathan Katz
and Nigel Smart for the numerous helpful discussions
on the subject.

References
[1] Scale and mamba. https://github.com/KULeuven-COSIC/

SCALE-MAMBA.
[2] XGBoost: eXtreme Gradient Boosting. https://github.com/

dmlc/xgboost.
[3] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev.

Secure training of decision trees with continuous attributes.
Cryptology ePrint Archive, Report 2020/1130, 2020. https:
//eprint.iacr.org/2020/1130.

[4] S. Adams, C. Choudhary, M. De Cock, R. Dowsley,
D. Melanson, A. C. A. Nascimento, D. Railsback, and
J. Shen. Privacy-preserving training of tree ensembles over
continuous data. IACR Cryptol. ePrint Arch., page 754,
2021.

[5] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Annual International Cryptology Confer-
ence, pages 420–432. Springer, 1991.

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://inpher.io/journal-blog/privacy-preserving-xgboost-models-with-multi-party-computation/
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
https://eprint.iacr.org/2020/1130
https://eprint.iacr.org/2020/1130

XORBoost: Tree Boosting in the Multiparty Computation Setting 82

[6] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A
framework for fast privacy-preserving computations. In
European Symposium on Research in Computer Security,
pages 192–206. Springer, 2008.

[7] C. Boura, I. Chillotti, N. Gama, D. Jetchev, S. Peceny, and
A. Petric. High-precision privacy-preserving real-valued func-
tion evaluation. IACR Cryptology ePrint Archive, 2017:1234,
2017.

[8] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sub-
linear gmw-style compiler for mpc with preprocessing. In
Annual International Cryptology Conference, pages 457–485.
Springer, 2021.

[9] Sergiu Carpov, Kevin Deforth, Nicolas Gama, Mariya
Georgieva, Dimitar Jetchev, Jonathan Katz, Iraklis Leon-
tiadis, M. Mohammadi, Abson Sae-Tang, and Marius Vuille.
Manticore: Efficient framework for scalable secure multiparty
computation protocols. Cryptology ePrint Archive, Report
2021/200, 2021. https://eprint.iacr.org/2021/200.

[10] S. Chatel, A. Pyrgelis, J. R. Troncoso-Pastoriza, and J.-
P. Hubaux. Sok: Privacy-preserving collaborative tree-
based model learning. Proc. Priv. Enhancing Technol.,
2021(3):182–203, 2021.

[11] T. Chen and C. Guestrin. XGBoost, a scalable tree boosting
system. In Proceedings of the 22 ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
KDD 2016, San Francisco, California, United States, Au-
gust, 2016, pages 785–794. ACM, 2016.

[12] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang.
SecureBoost: A lossless federated learning framework.
CoRR, abs/1901.08755, 2019.

[13] Philip Chou. Optimal partitioning for classification and
regression trees. IEEE transactions on pattern analysis and
machine intelligence, 13(4):340–354, 1991.

[14] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti,
Anderson C. A. Nascimento, Stacey C. Newman, and Wing-
Sea Poon. Efficient and private scoring of decision trees,
support vector machines and logistic regression models
based on pre-computation. Cryptology ePrint Archive, Re-
port 2016/736, 2016. https://eprint.iacr.org/2016/736.

[15] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. SPDZ2k : Efficient mpc mod
2k for dishonest majority. In Advances in Cryptology –
CRYPTO 2018, pages 769–798.

[16] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multi-
party computation from somewhat homomorphic encryption.
In Annual Cryptology Conference, pages 643–662. Springer,
2012.

[17] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel
Keller, Peter Scholl, and Nikolaj Volgushev. New primitives
for actively-secure mpc over rings with applications to pri-
vate machine learning. Cryptology ePrint Archive, Report
2019/599, 2019. https://eprint.iacr.org/2019/599.

[18] S de Hoogh, B Shoenmarkers, P Chen, and H op den Akker.
Practical secure decision tree learning in a teletreatment
application. In International Conference on Financial Cryp-
tography and Data Security, pages 179–194. Springer, 2014.

[19] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl.
Improved primitives for MPC over mixed arithmetic-binary
circuits. In 40th Annual International Cryptology Confer-
ence, CRYPTO, volume 12171 of Lecture Notes in Com-

puter Science, pages 823–852, 2020.
[20] W. Fang, C. Chen, J. Tan, C. Yu, Y. Lu, L. Wang, L. Wang,

J. Zhou, and A. X. A hybrid-domain framework for secure
gradient tree boosting. CoRR, abs/2005.08479, 2020.

[21] Z. Feng, H. Xiong, C. Song, S. Yang, B. Zhao, L. Wang,
Z. Chen, S. Yang, L. Liu, and J. Huan. Securegbm: Secure
multi-party gradient boosting. CoRR, abs/1911.11997, 2019.

[22] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
The Elements of Statistical Learning. Springer Series in
Statistics. Springer New York Inc., New York, NY, USA,
2001.

[23] M. Keller. MP-SPDZ: A versatile framework for multi-party
computation. In CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1575–1590,
2020.

[24] M. Keller, E. Orsini, and P. Scholl. Mascot: faster malicious
arithmetic secure computation with oblivious transfer. In
Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 830–842, 2016.

[25] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making
SPDZ great again. In EUROCRYPT 2018, volume 10822 of
Lecture Notes in Computer Science, pages 158–189, 2018.

[26] Andrew Law, Chester Leung, Rishabh Poddar, Raluca Ada
Popa, Chenyu Shi, Octavian Sima, Chaofan Yu, Xingmeng
Zhang, and Wenting Zheng. Secure collaborative training
and inference for xgboost, 2020.

[27] C. Leung. Towards privacy-preserving collaborative gradient
boosted decision trees. 2020.

[28] Y. Liu, Y. Liu, Z. Liu, J. Zhang, C. Meng, and Y. Zheng.
Federated forest. CoRR, abs/1905.10053, 2019.

[29] Y. Liu, Z. Ma, X. Liu, S. Ma, S. Nepal, R. Deng, and
K. Ren. Boosting privately: Federated extreme gradient
boosting for mobile crowdsensing. In 40th IEEE Inter-
national Conference on Distributed Computing Systems,
ICDCS 2020, Singapore, November 29 - December 1, 2020,
pages 1–11. IEEE, 2020.

[30] Y. Liu, Z. Ma, X. Liu, S. Ma, S. Nepal, R. Deng, and
K. Ren. Boosting privately: Federated extreme gradient
boosting for mobile crowdsensing. In 40th IEEE Inter-
national Conference on Distributed Computing Systems,
ICDCS 2020, Singapore, November 29 - December 1, 2020,
pages 1–11. IEEE, 2020.

[31] X. Meng and J. Feigenbaum. Privacy-preserving xgboost
inference. CoRR, abs/2011.04789, 2020.

[32] P. Mohassel and P. Rindal. Aby3: A mixed protocol frame-
work for machine learning. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 35–52. ACM, 2018.

[33] P. Mohassel and Y. Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Sympo-
sium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017, pages 19–38. IEEE Computer Society,
2017.

[34] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. Aby2. 0: Improved mixed-protocol secure two-party
computation. In 30th USENIX Security Symposium, 2021.

[35] L. Prokhorenkova, G. Gusev, and A. Gulip A. Vorobev,
A. Dorogush. CatBoost: unbiased boosting with categor-

https://eprint.iacr.org/2021/200
https://eprint.iacr.org/2016/736
https://eprint.iacr.org/2019/599

XORBoost: Tree Boosting in the Multiparty Computation Setting 83

ical features. In Proceedings of the Advances in Neural
Information Processing Systems 31 NEURIPS, 2018.

[36] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
cureNN: 3-party secure computation for neural network
training. Proceedings on Privacy Enhancing Technologies,
2019(3):26–49, 2019.

[37] WeBank. FATE: an industrial grade federated learning
framework. (accessed March 2, 2021).

[38] F. Yamamoto, L. Wang, and S. Ozawa. New approaches to
federated xgboost learning for privacy-preserving data anal-
ysis. In Haiqin Yang, Kitsuchart Pasupa, Andrew Chi-Sing
Leung, James T. Kwok, Jonathan H. Chan, and Irwin King,
editors, Neural Information Processing - 27th International
Conference, ICONIP 2020, Bangkok, Thailand, November
23-27, 2020, Proceedings, Part II, volume 12533 of Lecture
Notes in Computer Science, pages 558–569. Springer, 2020.

[39] M. Yang, L. Song, J. Xu, C. Li, and G. Tan. The tradeoff
between privacy and accuracy in anomaly detection using
federated xgboost. CoRR, abs/1907.07157, 2019.

[40] L. Zhao, L. Ni, S. Hu, Y. Chen, P. Zhou, F. Xiao, and
L. Wu. Inprivate digging: Enabling tree-based distributed
data mining with differential privacy. In 2018 IEEE Con-
ference on Computer Communications, INFOCOM 2018,
Honolulu, HI, USA, April 16-19, 2018, pages 2087–2095.
IEEE, 2018.

A Appendix: Gradient and
Hessian of L

Proof. (Lemma 2.1) In a training context, the dataset
X and y are constant, and since we are doing a gradient
descent to train the weights of Tree(T+1), so all pre-
vious trees (structure and weights) Tree(1), . . . , TreeT

are fixed, as well as the structure of the current tree.
The only free variables that remain are the tree weights:
(w1, ..., wL) associated to the leaves of Tree(T+1).

For a sample i ∈ [1, N] and a leaf j ∈ [1, L], let δi∈nj

be the Kronecker symbol of the partition induced by the
structure of Tree(T+1):

δi∈nj =
{

1 iff. Tree(xi) ends in leaf nj
0 otherwise.

For all sample i ∈ [1, N], the evaluation function
rewrites as:

evalxi(Tree(T+1)) =
2d∑
j=1

wjδi∈nj

in particular, this implies:

∂evalxi

∂wj
(w1, ..., w2d) = δi∈nj is constant.

Applying it to the loss function L of Eq (3), and
since yi, ŷi(T) are all consistent, we deduce:

∂L
∂wj

=
N∑
i=1

∂b loss(yi, ŷi(T) + evalxi(Tree(T+1)))·

· ∂evalxi

∂wj
(Tree(T+1)) + ∂Reg

∂wj
=

=
N∑
i=1

∂b loss(yi, ŷi(T)+evalxi(Tree(T+1)))·δi∈nj +λwj .

And thus, the second derivative across wi and wk,
we get:

∂2L
∂wj∂wk

=
N∑
i=1

∂2
b loss(yi, ŷi(T)+evalxi(Tree(T+1)))·

· δi∈nj δi∈nk + λδj,k.

All second derivatives across 2 different variables
are zero, so the hessian of L is a pure Diagonal. Ap-
plied to the zero weights (i.e. evalxi(Tree(T+1) = 0),
the gradient and hessian are:

∂L
∂wj

(0, . . . , 0) =
N∑
i=1

giδi∈nj = G

∂2L
∂w2

j

(0, . . . , 0) =
N∑
i=1

hiδi∈nj + λ = H + λ

which concludes the proof of Lemma 2.1.
�

B Appendix: Proof Lemma 3.1
Proof. (Lemma 3.1)

Let b ∈ {1, . . . , B − 1} be an input for Algorithm 1
and let resm be the state of variable res in the mth
iteration of the for-loop on line 3 of Algorithm 1, with
res0 = 0N the initial value. Now, let i ∈ {1, . . . , N} and
let bi ∈ {0, . . . , B − 1}, ri ∈ {0, . . . , N/B − 1}, such that

i− 1 = bi ·N/B + ri.

By definition of BV (11), it suffices to prove that we have

(ress)i = 1 ⇐⇒ bi < b. (25)

Recall that by definition (12), for any m ∈ {1, . . . , s},
we have

C
(m)
i = ¬ [bi]m−1 . (26)

XORBoost: Tree Boosting in the Multiparty Computation Setting 84

Substituting (26) in line 3 of the algorithm yields

(resm)i =

{
(resm−1)i OR ¬ [bi]m−1 if [b]m−1 = 1
(resm−1)i AND ¬ [bi]m−1 else.

(27)

Note that whenever [bi]m−1 = [b]m−1, we can substitute
in (27):

(resm)i = (resm−1)i .

Hence, if we define m∗ as the maximal index such that
[bi]m∗−1 6= [b]m∗−1, with the convention of m∗ = 0, if
bi = b, we find that

(ress)i = (resm∗)i . (28)

Finally, one observes that (25) holds for each of the three
possible cases which concludes the proof:

case bi > b : we find 1 = [bi]m∗−1 > [b]m∗−1 = 0 and
thus

(ress)i
(28)= (resm∗)i

(27)= (resm∗−1)i AND 0 = 0;

case bi = b : we have

(ress)i
(28)= (res0)i = (0N)i = 0;

case bi < b : we find 0 = [bi]m∗−1 < [b]m∗−1 = 1 and
thus

(ress)i
(28)= (resm∗)i

(27)= (resm∗−1)i OR 1 = 1.

�

C Appendix: Benchmark with 2
and 3 players

XORBoost: Tree Boosting in the Multiparty Computation Setting 85

Fig. 5. Network Size, RAM usage and Wall time for 10 trees for a dataset of size 80K × 300

	XORBoost: Tree Boosting in the Multiparty Computation Setting
	1 Introduction
	1.1 Our contributions
	1.1.1 Setting and threat model
	1.1.2 Contributions

	1.2 Related work

	2 Background and preliminaries
	2.1 Binary decision trees
	2.2 Objective function
	2.3 MPC representation of a tree

	3 Data preprocessing phase
	3.1 Oblivious sorting of feature vectors and oblivious histograms
	3.1.1 Bucket vectors

	3.2 Bucket vectors and permutations
	3.2.1 Generating bucket vectors
	3.2.2 Constructing selector vectors

	3.3 Oblivious bucketing algorithm (preprocessing)

	4 Description of the XORBoost training algorithm
	4.1 Computing initial predictions
	4.2 Oblivious permutations and computing gain matrices
	4.2.1 Computing gain matrices
	4.2.2 Efficiently computing instance vectors

	4.3 Growing a tree

	5 Prediction
	6 Categorical features
	7 Complexity analysis
	7.1 Training algorithm
	7.2 Prediction algorithm

	8 Benchmarks
	8.1 Parameter scaling
	8.2 Comparison with plaintext algorithms

	9 Conclusion
	A Appendix: Gradient and Hessian of L
	B Appendix: Proof Lemma 3.1
	C Appendix: Benchmark with 2 and 3 players

