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Abstract: Powered by new advances in sensor develop-
ment and artificial intelligence, the decreasing cost of
computation, and the pervasiveness of handheld compu-
tation devices, biometric user authentication (and iden-
tification) is rapidly becoming ubiquitous. Modern ap-
proaches to biometric authentication, based on sophis-
ticated machine learning techniques, cannot avoid stor-
ing either trained-classifier details or explicit user bio-
metric data, thus exposing users’ credentials to falsifica-
tion. In this paper, we introduce a secure way to handle
user-specific information involved with the use of arti-
ficial neural networks for biometric authentication. Our
proposed architecture, called a Neural Fuzzy Extrac-
tor (NFE), allows the coupling of pre-existing classi-
fiers with fuzzy extractors, through an artificial-neural-
network-based buffer called an expander, with minimal
or no performance degradation. The NFE thus offers all
the performance advantages of modern deep-learning-
based classifiers and all the security of standard fuzzy
extractors. We demonstrate the NFE retrofit of a few
classic artificial neural networks, for simple biometric
authentication scenarios.
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1 Introduction
Secure architectures for password-based authentication
avoid storing the passwords corresponding to each user-
name, and resort instead to storing cryptographic hash
digests of such passwords (along with salt, pepper, and
other such auxiliary randomness). The rationale behind
this widely-accepted paradigm is that not even a su-
peruser, with complete access to the entire file system,
should be able to fraudulently log in as one of the other,
less privileged users of the system.

When using standard biometric authentication in
place of (or in addition to) a password, similar function-
ality can be achieved through the use of fuzzy extractors
[14]. However, despite their security guarantees, fuzzy
extractor architectures are rarely deployed in practice.
In particular, in the case of fingerprint-based authenti-
cation it turns out that similarity-score algorithms usu-
ally perform better than fuzzy extractors, and this has
led to a preference for the former. For example, us-
ing fuzzy extractors, [2] reports an equal error rate of
15% on the FVC2000 database [56], while the top five
FVC2000 competitors report equal error rates between
5% and 0.7% [38].

However, using similarity-score algorithms involves
the storing of fingerprint databases, which are vulnera-
ble to leakage. Notable examples are the Office of Per-
sonnel Management data breach of 2015 [19], in which
5.6 million sets of fingerprints were leaked, and the more
recent Suprema Biostar leak of 2019 [54], which com-
promised the fingerprint and facial biometric informa-
tion of more than one million people. An authentication
method which has both the security of fuzzy extractors
and the superior performance of similarity-score algo-
rithms would clearly be prefered.

The reason behind the inferior performance of fuzzy
extractors may be traced back to the very essence of
fuzzy extractor functionality, the first stage of which
consists of a channel decoding mechanism over a vec-
tor space. By nature, good channel coding implicitly
assumes spherical (or close to spherical) decoding re-



Neural Fuzzy Extractors: A Secure Way to Use Artificial Neural Networks for Biometric User Authentication 87

gions, which correspond to the decision regions of the
vector-space-based classifier. In contrast to this, nor-
mal support-vector machines (SVMs) can learn highly
irregular decision regions – hence their superiority. Sim-
ilarly, artificial neural networks (ANNs) are known to
outperform even the best of SVMs (at least in situa-
tions in which training data is abundant), and this is
attributed to their ability to learn highly-irregular clas-
sification functions.

Unfortunately, both SVMs and ANNs (as well as the
other frequently-used classifiers, like k-nearest neighbors
(KNN), decision trees and random forests, etc.) rely on
learned structures that have to be stored in non-volatile
memory, similarly to a password file. A malicious user,
with access to this information, could use the learned
structure (for example, by back-tracking through an
ANN, or by simply choosing a vector in the proper de-
cision region, for an SVM) to produce synthetic inputs
guaranteed to pass the authentication test.

The question that arises naturally is then how we
can protect a user’s biometric authentication informa-
tion in a manner similar to the way in which we treat
passwords, but without suffering from the spherical re-
strictions of the fuzzy extractors. In this paper, we pro-
pose a new (and severely overdue) such architecture,
which we call neural fuzzy extractors (NFEs).

NFEs are a concatenation of a classifier – such as
an artificial neural network – with a fuzzy extractor,
as illustrated in Figure 1. Nevertheless, as most ANNs
are designed to output class labels or scores contained
within some subspace of a certain vector space, and we
want our NFE construction to be as close as possible to
an add-on, to take advantage of many already-existing
and well performing classification architectures, we have
to retrofit NFEs to regular ANNs. We do this by con-
structing an interface between the ANN and the fuzzy
extractor’s decoding mechanism, which we call an ex-
pander. An expander will typically consist of an addi-
tional ANN with a few layers, that can be added to

Fig. 1. Neural Fuzzy Extractor architecture.

the end of any type of ANN, and the sole purpose of
which is to re-cast the output embedding of the orig-
inal ANN to a vector space in which representatives
from each class cluster together in sphere-like clusters.
The expander may be trained independently, based on
labeled embedings from the original ANN, or together
with the original ANN.

Of course, some already-existing ANN architectures
may be naturally suited to concatenation with fuzzy
extractors, in the sense that their output embeddings
corresponding to different classes are already in a vector
space and already cluster in spheres. In these cases, no
additional expander is necessary.

We should also note that the above-mentioned vec-
tor spaces need not be defined over Rn – as they are
for the particular architecture discussed in this paper
– but can also be defined over any other field, like
GF (2n). The latter choice is easier to deal with from
the perspective of the secure sketch, mainly due to the
wide availability of binary channel capacity-achieving
error correction codes (ECCs) – by contrast, addi-
tive white Gaussian noise (AWGN) channel capacity-
achieving ECCs are few and suffering from very com-
plex decoding mechanisms. On the other hand, forcing
the output of the expander into binary vectors may in-
cur unacceptable performance losses, which is why we
leave the investigation of binary-ECC-based NFEs to
future work.

The contributions of this paper are as follows.
1. We introduce NFEs, a first secure architecture for

handling ANN-based biometric user authentication.
2. We show that NFEs can be retro-fitted to work with

most of the already-existing ANN-based biometric
authentication architectures.

3. We demonstrate our construction on three already-
existing fingerprint-based authentication architec-
tures, and we show that the NFE retrofit has
marginal, if any, effects on performance, while in-
troducing non-negligible but acceptable overhead to
the training and running times.

The remainder of the paper is organized as follows.
Section 2 provides a brief survey of already-existing
biometric authentication protocols, focusing mostly on
recent results involving artificial neural networks, and
techniques that use fuzzy extractors. Section 3 intro-
duces the NFE architecture and provides some general
implementation insights. Section 4 presents the design
decisions involved in our instantiation of the NFE ar-
chitecture, namely the types of classifiers considered,
the architecture of the expander and the choice of the
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error-correction code. Section 5 describes the decisions
involved in the design of our evaluation framework,
such as the datasets and the experimental setup, and
presents our results in terms of authentication perfor-
mance, training and running times. Finally, conclusions
are drawn in Section 6.

2 Related Work

2.1 Biometric Authentication and
Identification

The literature contains many early attempts at lever-
aging the ANN capabilities for biometric verification
and authentication. [6] has filed a patent on biomet-
ric recognition using a classification neural network.
The patented biometric recognition system involves two
phases: creation of a master pattern set of authorized
users’ biometric identifications and authentications us-
ing a classification neural network. [1] developed a new
supervised recurrent neural network for fingerprint au-
thentication. Their approaches used similarity measures
of features for clustering and ranking of the fingerprint
representations stored in their database. [62] used both
artificial neural networks and k-nearest neighbors as
possible classifiers for typing pattern identification. [67]
investigates the implementation of Weightless Neural
Networks (WNNs) as a pattern recognition tool to clas-
sify users’ typing patterns and thus attempts to separate
the real users from impostors. [42] used artificial neural
networks for face representation learning and recogni-
tion.

With the recent resurgence of interest in Deep
Learning models, in recent years we have witnessed sig-
nificant progress in representation learning for biometric
identifiers by deep neural networks. [53] has proposed
FingerNet, a unified deep network for fingerprint minu-
tiae extraction. They propose a new way to design a
deep convolutional network combining domain knowl-
edge and the representation ability of deep learning.
In terms of orientation estimation, segmentation, en-
hancement and minutiae extraction, several typical tra-
ditional methods that performed well on rolled/slap fin-
gerprints are transformed into a convolutional approach
and integrated as a unified plain network. [10] posed
minutiae extraction as a machine learning problem and
proposed a deep neural network – MENet, for Minu-
tiae Extraction Network – to learn a data-driven repre-
sentation of minutiae points. [40] used deep representa-

tions for Iris, Face, and Fingerprint Spoofing Detection.
Similarly, [17] learned fingerprint representations. [29]
proposed three variations of the VGGNet structure for
fingerprint classification.

Similarly, [21] proposed a secure multimodal bio-
metric system that uses a convolutional neural network
(CNN) and a Q-Gaussian multi support vector machine
(QG-MSVM) based on different level fusion. They de-
veloped two authentication systems with two different
level fusion algorithms: a feature level fusion and a de-
cision level fusion. The feature extraction for individ-
ual modalities is performed using a CNN. In this step,
they selected two layers from the CNN that achieved
the highest accuracy, in which each layer is regarded as
a separate feature descriptor. After that, they combined
them using the proposed internal fusion to generate the
biometric templates. In the next step, they applied one
of the cancelable biometric techniques to protect these
templates and increase the security of the proposed sys-
tem.

Likewise, [41] conducted multimodal biometric face
and fingerprint recognition using neural networks based
on adaptive principal component analysis and multi-
layer perceptrons. [50] proposed a novel latent over-
lapped fingerprints separation algorithm based on neu-
ral networks. [43] used convolutional neural networks
(CNNs) for fingerprint liveness detection.

[44] leveraged neural networks to both identify QRS
complex segments of ECG signals and then performed
user authentication on these segments. [37] used multi-
layer perceptrons and radial basis function neural net-
works for electrocardiogram (ECG) biometric authen-
tication. [46] proposed the use of various recurrent
neural network (RNN) architectures (including vanilla,
long short-term memory (LSTM), gated recurrent unit
(GRU), unidirectional, and bidirectional networks) for
ECG-based biometrics identification/classification and
authentication. [31] presents Deep-ECG, a CNN-based
biometric approach for ECG signals identification, ver-
ification and periodic re-authentication. Deep-ECG ex-
tracts prominent features from one or more leads using
a deep CNN and compares biometric templates by com-
puting simple and fast distance functions for verification
or identification. [16] showed the novel use and effective-
ness of deep learning CNN architectures for automatic
rather than hand-crafted feature extraction for robust
face recognition across time lapses. They show CNNs
using the VGG-Face deep networks produce highly dis-
criminative and interoperable features that are robust to
aging variations even across a mix of biometric datasets.
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2.2 Fuzzy Extractors

Fuzzy extractors were introduced in [14] as a secure way
of coping with user biometrics – for which every new en-
try is slightly different from previous ones, but all entries
share some common main features. The idea was that,
instead of storing representative entries, for direct com-
parison to the new entries upon authentication request,
the system should only store digests obtained through
cryptographic hash functions – thus preventing biomet-
ric falsification.

The idea was quickly adapted to various types of
biometric authentication mechanisms, like those based
on fingerprints [2, 32, 58, 63, 64], iris scans [7, 25, 39],
face [51] or gait [26, 27].

More recently, fuzzy extractors were used in the con-
text of more sophisticated and specialized secure au-
thentication mechanisms, like the one in [11], designed
specifically for wireless sensor networks (like body-area
networks), or the ones in [13, 33], which deal with the
outputs of physically-unclonable functions (PUFs).

However, to the best of our knowledge, at the time
of this writing, no works exist on the application of fuzzy
extractors on biometric data pre-processed by sophisti-
cated classifiers like artificial neural networks.

2.3 Privacy-Preserving Biometrics

Our problem is related to the problem of privacy-
preserving biometric authentication [3, 59], to the ex-
tent that our NFE solution helps with some of the com-
mon objectives of privacy-preserving biometrics, such
as biometric template protection [3]. Nevertheless, the
problem of privacy-preserving biometric authentication
is much broader, dealing with the privacy of the entire
biometric authentication process, from the security of
the channel between sensor and authentication server,
to the security of the authentication database, and from
anonymous biometric verification [18] to biometric can-
cellability [55]. The techniques employed in the litera-
ture to achieve these diverse goals range from the use of
fuzzy extractors [12] to secure multi-party computation
[8], and from zero-knowledge proofs of knowledge [4] to
fully-homomorphic encryption [18, 30].

3 Preliminary Concepts: the
Architecture of a Neural Fuzzy
Extractor

Most classifiers – whether neural networks or vector-
space-based – will output a vector representation of the
input data. In some cases, the output vectors are al-
ready appropriate for direct input to the secure sketch
(see Figure 1). To satisfy this property, the classifier
outputs corresponding to each class of interest have to
cluster in a somewhat spherical region of the vector
space. This is because the secure sketch will use codes
designed for error correction on either white Gaussian
noise (AWGN) channels, or on binary symmetric chan-
nels (BSCs), where the decoding region is spherical by
construction. So if the classifier’s decision regions are
not already spherical, imposing spherical decoding re-
gions on top of them will invariably degrade the classi-
fication performance.

Unfortunately, in most cases, the classifiers are
solely designed for good accuracy, without extra con-
straints on the spherical shape of their decision regions.
In such cases, we propose the use of an expander, as
illustrated in Figure 1, to further shape the classifier’s
decision regions into spherical ones. We call this pro-
cedure retrofitting the NFE to pre-existing classifiers.
Intuitively, we expect that in order to avoid reducing
the overall accuracy, we need to preserve as much of
the information content of the classifier output as pos-
sible. Intuitively, this means that the expander should
generally project the vector representations of the clas-
sifier’s output to a larger-dimensional space (hence the
term “expander”), in which the decision regions can be
made spherical without significant accuracy penalties.
We should note here that in cases in which the classi-
fier is a neural network, the last layer often reduces the
dimension of the data – for instance, to fit the number
of relevant classes. In such cases, we propose to remove
the last (low-dimensional) layer of the neural network
before attaching the expander. In the cases in which
the neural network presents an extremely wide output,
the expander will in fact need to act as a compression
mechanism, in order to reduce the dimension of the net-
work’s output layer to one that is tractable by the secure
sketch – as we shall see shortly, the decoding procedure
employed by the secure sketch can be quite time con-
suming [36] (albeit running in time linear in the code
length).
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3.1 The Classifier

As mentioned above, with the option of retrofitting the
NFE to pre-existing classifiers, the only requirement for
the classifier is to process the users’ biometric readings
into vectors, in a vector space in which classification
is possible with reasonable accuracy. We do not expect
that retrofitting with the NFE will improve this accu-
racy in any way – nor is that the purpose of the retrofit.
The best we can hope for is that the original classifier’s
accuracy is maintained, while the security of the system
is greatly improved. As such, our NFE scheme can work
with multiple types of already-existing classifiers, for ex-
ample K-nearest-neighbors, support-vector machines, or
neural networks. The “neural” part of “NFE” refers not
to the retrofitted classifier, but rather to the expander,
which is invariably implemented as an artificial neural
network.

3.2 The Expander

The expander will be constructed as a neural network,
will take as input the output of the (trimmed or intact)
original classifier, and will be trained using a cost func-
tion that penalizes deviations form a spherical shape. If
the original classifier is also a neural network, the train-
ing of the expander can be done at the same time as that
of the original classifier – in essence, the procedure con-
sists of simply adding a constraint on the shape of the
decision regions. However, when retrofitting the NFE to
an already-trained neural network, separate training of
the expander can be accomplished by feeding it with
labeled outputs of the (trimmed or intact) original net-
work, corresponding to some (original or novel) training
dataset.

3.3 The Secure Sketch

The secure sketch, as defined in [14], consists of (1) a
mechanism for mapping the fuzzy biometric of a user to
a fixed point in the vector space of the biometric repre-
sentation, coupled with (2) a secure method for storing
such identifying user information. If the fuzzy biomet-
ric data of our user is situated in a roughly spherical
region of the vector space, then the first part can be
accomplished by defining an error-correction code over
the vector space, and shifting it so that the user’s deci-
sion sphere overlaps with one of the decoding regions,
corresponding to one of the codewords.

This construction is described intuitively in Figure
2. In the left-most part of the figure, we can see that
the authentic user’s (AU’s) biometric data-points (rep-
resented as light blue triangles) register (mostly) inside
the bottom-right red sphere – which is the user’s deci-
sion region. The radius of this sphere is user-specific,
and has to be chosen to provide a good compromise be-
tween false positives and false negatives. The large circle
is chosen to contain all available embeddings, from all
users; in the general multi-dimensional case, this circle
corresponds to the hyper-sphere that represents the sup-
port of the expander’s output – basically, the region of
the vector space in which one would expect to find data
points corresponding to the embeddings of any user’s
biometric data.

Registration Phase
For the registration phase, a codebook is defined over
the vector space, and restricted to the support of the
expander’s output. Different methods can be used to
define such a code, but an optimal choice would be a
capacity-achieving code (for an additive White Gaus-
sian noise (AWGN) channel, if the vector space is of
the form Rn, and for a binary symmetric channel if the
vector space is defined over GF (2n)). For our specific
example, in which embeddings are defined over R128,
we choose a low-density lattice code (LDLC) [49] in 128
dimensions. This codebook is made up of a set of code-
words, which are represented by the black dots in the
middle portion of Figure 2. Each such black dot is sur-
rounded by its decoding sphere (or Voronoi region). Any
data point (represented as a vector) falling inside a par-
ticular codeword’s Voronoi region can be decoded to
this particular codeword (which is that codeword in the
codebook that is closest to the data point).

Next, we identify the center of the AU’s decision
region – denote it as ri – and “decode” it to the closest
codeword in the codebook – denote this codeword as ci.
We then calculate the difference vector (DV) di = ri−ci

between the center of the AU’s decision region and the
closest codeword (a translated copy of di is shown as
the small yellow arrow in the bottom-right part of the
middle part of Figure 2). The DV di is stored as part
of the AU’s authentication record, along with the hash
h(ri) of the center of the AU’s decision region.

Verification Phase
For each of registered user i, the verifier has access to
their tuple (di, h(ri)). Upon verifying a user’s claim to
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be user i, the current biometric reading – denote it as b
is placed (by virtue of the expander-enhanced classifier)
into the vector space, and the DV is subtracted from it.
Let the result be fi = b−di. In the right part of Figure
2, b is represented as a light-blue triangle, while fi is
the tip of the upper yellow arrow. The vector fi is then
decoded to the closest codeword – denote this codeword
as cj and note that if b is indeed the biometric of user
i, then we should have cj = ci. Finally, the DV di is
added to this codeword cj (in an attempt to recover the
center of the AU’s decision region), and the hash of the
result h(cj +di) is compared to the one in user i’s record
h(ri). The user is authenticated if h(cj + di) = h(ri).

NOTE 1 : In general, instead of decoding the center
of the AU’s decision region to the closest codeword, we
could simply choose a random codeword, and calculate
the DV between the center of the AU’s decision region
and this codeword. But in this case, additional steps
have to be taken to ensure that the DV does not leak
any information about the center of the AU’s decision
region. For example, if we choose a codeword in the
upper-left of the large sphere in Figure 2, the DV has
a large amplitude, and an attacker could infer that the
center of the AU’s decision region is in the lower right.
To avoid such leakage, we would need to add to DV an
additional random vector, the effect of which is neutral
when wrapped around the large sphere (zero modulo
the large sphere).

NOTE 2 : It may appear at a first glance that the
system can be further simplified by hashing directly the
(closest, or randomly-chosen) codeword. However, with
such an implementation, care must be taken to ensure
that different users are assigned different codewords,
which results in a net increase of the system complexity.
Using the extra steps required to store the hash of the
center of the AU’s decision region as above will natu-
rally ensure that different users have different hashes in
the authentication table.

3.4 The Hash

The hash component of the NFE architecture is imple-
mented as a simple cryptographic hash function, to be
chosen according to the most recent NIST recommen-
dations. At the time of this writing, hash functions from
the SHA-2 and SHA-3 families would be perfectly ad-
equate. The user authentication database stores, along
with user names, the following user identifying compo-
nents: (1) codebook parameters (or just a decoding al-
gorithm), (2) difference vector (DV), as explained in

Section 3.3 above; (3) any non-secret randomness such
as salt and pepper used during the hashing process, and
(4) the hash value (with salt, pepper, etc.) of the cen-
ter of AU’s decision region, as explained in Section 3.3
above.

3.5 Security Considerations

Threat Model
We assume a biometric-based authentication system,
implemented with the help of an artificial neural net-
work on an authentication server (which, as a particular
case, and in a broad sense, can be hosted on the local
machine to which users attempt to log in). Each of the
legitimate users of the system undergo the registration
phase, in which multiple readings of their biometric fea-
ture(s) are taken and used to train the authentication
system. The trained authentication system, as well as
the users’ authentication records, are stored (possibly
encrypted) on the authentication server. We assume no
malicious interference during, or eavesdropping of, the
registration phase – this phase can be completed in a
protected environment, just like the one required when
users set up their new accounts and passwords on any
password-based authentication system. Further, we as-
sume that the attacker cannot observe an authentication
procedure in real time, and hence does not have direct
access to the biometric information entered by the user.
In reality, such access is possible if the attacker eaves-
drops the connection between authentication server and
biometric sensor, or if the attacker has admin privileges
and scans the memory during the authentication pro-
cess. We should note that all of these assumptions are
standard in biometric authentication, and any efforts to
strengthen the authentication system for the event when
any of these assumptions fail are compatible with, but
outside the scope of, our work.

The threat model consists of an attacker who can
recover the weights of the ANN-based authentication
system, as well as all users’ biometric records. The at-
tacker has access to this information only after the reg-
istration phase is complete, and has no further access to
the authentication server, except potentially as a regu-
lar legitimate user of the system. Further, the attacker
has ready access to technology that can produce exactly
one biometric reading that is fully under the control of
the attacker, and cannot be distinguished from a real
biometric reading from a real person. The restriction to
exactly one biometric reading is required to avoid the
situation when the attacker brute-forces the biometric
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Fig. 2. Secure sketch construction. Left: The large circle is chosen to contain all available embeddings, from all users; the small circle
for the authentic user (AU) is chosen to yield a favorable false positive-false negative compromise (different radii may be chosen for
different AUs). Middle: A codebook is constructed, with Voronoi region congruent to AU’s decision region; the center of AU’s decision
region (ri) is decoded to the closest codeword (ci), and the difference between the center of AU’s decision region and this codeword
(di) is saved to the AU’s record along with the hash of the center of AU’s decision region. Right: The AU submits a new sample for
authentication (b); by subtracting the difference vector (di) and decoding to the nearest codeword (ci), the previously-identified code-
word is recovered. We then add the difference to the recovered codeword (again di), and obtain the center of AU’s decision region
(ri); its hash is compared to AU’s record.

authentication system – the effort required by a biomet-
ric brute-force attack depends only on the entropy of the
biometric, and has little to do with the authentication
mechanism that is using it, and the security of which
this paper aims to improve.

The attacker’s goal is to complete a successful login
attempt as any one of the system’s legitimate users –
of course, with the exception of the user that the at-
tacker already owns or has compromised. The attacker
wins if they can log in as a (different) legitimate user of
the system, with probability significantly higher than a
non-legitimate random person attempting to log in by
properly providing biometric readings to the authenti-
cation system.

Security Evaluation of the NFE
In order to log in as a (different) legitimate user of the
system, the attacker would have to input the user name
of a user of their choice (the attacker has a list of all user
names from the authentication records), and to produce
a biometric reading which, when passed through the
authentication mechanism, yields the same output as
the one in the authentication record associated to the
chosen user name.

In the case of a standard ANN-based authentication
mechanism, this is feasible, as the output correspond-
ing to each user is merely a well defined set (usually
a region of the output vector space) of scores – for in-
stance, the authentication mechanism decides that the

input belongs to user 1 if the first component of the out-
put exceeds a certain threshold. The attacker can then
choose an output vector in this set, and work backwards
towards the input of the ANN classifier. The recovered
input of the classifier (note that usually a continuum
of such valid inputs exist) can then be chosen as the
biometric reading. Recall that under our threat model
above, the attacker can force the authentication mech-
anism to consume the biometric reading of their choice.

In the case of the NFE-enhanced classifier, the cho-
sen user’s authentication record consists of a user name,
a difference vector and a hash value. The difference
vector contains no information about the pre-image of
the hash value. Neither can such a pre-image be found
from the hash value, as long as the hash function is
pre-image resistant. Therefore, the attacker has no idea
about what the output of the expander should be for the
chosen user. The best the attacker can do is to choose
randomly one of the codewords, and add to it the differ-
ence vector located in the chosen user’s authentication
record, in the hope that the result is actually the cen-
ter of the chosen user’s decision region. The attacker can
then work back through the ANN+expander to produce
a biometric reading corresponding to this result. Recall
however that the codebook is designed such that the
number of codewords is the same as the number of pos-
sible distinguishable user profiles. Therefore, choosing
a codeword from the codebook at random is no better
than choosing a person at random, and asking them to
provide a biometric reading. Now the probability that
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the attacker can successfully log in as a different user
is equal to the probability that a non-legitimate ran-
dom person can log in as that user by providing their
own biometric readings, plus the probability that the
attacker can find a pre-image for the user’s hash value.
Hence, within our threat model, and assuming a pre-
image-resistant hash function, the attacker cannot win.

NFE Codebooks, Sphere Packings, and the Biometric
Entropy
The purpose of the NFE is to cast the embeddings of
different users’ biometric readings in quasi-spherical re-
gions in a certain vector space. In the left portion of
Figure 2 we show multiple such quasi-spherical clusters,
such that each cluster (represented by markers with a
specific shape and color) corresponds to the embeddings
of the available biometric readings for a single user. In
this figure, we decide to consider the support of the ex-
pander output as a sphere that includes all the available
biometric data points. Taking the smallest such sphere
may artificially reduce the perceived security of the bio-
metric authentication system – because it will result in
a smaller codebook – so, to be safe, consider a sphere of
radius 10% larger than that of the smallest outer sphere.

The radius of the user-specific decoding region (the
small sphere corresponding to the user of interest in
Figure 2) is usually chosen to provide a certain false-
positive-false-negative tradeoff. For simplicity of imple-
mentation, we choose the same radius (technically, the
same error-correction code) for all users.

As an example, for the VGG-16 architecture
retrofitted with the NFE, the FVC2006 database yields
outer sphere of radius 1.0153, and a small sphere of ra-
dius 0.7 (this radius is chosen such that the distance-
based decoder achieves 95.36% accuracy on the train-
ing data set), meaning that at most (1.0153/0.7)128 '
4.7 · 1020 small spheres can be packed inside the large
128-dimensional sphere. We could say that the max-
imum number of distinct individuals whose biometric
reading embeddings in our new vector space fit within
non-overlapping small spheres is thus about 4.7 · 1020 '
268.67, or that the entropy of the secret biometric in-
formation, as represented in this space, is about 68.67
bits. In other words, the proposed methodology for the
expansion of biometric data provides – as a byproduct –
a way of evaluating the authentication potential of vari-
ous types of biometric data. It would be possible in this
framework to decide (at least approximately, based on
the upper and lower bounds on the entropy of a user’s
biometric data) whether fingerprint-based biometrics,

for instance, are more or less secure than, say retina-
scan-based biometrics. This evaluation is related to the
average (across multiple possible AUs) accuracy of the
associated classifier, but is not straightforward to derive
from it, and would not be feasible in the absence of the
expander.

We should note here that previous efforts to quan-
tify the entropy of various types of biometrics take dif-
ferent approaches. For example, [65] produces empirical
distributions of fingerprint data, and yields a measure
of entropy per pixel for different fingerprint databases.
Their FVC2002 and FVC2004 databases are compara-
ble to our FVC2006 database. However, their entropy
upper bounds – slightly above 0.25 bits per pixel – would
yield entropies in the order of 50,000 bits for each image.
Note that this is the entropy of the fingerpint image, not
the entropy of the fingerprint-based biometric modality
that we calculate. To approximate the latter, [65] uses
the mutual information between fingerprint images, and
ends up with a maximum number of distinct individual
representations of 1028 – making our estimate of 4.7·1020

somewhat conservative. Other methods for evaluating
biometric entropy are introduced in [34] and [52].

4 An Instantiation of NFE
Retrofit

To instantiate our NFE retrofit architecture described
above, we had to make several design choices. First, we
chose three pre-existing classifier architectures, as de-
scribed in Section 4.1 below, as the basis for the retrofit.
We had to slightly modify each one of the architectures.
Next, we used an expander architecture consisting of
multiple fully-connected layers, of decreasing sizes, to
reduce the original classifier output size to a fixed size of
128 neurons. This was done to accommodate a tractable
decoding mechanism. The error-correcting code used to
provide the decoding mechanism was chosen to be a
128-dimensional low-density lattice code taken directly
from [49]. The rest of this section contains additional
details regarding our design choices.

4.1 Classifier and Expander Architecture

VGG16
The VGG16 [22, 48] weights are pre-trained on
ImageNet using Keras. To adapt this classifier to
fingerprint-based user authentication, we removed the
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final softmax layer, rendering an output of size 4608.
The size of the vector space (4608) is way too large to
match to any efficient decoding mechanism. Therefore,
to retrofit the NFE to this classifier, we constructed an
expander, by adding three more fully connected layers
of 512, 256 and 128 neurons respectively.

ResNet50
The ResNet50 [23] weights are pre-trained on ImageNet
using Keras. After removing the final softmax layer, we
were left with an output of size 2048 by average pool-
ing the last layer. Then we constructed an expander by
adding 4 fully connected layers of size 1024, 512, 256,
and 128, respectively.

MobileNet
We used a modified MobileNet v1 model architecture
[28] with weights pre-trained on ImageNet using Keras.
After removing the final softmax layer, we were left with
the output of 1024 by average pooling the last layer.
Then we constructed an expander by adding 3 fully con-
nected layers of size 512, 256 and 128, respectively.

One Shot Classification and Siamese Network
In the case of standard identification methods, a set of
images are fed into an ANN to get an output probability
for each one of the different classes. For example, if we
want to distinguish between a cat and a dog we want to
collect a lot of images (possibly more than 500 images
per class) to improve model accuracy. The drawback of
this type of network in fingerprint identification is first,
it is nearly impossible to get a lot of images and second,
if we want to include a new user in our database, we need
to retrain the model to identify the new user as well. It
is for these reasons that we choose to train our classifier
in a Siamese network configuration, as explained below.

It should be noted that for this specific applica-
tion, our “expander” is in fact not expanding at all, but
rather contracting the ANN’s output. This is to reduce
the complexity of the decoding involved in the secure
sketch. Nevertheless, the same exact principles apply in
situations in which the expander actually expands the
output size.

A siamese network (sometimes called a twin neu-
ral network) is an ANN which learns to differentiate
between two inputs instead of classifying. It takes two
input images, runs through the same network simulta-
neously, and generates two vector embeddings of the

images which are run through a logistic loss to calcu-
late a similarity score between the two images [9]. This
is very useful as it does not require many data points
to train the model. For training purposes, we only need
to store one image belonging to the legitimate user as
a reference image, and calculate the similarity for every
new instance presented to the network.

For our implementation, we used a triplet loss func-
tion with the Siamese networks. The benefit of using a
triplet loss function (explained in the next subsection)
in conjunction with a Siamese network is twofold [15]:
1. It extracts more features by learning to maximize

the similarity between two similar images (Anchor-
Positive) and the distance between two different im-
ages (Anchor-Negative) at the same time.

2. It generates more training samples than logistic loss.
If we have P similar pairs and N dissimilar pairs
then for logistic loss we will have P +N total train-
ing samples. Whereas, we will have PN triplets for
training. This will impove the model accuracy.

Our Siamese network architecture is depicted Figure 3.
It is interesting to note that Siamese network training
will naturally encourage the embeddings of the data
points to cluster in spheres. This is a direct consequence
of its loss function that causes embeddings from the
same class to be close together, and embeddings from
different classes to be well separated in terms of Eu-
clidean distance. Nevertheless, under different circum-
stances, with more available training data, other ex-
pander architectures can be used, as long as their loss
functions are adjusted to include similar distance-based
penalties.

Triplet Loss Function
Triplet loss functions are widely used in various applica-
tions in computer vision, such as face recognition [47],
person re-identification [24] and image retrieval [20].
Taking inspiration from that we used this for finger-
print verification. We will further explain how triplet
loss functions work.

If we use a CNN to convert an image x into a d-
dimensional Euclidean space, then the embedding is rep-
resented by f(x) ∈ Rd. Here f is the function computed
by the CNN. For training we used triplets of fingerprint
images, as shown in Figure 4:
– A is an "anchor" image – a fingerprint image of a

user.
– P is a "positive" image – a fingerprint image of the

same user.
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Fig. 3. Triplet Loss architecture with Siamese network: Three im-
ages ("Anchor","Positive" and "Negative") are passed through
the same CNN simultaneously to generate a final layer of 128 di-
mensional vector. Then all three vectors are passed through the
triplet loss function to minimize the distance between "Anchor"
and "Positive" as well as maximizing the distance between "An-
chor" and "Negative".

– N is a "negative" image – a fingerprint image of a
different user.

We write triplets as (A(i), P (i), N (i)) where i denotes the
ith training example. We want to make sure that P is
closer to A than N. Thus, we want

‖f(A(i))− f(P (i))‖22 + α < ‖f(A(i))− f(N (i))‖22

for all {f(A(i)), f(P (i)), f(N (i))} ∈ T , where T is the
set of all possible triplets. Here, we want to make sure
that the positive pair (A(i)−P (i)) has at least a margin
difference of α over the negative pair (A(i) − N (i)). So
the "triplet cost" function for the CNN becomes

n∑
i=1

[
‖f(A(i))− f(P (i))‖22 − ‖f(A(i))− f(N (i))‖22 + α

]
+
.

Generating all possible triplets for training will re-
sult in slower convergence, so it is important to select
a combination of "hard" and "easy" batches for the im-
provement of the model.

4.2 The Error-Correction Code

As mentioned in Section 3.3, for our error-correction
code we used a low-density lattice code (LDLC), picked
directly from [49], in n = 128 dimensions. As explained
in [49], the LDLC is completely defined by its sparse
parity-check matrix H. To find an appropriate parity-
check matrix, we used the Latin Square construction

Fig. 4. Triplet Loss architecture: The architecture tries to mini-
mize the distance between "Anchor" and "Positive" and maximize
distance between "Anchor" and "Negative"

of [49], in which every row and every column of H
contains the same d nonzero values. The d nonzero
values were selected as the first d values in the se-
quence {1/2.31, 1/3.17, 1/5.11, 1.7.33, 1/11.71}. The allo-
cation of these values to the rows and columns of H
was done in accordance with the algorithms presented
in Appendix VII of [49]. We experimented with d = 3
and d = 5. The error-correction performance of the two
codes (for d = 3 and d = 5) are shown in Figure 5,
where every point is obtained by applying the decod-
ing algorithm 20 times to a randomly-chosen codeword
distorted by additive white Gaussian noise of standard
deviation σ (shown on the horizontal axis). We can see
from the figures that the performance of the two codes
is very similar in this artificial setting, with the d = 3
code performing slightly better. This is also the case in
practice, as illustrated next by the performance of the
NFEs using the two codes.

We should note here the difference between binary
codes and lattice codes. Binary error-correction codes
use a codebook formed by a select few, sufficiently dis-
tant (usually in the sense of Hamming distance) binary
sequences of a given length n, and all other binary se-
quences can be decoded to the closest sequence in the
codebook. The rate of the binary code is controlled by
the ratio k/n, where k is the length of the message to be
encoded (with k < n). The generator matrix of the code
is thus a rectangular one, of size n×k. One can therefore
adjust the density of the codebook in the space {0, 1}n

by adjusting k or n or both. This helps when trying
to fit a good codebook to a constellation of binary fin-
gerprint representations from different users – one can
simply find the centroids of the users’ fingerprint clouds,
and produce a code with roughly the same density.

By contrast, LDLCs considered in this paper rep-
resent messages as vectors of n integers, that are then
mapped to codewords by a square n× n generator ma-
trix, which is the inverse of the sparse (low-density)
parity-check matrix. Decoding involves finding the vec-
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Fig. 5. Error rate vs. injected noise level for the Latin-Square LDLC with row/column degree d of the parity check matrix.

tor of integers that is most likely to have generated the
received sequence. Therefore, the information rate of
LDLCs is only meaningful when an average power con-
straint is imposed on the codewords. This is not the
case for our application. Instead, it was shown in [45]
that more meaningful performance metrics for infinite-
constellation codes (like LDLCs), and ones that do not
depend on power constraints, are directly related to the
constellation density. For our LDLC code, the constel-
lation density is fixed. Thus, we cannot fit the code-
book to the constellation of fingerprint representations
– instead, we have to fit the fingerprint constellation
to the codebook. We do this by scaling all fingerprint
representations by the same scale factor γ. Choosing
different scaling factors produces different false-positive
rate (FPR) to false-negative rate (FNR) tradeoffs, thus
enabling us to construct the receiver operating charac-
teristic (ROC) curves.

Interestingly, a very similar scaling by γ also en-
ables us to produce different FPR-FNR tradeoffs when
distance (norm) based decoding is used, by keeping the
decoding distance threshold constant and varying γ.

4.3 Some Guidelines for System
Configuration

Finally, before moving on to the performance and cost
evaluation of our NFE implementation, we summa-
rize several system configuration aspects of our NFE-
retrofitted fingerprint-based biometric authentication,
to serve as a quick reference for implementation.

Number of Users
There is no limit on the number of users in practice.
Recall our (conservative, compared to [65]) estimate of
a maximum of 4.7 · 1020 differentiable users. Clearly, if
this many users were registered with the authentication
server, then any input biometric would most likely cor-
respond to at least one legitimate user. Fortunately, the
world’s population is still far below this number, and
an authentication attempt would not only have to pro-
vide the biometric reading, but also the associated user
name, making a successful authentication attempt very
unlikely.

Original Classifier Preparation
To prepare the original neural-network-based classifier
for the NFE retrofit, we recommend removing the fi-
nal softmax layer, if such a layer exists. The size of the
output after this trimming procedure should be large
enough to prevent the loss of biometric input informa-
tion due to excessive compression.

Codeword Size
The appropriate codeword size n depends on the effi-
ciency of the decoding algorithm and on the accept-
able computation overhead during user authentication.
Based on the capabilities of consumer-grade hardware
at the time of this writing, we recommend to choose n in
the range of [100, 500]. See [61] for more detailed results
on the computational overhead as a function of n, for
an efficient LDLC decoder. Also, as noted above, set-
ting d = 3 should provide very acceptable performance
in this range.
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Setting the FPR-FNR Tradeoff
As mentioned above, controlling the FPR-FNR tradeoff
of the LDLC code is done not by modifying the code
(whose constellation is fixed), but by scaling the NFE’s
output by a scalar factor γ. When implementing our
NFE, we recommend trying multiple values of γ to build
an approximation of the ROC curve, and then choosing
an operating point on this curve.

5 NFE Evaluation
To evaluate our NFE retrofit instance, we had to make
several experimental design choices. First, we selected
two databases of fingerprints, of different sizes. Next, we
defined four different experiments, to allow us a compar-
ison between the various retrofitted architectures, and
two different baseline architectures, for both databases,
and all three classifiers. Finally, we experimented with
multiple ways of tuning the pre-trained (and slightly
modified, as explained in Section 4 above) classifiers
to our databases, and chose the best-performing tun-
ing modalities. The remainder of this section provides
additional details on these design choices, as well as the
experimental results.

5.1 Datasets

We used two datasets for our evaluation process: the
2006 Fingerprint Verification Competition (FVC2006)
Database [57] and the PolyU fingerprint database pro-
vided by Hong Kong Polytechnic University [60].

The FVC2006 Database
This database consists of 4 distinct subsets DB1, DB2,
DB3 and DB4. Each database consists of 150 fingers
and 12 impressions per finger. Each subset is further di-
vided into "set A" and "set B" where "set A" contains
140x12 images and "set B" contains 10x12 images At the
time of this writing we only used DB1, which has an im-
age size of 96x96 but we expect similar results with the
other databases. The images in the FVC2006 database
were collected as part of the European Project BioSec,
from anonymous volunteers, and was released publicly
as part of the 2006 Fingerprint Verification Competi-
tion, organized by The Biometric System Laboratory
(University of Bologna), the Pattern Recognition and
Image Processing Laboratory (Michigan State Univer-

sity), the Biometric Test Center (San Jose State Uni-
versity) and the Biometrics Research Lab - ATVS (Uni-
versidad Autonoma de Madrid) [57]. At the time of this
writing, we have no reason to doubt the ethical aspects
of the data collection process.

The PolyU Database
This database contains 2016 fingerprint images from 336
different users, i.e., 6 impressions per user. The size of
the image is 328x356 initially. To make it consistent with
our initial dataset, we augmented the images using sev-
eral data augmentation techniques like the addition of
random noise and random rotation. In this way, we gen-
erated 6 additional impressions per user, bringing our
dataset to 12 fingerprint images per 336 users and con-
verted the size of these images to 224x224. The PolyU
database was released in 2017 for public use by the The
Hong Kong Polytechnic University. At the time of this
writing, we have no reason to doubt the ethical aspects
of the data collection process.

Training Data
For either one of the databases, training data consisted
of 10 impressions per finger (total of 140x10 images for
the FVC2006 database, and a total of 336x10 images for
the PolyU database). Out of these images, we generated
the triplet pairs. In this paper, we used 50% "hard" and
50% "easy" triplet pairs.

Testing Data
For either of the two databases, testing data consisted
of 2 impressions per finger.

5.2 Experimental Setup

We conducted four experiments using ResNet50, Mo-
bileNet and VGG16 architectures with two different
datasets FVC2006 and PolyU.

Baseline Classifier (BC)
Our first experiment is meant to provide a baseline for
the evaluation of the expander-enhanced architectures.
For this purpose, we trained the three classifier archi-
tectures (ResNet50, MobileNet and VGG16) separately.
Since we used two datasets – FVC2006 with 140 users
and PolyU with 336 users – our classification model’s
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top layer was a softmax layer with 140 nodes in the
case of FVC2006 and 336 nodes in the case of the PolyU
dataset, respectively.

The final layer of the classification model gives us
the probabilities (or, more generally, some scores for the
events) that the input image belongs to each possible
user. We transform the model into a binary classifier by
establishing a score threshold for each one of the users.
Hence, to calculate the false positive rate for a single
class, we took 20 different fingerprint images from other
classes fed them through the network. If the score out-
put value for the image is greater than the probability
threshold for that particular class we are interested in,
then that’s the condition of false positive.

Similarly, to calculate the FNR for a single class, we
took 2 images for that class from the test set, augmented
them using several data augmentation techniques like
addition of random noise and rotation to generate an-
other 20 images and fed them through the network. If
the output probability value of the node of the class
that we are concerned with is less than the probability
threshold, then that’s the condition of false negative.

Classifier Trained in a Siamese-Network Configuration
(CSN):
In the second experiment, we trained the three classi-
fiers individually, using a Triplet-based Siamese-network
configuration. No expander was used in this experi-
ment, and thus the size of the final embeddings vary
according to the architecture: ResNet50 uses an em-
bedding of size 2048 (the size of the final layer before
the softmax layer), MobileNet uses an embedding size
of 1024, and VGG-16 uses a size of 4608. This experi-
ment was designed to provide a fair baseline compari-
son for the expander-enhanced architectures, just in case
that this Siamese-network configuration training proved
overall superior to the standard training of experiment
BC above – it turns out that its superiority is in fact
classifier-dependent.

Classifier Trained in a Siamese-Network Configuration
Plus Expander (CSN+ESN)
In the third experiment, we use the classifiers already-
trained under the second (CSN) experiment, and retrofit
them with expanders. Then, only the expanders are
trained, using the classifier-plus-expander architectures
in the standard Siamese-network configuration. This ex-
periment emulates a scenario in which an existing neu-
ral network-based classification architecture is already

trained and provides good performance by itself. In such
a situation, training only the expander while keeping the
original classifier’s weights fixed can provide significant
computational savings.

Jointly Trained Classifier and Expander ((C+E)SN)
In this last experiment, we first retrofitted all three clas-
sification architectures with an expander, and trained
the classifier-plus-expander architectures from scratch,
using the standard Siamese-network configuration. Our
initial expectation was that such joint training of the
classifier and expander would provide the best perfor-
mance. In reality, the results show that this is in fact
classifier-dependent.

For each of the CSN+ESN and (C+E)SN experi-
ments, we execute, and report the results of, two types
of error-correction decoding: (a) using simple fixed-
distance-based decoding, and (b) using the LDLC de-
coder. The purpose of the distance-based decoder is
solely to provide a baseline for evaluating the perfor-
mance degradation due to the LDLC decoder (however,
in reality, as our results will show, the LDLC decoder
usually out-performs the distance-based decoder). The
distance-based decoder is not a viable option in prac-
tice, as it would require that the center of the AU’s de-
cision region is saved as part of the AU’s authentication
record. This would defeat the purpose of the NFE.

5.3 Training of the Classifiers

VGG-16
For VGG-16 architecture, we trained all its layers for the
both baseline and the Siamese-network-based configura-
tions, to get the better generalization of the model.

ResNet50
For ResNet50 architecture, in the Siamese-network-
based configuration, we froze the first 143 layers and
trained the remaining 32 layers to perform the trans-
fer learning. However, in the case of the baseline model,
we trained the whole architecture without freezing any
layers.

MobileNet
For the MobileNet architecture in the Siamese-network-
based configuration, we trained just the last 23 layers.
However, in the case of the baseline model, we trained
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all the layers of the architecture to get a better gener-
alization of the model.

5.4 Results

We expect that our NFE retrofit contains two sources of
performance degradation, and we proceed to systemati-
cally investigate each. The first potential source of per-
formance degradation is the injection of the expander
into the system’s architecture. This should be especially
critical when the expander in fact reduces the output
size of the original architecture, rather than expanding
it. This is exactly the case with our implementation,
where the output size is reduced from 4608, 2048 or
1024 to 128.

The second source of performance degradation is the
use of an error-correction code in place of distance-based
decoding. This step is essential to the security of the
NFE architecture, as it enables automatic decoding in
the absence of a class representative (or centroid). Such
a representative is required by distance-based decoding,
and constitutes a severe security vulnerability.

The Effect of the Expander
To evaluate the impact of the expander, we compared
the performance of the three classifier architectures in
the BC and CSN experiments, to the NFE-retrofitted
architectures – experiments CSN+ESN and (C+E)SN
– but performing distance-based decoding instead of
LDLC-based decoding. For our two datasets, the results
are given in Tables 1 and 2.

Experiment ResNet MobileNet VGG-16
EER AUROC EER AUROC EER AUROC

BC 0.032 0.972 0.022 0.969 0.040 0.940
CSN 0.065 0.982 0.055 0.989 0.014 0.999
CSN+ESN
distance

0.054 0.986 0.044 0.994 0.013 0.990

CSN+ESN
LDLC

0.053 0.987 0.025 0.995 0.013 0.999

(C+E)SN
distance

0.066 0.984 0.042 0.993 0.020 0.997

(C+E)SN
LDLC

0.065 0.984 0.039 0.993 0.020 0.995

Table 1. Equal error rates (EER) and areas under the receiver
operating characteristics (ROC) curve (AUROC) for our four
experiments, under each of the three architectures, when using
the FVC2006 database.

We notice that for the FVC2006 database (Table
1), with small exceptions, all three architectures exhibit
comparable EER values under the CSN experiment,
with the CSN+ESN distance and (C+E)SN distance
experiments. However, it appears that the ResNet50
and MobileNet architectures in the BC experiment ex-
hibit significantly lower EER values, albeit also smaller
AUROC values, than in the other two experiments.
This shows that some particular performance degra-
dation around the EER point may be caused by the
training configuration, i.e. training under the baseline
configuration outperforms training under the Siamese-
network-based configuration. However, considering the
AUROC values, such performance degradation is local-
ized around the EER point.

The opposite holds true for the VGG-16 architec-
ture, where the BC experiment shows higher EER –
and this time also lower AUROC – than all the other
experiments.

Experiment ResNet MobileNet VGG-16
EER AUROC EER AUROC EER AUROC

BC 0.031 0.958 0.017 0.979 0.062 0.972
CSN 0.035 0.995 0.025 0.996 0.013 0.999
CSN+ESN
distance

0.037 0.992 0.026 0.995 0.007 0.999

CSN+ESN
LDLC

0.037 0.992 0.025 0.995 0.007 0.999

(C+E)SN
distance

0.059 0.985 0.054 0.986 0.033 0.993

(C+E)SN
LDLC

0.058 0.985 0.054 0.981 0.034 0.981

Table 2. Equal error rates (EER) and areas under the receiver
operating characteristics (ROC) curve (AUROC) for our four
experiments, under each of the three architectures, when using
the PolyU database.

The same difference in performance between the BC
and CSN experiments is observed for the PolyU dataset
(Table 2), where again it appears that ResNet50 and
MobileNet do significantly better in the BC experiment,
while VGG-16 does significantly worse.

Interestingly, on both datasets, all architectures do
much better in the CSN+ESN distance experiment than
in the (C+E)SN distance experiment, suggesting that
training of the expander alone, rather than joint train-
ing of the expander and original classifier, is the better
choice.
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The Effect of the Decoder
To evaluate the impact of the error-correction-code on
the NFE performance, we compare the results in the ex-
periments CSN+ESN distance and (C+E)SN distance
to the experiments CSN+ESN LDLC and (C+E)SN
LDLC, respectively. We notice that for both datasets,
and for each one of the classifiers, the EER and AUROC
values appear very similar between the distance-based
decoding and the LDLC-based decoding. If anything,
the LDLC-based decoder seems to perform very slighly
better. One notable exception is the case of the Mo-
bileNet architecture, on the FVC2006 dataset (Table 1),
where the LDLC decoder appears to help a lot, lowering
ERR from 4.4% (for the case of CSN+ESN distance-
based decoding) to 2.5%. Such improvements in perfor-
mance due to LDLC decoding may be explained by the
fact that the LDLC decoding regions are not perfectly
spherical (even in 128 dimensions), and fill up the vec-
tor space better than perfectly spherical regions (which
are implicit with distance-based decoding).

Overall Effect of the NFE Retrofit
Connsidering the best performance among the BC and
CSN experiments, and the best performance among the
CSN+ESN LDLC and (C+E)SN LDLC experiments,
we draw the conclusion that there appears to be no, or
very slight, performance degradation due to the use of
the NFE. This is an encouraging result, and should mo-
tivate the future evaluation of the application of NFEs
to other architectures, and to other biometric authenti-
cation modalities.

We can also notice that overall, the PolyU Dataset
performed better than the FVC2006 dataset in most
scenarios. This might be because PolyU images are of
bigger resolution and have less noise than FVC2006 im-
ages.

Training and Running Times
We evaluated the training times and the running times
of the three different architectures, under each one of
our four experiments and two datasets. All our models
were trained on a GeForce RTX 2080 TI GPU with 4
cores, with the maximum memory size at 25GB. For
studying the runtime performance, we ran our user au-
thentication mechanisms on a more realistic work sta-
tion – specifically, a personal laptop with Apple’s M1
silicon chip, and with 16GB of memory.

The execution times are listed in Tables 3 and 4 for
the FVC2006 and the PolyU datasets, respectively. For

training, we list in parentheses the number of training
epochs that were necessary for each one of the exper-
iments to observe the convergence of the training pro-
cess. We note that for the BC experiment, convergence
is observed a lot sooner than for the other experiments
(fewer than 80 epochs, compared to over 4000 epochs).
This is most probably due to the Siamese-Network con-
figuration, which is employed by all the other experi-
ments.

Experiment ResNet50 MobileNet VGG-16

BC training 7m11s
(60 ep)

7m14s
(80 ep)

8m48s
(70 ep)

runtime 70ms 48ms 55ms

CSN training 1h53m22s
(5000 ep)

1h06m12s
(5000 ep)

1h05m39s
(5000 ep)

runtime 529ms 264ms 173ms

CSN+ESN training 1h50m20s
(5000 ep)

1h08m13s
(5000 ep)

1h00m41s
(5000 ep)

runtime 645ms 343ms 134ms

(C+E)SN training 1h57m00s
(5000 ep)

1h06m30s
(5000 ep)

1h08m48s
(5000 ep)

runtime 589ms 325ms 189ms

Table 3. Training and running times for our four experiments,
under each of the three architectures, when using the FVC2006
database.

We observe that under the BC experiment, both
training and running times are significantly smaller than
in all the other experiments. We also note that there
are only small differences between the CSN+ESN and
(C+E)SN experiments, and the CSN experiment, in
both training and running times, and with all three clas-
sifier architectures. As expected, training and running
for the CSN+ESN and (C+E)SN experiments in gen-
eral takes slightly longer, but not by much.

We can therefore infer that the addition of the ex-
pander incurs minimal overhead. However, switching
from a standard baseline architecture to a Siamese-
network-based architecture does incur significant penal-
ties – in the order of a few hours for training, and in the
order of hundreds of milliseconds for runtime.

We should note here that the running times re-
ported in Tables 3 and 4 do not include the running
times of the decoder for the CSN+ESN and (C+E)SN
experiments. Our implementation of the LDLC decoder
is based directly on the method proposed in [49], which
is known to be rather inefficient. Many subsequent
works have proposed much more efficient techniques for
decoding LDLCs, see for example [5, 35, 61, 66]. For ex-
ample, when considering decoding parameters similar to
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Experiment ResNet50 MobileNet VGG-16

BC training 27m50s
(50 ep)

21m38s
(40 ep)

22m35s
(50 ep)

runtime 81ms 55ms 63ms

CSN training 3h12m21s
(4000 ep)

2h10m08s
(4000 ep)

3h26m43s
(4000 ep)

runtime 579ms 214ms 151ms

CSN+ESN training 3h17m23s
(4000 ep)

2h08m06s
(4000 ep)

3h09m32s
(4000 ep)

runtime 459ms 227ms 160ms

(C+E)SN training 3h12m45s
(4000 ep)

2h08m46s
(4000 ep)

3h22m00s
(4000 ep)

runtime 755ms 240ms 156ms

Table 4. Training and running times for our four experiments,
under each of the three architectures, when using the PolyU
database.

ours (d = 3 and n ∈ [100, 1000]), running on consumer-
grade hardware, [61] reports running times of around
4.2ms per iteration for n = 100 and 36ms per iteration
for n = 1000, leading to total decoding times of between
0.42s and 3.6s (corresponding to 100 iterations). These
decoding times are well within the acceptable range for
user authentication. Nevertheless, the integration of ef-
ficient LDLC decoders with NFEs is outside the scope
of the current paper, and is the subject of future work.

Comparison with Plain Fuzzy Extractors
A performance comparison with the plain fuzzy extrac-
tors of [14] is not fair – it has already been established
that they suffer from low performance [2, 38]. However,
in terms of security and cost comparisons, plain fuzzy
extractors appear similar to our proposed NFEs. The
security provided by NFEs relies on the secure sketch
construction – a concept borrowed from the plain fuzzy
extractors, and hence the security guarantees are iden-
tical. Since both types of extractors have to store only
hash values and difference vectors for each of the reg-
istered users, the storage requirements are also simi-
lar – of course, NFEs have to also store the weights of
the associated neural network. In terms of runtime per-
formance, both NFEs and plain fuzzy extractors have
to implement a complex decoding procedure, which ac-
counts for the bulk of the user authentication computa-
tion in NFEs, and for almost the entire computation in
the case of plain fuzzy extractors.

6 Conclusions
In this paper, we presented a secure architecture for
biometric user authentication (or identification), which
avoids the storage of information (such as neural net-
work weights or specific biometric data) that could be
used by malicious entities for constructing artificial bio-
metric inputs able to pass the authentication tests. To
that extent, the proposed architecture aligns with the
current paradigm for handling users’ passwords. The
proposed architecture – which we call a neural fuzzy ex-
tractor – works by coupling the classifier with a fuzzy ex-
tractor – this is possible by the use of an expander, which
is a neural network that can be trained at the same time
as, or after, the classifier. The NFE architecture can be
retrofitted to any already-existing well-performing clas-
sifier, and should combine the classification performance
of artificial neural networks with the security of fuzzy
extractors. Our instantiation of the NFE for fingerprint-
based authentication demonstrates how a pre-existing
classifier can be retrofitted for NFE implementation,
and how two different types of training can be con-
ducted for NFE-specific output-space sphere clustering.
Our experimental results show that the addition of the
NFE does not incur significant performance degrada-
tion (in terms of equal-error rates and areas under the
receiver-operating-characteristics curves), but does in-
cur higher training and runtime overhead, mainly due
to the Siamese-network-based configuration. Neverthe-
less, we believe that the 1 to 3 hour increases in train-
ing times is well worth the security advantage provided
by NFEs, while the 100 to 700 millisecond increases in
running times is well within the acceptable range for ap-
plications. Future work will focus on (1) studies of the
application of NFEs to other types of biometrics and
(2) the construction and training of expanders suited to
coding over binary extension fields.
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