
Proceedings on Privacy Enhancing Technologies ; 2022 (4):162–182

Eugene Bagdasaryan, Peter Kairouz, Stefan Mellem, Adrià Gascón, Kallista Bonawitz, Deborah
Estrin, and Marco Gruteser

Towards Sparse Federated Analytics: Location
Heatmaps under Distributed Differential
Privacy with Secure Aggregation
Abstract: We design a scalable algorithm to privately
generate location heatmaps over decentralized data
from millions of user devices. It aims to ensure dif-
ferential privacy before data becomes visible to a ser-
vice provider while maintaining high data accuracy
and minimizing resource consumption on users’ devices.
To achieve this, we revisit distributed differential pri-
vacy based on recent results in secure multiparty com-
putation, and we design a scalable and adaptive dis-
tributed differential privacy approach for location ana-
lytics. Evaluation on public location datasets shows that
this approach successfully generates metropolitan-scale
heatmaps from millions of user samples with a worst-
case client communication overhead that is significantly
smaller than existing state-of-the-art private protocols
of similar accuracy.

Keywords: federated analytics, location privacy, differ-
ential privacy, secure aggregation

DOI 10.56553/popets-2022-0104
Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

1 Introduction
Many applications, such as those that monitor the
spread of infectious diseases, traffic, or mobility, benefit
from users sharing location data with a service provider.
To reduce potential privacy risks inherent in such appli-
cations, we ask if it is feasible to compute aggregates
at scale, from on-device data of millions of participants,

Eugene Bagdasaryan: Cornell Tech, eugene@cs.cornell.edu,
*Algorithm was developed while this author was at Google.
Peter Kairouz: Google, kairouz@google.com
Stefan Mellem: Google, mllm@google.com
Adrià Gascón: Google, adriag@google.com
Kallista Bonawitz: Google, bonawitz@google.com
Deborah Estrin: Cornell Tech, destrin@cs.cornell.edu
Marco Gruteser: Google, gruteser@google.com

while ensuring differential privacy [22] of such aggre-
gates before they become visible to the service provider.
In particular, we seek solutions under the constraints
of maintaining high data accuracy and minimizing re-
source consumption on user devices.

For certain statistics, differential privacy can pro-
vide reasonable accuracy in the central curator model,
where a trusted party aggregates and noises the data.
To eliminate the need for a trusted party, significant
research has focused on the local differential privacy
model (e.g., [21, 26, 42, 45, 60]), where each participant
perturbs their data to protect it even before it is aggre-
gated at the service provider. However, the amount of
perturbation needed to obtain a meaningful local pri-
vacy guarantee significantly degrades the utility com-
pared to the central curator model.

Alternatively, secure multiparty computation
(SMPC) techniques can be used to aggregate noised
data in a distributed manner before the result becomes
visible to the service provider [36], a technique we refer
to as distributed differential privacy. Since the individ-
ual contributions are cryptographically protected from
other parties, each participant can add a small amount
of noise that alone would not offer sufficient protection,
but when aggregated with other noise shares yields the
target ε-differential privacy. Secure multiparty compu-
tation techniques, however, impose a computational
and bandwidth burden that increases with the number
of participants—existing SMPC distributed differential
privacy work has, to our knowledge, therefore been
limited to simulations and prototypes with tens of par-
ticipants [36]. To overcome these scaling limitations, the
Honeycrisp system [51] used homomorphic encryption
that reduces the load on most users, but still requires
choosing a small subset of users, the committee, to
shoulder a heavy resource burden. If approximate dif-
ferential privacy, rather than pure differential privacy,
is acceptable, shuffling techniques also scale better in
terms of the number of participants, but similarly re-
quire a trusted party or a set of outside trusted parties
to conduct the shuffling task [11]. None of these ap-

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 163

proaches can collect data at scale, with accuracy com-
parable to differential privacy in the centralized model
and without placing trust and/or a significant band-
width or computational burden on some participants.

To address this, we revisit the distributed differ-
ential privacy concept based on recent results in the
secure multiparty computation field. We develop a
scalable distributed differential privacy approach ap-
plied in the context of geospatial heatmap applications
at a metropolitan scale. Specifically, we build on re-
cent breakthroughs in secure multiparty computation
that can accommodate many more participants (thou-
sands+) in vector sum computations [9, 13]. Apply-
ing these to the distributed differential privacy concept
leads to an approach that, while ostensibly straightfor-
ward, imposes several subtle challenges:
1. How should sparse data such as locations be effi-

ciently represented so that they are compatible with
secure vector sums and yield accurate, differentially
private results?

2. How should differential privacy noise be applied so
that it is compatible with the integer quantization
and modular arithmetic used in secure sum prim-
itives? It’s important in a practical system when
communication efficiency is a bottleneck.

3. How well does a secure sum primitive for thousands
of participants allow geospatial statistics over mil-
lions of participants while maintaining accuracy?

4. How resilient is the distributed differential privacy
mechanism to participants that do not complete the
process; for example, due to network disconnections,
which inevitably arise at a larger scale?

We tackle data representation through an adaptive his-
togram representation coupled with an algorithm that
can determine non-uniform histogram bin sizes, or his-
togram meshes, even when the data distribution is un-
known or changes over time. Histogram representations
can be generated with low differential privacy noise (due
to their low sensitivity [22]) and map conveniently to
vector sums. The algorithm1 leverages an interactive ap-
proach in which it first attempts to learn a coarse repre-
sentation of the current data distribution to determine
bin sizes with minimal use of the differential privacy
budget. It then uses these bin sizes to query a popula-
tion sample with a larger share of the privacy budget to
obtain high accuracy final counts. Such an interactive

1 The code is available at https://github.com/google-research/
federated/tree/master/analytics/location_heatmaps.

approach is enabled by frameworks that can repeatedly
query decentralized data from samples of user devices
such as federated analytics [44, 49] and our design is
grounded in experience operationalizing such solutions.

To render the results differentially private under
realistic system assumptions, we first identify a dis-
tributed decomposition of the Geometric distribution.
This provably yields differential privacy [36] under the
integer quantization and modular arithmetic of the se-
cure sum primitive, in contrast to using the more com-
mon Laplace or Gaussian noise mechanisms for differ-
ential privacy. We then devise an approach that over-
provisions noise to account for clients that do not com-
plete the protocol. It operates within a privacy budget
through sets of disjoint clients and using composition
over repeated queries.

In summary, our contributions are the following:
– Introducing a scalable distributed differential pri-

vacy approach building on recent secure multi-party
computation advances for vector sums that yield
provable differential privacy under realistic system
assumptions.

– Proposing a novel adaptive algorithm to determine
communication-efficient representations of high-
dimensional sparse data (e.g., location) that are
compatible with the vector sum primitive and en-
hance accuracy when the data distribution is un-
known or changes dynamically. The algorithm pro-
ceeds interactively, adapting heatmap resolution
and privacy budget using results from prior queries.

– Evaluating the approach using simulations on public
geospatial data, demonstrating high accuracy with
a worst-case communication overhead that is sig-
nificantly smaller than known private protocols of
similar accuracy.

2 Background and Related Work

2.1 Applications

Private mapping of spatial distributions is a key build-
ing block for many real-world applications, thanks in
part to the generality of the problem statement. A spa-
tial distribution can be geospatial, i.e. representing loca-
tion data on Earth. Such data are often collected by per-
sonal devices and therefore tied to the individuals that
use them, leading to immediate privacy concerns re-
gardless of the meanings of the geospatially-distributed
values. Distributions of interest can also exist in other

https://github.com/google-research/federated/tree/master/analytics/location_heatmaps
https://github.com/google-research/federated/tree/master/analytics/location_heatmaps

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 164

(a) original
image

(b) recovered
image with LDP

(eps=1)

(c) recovered image using
our algorithm with

distributed DP (eps=1)

Fig. 1. Algorithms using local DP with ε=1 result in high noise
while our distributed DP algorithm with ε=1 can recover salient
heatmap characteristics.

spaces, including parameter spaces of direct interest,
such as a temperature-humidity “weather space,” or em-
bedding spaces for arbitrary data of nearly any kind.

In this paper, we focus on public health applica-
tions in the geospatial setting, enabling epidemiologists
to answer questions like:
– How is the population distributed over a region?
– Where are the outbreaks of infectious disease?
– Where are traffic patterns most deadly?

without infringing unduly on user privacy.
Evaluating distribution measurements for epidemi-

ological applications is a major challenge because differ-
ent distributional properties are epidemiologically rele-
vant to different diseases or policy decisions [52]. For
example, overestimation and underestimation are not,
in general, equally problematic, nor should the relative
weights of many small errors and few large errors be
the same in every application. Moreover, real-world in-
terventions must be devised with fairness and equity in
mind, not just efficiency [23, 64].

Public health interventions might include emer-
gency medical response, investment in infrastructure by
governments and NGOs, distribution of limited supplies,
and personal or societal behavioral alterations, and each
of these can have dramatic ramifications, including sig-
nificant monetary cost, disruption of livelihoods, and
altered health outcomes (including lives saved or lost).
In the case of a local or even individual-level interven-
tion, such as strict social distancing, each individual de-
cides independently whether the risk of inaction is worth
the cost of intervention. That decision can depend both
on shared environmental factors, such as local disease
prevalence, and on personal factors, such as the indi-
vidual’s medical risk factors, so there is no universal
threshold at which the shared environmental factors be-
come significant.

For simplicity, we focus our analysis on mean
squared error (MSE) of the measured spatial distribu-

tion. As an idealized, motivating example, we consider a
supply-distribution application in which the cost of in-
correct distribution is directly proportional to MSE. To
demonstrate that our algorithm is not overtuned to this
metric or idealized application, we will also more briefly
consider a variety of other recommended measures [52]
of epidemiological distribution error.

2.2 Existing Differential Privacy
Techniques

One way to protect users’ contributions is to use dif-
ferential privacy (DP) [22]. This method provides a
rigorous, mathematical guarantee that the single user’s
contribution does not impact the result of a query. In
the centralized model, a DP mechanism M produces
results from any set S ∈ Range(M(D)) satisfying:

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S],

where the two databases D and D′ differ by adding or
removing one user’s data. In the central differential pri-
vacy model, the service provider typically has access to
the entire database and applies M to results derived
from the data before release. It therefore requires trust
in the service provider.
Local Differential Privacy An alternative model to
centralized differential privacy, which avoids the need
for a trusted aggregator, is to execute the mechanism
M at a datapoint x ∈ D before releasing it to a central
service provider. Local differential privacy (LDP) [26,
45, 60] establishes that for all data points x, x′ ∈ D and
all S ∈ Range(M(D)):

Pr[M(x) ∈ S] ≤ eεPr[M(x′) ∈ S].

Note that local differential privacy also implies cen-
tral differential privacy, that is, it is a strictly stronger
privacy model. However, a straightforward local applica-
tion of the Gaussian or Laplace mechanism significantly
perturbs the input and reduces utility. This is because
of the compounded noise through the strict restrictions
in the local differential privacy model. We demonstrate
this in Figure 1.

2.3 Secure Aggregation

Secure Aggregation (SecAgg) is a cryptographic secure
multiparty computation (MPC) protocol that allows
clients to submit masked vector inputs, such that the

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 165

server can only learn the sum of the clients’ vectors. In
the context of federated analytics, single-server SecAgg
is achieved via secret sharing (i.e. additive masking over
a finite group) [9, 13, 41]. Clients add randomly sam-
pled zero-sum mask vectors by working in the space of
integers modulo m and sampling the coordinates of the
mask uniformly from Zm. This process guarantees that
each client’s masked update is indistinguishable from
random values. However, when all the masked updates
are summed modulo m by the server, the masks cancel
out and the server obtains the exact sum.

Bonawitz et al. [13] presented the first scalable pro-
tocol that is robust to dropouts and corrupt clients pos-
sibly colluding with a dishonest server. Their protocol
requires sharing pairwise masks amongst all participat-
ing clients. In practice, their protocol can support up
to one thousand participating clients in one sum with
vector sizes of one million [13] since both client com-
munication and computation costs scale linearly with
the number of clients. The recent work of Bell et al. [9]
presents a further improvement, where both client com-
putation and communication depend logarithmically on
the number of participating clients. By adopting the im-
proved protocol, we can scale to tens or even hundreds
of thousands of clients per sum. These capabilities rep-
resent several orders of magnitude improvement over
earlier secure multiparty computation solutions for dis-
tributed differential privacy.

While the SecAgg protocol of Bell et al. [9] dis-
tributes computational costs evenly across the clients,
HoneyCrisp [51], a recent MPC protocol for secure ag-
gregation, relies on a small randomly chosen set of
clients (called committee members) for doing the heavy-
lifting. This results in a small average cost for most
clients, at the expense of steep costs for the selected
committee members. The protocol execution involves
a secure pre-processing phase to generate randomness
which is responsible for much of the cost. As stated in
[51], this results in about 5 minutes of compute and
about 3 GB of bandwidth consumption for the commit-
tee, seriously limiting the applicability of the protocol
to mobile devices.

2.4 Distributed DP with SecAgg

While local DP avoids the need for a fully trusted aggre-
gator, it leads to poor utility in practice (see Figure 1)
given its known lower bounds such as the O(

√
n) error

for summation [21, 42, 45]. To overcome this challenge
without fully trusting the server, distributed DP can be

used. Under distributed DP, clients first add noise to
their data locally and then submit their noisy data to
a private aggregation protocol. This ensures that the
server only sees the (differentially private) noisy sum of
the updates.

Much of the recent work on distributed DP fo-
cuses on the shuffled model of DP where the noisy
client updates are shuffled together (i.e. anonymized)
before the server can see them [3–6, 12, 16, 25, 29–
32, 34, 35, 40, 59]. With the exception of the work
by Bittau et. al [12], where the shuffler is instan-
tiated securely using a trusted execution environ-
ment (TEE), these works focus on analyzing privacy-
accuracy-communication trade-offs under an ideal shuf-
fler without instantiating the exact means to implement
the shuffling step. In contrast, our work proposes a com-
plete system design including a concrete single-server
secure aggregation mechanism that builds on the secure
multiparty computation protocol summarized in Section
2.3. A single-server based protocol makes deployment
easier compared to protocols that assume non-colluding
parties (e.g. [59]) because it reduces the need for co-
ordination with external parties. Further, any shuffling-
based solution relies on generic privacy amplification re-
sults (e.g. [27]), which may be optimal order wise but
cannot match the exact privacy-accuracy trade-offs ob-
tained under central DP. In contrast, under SecAgg, we
can characterize the exact distribution of the noise upon
summation, which in practice results in better accuracy
than going through generic privacy amplification.

The combination of SecAgg and distributed DP in
the context of federated analytics is far less studied.
Indeed, the majority of existing works ignored the scal-
ability, finite precision, and modular arithmetic chal-
lenges associated with SecAgg [37, 54, 56]. This is es-
pecially constraining at low SecAgg bit-widths (e.g., in
settings where communication efficiency and scalability
are critical). We bypass these constraints by presenting
a distributed integer-based mechanism and show how
the modular arithmetic associated with SecAgg does not
impact the privacy guarantees and has little effect on
utility, even when clients contribute multiple locations.

Contemporary work by Huang et al. [38] introduces
a similar concept that combines multi-party computa-
tion with local differential privacy. However, their ap-
proach only considers batches of 100 participants and
relies on sketching, which does not reach the accuracy
and communication efficiency of our algorithm as we
show in Section 6.

In the context of training machine learning models,
the recent works of [2, 43] show how distributed discrete

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 166

analogs of the Gaussian mechanism can be carefully
analyzed and used to train high quality models with
communication-constrained secure aggregation. These
distributed discrete mechanisms achieve approximate
differential privacy and work well in the context of in-
teractive model training where privacy budgeting has to
happen throughout thousands of training rounds. Our
work focuses on learning location heatmaps, and we seek
pure differential privacy guarantees.

2.5 DP Histograms and Heatmaps

Prior work on differentially private grids for geospa-
tial data [19, 48] uses adaptive mechanisms for explo-
ration, but assumes central DP and a fixed schedule for
the privacy budget across algorithm levels. Approaches
such as PrivTrie [57] and LDPart [66] use an adaptive
threshold but a fixed privacy budget allocation whereas
we investigate the adaptive privacy allocation profile.
PrivTree [65] also uses adaptive thresholding in a set-
ting analogous to ours, but targets the central model,
and is difficult to port to the distributed differential
privacy setting. Doing so would require a secure imple-
mentation of non-linear operations such as thresholding
and max. These are much less efficient than secure sum-
mation, which suffices for our solution.

The idea of using tree-like data structures for es-
timating histograms over large domains or discovering
heavy hitters has been explored before in [8, 17, 68].
However, the work of [17] predates differential privacy
(i.e. does not offer any DP guarantees) and the Tree-
Hist and Bitstogram algorithms[8] are non-interactive,
rely on sketching, achieve local DP via randomized re-
sponse [60], and assume the existence of public random-
ness. Our approach is interactive, does not use sketch-
ing or offer local DP, and does not require public ran-
domness. Indeed, our work is most closely aligned with
the TrieHH algorithm in [68], an adaptive algorithm for
learning heavy hitters with differential privacy. Yet, our
work is different in several non-trivial ways: (a) TrieHH
relies on random sampling and thresholding to achieve
approximate central DP guarantees, we explicitly use
a distributed integer noise mechanism compatible with
secure aggregation and focus on pure central DP; (b)
TrieHH allows for only extending the leaf nodes at the
lowest level of the tree, we allow the dynamic expan-
sion and collapse of leaf nodes at all levels of the tree;
(c) TrieHH uses a fixed privacy schedule across all sub-
queries, we use a dynamic privacy scheduling scheme.

More broadly, we note that there is a rich body of
theoretical work on distribution learning, frequent se-
quence mining, and heavy-hitter discovery both in the
central and local models of DP [1, 8, 10, 14, 15, 18,
20, 42, 58, 61, 63, 67]. As discussed previously, the
central model of DP assumes that users trust the ser-
vice provider with their raw data while the local model
avoids this assumption but incurs a steep loss in accu-
racy. Our work bridges these existing models of privacy
in that it allows an honest-but-curious service provider
to learn histograms and heatmaps in a centrally differ-
entially private way without observing the users’ data.

3 Problem Definition and Threat
Model

Given a central server S and a set of clients N (with
|N | in the millions) in a metro area, each possessing a
weighted set of locations Di ∼ D where ‖Di‖1 = 1, the
task is to estimate the overall spatial distribution D of
users under distributed differential privacy. In partic-
ular, the goal is to maximize accuracy under a privacy
budget constraint εtotal while minimizing the worst-case
client communication overhead. We detail these goals,
constraints, and assumptions below.
Accuracy and Task Variants In particular, we fo-
cus on user density estimation (counting users in re-
gions) and proportion estimation (measuring regional
rates such as the fraction of the population satisfy-
ing some private property). These two use cases dif-
fer in two key ways: the structure of data that must
be aggregated and the quantification of accuracy. In
terms of data structure, a single count per region suf-
fices for density estimation, while proportion estimation
requires two counts per region (hinting toward general-
izations with k counts). In terms of accuracy, we seek
to optimize distance-from-ground-truth measures such
as mean squared error (MSE) or Lp norms for density
estimation and mean confidence interval size for propor-
tion estimates. Appendix A.1 further expands on differ-
ent metrics that are useful for specific applications.
Privacy Threat Model We consider an adversary
with, simultaneously, observation access to the aggre-
gation server and full control over a small fraction of
compromised clients. That is, the adversary can trace
the execution and observe the state at the server, and
tamper with the execution of compromised clients. The
objective of the adversary is to infer the exact user loca-

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 167

tion of clients that the adversary does not control. Out
of scope are active adversaries that can compromise and
gain access to the set of clients outside their control or
adversaries that seek to poison the results.
Assumptions For simplicity, we start by assuming
that each user reports only a single locationDi = di ∈ D
(e.g., their home address). Our approach scales similarly
when each user supplies a set of locations. We detail that
extension in Section 5.7 and include results in Table 2.

We assume that users who report their location will
reveal their IP address during the data collection proto-
col. In many cases, this can imply location at a coarse
level such as country or even city, but not the fine-
grained locations we seek to protect. We further assume
that a significant number of users (e.g. 100K or more)
occupy areas that are smaller and more private than can
be resolved via IP geolocation.

We assume that clients can be programmed to
transform the data before transmission to the server
(e.g., encode location coordinates into a vector or gener-
ate noise) and have enough resources to run these trans-
formations and the secure aggregation protocol (see Sec-
tion 6 for overhead). We further assume that the server
supports interactive communication with clients and
that the server (and clients) can run the secure aggre-
gation protocol with the size of each aggregation being
limited to Smax << |N | clients (Smax being on the or-
der of thousands whereas N is on the order of millions).

We also assume that the secure aggregation protocol
implementation is correct and the server cannot tamper
with the program code. However, some portion of the
clients q < Smax/2 in a single shard can drop out or be
malicious. We assume that the remaining majority of
clients are correct and argue that it would be difficult
to create a botnet of sufficient size in one metro area to
break this assumption.

4 Distributed Differentially
Private Histograms

Before we present our end-to-end algorithm for learning
complex heatmaps, let us develop a basic distributed dif-
ferential privacy algorithm for learning histograms over
closed, known domains and show how it can handle the
challenges discussed in the introduction: (a) the inte-
ger modulo arithmetic associated with secure aggrega-
tion, (b) secure aggregation shards with a maximum of
thousands (as opposed to millions) of clients, and (c)

Heatmap

signal + noise Secure
Aggregation

Server

Fig. 2. Overview of reporting location data with distributed
differential privacy using secure aggregation.

client dropouts (i.e. clients that are admitted to a shard
but never report back). Even though the solution we
present in this section can be used as is to learn com-
plex, large-scale heatmaps, we will show, in the next
section, that this approach will not provide good utility
and will come at steep communication and computa-
tion costs. To overcome these challenges, we extend this
design through an adaptive hierarchical histogram algo-
rithm that efficiently encodes user location to increase
accuracy and reduce communication overhead.

The most natural way to learn a histogram over lo-
cations with a secure aggregation protocol is to have
participating clients “one-hot” encode their location
into a vector of length equal to the total number of
possible locations2. With such a representation, partic-
ipating clients can simply submit their one-hot encoded
vectors to a secure aggregation protocol that ensures
that the service provider only gets to see the sum, which
is essentially a histogram over all possible locations.
Achieving Distributed Differential Privacy un-
der Integer Modulo Arithmetic While the above
approach ensures that the server cannot learn the lo-
cations of participating clients and only observes a his-
togram over all possible locations, it does not offer any
rigorous privacy guarantee. To achieve such a guaran-
tee, participating clients can add noise locally in a way
that makes the noisy sum differentially private (see Fig-
ure 2). However, because secure aggregation operates
over integers modulo m arithmetic this rules out tech-
niques that add continuous (floating point) noise, in-
cluding the widely used Gaussian or Laplace mecha-
nisms. We bypass this issue by having clients: (a) add
integer noise drawn from the difference of two indepen-
dent Pólya random variables to their one-hot encoded
vectors, and (b) modulo clip the entries of the noisy vec-

2 This assumes that the set of all possible locations is finite, as
could be achieved by quantizing the exact locations into a fixed
grid of locations. We expand on this in Section 5.1.

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 168

tor (i.e. apply entry-wise modulo m) before submitting
the clipped noisy values to a secure aggregation proto-
col.

Our approach is summarized in Algorithm 1. For the
available set of users N we pick a subset U and compute
a histogram as a vector that we later project to a map
using some encoding vmap (we use a quadtree that maps
1-dimensional vector to a 2-dimensional map). We now
analyze the end-to-end differential privacy guarantees.

Definition 4.1 (Pólya Random Variables). A random
variable X is a Pólya random variable with parameters
(α, β) if it has a probability mass function given by

P (X = k) =
(
α+ k − 1
α− 1

)
βk(1− β)α, (1)

for k ∈ N and
(
α+k−1
α−1

)
defined using Gamma functions.

We denote this distribution by Pólya(α, β). To draw X ∼
Pólya(α, β), we first draw λ ∼ Gamma(α, β/(1 − β)),
where Gamma(.) is the Gamma distribution, and then
use λ to draw X ∼ Poi(λ), where Poi(.) is the Poisson
distribution.

Theorem 4.1. (Distributed Discrete Laplace Mecha-
nism). Assume Xi and Yi are independent Pólya(α, β)
random variables for i ∈ {1, · · · , Smax}. Let α = 1/Smax
and β = e−ε/∆. Then the securely aggregated query(

Smax∑
i=1

(vectori +Xi − Yi) mod m

)
mod m, (2)

where vectori represents client i’s encoded integer vector
with L1 norm bounded by ∆, is ε differentially private.

The proof of the above theorem hinges on the following
two observations. First,

Z =
Smax∑
i=1

Xi − Yi (3)

is distributed according to

P (Z = k) = 1− e−ε/∆

1 + e−ε/∆
e−ε|k|/∆, (4)

which is a discrete version of the Laplace noise that
achieves ε differential privacy when added to queries
with L1 sensitivity equal to ∆ [33]. See Theorem 5.1 in
[36] for a detailed proof of this claim for ∆ = 1. Sec-
ond, the modulo clipping operation can be viewed as
post-processing to an already differential private query.
To view this, observe that (

∑
xi mod m) mod m =

(
∑
xi) mod m. This means that the modulo clipping

Algorithm 1 Basic Histogram estimation with secure
aggregation
1: Parameters: available users N , number of users

queried per histogram U , privacy budget εtotal,
SecAgg shard size Smax, SecAgg precision m, lo-
cation encoding map vmap.

2: Constants: expected dropout rate δdrop=0.95,
query sensitivity ∆=1

3: function Histogram(ε,N , U, Smax, vmap)
4: # derive noise parameters using Eq. 5
5: α = 1/((1− δdrop) · Smax)
6: β = e−ε/∆

7: shards = U/Smax
8: for SecAgg shard r in shards do
9: ur ← sample Smax from N (no replacement)

10: # Run secure aggregation on clients ur
11: histr = SecAgg(method=ClientUpdate,

args=(α, β, vmap), users=ur)
12: hist =

∑shards
r=1 histr

13: map = project_to_map(hist,vmap)
14: return hist,map

15: function ClientUpdate(α, β, vmap)
16: location = retrieve_location()
17: vector = encode(location,vmap)
18: vector = ModuloClip(vector+Noise(α, β),m)
19: return vector

20: function Noise(α, β)
21: X,Y ∼ Pólya(α, β)
22: return X − Y

23: function ModuloClip(noisy_vector, m)
24: return noisy_vector mod m

step applied by each client commutes with the mod-
ulo sum, thus appearing as a post-processing to a query
that was noised with discrete Laplace noise. This proves
that our approach achieves pure differential privacy irre-
spective of the choice of secure aggregation precision m.
Having said that,m does play a critical role in determin-
ing the accuracy of our approach – aggressive modulo
clipping saves bandwidth and computations but intro-
duces more bias. We investigate the values of m that
preserve accuracy in Section A.3.
Multiple Aggregation Shards In order to reduce
communication costs and make client cohort assembly
easier, secure aggregation shards are typically limited in
size, say to Smax ≤ 10, 000 clients [13]. The above rou-
tine can be run multiple times separately (shown on line

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 169

6 of Algorithm 1) to expand the reach of the algorithm.
And privacy budgeting is not required in this case be-
cause different shards are run on disjoint sets of users.
Nevertheless, the noise added to each shard compounds
across shards. Shard size thus plays a crucial role, medi-
ating a tradeoff between accuracy and communication
costs (as well as cohort assembly difficulty). We investi-
gate the effect of the shard size on the accuracy of the
learned heatmaps in Section A.3.
Handling Dropouts and Adversarial Clients The
above approach gives provable pure differential privacy
guarantees as long as all participating clients follow the
protocol faithfully until the end. In practice, a small
fraction of clients may be adversarial or drop out in the
middle of a secure aggregation shard. If unaddressed,
the server observes an inaccurate sum of noise shares
(due to dropped out or malfunctioning clients). There-
fore, the partial sum of noise shares is not statistically
equivalent to sampling from a discrete Laplace distribu-
tion, thus reducing the privacy guarantees. To account
for this issue, we propose scaling up the standard de-
viation of the Pólya random variables used to generate
the local noise shares. For example, if we anticipate a
maximum of 5% noise dropout rate δdrop = 0.05, then
in the worst case, we end up with 0.95Smax participat-
ing clients (as opposed to Smax clients) and call it DP
shard size. This means that the α parameter of the Pólya
random variables should be scaled as 1

(1−δdrop)Smax
=

1/(0.95Smax) as opposed to 1/Smax. Finally, secure ag-
gregation fails to give the correct sum when a substan-
tial fraction of the clients, more than δdrop, drop out
[7, 13]. This means that we can design for this worst-case
scenario to ensure that either the server sees a provably
differentially private sum or nothing. See Appendix A.3
for an analysis of the impact of noise dropouts on the
resulting quality of learned heatmaps. Adversaries that
seek to poison the heatmap, for example by adding ex-
cessive noise, are out of scope for this work.

5 Adaptive Hierarchical
Histograms

The basic primitive presented in the previous section
can be used as-is to learn complex heatmaps. However,
as we show in Table 1 of Section 6, this simple approach
fails to provide high accuracy when the underlying
heatmap is large. To overcome this issue, we now extend
the basic primitive through an adaptive hierarchical his-

togram algorithm that executes a variable-resolution
differentially private histogram query through a series
of sub-queries, whose parameters (both domain and pri-
vacy budget allocation) are determined by the result of
the previous sub-queries. Each sub-query can contain
many shards, in which clients’ data is queried via se-
cure aggregation.

5.1 Baselines and Their Shortcomings

Let us first consider known approaches to further under-
stand the trade-offs between accuracy and communica-
tion overhead. For simplicity, let us assume that each
client only reports one location.
Flat One-Hot Encoding In this approach, we ap-
ply Algorithm 1’s basic histogram estimation to a single
spatial histogram over regional cells of uniform spatial
dimension. Given a target area (say, a city metro area)
and a desired maximum spatial resolution, we define a
uniform raster of D cells and associated vmap (the map-
ping from locations to vectors in Algorithm 1). Clients
determine which raster cell their location falls into, en-
code it into a one-hot vector of size D, add differential
privacy noise, and send this vector to the server via se-
cure aggregation as described in Algorithm 1.

This approach thus incurs communication costs pro-
portional to D, and its accuracy is very sensitive to the
data distribution: if the raster is too fine, resulting in a
small number of users in each cell, then their signal is
overpowered by differential privacy noise. On the other
hand, making the raster coarse reduces D and thus com-
munication overhead, but does not allow accurate esti-
mation of the distribution over space.
Hierarchical One-Hot Encoding Before running
the algorithm, we define a resolution hierarchy, such as
the L resolution levels P × P , 2P × 2P , ..., 2L−1P ×
2L−1P . Note that each regional cell at level ` is com-
posed exactly of 4 cells at level `+1. Each client divides
their privacy budget εtotal evenly among the L resolu-
tion levels and runs the flat one-hot encoding algorithm
at each level, optionally appending the L one-hot encod-
ings together before sending the results to the server via
a single secure aggregation. The server then selects, for
each subregion of the target area, the resolution whose
result maximizes map accuracy, discarding data from
the unused resolutions.

This approach resolves the problem of overpower-
ing a high resolution signal with noise by allowing the
server to select a resolution with a good signal-to-noise

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 170

Adaptive Hierarchical AlgorithmUser DeviceUser DeviceUser Device

Secure
Aggregation

Encode
location as

a vector

Add DP
noise

Submit for
secure

aggregation

Reconstruct

Communicate privacy budget 𝜀 and the new tree for location mapping

Modulo
clip

L1

L2

L3

Mapping tree

X

L1

L2

L3

Update tree

Expand and collapse nodes using DP data

X

L1

L2

L3

Project

Fig. 3. System design.

ratio during postprocessing. However, it spends privacy
budget inefficiently by collecting and then discarding
data from the other L−1 resolutions. Moreover, it does
not reduce the communication overhead noted above; in
fact, the cost is even larger (by a constant factor that
depends on the arity of the resolution hierarchy).
Count–Min (CM) Sketch Hierarchical
Encoding The previous two approaches require com-
munication costs that scale with the size D of the target
area’s raster(s). This is a problem in settings where D
is much larger than the number of clients Smax who
are involved in each aggregation. CM sketches address
precisely this problem by using O(Smax logSmax) space
instead of O(D) space as in the two previous algorithms.
This algorithm proceeds exactly like the previous one
except that it encodes each of the intermediate L his-
tograms as a sketch, and thus trades O(D) communi-
cation for O(LSmax logSmax) communication, which is
beneficial for large D.

Nevertheless, since clients still transmit location
information associated with every resolution and the
server only selects one resolution per subregion, discard-
ing the rest of the data, this approach retains the core
wastefulness of the hierarchical one-hot encoding algo-
rithm, failing to improve its accuracy.

5.2 Leveraging Interactivity with Adaptive
Hierarchical Histograms

Our algorithm employs a series of sub-queries to inter-
actively partition and re-partition the spatial map into
cells of different sizes, each with a good signal-to-noise
ratio (see Figure 3). We leverage this interactivity by
introducing adaptivity with regard to: (i) adapting the
spatial resolution in each sub-query and (ii) adapting
the privacy budget allocated to each sub-query.
Adaptive Resolution By utilizing interactivity, our
algorithm can avoid collecting data from the too-fine

regions that would be discarded during postprocessing
by the non-interactive approaches outlined above, thus
reducing the communication costs drastically without
impacting accuracy. We represent the spatial partition
as a quaternary tree in which each node represents a re-
gional cell and each child node represents a quadrant of
its parent’s region. At each iteration, clients report their
data to the lowest node in the tree whose corresponding
region contains their location, i.e. by determining the
longest matching prefix in the tree structure. The server
aggregates the reported locations and then considers the
signal to noise ratio of each node to decide whether to
split that region into its four children, collapse it into
its parents, or retain it for the next iteration.

Naively, the server could split and collapse based
on constant, data-independent thresholds for the num-
ber of required reports in a subregion. We can improve
upon this by considering the factors that limit the op-
timal resolution: sampling noise and differential privacy
noise. In Section 5.3, we introduce a heuristic adaptive
mechanism to maximize accuracy by selectively split-
ting or collapsing regions based on the data from prior
sub-queries and both sources of expected noise.
Adaptive Privacy In an interactive protocol, each
sub-query incurs a privacy cost, raising the question of
how the overall privacy budget εtotal should be allocated
over the sequence of interactive sub-queries. When the
algorithm starts without a good prior for the actual dis-
tribution, the initial sub-queries are too coarse or too
fine to capture the actual client distribution and can be
viewed as queries to optimize the final query partition
rather than measure client density within that partition.

In Section 5.4, we introduce an adaptive privacy
budget schedule to spend only as much privacy bud-
get as is necessary on the initial resolution-optimization
queries and to allocate as much privacy budget as pos-
sible to the final density-estimation query using an ap-
propriate partition.

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 171

5.3 Adapting Spatial Resolution

Given a starting partition, the algorithm executes a sub-
query and uses its results to adapt the resolution for the
next sub-query. In particular, it splits cells if the differ-
entially private count is sufficiently high that a finer
resolution is feasible. If the count is too low on a cell,
it also has the option to revert back to coarser cells.
It then generates a new query and repeats the process.
Note that the algorithm makes these decisions indepen-
dently on each cell, which can result in a non-uniform
partition with finer resolution in some areas and coarser
resolution in others. The algorithm terminates when the
finest possible resolution is reached in each cell as deter-
mined by an expansion criterion and then reports final
counts for this partition.

The algorithm stops dividing a cell into finer cells
when there is a low probability to learn more about the
spatial distribution within the cell, given the expected
differential privacy noise and finer-cell counts. More in-
tuitively, the algorithm stops when further cell splitting
would render the counts small enough that they become
indistinguishable from noise.

Let εtotal be the total privacy budget for the map
and let ε` be the privacy loss incurred during sub-
query `. The remaining budget at sub-query j is then
εrem = εtotal −

∑j−1
`=1 ε`. Assuming the discrete Laplace

differential privacy mechanism, we can use this remain-
ing budget to estimate a lower bound for the noise stan-
dard deviation at any remaining sub-query as follows:

σrem = τ(εrem,∆) =
√

2β/(1− β)2, (5)

where β = e−εrem/∆.
We can learn more by splitting cell when the sig-

nal from users (e.g., count) significantly exceeds the ex-
pected noise. Given ni users observed in a cell i during
the previous sub-query j − 1, we expect ni users spread
over the four sub-cells if we split this cell during the
next sub-query and the maximum expected count is ni
(if they were all located in the same sub-cell). We there-
fore heuristically set the stopping criterion as

ni > kσrem (6)

where k is a parameter than can be adjusted. We
use k = 2 standard deviations in our implementation,
meaning that the best case expected ni should exceed
the 95th-percentile of the noise lower bound.

A similar criterion can also be used to collapse cells
when the signal becomes indistinguishable from noise
to restore higher accuracy. In the context of our par-

tition tree T , we collapse cells by simply deleting the
corresponding node. This means that if some leaf nodes
contain counts indistinguishable from noise, they can be
recombined in the following sub-queries.

We allow nodes to be partially split, i.e. only a sub-
set of the four child nodes are present. Users report their
data at the lowest node (longest matching prefix) in the
tree that covers their raw location, so if a node has just
one child with sufficient signal, the data from the re-
maining three child regions get aggregated together. If
these remaining regions associated with the parent node
still have insufficient signal, that node can be collapsed
again so that its signal will be aggregated into its parent
region. It is therefore important to choose a representa-
tion of T which permits orphaned nodes.

5.4 Adapting Privacy Budget Schedule

Our algorithm aims for an accurate and fine-grained
grid given a privacy budget over the entire sequence
of sub-queries. One approach is simply to use a fixed
schedule of the allocated budget per query based on a
maximum number of sub-queries. However, the server
can observe the differentially private results between
the sub-queries and adjust the budget for the next sub-
query based on the current state of the grid and partic-
ipating users to make accurate decisions on splitting or
collapsing nodes in the tree.

We aim to use just enough of the privacy budget for
the next sub-query to make informed decisions on where
to split nodes. Specifically, the expected user count per
cell should significantly exceed the expected differential
privacy noise. The expected user count per cell is simply
U/T , where U is the number of users that are part of
the sub-query and T is the number of cells and size
of the securely aggregated vector (in terms of the tree
T , this is the number of nodes with fewer than four
children). We accomplish this by estimating a target
standard deviation of the differential privacy noise as

σ̃ = τtarget(c, U, T, Smax) = c
U

T

√
dSmax/Ue (7)

where c is a calibration parameter (typically c < 1)
and Smax is the maximum number of users in one secure
aggregation shard. Calibration parameter c can depend
on the shape of distribution (uniform or heavily con-
centrated in certain areas). Lower values of c results in
accurate splits but fewer queries (good for uniform dis-
tributions) and higher values of c results in more queries
but lower split accuracy (good for concentrated cases).

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 172

Furthermore, setting the correct value of c depends on
the task, e.g. discovering the most accurate location of
few hotspots might need to increase c, whether gener-
ally accurate map might need lower c value. In practice,
the optimal c can be estimated on similar inputs (e.g.
maps of other cities) or prior runs of the algorithm.

The last term in Equation 7 accounts for noise vari-
ance accumulation when the number of users exceeds
the limit on one secure aggregation shard and summing
over multiple secure aggregations is necessary. By solv-
ing Equation 5 for ε we can use derived standard devi-
ation value to spend privacy budget:

ε̃ = φ(σ) = −∆ · ln(σ
2 + 1−

√
2σ2 + 1)

σ2) (8)

To manage the remaining privacy budget we create
the following rule:

ε = γ(εrem, ε̃) =

{
ε̃, if bε̃ <= εrem

εrem otherwise
(9)

Intuitively, we use ε̃ if enough privacy budget re-
mains for a subsequent sub-query. Otherwise, we set
the ε to use the remainder of the privacy budget to
maximize accuracy and the algorithm terminates after
this last query. The expansion parameter b controls how
much more budget we need for the next sub-query, e.g.
lower b is useful when we expand only few leafs and
larger b when we expand all the leafs. We then generate
noise using derived ε through Eq. 5 and apply it to the
user vector. This approach allocates more noise when
the number of cells is small, such as in the initial sub-
queries starting from the root of the tree. Conversely, it
allocates less noise as the resolution increases.

5.5 Algorithm and Privacy Guarantees

Algorithm 2 shows the aggregate of the methods pro-
posed above: adapting resolution and privacy budget.
Communication Overhead This algorithm signifi-
cantly reduces the amount of data clients need to send
to the server by optimizing the vector size. For each al-
gorithm sub-query, a sampled client sends a vector of
length equal to a number of nodes in the tree that do
not have a full set of children.
Privacy Guarantees We set a total privacy budget
εtot. The algorithm combines privacy budgets across
multiple sub-queries q using adaptive composition [50],

Algorithm 2 Extending HISTOGRAM (Algorithm 1)
1: Inputs: available users N , number of users queried

per histogram U , privacy budget εtot, SecAgg shard
size Smax, calibration c.

2: function AdaptiveHierarchicalHist(N , U, εtot)
3: sub-query q=0
4: remaining budget εrem=εtot
5: Tq = init_prefix_tree()
6: while εrem > 0 do
7: q = q+1 # next sub-query
8: # Get target threshold using Eq. 7
9: σ̃q = τtarget(c, Tq, U, εrem, Smax)

10: # Get corresponding budget using Eq. 8
11: εq = φ(σ̃q)
12: # Utilize Eq. 9 to prevent overflow of εrem
13: εq = γ(εrem, εq)
14: εrem = εrem − εq
15: # Use Algorithm 1
16: (hist,map) = Histogram(εq,N , U, Smax, T)
17: Tq+1 = UpdateTree(Tq, hist, σ̃q)
18: return (hist,map)

19: function UpdateTree(tree T , histogram hist,
threshold t)

20: for all node ∈ T do
21: count = hist[node]
22: if count>t then
23: node.split()
24: if count<= 1

4 t then
25: node.collapse()
26: return T

i.e. we spend budget εq in the q-th sub-query and ensure
that

∑
q εq ≤ εtot. For each SecAgg shard we rely on pri-

vacy guarantees of distributed DP from Equations 2, 4
that allow each user to add difference between two Pólya
variables to obtain discrete Laplace noise.

Note that, while at each sub-query q we can run
multiple randomly constructed shards of secure aggre-
gation, these are all disjoint, and therefore regardless of
a number of shards the algorithm only spends εq bud-
get. This fact, combined with the security of the under-
lying Secure Aggregation protocol Π, implies that an at-
tacker that is consistent with the threat model of Π will
only observe a differentially private result throughout
the protocol execution. This end-to-end privacy guar-
antee of Algorithm 2 is stated informally in the follow-
ing lemma, assuming that the underlying aggregation
protocol is the one by Bell et al. [9].

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 173

0 10 20 30 40 50

reported users in a location

Split
threshold

Collapse
threshold

Collapse
unpopulated

regions

Expand
populated
region

Regions and counts
at sub-query 𝑞

Regions and counts
at sub-query 𝑞 + 1

Fig. 4. Node expansion and collapse effect.

Lemma 5.1. Let A be an adversary controlling a mi-
nority of the clients, and observing the execution trace
of the server. The view of A in an execution of Algo-
rithm 2 is computationally εtot-DP, even if an arbitrary
number of honest clients drop out.

SecAgg relies on standard cryptographic primitives (e.g.
authenticated encryption) that are defined in terms of
a computationally bounded adversary. Our distributed
DP guarantee depends on the security of the SecAgg
protocol, and thus holds against probabilistic polyno-
mial time adversaries. This notion is described in the
literature as “computational differential privacy” [46].

5.6 Implementation Details

As described above, we define a hierarchy over a space
using a quaternary tree in which each node represents
a rectangular region and has up to four children rep-
resenting quadrants of the rectangle. Unlike the well-
known quadtree [53] structure, we do not require each
node to be either a leaf node or have exactly four chil-
dren; a node with one to three children represents all of
the remaining quadrants not represented explicitly by
descendants. Moreover, orphaned child nodes are per-
mitted such that, for example, a node could have a sin-
gle grandchild but no children, in which case the node
represents the entire region excluding the sixteenth as-
sociated with the grandchild. All nodes with fewer than
four children can accumulate counts from clients, so
each such node is mapped to the index of a vector ele-
ment that accumulates counts for its associated region.
Other branching factors are possible and could improve

performance on particular datasets. Probabilistic struc-
tures like Mondrian trees could also be used, but they
require multiple iterations over data.
Transforming Coordinates to a Bitstring Given
a maximum depth of the tree, each location coordinate
can be mapped to the deepest node of the tree that it
falls into. Node IDs can be assigned in the form of a
bitstring based on the node’s position in the tree. The
empty string represents root and, for a branching fac-
tor of 4, we traverse the tree appending at each level a
two-bit suffix {00}, {01}, {10}, or {11} corresponding to
the choice of the NW, NE, SE, or SW quadrant of the
parent. The resolution is thus determined by the node’s
depth in the tree (or, equivalently, its ID length).

For example, location (x = 12, y = 5) on the 16× 16
map becomes (x = 1100, y = 0101). By grouping to-
gether the first bits for each dimension—in this case 1
for coordinate x and 0 for coordinate y—we construct
the first non-root ancestor node id {10}. We then ap-
pend the next most significant bits from each dimen-
sion in turn such that the full sequence of node ids
from largest to smallest region containing the location is
{} → {10} → {10/11} → {10/11/00} → {10/11/00/01}
(with slashes included here between each quadrant suf-
fix for readability only). When reporting location, each
client contributes data to the vector element corre-
sponding to the longest node id in T which matches
the prefix of that client’s location.

5.7 Multiple Locations Per User

Let us now consider the case where users can contribute
multiple locations to a histogram. One approach is to
simply adjust the sensitivity to account for multiple lo-
cations. This can be sufficient if all users contribute the
same number of locations, though in practice it is com-
mon that some users visited many more locations than
others. One way to handle the latter is to limit user
contributions to a maximum per user (say, one location
per user) and adjust the sensitivity to this maximum.
However this can add bias and significantly undermine
the utility of the resulting map.

We therefore propose to preserve user-level privacy
of location traces and limit each user’s contribution
through weighted normalization. This recognizes that
many applications benefit from weighting locations ac-
cording to some metric such as fraction of time spent
in that location. For a given level and state of the his-
togram tree the user reports all weighted locations and
normalizes the vector to have L1-sensitivity of 1. This

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 174

eps: 0.0036. Size: 4
MSE: 1.35e-12

eps: 0.0143. Size: 16
MSE: 1.09e-12

eps: 0.0572. Size: 64
MSE: 8.83e-13

eps: 0.2205. Size: 247
MSE: 7.68e-13

eps: 0.7044. Size: 913
MSE: 7.02e-13

Original image

Fig. 5. Algorithm results for the Manhattan map. We run our algorithm with ε = 1 budget across 100, 000 users, dropout 10%,
Smax = 10, 000 and size of the distributed DP shard 9, 000.

results in floating point values, however, that are not
compatible with secure aggregation, which operates over
integers in a finite group.

To comply with discrete methods we add a scaling
constant γ that will scale L1-sensitivity and correspond-
ingly scale the discrete geometric noise. After scaling by
γ we randomly round the resulting numbers to integers,
e.g. a value 0.8 is rounded to 0 with probability 20%
and 1 with probability 80%. For a d-dimensional vector
that is randomly rounded there is some chance that all
elements of the vector will be rounded up, changing L1-
sensitivity from γ to γ+ d. Therefore, we set sensitivity
while computing privacy budget to γ + d.

Once the vectors from reporting users summed up in
the shard we scale the result back. Note, that scaling all
the values and performing secure aggregation may result
in overflow during quantization (see Appendix A.3), and
requires controlling scaling γ, secure aggregation shard
size, and modulo clipping.

This method achieves pure DP. In particular, the
devices: (1) form an all zero vector representing all pos-
sible locations they could “vote on” depending on the
tree learned so far, (2) increment the counts of loca-
tions they are in, (3) normalize the vector by its L1
norm (i.e. divide by the total number of locations they
voted on), (4) scale the vector by a large number γ,
(5) stochastically round each entry of the vector to the
nearest integer. If the vector has length d, then the nor-
malized, scaled, and rounded vector will always have an
L1 norm≤ γ + d. Therefore, we can use the distributed
discrete Laplace mechanism with a sensitivity of γ + d

to ensure pure DP. The server can divide back by γ af-
ter securely summing the devices’ noisy vectors. This
ensures that the extra blowup in noise variance (due to
the rounding step) is at most a factor of (1+d/γ). There-
fore, we choose γ to be much larger than d to mitigate
the blowup, i.e. 1 + d/γ ≈ 1.

6 Evaluation
We evaluate our design on public location data in terms
of density estimation accuracy and communication cost.

6.1 Experimental Setup

The algorithms are implemented using NumPy and Ten-
sorflow Federated [39] and executed on a workstation.
Datasets We derive location datasets from public fine-
grained population heatmap images in three areas with
different spatial and population distribution character-
istics. In particular, we use a heatmap of Manhattan
released by the New York Times [55] (also used in [24])
and a heatmap of Mayotte and Lagos, Nigeria obtained
from the Humanitarian Data Exchange [28] website. All
heatmaps are cropped to the resolution of 1024× 1024.

These heatmaps do not provide information per
user. Therefore to derive a distribution of user locations,
we interpret the luminosity value of a pixel located at
the (x, y) coordinate in the image as users being located
at that coordinate. Each simulated user in the gener-
ated dataset is assigned a single location. This results
in 54, 599, 988 users for Manhattan, 242, 528 for May-
otte, and 9, 578, 296 for Lagos.
Task We formulate the task of reconstructing the loca-
tion heatmap as a density estimation problem. We set
the privacy budget to ε = 1.
Accuracy Metrics We focus on the mean squared er-
ror (MSE) and L1 metrics—common metrics for density
estimation tasks. To compute MSE, let functions f (for
the original map) and f∗ (for the algorithm’s output) re-
turn normalized density values for any coordinate (x, y)
in the original map. Since the resolution of the algorithm
output can be coarser than the original map, the corre-
sponding tree may not have a leaf node matching only
this coordinate. In this case, we uniformly distribute the
value from the deepest node that still encompasses this

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 175

coordinate over the coordinates not covered by any of
its children. That is, a node representing a P ×P region
with value v and ψ coordinates covered by its children
would yield a value of v/(k2 − ψ) for coordinates not
covered by children. Given these functions, MSE is:

MSE(f∗, f) = 1
n2

n∑
x=1

n∑
y=1

(f∗(x, y)− f(x, y))2

Similarly we compute an L1 distance metric. Our al-
gorithm works on a sample of the simulated user data,
and cannot fully recover the original image, even with-
out any differentially private noise due to sampling er-
ror. Additionally, binning size (or tree depth) impacts
the error – some small bins might have no data while
larger bins provide inaccurate count.

6.2 Accuracy and Communication
Efficiency

We compare our algorithm to the baselines described
in Section 5.1 on a number of benchmarks. A good al-
gorithm should reconstruct the original heatmap both
with low error and low communication costs while sat-
isfying privacy constraints. The NYC map has a max-
imum resolution of 210 × 210 = 22∗10 that corresponds
to a 10 level quadtree that can be built over the map.
In our setting we allow 10, 000 clients to participate in
the algorithm and aim to preserve total privacy budget
of ε = 1 per user. Users can send a vector of integers to
the server using secure aggregation but can obtain the
location tree in the clear as the intermediate trees are
differentially private. Table 1 shows the results.
Non-Interactive Baselines We begin with a non-
interactive setting where the server can only receive one
response from each of the 10, 000 users.

The total number of users presented on the original
map is 55 million and sampling only 10, 000 user location
will result in some inaccuracy of the result even without
privacy constraints. We estimate this sampling error via
a non-private baseline in which users report their loca-
tions in plain to the server. As the server has access to
all 10, 000 locations, we build a map for every level of
the quadtree and pick the level that produces the best
metric. The result we obtain is MSE = 7.75e−13 with
only 2 integer coordinates communicated to the server.

With a flat one-hot encoding, the target resolution is
chosen a priori. Users report their locations at the finest
resolution in our dataset via a vector of length 22∗10.

This allows the addition of distributed discrete Laplace
differential privacy noise to each coordinate during ag-
gregation, but those coordinates will only accumulate
signal from a few users due to their sparsity at the
finest resolution, resulting in an error 41.4e−13 that has
no meaningful result. Furthermore, this approach incurs
overhead cost of 22∗10 integers per user. We cannot eas-
ily postprocess this result into a coarser resolution by
summing the values at neighboring coordinates since the
noise would still dominate. Alternatively, we could guess
a coarser target resolution to obtain more signal at less
communication overhead but risk unnecessary loss of
resolution if users are clustered in a few locations.

Under hierarchical one-hot encoding, users report
their location for every quadtree level using budget
ε = 0.1 per each level. The server analyses reported vec-
tors and picks the best split. For this evaluation, we use
the split that achieves the lowest MSE compared to the
ground truth. In practice, the error would be greater due
to probabilistic decisions based on expected noise. The
communication overhead is a sum of coordinate vectors
from 22∗1 to 22∗10, total of 1, 398, 100 vector elements
per user. The algorithm achieves 8.81e−13 MSE, only
adding 15% error over the non-private solution.

Count-Min sketching can reduce the reported vec-
tor size if the client locations are sparse compared to
the dimension of the aggregated quadtree levels. We de-
fine a count-min sketch with 2, 000 width and 20 depth
that achieves error below 10 with probability 0.001 for
10, 000 user reports. To achieve the same differential pri-
vacy guarantees we increase the sensitivity of each re-
port proportional to the sketch’s depth. Users report 10
times on different prefixes of their location using the
provided sketch achieving higher error of 8.81e−13 but
reducing communication costs to 400, 000.

The Adaptive grid method [48] can be considered
a partially interactive algorithm since it performs two
queries. The first query obtains counts on a uniform
10×10 grid. The second query is with a refined partition,
where each of the aforementioned grid cells is further di-
vided into a n×n sub-grid. Here, n =

√
N ′(1−α)ε

c2
, where

N ′ is a current count in that region, α is a budget share
and c2 is a hyperparameter. Following the guidelines
we set α=0.5 and c2=10. To make this compatible with
our distributed setting, we use our Pólya mechanism in-
stead of the central differential privacy mechanism. This
method, reduces communication by eliminating hierar-
chical structure, but provides lower accuracy due to its
single attempt to partition the map and does not im-
prove with more users participating in the algorithm.

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 176

Table 1. Density estimation accuracy (MSE) and communication overhead (vector size) for different user sample sizes with privacy
budget ε = 1 and secure aggregation shard size Smax = 10, 000. Communication overhead sums vector sizes for every algorithm level.

10k users 100k users 100k users
Algorithm (no dropout) (no dropout) (10% drop)

MSE (e-13) Comm MSE (e-13) Comm MSE (e-13) Comm

Non-interactive
Non-private 7.75 2 6.19 2 6.55 2
Flat 41.40 1, 048, 576 21.40 1, 048, 576 21.93 1, 048, 576
Hierarchical 8.81 1, 398, 100 7.75 1, 398, 100 7.79 1, 398, 100
CM-sketch based 11.62 40, 000 11.69 40, 000 11.73 40, 000
Adaptive-grid [48] 9.67 460 9.89 3, 448 9.96 2, 882
Spatial decomposition [19] 8.56 1, 048, 576 7.72 1, 048, 576 7.78 1, 048, 576

Ours (scheduled ε, adaptive T) 7.88 340 6.99 1254 7.02 1244

Our Algorithm
MSE: 3.98e-11

Mayotte
(original)

Lagos
(original)

Our Algorithm
MSE: 1.43e-12

Fig. 6. Visual comparison of original (left) and differentially
private heatmap (right) on two location datasets (100k users
sampled) using privacy budget ε = 1.

We adapt differentially private spatial decomposi-
tion [19] to our distributed setting using the proposed
geometric budget. This method is non-interactive and
assigns more privacy budget to higher levels of the tree
to obtain correct initial splits unlike our approach that
saves more budget for later layers. The result of the
best layer is better than the hierarchical one-hot encod-
ing, however the algorithm does not use the threshold
to split the tree and due to specifics of the budget al-
location deeper layers are less accurate and consume
communication budget.
Our Algorithm Interactivity enables communication
savings by only querying data at granularities with suf-
ficient client density. Recall that our algorithm defines a
privacy schedule proportional to the number of regions
in every level so that the algorithm has clear stopping
criteria preventing unnecessary communication with lit-
tle utility and wasted budget. Furthermore, a thresh-
old that adapts to the amount of applied noise allows

reaching a fine level with a more accurate quaternary
tree split, resulting in 7.88e−13 error which is only 1.7%
more than the original sampling error in a non-private
algorithm. The algorithm achieves this with a communi-
cation cost (vector size) of 340, which is orders of mag-
nitude lower communication compared to the other pri-
vate baselines. We further study hyperparameter tuning
of our algorithm in Appendix A.
Effects on Other Datasets We pick maps from
the Humanitarian Data Exchange for the archipelago
of Mayotte, with population sparsely spread along the
coasts, and for Lagos, Nigeria, with population spread
across the whole map. For Manhattan, we pick areas of
1024×1024 cells. The selection of Lagos’s map has a to-
tal of 9, 578, 296 participants and Mayotte has 239, 880.

Figure 6 visually compares the density estimation
accuracy of our algorithm. When using the same pa-
rameters as for the NYC map we reconstruct Mayotte’s
map with error 3.98e−11 and total communication of
929 whereas an interactive fixed epsilon, non-adaptive
threshold gives 4.45e−11 with communication 27, 022.
For Lagos, our algorithm obtains error 1.43e−12 and 291
overhead compared to 1.82e−12 with overhead 41, 233.
Multiple Locations per User For this experiment
we use a location check-in dataset from Tokyo [62] since
it encodes which locations were visited by the same user.
In absence of sufficient temporal information, we sim-
ply treat user location data as a multiset with integer
visits to each location. There are a total of 2, 293 users
and 573, 695 locations. We preprocess the dataset into
the grid of 64× 64 and run our algorithm with different
scaling γ and different quantization, i.e. modulo clipping
constraints. Recall that for the multi-location setting we
generate noise with sensitivity γ + d where d represents
dimensions of the reported vector. As baselines we run

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 177

Table 2. Multiple locations per user extension. ε = 1.

Algorithm γ clip MSE (e-7) L1 (e-2) Comm

Non-private 1 16 1.2 2.64 5, 460
Single location 1 16 13.0 9.7 293
Multi-location 1 16 18.3 11.6 1, 108
Multi-location 102 16 19.2 10.8 1, 523
Multi-location 102 32 16.9 10.8 1, 331
Multi-location 104 32 7.7 6.8 1, 746
Multi-location 106 32 8.3 7.9 1, 218

our algorithm without privacy constraints and a single-
location version by simply picking the most visited lo-
cation for each user. As we increase scaling we also in-
crease the added noise and therefore can cause overflow.
Table 2 shows this effect, increasing the scaling factor
first improves results until it overflows on clipping.

7 Discussion

Communication and Computation Costs for
SecAgg Our analysis so far has not considered ad-
ditional communication overhead imposed by the se-
cure aggregation protocol. For n clients, each inputting
a vector of length l, the secure aggregation proto-
col from [9] requires O(logn + l) communication and
O(log2 n + l logn) computation per client. Note that
the dominating term in both client communication and
computation is l. This is the case also in terms of con-
crete efficiency, as shown by Bell et al. [9]. For this rea-
son we simply use the value l as a proxy for the costs
incurred by secure aggregation, taking into account that
this protocol easily scales, in terms of both server and
clients computation/communication costs, to vectors of
length 1M and over 100k clients.
Prior Information and Dynamic Datasets Algo-
rithm 2 iteratively refines the prefix tree T , spending
some privacy budget along the way. Intuitively, if fewer
iterations are required to reach the optimal T , less pri-
vacy budget can be spent discovering it and more can
be spent collecting data at this resolution. Since Algo-
rithm 2 supports both leaf node splitting and collapsing,
we can in theory begin with any prefix tree T , rather
than always beginning with only the quadtree root node.
This gives us the flexibility to guess at the optimal T
and reap accuracy gains or losses depending on whether
the guess is closer or farther from the optimal T than
the root node. We can thus apply any prior we may have
about the spatial distribution under measurement.

The epidemiological topics described in Section 2.1,
such as the spread of disease, the danger of traffic, and
other public health patterns, are not, in general, static.
In these and other applications, re-querying a distribu-
tion can provide value by capturing its temporal shifts.
When re-querying a distribution, the previous result can
act as an informative prior, and may produce real ac-
curacy gains when used as the starting point T as de-
scribed above. We leave for future work further explo-
ration of how best to leverage prior information when
exploring dynamic distributions.

8 Conclusion
We revisited the distributed differential privacy con-
cept in light of recent advances in secure multiparty
computation that allow computing secure vector sums
with contributions from thousands of participants. We
showed through an end-to-end design how this makes it
feasible to generate differentially private heatmaps over
location data at the metropolitan scale with contribu-
tions from millions of users. In particular, we designed
an adaptive hierarchical histogram algorithm that in-
teractively refines the resolution of the heatmap to con-
struct an efficient dense vector representation of the lo-
cation space. It exploits interactivity by adapting res-
olution, stopping criteria, and privacy budget alloca-
tion based on the results of prior histogram queries.
The results with public location datasets show that this
adaptive approach generates heatmaps with high accu-
racy while significantly reducing the worst case client
communication overhead of existing privacy-preserving
baselines with comparable accuracy. While this paper
has focused on location heatmaps, opportunities exist to
generalize this approach to other sparse federated ana-
lytics settings where private data is sparsely distributed
over a large domain.

Privacy is a multi-faceted challenge. While this pa-
per has focused on a private heatmap aggregation mech-
anism, a complete solution should address privacy more
holistically. For example, storing raw data on device
and accessing only aggregates does not absolve the ser-
vice provider of proper stewardship obligations. Individ-
ual data should still be treated securely with standard
best practices such as encryption-at-rest, access control,
finite lifetime, processed only with informed consent,
and follow contextual integrity principles [47]. We hope,
however, that this paper advances the toolkit for design-
ing privacy-aware systems.

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 178

Acknowledgments
At Cornell Tech, Bagdasaryan is supported in part by a
Cornell Digital Life Initiative fellowship and an Apple
Scholars in AI/ML fellowship.

References
[1] J. Acharya, Z. Sun, and H. Zhang. Communication efficient,

sample optimal, linear time locally private discrete distribu-
tion estimation. arXiv preprint arXiv:1802.04705, 2018.

[2] N. Agarwal, P. Kairouz, and Z. Liu. The skellam mechanism
for differentially private federated learning. arXiv preprint
arXiv:2110.04995, 2021.

[3] V. Balcer and A. Cheu. Separating local & shuffled differen-
tial privacy via histograms. In ITC, pages 1:1–1:14, 2020.

[4] V. Balcer, A. Cheu, M. Joseph, and J. Mao. Connecting
robust shuffle privacy and pan-privacy. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2384–2403. SIAM, 2021.

[5] B. Balle, J. Bell, A. Gascón, and K. Nissim. The privacy
blanket of the shuffle model. In CRYPTO, pages 638–667,
2019.

[6] B. Balle, J. Bell, A. Gascón, and K. Nissim. Private sum-
mation in the multi-message shuffle model. pages 657–676,
2020.

[7] B. Balle and Y.-X. Wang. Improving the gaussian mecha-
nism for differential privacy: Analytical calibration and op-
timal denoising. In International Conference on Machine
Learning, pages 394–403. PMLR, 2018.

[8] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta.
Practical locally private heavy hitters. In Advances in Neural
Information Processing Systems, pages 2288–2296, 2017.

[9] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and
M. Raykova. Secure single-server aggregation with
(poly)logarithmic overhead. In CCS, pages 1253–1269.
ACM, 2020.

[10] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Dis-
covering frequent patterns in sensitive data. In Proceed-
ings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 503–512.
ACM, 2010.

[11] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghu-
nathan, D. Lie, M. Rudominer, U. Kode, J. Tinnes, and
B. Seefeld. Prochlo: Strong privacy for analytics in the
crowd. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 441–459, New York,
NY, USA, 2017. Association for Computing Machinery.

[12] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov, A. Raghu-
nathan, D. Lie, M. Rudominer, U. Kode, J. Tinnes, and
B. Seefeld. Prochlo: Strong privacy for analytics in the
crowd. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), pages 441–459, 2017.

[13] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth.
Practical secure aggregation for federated learning on user-

held data. arXiv preprint arXiv:1611.04482, 2016.
[14] L. Bonomi and L. Xiong. Mining frequent patterns with

differential privacy. Proceedings of the VLDB Endowment,
6(12):1422–1427, 2013.

[15] M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and
the structure of local privacy. In Proceedings of the 37th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, SIGMOD/PODS ’18, pages 435–447,
New York, NY, USA, 2018. ACM.

[16] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev.
Distributed differential privacy via shuffling. In Annual In-
ternational Conference on the Theory and Applications of
Cryptographic Techniques, pages 375–403. Springer, 2019.

[17] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Finding hierarchical heavy hitters in data streams. In Pro-
ceedings of the 29th International Conference on Very Large
Data Bases - Volume 29, VLDB ’03, pages 464–475. VLDB
Endowment, 2003.

[18] G. Cormode, T. Kulkarni, and D. Srivastava. Marginal re-
lease under local differential privacy. In Proceedings of the
2018 International Conference on Management of Data,
pages 131–146. ACM, 2018.

[19] G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and
T. Yu. Differentially private spatial decompositions. In 2012
IEEE 28th International Conference on Data Engineering,
pages 20–31. IEEE, 2012.

[20] I. Diakonikolas, M. Hardt, and L. Schmidt. Differentially
private learning of structured discrete distributions. In Ad-
vances in Neural Information Processing Systems, pages
2566–2574, 2015.

[21] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local
privacy and statistical minimax rates. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
pages 429–438. IEEE, 2013.

[22] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrat-
ing noise to sensitivity in private data analysis. In Theory of
cryptography conference, pages 265–284. Springer, 2006.

[23] S. Enayati and O. Y. Özaltın. Optimal influenza vaccine
distribution with equity. European Journal of Operational
Research, 283(2):714–725, 2020.

[24] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,
S. Song, K. Talwar, and A. Thakurta. Encode, shuffle,
analyze privacy revisited: Formalizations and empirical evalu-
ation. arXiv preprint arXiv:2001.03618, 2020.

[25] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,
K. Talwar, and A. Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2468–2479. SIAM, 2019.

[26] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Pri-
vacy preserving mining of association rules. Information
Systems, 29(4):343–364, 2004.

[27] V. Feldman, A. McMillan, and K. Talwar. Hiding among
the clones: A simple and nearly optimal analysis of privacy
amplification by shuffling. arXiv preprint arXiv:2012.12803,
2020.

[28] N. Fulk. High resolution population density maps. The
Humanitarian Data Exchange, Oct 2018.

[29] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, R. Pagh,
and A. Velingker. Pure differentially private summation from

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 179

anonymous messages. In 1st Conference on Information-
Theoretic Cryptography (ITC 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[30] B. Ghazi, N. Golowich, R. Kumar, R. Pagh, and A. Vel-
ingker. On the power of multiple anonymous messages. In
Eurocrypt, 2021. To appear.

[31] B. Ghazi, R. Kumar, P. Manurangsi, and R. Pagh. Private
counting from anonymous messages: Near-optimal accuracy
with vanishing communication overhead. In ICML, pages
3505–3514, 2020.

[32] B. Ghazi, P. Manurangsi, R. Pagh, and A. Velingker. Private
aggregation from fewer anonymous messages. In Eurocrypt,
2020.

[33] A. Ghosh, T. Roughgarden, and M. Sundararajan. Univer-
sally utility-maximizing privacy mechanisms. SIAM Journal
on Computing, 41(6):1673–1693, 2012.

[34] A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T.
Suresh. Shuffled model of differential privacy in federated
learning. In International Conference on Artificial Intelligence
and Statistics, pages 2521–2529. PMLR, 2021.

[35] A. M. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T.
Suresh. Shuffled model of federated learning: Privacy,
communication and accuracy trade-offs. arXiv preprint
arXiv:2008.07180, 2020.

[36] S. Goryczka and L. Xiong. A comprehensive comparison
of multiparty secure additions with differential privacy.
IEEE transactions on dependable and secure computing,
14(5):463–477, 2015.

[37] S. Goryczka, L. Xiong, and V. Sunderam. Secure multiparty
aggregation with differential privacy: A comparative study.
In Proceedings of the Joint EDBT/ICDT 2013 Workshops,
pages 155–163, 2013.

[38] Z. Huang, Y. Qiu, K. Yi, and G. Cormode. Frequency esti-
mation under multiparty differential privacy: One-shot and
streaming. arXiv preprint arXiv:2104.01808, 2021.

[39] A. Ingerman and K. Ostrowski. TensorFlow Federated, 2019.
[40] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryp-

tography from anonymity. In FOCS, pages 239–248, 2006.
[41] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ram-

chandran. Fastsecagg: Scalable secure aggregation for
privacy-preserving federated learning, 2020.

[42] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete dis-
tribution estimation under local privacy. In International
Conference on Machine Learning, pages 2436–2444. PMLR,
2016.

[43] P. Kairouz, Z. Liu, and T. Steinke. The distributed dis-
crete gaussian mechanism for federated learning with secure
aggregation, 2021.

[44] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Ben-
nis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode,
R. Cummings, et al. Advances and open problems in feder-
ated learning. arXiv preprint arXiv:1912.04977, 2019.

[45] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhod-
nikova, and A. Smith. What can we learn privately? SIAM
J. Comput., 40(3):793–826, June 2011.

[46] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Com-
putational differential privacy. In Annual International Cryp-
tology Conference, pages 126–142. Springer, 2009.

[47] H. Nissenbaum. Privacy as contextual integrity. Wash. L.
Rev., 79:119, 2004.

[48] W. Qardaji, W. Yang, and N. Li. Differentially private grids
for geospatial data. In 2013 IEEE 29th international con-
ference on data engineering (ICDE), pages 757–768. IEEE,
2013.

[49] D. Ramage and S. Mazzocchi. Federated analytics: Col-
laborative data science without data collection. https://ai.
googleblog.com/2020/05/federated-analytics-collaborative-
data.html, 2020.

[50] R. M. Rogers, A. Roth, J. Ullman, and S. Vadhan. Privacy
odometers and filters: Pay-as-you-go composition. Advances
in Neural Information Processing Systems, 29, 2016.

[51] E. Roth, D. Noble, B. H. Falk, and A. Haeberlen. Honey-
crisp: large-scale differentially private aggregation without a
trusted core. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 196–210, 2019.

[52] F. Sadat Tabataba, P. Chakraborty, N. Ramakrishnan,
S. Venkatramanan, J. Chen, B. Lewis, and M. Marathe.
A Framework for Evaluating Epidemic Forecasts. arXiv e-
prints, page arXiv:1703.09828, Mar. 2017.

[53] H. Samet. The quadtree and related hierarchical data struc-
tures. ACM Computing Surveys (CSUR), 16(2):187–260,
1984.

[54] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig,
R. Zhang, and Y. Zhou. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, pages
1–11, 2019.

[55] J. Valentino-DeVries. Uncovering what your phone knows.
New York Times, Dec 2018.

[56] F. Valovich and F. Alda. Computational differential privacy
from lattice-based cryptography. In International Conference
on Number-Theoretic Methods in Cryptology, pages 121–
141. Springer, 2017.

[57] N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin,
and G. Yu. Privtrie: Effective frequent term discovery under
local differential privacy. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 821–832.
IEEE, 2018.

[58] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially
private protocols for frequency estimation. In Proc. of the
26th USENIX Security Symposium, pages 729–745, 2017.

[59] T. Wang, B. Ding, M. Xu, Z. Huang, C. Hong, J. Zhou,
N. Li, and S. Jha. Improving utility and security of
the shuffler-based differential privacy. arXiv preprint
arXiv:1908.11515, 2019.

[60] S. L. Warner. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American
Statistical Association, 60(309):63–69, 1965.

[61] S. Xu, X. Cheng, S. Su, K. Xiao, and L. Xiong. Differentially
private frequent sequence mining. IEEE Transactions on
Knowledge and Data Engineering, 28(11):2910–2926, 2016.

[62] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu. Modeling
user activity preference by leveraging user spatial temporal
characteristics in lbsns. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 45(1):129–142, 2015.

[63] M. Ye and A. Barg. Optimal schemes for discrete distri-
bution estimation under locally differential privacy. IEEE
Transactions on Information Theory, 2018.

[64] M. Yi and A. Marathe. Fairness versus efficiency of vaccine
allocation strategies. Value in Health, 18(2):278–283, 2015.

https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 180

[65] J. Zhang, X. Xiao, and X. Xie. Privtree: A differentially pri-
vate algorithm for hierarchical decompositions. In SIGMOD,
New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[66] X. Zhao, Y. Li, Y. Yuan, X. Bi, and G. Wang. Ldpart: ef-
fective location-record data publication via local differential
privacy. IEEE Access, 7:31435–31445, 2019.

[67] F. Zhou and X. Lin. Frequent sequence pattern mining with
differential privacy. In International Conference on Intelligent
Computing, pages 454–466. Springer, 2018.

[68] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li. Fed-
erated heavy hitters discovery with differential privacy. In
International Conference on Artificial Intelligence and Statis-
tics, pages 3837–3847, 2020.

A Ablation Study
To understand how the different components of the al-
gorithm contribute, Table 3 presents other interactive
algorithm variants.

As a non-private version, consider running the hi-
erarchical histograms algorithm with no differential pri-
vacy noise (infinite privacy budget) and setting the
threshold to 10, achieving the same error as the non-
interactive, non-private baseline with communication
cost of 12, 734. While this is worse than the communica-
tion cost of sending location in the clear, it is far supe-
rior to the non-interactive one-hot encoding approaches,
saving costs by not expanding nodes that had low counts
on every level of the quadtree.

A simple private but non-adaptive hierarchical his-
togram algorithm simply splits the ε = 1 privacy budget
evenly among the quadtree levels of the non-private ver-
sion. By using threshold T = 10 we achieve similar er-
ror 8.81e−13 to non-interactive run but with only 43, 450
overhead. The increase in communication from the non-
private interactive baseline is caused by additional splits
due to high equal noise (ε = 0.1) across levels.

Using our schedule and a fixed threshold results in
7.95e−13 error and expansion to only first 4 levels of the
quadtree while also leaving most of the budget (0.76)
to the last level, thus getting accurate final estimates.
Furthermore, a threshold that adapts to the amount of
applied noise allows reaching a finer level with a more
accurate quadtree split, resulting in an error of 7.88e−13.

2 4 6 8 10

User sample size, 105

0.6

0.7

0.8

0.9

1.0

1.1

M
S
E

1e 12
2

3 3 33

4
5 55

6 6 6

eps: 0.01
eps: 0.1
eps: 1

10 3 10 2 10 1 100 101
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

1e 12
10

6

65
4

3

2

1

Callibration parameter c

M
S
E

Fig. 7. Sensitivity analysis. Algorithm runs more levels as sample
size (left) or calibration parameter c (right) increases, but perfor-
mance only improves with larger sample size.

A.1 Additional Measures of Error

As described in Section 2.1, different measures of er-
ror are appropriate for different applications. Table 3
demonstrates that our algorithm is not overtuned to
MSE in particular; it includes several other measures
of error which have historically been recommended
for evaluating differences between epidemic distribu-
tions [52]: L1 distance (or absolute error), mean absolute
percentage error (MAPE, using the minimum location
value as the denominator when the true value is zero),
symmetric absolute percentage error (sMAPE), and
mean arctangent absolute percentage error (MAAPE).
For absolute measures of error, our algorithm’s increase
in error compared to the non-private baseline ranges
from 0% for MAAPE to 1.9% for L1 distance, while for
relative measures of error (which are far more sensitive
to noise in low-population regions), it is just 8.7% for
sMAPE 11% for MAPE. That our algorithm performs
so close to the non-private baseline on all of these er-
ror measures suggests that it is broadly applicable even
when the application does not call precisely for MSE.

A.2 Sensitivity Analysis

Effect of a Sample Size Sampling more users into
the algorithm increases the signal but also amplifies
the differentially private noise. However, accumulated
noise would have standard deviation σaggr =

√
k ∗ σ2

for k parallel SecAgg shards with geometric noise σ.
For example, for a SecAgg shard of size 10, 000, sam-
pling 100, 000 users will result in only

√
10 more noise

than sampling 10, 000 users while the signal can grow
linearly. Figure 7 (left) shows that the algorithm bene-
fits from large sample sizes even under very strict pri-
vacy budgets.
Calibration Parameter As discussed in Section 5
calibration hyperparameter c from in Equation 7 deter-
mines target standard deviation of the differential pri-

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 181

Table 3. Ablation study of our algorithm with 10k users (no dropout) and privacy budget ε = 1.

Algorithm MSE (e-13) L1 (e-3) MAPE sMAPE MAAPE Comm

No noise (T=10, ε = ∞) 7.75 1.02 3.10 0.92 0.79 12, 734
Fixed ε, non-adaptive (T = 10) 8.81 1.10 3.94 1.12 0.80 43, 450
Scheduled ε, non-adaptive (T = 10) 7.95 1.05 3.46 1.09 0.79 340
Scheduled ε, adaptive T 7.88 1.05 3.43 1.00 0.79 340

23 24 25

1e 12

Quantization / Modulo Clip

M
S
E

105 6 7 8

7.0

7.1

7.2

7.3

7.4

M
S
E

M
S
E

1e 131e 13
0% dropout
10% dropout
20% dropout
30% dropout
40% dropout

DP shard size, 103
92 4 6 8 10

SecAgg shard size, 103

8

9

10

11

12

13
6

4

3

10k users/level
100k users/level

2

1

10k users/level
100k users/level

Fig. 8. Secure aggregation parameters have profound impact on performance. Large shard size (left) and modulo clip (right) im-
prove performance, while adjusting the DP shard size to dropout achieves DP guarantees with slight performance drop.

vacy noise. In other words it represents our estimates
of the data distribution such as how concentrated is the
population on the map. Figure 7 (right) shows that high
values of this parameter result in more levels explored by
the algorithm and we achieve the highest performance
when c = 0.1. Finding appropriate calibration parame-
ter is a non-DP operation and can be done using public
data for that location or other, similar cities.

A.3 Effect of Secure Aggregation
Parameters

To support real-world deployment our approach needs
to be scalable and robust to user dropout. Any secure
aggregation framework has its own scalability limita-
tions, we evaluate our approach under these constraints
and report performance.
SecAgg Shard Size Figure 8 (left) illustrates that
larger SecAgg shard size leads to lower errors as it re-
duces excess differential privacy noise. The graph shows
the average mean square error for density estimation
on the New York dataset over a fixed quadtree depth
3 with ε = 0.1 per each level. Still, using a sample size
larger than the number of users that can be queried in
one secure aggregation shard can improve density esti-
mation accuracy. For example, at a shard size of 10,000,
a sample size of 100,000 leads to lower error than the
sample size of 10,000.
Analyzing Dropouts In Fig. 8 (center), we see that
increasing the DP shard size (up to the secure aggrega-

tion shard size Smax) positively impacts the accuracy of
the algorithm. Note that DP shard size corresponds to α
of the Pólya random variables (see Section 4). However,
if the number of participants remaining in the secure
aggregation shard is lower than the DP shard size then
the result of the algorithm cannot achieve the target DP
budget. Fig. 8 shows that with up to 20% dropout rate
and DP size of 8000, we get only 15% error increase over
no user dropout.

The graph shows that even when overcompensat-
ing for significant fraction of participants dropping out
during the sum computation, for example due to loss of
network connectivity, the resulting mean square error
remains far below that of existing techniques such as
local differential privacy techniques.
Quantization of Vectors Secure Aggregation oper-
ates on a finite set of integers but the proposed dis-
crete Laplace mechanism achieves differential privacy
by adding integer noise, which, in theory, could be un-
bounded. Thus, it is important to understand how to
set the range for secure aggregation to avoid overflow-
ing with high probability as this can significantly impact
the performance. Figure 8 (right) shows that after 16-bit
integers the error remains the same, i.e. there is no over-
flow in the results and all the error is due to differential
privacy noise.

Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation 182

Fig. 9. Adaptive grid.

B Adaptive Grid and Confidence
Intervals

Some applications might utilize more information than
users’ locations to build a map. For example, an epi-
demiologist may wish to measure the prevalence of a
disease within a population; in this case users can send
infection test results along with their locations. For each
leaf li in the tree we can add data structure datai that
stores the result status.

The user then reports not just the leaf but also the
exact point in the data structure represented. We can
represent the data structure similarly as a one-hot vec-
tor, retaining sensitivity 1 for the reported vector, or
we can adjust the sensitivity (and therefore differential
privacy noise) according to some other maximum con-
tribution.

Note that a data structure of size |data| for a tree
with T leaves will occupy |data| · T space. It may be
possible to run the hierarchical algorithm over the aux-
iliary data to reduce size of data but we only consider
here the small-dimensional case (such as the single-
dimensional case of sending an ‘infected’ bit). Algo-
rithm 1 can support auxiliary data by modifying the
ClientUpdate method to encode the data into the vec-
tor.

Depending on the precise application, the Update-
Tree function from Algorithm 2 can be altered to split or
collapse node li based on the auxiliary data aggregated
in structure instead or in addition to that node’s user
count. In the disease prevalence example, we can split
or collapse based on the size of the confidence interval
of the proportion estimate.
Picking the Metric Along with MSE we consider an-
other metric that is important when the data will be
used to guide high-cost or high-consequence action: con-
fidence intervals on proportion of positive cases in ev-
ery region. This metric is critical for public health and

other sensitive applications where the cost and/or con-
sequence of action imposes some minimum confidence
level to consider the data actionable, such as when the
map will be used to guide distribution of scarce re-
sources like medical supplies or money for infrastruc-
ture.
Additional Data Our algorithm can support collec-
tion of auxiliary location-associated data with minimal
tweaks. Fig. 9 shows our algorithm’s output for the pro-
portion estimation extension after setting an auxiliary
’infected’ bit according to a Gaussian 2D kernel with
the center at (200, 900) that approximately corresponds
to Lower Manhattan and assigning the value 1 to points
within the kernel at 0.

	Towards Sparse Federated Analytics: Location Heatmaps under Distributed Differential Privacy with Secure Aggregation
	1 Introduction
	2 Background and Related Work
	2.1 Applications
	2.2 Existing Differential Privacy Techniques
	2.3 Secure Aggregation
	2.4 Distributed DP with SecAgg
	2.5 DP Histograms and Heatmaps

	3 Problem Definition and Threat Model
	4 Distributed Differentially Private Histograms
	5 Adaptive Hierarchical Histograms
	5.1 Baselines and Their Shortcomings
	5.2 Leveraging Interactivity with Adaptive Hierarchical Histograms
	5.3 Adapting Spatial Resolution
	5.4 Adapting Privacy Budget Schedule
	5.5 Algorithm and Privacy Guarantees
	5.6 Implementation Details
	5.7 Multiple Locations Per User

	6 Evaluation
	6.1 Experimental Setup
	6.2 Accuracy and Communication Efficiency

	7 Discussion
	8 Conclusion
	A Ablation Study
	A.1 Additional Measures of Error
	A.2 Sensitivity Analysis
	A.3 Effect of Secure Aggregation Parameters

	B Adaptive Grid and Confidence Intervals

