PoPETs

Proceedings on Privacy Enhancing Technologies ;

2022 (4):507-527

Felix Engelmann, Thomas Kerber, Markulf Kohlweiss, and Mikhail Volkhov*

Zswap: zk-SNARK Based Non-Interactive

Multi-Asset Swaps

Abstract: Privacy-oriented cryptocurrencies, like Zcash
or Monero, provide fair transaction anonymity and con-
fidentiality, but lack important features compared to
fully public systems, like Ethereum. Specifically, sup-
porting assets of multiple types and providing a mech-
anism to atomically exchange them, which is critical
for e.g. decentralized finance (DeF1i), is challenging in
the private setting. By combining insights and secu-
rity properties from Zcash and SwapCT (PETS 21, an
atomic swap system for Monero), we present a simple
zk-SNARKs based transaction scheme, called Zswap,
which is carefully malleable to allow the merging of
transactions, while preserving anonymity. Our protocol
enables multiple assets and atomic exchanges by making
use of sparse homomorphic commitments with aggre-
gated open randomness, together with Zcash friendly
simulation-extractable non-interactive zero-knowledge
(NIZK) proofs. This results in a provably secure privacy-
preserving transaction protocol, with efficient swaps,
and overall performance close to that of existing de-
ployed private cryptocurrencies. It is similar to Zcash
Sapling and benefits from existing code-bases and im-
plementation expertise.

Keywords: Multi-

Asset, Exchange

NIZK, Cryptocurrency, Privacy,

DOI 10.56553/popets-2022-0120
Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

1 Introduction

Cryptocurrencies are experiencing steady growth not
only in terms of general popularity, security, and real-
world applicability, but also in terms of diversity of fi-

Felix Engelmann: IT University of Copenhagen, fe-
research@nlogn.org

Thomas Kerber: University of Edinburgh, IOHK, thomas.
kerber@johk.io

Markulf Kohlweiss: University of Edinburgh, IOHK,
markulf.kohlweiss@ed.ac.uk

*Corresponding Author: Mikhail Volkhov: University of
Edinburgh, mikhail.volkhov@ed.ac.uk

nancial instruments that can be realized with them. De-
centralized finance (DeFi [23]), an umbrella term that
covers such financial instruments in the cryptocurrency
community, is one of the raison d’étre of Ethereum, a
cryptocurrency popularized by the wide applicability of
its smart contract toolchain. One of the foundational
pieces of DeF1 is the ability (of the distributed ledger) to
create user-defined tokens, and trade or exchange them
directly on-chain. Ethereum, by providing Turing com-
plete smart contracts and the ERC tokens standards
(e.g. ERC20 or non-fungible ERC721), allows building
tools such as automated exchanges [24], investment plat-
forms'2, bidding platforms, insurance tools, NFT mar-
ketplaces, etc. An important limitation of current DeFi
solutions is the public nature of these atomic on-chain
exchanges.

like
Monero and Zcash, are undoubtedly practical, and am-

While privacy-preserving cryptocurrencies,

ple academic research on the problem of private curren-
cies is available [1, 4, 6, 12, 13], much less is known about
the private exchange of assets [8, 11, 14] — hindering
DeFi applications. This is unfortunate, as privacy on
the blockchain, such as transaction anonymity or trans-
fer amount secrecy, is not only interesting per se (for
the end user), but also changes the financial landscape
of the ecosystem. This can be advantageous, for exam-
ple, if restricting the adversarial view prevents certain
harmful behaviour that results from gaming the market
(e.g. frontrunning, Miner Extractable Value). Consider
a miner which observes a buy-order for an asset that is
either from a notorious investor or has an exceptionally
large transfer amount. The miner can buy that asset
itself early and cheaply before the order drives up the
price of the asset. Private swaps of assets can mitigate
such attacks.

However, while practically attractive, combining
privacy with DeF1i tools is challenging. Solutions that
try to tackle this question, such as private smart
contracts [20] and privacy-friendly decentralized ex-
changes [3], often find it hard to balance practical ap-
plicability with the privacy guarantees they provide.

1 https://compound.finance/markets
2 https://polygon.market.xyz/

[®) ov-ne-np |

fe-research@nlogn.org
fe-research@nlogn.org
thomas.kerber@iohk.io
thomas.kerber@iohk.io
markulf.kohlweiss@ed.ac.uk
mikhail.volkhov@ed.ac.uk
https://compound.finance/markets
https://polygon.market.xyz/

Flexibility, so desirable for DeFi, is at odds with pri-
vacy, since having both generally requires heavier cryp-
tographic primitives, like general NIZKs, or multi-party
computation (MPC).

In this work we do not support a full private DeFi
solution, but instead focus on the foundational prob-
lem of constructing a private cryptocurrency mechanism
that has both support for multiple assets, and an em-
bedded functionality to perform non-interactive atomic
assets swaps (as well as regular transfers).

An atomic swap is the exchange of different assets
between multiple parties. It has to happen atomically
such that all participants get their desired output or the
transaction is aborted. A classical example is a foreign
currency exchange, where a bank sells a foreign currency
to a customer who pays in the local currency. There,
atomicity is guaranteed by simultaneously handing over
the assets.

The atomic swap protocol we suggest enables un-
trusted parties to merge transactions off-chain. The
transactions themselves only reveal a map of the imbal-
ance for each asset where the sum of its inputs is unequal
to the sum of its outputs. Hence, a balanced transaction
does not reveal any amounts or types. Especially, the
mergers can neither deanonymize senders or receivers
nor correlate a subsequent spending of an output by its
precise amount and type. With such little trust required
in mergers, this very basic functionality already allows
creating local exchange markets, where users can send
exchange offers (as transactions with a negative imbal-
ance for the asked token and a positive imbalance for
the offered), and community-selected participants can
match them and merge them to then submit to the
blockchain. The anonymity of the system is controlled
by users: the system allows both private swaps between
several parties, who agree on their exchange off-chain,
and bigger exchange pools, as just mentioned. In both
cases, the only information that the mergers and other
users see is the one necessary to match the offers (total
value for each unbalanced type), and it is erased as soon
as the transaction is balanced and sent to the ledger.
For partial merges, any type with an imbalance of zero
is dropped. An open group of participants in a pool may
provide sufficient liquidity and maintain a public order
book, similar to classical exchanges.

An interesting open question is how to integrate
Zswap with private smart contracts to support more
elaborate private DeFi solutions. A first step in that
direction would be to extend a public smart contract
system with minting policies for private assets, to sup-
port, e.g. the private trading of NFTs. Finally, our mech-

Zswap =— 508

anism is compatible with existing consensus protocols,
such as proof-of-work or stake, and can be viewed as a
full cryptocurrency.

1.1 Technical Overview

With respect to swaps, a major challenge of many ex-
isting solutions is that transaction data is not explicitly
separated from the transaction signature, which binds
inputs from multiple users together. This, often results
in the need for (slow) MPC protocols to construct such
a signature jointly. An important insight of our work is
that the Zcash ecosystem already implement signature
separation. It was first introduces by Zcash Sapling [16]
to reduce the size of SNARK circuits for large transac-
tions, and was inherited by the corresponding Shielded
Assets®, or similar MASP* multi-asset protocols. An-
other inspiration of our work is SwapCT, that realizes
atomic swaps on Monero [11]. We continue this direc-
tion by designing and proving secure an extension of
a Zcash Sapling like system that satisfies the required
multi-asset and atomic swap properties.

Zcash Sapling, as opposed to the Zerocash paper,
separates the validation of inputs and outputs (each
input and output requires a separate NIZK) from the
transaction balancing, which is done using homomor-
phic commitments and a Schnorr-like binding signature.
The binding signature “seals” the inputs and outputs in
place, forbidding adding or removing any extra inputs
or outputs. Instead, in our work we use a sparse multi-
value Pedersen commitments and relax the signature,
allowing transactions to be non-interactively merged to-
gether. While inspired by SwapCT, we deal with dif-
ferent challenges specific to the zk-SNARK setting and
take advantage of the existing signature separation in
Zcash Sapling. The explicit signature separation opens
more space for potential transaction malleability, and
should be taken with care. To our knowledge our work
is the first to extend the security analysis of [4] in that
direction.

Our modelling relies on a one-time account (OTA)
scheme to anonymously and confidentially create and
store value in notes. This is an abstraction from existing
protocols in Zcash and Monero. The spending of input

3 Previously “user-defined assets” (UDA) or UIT, see ZIP 220:
https://github.com/zcash/zcash/issues/830

4 https://github.com/anoma/masp/blob/main/docs/multi-
asset-shielded-pool.pdf

https://github.com/zcash/zcash/issues/830
https://github.com/anoma/masp/blob/main/docs/multi-asset-shielded-pool.pdf
https://github.com/anoma/masp/blob/main/docs/multi-asset-shielded-pool.pdf

notes, stored in a Merkle tree, is authorized by a simu-
lation extractable (SE) non-interactive zero-knowledge
proof (NIZK). Double spends are prevented by proving
the correctness of a deterministic nullifier, marking an
input as spent. To connect inputs to newly created out-
put notes, we use sparse homomorphic commitments to
value-type pairs, which can be summed to check that
the transaction is well-balanced. Importantly, the val-
ues and types remain hidden even when we publish their
aggregated randomness, which is necessary to facilitate
transaction merging.

Our protocol bears similarities to variants of Zcash
and SwapCT which we compare in more detail:
Zcash Sapling: Compared to Sapling, we add multi-
asset support and remove the authorization signature
which is replaced by the SE NIZK. We also do not
need a binding signature over all intermediate commit-
ments — instead we directly publish the randomness.
This opens room for controlled malleability, and enables
non-interactive joint transaction generation (by merg-
ing) without MPC, which can be used to implement
swaps mechanics. The multi-asset aspect of our scheme
is very similar to Shielded Assets or MASP, both of
which extend Sapling but do not provide a mechanism
for atomic swaps. We also provide a rigorous theoreti-
cal formalization, which is lacking for both Sapling and
its Shielded Asset and MASP variants, and can be of
independent interest.
Conversely, the technical discussions and implementa-
tion effort that went into the Shielded Assets ZIP 220
and the MASP implementation are valuable starting
points for the deployment of Zswap as part of a larger
Zcash like blockchain. In particular, deployment of our
new transactions into Zcash requires a hard fork and
creates a new shielded pool holding typed notes. Trans-
ferring tokens from an existing shielded pool is possible
by explicitly adding the Zcash type to the notes.
SwapCT: Our work is inspired by SwapCT which also
provides atomic swaps and transaction merging, but on
top of Monero (ring based anonymity). We simplified
their scheme to unify their offers and transactions. With
the use of SNARKS (requiring a trusted or transparent
setup) our simpler construction no longer needs their
anonymously aggregatable signatures. We achieve bet-
ter confidentiality for unfinished transactions as we only
reveal a total imbalance instead of per input and output
values. Another important difference is that the use of
SNARKS allows to efficiently support large rings. This
motivates the use of a single global ring in our formal-

ization.

Zswap =— 509

Formalization: We formalize our protocol using game
based definitions, which generalize Zerocash definitions,
but are also compatible with Monero except for us-
ing a single global ring (as in Zcash and differing from
SwapCT).

Zerocash [4]
Transaction non-malleability and Balance. Our balance

formalizes Ledger indistinguishability,
definition is very similar with the addition of checking
multiple assets. We replace indistinguishability with the
privacy definition, as our transactions may be circu-
lated off-chain. The non-malleability of merged trans-
actions is inspired by Zerocash and SwapCT [11]. In-
stead of the strong non-malleability, it provides a re-
laxed property that controls malleability (transaction
merging) and only requires theft prevention, namely
that an adversary cannot steal from the intended recip-
ients of a transaction, or split unbalanced transactions,
rerouting honest funds. Modelling this malleability re-
lies on a variant of hiding of the Pedersen commitment
scheme, when the joint commitment randomness is re-
vealed, which we call HID-OR®. This property does not
require any additional security assumptions.

1.2 Our Contributions

In this work we present the following results:

— We specify a formal model for a multi-asset Zcash
system with swaps that builds on top of a One-Time
Account (OTA) System, abstracting a nullifier-like
private UTXO mechanism. The OTA model and our
proof techniques could be of independent interest for
proving systems such as Zcash and Monero secure.

— We provide a minimal practical instantiation of non-
interactive private atomic-swaps. It is based on a
simplified version of Zcash that removes authoriza-
tion and blinding signatures.

— We prove our construction secure under commonly
used assumptions similar to the ones used in Zero-
cash. This validates the removal of the Zcash signa-
tures and shows that the perfect hiding and binding
properties of spend and output commitments is suf-
ficient for security.

— We implement and evaluate our protocol: our merg-
ing mechanism is very effective, and all performance
overheads of our construction, as compared to the
basic single-asset protocol without swaps, are small.

5 HIDing with Open Randomness

1.3 Related Work

Surprisingly little academic work directly addresses ex-
change of multiple assets in a private ledger. Undoubt-
edly, such a functionality can be achieved through
certain generic private smart contract solutions [17,
18, 22], but their flexibility comes at a cost of non-
negligible performance overhead, since they often re-
quire heavy primitives like SNARKSs over big contract
code-dependant (or even universal) circuits. The perfor-
mance of universal zero-knowledge based constructions
such as ZEXE [5] requires minutes of proving time for
ten times the constraints compared to our one second
prover runtime. This is why we would like to consider
systems with such a functionality embedded directly.

Several solutions take the route of extending the
vanilla Zerocash. Ding et al. [10] propose a solution sup-
porting multiple assets, but with no exchange mecha-
nism, and with public asset types. Gao et al. [14] con-
struct a transaction system specifically for exchanging
assets which is based on storing debt in sibling notes
which are only spendable if the debt is settled. Its inef-
ficiency results from requiring multiple persisted trans-
actions per swap.

On the other hand, Confidential Assets [21] uses
a commitment construction that hashes an asset type
descriptor to the bases of an extended Pedersen com-
mitment such that the resulting commitments are addi-
tively homomorphic, which facilitates proving the bal-
ancing of amounts. We use this sparse commitment
scheme as part of our construction. A similar solution
by Zheng et al. [25] exists for the Mimblewimble private
cryptocurrency. Both these works do not provide sender
and receiver anonymity.

Sparse homomorphic commitments have the draw-
back that they can only store type-amount pairs. A
more flexible approach is to use a hash-based commit-
ment scheme for notes to store a vector of attributes.
This is used in Zcash’s multi-asset ZIP 220, Shielded
Assets, or similarly MASP. To achieve balancing, these
protocols prove equality between the type-value pair of
a note and a sparse homomorphic commitment. We fol-
low the same approach. Another system that does not
rely on homomorphic commitments is StellarS, which
instead uses shuffle proofs.

Finally, some works emphasize the exchange and
offer matching functionality. Manta [8] describes a

6 https://github.com/stellar/slingshot/blob/main/spacesuit/
spec.md

Zswap =— 510

privacy-preserving decentralized exchange (DEX) based
on an automated marked maker (AMM) scheme which
works without a second party but does not hide the
types, which is an inherent limitation of the AMM ap-
proach. Another idea is to privately exchange assets be-
tween different systems in cross-chain atomic swaps [9].
In contrast to both, we propose a more basic mecha-
nism within a single blockchain, and leave leave it open
to implement the concrete offer matching algorithm on
top of Zswap. This allows, and will likely enable more
powerful DeFi applications, since Zswapprovides a more
flexible interface to the application layer.

2 Preliminaries

Let us introduce our notation. We write PPT for prob-
abilistic polynomial-time. All our sets are multisets by
default. The set minus operation A\ B removes as many
values in A as there are in B: if B has more values of
the same type than in A, the number of elements in
the resulting set is 0. The function ToSet(S) removes all
duplicate entries in the multiset S and sorts the result
according to some predefined ordering, essentially con-
verting S to a “proper” set. We use [n] := 1...n, and
|S| for the cardinality of the set S, |Z| is the length if #
is a vector, thus [|S|] means 1...|S].

As of pseudocode conventions, abortion by default
means returning 1 immediately, and assertions abort
on failure. When the result of an assignment cannot
be properly pattern-matched, e.g. (a,b) + foo (function
returns L or a different type), the execution aborts. The
symbol @ denotes temporary variable assignment in the
pattern-matching cases, e.g. (a@(z,y), z) + Foo() means

((z,y),2) < Foo();a « (x,y).

2.1 Sparse Homomorphic Commitments

Our first building block is a commitment scheme which
is additively homomorphic for an exponential number of
possible domains, also called types, however each com-
mitment is sparsely populated, i.e. few domains have a
non-zero value. Between domains, there exists no homo-
morphic property. Contructions were proposed by [21]
and formalized by [7] which resemble vector Pedersen
commitments with ad-hoc generators.

https://github.com/stellar/slingshot/blob/main/spacesuit/spec.md
https://github.com/stellar/slingshot/blob/main/spacesuit/spec.md

Definition 2.1 (Sparse Homomorphic Commitment).

A SHC scheme consists of the algorithms ComSetup and

Commit defined as follows:

p < ComSetup(1?) takes the security parameter A and
outputs the public parameters p implicitly provided
to Commit. It specifies a type space T

com < Commit({(ty;,a;)}I*,rc) takes a set of dis-
tinct types ty;, and wvalues a;, and a randomness
rc, and outputs a commitment com. We write

Commit(ty, a, rc) for Commit({(ty,a)},rc).

Definition 2.2 (Homomorphism). A SHC scheme is
homomorphic, if there exists an efficient operation &,
such that for any ty € T it holds that

Commit({(ty;» ai)}7, rc) & Commit({(ty;, af) 11, ') =
Commit({(ty;,a; + a})}7, ¢(rc,rc’))

for some function ¢, while zero values do not affect the
input set: Commit((ty,0), rc) = Commit(, rc).

In other words, the commitment is additive on the
same type, but acts like a vector commitment on distinct

types.

We require standard binding and hiding properties.

Definition 2.3 (Commitment Binding). For any A €
N with p + Setup(1*) and any PPT adversary A, it
holds that

{(tyy, ap, rep) Yoo < Alp);

comg = Commit(tyg, ao, rco);
Pr | com; = Commit(ty;,a1,rc1) : | < negl()\)
comg = comp A

(ty07 ao, rco) 7& (t}/1, at, FC1)

Definition 2.4 (Commitment Hiding). For any A € N
with p < Setup(1*) and any stateful PPT adversary A,
it holds that

{(tys; ai) }i—g < A(p);
b {01}, rc &R
Pr| com < Commit(ty,, ap,rc); | <
b+ A(com) :
b =b

+ negl(\)

N =

To instantiate a SHC we use a well-known Pedersen-
based construction derived from the [21], which we will
simply call “sparse Pedersen commitment scheme”. Let
G be a cyclic group of order ¢ with a generator G in
which the discrete logarithm assumption holds. Addi-
tionally, we use a cryptographic hash function H : T —
G. Then Commit({(ty;,a:)},rc) := ([] H(ty;)*) G' with
ai,rc € Zqg.

Zswap =— 511

b A
HID—ORA(I)
p Setup(1>‘)
{(tys, ar), (tyt, ai) Hoo + A(p)
Ayt := {a¢ if ty, = ty else 0} — {a} if ty} = ty else 0}
assert Vty € U ty, U U ty} 1 Ay,0 = Ayt
ror SR
com < Commit(ty;, ap,7); com’ <— Commit(ty}, a,,r’)

b <+ A(com,com’,rc = r — ')
return b’

Fig. 1. Hiding with Open Randomness Game

Finally, we observe the following property of the
sparse Pedersen commitment scheme that guarantees
that the adversary cannot distinguish between two pairs
of commitments that sum to the same values (per type),
even if we reveal their common randomness. This is the
main property used in our swaps: we will use it to argue
that transaction can be merged (to join two unbalanced
swap offers), but not split apart (so swap offers cannot
be adversarially modified).

The
sparse Pedersen commitment scheme is perfectly hid-

Lemma 2.1 (Hiding with Open Randomness).

ing with open randomness in the RO model. By this we
mean that if for all A\ € N and all PPT A:

Pr[HID-ORY(1*) = 1] — Pr[HID-OR%(1*) = 0] =0

where the game is defined in Fig. 1.

The proof of this statement is presented in Appendix C
and based on perfect hiding together with the equivo-
cation of the Pedersen commitment scheme.

2.2 Proofs and Signatures of Knowledge

A non-interactive zero-knowledge proof of knowledge (or
just NIZK) for the language L is a proving system
consisting of algorithms (Setup, Prove, Verify, Sim). The
first algorithm allows to create a common reference
string (CRS), crs + Setup(1?) that is used as an input
to Prove and Verify. To obtain a non-interactive proof
that stmt € £ with the corresponding witness w (s.t.
(stmt,w) € Rr) one executes m <— Prove(crs,stmt, w).
To then verify this prove one runs, correspondingly
Verify(crs, stmt, 7), which returns 0 or 1. We provide
the standard definitions and security properties in Ap-
pendix A.

Signatures of Knowledge are NIZK proofs which are
bound to a specific message m. For a simulation ex-
tractable (SE) NIZK protocol, this is done by including

m into the statement without asserting anything about
m in the relation. Still, the SE property invalidates the
proof, if the statement is changed.

3 One-Time-Account Scheme

To highlight our novel transaction mechanism, we first
describe the one-time account (OTA) scheme that we
use to model the mechanics of underlying accounts our
transactions use. The OTA scheme may be seen as
an anonymous version of an unspent transaction out-
put (UTXO) system (e.g. the one used in Bitcoin); it
generalises accounts of privacy-preserving transaction
systems such as Zcash or Monero. Instead of creating
transaction outputs including a long term identity as
with plain UTXO, an OTA scheme generates a unique,
anonymous, one-time account for each transaction out-
put. To support the UTXO functionality to decide if a
one-time-account is still valid, the OTA scheme allows
generating a unique nullifier which anonymously marks
it as spent. A duplicate nullifier indicates that the same
one-time account is used.

The OTA scheme is used as follows. After a sys-
tem Setup, each participant generates their credentials
with KeyGen. Anyone with the public key can then
non-interactively derive a one-time account, also called
“note”, with Gen. Each note contains a set vector of at-
tributes. Most importantly, one attribute is the amount
the note represents. In our multi-type setting, a second
attribute is the type of the amount. Other systems may
make use of additional note attributes such as e.g. time
locks — a timestamp identifier, allowing a note to be
spendable only after a specified block number. To allow
the intended recipient to recover the note, it is accompa-
nied by an encryption C calculated by Enc. With the se-
cret key, note and ciphertext, the original owner Receives
the note and is then able to create the corresponding nul-
lifier with NulEval, a unique serial value characterizing
the note that cannot be predicted by anyone else than
the owner.

We emphasize that any party can create an OTA
account for anyone knowing only their public key. The
OTA itself does not allow any claims to the value stored
inside. In our system, only the OTAs which are included
as outputs of a valid, balanced and persisted transaction
can be claimed by their owners in subsequent transac-
tions. The transaction then enforces that sufficient in-
puts were consumed to cover for the output. To mint
coins an OTA needs to be included on the ledger in an

Zswap = 512

unbalanced transaction for the newly minted type. This
transaction needs to be accepted by the ledger rules.
This behaviour might as well be governed by a smart
contract.

Definition 3.1. A One-Time-Account (OTA) scheme
consists of the five PPT algorithms (Setup, KeyGen, Gen,
Receive, NulEval) defined as follows:

p + Setup(1*): takes the security parameter \ and out-
puts the public parameters p which are implicitly pro-
vided to the subsequent algorithms. This includes the
note randomness space S, a message space M, and an
encryption randomness space Z=.

(sk, pk) < KeyGen(1*): generates a key pair (sk, pk). We
assume a function P(sk) = pk for generating the public
key from a secret key.

note < Gen(pk,d,r): takes a public key pk, a vector of

—

attributes @ € M1, where, by agreement, the first
might be an amount, and randomness r € S. It outputs
a one-time-account, known as note.

C « Enc(pk, (d,r),&):

randomness r to the public key pk with additional ran-

encrypts the attributes @ and the

domness €. It outputs a ciphertext C.

(@,r)/L + Receive(note, C,sk): if the note and cipher-
text C' belongs to the secret key sk, the algorithm out-
puts the vector of attributes @ and the randomness r
or fails otherwise.

nul <— NulEval(sk,r): Takes a secret key sk and a ran-
domness r and outputs a nullifier nul.

In addition, the algorithms Gen and NulEval must be ef-

ficiently provable in zero-knowledge. More formally, the

construction must provide a NIZK protocol for the fol-
lowing languages:

£ = {(note, nul) | 3(sk, @,r) :
note = Gen(P(sk),d,r) A nul = NulEval(sk,r)}

[open {note | 3(pk7&°, 7‘) : note = Gen(pk767 7”)}

The language L°P%" may optionally be extended, such
that elements of @ have relations to other commitments.

Definition 3.2 (OTA Correctness). An OTA scheme
is correct if for any X € N with p € Setup(1})
it holds that any honestly generated note is receiv-
able. Formally, for every (sk,pk) € KeyGen(p), ev-
ery (@r) € M xS and ¢ € Z it holds that
Receive(Gen(pk, @, r), Enc(pk, (@, r), &), sk) = (d,r)

Once a note is created, it must bind the attributes and
prevent opening the note to a different vector, even for
the owner with the correct secret key.

Definition 3.3 (OTA Binding). An OTA scheme is
binding with regard to the accounts created and the vec-
tor of attributes if for any A € N with p € Setup(1*) and
any PPT adversary A, it holds that

(pk077“07 507 pkl, r1, c_il) — A(p)

noteg < Gen(pkg, do,70)

note; < Gen(pky,d1,r1) :
notey = note; A dp # ds

Pr < negl(A)

The following privacy property assures that a note and
its ciphertext do not leak who the note belongs to and
what attributes it stores.

Definition 3.4 (OTA Privacy). Consider the follow-
ing oracle:
O;cc’f/e*’c*(i, note, C) :
assert note # note* A C* # C
return Receive(note, C, sk;)
An OTA scheme is private if for any A € N with

p € Setup(1*) and any stateful PPT adversary A, it
holds that

(skg, pko) & KeyGen()
(sky, pky) & KeyGen()
(40, do,i1,d1) <
ACw (p, kg, pky)
Pripd o1 rdseds <
note* « Gen(pk;,,d,)
C* < Enc(pk;, , (@p,7),§)
b~ Aogﬁe*’c*(noteﬁ(}'*) :
b=V A |50| = |l_1'1|

+ negl(\)

N | =

The privacy game implicitly subsumes (1) note and ci-
phertext hiding, and (2) note and encryption anonymity
(key privacy). In the first case, A cannot decide the con-
tent of the note or the ciphertext; in the second, it can-
not decide which key was used to create it. E.g. if note is
not hiding, A efficiently wins the game by first return-
ing two different vectors dy # @1 and then distinguishing
the note note, according to the attribute vector.

We require notes to be unique when generated with
honest randomness:

Definition 3.5 (Note Uniqueness). A binding and pri-
vate OTA scheme satisfies honestly generated mnote
uniqueness: for all PPT A,

((Pkos o), (pky, 1)) A1)
Pr 70,71 <i S :
Gen(pkg, do,r0) = Gen(pky, d1,71)

< negl(\)

Zswap = 513

The next property, similar to the tagging scheme of Om-
niring [19], captures the requirement that nullifiers pro-
duced with sk must be only “predictable” for the party
that holds sk. This is achieved by requiring NulEval to
behave like a pseudorandom function.

Definition 3.6 (Nullifier Pseudorandomness). Let A €
N with p € Setup(1?), (sk, pk) & KeyGen(), and f be
randomly sampled function on the range {0,1}51 —
{0, 1}INulBval(sk)l - Ap OTA scheme nullifier is pseudo-
random if for any PPT adversary A, it holds that

Pr[AReceive(‘,‘,Sk)J(')(pk) =]_]—
Pr[AReceiVE(-,',Sk);NU|EVa|(5k7')(pk) = 1] < negl(/\)

Finally, to detect duplicate use of the same note, each
is assigned a unique nullifier. Even with knowledge of
the secret key, it is not possible to create two different
nullifiers for the same note. The separate secret keys are
important for constructions based on algebraic nullifiers.

1
E.g. Omniring creates tags as g+ for a generator g, so

randomness may be “traded” for secret key. Allowing
only one note with a single secret key would not cap-
ture the realistic setting where an adversary controls
multiple correlated accounts.

Definition 3.7 (Nullifier Uniqueness). An OTA
scheme satisfies nullifier uniqueness if for any A € N
with p € Setup(1*) and any PPT adversary A, it holds
that

(Sk07T0760,Sk1,T1, 61) — A(p);
noteg < Gen(P(skg), do,70);

Pr | note; + Gen(P(skq),d1,71) :
noteg = note; A
NulEval(skg, o) # NulEval(sky,71)

< negl(X\)

4 Zswap Scheme

A Zswap scheme is an extension of an OTA scheme
which allows creating (SignTx), merging (MergeSig), and
verifying (Verify) transactions that transfer coins be-
tween OTA accounts. SignTx takes a pre-transaction
ptx as input and produces a transaction signature o,
MergeSig combines transaction signatures oi,...,on,,
and Verify verifies a signature o for a transaction tx.
A signature o is viewed separately from its transaction
tx (created by tx < CompleteTx(ptx) defined below), and
not contained in it.

We first present auxiliary algorithms for Zswap in
Fig. 2 for creating pre-transactions and transactions.
These use the OTA scheme algorithms only in a black-
box manner and simplify the exposition when defining
the security properties. The first set of functions glues
the Zswap and OTA schemes together.

— BuildPTx constructs inputs for SignTx from I, O in-
structions and a set of secret keys SK. Inputs I con-

sist of a list of existing (note, C) notes, outputs O

consist of a list of public key, value, and type triplets

(ka, a”,tyT) for creating the output notes. By re-

ceiving input notes and generating output notes it

produces a pre-transaction information ptx.
— CompleteTx constructs a transaction tx for Verify
from a pre-transaction ptx similar to SignTx.
— MergeTx creates a new transaction tx by combining
., txp. This is the
non-cryptographic analogue of MergeSig.

a set of existing transactions txi, ..

— CheckPTx(ptx, st) checks whether pre-transaction is
valid w.r.t. st, which is used in the correctness prop-
erty. It is easy to see that for ptx = BuildPTx(, -, st, -)
we have CheckPTx(ptx,st) = 1.

— TryReceive attempts to “receive” a note note by de-
crypting its ciphertext C' using any of the set SK
of available secret keys: if an input can be received
with one of the keys it also computes the note’s nul-
lifier.

Definition 4.1. A Zswap transaction scheme, built on
top of an OTA scheme, consists of a tuple of PPT al-
gorithms (Setup, SignTx, MergeSig, Verify) defined as fol-
lows:

p < Setup(1*) takes the security parameter \ and out-
puts public parameters p which are implicitly given to
all the following algorithms. Setup is called once when
a Zswap system is initialized.

o < SignTx(ptx, st) takes a pre-transaction ptx = (S, T)
where

— st s the current state of wvalid previously issued
notes. st.MT is the Merkle tree containing notes
as leaves, and st.NF is the set of used nullifiers. If
a state st is the evolution of a previous state st’, we
define a function ev(st’,st) := 1 and 0 otherwise.

— 8 ={(sk¥, noteS nul;, path,, (aS, ty$,’I‘;S)}lzzll is a
set of inputs with a nullifier nul; corresponding to
the note‘f, and stored in the current state at the
given path st. MT[path,], secret key sk$, amount a$
and type tyf with input OTA notes’ randomness
S

-

Zswap =— 514

T
=T = {(pk] .note] . (o] ,ty])])11
T
K3
and output OTA notes’ randomness r

is a set of

with amount aZT, type tyZT

pe

[

(output) notes note

It outputs a signature o as authorization to spend the
inputs S on the given outputs T .

b < Verify(st,tx, o) takes a transaction tx, a signature
o and returns a bit b representing the validity of the
transaction w.r.t. the state st.

o < MergeSig({o;}7_,) takes n transaction signatures
and generates a combined signature o wvalid for the
union of the transactions. To merge the corresponding
transactions txy, . .., tx, together, we use the function

MergeTx defined in Fig. 2. It just concatenates their
input nullifiers, output notes, and sums their Ay, for
each ty. As of the st, they must be equal in the transac-
tions that need to be merged, but we can assume that st
is only updated once an epoch, which is set to be a time
interval long enough for transactions to be merged.

4.1 Atomic Swap Example

After presenting all necessary algorithms, we show a
small example of how they interact to create an atomic
swap transaction between two parties, Alice and Bob.
First, the system is created by Setup. Each participant
joining, generates their key pair (sk,pk) with KeyGen.
The creation of new assets is delegated to an external
consensus mechanism which updates the global state
of the system according to an agreed policy. At one
point, Alice and Bob have to be the beneficiary of a
transaction. They notice this by calling TryReceive with
their secret key sk on every published transaction out-
put (note, C). If they successfully receive a (note, C') to
an amount a and type ty, they keep it for when they
want to spend it. Let’s assume Alice received a note of
10$ and Bob has a note of 10€. Alice now wants eu-
ros and Bob dollars. They assume an exchange rate of
7:5 and proceed to generate their pre-transactions ptx;.
Each party calls BuildPTx with their note as input in-
struction I. As output instructions O, Alice sends 5€
to her key pk. To make sure that someone fulfils the
offer, she creates a change output to herself with only
23, leaving 1$ as incentive. Bob performs the same. He
inputs the 10€ note and generates outputs of 7$ and 5€
to himself.

The resulting pre-transactions are signed by both
parties respectively with SignTx to get signatures o;.
The final transactions tx; are generated from the pre-
transactions ptx; by CompleteTx and can be verified
against their signature o; with Verify. Note that both

Zswap =— 515

BuildPTx(I, O, st, SK)
S, T+ 0
for (note®,C) € I do
path < st.MT.getPath(note®)
assert path # |
(sks, nul, (as,tys), 7‘5) <+ TryReceive(note, C, SK)
S:=8uU (sks, note®, nul, path, (as,tys), rS)
assert {nul;} are distinct and Vi. nul; ¢ st.NF
for (pk” ,a” ,ty”) € O do 7 & S, & S =
note” OTAAGen(ka7 (aT, ty7—)7 7"7—)
C7T «— OTA.Enc(pk”, (a7 ,tyT),77),¢)
T:=TU (k" note”,C7, (a7 ,ty7),r7)
return ptxe(S,T)

CheckPTx(ptx@(S, T), st)

Parse S as {(sk¥, note?, nul;, path,, (a5, ty$), rs)}‘S‘
Parse T as {(pkT ,note] .7, (o] ,ty]). v)}
/‘(T\';'\PF to the receiver to verify
assert {nul;} are distinct and Vi.nul; ¢ st.NF
for i € [|S]] do
assert st.MT[path;] = note’
assert nul; = OTA.NulEval(sk?, r¥)
= OTA. Gen(OTA P(sk;), (af, ty,), 7
= OTA.Gen(pk] , (a] ,ty]),r])

note

assert note

assert Vi € [|T|]
return 1

note

CompleteTx(ptxe(S, 7))

Parse S as {(-,-,nul;, -, (a Mtyl) DML
Parse 7 as {(-,notej,Cj (i ty)))}‘Tl
for ty € {ty7} U {ty] } do

oS — oT
By Z(a wes T Z(a yer i

return ({nul }‘71,{note CT}lTll,{Aty}tyeTy)

MergeTx({tx; }}_;)

IS1 T
Parse tx; as { {nulji},_] {(note] i CTz)H:‘lv {Aj,ty}tyeTyj)

return (ToSet (Uj,i{nub"i}) , ToSet (Uj,i{(notej-ji, C;Z)}) ,
e <{Z] Aj’ty}tyéuj TVj))

TryReceive(note, C, SK)

for sk € SK do
res < OTA.Receive(note, C, sk)
if res = ((a,ty),r) # L then
nul «<— OTA.NulEval(sk,)
return (sk, nul, (a,ty),r)

return L

Fig. 2. Auxiliary algorithms for Zswap. These only depend on the OTA scheme and do not use Zswap methods such as Verify or

SignTx.

transactions by themselves cannot be included in the
public ledger. Both have a type with a negative balance.
Alice’s transaction has A¢ = —5 and Bob’s transaction
—T7. So far Alice and Bob have
not communicated. The non-malleability of the trans-

has an imbalance of Ag =

actions allow them to publish their transactions into an
exchange pool. Exchange pools may be run globally or
with limited access. The first party seeing both trans-
actions recognizes that they are complementary and is
able to merge both tx; together with MergeTx and their
signatures o; with MergeSig. As a prize, the merger is
allowed to claim the surplus of 18 paid by Alice. Techni-
cally there are now 3 transactions merged. The result-
ing merged transaction has no imbalance and can be
included in the public ledger. Then all parties get their
specified outputs and store them for future transactions.

4.2 Zswap Correctness

Definition 4.2 (Correctness). A Zswap scheme is cor-
rect if OTA is correct and if for all A € N and all
p € Setup(1*) it holds that:

(1) Honestly generated transactions are valid:
For any S,T,st such that CheckPTx(S,T,st) = 1,
and tx = CompleteTx(S,7T), and for any signature
o < SignTx(S, T,st), it holds that Verify(st, tx,0) =
1.

(2) Honestly merged valid transactions are again
valid: For any wvalid st, n € N and each set of
{(Si, Ti)Yicn) s-t- for all i, CheckPTx((S;, Ti),st) =

for each o; € SignTx(S;, Ti,st) and o =
MergeSig({o;}7"_;), it holds that Verify(st,tx,0) = 1
where tx < MergeTx({CompleteTx (S;, T5) }1_1).

(3) Valid transactions are valid in a future state:
For any two linked states st,st’ (satisfying ev(st,
st) = 1) and any transaction tx and signa-
ture o with Verify(st,tx,0) = 1, it holds that
Verify(st’,tx,0) = 1, unless st’.Nf \ st.Nf contains
any of the tx nullifiers.

The security of our scheme is based on several top-level
games, plus the games we define for the OTA scheme.

4.3 Support Oracles

To model both security and privacy we need to intro-
duce the oracles which will model note spending that
the adversary A sees, interactively. The relevant ora-
cles, OkeyGens Ospend and Ojnsere are presented on Fig. 3.
They are responsible for generating keys, honest trans-
actions and inserting them into the ledger.

OKeyGen allows generating honest public and secret
keys for further use in Ospend-

Zswap =— 516

OSpend (I: Oa St)

if Spent is L then Spent < ()

assert |I| > 0A|O| > 0A3(pk,-,-) € O:pkePK
ptx@(S, T') < BuildPTx(I, O, st, SK)

o <+ SignTx(ptx, st)

i=1)
Spent := Spent U (st, I, {nuli}lell, {(note;—, Cj)}‘jgl))
return o
GetLog(st) OKeyGen ()
Ins’ < [] if SK or PK is L then

SK,PK < 0
(sk, pk) < KeyGen()

while z@(st’,st,-,-) € Ins do
Ins’ := z || Ins’;st :=st’
assert st = stg

return Ins’ return pk

Parse S as {(nul;, -, -, -)}‘S‘ 3 T as {(-, note;r7 Cj, -,)}‘77!1,

SK := SK || sk; PK := PK || pk

Olnsert (Sta tX, U)

if Ins is L then Ins + 0
unless sty # L assert(st, -,
assert GetlLog(st) # L
(Nf@{"”“}l‘illv {notej, '}L‘Z‘l’ {At byery) + tx
assert Verify(st,tx,0) = 1
assert Vty € Ty : Ay >0
Construct st’ s.t. -

st’.MT « st.MT.insert({noteZ—};:‘l)

st’.NF « st.NF U Nf
Ins := Ins U (st, st’, tx, o)
if stg = L then sty < st

-+) € lIns

Fig. 3. Oracles for the security and privacy experiments.

Ospend models leakage of honestly generated trans-
actions, including unbalanced “offer” transactions. Each
Ospend query allows spending some notes, and success-
ful spend logs are recorded in Spent. An adversary can
specify any possible state it likes as long as the request
is valid with respect to this state. The requirement that
O has at least one honest output is a modelling artefact,
and is explained further in the “anti-theft” section.

Olnsert models “recording” balanced transaction in
the ledger. Branching is possible inside Ojpgerr — A can
append an honest transaction to any of the recorded
states, but still one can only spend notes through Ojpsert
if their nullifier has not been used in the same branch.
Moreover, the st, variable is shared between the oracle
records as the first “root” state that A can initialize the
oracles with. Ojsert Only accepts states that are eventu-
ally linked with this root st.

4.4 Anti-Theft and Non-Malleability

The notion of anti-theft we describe here is our main
non-malleability notion. Intuitively it says that an ad-
versary A can only merge transactions, but cannot
break honest transactions apart, or modify them in any
other way. More concretely, for any honest tx that A4
sees, A cannot submit tx* which contains any of the (1)
input nullifiers of tx; or (2) honest output notes of tx;
without merging the whole tx into tx*.

The anti-theft game is modelled by allowing A to
interact with the oracles described before: A can gener-
ate new keys, produce unbalanced honest transactions
(spend), and submit (insert) transactions (which we
want to prove to be only honest, dishonest, or merges
of the two types). The adversary then returns a state
st* which is examined. The challenger searches through

Anti-Theft 4 (1)

p Setup(1>‘)
st* + AKeyGen: OSpend: Olnsert ()
for (st,-,tx,-) € GetLog(st") do

(-, (NFA, M) « SplitTx(st, tx)

MA" « {(note, C) € M* | TryReceive(note, C,SK) # 1}

if 3(-,-,Nf, M) € Spent : MA' N M # 0V NFA N Nf #£ 0
then

return 1

return 0

SplitTx(st, tx)
(Nf@{nuli}.s‘l,M@{note]T I 7]

|
i=)" j=1"
Nfy, My, < 0; Nfo < Nf

’ !
for (st’, -, Nf’@{nuI;}Lill, M'e{(note]”, C;)}‘;l‘) € Spent do
if st’.MT =st.MT A M’ C M ANf" C Nfg then
Nfz := Nfy U Nf/;M’H = My U M’
Nfo := Nfo \ Nf’

return ((Nfqy,, Mqy), (NF\ Nfy, M\ My))

C) + tx

Fig. 4. The anti-theft experiment.

the log of inserted transactions. The adversary wins if a
transaction in the log contains an incomplete part of (an
honest) transaction earlier returned by Ospend to A, but
used only partially. To do that, it calls a sub-function
SplitTx which locates complete “honest subtransactions”
returned by Ospeng in tx, and returns these honest sub-
transactions as first argument, and the remaining parts
of tx*. If the challenger recognizes nullifiers or output
notes in this remaining part, that were created in Ospend,
it means that A managed to deconstruct it, changing the
output of Ospend, or stealing an honest nullifier.

Definition 4.3 (Anti-Theft). A Zswap scheme is pro-
tecting against theft, if for any A € N and any PPT
adversary A, Pr[Anti-Theft 4(1*) = 1] < negl()\) where
the Anti-Theft 4 (1) game is defined in Fig. 4.

Essentially, anti-theft captures non-malleability of out-
put notes and their ciphertexts, which is in practice
guaranteed by NIZK SE (that implies instance bind-
ing). If A can maul an output (e.g. change its value, or
destination) and still submit the tx to Ojpsert success-
fully, it wins the game, since SplitTx will not locate tx
as being in Spent, and thus the game challenger C will
catch A spending a nullifier that was in Spent but not
located by SplitTx.

The requirement that O in Ogpeng contains at least
one honest output is needed so that SplitTx can uniquely
identify honest sub-transactions’. In other words, note
uniqueness is necessary for the anti-theft game to make
sense. This does not limit A from creating unbalanced
input-only transactions, since A can still request to in-
clude a single zero-valued output.

The set Nfg in SplitTx is needed since without it
honest sub-transactions can be counted twice. E.g. let
txg, tx; be two honest transactions with the same input
nullifiers Nf, but completely different outputs Mgy, M7
(each containing at least one honest output note). With-
out Nfg, for tx containing Nf and My U My, SplitTx will
detect both txg, tx1, and the winning condition will not
be triggered. We, on the other hand, want anti-theft to
prevent this: with Nfy one of tx; will be considered hon-
est, and the honest output note in tx;_; will trigger the
anti-theft winning condition. We do not need to simi-
larly count M since output notes are unique — adding
M = M\ M’ into SplitTx simply does not change the
behaviour of the game.

Finally, it is critical to filter M“’ from M. Oth-
erwise, A would be able to trivially win the game by
triggering M N M # 0 in the following way:

1. A, through Ospend, requests an honest spend to an
adversarial public key pkA;

2. A obtains the proof and corresponding note*, re-
ceives it, and creates a completely different, adver-
sarial transaction tx* on its own, where note* is an
output;

3. the game will not find any honest subtransaction in
tx* and thus note* € M N MA.

7 Without this requirement, and without adding extra marker
information to notes, identifying honest sub-transactions within
SplitTx would take exponential time.

Zswap = 517

Balance 4 £, (1)

p Setup(1>‘)
(st, I, I, SK*) + APKeyGen:Ospend: insert (1)
assert {noteg ;} € Iy are distinct, and st,.MT contains only
these notes.
assert {note;} € I are distinct, in st.MT
for (note;, C;) € Iy do
(-, nul, (a,ty), -) < TryReceive(note;, C;, SK*)
assert nul ¢ st,.NF
volty] := volty] +a
for (note;, C;) € I do
(-, nul, (a, ty), -) < TryReceive(note;, C;, SK™)
assert nul ¢ st.NF
valty] :=valty] +a
v —, Vi < (ty = 0)
Ins’ « GetLog(st)
for all (st,-,tx,o) € Ins’ do

({nuli}Li‘l, {noteJT, }Lz‘l’ {Ay hyery) + tx
(txz,) « SplitTx(st, tx)
for (Nf, M) € txy do
Find (st, I, Nf, M) € Spent
for (note’,C’) € I do
(-, (a,ty), -) + TryReceive(note’, C’, SK)
vn- [ty ==vn_[tyl +a
for (-, M) € tx do
for (note’,C’) € M do
res < TryReceive(note’, C’, SK)
if res = (-, (a,ty),) then vy [ty] := vnyfty] +a
if 3ty € T : valty] > volty] + v —[ty] — v+ [ty] then
return 1
else return 0

p with default value O
re ev(stg,st)

) makes su

Fig. 5. The balance experiment

4.5 Balance

The balance property presented next captures that
transactions distribute underlying coins properly, that
is, the adversarial balance per type only changes “pre-
dictably”, by the adversary receiving or sending these
coins. In particular, the balance game forbids malicious
conversion between asset types, coin forging, and double
spending.

Formally, the property is modelled as a game
(Fig. 5) of A “against” the honest parties, in which A
has to prove that it has more coins that it could have ob-
tained honestly. It goes as follows. The challenger allows
A to interact with the oracles, and asks A to present two
sets of values: Iy and I, together with a set of secret keys
SK*. Unlike in other games, st; in balance must contain
only adversarial coins, and Iy must be all the unspent
corresponding notes (receivable with SK*). The other
set I is the set of unspent adversarial coins from the
new state st (again receivable using SK*) that A claims
to have an illicitly produced coins, breaking the balance
condition. This balance condition is computed next in
the following manner. First, vy is set to the sum of all
values in [y, and v4 as a sum of all values in I. Then,
by traversing the history of transactions from st to st,
the game computes the following two values:

1. vy _ is the sum of all honest inputs in transactions;
and
2. vy4 is the total coins received by honest parties.
The final condition checks that A cannot show in st
more coins than:
1. it had in sty, and
2. that were sent by honest parties, minus received by
honest parties.
This last difference may be both positive and negative,
but importantly, the balance of A, per type, is “tied”
to the balance of honest parties, no extra coins can be
produced.

Definition 4.4 (Balance). A Zswap scheme is balanced
if for all PPT adversaries A there exists a PPT extrac-
tor €4 such that Pr[Balance 4. ¢, (1*) = 1] < negl(\) with
the game defined in Fig. 5.

Note that this balance property does not prevent an
external mechanism to change the state. This is useful
for smar contract based minting of new types.

4.6 Privacy

The privacy game captures secrecy of coin transfers by
means of an indistinguishability experiment. To model
the game we will first introduce the notion of a transac-
tion instruction tree T. Such a variable width tree has
as its leaf i either

1. the instructions to construct an honest transac-
tion ({note; e, } 121, {(pky 5 al; ty7)}), simi-
larly to the input to Ospend, Or

2. a fully adversarial transaction (tx;,o;).

Its intermediate leaves are empty, and merely represent
how children transactions must be merged.

We will also need to decide what a transaction re-
sulting from a merge according to T leaks. We formalize
this notion by defining the tree equivalency relation, for-
mally on Fig. 6 as follows: EquivTree(Tp,T1) = 1 if

1. The imbalance of amounts in each type is equal, Bj.

2. The number of input notes is equal (published nul-
lifiers), and the number of output notes is equal.
For honest Bg A BQT leaves, as it implicitly holds for
adversarial leaves due to the next property Bs.

3. Malicious offers need to be the same in both trees,
but maybe not at same positions, Bj.

4. For all the honest nullifiers Nf that A receives via
Ospend, if any of the related notes are included in the
honest leaves of a tree, these notes must be included
in both trees, By.

Zswap =— 518

5. The adversarial output instructions of honest leaves
are the same in both trees, Bs.

The privacy notion itself asks A to present two
equivalent trees, and then builds a single transaction
for each tree which both must not fail. It returns one
merged transaction. The adversary wins the game if it
can decide which tree was used. To illustrate the notion
with a single example, imagine the tree to contain a sin-
gle leaf node in both cases, in the first case spending a
single note with X coins, sending 1 to Alice and N — 1
to Bob, and in the second case spending a single note of
Y coins, sending Y — 2 to Alice and 2 to Bob. Such trees
are equivalent according to our definition, and thus A
should not be able to decide which transaction it sees.

Definition 4.5 (Transaction Privacy). A
scheme has private transactions, if for all PPT ad-
versaries A it holds that:

Zswap

|Pr[Privacy?4(1A) = 1] — Pr[Privacy’4 (1*) = 1]| < negl(\)

with Privacyl;‘(l)‘) defined in Fig. 6.

5 Zswap Protocol

We present the Zswap protocol in Fig. 7. It extends the
OTA scheme (constructed in Appendix B) and addition-
ally utilizes a sparse homomorphic commitment scheme
(sparse Pedersen): SHC = (ComSetup, Commit). and Ar-
guments of Knowledge: AoK = (AoK.Setup, AoK.Prove,
AoK . Verify, AoK.Sim).

The high-level idea is to create a transaction which
has separate inputs and outputs handled by the OTA
scheme. A transaction links them together through SHC
commitments. Each input and output has a correspond-
ing SHC commitment with an equal amount and type.
This equivalency is assured by an AoK for each in-
put and each output. The output AoK additionally as-
sure non-malleability for the note ciphertext. The input
AoKs enforce that the transaction creator possessed the
secret key to authorize the spending and prove that the
published nullifier is correct. This is captured by two
NIZK languages.

The first one authenticates a valid spend — it says

S

that the (rerandomized) SHC commitment com® is well-

formed and contains the same value and type as a note

Zswap =— 519

Privacy’ (1*)

EquivTree(Tp, 11, st)

p « Setup(1*)

0= {oKeyGem OSpend7 Olnsert}
(st,To, T1) < A°(p)

assert GetlLog(st) # L

txo < EvalTree(st, Tp)

txy < EvalTree(st, T7)

assert txg # L Atxy # L
assert EquivTree(Tp, Th,st) =1
b A%(txp)

return b’

EvalTree(st, T)
for all leaf; € T' do

if leaf; = (tx o’) then 7, Validate adversarial txs
assert Venfy(st tx,0) =1
/i Replace instruction leaves with real txs

if leaf; = (I,0) then
ptx < BuildPTx(I, O, st, SK)
tx; <— CompleteTx(ptx)
o; < SignTx(ptx, st)
Replace leaf; by (tx;, ;) in T

% Fold T into a single root node by merging
while 3 node N in T with only {(tx;,0;)}f_; as children
do

Replace node with merged transactions of its children:
N «+ (MergeTx({tx; }{_,, MergeSig({ci}5_1))
Remove its children

return T

Parse each leafy ; of each T} as either an adversarial leaf leafA

|Slp,
(txp,i@({nulp,i 5}, ’,{(nOteL,], boig) =1

or an honest leaf leaf™

IS \b i
({(notey ; ;. Cip i)}~
for b € {0,1},leaf] € Ty, do
for j € [|Tp,:|] do
(nuly 5.5, (afi T tny) Thiig) TryReceive(notef}i’j, Cf’iyj,SK)

for ty € {tyb i J}‘T‘b ! do
Ap ity Zj:%mjit
By « Vity : Zleaf;HETO A
B3 + Zleafz{ETU |Slo, =
Bf « Z\eaf?‘ETO ITlo,
« UIeaf;AETO{(tXO‘i’ 70,i)} =
Nf U(~,«,Nfi,»)€Spent NF;
Bs + NfN (UleafHeT0 nulg,; ;) = Nf N (UIGMHET1 nuly ;)

for b € {0,1}, IeafZ" €T, do O + |

B3

Bs « Og' = Of*
return By A BS A B] A B3 A By A Bs

\T\b i
{Abw,ty}tyeTyb,i) Tp,i) Ieafbﬂ

\le i

{(pkb 1,Jﬂasz’tYZL])}) <;Ieafl’;‘-,t'i

=ty af=i‘j N Zj=tYO,z‘,j =ty ag—*i’j
0,ity = ZleafZ{ETl Aty
Zleaf;HETl IS4

= Zleafz"ETl 1T
U|eaf;“eT1{(tX1*i’ o1.1)}

S
ok jng(Pkb,z,J (A b 5)

Fig. 6. Transaction privacy experiment

in the Merkle tree of state st with the given nullifier nul.

£opend — { (st, nuLcomS) | El(path7sk57as,ty8,r57rcs) :
(st.MT[path], nul; sk, (a%,tyS),rS) € L™ A
(st.MT[path]; OTA.P(sk®), (a®, tyS),rS) € LoPe" A
S s rcs)}

com® = Commit(ty®, a

The second language L°U*P'* is even simpler. It
claims that the two output commitments, the real
(which is contained inside the output note) and the ran-
domized one, contain the same value of the same type.
To prevent overflows in the homomorphic commitments,
we include a range proof where f3 is chosen small enough
in relation to the group order (maximum inputs and
outputs times 2 < |G|). Thereby we assume integer

amounts in subsequent arguments.
[output {(noteT,C’T,comT) | E|(ka,aT tyT T 7') .

(st.MT [path]; pk, (a7, ty7),77) €
T T T)

Lopen A

com” = Commit(ty”,

,1}}

Note that the ciphertext C7 is not referred to in the
relation, but when used with a simulation extractable

a’ e{o,...,20

(SE) NIZK, realizes a Signature of Knowledge. Le. every
proof is bound to a specific ciphertext and is invalid
for any other ciphertext. The transaction signature o

then contains a proof 7r3 for each input together with
the SHC com and for each output a signature 7r and
the SHC comZT. The last component of the signature is
the aggregated randomness of the commitments which,
together with the Ay, imbalance, allows verification.

For a full transaction verification, all proofs and sig-
natures contained in ¢ must be valid and the published
nullifiers must be unique regarding the set of nullifiers
in state st.

With the transaction signature o having a separate
proof for each input and output, it is possible to merge
transactions by calculating the union of their proofs. To
maintain the verifiability of the commitments, the ran-
domness of the merged transactions is added. The irre-
versible addition operation then prevents future parties
to unmerge a transaction if they have not seen the sep-
arate parts beforehand. To maintain the anonymity, we
order inputs and outputs canonically after each merge.

As a remark, the aggregated randomness in a trans-
action may be replaced by a proof of knowledge. Like the
binding signature of Sapling, this finalizes a transaction
such that it can no longer be merged with others.

Zswap =— 520

Setup(1?)

pshc < ComSetup(1*)

poTa + OTA.Setup(1*)

Pspend <— AoK[LP].Setup(1?)
Poutput <— AoK[LUPUt] Setup(1*)

p:= (pSHC1 POTA; Pspend s poutput)
return p

Verify(st, tx, o)

Parse tx as ({nul }L 1,{(no‘cez—,CiT)}

assert {nul;} are distinct
assert Vi : nul; ¢ st.NF

,com)}

|71
i=17

{Aty}tyETy)

IS

Parse o as ({(7§ s Il

{(ﬂfcom?)}i:u
for i € [|S]] do

find matching st’ such that ev(st’,st) = 1
stmt; := (st’, nul;, com?)
assert AoK[LP] Verify(7, stmt;)
for j € [|T]] do
assert AoK[£°“tp”t] Verlfy(TrJ , (note], ¢, comT))

return @ coml S] @ coml

Commit(0, 0; rc) & @

rc)

ety Commit(ty, Ay, 0).

SignTx(ptx@(S, T), st)

Parse S as {(sk?,
Parse T as {(pk;, note]

S

,nul;, path;, (af, ty?), r)}L=‘1
T
of @l ol YT

note

% Rerandomized input/ Vuf put commitments
{rc$ & R, com? < Commit(ty?, a f,rcs)}lsI
{rc] & R, com] < Commlt(ty7 ,a; ,rcT)}”—|
{stmt$ = (st null,com)}l
{w$ = (path;, sk?,ad ,ty?, 7o, rcs)}l‘SI
{n$ <« AoK[LsPend]. Prove(stmt‘S)}‘S‘

T T T
{stmt] = (note] ,C] , com])}‘1 ‘1
{w? = ks, al o] T)HTL
{n] — AoK[L°“P"] Prove(stmt] , w])}le
return (ToSet({ (w3, com})}‘S‘)

ToSet({(w] comT)}‘T‘) Lill ref — 17—"1 7
. n
MergeSig({o;}7_;)
IS5l T IT51

Parse o as {(71' ,com 7)}L Y {(m; 7, com 7)}1 L, 1C))

rc <— Z]‘:l Cj
return (ToSet (U7:1{
ToSet Un {(TrTj com
j=1 i

[S51
I
Tiyy 1751
N2

)
)9

S;
7 com
T

Fig. 7. The Zswap Construction

6 Security Proof

In this section we prove the main three security prop-
erties of Zswap construction on Fig. 7 we introduced in
Section 4.

Theorem 6.1 (Anti-Theft). The Zswap protocol pre-
vents theft (Definition 4.3), assuming OTA security,
NIZK zero-knowledge, NIZK simulation-extractability,
and SHC' binding and HID-OR.

Proof (Sketch). When A triggers the winning condi-
tion of the anti-theft game with an adversarial trans-
action tx*, there exists a note or a nullifier taken from
some honest Ospend query E, such that not all nulli-
*. By NIZK

simulation-extractability, the proofs that were produced

fiers and notes from tx were included in tx

in £ “bind” together notes and nullifiers with the corre-
sponding input and output commitments. This means A
uses some commitments from tx, but avoids some other.
Given commitment binding, the values we extract for
commitments of tx* (we can extract them from NIZKs)
are the same as the values committed in tx.

From this point we can build a reduction B to HID-
OR. B guesses a commitment C'x that is present in both
tx, tx*, and Cy that is only present in tx. It asks the
HID-OR challenger C for either

. two commitments corresponding to the values
(a1,ty;), (a2, tys) as they should be honestly; or
. the values swapped as (a2,ty;), (a1,ty,) if both in-
dices correspond to inputs or both to outputs, and
. swapped with negation (—a2,ty,), (—ai,ty;) other-
wise.
This way of embedding guarantees the HID-OR require-
ment that Ay o = Ag,1. Then B simulates the two
NIZKs corresponding to C'x,Cy. When A presents tx*,
B will extract the randomness rc; for all commitments
except for Cx, and thus because tx* also includes the
joint randomness rc*, B can compute the randomness
=Y rg).
whether Cx contains (a1,ty;) or the “swapped” value,
and thus wins HID-OR. O

rcx for Cx (as Given rcx, B can check

We present the detailed proof of anti-theft in the full
version of this paper.

Theorem 6.2 (Privacy). The Zswap protocol is private
(Definition 4.5), if NIZK is zero-knowledge, Pedersen
commitments are hiding, and OTA is private and satis-
fies nullifier pseudorandomness.

Proof. First, we note that changing the order of merge
in the tree T does not affect the resulting merge trans-
action. Let T” be a variant of T where any two trans-

actions are swapped — then EquivTree(T,7’) = 1 and

EvalTree(st,T) = EvalTree(st,T’). The first statement
can be verified by manually checking all the predicates
and making sure they are indifferent to the order of the
leaves. As for the evaluation equality statement, first
note that all the leaves will be processed in the same
way and with respect to the same st irrespectively of
their order. So we only need to argue that MergeTx and
MergeSig are commutative — which is trivial since they
are only uniting sets and taking sums (which are com-
mutative operations on their own).

Hence we can represent T as a merge of two trans-
actions, coming from subtrees T4 and Ty. T4 contains
exactly the same leaves for both Ty and T if they are
equivalent. Therefore, we only need to show the indis-
tinguishability of transactions txz; o and txy 1, created
from T% o,T3,1 correspondingly. If T3 is empty in one
case (contains no leaves), it must be empty in the other
case, due to the restriction on input and output size, Ba,
in EquivTree. And thus if txy, ; is empty, txs;,1— should
be empty too for each b € {0,1}, in which case the pri-
vacy proof is trivial, since adversarial transactions are
constructed in exactly the same manner in both worlds.
Therefore, assume that there is at least one input or
output in an honest transaction in both cases. Next,
observe that:

MergeSig({SignTx(BuildPTx(;, O;, st, SK), st) };) =
SignTx(BuildPTx(I’ = U I;,0 = U 0, st, SK), st)

Because of this homomorphic property (and a similar
one for MergeTx), we can assume that both txy ; and
their signatures are just a direct output of CompleteTx
and SignTx (w.r.t. (I’,0’)), and no merging is involved.
The form of txs; that A receives is

({nU|i}|SI7 {(nOteiv Cl)}‘TI7 {Aty}v
Ui@({(ﬂisv Comis)}‘a’ {<7T;’T7 ComZ)}‘TI7 rc))
We first argue informally why this transaction looks the
same for both trees.

1. Set sizes: number of inputs and outputs |S| and |T|
are the same, guaranteed by Bs, and by the fact
these dimensions are just summed when transac-
tions are merged.

2. Size and content of the {A} set is the same by B;.

3. The set of (honest) input nullifiers {nul;}/S! con-
tains: nullifiers that A received from Ospenq — these
are the same by By; and nullifiers unknown previ-
ously to A — deterministic but indistinguishable by
nullifier pseudorandomness.

4. {(note;, C;)}T| are either: belonging to adversarial
keys in which case both the notes and ciphertexts

Zswap =— 521

have the same distribution, as guaranteed by Bs —
these notes contain the same values, but created in
both trees with uniformly sampled randomness, so
are indistinguishable; the same applies to the adver-
sarial ciphertexts. Or the notes belong to the honest
keys, in which case they are (together with the ci-
phertexts) indistinguishable by the OTA privacy.
5. In the signatures o;:

(5.1) By zero-knowledge, proofs 70 and 7] can be
simulated in both worlds, so they are indistin-
guishable.

(5.2) Intermediary commitments com$,com/ can
contain just zero (except for one chosen com-
mitment for each type which must contain Ay
to balance out the public imbalance), and this
is indistinguishable by HID-OR — commitment
hiding with open randomness (by a variation
with n elements involved simultaneously, as de-
scribed in Lemma 2.1).

The formal reduction is described in Appendix D. [

Theorem 6.3 (Balance). The Zswap protocol satisfies
the Balance property (Definition 4.4) by anti-theft,
NIZK ZK, NIZK SE, and OTA Security.

Proof (Sketch). Intuitively, the property reduces to:

1. NIZK SE (implying knowledge soundness (KS)) and
commitment homomorphism (every valid transac-
tion is balanced);

2. Anti-theft, since A can use only its own notes; and
binding, since A can only open output commitments
in a single way when spending them.

The first guarantees that transactions do not break per-
type balance and do not introduce any coins out of thin
air etc. The second proves that in the long-term A can
only move funds through such honest transactions. The
full proof is presented in Appendix E. [

7 Implementation

To show that our construction is practical, we devel-
oped a prototype implementation available online®. We
use the rust framework ark-works® and their Groth16
SNARK library. For an efficient hashing circuit, we
use Poseidon [15]. As the construction is similar to the
Zcash Sapling version, we use this as performance com-

8 https://anonymous.4open.science/r/zswap-E331
9 https://arkworks.rs

https://anonymous.4open.science/r/zswap-E331
https://arkworks.rs

? 00ZswapBEMock Sapling A8 Sapling
. 1s§
2 B = o . Ze
SR = gEf o u3d .zp 32
qg)lms; , ,
1pss |- ré
o too& ﬂoo‘x 0&% ‘{d 0& ?ﬂ% b\s
oA T © ®

%Qeﬂ\ \)K;Q C)O‘O%Q K;Q

Fig. 8. Comparison of our protocol to our Mock Sapling imple-
mentation with the same hash function and the original Zcash.

parison. Our implementation differs in various aspects
that aren’t material to the core protocol, including the
SNARK implementation, hash functions used, and com-
mitments used in the coin commitment Merkle tree. The

10 yges less

production Zcash Sapling implementation
performant variants for backwards compatibility and in-
tegration purposes. A direct performance comparison to
Zcash is therefore misleading, and we introduce an ar-
tificial “Mock Sapling” code base, that re-implements
the Zcash Sapling cryptographic protocol but uses the
same primitives as we do. We achieve this by remov-
ing the types and type commitments from our construc-
tion. The comparison then allows us to detect the per-
formance impact of our changes to the cryptographic
protocol compared to Sapling without the measurement
error caused by different implementations.

For spend proofs, our protocol requires 25,416 gates,
10% more than Mock Sapling (23,084). For output
proofs, we use 14,852 gates, 18% more (12,520). In both
cases the difference of 2,332 gates consists of a hash-to-
curve operation to associate the type with a curve point.
The rest of the constraints further break down into
two dominant groups: Symmetric cryptography (hashes,
commitments, and Merkle tree verification), and group
operations related to the binding signature. For spend
proofs, symmetric operations dominate with 66% of con-
straints (16,935), primarily from the Merkle tree verifi-
cation (using a tree of height 32). The group operations
cover almost all of the remaining 24% of constraints
(with 6,114). For output proofs, group operations make
up 41% of the constraints (with the same 6,114 con-
straints), and symmetric operations 43% of constraints

(6,403).

10 https://github.com/zcash/zcash

Zswap = 522

The median, min and max runtimes of 30 execu-
tions on a 6' generation i7 CPU@2.7GHz are sum-
marized in Figure 8. The times are for creating Com-
mitments, Spend proofs and Output proofs. For ver-
ification, we measure the homomorphic commitment
comparison, the Spend proof verification and the Out-
put proof verification. Without comparison to Sapling
are Merging transaction and transaction assembly. The
SNARKSs proving time takes around two seconds for
each input and one second for each output, dominating
the transaction generation. The verification is notice-
ably slower with support for types but approximately
equal to Zcash. Overall, we notice that the impact of
the additional constraints required for our protocol are
minimal while providing additional functionality.

Acknowledgements

We thank the anonymous reviewers and our shepherd,
Sherman Chow, for their helpful comments in improv-
ing this work. This work was partially funded by the
Carlsberg Foundation under the Semper Ardens Re-
search Project CF18-112 (BCM), the Sapere Aude:
DFF-Starting Grant number 0165-00079B "Foundations
of Privacy Preserving and Accountable Decentralized
Protocols" and by Input Output (iohk.io) through their
funding of the Edinburgh Blockchain Technology Lab.

References

[1] Kurt M. Alonso and Jordi Herrera Joancomarti. Monero -
privacy in the blockchain. Cryptology ePrint Archive, Report
2018/535, 2018. https://eprint.iacr.org/2018/535.

[2] Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail
Volkhov. Another look at extraction and randomization
of groth’s zk-SNARK. Cryptology ePrint Archive, Report
2020/811, 2020. https://eprint.iacr.org/2020/811.

[3] Carsten Baum, Bernardo David, and Tore Kasper Frederik-
sen. P2dex: Privacy-preserving decentralized cryptocurrency
exchange. In Kazue Sako and Nils Ole Tippenhauer, editors,
Applied Cryptography and Network Security, pages 163-194,
Cham, 2021. Springer International Publishing.

[4] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, lan Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from bit-
coin. In 2014 IEEE Symposium on Security and Privacy,
pages 459-474. IEEE Computer Society Press, May 2014.
10.1109/SP.2014.36.

[5] Sean Bowe, Alessandro Chiesa, Matthew Green, lan Miers,
Pratyush Mishra, and Howard Wu. ZEXE: Enabling de-

centralized private computation. In 2020 IEEE Symposium

https://github.com/zcash/zcash
https://eprint.iacr.org/2018/535
https://eprint.iacr.org/2020/811
https://doi.org/10.1109/SP.2014.36

(6]

[7]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

on Security and Privacy, pages 947-964. IEEE Computer
Society Press, May 2020. 10.1109/SP40000.2020.00050.
Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and

Dan Boneh. Zether: Towards privacy in a smart contract
world. In Joseph Bonneau and Nadia Heninger, editors,

FC 2020, volume 12059 of LNCS, pages 423—443. Springer,
Heidelberg, February 2020. 10.1007/978-3-030-51280-4_23.
Matteo Campanelli, Felix Engelmann, and Claudio Orlandi.
Zero-knowledge for homomorphic key-value commitments
with applications to privacy-preserving ledgers. Cryptology
ePrint Archive, Report 2021/1678, 2021. https://eprint.iacr.
org/2021/1678.

Shumo Chu, Qiudong Xia, and Zhenfei Zhang. Manta:
Privacy preserving decentralized exchange. Cryptology ePrint
Archive, Report 2020/1607, 2020. https://ia.cr/2020,/1607.
Apoorvaa Deshpande and Maurice Herlihy. Privacy-

In Matthew Bern-
hard, Andrea Bracciali, L. Jean Camp, Shin'ichiro Matsuo,

preserving cross-chain atomic swaps.

Alana Maurushat, Peter B. Rgnne, and Massimiliano Sala,
editors, FC 2020 Workshops, volume 12063 of LNCS, pages
540-549. Springer, Heidelberg, February 2020. 10.1007/978-
3-030-54455-3_38.

Donghui Ding, Kang Li, Linpeng Jia, Zhongcheng Li, Jun Li,
and Yi Sun. Privacy protection for blockchains with account
and multi-asset model. China Communications, 16(6):69-79,
2019.

Felix Engelmann, Lukas Miiller, Andreas Peter, Frank Kargl,
and Christoph Bosch. SwapCT: Swap confidential transac-
tions for privacy-preserving multi-token exchanges. PoPETs,
2021(4):270-290, October 2021. 10.2478/popets-2021-
0070.

Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and
Claudio Orlandi. Quisquis: A new design for anonymous
cryptocurrencies. In Steven D. Galbraith and Shiho Mo-
riai, editors, ASIACRYPT 2019, Part I, volume 11921 of
LNCS, pages 649—678. Springer, Heidelberg, December
2019. 10.1007/978-3-030-34578-5_23.

Georg Fuchsbauer, Michele Orru, and Yannick Seurin. Ag-
gregate cash systems: A cryptographic investigation of Mim-
blewimble. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT 2019, Part I, volume 11476 of LNCS, pages
657—689. Springer, Heidelberg, May 2019. 10.1007/978-3-
030-17653-2_22.

Zhimin Gao, Lei Xu, Keshav Kasichainula, Lin Chen, Bog-
dan Carbunar, and Weidong Shi. Private and atomic ex-
change of assets over zero knowledge based payment ledger.
arXiv preprint arXiv:1909.06535, 2019.

Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab
Roy, Christian Rechberger, and Markus Schofnegger.
Starkad and Poseidon: New hash functions for zero knowl-
edge proof systems. Cryptology ePrint Archive, Report
2019/458, 2019. https://eprint.iacr.org/2019/458.

Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan
Wilcox. Zcash protocol specification. GitHub: San Francisco,
CA, USA, 2016.

Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss.
Kachina—foundations of private smart contracts. In 2021
IEEE 34th Computer Security Foundations Symposium
(CSF), pages 1-16. IEEE, 2021.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

A

Zswap = 523

Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen,
Hawk: The blockchain
model of cryptography and privacy-preserving smart con-
tracts. In 2016 IEEE Symposium on Security and Privacy,
pages 839—-858. IEEE Computer Society Press, May 2016.
10.1109/SP.2016.55.

Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Do-
minique Schréder, Sri Aravinda Krishnan Thyagarajan,

and Charalampos Papamanthou.

and Jiafan Wang. Omniring: Scaling private payments
without trusted setup. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019, pages 31-48. ACM Press, November 2019.
10.1145/3319535.3345655.

Sarah Meiklejohn and Rebekah Mercer. M®obius: Trustless
tumbling for transaction privacy. PoPETs, 2018(2):105-121,
April 2018. 10.1515/popets-2018-0015.

Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory
Maxwell, and Pieter Wauille.
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea

Confidential assets. In Aviv
Bracciali, Federico Pintore, and Massimiliano Sala, editors,
FC 2018 Workshops, volume 10958 of LNCS, pages 43-63.
Springer, Heidelberg, March 2019. 10.1007/978-3-662-
58820-8_4.

Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa
Melchior, Petar Tsankov, and Martin T. Vechev. zkay: Spec-
ifying and enforcing data privacy in smart contracts. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 1759-1776.
ACM Press, November 2019. 10.1145/3319535.3363222.
Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-
Mundt, Dominik Harz, and William J Knottenbelt. Sok: De-
centralized finance (defi). arXiv preprint arXiv:2101.08778,
2021.

Jiahua Xu, Nazariy Vavryk, Krzysztof Paruch, and Simon
Cousaert. Sok: Decentralized exchanges (dex) with au-
tomated market maker (amm) protocols. arXiv preprint
arXiv:2103.12732, 2021.

Zheng Yi, Howard Ye, Patrick Dai, Sun Tongcheng, and
Vladislav Gelfer. Confidential assets on MimbleWimble.
Cryptology ePrint Archive, Report 2019/1435, 2019. https:
//eprint.iacr.org/2019/1435.

Proofs of Knowledge

We quickly remind the reader of the classical security

properties of a NIZK: The scheme is said to be complete,
if V(stmt, w) € R, we have

(crs,) < Setup(Rr);

Pr .
Verify(crs, stmt, Prove(crs, stmt, w)) = 1

=1

https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/978-3-030-51280-4_23
https://eprint.iacr.org/2021/1678
https://eprint.iacr.org/2021/1678
https://ia.cr/2020/1607
https://doi.org/10.1007/978-3-030-54455-3_38
https://doi.org/10.1007/978-3-030-54455-3_38
https://doi.org/10.2478/popets-2021-0070
https://doi.org/10.2478/popets-2021-0070
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1007/978-3-030-17653-2_22
https://eprint.iacr.org/2019/458
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1145/3319535.3345655
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1145/3319535.3363222
https://eprint.iacr.org/2019/1435
https://eprint.iacr.org/2019/1435

The scheme is knowledge sound (KS) if for all PPT A
there exists an extractor £ such that

(crs,) < Setup(Rr);

(stmt,) < A(crs); w «+ E(stmt, 7) :
Verify(crs,stmt, 7) = 1 A
(stmt,w) ¢ R

Pr < negl(\)

Finally, we say that the scheme is (computational) zero-
knowledge if for any PPT adversary A and Ry, |eg —
1] < negl(\), where

ep = Pr [(crs, T) < Setup(Ry) : ASbes(crs) = 1]

The oracle Spcsr on input (stmt,w) asserts that
(stmt,w) € Ry and then returns m = Prove(crs, stmt, w)
if =0, and m = Sim(crs, 7, stmt) if b = 1.

We additionally require a stronger variant of the KS
property called simulation-extractability, where extrac-
tion is possible in the presence of simulated proofs.

We
weakly

Definition A.1 (Simulation-Extractability [2]).
that a
simulation-extractable (SE) if for any PPT adversary
A there exists a PT extractor €4 such that for Ry,

say non-interactive argument 1s

(crs, T) + Setup(Rr);
(stmt,) < ASers.m (crs);
Pr | w<« E4(stmt,7) :
Verify(crs,stmt, 7) = 1 A
(stmt,w) ¢ Ry Astmt ¢ Q

< negl(})

where Scrsr(stmt) is a simulator oracle that calls
Sim(crs, 7, stmt) internally, and also records stmt into Q).

The SE property guarantees that a NIZK in a certain
sense “instance-binding”. E.g. if a certain game produces
proofs {m;} for a language with a hard sublanguage (e.g.
stmt = (stmty,stmte) and stmt; = f(wi) where f is a
one-way function), we can simulate these proofs, and
by SE A can only return either these simulated proofs
for the same instance, or we can extract w from them
(in which case the reduction essentially inverts f). This
means that A cannot change the stmtg part in {m;}. In
practice this means that if the honest 7 hides certain
secrets (a key, or a secret random value), then A cannot
maul 7 into proofs for a “slightly different” instance.

B Zerocash-Style OTA

To use Zerocash style one-time-accounts, we provide an
instantiation which is compatible with Zerocash.

Zswap = 524

Given a key anonymous public key encryption
scheme PKE, a labeled PRF and a commitment scheme
(Commit). The randomness space is S := ({0,1}*)3, the
key space is K := {0, 1})‘ and the message space consists
of two A-bit integers M := ng the first representing an
amount and the second identifying a type. The random-
ness space = is specified by PKE.

p < Setup(1*): Initializes the SNARK parameters p.
(sk, pk) < KeyGen(): Samples ag randomly from K
and defines apk < P(sk) := PRFZidr(O); samples
Return sk =
(ask, SKene)s Pk = (apk, Pkene)- The relationship be-

an encryption key pair sk, ., PKepe-
tween secret and public keys of the encryption keys
is defined in the encryption scheme.

note «— Gen(pk,d,r): Parse (rk,rc,rn) <+ r and

(apk;, Pkene) pk. Commit to (apk,rn) with ran-

domness rk as commitment com and then com-

mit to com,d with randomness rc. So note =
Commit(Commit(apk, rn; rk), @; rc).

C «+ Enc(pk, (@,r),£): Parse (apk,PKene) < pk. Encrypt
(@,r) with pkeye

(@,r")/L + Receive(note, C,sk): Parse (as,Skene) <

to ciphertext C' and return C.

sk. Decrypt C with sk, to (@,r'). Parse
(rk’,rc’;rm’) < ¢’ and verify that these
values recreate the commitment note =

Commit(Commit(P(as), rn’; rk’),@';rc’). If decryption
fails or the commitment does not match the note,
return fail.

nul < NulEval(sk,r): Parse (ask,Skepe) := sk and
(rk,rc,m) := r. Evaluate nul = PRFZ. (rn) and return
nul.

Theorem B.1 (OTA Binding). When using a binding
commitment scheme Commit, the Zerocash commitment
scheme is binding according to Definition 3.3

Proof. Let A return pkg,do,ro,pk;,d1,71 such that
Gen(pkg, @o,r0) = Gen(pky,di,71) and dp # @;. Parsing
Vi € {0,1} : (rks, rc;, ;) < 7, the first condition im-
plies the equality Commit(Commit(pkg, rno; rko), @o; rco)
= Commit(Commit(pky,rni;rky),d1;rc;) but the com-
mitments have different values for @. This breaks the
binding property of the commitment scheme. O

Theorem B.2 (Note Uniqueness). Zerocash ~ OTA

style notes are unique according to Definition 3.5

Proof. Trivially follows from binding of the underlying
commitment scheme — since both pk and @ are commit-
ment messages, finding a collision (even with adversar-

ially chosen randomness) amounts to breaking commit-
ment binding. O

Theorem B.3 (Nullifier Uniqueness). The Zerocash
OTA scheme has unique nullifiers (Definition 3.7), if
the PRF is secure and the commitment scheme is bind-
ing.

Proof. Let A return (skg,ro,do,Sky,71,d1) which gen-
erates the same note but different nullifiers nuly and
nul;. The binding commitment scheme ensures that
(skg,r0,a0) = (sky,71,d1). As NulEval is determinis-
tic, the nullifiers are equal, contradicting our assump-
tion. O

Theorem B.4 (Nullifier Pseudorandomness). The Ze-
rocash OTA nullifiers are pseudorandom (Defini-
tion 3.6), if the PRF is secure and the commitment

scheme is hiding.

Proof. The pseudorandomness experiment is exactly
the same as standard pseudorandomness, except A
(1) a public key,
to Receive(-,-,sk). The public key is computed as
PRFZ‘idr(O), and so by pseudorandomness of this PRF
(with a different domain) can be replaced by a random

is given (2) an oracle access

value 9, so knowledge of an extra random value does
not help A to distinguish. Regarding the Receive ora-
cle, it performs decryption with an unrelated sk, so
it does not interfere with the main pseudorandomness
reduction, since this oracle does not use ag (it uses 9
which we already argued to be random and thus irrele-
vant). O

Theorem B.5 (OTA Privacy). Using a hiding com-
mitment scheme and a IND-CCA, key anonymous (IK-
IND) encryption scheme, the Zerocash-style OTA is pri-
vate according to Definition 3.4

Proof. This property trivially reduces to the assump-
tions mentioned, since its game is essentially a merger
of IND-CCA, IK-IND, and a commitment hiding, where
all the data is showed simultaneously, depending on b.
Formally, we
1. switch nullifiers to random values,
2. switch the commitments from b = 0 to b = 1, and
then
3. switch messages by IND-CCA, and (4) keys by IK-
IND.
In the steps (1) and (2) we can still simulate Oge, since
in both cases it uses a keypair that is unrelated to the

Zswap = 525

PRF keypair. In (3) and (4) we just wire the challenge
oracles through to Oy, since ORrgy is essentially a CCA-
like oracle. O

C Proof of HID-OR for Sparse
Pedersen Commitment

Proof of Lemma 2.1. Let the hash function be modelled
by the random oracle, and H(ty;) = G'i, and thus the
challenger knows all ;. The form of commitments that
are given to the adversary is thus:

[toap + 7], [tyap, + 7', rc=1r—1'

The initial game is HID-ORP, in which A sees the pre-
vious equation for b = 0. In Game; we sample 7 and
instead give A the following:

[7], [thao + '], rc = (F — toag) — r’

Note that tgag+r and 7 are both uniform, so A does not
see the difference, the transition is perfect. Similarly we
equivocate the second commitment:

[7], [f’], rc= (# —) — (toag — t()a'o)

And now we “switch” the elements to the case of
b=1.Let T = {to,t(} = {t1,¢1}. Given Ay o = Ay1
for all ty € T' we have:

toao — t6a6 = ZtAty,O = ZtAty-,l = t1a1 — t/lall
teT teT

Therefore what A sees now is:
[7], [#],rc = (f — ') — (t1a1 — tha))

So we can proceed with replacing # and # “back”
into real commitments to the b = 1 values similarly to
how we abstracted them in the first steps of the proof.
The end result is a distribution that A sees for b = 1
(HID-ORY): [t1aq +7], [tha} +7'],rc = r—1' so our hiding
holds with probability 1 (is perfect). O

Corollary C.1.
Lemma 2.1 holds even if A provides two sets of size

Assuming commitment hiding,
n (not just pairs) of input and output commitments,

1 .
{(tym,ai’t),(tygyt,a;,t)}?)’t:o’o, as long as they still
jointly sum to the same values per type.

Proof. The proof is exactly the same as the previous
one, except that we first “idealise” 2n commitments
(and not just two) from b = 0, and then de-idealise
them all back. The transition logic in the middle holds
similarly because A o = Agy,1. O

D Privacy Proof

Proof of Theorem 6.2, deferred reduction. Formally, we
construct a series of games transforming Privacy&(l)‘)
into Privacy; (11).

Game;: Replace all honest NIZKs (created inside Ospend
and SignTx) to simulated NIZKs.

Games: By nullifier pseudorandomness, replace all the

honest nullifiers A has not seen through Ospeng by the
nullifiers over a different set of secret keys.

To switch the NulEval(skg, 79) to NulEval(sky, 1), we first
pick a random function f and switch all evaluations of
NulEval(skg,) to f(r). Since the nullifiers in tx’* have
not been queried previously in Ospend, the evaluation of
f(ro) is the first one in the game. Hence, it is equivalent
to returning a random value v instead of f(rg). Then,
again by pseudorandomness, we return all the other (not
related to tx) evaluations of f(-) back to NulEval(sk, -).
We now perform exactly the same steps then for the sec-
ond key, de-idealizing ¢ into NulEval(sky,r1). First we
replace all evaluations of NulEval(sky,r) to f(r), then
we observe that r; has not yet been queried to f(-),
so it is equivalent to return f(r1) instead of ¥. Then we
replace all f(r) back to NulEval(sky, r), including the tar-
get nullifier in tx*. This is how we have just replaced
NulEval(sky, ro) by NulEval(sk;,r1). Repeat the proce-
dure for all pairs of nullifiers in tx* in any order (i.e.
it does not matter what the source and target of the
replacement is since all values are pseudorandom).
Games: Replace output notes and related ciphertexts to
honest secret keys by the notes and ciphertexts for T7.
Recall that output notes to A keys must have exactly
the same inputs in both cases, so their distribution is
exactly equal. This step relies on the OTA privacy and
again on nullifier pseudorandomness.

By OTA privacy one can replace OTA.Gen(pky, (tyy, vp),
r) and OTA.Enc(pky, (tyy, vs,7),€) from b = 0 to b =1
even if there are Receive calls in the game before and
after the replacement. (After, we cannot query the chal-
lenge note in a CCA fashion, which is irrelevant since
we replace it in the very end of the game.)

The only detail left now is that there are also nullifier
evaluations that use the challenge sk;, but by nulli-
fier pseudorandomness we can replace these nullifiers by
consistent random values before the OTA privacy switch
(we can do that in the presence of Receive evaluations
because of the Receive oracle in the pseudorandomness
definition), perform the privacy switch, and then return
the real NulEval evaluations back.

Zswap = 526

Games: Replace intermediary commitments com with
the values from Tj. Here we apply HID-OR for vectors,
as described in Corollary C.1: replacing one set of typed
commitments with another, given that Ay o = Agy,1 for
each type. This transition is perfect.

Games: Remove the simulation, create real proofs ac-

cording to the new data in 7. From the first game,
we have not modified anything outside of the scope of
EvalTree, so all NIZKs in Ospeng queries are “restored”
from simulations without any issue, since they are for
exactly the same data. Now it is a matter of a complete-
ness check to make sure that the new transaction con-
structed in EvalTree has the same distribution as txz 1
except for the (yet simulated) proofs, and in particular it
satisfies £P" and £°UPUt. So now we enable real NIZKs
back as well, and by zero-knowledge we obtain honest
proofs for T7. Now Gamejs is equivalent to Privacyh(l)‘),
which concludes the privacy proof.

E Balance Proof

Proof of Theorem 6.3. We start with the inductive step
first, proving the single-tx Balance-Single property, pre-
sented next, which asserts that each separate transac-
tion is well-formed (with respect to the data extracted
from NIZKs), and in particular, balanced. Addition-
ally, it allows introducing the extractor into the balance
game, which we will use later.

Balance-Single 4 ¢, (1*)

p <+ Setup(l*)
(st,tx, o) < A(p)
Parse tx as ({nulf }Lill {(note] ¥, CL)}LZ‘I, {Aa;ty}tyew)
ptxs0(Se, Te) + Ea(p, tx, 0)
Parse S¢ as {(sk‘is, note;s, nul;, path;, (af7 ty‘is), T;S)}‘l‘jl
Parse Tz as {(pk] ,note] ,C7, (a] ,ty]), r;r)}iz‘l
return Verify(st,tx, o) =1 A

(CheckPTx(ptxg, st) # 1 V CompleteTx(ptxg) # tx)

Formally, we claim that for every A exists £4 s.t.
Pr[BaIance—SingleAgA(1’\) = 1] < negl(A).

Proof (Balance-Single). We follow the CheckPTx code
and show why it succeeds. The check that nul; ¢ st.MT
is directly checked in Verify. All except the last (balance)
checks reduce to the NIZK knowledge-soundness.

at £pend NIZK first, the
fact it verifies implies that we extract w =
(pathi,skf7af,tyf,7’f,rcf), which by NIZK soundness
guarantees for all i € [|S|]:

Looking every

st.MT[path,] = notey A
nul; = OTA.NulEval(sk?,r5) A

R

note = OTA.Gen(OTA.P(sk;), (af,ty?),rd)

The (1) and (3) are by L£°P", and (2)
LM (see £ structure); Similarly, the output
NIZKs guarantee (through L£°P") the existence of
(ka, al tyT 7T rcT) st

is by

Viel|T] : noteiT = OTA.Gen(ka—, (azT,tyiT),riT)

Which is again by L£°P®". The last (balance) check
that Vty € {tyf}ill U {ty?}iﬁl Zae{afltyf:ty}ﬁ'l a—
Zae{aﬂtyf:ty}g‘l a = Ay succeeds by the commitment
homomorphic property in Verify(-, -,). We know by the
previous steps that a; are the same values that are com-
mitted into com;, and the commitments sum to the iden-
tity, which means that the committed values a; sum to

0. O

The main balance property follows inductively by fol-
lowing the (st,st’,tx,0) € Ins’ loop step-by-step. But
before we present the main proof reasoning, we must
introduce several auxiliary constructions into the game.
At each step we will trace the notes that A can spend,
and will argue that both during the game, and in the
end of it, the sum of these is not enough to break the
balance predicate.

— Instead of computing v 4 in a separate loop before
the main loop, we will move it into the main loop.
Now, v 4 is updated whenever the balance game lo-
cates a note € I in the outputs of tx (this note is
still attempted to be received by SK*). This allows
us to track the successive stake accumulation of A,
but only on those coins that it claims in 1.

— We add a set!! Nz,
in Iy. Each loop iteration will

initially populated with notes

1. remove adversarial input notes from it, and
2. add to it all the output notes that cannot be
received by SK.
For both actions we need the data extracted by
Balance-Single, that “reveals” the notes behind the
nullifiers, including adversarial ones. The new vari-

able vz will track balances inside Nz, and is up-

’H7
dated whenever Nz is changed. Nz; and v track all

the transient adversarial transactions, not counted

11 “Not honest” in the context of notes means adversarial notes
and also notes that are “burned” — that cannot be accessed by
anyone.

Zswap = 527

in the final v4 (which only sums up the “resulting”
assets of A). E.g. A can “refresh” the note note € Iy
by moving its funds to another adversarial note’ ¢ I,
and without Nz this will not be reflected anywhere.
— We insert the assertion Jty € 7' : vg[ty] < volty] +
vy —[ty] — vy 4 [ty] into the end of each loop. Clearly
this only increases adversarial chances to win by
providing an extra winning condition.
For example, if this predicate fails in the middle
of the loop w.r.t. some intermediate st’, A could as
well choose st’ for its challenge response, and win the
original game with the assertion in the end. And also
clearly using vz; instead of v 4 in the predicate only
gives A more advantage, since in the end vy < vg:
by anti-theft, A cannot spend honest nullifiers, and
thus it can only claim notes from Nz (and can only
do it once by nullifier uniqueness and OTA binding),
but v4 is calculated w.r.t. I C Nz.

In the base case of the induction, before the first
loop (before any transaction is processed), the predicate
holds, since v [ty] = vo[ty] and vy = vy = 0.

Assume now that the predicate holds in the begin-
ning of the loop, we will show it persists through the
loop execution. Fix a type ty, and apply the follow-
ing reasoning to each type in the transaction. Compute
the local values vﬁ_,vﬁ 4 as prescribed by the game.
Compute vﬁ‘ by looking at all the outputs in tx 4, and
summing the corresponding values that can be received
using SK*. These values are the same as the values ex-
tracted by a single-step definition, by OTA output note
binding.

Compute v2 from the extracted (input and output)
NIZKs by adding all the adversarial output values and
subtracting all the adversarial input values.

Now we need to prove that v% < U7A-£7 — fo (vo
does not ever change). But this reduces to the commit-
ment balancing condition: U% =Y al A=Y a$A, while
V- — vt = > as =" al M, and by the last (balanc-
ing) check in CheckPTx, guaranteed by Balance-Single,
we have

ZafA—l—ZafH—ZazTA—ZaZ—H >0

(Greater than equal, since Ay, can be positive.) Which
translates into —1)% + vy— — vyt > 0, equivalent to
v% < vy — vy as we need. So the predicate persists
through the loop iteration.

Since at each point vy
vz < ... holds in the end of each loop, the predicate in
the end with v4 < ... will also hold, and thus A cannot

win the balance game.

> wv4, and the predicate

	Zswap: zk-SNARK Based Non-Interactive Multi-Asset Swaps
	1 Introduction
	1.1 Technical Overview
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	2.1 Sparse Homomorphic Commitments
	2.2 Proofs and Signatures of Knowledge

	3 One-Time-Account Scheme
	4 Zswap Scheme
	4.1 Atomic Swap Example
	4.2 Zswap Correctness
	4.3 Support Oracles
	4.4 Anti-Theft and Non-Malleability
	4.5 Balance
	4.6 Privacy

	5 Zswap Protocol
	6 Security Proof
	7 Implementation
	A Proofs of Knowledge
	B Zerocash-Style OTA
	C Proof of HID-OR for Sparse Pedersen Commitment
	D Privacy Proof
	E Balance Proof

