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Abstract: Distribution inference, sometimes called prop-
erty inference, infers statistical properties about a train-
ing set from access to a model trained on that data. Dis-
tribution inference attacks can pose serious risks when
models are trained on private data, but are difficult to
distinguish from the intrinsic purpose of statistical ma-
chine learning—namely, to produce models that capture
statistical properties about a distribution. Motivated by
Yeom et al.’s membership inference framework, we pro-
pose a formal definition of distribution inference attacks
general enough to describe a broad class of attacks dis-
tinguishing between possible training distributions. We
show how our definition captures previous ratio-based
inference attacks as well as new kinds of attack includ-
ing revealing the average node degree or clustering co-
efficient of training graphs. To understand distribution
inference risks, we introduce a metric that quantifies ob-
served leakage by relating it to the leakage that would
occur if samples from the training distribution were pro-
vided directly to the adversary. We report on a series
of experiments across a range of different distributions
using both novel black-box attacks and improved ver-
sions of the state-of-the-art white-box attacks. Our re-
sults show that inexpensive attacks are often as effective
as expensive meta-classifier attacks, and that there are
surprising asymmetries in the effectiveness of attacks.
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1 Introduction
Inference attacks aim to infer sensitive information
about inputs to a process from its revealed outputs. In
machine learning, such attacks usually focus on learn-
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ing sensitive information about training data from a re-
leased model. For example, in a membership inference
attack [1], the adversary aims to infer whether a partic-
ular record was part of the training data. In a distribu-
tion inference attack, an adversary aims to infer some
statistical property of the training dataset, such as the
proportion of women in a dataset used to train a smile-
detection model [2]. In the research literature, such at-
tacks have previously been called property inference and
attribute inference (confusingly, since this is also used to
refer to a type of dataset inference where the adversary
infers an unknown sensitive feature of records in the
training dataset [3]), and various other terms.

The privacy threat posed by membership inference
attacks is well recognized—if an adversary can infer the
presence of a particular user record in a training dataset
of diabetes patients, it would violate privacy laws lim-
iting medical disclosure. Distribution inference attacks
pose a less obvious threat but can also be dangerous.
As one example, consider a financial organization that
trains a loan scoring model on some of its historical
data. An adversary may use a distribution inference at-
tack to infer the proportion of the training data hav-
ing a specific value for some protected attribute (e.g.,
race), which might be a sensitive property of the train-
ing data. Distribution inference attacks can also pose a
threat to distributed training: curious users wanting to
learn sensitive information about training distributions
of fellow participants, which are competitors in settings
like cross-silo federated learning [4], thus leaking sensi-
tive information. Other examples include inferring the
sentiment of emails in a company from a spam classifier,
or inferring the volume of transactions from fraud detec-
tion systems [5]. We also demonstrate examples where
adversaries learn properties of graphs used in training,
such as accurately estimating their average clustering
coefficient. Inferring statistical properties of a training
distribution can also be used to enhance membership in-
ference attacks or to reveal bias in the training data [6].

Previous works have used several different infor-
mal notions of distribution inference attacks ([7–9]), but
there is no established general formal definition. In this
work, we formalize distribution inference attacks based
on a critical insight: the key difference between these at-
tacks and other inference attacks is: the adversary’s goal
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in the former is to learn about the training distribution,
not about the specific training dataset. Dataset inference
attacks, such as membership inference [1], attribute in-
ference [3], and ownership-resolution [10] operate on the
level of training records. Attacks like membership infer-
ence are connected to differential privacy which bounds
the ability to distinguish neighboring datasets. By con-
trast, distribution inference attacks attempt to learn sta-
tistical properties of the underlying distribution from
which training data is sampled. A formal definition and
a clear threat model can be useful in several ways—
quantifying information leakage, assessing and compar-
ing the practicality of threat models, and drawing pos-
sible links between distribution inference risk and other
properties such as robustness and fairness.

Contributions. We provide a general and straightfor-
ward formalization of distribution inference attacks as
a cryptographic game (Section 3), inspired by Yeom et
al.’s membership inference definition [11]. Our definition
is generic enough to capture a variety of statistical prop-
erties of the underlying distribution including, but not
limited to, the attribute ratios that have been the fo-
cus of previous property inference attacks. We define
an intuitive metric for measuring the amount of leak-
age observed in a simulated attack, along with theorems
that compute this metric for the case of ratios of binary
functions, regressions that estimate the proportion of
training data having a given attribute, and degree dis-
tributions (for graphs) as properties (Section 4).

We report on experiments evaluating distribution
inference as a risk across several datasets and proper-
ties, providing the first systematic evaluation of how
inference risks vary as distributions diverge. Studying
patterns in distribution inference risk and how they cor-
relate with underlying properties helps compare trends
across experiments , helping identify datasets and mod-
els that are highly sensitive to such inference attacks.
To conduct our experiments we introduce two simple
black-box distribution inference attacks, and extend the
white-box permutation-invariant network [12], the cur-
rent state-of-the-art property inference method, to add
support for convolutional layers (Section 5). This en-
ables us to conduct distribution inference attacks on
deep neural networks, even when target models are
trained from scratch. Section 6 reports results from our
experiments with these attacks on a variety of datasets,
tasks, and inference goals, revealing that simple black-
box attacks often perform surprisingly well, and in some
settings white-box meta-classifier attacks can reveal in-
formation comparable to sampling dozens of records

from the training distribution. We analyze the informa-
tion gleaned up by meta-classifiers across layers, find-
ing that most information can be find in just one or
a few layers, enabling less expensive meta-classifier at-
tacks (Section B).

2 Previous Work
This section summarizes work on formal definitions of
privacy, distribution inference attacks and defenses.

Privacy Definitions. Most formal privacy defini-
tions, including numerous variations on differential pri-
vacy [13], focus on bounding inferences about specific
data elements, not the statistical properties of a dataset.
The key privacy notion of traditional differential privacy
is intuitively connected to the risk to an individual in
contributing their data to a dataset — this corresponds
well to dataset privacy risks, but does not capture distri-
bution inference risks; indeed, the main goal of most dif-
ferentially private mechanisms is to satisfy the inference
bound for individual data while providing the most ac-
curate aggregate statistics possible. One notable excep-
tion is the Pufferfish framework [14], which introduces
notions that allow capturing aggregates of records via
explicit specifications of potential secrets (e.g., distri-
bution of vehicle routes in a shipping company) and
their relations. Zhang et al. extend the Pufferfish frame-
work to define the concept of “attribute privacy” [15],
including a notion of distributional attribute privacy
that takes a hierarchical approach for parameterizing
distributions and could be instantiated to capture no-
tions of distribution inference such as the fraction of
records with some attribute. Although these definitions
are promising and valuable, none of them satisfy our
simple goal to define distribution inference attacks in
a way that is general and powerful, while clearly dis-
tinguishing inferences that are considered attacks from
allowable statistical inferences.

A recent attempt to formalize property inference [5]
consists of a framework that reduces property inference
to Boolean functions of individual members, posing the
ratio of dataset members satisfying the given function
as the property. These ratio-based formulations limit
the kinds of distribution inferences considered since they
cannot capture many other kinds of statistical proper-
ties of the training distribution that may be sensitive,
like the degree distribution of a graph [16]. Ratio-based
formulations assume the property function is applicable
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over individual data points, while for graphs it is an
aggregation over interconnected nodes.

Distribution Inference Attacks. All previous distri-
bution inference attacks in the literature take a meta-
classifier approach—the adversary trains models on
datasets with different properties, then trains a meta-
classifier using those models. The adversary then uses
the meta-classifier to predict a property of the victim’s
training data, which is usually related to the ratio of
members satisfying some Boolean property. Ateniese et
al. [2] were the first to identify the threat of distribu-
tion inference (termed property inference) and proposed
a meta-classifier attack targeting Support Vector Ma-
chines and Hidden Markov Models. The proposed at-
tacks can successfully infer the accent of speakers in
speech-to-text systems, or presence of particular traffic
in network traffic classification systems. Model represen-
tations for training the meta-classifier can take several
forms: using model weights [12], or activations/logits for
a set of query points [17]. These methods show promise,
achieving better-than-random results for several prop-
erties, tasks, and models across different domains. For
instance, predicting a doctor’s specialty based on rating-
prediction systems on text reviews [9], identifying ac-
cents of speakers in voice-recognition models [2], and
even predicting if a model has been trained with Tro-
jans [17]. Although these approaches achieve high accu-
racies on “toy-like" classifiers like decision trees and shal-
low neural networks, and distributions that are highly
disparate, successful property inference attacks have not
been demonstrated on realistic (or even semi-realistic)
deep neural networks or complex datasets. Our work is
the first to demonstrate the capability of such attacks
to work on large convolutional networks and different
datasets across domains.

Zhou et al. [6] extend distribution inference attacks
to directly infer property ratios for Generative Adver-
sarial Networks (GANs). In their attack, the adversary
trains shadow GANs and launches a black-box attack
on the victim model using generated samples. Although
their attack setting includes targeting large GAN mod-
els on complex datasets like CelebA [18], the adversary
does not use the victim model’s model parameters di-
rectly as is done by our extension to convolutional mod-
els (Section 5.2.2). Similarly, Pasquini et al. [19] extend
distribution inference attacks to a split-learning setting
and only target parts of the victim model. Zhang et
al. extended this approach to graphs and their prop-
erties [20], distinguishing training graphs according to

properties such as the number of nodes and edges using
attacks that assume access to graph embeddings.

Defences Against Distribution Inference. Unlike
other notions of privacy like membership privacy, there
are no known defenses against distribution inference.
Differential privacy does not mitigate distribution in-
ference risks since it obfuscates the contribution of indi-
vidual records, while the adversary in our setting cares
about statistical properties of the underlying distribu-
tion. Attempts in previous works to evaluate differential
privacy as a potential defense [2] show that it does not
work. Removing sensitive attributes from datasets is not
an effective defense either [9], since correlations between
attributes still leak information. Using node multiplica-
tive transformations [12] has been proposed as a defense
for neural networks with ReLU activations, but provides
no protection against black-box attacks.

3 Distribution Inference

Threat Model. We model the adversary’s knowledge
of the underlying distribution through data sampled
from that distribution. For complex, high-dimensional
non-synthetic data, this is usually the only way to cap-
ture knowledge of a data distribution. While the threat
model focuses on distributions, we use non-overlapping
sampled data to empirically model those distributions.

A natural extension of our threat model incorpo-
rates a poisoning opportunity where the adversary par-
ticipates in the training process. Such an adversary
may poison the training dataset by injecting adversari-
ally crafted datapoints [5] or control the training proce-
dure itself to introduce backdoors. Recent works look at
a similar scenario where the adversary participates in
the learning process via federated-learning, launching
attribute-reconstruction attacks using epoch-averaged
model gradients [21]. In this paper, we only consider
adversaries with no ability to observe or influence the
training process.

Setup. Let D = (X ,Y) be a public distribution between
data, X , and its corresponding labels, Y. We assume
both the model trainer T and adversary A have access
to D. Both parties also have access to two functions, G0
and G1, that transform distributions. Inferring proper-
ties of the distribution can reveal sensitive information
in many scenarios, which can be captured by suitable
choices of G0 and G1. Using such functions along with the
underlying distribution D makes the setup less restric-
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tive than defining two arbitrary distributions—since the
functions G0, G1, and D are considered public knowledge,
anyone can recreate these distributions. Using functions
on the same distribution D emphasizes the fact that
these two distributions stem from the same underlying
distribution D, enabling the definition to capture a wide
class of possible attack goals and scenarios by selecting
appropriate functions for G0 and G1.

To illustrate these definitions, we present a concrete
example inspired by Chase et al. [5]. Let D be a distribu-
tion of emails with labels for spam/ham. G0 is applied
over D to yield a modified distribution G0(D) with 0.8
probability of sampling an email with negative senti-
ment, i.e. a dataset sampled uniformly at random from
this distribution would have 80% of the emails with
negative sentiment. Similarly, G1(D) could be another
distribution with this probability as 0.5. The adversary
thus wants to know if the training distribution is bi-
ased, which, if inferred near the financial quarter, can be
used to predict if the company is under-performing. Al-
ternatively, an ambitious adversary could even consider
directly inferring this proportion (which was not consid-
ered in Chase et al. [5], but we explore in Theorem 4.3
and our regression experiments on other datasets).

We propose a general and straightforward experi-
ment to formalize property inference attacks, inspired
by Yeom et al.’s cryptographic game definition of mem-
bership inference [11]. T picks one of the G{0,1} distri-
bution transformers at random and samples a dataset S
from the resulting distribution. Given access to a model
M trained on S, the adversary aims to infer which of
the two distribution mappers was used:

Trainer T Adversary A

1 : b←$ {0, 1}

2 : S ∼ Gb(D)

3 : M
train←−−−− S

4 : M

5 : b̂ = H(M)

In this work, we assume the adversary has no control
over the training process (Step 3). For cases where the
adversary has access to the training data, it can trivially
infer desired properties by inspecting it. Our definition
could be adapted to other scenarios such as federated
learning [22] by providing additional information to the
adversary or allowing the adversary to have some con-

trol over S or other aspects of the training process, but
we do not consider such settings in this paper.

If A can successfully predict b via b̂, then it can
determine which of the training distributions was used.
The advantage of the adversary A using algorithm H is:

AdvH =
∣∣∣Pr
[
b̂
∣∣∣ b ]− Pr

[
b̂
∣∣∣¬ b ]∣∣∣ .

This advantage is negligible when the adversary does
no better than random guessing. We do not assume the
adversary knows how training data is collected, or has
any access to it: just that it knows the underlying com-
mon distribution D, and has a goal of distinguishing
between sub-distributions G0(D), G1(D) of that distribu-
tion. The adversary does not need to know the actual
training distribution—indeed, learning about this is the
goal of the attack. They just need to have hypotheses
worth testing, and thus G0 and G1 are defined by the
adversary based on what they want to test.

Limitations of the Definition. This definition is sim-
ple and general, but does not capture all kinds of dis-
tribution inference attacks. It assumes a setting where
the adversary attempts to distinguish between two par-
ticular distributions defined by the adversary. Multiple
experiments could extend the definition to a set of dis-
tributions, but the definition does not directly capture
the regression attacks we demonstrate where the adver-
sary estimates what proportion of a training dataset
has a given property directly. Our definition also as-
sumes the adversary has prior knowledge of the two sub-
distributions to distinguish. Some knowledge of the sta-
tistical property the adversary wants to learn about the
victim’s training distribution is inherent in the nature of
a distribution inference attack, but this may not always
be in the form of knowledge of possible distributions.
In our experiments, we model an adversary’s knowledge
of the underlying distribution through a sampled, non-
overlapping dataset, which the adversary then uses to
construct approximations of different sub-distributions.

Applying the Definition. Seminal works on prop-
erty inference [2, 12] involve a model trained either on
the original dataset or a version modified to be biased
towards some chosen attribute. Our definition can be
used to describe these attacks by setting G0 to the iden-
tity function (so G0(D) is original distribution D) and G1
to a filter that adjusts the distribution to have a spec-
ified ratio over the desired attribute. With respect to
a binary property function, f : X −→ {0, 1}, D can be
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characterized using a generative P.D.F:

ρD(x) =
∑

c∈{0,1}

p(c) · p(x | c), (1)

where p(c) is a multinomial distribution representing the
probabilities over the desired (binary) property function
f and its possible values c, and p(x | c) is the generative
conditional probability density function. Then, G1(D)
can be expressed using the following probability density
function, with a prior p̂:

ρG1(D)(x) =
∑

c∈{0,1}

p̂(c) · p(x | c) (2)

p̂(1) = α, p̂(0) = 1− α (3)

where α is the probability of a randomly sampled point
satisfying the property function f . Thus, a uniformly
randomly sampled dataset from G1(D) would have an
expected ratio of α of its members satisfying f . Addition-
ally, we can modify G0 with a similarly adjusted prior,
enabling the adversary to distinguish between any two
arbitrary ratios [9]. In fact, our definition subsumes the
one proposed by Chase et al. [5] for the case of ratios
over Boolean functions via the following instantiation:

D−, D+ = G0(D), G1(D)
t0, t1 = α0, α1, (4)

along with setting c = f(x) in Equation 3.
Our definition, however, is not limited to describ-

ing proportional properties. For example, it can also be
used to define the distributions over degrees for graph-
based datasets, and infer properties of the underlying
degree distributions. For this case, we represent graphs
as samples from degree distributions: data with different
degrees is sampled and then combined together in one
graph. Since the adversary only cares about properties
pertaining to the degrees of nodes (and not their at-
tributes or other characteristics), it is safe to represent
these samples purely in terms of degree distributions.
This can then be used to target properties such as the
mean-node degree of graphs, as we show in Section 6.3.

4 Quantifying Leakage
Assessing the power of an attack is important for un-
derstanding it scientifically, and can also be of practical
importance for both the victim and the adversary. Con-
sider the most explored case in the literature—ratios of
members satisfying a Boolean function. Intuition sug-
gests that distributions with more different ratios (e.g.,

0.2 and 0.9) would be easier to distinguish than more
similar ones (e.g., 0.2 and 0.3), and most previous dis-
tributions inference results have focused on highly dis-
parate distributions (often only showing meaningful dis-
tinguishing power when one of the ratios is at a 0.0 or
1.0 extreme).

Our framework enables us to quantify the amount
of leakage observed in an attack by relating what an ad-
versary is able to learn from a disclosed model to what
they would learn from directly sampling examples from
the training distribution. As a setup, we provide the fol-
lowing lemma, proven in Appendix A.1, that gives an
upper bound on the distinguishing accuracy (which we
define as the probability of an adversary correctly infer-
ring the underlying training distribution of a model) of
any statistical test distinguishing between two distribu-
tions that differ in the proportion of records satisfying
some Boolean property, using n samples:

Lemma 4.1. Given two Boolean-property propor-
tional distributions G0(D), G1(D) with proportion values
α0, α1 derived from the same underlying distribution D,
the distinguishing accuracy between models trained on
datasets of size n from these distributions is at most

1
2

+
min
{√

1−
(

min(α0,α1)
max(α0,α1)

)n
,

√
1−
(

1−max(α0,α1)
1−min(α0,α1)

)n}
2

.

First, we consider the most powerful possible adversary
as one that can perfectly reconstruct training records
from a model. The most leaked to such an adversary
is a perfect reconstruction of all the training data. Of
course, we do not expect an adversary to reconstruct the
training dataset fully, and an adversary can succeed in
a high confidence distribution inference attack without
being able to reconstruct any training records perfectly.
Such a perspective is useful, though, for quantifying the
power of an attack in a way that allows comparisons
between attacks distinguishing distributions with differ-
ent levels of variation. For some observed performance ω
via an attack, we can compute the corresponding value
of n that would give an upper bound on accuracy as ω.
This value of n, which we term as nleaked, thus quan-
tifies the size of the dataset “leaked" by the attack. In
other words, it is equivalent to the adversary being able
to draw nleaked samples from the training distribution
and executing an optimal distinguishing statistical test.
The following theorem, proven in Appendix A.2, shows
how to compute nleaked for an observed attack for the
kind of distributions described above.
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Theorem 4.2. Given two Boolean-property propor-
tional distributions G0(D), G1(D) with proportion values
α0, α1 derived from the same underlying distribution D,
and distinguishing accuracy ω using some attack,

nleaked = log(4ω(1− ω))

log(max
(

min(α0,α1)
max(α0,α1) ,

1−max(α0,α1)
1−min(α0,α1)

)
)
.

A high value of nleaked means the adversary is learning
a lot about the underlying distribution, just using the
given model. It helps put the attack’s strength in per-
spective, given how similar the two distributions are. For
instance, distinguishing between α0 = 0.5 and α1 = 1.0
with distinguishing accuracy ω = 0.95 corresponds to
nleaked ≈ 3, whereas distinguishing between α0 = 0.5
and α1 = 0.52 with the same accuracy would correspond
to nleaked ≈ 42. This aligns with intuition: the latter dis-
tribution is more similar and thus, should be “harder”
for an attack to achieve the same kind of performance,
and this notion is exactly what nleaked aims to capture.

Note that this analysis is based on modeling an “op-
timal attack” where the adversary is able to directly
sample records from the training distribution. This is
just for deriving an expression for nleaked, and not meant
to assume any such attack. The expression above (and
subsequent expressions for nleaked) is a useful measure
of an attack’s effectiveness that quantifies the leakage
observed in the attack by relating it to the amount of
information leaked in an “optimal attack” where the
adversary samples training distribution records directly
rather than inferring properties from a revealed model.

Regression over α. The case of distinguishing between
ratios can be further extended to consider an adversary
that wishes to directly predict the proportion value α
for a given distribution. The following theorem, proven
in Appendix A.3, shows how to compute nleaked for an
observed attack with square error ω.

Theorem 4.3. Given a Boolean-property proportional
distribution with proportion value α, and square error
ω observed using some attack,

nleaked = α(1− α)
ω

.

This extends our notion of nleaked to adversaries that
directly infer the underlying ratio α, a more realistic
adversary goal considered in some of our experiments.

Graphs as Distributions of Natural Numbers.
Similar to the ratio case, our framework enables us to
compute nleaked when working with distributions of nat-
ural numbers. For the purpose of distinguishing between

graph distributions, this notion of ‘distribution of num-
bers’ can be extended to graphs by studying their de-
gree distributions. As a setup, we provide the following
lemma, proven in Appendix A.4, that gives an upper
bound on the distinguishing accuracy of any statistical
test distinguishing between two distributions following
Zipf’s law, using n samples:

Lemma 4.4. Given two distributions of natural num-
bers, G0(D) and G1(D) that follow Zipf’s law, with N0
and N1 elements (without loss of generality assume
N0 ≤ N1) and parameters s0, s1 respectively, the dis-
tinguishing accuracy between models trained on graphs
with n nodes from these distributions is at most:

1
2 +

√
1−

(
HN0,s0
HN1,s1

N
(s0−s1)I[s1>s0]
0

)n
2 .

Here, Hn,s is the nth generalized Harmonic number of
order s, Hn,s =

∑N
k=1 k

−s. Together, these two parame-
ters are related to the expected mean of the distribution
αb (mean node-degree, for degree distributions) as:

αb =
HNb,sb−1
HNb,sb

(5)

Similar to the case of different Boolean-property ratios
distributions, we can compute nleaked for a given attack
and its observed performance (proof in Appendix A.5):

Theorem 4.5. Given two distributions of natural num-
bers distributions G0(D), G1(D) that follow Zipf’s law,
with N0, N1 elements (without loss of generality assume
N0 ≤ N1) and parameters s0, s1 respectively, and ob-
served distinguishing accuracy ω,

nleaked = log(4ω(1− ω))

log
(
HN0,s0
HN1,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

.

Compared to the ratio distinguishing attacks, attacks on
the ogbn-arxiv dataset are much more successful: reach-
ing near-perfect distinguishing accuracies as well as the
highest nleaked numbers (Table 1).

5 Attacks
In our experiments, we use two simple black-box attacks
and the state-of-the-art white-box meta-classifier attack.
We extend the meta-classifier attack to support convolu-
tional neural networks (Section 5.2.2). These attacks do
not assume anything about the underlying distributions
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other than the availability of the underlying distribution
and knowledge of the public G0 and G1 transformers.

5.1 Black-Box Attacks

Black-box attacks assume the adversary has access to
representative data for distributions, and API access to
the target model which outputs its predicted label for a
submitted input. Although access to model parameters
is unavailable in this setting, its model-agnostic nature
allows launching attacks on any target model.

5.1.1 Loss Test

A simple algorithm H is to test the accuracy of the
model on datasets from the two candidate distributions,
and conclude that the training distribution is closest to
whichever test dataset the model performs better on.
For data samples Sb∈{0,1} ∼ Gb(D):

b̂ = I[acc(M,S0) < acc(M,S1)], (6)

where acc(M,S) is the accuracy of model M on some
data S, and I is the indicator function. Intuitively, a
model would have higher accuracy on data sampled
from the training distribution, compared to another dis-
tribution. This method does not require the adversary
to train models, but only to have access to suitable test
distributions and the ability to submit samples to the
target model. The data held by the adversary here is not
overlapping with the data used by the victim to train its
models, ruling out any potential for leakage via shared
data. Although we use accuracy in Equation 6, the ad-
versary can use any metric.

5.1.2 Threshold Test

The Loss Test assumption may not hold for some pairs
of distributions if one distribution is inherently easier to
classify than the other. To account for this, we consider
an attack where the adversary trains and uses a small
(balanced) sample of models from each distribution to
identify which of S0 or S1 maximizes the performance
gap between its models.

γc∈{0,1} =
∑
i;yi=0

acc(M i, Sc)−
∑
i;yi=1

acc(M i, Sc)

k = I[|γ0| < |γ1|], (7)

where yi ∈ {0, 1} denotes that the model M i is trained
on a dataset sampled from G{0,1}(D) respectively. Af-
ter identifying k∈{0,1}, the adversary derives a threshold
λ to maximize accuracy distinguishing between models
trained on datasets from the two distributions (using a
simple linear search). Assuming γk is positive,

δ(Λ) =
∑
i;yi=0

I[acc(M i, Sk) ≥ Λ]+

∑
i;yi=1

I[acc(M i, Sk) < Λ]

λ = arg max
Λ

δ(Λ). (8)

The adversary then predicts b̂ = I[acc(M,Sk) ≥ λ] (or
with a < inequality when γk < 0). Thus, the adversary
uses a sample of local models to derive a classification
rule, which it then uses to infer the training distribution
of the target model. For the same reasons as Loss Test
the data used by the adversary here, for both training
its local set of models and computing the threshold), is
non-overlapping with the victim’s data.

5.2 White-Box Attacks

White-box attacks assume the adversary has full access
(parameters) to the trained model and a large enough
amount of representative data to train local models on
the candidate distributions.

5.2.1 Meta-Classifiers

The state-of-the-art property inference attack uses
Permutation-Invariant Networks as meta-classifiers [12].
The meta-classifiers take as input model parameters
(weights, bias) and predict the training distribution di-
rectly. This architecture is designed to be invariant to
neuron orderings inside neural network layers, which
it achieves by utilizing the DeepSets [23] architecture.
Neuron-ordering invariance is achieved via a set of trans-
forming functions, φi (for each layer i), over each row
of the layer weight matrix. The outputs of these func-
tions are then summed to create a layer representation
Li, thus achieving invariance to the ordering of the neu-
rons within each layer. Since the meta-classifier is itself
a classifier that requires many models (800 per distribu-
tion Ganju et al.’s work [12]) trained on the two distribu-
tions for training, this attack is only feasible for adver-
saries with access to sufficient data from both training
distributions and considerable computational resources.
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Fig. 1. Transforming a k1 × k2 kernel matrix K (with input channels cin and output channels cout) into a 2-dimensional weight matrix
for compatibility with the Permutation Invariant Network architecture. The node-processing functions φi and the rest of the pipeline
are identical to the Permutation Invariant Network described in Section 5.2.1.

5.2.2 Targeting Convolutional Neural Networks

The Permutation-Invariant Network only supports lin-
ear layers in a feed-forward architecture; previous
work only considered two or three layer MLPs on
small datasets [12], or single-layer recurrent neural net-
works [9]. Applying the same architecture on top of con-
volutional layers requires adaptation since kernel matri-
ces are four-dimensional. While there is permutation in-
variance within channels, the kernel itself is sensitive to
permutations by nature of how convolution operations
work. We extend property inference attacks to convolu-
tional networks and demonstrate their effectiveness on
models with up to eight layers, trained from scratch.

Figure 1 illustrates our method. Let K be a kernel
of size (k1, k2) associated with some convolutional layer,
with input and output channel dimensions cin and cout
respectively. While designing the architecture to cap-
ture invariance, it is important to remember that un-
like neurons in linear layers, positional information in
the kernel matters. Thus, any attempt to capture in-
variance should be limited to the mapping between in-
put and output channels of a convolutional kernel. We
flatten the kernel of size (k1, k2, cin, cout) such that the
resulting matrix is of size (k1 × k2 × cin, cout). Concate-
nating along the input channel dimension helps preserve
location-specific information learned by the kernel while
capturing permutation invariance across channels.

This two-dimensional matrix is then processed like
linear layers are in Permutation-Invariant Networks (us-
ing the same notation as Section 5.2.1), applying func-
tion φi and summing to capture invariance while con-
catenating feature representations from prior layers.
Like the original architecture, the bias component can
be concatenated to the kernel matrix itself. Since this

feature extraction process on a convolutional layer also
produces a layer representation, it can be easily incorpo-
rated into the existing architecture to work on models
with a combination of convolutional and linear layers.

6 Experiments
To better understand the risks of distribution inference,
we execute distribution inference attacks to measure
their ability to distinguish distributions with varying
disparity on tabular, image, and graph datasets. Al-
though it is unknown how close these attacks are to
the best possible distribution inference attacks, they
help demonstrate an empirical lower bound on adver-
sarial capabilities and can be helpful in estimating
general trends. Code for reproducing our experiments
will be publicly released and is available for review-
ers in an anonymized repository: https://github.com/
iamgroot42/FormEstDistRisks.

6.1 Datasets

We report on experiments using five datasets, summa-
rized in Table 1. We construct non-overlapping data
splits between the simulated adversary, A, and model
trainer T . These non-overlapping splits help better cap-
ture a realistic scenario where the adversary has access
to training data from the distribution D but is unlikely
to have any of the model trainer’s data (which is con-
sidered private). Both parties then modify their data
to emulate a distribution property, and then sample
training datasets from these adjusted distributions to
train their models. This sampling, along with the dis-

https://github.com/iamgroot42/FormEstDistRisks
https://github.com/iamgroot42/FormEstDistRisks
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Dataset Task Property
Size Binary Regression

Adversary Victim nleaked ‖α0 − α1‖0.75 nleaked

Census Income prediction
Ratio of females 3200 3200 0.2 0.5 8.8
Ratio of whites 1800 1800 0.1 0.6 6.0

CelebA
Smile identification Ratio of females 22,000 36,000 0.3 0.5 10.6
Gender prediction Ratio of young people 6700 18,800 0.2 0.6 5.1

RSNA Bone Age Age prediction Ratio of females 1800 3600 6.2 0.2 269.4

ogbn-arxiv
Node classification

Mean node-degree 40,000 97,000 30.6 - -

Chord
Average

135,216 135,523 - - -
clustering coefficient

Table 1. Descriptions of datasets, along with the effectiveness of inference attacks (best of all Loss Test, Threshold Test, and meta-
classifier for binary classification, and meta-classifier for regression) while varying ratios of distributions. ‖α0 − α1‖0.75 is the minimum
difference in ratios observed that has at least 75% average accuracy. For binary classification, nleaked is the median effective n value
based on Theorem 4.2 using the maximum distinguishing accuracies across all experiments and pairs of property ratios (degrees in
the case of ogbn-arxiv) without outliers. For regression, nleaked is the mean effective n value based on Theorem 4.3 across all ratios
excluding 0 and 1. Size for ogbn-arxiv refers to number of nodes, and the average number of nodes for Chord.

joint data splits between A and T , helps ensure that any
distinguishing power we observe is actually distribution
inference, rather than inadvertent dataset inference.

Our experimental datasets were selected to incor-
porate common benchmarks (Census, CelebA) to en-
able comparisons with previous work, new datasets to
assess more realistic property inference threats (RSNA
Bone Age), as well as applying our definitions beyond
ratio-based properties on graphs (mean node-degree on
ogbn-arxiv, clustering coefficient on Chord). As noted
by Zhang et al. [9], the target properties for a distribu-
tion inference attack can be either related to or inde-
pendent of the task, and can be either explicit or latent
features of the input data. For instance, attributes var-
ied for Census are feature-based properties since these
attributes are directly used as features for the models
trained on them. On the other hand, an attribute like
the age of a person is unrelated to detecting smiles and
is a latent property that is not directly encoded as an
input feature in the training data (but is available for
our CelebA experiments from provided metadata).

Census [24] consists of several categorical and nu-
merical attributes like age, race, education level to pre-
dict whether an individual’s annual income exceeds
$50K. We focus on the ratios of whites (race) and
females (sex) as properties and use three-layer feed-
forward networks.

RSNA Bone Age [25] contains X-Ray images of
hands, with the task being predicting the patient’s age
in months. We convert the task to binary classifica-
tion based on an age threshold and use a pre-trained

DenseNet [26] model for feature extraction, followed by
a two-layer network for classification. We focus on the
ratios of the females (available as metadata, but implicit
in the examples) as properties.

CelebA [18] contains face images of celebrities,
with multiple images per person. Each image is anno-
tated with forty attributes such as gender, sunglasses,
and facial hair. We use two different tasks, smile de-
tection and gender prediction, and train convolutional
neural networks from scratch for this dataset. We focus
on the ratios of the females (smile-detection task) and
old people (gender-prediction task) as properties. These
attributes are provided as meta-data in the dataset. We
create a network architecture with five convolutional lay-
ers and pooling layers followed by three linear layers,
which is the smallest one we could find with reasonable
task accuracy.

The ogbn-arxiv [27] dataset is a directed graph,
representing citations between computer science arXiv
papers. The task is to predict the subject area categories.
We infer the mean node-degree property of the graph
using four-layer Graph Convolutional Networks [28].

Chord [29] contains botnets with the Chord [30]
topology artificially overlaid on top of background net-
work traffic from CAIDA [31]. The dataset contains mul-
tiple graphs, with the task of detecting bot nodes in the
graphs. We focus on inferring whether the underlying
graphs (onto which we overlay botnets) have average
clustering coefficients within a specific range. Following
the model architecture proposed in Zhou et al. [29], we
implement a Graph Convolutional architecture.
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6.2 Attack Details

We perform each experiment ten times and report mean
values with standard deviation in all of our experiments.
Since the Loss Test uses a fixed test set per experiment,
its results show no variation. For each dataset, we train
1000 victim models per distribution.

Loss Test. The adversary uses its test data to sample
the two test sets S0 and S1. Since we use the same test
data in evaluations, we turn off sampling while generat-
ing data with desired properties for this setting.

Threshold Loss. The adversary trains 50 models per
distribution on its data split.

Meta-Classifier. We used Permutation Invariant Net-
works as our meta-classifier architecture [12]. The sim-
ulated adversary produces 800 models per distribution
using its split of data to train the meta-classifier. For
the case of CelebA, we use our extension of the Permu-
tation Invariant Network that is compatible with con-
volutional layers (Section 5.2.2). Following experimen-
tal designs from prior works, we were able to achieve
the accuracies that the authors reported (Section 6.3.1).
However, using our experimental design leads to signif-
icantly lower distinguishing performance. Steps like en-
suring no overlap in victim/adversary data, randomly
sampled datasets for G0(D) and G1(D), and ensuring the
same dataset size are necessary to avoid the risk that the
meta-classifier is identifying something different about
the distributions other than the claimed property. We
think these steps are important for realistic experiments,
so report the distinguishing accuracies based on this ex-
perimental design, even if they are lower for the same
attacks than the results reported for the same tasks in
previous work.

6.3 Binary Properties

We fix G0 and try the attacks on a range of G1 distribu-
tions for the first set of experiments. In Section 6.3.2,
we report on experiments varying both distributions.
Most prior works on distribution inference use arbi-
trary ratios, like distinguishing between 42% and 59%
males [12]. Only recently have works started transition-
ing to more controlled experimental settings, like com-
parable dataset sizes for the victim and adversary and
non-overlapping data sampling [6]. While having one
of the ratios corresponding to the estimate of the un-
derlying data distribution is justified, fixing the other
arbitrarily makes it hard to understand the adversary’s

capabilities—we want to understand how dissimilar the
distributions must be in order to be distinguishable. Ad-
ditionally, the lack of keeping ratios consistent in ex-
periments across properties makes it harder to com-
pare information leakage across properties. Analyzing
such trends is important for understanding how much
of these properties are leaked across different configura-
tions (explicit attribute, latent property) and assess the
adversary’s capabilities under different scenarios (black-
box access, white-box access).

Experiments with binary classification for proper-
ties can provide useful insights into the effectiveness
of distribution inference attacks, but most realistic at-
tacks would not be based on distinguishing between two
known distributions. In Section 6.4, we consider attacks
that can infer the underlying ratio without any prior as-
sumptions about distinguishing particular distributions.

6.3.1 Distinguishing Imbalanced Ratios

Since the original ratios for the targeted property may
be unbalanced in the dataset (Section 3), for these ex-
periments we fix G0 to a balanced (α0 = 0.5) ratio for
the chosen attribute for the Census, CelebA, and RSNA
Bone Age datasets. Then, we vary α1 to evaluate infer-
ence risks and understand how well an adversary could
distinguish between models trained using distributions
with different proportions of the targeted property.

Census. We summarize the accuracies for the three at-
tack methods across varying proportions of females in
Figure 2a and whites in Figure 10a. The Loss Test per-
forms only marginally better than random guessing in
most cases for females, yielding nleaked values in the
range [0, 0.03], essentially close to random guessing. On
the other hand, the Threshold Test and meta-classifiers
are able to achieve non-trivial distinguishing accuracies
for the female proportion, with nleaked values in ranges
[0.1, 1.2] and [0.02, 6.5] respectively, with a similar me-
dian nleaked value of 0.33, showing how the two are
not very far apart in effectiveness. Leakage increases
as the distributions become more disparate, with near-
perfect distinguishing accuracy for the extreme case of
α1 = 0. For race, none of the attacks detect anything
(nleaked≈ 0) apart from the surprising results on Thresh-
old Test, which performs asymmetrically well, approach-
ing 80% accuracy for mostly-white distributions.

Comparison with previous results. Ganju et al. [12] ap-
plied their meta-classifier method on two properties on
this dataset: 38% vs. 65% women (case A), and 0% vs.



Formalizing and Estimating Distribution Inference Risks 538

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0
Female proportion of training data (α1)

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Meta-Classifier
Loss Test
Threshold Test

(a) Census

0.2 0.3 0.4 0.6 0.7 0.8
Female proportion of training data (α1)

50

60

70

80

90

100

(b) RSNA Bone Age

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0
Female proportion of training data (α1)

50

60

70

80

90

100

(c) CelebA

Fig. 2. Classification accuracy for distinguishing proportion of females in training data for (a) Census, (b) RSNA Bone Age, and (c)
CelebA. The RSNA Bone Age dataset does not include ratios below 0.2 or above 0.8, since sampling the original dataset for that
ratios produces datasets that are too small to train models with meaningful performance. Performance of the attacks increases as the
distributions diverge (α1 moves away from 0.5), but is not symmetric.

87% whites (case B). For case B, the Loss Test per-
forms as well as random guessing (50.1%), while the
Threshold Test (92.4± 2.6%) approaches meta-classifier
performance (99.9± 0.1%), achieving a high (compared
to α = 0.5 experiments) nleaked≈ 11. For case A,
the Threshold Test (62.7 ± 2.0%) outperforms meta-
classifiers (62.1 ± 1.7%) while achieving nleaked≈ 0.03,
barely better than random guessing , and the Loss
Test method fails (50%). Ganju et al. report 97% ac-
curacy for case A and 100% for case B. We were able
to closely reproduce these results in their setting which
includes overlapping data between victim and adversary
and does not ensure changes in ratios do not affect
dataset size or class imbalance. In the more realistic
experimental design in which we ensure there is no vic-
tim/adversary overlap and maintain the label ratios and
same dataset sizes (Section 6.2), the accuracies are much
lower—for example, in case A the distinguishing accu-
racy is 97% using their experimental design but drops
to 62% when more carefully prepared datasets are used
in our design. These results suggest that although the
distinguishing accuracy is high between the two distri-
butions in the tests in their setting, the attacks are not
actually inferring the intended property but are predict-
ing the distribution based on other differences between
the datasets.

RSNA Bone Age. Distinguishing accuracies for the
female proportion on the RSNA Bone Age dataset are
plotted in Figure 2b. The simple Loss Test performs
nearly as well as the Threshold Test leaking a median
of nleaked≈ 0.2 and nleaked≈ 0.1 respectively. The meta-
classifier attack, on the other hand, has a much higher
leakage of nleaked≈ 6.

CelebA. Figure 2c shows the distinguishing accuracy
for the CelebA data on proportion of females, and
Figure 10b for the proportion of examples marked as
“old”. The Threshold Test performs much worse com-
pared to Census and RSNA Bone Age, with the median
nleaked< 0.05, compared to ≈ 0.7 using meta-classifiers.
Figure 11 shows meta-classifier prediction accuracy for
three different representations of the shadow models
used to train the meta-classifier: using parameters from
only linear layers, only convolutional layers, and all
layers of the models. While inferring the ratio of old
people (Figure 11a), including just the fully-connected
layers works best, yielding nleaked≈ 0.12 and not too
far off from using all layers or just the convolutional
layers (nleaked≈ 0.07). For the case of sex ratios (Fig-
ure 11b), using the full model helps extract more infor-
mation (nleaked≈ 0.32) than either of the convolutional
(nleaked≈ 0.24) or linear (nleaked≈ 0.05) layers. These
trends suggest the likelihood of some layers’ parameters
capturing specific property-related information better
than the others. Linear layers are more helpful for ratios
of old people whereas for ratios of females, convolutional
layers are significantly better.

6.3.2 Varying Proportions

An adversary may not necessarily be interested in dis-
tinguishing between the balanced case (α = 0.5) and
other ratios. For instance, health datasets for specific
ailments may have a higher underlying prevalence in fe-
males, and the adversary may be interested in differen-
tiating between two particular ratios of females, like 0.3
and 0.4. We thus experiment with the case where both
distributions are varied: G0(D) and G1(D) with corre-
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sponding ratios α0 and α1 respectively. Distribution in-
ference risk seems particularly acute when an adversary
can distinguish the proportion of an uncommon prop-
erty. Observing performance trends as the difference in
ratios increases also helps us understand how much of a
threat property inference may pose as the similarity of
the distributions varies.

Figure 12 shows the distinguishing accuracies (and
corresponding nleaked values) between models (in the
form of heatmaps) trained on distributions G0(D) and
G1(D) while varying corresponding α0 (horizontal axis)
and α1 (vertical axis), for ratios of females on Cen-
susand RSNA Bone Age. For instance, in Figure 12a,
(α0, α1) = (0.2, 0.9) in the upper-right triangle cor-
respond to meta-classifier performance (70%), while
(α0, α1) = (0.9, 0.2) in the lower-left triangle gives the
corresponding nleaked = 0.17. Entries along a given diag-
onal have the same value of |α0−α1|. As reflected in the
heatmap colors, distinguishing accuracies are roughly
the same along diagonals. The variance in performance
across runs is relatively high for similar distributions
(small |α0 − α1|) and decreases as the distributions di-
verge. For CelebA (sex) and Census (sex), we observe
that nleaked< 1 in most cases. These small values do not
imply the inability of any adversary to distinguish be-
tween the distributions, only that for the given attacks
we observe little information leakage.

6.4 Direct Regression over α

Inspired by Zhou et al. [6], we performed a direct regres-
sion experiment in which we trained the meta-classifiers
to predict α directly. This corresponds to a more re-
alistic attack setting for many scenarios than one in
which the adversary is distinguishing between two pre-
defined α values. For this experiment, we construct a
training dataset for the regression meta-classifier with
tuples of the form (Mα, α), where Mα is some model
with a training distribution corresponding to the ra-
tio α. We train the meta-classifier using Mα models
for all the ratios α that we experiment with in Sec-
tion 6.3.2 ({0.0, 0.1, . . . , 1.0} for Census and CelebA, and
{0.2, . . . , 0.8} for RSNA Bone Age). The meta-classifier
follows the same permutation-invariant architecture as
in the binary property experiments (Section 5.2), just
with a mean squared error (MSE) loss for training.

Figure 3 shows the distribution of the predictions
of the regression meta-classifiers and Table 2 reports
the MSE and nleaked values. For all these experiments,
we train meta-classifiers five times with different seeds,

Dataset Attribute nleaked MSE(B) (BR) (R)

Census Sex 0.2 0.3 8.8 0.053
Race 0.1 0.2 6.0 0.091

CelebA Sex 0.3 0.4 10.6 0.030
Age 0.2 0.4 5.1 0.047

RSNA Bone Age Sex 6.2 15 269.4 0.001

Table 2. Median nleaked values when using binary meta-classifiers
nleaked (B), regression meta-classifiers nleaked (R), and regres-
sion meta-classifiers for binary predictions nleaked (BR), along
with average Mean Squared Error (MSE) for direct regression
over α. nleaked is nearly double for all cases that use regression
meta-classifiers for binary predictions, when compared to the
binary meta-classifiers.

and report aggregate results over all the meta-classifiers
and victim models, for each dataset and property. In the
plots in Figure 3, we include results for actual α values at
both tenths and the intermediate 0.05 ratios to confirm
that the meta-classifiers are indeed learning to predict
α and not just overfitting to the α values observed in
training. The meta-classifiers do exhibit a bias toward
balanced predictions, showing a smooth curve for the
MSE values with a minimum near α = 0.5.

The attacks are quite successful in most cases,
achieving nleaked > 5 for all of our settings, and sur-
prisingly high leakage for RSNA Bone Agewith nleaked
> 260. These regression attacks show that adversaries
can infer sensitive information about training datasets
even in the more realistic setting where adversaries
do not have prior knowledge of distributions. However,
the attacks are not always successful— performance for
meta-classifiers on Census (race) is not much better
(Figure 3a) than that when guessing α = 0.5 blindly
(expected MSE 0.1).

Given the high nleaked values for the regression tests,
we tried using the regression meta-classifiers to distin-
guish between binary properties. To produce a classi-
fication between models with training distribution ra-
tios α0 and α1, a regression meta-classifier Mregression’s
prediction for some model m is converted to a binary
outcome by simply checking which of the two consid-
ered distribution ratios the predicted ratio is closer to:
b̂ = I

[
Mregression(m) ≥ α0+α1

2
]
. Each entry in Table 2 is

averaged over 5 trials × 100 victim models × 11 ratios
({0.0, 0.1, . . . , 0.9, 1.0} for Census; 7 in the case of RSNA
Bone Age). In most cases, the accuracy improves signif-
icantly over the binary classifiers, with the nleaked value
nearly doubling for most settings. For instance, the clas-



Formalizing and Estimating Distribution Inference Risks 540

(a) Census (Sex)

0.2 0.2
5 0.3 0.3
5 0.4 0.4
5 0.5 0.5
5 0.6 0.6
5 0.7 0.7
5 0.8

Actual α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ed

ict
ed

 α

0.005

0.010

0.015

0.020

M
SE

(b) RSNA Bone Age

Fig. 3. Predicted α values (left y-axis) for models with training distributions for varying α values (x-axis), for all victim models and
regression meta-classifier experiments (green box-plots), along with mean squared error (right y-axis labels, with different scales on
the two graphs, and blue dots), for (a) Census and (b) RSNA Bone Age datasets. with The diagonal gray dashed line represents the
ideal case, where the regression classifier perfectly predicts α. For each ratio of the form 0.05 · x (for varying x), we train regression
meta-classifiers 5 times with different seeds, and test 100 victim models. As indicated by nleaked values, the RSNA Bone Age dataset
observes very good performance, with nearly all predictions lining up with the diagonal, while for Census (sex), predicted ratios are
usually in [0.2, 0.6].

sification accuracy increases by ∼ 4% and ∼ 15% for
CelebA (sex) and RSNA Bone Age respectively, corre-
sponding to an increase of nleaked by ∼ 0.14 for CelebA
(sex) and ∼ 8.51 for RSNA Bone Age. This improve-
ment is not surprising since the binary attack uses mod-
els only from two distributions, whereas the regression
attack has models from a wide range of alpha values and
thus can learn more. Figure 13 shows the accuracies and
nleaked values for using specific ratio binary classifiers
compared with the improved accuracies obtained using
the regression meta-classifier. The nleaked values for each
pair of ratios (α0, α1) shows how these improvements
are uniform across all pairs of distributions.

6.5 Graph Properties

Our experiments using both binary and regression classi-
fiers on the graph datasets reveal surprisingly high prop-
erty leakage. Observed nleaked values for ogbn-arxiv are
much higher (100-200 range) than was observed in the
experiments on tabular and image datasets (with the
exception of RSNA Bone Age). (For the clustering co-
efficients on Chord, we do not have a way to compute
nleaked, but also see evidence of substantial leakage.)

ogbn-arxiv. For the ogbn-arxiv dataset, we set G0 such
that the graph has a mean node-degree of α0 = 13, and
for G1, modify the graph to have a mean-degree α1 as

an integer in the range [9, 17]. We produce test datasets
by pruning either high or low-degree nodes from the
original graph to achieve a desired α1. Like the other
datasets, meta-classifier performance increases as the
distributions diverge, albeit with much smaller drops.
Both the Loss Test and Threshold Test fail on this
dataset with nleaked values below 1, compared to the
meta-classifiers (Figure 4a) which leaks nleaked ≈ 40 in
most cases. The attacks leak much more information as
the degrees increase than when they decrease— nleaked
values are nearly double for (12, 14) than (12, 13) as
the two mean node-degrees, despite having comparable
distinguishing accuracies. Motivated by the success of re-
gression attacks for ratio-based properties (Section 6.4),
we also trained a regression variant of the meta-classifier
to predict the average degree of the training graph di-
rectly. The resulting meta-classifier performs quite well
(Figure 4b), achieving a mean squared error (MSE) loss
of 0.393±0.36. It generalizes well to unseen distributions,
achieving an average MSE loss of 0.076 for α = 12.5 and
13.5. A property inference adversary can thus be strong
enough to directly predict the average node degree of
the training distribution. Similar to the case of ratios,
we try different combinations of mean node-degree val-
ues by setting different mean node-degrees α0 and α1
(Figure 5). As apparent, nleaked has a wide spread in its
values across different distributions—starting from ≈ 3
to approaching infinity, with a median of ≈ 31.
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(a) Distinguishing accuracy (α0 = 13) as mean degree varies. (b) Mean node-degree α1 as predicted by the meta-classifier.

Fig. 4. Performance for (a) distinguishing between models with different mean node-degrees in training data, and (b) directly inferring
the mean node-degree of the training data, for the ogbn-arxiv dataset. Each color represents the true degree (dashed lines) of the
models being tested. The meta-classifier attack is remarkably successful on this dataset and further accentuates how some attacks can
infer underlying properties nearly exactly on some datasets.
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Fig. 5. Effectiveness of meta-classifiers on ogbn-arxiv dataset.
nleaked values (bottom-left triangles) and mean node-degree
(degrees α0, α1) in training data.

Chord. For the Chord dataset, we construct G0 to have
graphs with average clustering-coefficient < 0.0061 and
G1 with average clustering-coefficient above > 0.0071.
We pick these values to minimize the overlap between
the two distributions, while maintaining a decent ac-
curacy on the original task. For the case where both
the trainer’s and adversary’s datasets are sampled from
the same pool of data, the adversary has near-perfect
distinguishing accuracy, even when training the meta-
classifier with ten models (and testing on 1000). How-
ever, the adversary cannot achieve the same level of per-
formance in the absence of data overlap. Using the Loss
Test yields an accuracy of 63%, while the Threshold
Test and meta-classifier struggle to perform better than
random (≈51%). This disparity in performance further
justifies our experimental design choice to consider non-

overlapping data splits—evaluating property inference
attacks on models trained from the same dataset pool
seems effective, but it cannot distinguish learning some
unrelated property from the claimed inference.

6.6 Summary of Experimental Results

Figure 6 summarizes the distribution leakage observed
for our ratio and regression based experiments. Most
attacks across varying distributions and datasets corre-
spond to values of nleaked ≈ 1 for classification, and
nleaked between 5 and 10 for regression. The low nleaked
values for binary classifiers show how little information
those attacks are able to leak from the model, less than
the equivalent of sampling just two records from the
training distribution in all cases except RSNA Bone Age,
but the regression results do indicate that even in these
settings non-trivial information is leaking and there are
opportunities for better inference attacks. The biggest
exception is for RSNA Bone Age, where we observe
nleaked values above 10 for the binary classifiers (Fig-
ure 12b) and up to 270 for the regression meta-classifier,
and the graph datasets, where they are in the hundreds
for ogbn-arxiv (Figure 5).

Dataset Inference Susceptibility. This leakage is
much higher for RSNA Bone Age than it is for simi-
lar Boolean ratio-like properties for datasets like Cen-
sus and CelebA, suggesting this particular dataset is
prone (much more than the others we explore) to high-
confidence inference attacks, at least for the sex prop-
erty. We do not yet have a good understanding of why
this dataset leaks so much more distribution informa-
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Fig. 6. Distinguishing accuracy (a) and MSE (b) for inference attacks with varying α1 on the horizontal axis. The plotted results are
for the most effective attacks from the experiments described in Section 6. The curves in (a) show the comparable distinguishing
accuracy for nleaked = 2 (indicating that most of the attacks are comparable to leaking fewer than two samples from the training
distribution) and nleaked = 8, showing that a few of the attacks on the RSNA Bone Age dataset (and extreme attacks on Census for
the race attribute) do leak a substantial amount of information. Similar trends hold for regression, with nleaked somewhere between 1
and 10 for most cases (b). The highest leakages we observed are for the graph datasets, not shown in this figure.

tion than the other two, but think the causes of varia-
tion in inference risk is an important question for future
study. Although we observe an increase in nleaked values
across all our experiments as the distributions diverge
from each other, these trends are not symmetric. Hence,
not only do more divergent distributions seem to leak
more information, that information is more valuable to
an adversary since as the distributions diverge less infor-
mation is needed to distinguish them accurately. This
might be suggestive of biased learning algorithms, or
perhaps the attacks’ capabilities to infer distributional
properties effectively.

Attack Comparison. Analyzing nleaked values for dif-
ferent attacks (one of the primary purposes of the
notion) shows there is no clear winner out of the
three attacks. nleaked serves as a measure for com-
paring the power of different attacks across ranges of
distributions—seemingly different distinguishing accu-
racies can correspond to very close nleaked values (for
instance, CelebA), while similar ones can correspond to
very different nleaked values (for instance, ogbn-arxiv).
The lack of any clear ranking of the simple black-box
and white-box attacks shows why it is necessary to in-
clude simple baselines when evaluating property infer-
ence risk. In fact, the inexpensive Threshold Test does
better than meta-classifiers for about 30% of our experi-
ments across all the datasets. There are many instances
where either of the two simple black-box tests perform

exceptionally well—even better than meta-classifier. For
instance, Threshold Test on Census (race) and Loss
Test on CelebA (old) outperform the meta-classifiers for
nearly all of pairs of ratios. These observations further
support the approach of using more direct attacks like
Loss Test and Threshold Test before training expensive
meta-classifiers, and also considering attacks that com-
bine meta-classifiers with black-box attacks.

Peculiar Trends. We also observe some trends spe-
cific to a dataset and property, but can only speculate
on their causes. For example, on the Census dataset, the
adversary has notably high accuracy in differentiating
between distributions when one is without any females
(α0 = 0) or males (α0 = 1) with distinguishing accura-
cies close to 100%, regardless of the actual proportion
of females in the data. Detecting the mere presence or
absence of members with a particular attribute is much
easier than trying to deduce the exact ratio of members
with that attribute, which is unsurprising for attributes
that impact the task predictions. Similarly, a difference
in ratios of ≥ 0.3 on RSNA Bone Age (Figure 12b) yields
> 90% accuracy for all cases using meta-classifiers, with
nleaked values ≥ 7, going up to perfect distinguishing
accuracy. Unlike Census, performance on CelebA at the
extremes (no males or females when inferring sex ratios,
and no young or old people when inferring old ratios)
is far from perfect. This may be because features like
race and gender in Census are directly used for model
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training, and thus their presence or absence would di-
rectly impact both predictions and model parameters.
Whereas for CelebA, the complicated feature extractor
may not explicitly capture these latent (and inherently
ambiguous) properties.

Regression for Binary Classification. Compar-
ing nleaked values for the binary meta-classifiers and
regression-based meta-classifiers tuned for binary classi-
fication demonstrates how additional information about
the underlying ratios can have a huge impact on leak-
age. Having models trained on training distributions for
a wide range of α can help ensure the meta-classifier ac-
tually learns to infer the underlying ratios, compared to
the binary classification case where it is most likely to
rely on specific signals just to distinguish between two
given distributions. Although that is indeed the given
task, the ability to capture the association between α

and the desired predictions can, and does, help the meta-
classifiers improve their performance. Note that training
the regression-based meta-classifiers does not require a
stronger threat model than is assumed for the binary
classifier case. In both cases, the adversary needs ac-
cess to a training distribution with enough samples to
be able to create representative datasets for different
distributions. Training the regression meta-classifier re-
quires more computational resources (training models
for multiple ratios) than is required to train the binary
meta-classifier (training models only for two ratios), but
does not otherwise require a stronger adversary.

7 Conclusions
A important step to developing understanding of distri-
bution inference risks is a precise and formal definition,
and we found the general definition we introduce to be
useful for conceptualizing the space of attacks especially
in having a precise way to separate intended statistical
inference from distribution inference attacks. The defi-
nition also leads to a systematic approach to quantify-
ing the leakage from distribution inference attacks. Our
empirical results reveal how intuition may not neces-
sarily align with actual observations. Seemingly similar
pairs of distributions can have starkly different attack
success rates, and simple attacks with limited access
can sometimes outperform computationally expensive
meta-classifiers. Our experiments also show how direct
regression of underlying ratios of training distributions
is a real threat, and can be used to improve the perfor-
mance of binary distinguishing attacks.

Our work raises more questions than it answers—
why do some models leak a lot of information about cer-
tain properties of their training distribution but others
leak little, what are the limits on how precisely train-
ing distributions can be distinguished, why do models
trained on some datasets (like RSNA Bone Age and the
graphs) appear to leak so much more information than
others. We are not able to answer these questions yet,
although our experiments provide several intriguing ob-
servations and suggest possibilities to explore. It is not
surprising that so little is understood about distribution
inference—the research community has put extensive ef-
fort into studying membership inference attacks, and we
are just beginning to be able to understand how and why
membership inference risk varies [32]. There could also
be trade-offs between robustness, fairness, interpretabil-
ity, and vulnerability to distribution inference attacks.
For instance, a model that is fair with regards to some
attribute may be less vulnerable to distribution infer-
ence attacks on that attribute.

Another aspect of these attacks is robustness to dif-
ferent training processes. It is unclear how factors like
overfitting, training for robustness, or data augmenta-
tion can impact property inference risk. Exploring how
these factors increase or decrease susceptibility is part of
ongoing work and may pave the way for understanding
these attacks better, perhaps even leading to principled
and effective defenses.

We expect there is room for improving distribution
inference attacks, and hope our results raise awareness
that distribution inference attacks that expose sensitive
aspects of training data are possible and require further
exploration, analysis, and development of mitigations.
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A Proofs

A.1 Proof of Lemma 4.1

Assume the adversary can fully recover a dataset S (of
size n) from some model M trained on it. Assume ψ(·)
is an estimator for testing the hypothesis, i.e. ψ(S) =
b∈{0,1} means that S comes from Gb(D). Assuming an
equal likelihood of the chosen dataset S being from ei-
ther distributions, we have:

Error =1
2
(
PrS←G0(D)n

[
ψ(S) = 1

]
+

PrS←G1(D)n
[
ψ(S) = 0

])
(9)

=1
2(Type I Error + Type II Error).

Combining with the result from [33]:

Error ≥ 1
2 −

1
2δ(G0(D)n,G1(D)n) (10)

⇒ Accuracy ≤ 1
2 + 1

2δ(G0(D)n,G1(D)n), (11)

where δ() is the total variation distance between two
probability measures, and Gb∈{0,1}(D)n refers to the dis-
tribution of n samples from Gb∈{0,1}(D). Thus, the max-
imum accuracy while differentiating between datasets
sampled from either distribution is bounded by the to-
tal variation distance between them. Let ρb(x) be the
generative probability density function for some sam-
ple x drawn from Gb(D), for b ∈ {0, 1}. This density
function can then be broken down into a multinomial
distribution and priors as:

ρb(x) = (1− αb)pb(x|0) + αbpb(x|1), (12)

where αb is the prior for p(1) corresponding to Gb(D),
and ρb(x|1) is the associated conditional generative prob-
ability density function. Note that p0(x|0) = p1(x|0) and
p0(x|1) = p1(x|1), since they both come from the un-
derlying distribution D. Without loss of generality, let
α0 > α1 (we omit the case of same ratios, since that is

trivially indistinguishable). Then:

α1ρ0(x)− α0ρ1(x) (13)
= α1((1− α0)p0(x|0) + α0p0(x|1)) (14)
− α0((1− α1)p1(x|0) + α1p1(x|1))

= α1p0(x|0)− α1α0p0(x|0) + α0α1p0(x|1) (15)
− (α0p1(x|0)− α0α1p1(x|0) + α1α0p1(x|1))

= (α1 − α0)p0(x|0) ≤ 0

⇒ ρ0(x)
ρ1(x) ≤

α0
α1

(16)

Using this inequality, the relative entropy (KL diver-
gence) from G1(D) to G0(D) can be written as:

DKL(G0(D) ‖ G1(D)) =
∫
ρ0(x) log

(
ρ0(x)
ρ1(x)

)
dx (17)

≤
∫
ρ0(x) log

(
α0
α1

)
dx (18)

= log
(
α0
α1

)∫
ρ0(x)dx (19)

= log
(
α0
α1

)
(20)

Since the function f is binary, a prior of αb for p(f(x) =
1) implies a prior of (1 − αb) for p(f(x) = 0). Uti-
lizing this symmetry, we can similarly upper-bound
DKL(G1(D) ‖ G0(D)) with log

(
1−α1
1−α0

)
. Removing the

α0 ≥ α1 assumption and replacing with the max/min of
these two appropriately, we get:

DKL(G0(D) ‖ G1(D)) ≤ log
(

max(α0, α1)
min(α0, α1)

)
(21)

DKL(G1(D) ‖ G0(D)) ≤ log
(

1−min(α0, α1)
1−max(α0, α1)

)
From [34], we know that:

DKL(G0(D)n ‖ G1(D)n) = nDKL(G0(D) ‖ G1(D))
(22)

Thus, when using a dataset S of size |S| = n, the
equivalent KL-divergence can be bounded by:

DKL(G0(D)n‖G1(D)n) ≤ n log
(

max(α0, α1)
min(α0, α1)

)
(23)

DKL(G1(D)n‖G0(D)n) ≤ n log
(

1−min(α0, α1)
1−max(α0, α1)

)



Formalizing and Estimating Distribution Inference Risks 546

Using the relation between total variation distance
and KL-divergence [35], we know:

δ(G0(D)n,G1(D)n) ≤
√

1− e−DKL(G0(D)n ‖ G1(D)n)

(24)

=
√

1− e−nlog
(

max(α0,α1)
min(α0,α1)

)
(25)

=

√
1−

(
min(α0, α1)
max(α0, α1)

)n
(26)

Similarly, using DKL(G1(D) ‖ G0(D)) in the inequality
above we get:

δ(G0(D)n,G1(D)n) ≤
√

1− e−DKL(G1(D)n ‖ G0(D)n)

(27)

=
√

1− e−nlog
(

1−min(α0,α1)
1−max(α0,α1)

)
(28)

=

√
1−

(
1−max(α0, α1)
1−min(α0, α1)

)n
(29)

Since the function f() is boolean, an adversary can
choose to focus on a property value of 0 or 1, and infer
the ratio of one using the other. Thus, any two ratios
(α0, α1) can be alternatively seen as (1−α0, 1−α1). Com-
bining the two inequalities above and plugging them
back in (11), we get an upper bound on accuracy:

1
2

+
min
{√

1−
(

min(α0,α1)
max(α0,α1)

)n
,

√
1−
(

1−max(α0,α1)
1−min(α0,α1)

)n}
2

(30)

Note that the proof of this bound hinges on both the
distributions originating from the same underlying dis-
tribution D, which is why we use G0(D), G1(D) instead
of some arbitrarily defined distributions D0, D1.

A.2 Proof of Theorem 4.2

Consider Lemma 4.1: let ω be the observed distinguish-
ing accuracy for some attack. Let nleaked be the effec-
tive value of n corresponding to the given attack, i.e.
Equating it with the best distinguishing accuracy for
this value of n, we can compute nleaked. If min(α0,α1)

max(α0,α1) ≥

1−max(α0,α1)
1−min(α0,α1) :

2ω − 1 =

√
1−

(
min(α0, α1)
max(α0, α1)

)nleaked
(31)

log(1− (2ω − 1)2) = nleaked

(
log
(

min(α0, α1)
max(α0, α1)

))
(32)

nleaked = log(4ω(1− ω))

log
(

min(α0,α1)
max(α0,α1)

) (33)

Similarly, for the case of min(α0,α1)
max(α0,α1) <

1−max(α0,α1)
1−min(α0,α1) , we

get:

nleaked = log(4ω(1− ω))

log
(

1−max(α0,α1)
1−min(α0,α1)

) (34)

Combining these two cases, we get:

nleaked = log(4ω(1− ω))

log(max
(
min(α0,α1)
max(α0,α1) ,

1−max(α0,α1)
1−min(α0,α1)

)
)

(35)

A.3 Proof of Theorem 4.3

Assume the adversary can fully recover a dataset S (of
size N) from some model M trained on it. Let n1 be
the number of entries in S that are 1, and n0 0 such
that n0 + n1 = N . Then, the conditional probability
density function of the underlying distribution D having
Pr[1] = z (assume all z are equally likely), given the
observed dataset S, can be written using the continuous
Bayes’ rule as:

Pr[z |S ] = Pr[S | z ] Pr[z ]∫ 1
0 Pr[S |x ] Pr[x ] dx

(36)

=
(
N
n1

)
zn1(1− z)n0∫ 1

0
(
N
n1

)
xn1(1− x)n0dx

(37)

= zn1(1− z)n0
Γ(n0 + n1 + 2)

Γ(n0 + 1)Γ(n1 + 1) (38)

The above conditional probability is maximized when
z = n1

N , i.e. the guessed ratio is the ratio observed in
the given sample S. Then, we can compute the expected
square error over all possible datasets of size N , given
that the distribution they were sampled from has a pro-
portion value α:

E
[
(z − α)2 ] = E

[
z2 ]+ α2 − 2αE[z ] (39)
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We can then compute E[z ] as:

N∑
n1=0

n1
N

(
N

n1

)
(α)n1(1− α)N−n1 (40)

= 1
N

N∑
n1=0

n1

(
N

n1

)
(α)n1(1− α)N−n1 = α (41)

Similarly, E
[
z2 ] can be computed as:

N∑
n1=0

(n1
N

)2
(
N

n1

)
(α)n1(1− α)N−n1 (42)

= 1
N2

N∑
n1=0

n2
1

(
N

n1

)
(α)n1(1− α)N−n1 (43)

= α2 + α(1− α)
N

(44)

Plugging (41) and (44) in (39), we get:

E
[
(z − α)2 ] = α(1− α)

N
(45)

Thus, for an observed square error ω for some attack,
nleaked can be computed as:

nleaked = α(1− α)
ω

(46)

A.4 Proof of Lemma 4.4

We assume that both degree distributions follow Zipf’s
law, such that the PDF for either of G0 or G1can be
written as

ρb(x) = x−sb

HNb,sb
(47)

where HN,s is the N th generalized harmonic number
of order s, Nb corresponds to the maximum degree
(with nonzero probability) GB(D), and sb determines the
spread of the distribution. Since the inequality between
the total variation distance and accuracy is independent
of the underlying distributions, (11) applies in this case
too.

Without loss of generality, let N1 ≥ N0. In that
case, the relative entropy from G0 to G1 would be unde-
fined, since support(G1) ⊆ support(G0) would be false.
Computing the relative entropy from G1 to G0, we get:

DKL(G0(D) ‖ G1(D)) =
N1∑
n=1

ρ0(x) log
(
ρ0(x)
ρ1(x)

)
(48)

Since ρ0(x) only applies until N0, it evaluates to 0 for
n > N0. Substituting:

N0∑
n=1

ρ0(x) log
(
ρ0(x)
ρ1(x)

)
+

N1∑
n=N0+1

0 · log
(

0
ρ1(x)

)
(49)

= 1
HN0,s0

( N0∑
n=1

x−s0

(
log
(
HN1,s1

HN0,s0

)
+ (50)

(s1 − s0) log(x)
))

(51)

= 1
HN0,s0

(
HN0,s0 log

(
HN1,s1

HN0,s0

)
+ (52)

(s1 − s0)
N0∑
n=1

x−s0 log(x)
)

(53)

= log
(
HN1,s1

HN0,s0

)
+ s1 − s0
HN0,s0

N0∑
n=1

x−s0 log(x) (54)

If s1 > s0:

DKL(G0(D) ‖ G1(D))

≤ log
(
HN1,s1

HN0,s0

)
+ s1 − s0
HN0,s0

N0∑
n=1

x−s0 log(N0) (55)

= log
(
HN1,s1

HN0,s0

)
+ (s1 − s0) log(N0) (56)

If s1 ≤ s0:

DKL(G0(D) ‖ G1(D)) ≤ log
(
HN1,s1

HN0,s0

)
(57)

Computing the total variation distance for n samples
according to (24) for both cases, we get an upper bound
on δ(G0(D)n,G1(D)n) as:√

1−
(
HN0,s0

HN1,s1

Ns0−s1
0

)n
, if s1 > s0√

1−
(
HN0,s0

HN1,s1

)n
otherwise

Plugging this in (11) to get an upper bound on the dis-
tinguishing accuracy.

Accuracy ≤ 1
2 +

√
1−

(
HN0,s0
HN1,s1

N
(s0−s1)I[s1>s0]
0

)n
2

(58)

A.5 Proof of Theorem 4.5

Consider Lemma 4.4: let ω be the observed distinguish-
ing accuracy for some attack. Let nleaked be the effective
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value of n corresponding to the given attack, i.e. Equat-
ing it with the best distinguishing accuracy for this value
of n, we get:

ω = 1
2 +

√
1−

(
HN0,s0
HN1,s1

N
(s0−s1)I[s1>s0]
0

)nleaked
2

(59)

nleaked = log(4ω(1− ω))

log
(
HN0,s0
HN1,s1

)
+ (s0 − s1)I[s1 > s0] log(N0)

(60)

B Leakage by Layers
Observing differences in performance when focusing on
different network layers of the same model for CelebA
(Section 6.3.1, Figure 11) raises an interesting question:
how does information leaked vary across model layers?
Understanding and identifying which layers leak the
most information can help better understand the dis-
tribution inference risks and how to mitigate them, as
well as how to make attacks more efficient. Here, we pro-
pose a simple test to help the adversary rank layers for
value in distinguishing between the given distributions,
and show how some layers (the first layer, in most cases)
seem to capture properties of the training distribution
better than others in a given model. Meta-classifier at-
tacks are expensive and deciphering what they learn
is challenging—identifying critical parameters can both
improve understanding and lower resource requirements.
If we can use just a fraction of the model’s parameters,
we may be able to achieve comparable inference per-
formance with fewer shadow models and much lower
meta-classifier training costs.

Identifying Useful Layers. Let j be some layer of the
model for which the adversary wishes to gauge inference
potential. We optimize query point x̂ to maximize the
difference in the total number of activations for layer j
between models trained on datasets from the two distri-
butions:

Mj(x) =
∑
i

I[(M [: j](x))i > 0]

x̂ = arg max
x

∣∣∣∣∣∣
∑
i;yi=0

M i
j(x)−

∑
i;yi=1

M i
j(x)

∣∣∣∣∣∣ , (61)

where M [: j](x) refers to the activations after layer j
of model M on input x. The adversary can use a set

of test points to select one that maximizes the above
constraint. Then, similar to the process for Threshold
Test (Equation 8), the adversary finds a threshold on
the number of activations to maximize distinguishing
accuracy. By iterating through all layers and computing
the corresponding accuracies, the adversary can create
a ranking of layers to estimate how much information
these layers can potentially leak. This process is compu-
tationally much cheaper than running a meta-classifier
experiment for all layers, and can be done with as few
as 20 models. Once it has ranked all the layers, the ad-
versary can pick the most informative ones (even just
a single layer suffices in some cases) to train the meta-
classifier. Since the resulting meta-classifier has fewer
parameters (as it computes over fewer model layers),
it can be trained using far fewer shadow models than
when all network parameters are used, without having
a significant impact on distinguishing accuracy.

Results. To understand how well the layer-
identification process correlates with meta-classifier
performance, we also perform experiments where each
layer’s parameters are used one at a time to train
the meta-classifier. We run the layer-identification pro-
cess, as described in Equation 61, for all layers across
datasets. For the numbers reported in Table 3, the ad-
versary samples data from its local test set to maximize
Equation 61. Distinguishing accuracies reported in this
table are on the adversary’s models since it uses this
ranking of layers to train a meta-classifier for its attack
on the targeted model. For most cases, the layers closest
to the inputs are identified as most useful. These accu-
racies for CelebA align with observations from previous
experiments (Section 6.3) as well—for distinguishing
sex ratios, the convolutional layers (until layer 5) seem
to be more useful; for age, the fully-connected layers
appear to be most useful. Layers of machine-learning
models closer to the input are commonly associated
with learning generic patterns, and later layers more ab-
stract ones along with invariance to the given task [36].
Thus, the position of layers identified to be most useful
is telling of how close the target property is to the input
space or task.

Excluding the last layer does not lead to a signifi-
cant performance drop. Intuitively, layers closer to the
output will capture invariance for the given task and
are thus less likely to contain any helpful information
that prior layers would not already capture. If the last
layer reveals enough information for the attack to suc-
ceed, then a black-box attack should also be possible.
Results from layer-wise meta-classifier experiments con-
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Dataset Layer
1 2 3 4 5 6 7

CelebA (female) 89.2 76.7 75.8 74.2 70.0 66.7 63.3
CelebA (old) 64.2 60 60 68.3 73.3 70 66.7

Census (female) 62.0 58.0 56.4 - - - -
Census (white) 81.7 75.0 63.3 - - - -

RSNA Bone Age 65.0 64.0 - - - - -

ogbn-arxiv 93.3 95.0 98.3 - - - -
Chord 69.4 60.0 64.0 64.8 57.2 50.2 -

Table 3. Maximum accuracy using layer-identification method. Since the last layer in all of these models is used for classification with
a Softmax/Sigmoid activation, the process in Equation 61 cannot be applied to the last layer.
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Fig. 7. Classification accuracy for distinguishing between models with different training distributions on the RSNA Bone Age dataset,
for meta-classifiers trained with (a) 10, (b) 40, and (c) 1600 models. Orange box plots correspond to using parameters only from the
first layer, while blue box plots correspond to using all (three) layers’ parameters. Although the experiment that uses just the first-
layer’s parameters has much more variance, its average performance (and even the first quartile) is better than that of the version that
uses all the layer’s parameters.

(a) Census, varying proportion female (b) Census, varying proportion white (c) RSNA Bone Age, varying proportion female

Fig. 8. Classification accuracy for distinguishing between training distributions for unseen models for on Census (sex: left, race: middle)
and RSNA Bone Age, while varying the models’ layers used while training meta-classifiers. There is no clear winner in the case of
Census, while the first layer seems to the most useful for the case of RSNA Bone Age.

firm how the last layer’s parameters rarely appear useful
for distribution inference. Using these observations, we
train meta-classifiers while using parameters only from
some of the layers selected on the ranking we obtain
via layer-identification experiments. We observe a clear
advantage of doing so across all datasets, with minimal
decreases in accuracy. For instance, using just the first

layer produces a meta-classifier with only 20 training
models on RSNA Bone Age (orange boxes in leftmost
graph in Figure 7) that performs much better than us-
ing parameters from all of the layers. In order for the
meta-classifier trained on all parameters to approach
the accuracy of the one-layer meta-classifier, hundreds
of shadow models are needed.
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Fig. 9. Classification accuracy for distinguishing between models with different training distributions for on the ogbn-arxiv dataset. Left
to right: meta-classifiers trained using 20, 100, and 1600 (original experiment) models, respectively. Orange box plots correspond to
using parameters only from the first layer, while blue box plots correspond to using all (three) layers’ parameters. Using as few as 20
models is sufficient for satisfactory meta-classifier performance when the right layers are identified and used.

For datasets like Census, all the layers seem to
equally useful while for RSNA Bone Age, only the first
layers’ parameters are useful (see Figure 8). When using
the first layer’s parameters, the adversary can achieve
an average of 75% accuracy with as few as 20 mod-
els, compared to 54% when using the entire model. In
fact, the first layer is identified as most useful and using
any other layer leads to near-random performance. Ad-
ditionally, for larger models like those for CelebA, the
adversary can pick more than one layer—using as few as
three layers of the model can help lower computational
resources. As observed in ablation experiments with con-
volutional and linear layers for CelebA (old people), us-
ing just the last three layers (of which two the layer-
identification process identifies), the adversary can train
its meta-classifiers while using significantly fewer mod-
els. When using 100 models to train the meta-classifier,
using just the fully-connected layers gives a 4% absolute
improvement in accuracy, along with 0.5% reduction in
standard deviation across experiments.

Graph Datasets. The layer-identification process does
not work on the graph datasets. It incorrectly predicts
the third layer as most useful for ogbn-arxiv, whereas
actual performance with that layer’s parameters leads
to a significant performance drop. We suspect this be-
havior can be explained by the inherent properties of
the graph data. Intermediate activations for nodes can
have complicated interactions with neighboring nodes,
leading to the detection method’s instability when an-
alyzing activation values. These challenges on graph
datasets is something that we plan to investigate in fu-
ture work. Nonetheless, the fact the first two layers are
useful for both graph datasets suggests a useful direc-
tion for graph-based property inference attacks.

C Additional Figures
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Fig. 10. Distinguishing accuracy for proportion of (a) whites in
training data for the Census and (b) old people in the CelebA.
The black-box attacks approach the performance of white-box
meta-classifier attacks for some distributions (especially the
Threshold Test and the Census (race) task).
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Fig. 11. Distinguishing accuracy for meta-classifiers for proportion
of (a) old people and (b) females in the training data for CelebA.
Using all the layers’ parameters is not necessarily helpful and can
lead to lower performance (e.g., CelebA, females).
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Fig. 12. Effectiveness of meta-classifiers in distinguishing proportions of females on Census and RSNA Bone Age. The bottom-left
triangles of the heatmaps show the nleaked values, and the top-right triangles show the distinguishing accuracies between training
distributions G0(D) with ratio α0 and G1(D) with ratio α1 for females. Distinguishing accuracies seem to follow intuitive patterns,
with an increase as the distributions diverge (larger |α0 − α1|). The nleaked values allow for comparisons of attack power between
different pairs of distributions, but also show that very little leakage is observed for most settings, except for RSNA Bone Age.
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Fig. 13. Distinguishing binary ratio properties using (a) binary classifiers and (b) regression meta-classifiers, for CelebA (age). nleaked
values (lower triangle) and classification accuracies (upper triangle) for distinguishing proportion of old people (ratios α0, α1) in
training data for the CelebA dataset. nleaked with binary meta-classifiers lower, especially for cases where |α0 − α1| is small.
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