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Hidden Issuer Anonymous Credential
Abstract: Identity Management Systems (IMS) allow
users to prove characteristics about themselves to mul-
tiple service providers. IMS evolved from impracti-
cal, site-by-site authentication, to versatile, privacy-
enhancing Self Sovereign Identity (SSI) Frameworks.
SSI frameworks often use Anonymous Credential
schemes to provide user privacy, and more precisely un-
linkability between uses of these credentials. However,
these schemes imply the disclosure of the identity of
the Issuer of a given credential to any service provider.
This can lead to information leaks. We deal with this
problem by introducing a new Anonymous Credential
scheme that allows a user to hide the Issuer of a creden-
tial, while being able to convince the service providers
that they can trust the credential, in the absence of a
trusted setup. We prove this new scheme secure under
the Computational Diffie Hellman assumption, and De-
cisional Diffie Hellman assumption, in the Random Ora-
cle Model. We show that this scheme is efficient enough
to be used with laptops, and to be integrated into SSI
frameworks or any other IMS.

Keywords: Anonymous Credential, Unlinkability, Issuer
Indistinguishability, Hidden Issuer, Privacy

DOI 10.56553/popets-2022-0123
Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

1 Introduction
Self Sovereign Identity (SSI) [1] has emerged as a new
paradigm for Identity Management Systems (IMS). It
aims to provide users with a privacy-preserving manner
to prove their identities. Allen [2] defines a self-sovereign
identity as one satisfying ten principles.

In this paper, we focus on two of them: consent
and minimization. Consent states that users must re-
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main in control of their identities by agreeing to their
usage by third parties. Minimization states that the
system must only disclose minimal information about
a user’s identity, effectively protecting their privacy.
SSI frameworks allow for versatile, user-centric, privacy-
preserving IMSs. Many SSI implementations have ap-
peared in recent years, from EL PASSO [3] to the
more decentralized Sovrin implementation [4, 5]. Most
of them protect privacy by relying on a cryptographic
primitive known as Anonymous Credential (AC).

An AC scheme, introduced by Chaum [6] in 1985,
allows a user to prove his/her identity elements without
disclosing any information other than the one he/she in-
tends to disclose. It relies on the presence of three groups
of actors: users, identity issuers, and service providers.
Users want to access services offered by one or more ser-
vice providers. Identity issuers, or simply issuers, certify
that a given user has some characteristics. Finally, ser-
vice providers leverage these certified characteristics, or
credentials to manage access to the services they offer.
For instance, a user who wants to access a bar will need
to prove that he has received his Covid-19 vaccines and
that he is of legal age to buy alcohol. If the bar organizes
a concert, the user will also have to present a ticket. As
the primary role of the service provider in a credential
scheme consists in verifying credentials, we refer to ser-
vice providers as verifiers.

The separation between issuers and verifiers is a key
factor for privacy preservation in AC schemes. Estab-
lishing a proof of identity most likely requires access to
numerous information items. For example, a user that
wants to prove to be over 18 years old will typically
provide an ID card with a picture, which is then ver-
ified in person or by matching the ID to a video or a
photograph. An AC scheme allows the user to disclose
all extra information (picture, date of birth, name or
all other elements on the id card) only to the issuer.
The issuer then provides the user with a certification
of an identity attribute [7] (being over 18). This takes
the form of a digital signature that the user can employ
as a credential with the verifier in order to access its
services.

However, the separation between the issuer and the
verifier is not complete. A verifier can only accept a
credential if it trusts the corresponding issuer, and by
using a key produced by the issuer itself. This raises



Hidden Issuer Anonymous Credential 572

important privacy concerns. In the previous Covid-19
example, a verifier may exploit the identity of the issuer
(a vaccination center in this case) to infer where the user
lives. Similarly, in the case of a certificate stating that a
user is 18 years old, knowledge of the issuer may help the
verifier infer where the user was born. These pieces of
information constitute partial identifiers, which, when
combined, may lead to the full identification of a user.
This situation can be even worse if the verifier and the
issuer collude. Let us assume that a covid-19 vaccination
certificate states the place and date of vaccination. If the
user is the only person vaccinated at that time on that
date, verifier and issuer together can easily identify the
user. These privacy concerns can undermine the very
objective of SSIs, violating minimization and consent.

Until recently, no one had studied this problem.
However, a recent paper [8], which appeared concur-
rently with the preparation of our own, proposes a
scheme addressing the same goal using different building
blocks and requiring a trusted setup.

In this paper, we take a different approach. We for-
malize the key features of hidden-issuer anonymous cre-
dentials into a novel cryptographic primitive and instan-
tiate it into a solution that does not require a trusted
setup. In doing so, we make four main contributions..

– We introduce the cryptographic aggregator, a new
primitive that makes it possible to prove the set-
membership of an element, without revealing it, and
while only knowing a commitment to it. We formally
define this new primitive and give a concrete instan-
tiation that works in the absence of a trusted setup.

– We propose a novel credential scheme that provides
issuer indistinguishability from the verifier’s point of
view with an instantiation that does not require a
trusted setup. Our scheme uses aggregators to hide
the issuer of a given credential among a set of issuers
that are trusted by the verifier. This allows the ver-
ifier to trust the information in the credential even
if it does not know its precise issuer. Our scheme
supports non-transferable signatures and signatures-
on-committed-message.

– We prove the security of our scheme. Specifically, we
prove its soundness under the Computational Diffie-
Hellman assumption, in the Random Oracle model.
We also prove the indistinguishability of the issuer
among the whole set of issuers trusted by one verifier
under the Decisional Diffie-Hellman assumption.

– We provide an open-source implementation of our
scheme in Rust and evaluate its performance.

2 Problem Statement
We aim to provide an AC that hides not only the iden-
tity of the user, but also that of the issuer, thereby re-
ducing the associated privacy risks. In the rest of this
section, we define the properties we seek for our Hidden-
Issuer Anonymous-Credential scheme, before describing
our adversary model.

Properties. We focus on two of the principles enun-
ciated by Allen [2]: minimization and consent. Existing
credential schemes satisfy these principles only partially
because, as we discussed, knowledge of the issuer can
reveal personal information about the user. Specifically,
they provide minimization and consent (i) by sharing
only the identity elements that were selected by the
user, (ii) by providing unlinkability, i.e. by ensuring that
multiple uses of the same credential cannot be linked
together, and (iii) by providing a way for the issuer to
sign committed message, i.e. the issuer is able to sign
a message without learning the actual content of this
message.

In order to hide the identity of the issuer from the
verifier, we introduce two additional properties:

– Issuer indistinguishability states that, given two
credentials certifying the same types of messages, a
verifier should not be able to say if the issuers of
these credential are distinct or not.

– Trusted issuer states that the verifier should be
certain that the credential it accepts has been issued
by an issuer it trusts. This would be trivial in a
classic Anonymous Credential scheme, but becomes
relevant once we hide the identity of the issuer.

The credential should satisfy these properties while be-
ing used an arbitrary number of times (multi-show)
and with an arbitrary number of different verifiers
(multi-verifier). It should also have an optional non-
transferable-credential feature. To ensure usability, it
should be efficiently computable with low-end modern
computers for its three types of actors. Finally, the
scheme should not require a trusted setup as this would
either introduce a trusted third party or require complex
distributed synchronization protocols [9, 10].

Need for a Decentralized Solution. At first glance,
it might appear that the above properties could be pro-
vided by a central anonymizer—possibly chosen by a de-
centralized leader-election algorithm—to which issuers
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would delegate the signature of all credentials. However,
this solution would defeat the very point of a decentral-
ized IMS, adding the (strong) hypothesis that all is-
suers and verifiers trust the same anonymizer, creating
a single point of failure. A verifier would not be able to
choose specific trusted issuers and would need to trust
all the issuers the anonymizer represents. A centralized
anonymizer would also complicate the issuance work-
flow. Let us consider a bar that verifies tickets for an
event it organizes. The bar can trust multiple ticket re-
sellers but it can also sell tickets directly to its clients.
With a central anonymizer, the bar would thus need to
register to the anonymizer responsible for ticket sales.
This would create unnecessary overhead, particularly if
the bar sells tickets only occasionally. Moreover, if the
central anonymizer is responsible for a specific popula-
tion, e.g. a region or a country, its usage would still leak
information about this region. A decentralized IMS us-
ing AC should instead (i) give verifiers the freedom to
trust their preferred issuers, and (ii) give users the free-
dom to choose verifiers based on the issuers they trust.

Adversary Model. We consider two adversaries: 1)
A malicious verifier colludes with a subset or all of its
trusted issuers. It has access to their secret keys, and
to all previously issued credentials. It tries to reveal the
identity of the owner or of the issuer of a credential.
2) A malicious user tries to use credentials on messages
not signed by any trusted issuers. He can request mul-
tiple signatures from the signing oracles of each trusted
issuer, and obtain all their public keys.

Colluding parties can share any information with
each other. We consider the security of our system in an
isolated world. The only potential flaws considered here
are the ones within the scheme. We provide a formal
adversary model in Section 5.1.

3 Overview
We propose a novel Anonymous Credential scheme that
does not disclose the identity of a credential’s issuer.
Our scheme introduces a randomization process, run by
the user, that hides the issuer of a credential among the
set of issuers trusted by the verifier. To make this possi-
ble, each verifier publishes the list of its trusted issuers
in the form of a set, represented by an aggregator, a new
primitive, central to an HIAC scheme. The aggregator
allows a user to prove that a randomized issuer’s pub-
lic key belongs to a given set, while not knowing the

associated secret key, and while being able to use this
key in a subsequent signature-verification process. This
aggregator is independent from the rest of the signature
scheme. The only interface between the aggregator and
the signature is the randomized issuer’s public key.

When the user wants to use a credential received
from an issuer, he randomizes the issuer’s public key,
while providing a proof that the issuer’s key belongs
to the verifier’s aggregator. This randomize-and-prove
process hides the identity of the issuer, while allowing
the verifier to ensure that it belongs to its trusted list.

Our Hidden Issuer Anonymous Credential (HIAC)
scheme combines a modified Pointcheval Sanders (PS)
signature [11], and two Aggregator instances, one for
each secret key used by PS. We use PS because it does
not require a trusted setup, and it is trapdoor-free.

4 Building Blocks
Before detailing the operation of our Anonymous Cre-
dential scheme, we introduce some notation and the def-
initions of our main building blocks.

– Let G be a group. We note by 〈g〉 = G the fact that
g is the generator of G, and we note 1G the neutral
element of G.

– Let Z be a set, we note by a←$ Z the fact that a is
chosen uniformly at random in the set Z.

Signature Scheme. A digital signature [12] can be
seen as a proof that a given message m was certified by
an issuer. Here, we give a formal definition for a digital
signature scheme:

Definition 1. A digital signature scheme Σ is defined
as a tuple of four algorithms (Setup, KeyGen, Sign,
Verify).
1. (pp)← Setup(λ) : On input of a security parameter

λ, the algorithm outputs pp, a description of public
parameters whose security level depends on λ;

2. (sk, pk)←KeyGen(pp): on input of a setup param-
eter pp, the algorithm computes a secret/public key
pair (sk, pk);

3. (σ)← Sign(pp,m, sk): on input of a setup parame-
ter pp, a message m, and a secret key sk, the algo-
rithm outputs a signature σ; and

4. {0, 1} ← Verify(pp,m, pk, σ): on input of a setup
parameter pp, a message m, a public key pk, and
a signature σ, the algorithm outputs 1 if σ is a
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valid signature on the message m by the secret key
associated with pk, and 0 otherwise.

Security Notion: A signature is secure if no adversary
can create a signature in the name of some other issuer,
and if no adversary can modify the previously signed
message without invalidating the signature. The stan-
dard security notion for a signature scheme is the Ex-
istential Unforgeability under Chosen Message Attack
(EUF-CMA) [13]. This notion states that the scheme is
resistant against an adversary that can make an arbi-
trary number of queries to a signing oracle. An Anony-
mous Credential [6] is a digital signature that pro-
vides unlinkability between its uses, non-transferability,
and the ability to sign committed message.

The unlinkability property states that when a user
provides credentials multiple times to a verifier, the lat-
ter cannot tell whether they come from the same origi-
nal signature. This property is often enabled by an ad-
ditional algorithm, run by the user, called randomize.
Non-transferability makes it possible for a verifier to en-
sure that a signature was issued to the user that presents
it. Finally, the ability to sign committed message makes
it possible for an issuer to sign a commitment to a mes-
sage m, without learning the value of the message it
signs. The user is then able to open the commitment,
thus obtaining a signature on message m.

Hash Function. The security of our signature scheme
is based on cryptographic hash functions [12].

Definition 2. A hash function is a map H which takes
an element of arbitrary size A ∈ Z and outputs an el-
ement B ∈ {1, · · · , p} of fixed size p. A cryptographic
hash function has two additional properties:
1. (Pre-image resistance) given a = H(b), no proba-

bilistic polynomial time (PPT) adversary can find b
with non-negligible probability; and

2. (Collision resistance) no PPT adversary can find,
with non-negligible probability, x ∈ Z and y ∈ Z
such that H(x) = H(y) and x 6= y.

Bilinear Pairing. Our scheme needs an efficient bi-
linear pairing.

Definition 3. Let G1 = 〈g1〉, G2 = 〈g2〉, GT = 〈gT 〉,
three groups of prime order p. A bilinear pairing is a
map e : G1×G2 → GT that has the bilinearity property.
This means that e(ga1 , g2) = e(g1, g2)a = e(g1, g

a
2 ), for all

a ∈ {0, · · · , p− 1};

To be efficiently used in cryptography we also require
this map to be non-degenerate and efficiently com-
putable:

– (Non degeneracy) ∀A ∈ G1, A 6= 1G1 ,∃B ∈ G2 such
that e(A,B) 6= 1GT and ∀B ∈ G2, B 6= 1G2 ,∃A ∈ G1
such that e(A,B) 6= 1GT ;

– (Efficient computability) there is an efficient algo-
rithm to compute e.

Furthermore, we can classify bilinear pairings in
three types [14]. In our construction, we will use a type-
3 bilinear pairing. Type-3 bilinear pairings are pairings
where G1 6= G2 6= GT and there is no efficiently com-
putable morphism ψ1 : G2 → G1 or ψ2 : G1 → G2.

Zero-Knowledge Proof. The actors of our signature
scheme need to prove knowledge of values, while keeping
them secret. A Zero-Knowledge Proof (ZKP) system is a
tool that matches this requirement by allowing a prover
to prove to a verifier that it knows a secret statement,
without revealing it.

In this paper, we will use the convenient nota-
tion of ZKP protocols introduced by Camenisch and
Stadler [15]. The aim of the notation is to explain what
is proven, and what is hidden, in a compact way. For
example, the notation for a ZKP about the knowl-
edge of the exponent α in the expression y = gα is
ZKPoK{(α) : y = gα}. Where the elements between
parentheses (α) are the elements known only by the
prover, and the equations on the right explain how the
prover commits to those elements. The letters on the
left define what proof is being conducted. Here, ZKPoK
means Zero Knowledge Proof of Knowledge, which ex-
plains that the prover will prove knowledge of an ele-
ment. We will also use ZKPoE, which is a Zero Knowl-
edge Proof of Equality. The goal of a ZKPoE is to prove
that different elements have the same exponent. Chaum
and Pedersen presented a version with only two ele-
ments in 1993 [16], but this construction can be gener-
alized to any number of elements. We will use the prefix
"NI-" to refer to non-interactive proofs. An instantiation
of NI-ZKPoK in the random oracle model was described
by Fiat and Shamir [17], and later modified and proved
secure by Bernhard, Pereira, and Warinschi [18].

Assumptions. Our signature scheme relies on several
complexity assumptions. The first is the Discrete Loga-
rithm (DL) assumption [19], the second is the Computa-
tional Diffie Hellman Assumption (CDH) [19], and the
third is the Decisional Diffie Hellman (DDH) assump-
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tion [19]. We also assume that there exists a type-3 bi-
linear pairing, e, defined on elliptic curves over a finite
field and a cryptographic hash function, H.

5 Formal Definitions

5.1 Hidden Issuer Anonymous Credential

A Hidden Issuer Anonymous Credential (HIAC)
is an Anonymous Credential with the issuer-
indistinguishability and trusted-issuer properties.

Definition 4. A Hidden Issuer Anonymous Credential
scheme Σ is defined as a tuple of six algorithms (Setup,
IssuerKeygen, Sign, VerifierSetup, Randomize,
VerifyRandomized) defined as follows:
1. (pp) ← Setup(λ): On input of a security parameter

λ, the algorithm outputs pp, a description of public
parameters whose security level depend on λ;

2. (isk, ipk)← IssuerKeyGen(pp): on input of pp, an
issuer computes a secret/public key pair (isk, ipk);

3. (σ)← Sign(pp,m, isk): on input of pp, of a message
m, and of its issuer secret key isk, an issuer outputs
a signature σ;

4. (S, auxS) ← VerifierSetup(pp,S ′): on input of pp,
and of a set of k′ issuers S ′, a verifier outputs S a se-
lection of k ≤ k′ trusted issuers in S ′. The algorithm
also outputs auxiliary information auxS = (vpk, vsk),
about S; where vpk is public and vsk is secret.

5. (ipk′, πipk′ , σ′) ← Randomize(pp, ipk, vpk, S, σ):
on input of pp, of a signature σ, of a public key ipk
of the issuer of σ, of a set of issuers S, and of public
auxiliary information vpk, a user:
(a) Checks that vpk is built using elements from S;
(b) Produces ipk′, a randomized version of ipk;
(c) Produces a proof πipk′ that ipk′ is an element

of S, using vpk;
(d) Produces a randomized signature σ′ using σ,

ipk′, and πipk′ .
The algorithm outputs ipk′, πipk′ , and σ′.

6. {0, 1} ← VerifyRandomized(pp, vsk, ipk′, πipk′ ,
σ′, m): on input of pp, of verifier secret auxiliary in-
formation vsk, of a randomized issuer key ipk′, of a
proof πipk′ , of a randomized signature σ′, and of a
message m, a verifier outputs 1 if the proof πipk′ is
valid, and if σ′ is a valid signature on message m,
signed with the secret key associated with ipk′. The
algorithm outputs 0 otherwise.

Security notions: We define three security notions:
correctness, issuer indistinguishability, and trusted is-

suer. Issuer indistinguishability extends the unlinkabil-
ity property of classical Anonymous Credential schemes.

Definition 5. (Correctness) A HIAC scheme is correct,
if for any honestly built tuple (pp, vsk, ipk′, πipk′ ,
σ′,m), VerifyRandomized(pp, vsk, ipk′, πipk′ , σ′,m)
always outputs 1.

Definition 6. (Issuer Indistinguishability) We define
the IssuerIndistinguishGame(A, C), for a challenger
C that represents a user, and the actions preformed by
the issuers, and an adversary A that represents a mali-
cious verifier colluding with all its trusted issuers1:
– Setup: First, C runs the HIAC Setup algorithm,

and two rounds of the Keygen algorithm to ob-
tain two issuer key pairs ({ipk1, ipk2}, {isk1, isk2}).
Second, A runs VerifierSetup to build a set S
with the two issuers, and the associated auxil-
iary information (vpk, vsk). Third, C computes
σ1 = Sign(pp, isk1,m) and σ2 = Sign(pp, isk2,m)
on the same message m ←$ Zp. A is given
(pp, {ipk1, ipk2}, {isk1, isk2}, σ1, σ2,m,S, vpk, vsk).
Finally, C chooses a random number I ←$ {0, 1}.

– Queries: A adaptively requests a finite number of
randomized signatures. C answers each query by
returning (ipk′I , πipk′I , σ

′
I) ← Randomize(pp, ipkI ,

vpk, S, σI).
– Output: A eventually outputs I ′ ∈ {0, 1}. The game

outputs 1 if I ′ = I. The game outputs 0 otherwise.
A HIAC scheme is said to be Issuer-Indistinguishable
iff, for a negligible ε, the probability for a PPT Adver-
sary A to win the IssuerIndistinguishGame against
a challenger C is:

Pr[IssuerIndistinguishGame(A, C) = 1] ≤ 1
2 + ε

Definition 7. (Trusted issuer) We define the Truste-
dIssuerGame(A, C), for a challenger C that represents
a verifier and its trusted issuers, and an adversary A
that represents a malicious user:
– Setup: C runs HIAC’s Setup, IssuerKeygen, and
VerifierSetup algorithms to obtain public param-
eters pp, k issuers’ key pairs {(iski, ipki)}ki=1 and
one verifier’s information pair (S, auxS). A is given
{(ipki)}ki=1, S, and public information vpk.

1 The formal definition of the adversary model only takes into
account two trusted issuers. However, the privacy of the users
relies on the size of the underlying anonymity set. Therefore, the
size of a verifier’s trusted issuer set should be large enough to
hide the users.
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– Queries: A adaptively requests signatures on at most
n messages m1, ...,mn to the k issuers. C answers
each query by returning for each issuer {σ(i,j) ←
Sign(iskj ,mi)}ni=1.

– Output: A eventually outputs a randomized
message-signature pair (m∗, (ipk∗, π∗ipk, σ∗)). The
game outputs 1 if VerifyRandomized(pp, vsk, ipk∗,
π∗ipk, m∗) = 1 ∧ ipk∗ 6= S, and 0 otherwise.

An HIAC scheme is said to have the trusted-issuer prop-
erty if, for a negligible value, ε, the probability for a
Probabilistic Polynomial Time (PPT) Adversary A to
win TrustedIssuerGame against a challenger C is:

Pr[TrustedIssuerGame(A, C) = 1] ≤ ε

Definition 8. (Existential Unforgeability Against
Chosen Message Attack) We define the EUFC-
MAGame (A, C), for a challenger C that represents a
verifier and its trusted issuers, and an adversary A that
represents a malicious user:
– Setup: C runs the HIAC’s Setup, IssuerKeygen,

and VerifierSetup algorithms to obtain the public
parameters pp, k issuers’ key pairs {(iski, ipki)}ki=1
and one verifier’s information pair (S, auxS). A is
given {(ipki)}ki=1, S, and vpk.

– Queries: A adaptively requests signatures on at most
n messages m1, ...,mn from the k issuers. C answers
each query by returning, for each issuer, {{σ(i,j) ←
Sign(iskj ,mi)}ni=1}kj=1.

– Output: A eventually outputs a randomized
message-signature pair (m∗, (ipk∗, π∗ipk, σ∗)). The
game outputs 1 if VerifyRandomized(pp, vsk, ipk∗,
π∗ipk, m∗) = 1 ∧m∗ 6= mi ∀i, and 0 otherwise.

An HIAC scheme is said to have the EUF-CMA prop-
erty if for a negligible value, ε, and M the space of pos-
sible messages, the probability for a PPT Adversary A
to win the EUFCMAGame against a challenger C is:

Pr[EUFCMAGame(A, C) = 1] ≤ 1
M

+ ε

Definition 9. A Hidden Issuer Anonymous credential
scheme is secure iff it achieves correctness, EUF-CMA,
issuer indistinguishability, and trusted issuer.

5.2 Aggregator

To instantiate an HIAC scheme, we need an object
which allows a verifier to commit to a set of values, and
which offers a way for a user to prove that some value
is indeed in the commitment set, without revealing this
value, and while only knowing a commitment to this

value. State-of-the-art primitives do not offer such a pos-
sibility. We therefore introduce a novel cryptographic
object: the aggregator. In our HIAC scheme, the verifier
builds the aggregator and uses it as a commitment to a
set of trusted issuers. But we conjecture that other de-
signs for an HIAC scheme would also need an aggregator
or a similar object. An aggregator provides one witness
for each trusted issuer. Each such witness can be used
to prove that a specific issuer’s public key (or a com-
mitment to an issuer’s secret key) is accumulated in the
aggregator. The verifier is the only actor able to verify
this set-membership proof. The user can further make
this proof element indistinguishable by adding random
elements to the witness and the issuer key. An aggrega-
tor is defined by the five following algorithms:

Definition 10. – (pp)← Setup(λ): on input of setup
parameter λ, the algorithm outputs pp, a description
of public parameters whose security depends on λ;

– (Agg, aux, sk) ←Gen(pp,S): on input of pp and of a
set S, the algorithm outputs aggregator Agg, auxiliary
information aux, and a secret verification key sk;

– {0, 1} ← IntegrityVerification(pp,S,Agg, aux): on
input of pp, a set S, aggregator Agg, and auxiliary pa-
rameters aux, the algorithm outputs 1 if Agg is valid,
and if it aggregates all the elements in S. The algo-
rithm outputs 0 otherwise;

– (C′, πs) ←WitCreate(pp, Agg, aux, C): on input of
pp, aggregator Agg, auxiliary parameters aux, and a
cryptographic commitment C to an element s ∈ S,
the algorithm outputs C′ a new commitment to s,
and a proof πs which proves that C′ is a commitment
to an element aggregated in Agg.

– {0, 1} ← Verify(pp,Agg, aux, sk, C′, πs): on input of
pp, aggregator Agg, auxiliary parameters aux, a cryp-
tographic commitment C′ to an element s ∈ S, a se-
cret verification key sk, and a witness Ws, the algo-
rithm outputs 1 if πs is valid and 0 otherwise.

Security notions for a secure aggregator can be derived
from the needs expressed in the HIAC formal definition.
The first, Collision-freedom, states that the probability
for an adversary to find a proof of set-membership for
a non accumulated element is negligible. The trusted
issuer property of the formal HIAC definition is derived
from the collision-freedom property of its aggregator.

Definition 11. (Collision Freedom) We define the
CollisionFreedomGame(A, C), for a challenger C that
represents a verifier and its trusted issuers, and an ad-
versary A that represents a malicious user:
– Setup: C runs the aggregator Setup algorithm,

chooses a set S, runs the Gen algorithm to build a
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commitment to S, and the associated verification key.
A is given the aggregator’s public information.

– Output: A outputs C∗ a commitment to s∗ and
π∗s . The game outputs 1 if s∗ /∈ S, and Ver-
ify(pp,Agg, aux, sk, C∗, π∗s ) = 1, or 0 otherwise.

An Aggregator is said to be element-indistinguishable if
for a negligible ε, the probability for a PPT Adversary
A can to win the CollisionfreedomGame is:

Pr[CollisionfreedomGame(A, C) = 1] ≤ ε

The second security notion, Element Indistinguishabity
states that, while the verifier running the Verify algo-
rithm knows that commitment C′ is associated with one
of the elements of S, it cannot learn the actual element
committed to. The issuer-indistinguishability property
of the HIAC definition is partially derived from the
element-indistinguishability property of its aggregator.

Definition 12. (Element indistinguishability) We
define the ElementIndistinguishGame(A, C), for a
challenger C that represents a user, and the actions pre-
formed by the issuers, and an adversary A that repre-
sents a malicious verifier:
– Setup: C runs the aggregator Setup algorithm, and

chooses a set S with at least 2 elements. Then, A
runs the Gen algorithm to build a commitment to
the set S, and the associated verification key. Finally,
C chooses s ∈ S. A is given the set of secret values
aggregated in the aggregator, the commitment to the
issuer set, and the secret verification key.

– Queries: A adaptively requests q randomized com-
mitments to elements of S, and the associated
proofs. C answers each query by returning (C′, πs)←
WitCreate(pp,Agg, aux, C) a commitment to s ∈ S.

– Output: A eventually outputs s′ ∈ S. The game out-
puts 1 if s′ = s. The game outputs 0 otherwise.

An Aggregator is said to be element-indistinguishable if
for a negligible value, ε, and k trusted issuers, the proba-
bility for a PPT Adversary A to win the ElementIndis-
tinguishGame against a challenger C is:

Pr[ElementIndistinguishGame(A, C) = 1] ≤ 1
k

+ ε

The last security notion is correctness:

Definition 13. An aggregator scheme is correct iff,
for any honestly built tuple (pp,Agg, aux, sk, C′, πs), the
Verify algorithm always outputs 1.

Definition 14. An Aggregator is secure iff it achieves
correctness, collision-freedom, and element indistin-
guishability.
If this aggregator is embedded correctly into a Hidden
Issuer Anonymous Credential scheme, then the Trusted

Issuer property relies entirely on the aggregator’s Col-
lision Freedom property.

6 Instantiation
Next, we instantiate our aggregator object and our
HIAC scheme. We start by describing a non-interactive
version of our scheme. Then, we present our final, inter-
active version. Appendix B shows that we can add non
transferability and signature on committed message to
the scheme presented in this section.

Our setup is trust free. None of the actors needs to
trust the constructions made by the other actors. The
integrity of the elements published by each actor can be
verified algorithmically. In this section, we assume all
issuers of the system issue the same types of messages.
We explain how to verify this assumption in Section 7.

6.1 Non-Interactive HIAC

6.1.1 Aggregator

Our aggregator consists of five algorithms: Setup,Gen,
IntegrityVerification, WitCreate, and Verify. Un-
like in the formal definition of Section 5.2, we pass the
random values r1 and r2 to WitCreate. This makes it
possible to map elements of the set-membership proof
to the actual randomized signature in the instantiation
of our HIAC scheme. As we mentioned, the aggregator
is independent from the HIAC scheme, and can be used
with other signature schemes based on bilinear pairings
to provide issuer indistinguishability.

Protocol 1. 1. (pp) ←Setup(λ): on input of a secu-
rity parameter λ, the algorithm chooses three prime-
order p groups with the associated generators G1 =
〈g1〉, G2 = 〈g2〉, and GT = 〈gT 〉. The algorithm
then chooses a type 3 bilinear pairing e such that
e : G1 × G2 → GT . The algorithm outputs public
parameters pp = (p,G1, g1,G2, g2,Gt, gT , e).

2. (Agg, aux, sk, T1) ←Gen(pp,S): on input of pp and

of a set S = {g
1
x1
1 , · · · , g

1
xk
1 }, xi ∈ Zp, ∀i ∈ Z∗p,

k ≥ 2, the algorithm computes a secret key sk ←$

Zp, an aggregator Agg = (S,W ), with witness set

W = {(W )(j) = g
sk 1
xj

1 }kj=1. The algorithm also com-
putes some auxiliary information aux = β, with
β = NI− ZKPoE{(sk) :

∧k
i=1(W )(i) = (S)sk

(i)}. The
algorithm finally outputs (Agg, aux, sk);
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3. {0, 1}←IntegrityVerification(pp,SComm,Agg, aux):
on input of pp, of a set SComm = {gx1

2 , · · · , gxk2 }, xi ∈
Zp,∀i ∈ {1, · · · , k}, of an aggregator Agg = (S,W ),
and of the auxiliary parameter β, the algorithm out-
puts 1 if β is valid and 0 otherwise;

4. (C′, πs) ←WitCreate(pp, Agg, aux, C, r1, r2): on
input of pp, of an aggregator Agg = (S,W ), of auxil-
iary parameters aux, of a cryptographic commitment
C = gxl2 , l ∈ {1, · · · , k}, and of two randomly chosen
numbers r1, r2, the algorithm computes C′ = Cr1 ,
and a proof πs = ((W )′(l), h), with (W )′(l) = (W )r2

(l)
and h = gr1r2

2 ; the algorithm outputs (C′, πs).
5. {0, 1} ←Verify(pp, sk, C′, πs): on input of pp, of the

secret aggregator’s verification key sk, of a random-
ized commitment C′, and of a proof πs = ((W )′(l), h),

the algorithm outputs 1 if: e((W )′(l), C
′) ?= e(gsk

1 , h);
and 0 otherwise.

Security Analysis
Theorem 1. The aggregator presented by Protocol 1
is correct.
Proof sketch 1. The proof of this theorem, in Ap-
pendix E.2, uses a correctly built element e((W )′(i), C

′)
to prove that it is equivalent to e(gskT , h).

Theorem 2. (Collision Freedom) The aggregator
presented by Protocol 1 is collision free, under the CDH
assumption (Definition 11).2

Proof sketch 2. The proof of Theorem 2, in Ap-
pendix E.3, shows that under the CDH assumption the
secret value sk used in e(gsk

T , h) forces the adversary to
use exactly one witness to build its (W )′l. Then it shows
that C∗ contains exactly one xi.3

Theorem 3. The scheme presented here is Element In-
distinguishable (Definition 12).
Proof sketch 3. The proof of the Theorem 3, in Ap-
pendix E.4, proceeds by analyzing the elements the ad-
versary is given. Either there is no linear relationship
between these elements (which, under the DDH assump-

2 The collision-freedom proof uses the fact that the value gsk
1 is

known only to the verifier. But, if a given Aggregator was used
multiple times, it would be possible for a malicious Issuer I to
compute and publish the value gsk

1 = (W )xI(I). For this reason,
the non-interactive HIAC scheme computes a new aggregator at
every transaction (cfr. Section 6.1.2).
3 In anticipation of the Hidden Issuer Anonymous Credential
(HIAC) protocol, we will prove Theorem 2 with an extended
version of the adversary model, in which the adversary has access
to the extra values gxi1 ,∀i ∈ {1, · · · , k}.

tion, means that no adversary can decide which element
is being proven to be in S) or the elements are symmet-
rical (and thus they do not depend on the variables, or
they are distributed uniformly at random in the group).

6.1.2 Signature Scheme

Our Hidden Issuer Anonymous Credential (HIAC)
scheme relies on a modified Pointcheval Sanders (PS)
scheme [11] and uses six algorithms. The first three come
from a classical signature scheme, namely Setup which
produces the shared material, IssuerKeygen which al-
lows an issuer to build a key pair, and Sign which allows
an issuer to sign a credential. The three others provide
the issuer-indistinguishability and trusted-issuer prop-
erties. The verifier runs theVerifierSetup algorithm to
select a set of trusted issuers and generate the aggrega-
tor. In this non-interactive version of HIAC, the verifier
needs to do this before each transaction to prevent ma-
licious issuers from extracting the verifier’s private key
from the aggregator. Once it has the aggregator, the
user runs the Randomize algorithm to randomize the
credential and the associated issuer’s key, and to create
the associated proof of set-membership. Finally, the ver-
ifier runs VerifyRandomized to verify the proof and
the authenticity of the randomized credential.

Protocol 2. 1. (pp) ← Setup(λ): on input of a se-
curity parameter λ , the algorithm chooses three
prime-order p groups with the associated generators
G1 = 〈g1〉, G2 = 〈g2〉, and GT = 〈gT 〉. The algo-
rithm then chooses a type 3 bilinear pairing e such
that e : G1 × G2 → GT . Finally, it chooses a cryp-
tographic hash function H : Z → Zp. The algorithm
outputs pp = (p,G1, g1,G2, g2,Gt, gT , e,H).

2. (iskI , ipkI)← IssuerKeygen(pp): on input of pp, an
issuer I computes a secret key iskI = (xI , yI), with
xI , yI ←$ Z∗p and the associated public key ipkI =

(X(I), X̄
(I)
1 , Y

(I)
1 , Ȳ

(I)
1 , Y

(I)
2 ) = (gxI2 , g

1
xI
1 , gyI1 , g

1
yI
1 ,

gyI2 ).4 The algorithm outputs (iskI , ipkI).
3. (σ,Ry)← Sign(pp,m, iskI , u, φ): on input of pp, of a

message m, of an issuer’s secret key iskI = (xI , yI),
of a value given by the user u = (Y (I)

1 )Ry · gR1 , where
Ry and R are secret random values, and of φ, a

4 In the PS version of the signature, g
1
xI
1 and g

1
yI
1 are not dis-

closed. We show in the proof section that, thanks to the CDH
assumption, this modification does not impact the security of
the signature.
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ZKPoK of u, φ :NI-ZKPoK{(RyR) : u = (Y (I)
1 )Ry ·

gR1 }, the issuer initially outputs a signature σ∆ =
(h1, h2, σ

∆
1 , σ

∆
2 ), where h1 = g

r(I,1)
1 , h2 = g

r(I,2)
1 ,

σ∆
1 = (gxI1 · uH(m))r(I,1) , σ∆

2 = (gxI1 · uH(H(m)))r(I,2) ,
with r(I,1), r(I,2) ←$ Z∗p. Then the user transforms
the signature σ∆ into σ = (h1, h2, σ1 = σ∆

1 ·h
−RH(m)
1 ,

σ2 = σ∆
2 · h

−RH(H(m))
2 ). The user stores σ and Ry.

4. (vpk, vsk)←VerifierSetup(pp, {ipki}ki=1): on input
of pp and of trusted issuers’ public keys {ipki}ki=1,
the verifier commits to the issuer’s secret keys
x by building a new aggregator (Aggx, skx, auxx)
= Aggregator·Gen(pp,Sx). Symmetrically, the ver-
ifier also commits to the issuer’s secret key y

by building another aggregator (Aggy, sky, auxy)
= Aggregator·Gen(pp,Sy). The algorithm outputs
vsk = (skx, sky) and vpk = (Aggx, auxx,Aggy, auxy).

5. (X(I)′ , Y
(I)′
2 , πx, πy, σ

′)← Randomize(pp, ipk, vpk,
S, σ,Ry): on input of pp, of a signature σ =
(h1, h2, σ1, σ2), of a verifier public key vpk =
(Aggx, auxx,Aggy, auxy), and of a secret value Ry gen-
erated by the user in step 3, and associated with σ,
this algorithm, run by a user:
(a) Verifies if:

Aggregator·IntegrityVerification(
pp, {X(j)}kj=1,Aggx, auxx) ?= 1

Aggregator·IntegrityVerification(
pp, {Y (j)

2 }kj=1,Aggy, auxy) ?= 1

Otherwise, it aborts.
(b) Chooses ru, r′u, r′′u, r(u,x), r(u,y) ←$ Z∗p
(c) Computes :

(X(I)′ , πx) =Aggregator ·WitCreate(
pp,Aggx, auxx, ru, r(u,x))

(Y (I)′ , πy) =Aggregator ·WitCreate(
pp,Aggy, auxy, ruRy, r(u,y))

(d) Computes σ′ = (h′1 = h
r′u
1 , h′2 = h

r′′u
2 , σ′1 =

σ
rur
′
u

1 , σ′2 = σ
rur
′′
u

2 )
The algorithm outputs (X(I)′ , Y

(I)′
2 , πx, πy, σ

′).
6. {0, 1} ← VerifyRandomized(pp, σ′, X(I)′ , Y (I)′

2 ,
πx, πy, m, vsk):5 on input of pp, of commitments

5 The user can verify the integrity of the signature
– without using VerifyRandomized – by verifying
that e(σ1, g2) ?= e(h1, X(I)(Y (I)

2 )RyH(m)), e(σ2, g2) ?=
e(h2, X(I)(Y (I)

2 )RyH(H(m))), and h1 6= 1G1 , h2 6= 1G1

to an issuer’s keys X(I)′ , Y
(I)′
2 , of two proofs of

set-membership πx, πy, of a randomized signature
σ′ = (h′1, h′2, σ′1,σ′2), of a verifier secret key vsk =
(skx, sky), and of a message m, a verifier, outputs 1 if
the proof of set-membership is honestly built, i.e. if:
Aggregator·Verify(pp,Aggx, auxx, skx, X(I)′ , πx) ?= 1,
Aggregator ·Verify(pp,Aggy, auxy, sky, Y

(I)′
2 , πy) ?= 1,

and the signature is correct, i.e.:
– e(h′1, X(i)′Y

(i)′H(m)
2 ) ?= e(σ′1, g2)

– e(h′2, X(i)′Y
(i)′H(H(m))
2 ) ?= e(σ′2, g2)

– h′1 6= 1G1 , h
′
2 6= 1G1 , σ

′
1 6= 1G1 , σ

′
2 6= 1G1 ;

the verifier outputs 0 otherwise.

Security Analysis
The formal definition of HIAC gives us 4 security no-
tions that our instantiation must achieve: EUF-CMA,
unlinkability, issuer indistinguishability, trusted issuer.
The trusted-issuer property comes from the collision
freedom of the aggregator and is already proven.

Theorem 4. The VerifyRandomized algorithm is
correct, i.e. any honestly built signature will be accepted
by the VerifyRandomized algorithm.
Proof sketch 4. The proof, in Appendix E.5, shows
that a correctly built signature is equivalent to
e(h′1, X(i)′Y

(i)′H(m)
2 ).

Theorem 5. The signature presented here has the
EUF-CMA property.
Proof sketch 5. The proof, in Appendix E.6, shows
that, under the CDH assumption, the user cannot
find a way to inject malicious material into Y

′(I)
2 , σ1

and σ2. First, the malicious user would need to know
g
r(I,a)yI
1 , a ∈ {1, 2} to be able to modify the message a
credential refers to. However, under the CDH assump-
tion, this value cannot be found by the adversary. Sec-
ond, the malicious user would need to tweak the com-
mitment to Y

(I)
2 . However, tweaking these values, so

that they validate both of the signature’s verification
equations at the same time would imply inverting a
hash function. This shows that the signature has the
EUF-CMA property, under the CDH assumption, in the
Random Oracle Model.

The random elements added by the user in Random-
ize ensure that the verifier cannot compare the commit-
ment’s elements with actual elements of its own key, and
the elements of the signature with the formerly issued
credentials. This provides issuer indistinguishability.
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Theorem 6. The Hidden Issuer Anonymous Creden-
tial scheme presented here is issuer indistinguishable.
Proof sketch 6. The proof, in Appendix E.7 extends
the one for Theorem 3: it compares two randomized sig-
natures issued by two different issuers and shows that
the differences between them are hidden by the ran-
dom elements added by the user in the Randomize
algorithm. Under the DDH assumption, the malicious
verifier has no way to compare the signature it is given
with any other signature as all its elements are hidden
by a random number that is unknown to the verifier.

6.2 Interactive HIAC

The interactive version of our scheme removes the need
for the verifier to run VerifierSetup and for the user to
run Aggregator·IntegrityVerification as part of Ran-
domize at each transaction. To achieve this, it relies on
an interactive version of the aggregator instantiation.

6.2.1 Aggregator

Our interactive aggregator version modifies the Gen,
and WitCreate algorithms in Protocol 1. It modi-
fies the witnesses making sure that no malicious is-
suer can output the verifier’s private key by computing
(W(l))xl = gsk

1 . This implies that the user needs to inter-
act with the verifier to randomize a witness, hence the
interactive nature of the protocol.

– (Agg, aux, sk, T1) ←Gen’(pp,S): on input of pp and

of a set S = {g
1
x1
1 , · · · , g

1
xk
1 }, xi ∈ Zp,∀i ∈ Z∗p,

k ≥ 2, the algorithm computes a secret key sk ←$

Zp, an aggregator Agg = (S,W ), with W =

{(W )(j) = g
sk(1+ 1

xj
)

1 }kj=1. The algorithm also com-
putes some auxiliary information aux = β, with:β =
NI− ZKPoE{(sk) :

∧k
i=1(W )(i) = ((S)(i) · g1)sk} The

algorithm finally outputs (Agg, aux, sk);
– (C′, πs) ←WitCreate’(pp, Agg, aux, C, r1, r2):

on input of pp, of an aggregator Agg =
(S,W ), of auxiliary parameters aux, of a com-
mitment C = gxl2 , l ∈ {1, · · · , k}, and of two
random numbers r1, r2, the algorithm computes
C′ = Cr1 , and a proof πs = ((W )′(l), h), with
(W )′(l) =CommitRevealExchange((W )(l)) and
h = gr1r2

2 ; the algorithm outputs (C′, πs). The result
of CommitRevealExchange is sent to the verifier.

The algorithms use theCommitRevealExchange
function in Figure C. On input of a witness, the func-
tion allows user and verifier to compute a randomized
witness interactively. We stress that this does not limit
applicability as the presentation of a user’s credential
to a verifier can generally be turned into an interactive
operation. We discuss the efficiency trade-off between
interactive and non-interactive variants in Section 8.1

6.2.2 Signature Scheme

The interactive aggregator can be directly used
in the signature instantiation by replacing Ag-
gregator.Gen and Aggregator.WitCreate by Ag-
gregator.Gen’ and Aggregator.WitCreate’. Thanks
to these modifications, the verifier only needs to
run VerifierSetup when its set of trusted is-
suers changes. Similarly, the user only needs to run
Aggregator·IntegrityVerification as part of the Ran-
domize algorithm when interacting with a given verifier
for the first time or when the verifier’s aggregators or
keys change.

Security Analysis
All we need to show is that the interactive aggregator
respects the same properties as the non-interactive one.

Lemma 1. The interactive version of the aggregator is
collision-free, correct, and element indistinguishable.
Proof sketch 7. The proof, in appendix E.8, uses the
original aggregator proofs presented in Appendix E.3
and Appendix E.4, and shows that the protocol pre-
sented in Appendix C does not affect their validity.

7 Deployment
The protocols described in the previous sections fulfill
the adversary model, and can be instantiated in real-
world use cases. But an Identity Management System
does not depend only on its signature scheme as trust
between real-life actors cannot be enforced only by al-
gorithms. In this section, we discuss how organizational
solutions could improve the security of our scheme by
ensuring that its assumptions are satisfied. It is impor-
tant to note that these solutions are not trivial to im-
plement, and that the privacy impact of an insecure
implementation could be significant. A user that trusts
the system to protect his/her privacy will tend to leak
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more information when the system’s assumptions are
not satisfied than a user who is aware of being in a
”known-issuer” setup.

Credential and Aggregator Management. The for-
mal definition of the issuer-indistinguishability property
(Definition 6) assumes that all the verifier’s trusted is-
suers issue credentials on the same types of messages.
But in many cases, including in our concert-bar exam-
ple, the verifier needs to verify multiple credential types.
This can easily be solved by having multiple credentials6

(e.g. one for the ticket, one for the Covid-19 vaccine,
and one for the legal age). The user can obtain these
credentials either from the same issuer or from different
issuers. In either case, each credential will be associated
with a specific anonymity set when matched against a
verifier’s aggregator. To this end, the verifier—the bar
in our example—should build a specific aggregator for
each credential type. Note that a given issuer may well
appear into multiple such aggregators if it issues cre-
dentials of multiple types.

Issuer Selection. Clearly, issuer indistinguishability
only holds within a specific anonymity set. If the set
is too small, or if the set contains issuers that do not
issue credentials of the right type, the verifier may be
able to associate a credential with a specific issuer.7 To
limit this kinds of attacks, the user’s SSI client can inte-
grate a conformity checker. The user should be able to
input a desired security policy. The conformity checker
can then verify that a verifier’s aggregator contains a
large enough number of issuers of the right type (based
on notions such as l-diversity or t-closeness [20]) that
satisfy the policy. The security policy can, for example,
specify the geographical distribution of issuers or the
organization running the issuing servers.

The checker should be able to access the relevant in-
formation for verifying the policy. Most SSI frameworks
use a ledger that allows actors to register Decentralized
IDentifier (DID) Documents [21]. These documents de-
scribe some characteristics of the actors of the frame-
work, and are accessible by every one of them. To this
end, the verifier provides the user with the public keys
of the issuers aggregated in its aggregator. The confor-
mity checker can verify that these keys correspond to

6 A technique to link credentials is presented in Appendix B.
7 We need to emphasize the fact that not only does the verifier
need to build a consistent set of trusted issuers, but these issuers
must also agree on credential templates and curve parameters.

those referenced in the aggregator. It can use them to
retrieve the DIDs of the issuers from the ledger and
use those to verify the security policy. If the checker
detects that a verifier’s aggregator does not satisfy the
policy, it aborts the transaction and informs the user
with a message similar to the one displayed by browsers
in the event of an expired HTTPS certificate.8 If an
advanced user understands the associated risks, he can
resume the transaction. Furthermore, the checker can
detect more elaborated attacks. For example, a verifier
could link multiple presentations from the same user
via a side channel. In this case, the verifier could adapt
its trusted-issuer set, by presenting a set from which it
removes one new issuer at each new presentation. Even-
tually, the removed issuer will be the user’s issuer. To
detect and counter this attack, the checker can consider
the trusted-issuer sets of all the transactions between
its owner and the verifier in a specified time window,
and check the validity of their intersection rather than
the validity of the latest of them. The checker can then
warn the user and block the transaction as soon as this
intersection becomes too small.

This scheme does not require a central authority,
but if one exists, the checker can report misbehaviors
to it. For example, legislative power can produce norms
involving sanctions if not respected by verifiers. Other
central authorities can emerge in decentralized settings.
For example, the SSI project Sovrin [4] is decentralized
but uses a permissioned blockchain. In this case a cen-
tral authority consisting of the permissioned nodes of
the blockchain can, for instance, revoke the verifying
rights of a misbehaving verifier by publishing a revoca-
tion list. A variety of other solutions are possible but
their discussion is outside the scope of this paper.

Issuer Acting as a Verifier. It is interesting to
consider the case in which the verifier is also the is-
suer of a user’s credential. In this case, issuer and
verifier are automatically colluding. This makes the
identity-inference threats highlighted in the introduc-
tion a lot more likely. In this case, Classical AC schemes
only provide credential-multi-usage unlinkability. The
issuer/verifier can identify whether it was the one that
issued a given user’s credential. This places the user in a

8 The design and implementation of messages informing the
user about privacy risks is out of the scope of this paper. These
messages will have a important role, as they will allow users to
understand, and mitigate, privacy risks.
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relatively small anonymity set corresponding to all the
users that received a credential from the issuer/verifier.

With our solution, the issuer/verifier cannot know
whether a given credential originates from itself. This
enlarges the user’s anonymity set to all the users that
received credentials from any of the issuers trusted by
the issuer/verifier. Our scheme therefore increases user
privacy even in this particularly challenging case.

8 Efficiency
We evaluate the efficiency of our implementation and
compare it with that of other signature schemes. We
first present a runtime-complexity analysis and com-
pare our scheme with the Pointcheval-Sanders (PS) sig-
nature [11]. Then, we compare the asymptotic com-
plexity of our scheme with that of PS and that of
the Issuer-Hidden-Attribute-Based-Credential scheme
(IHABC) [8]. Finally, we estimate the communication
cost of our scheme.

8.1 Runtime Comparison

We start by comparing the runtime cost of our scheme
with that of PS, highlighting the overhead resulting
from the issuer-indistinguishability property. As both
schemes are implemented using the same tools, this is
the most accurate manner to identify the overhead of
our scheme, regardless of implementation details. We
start by comparing the non-interactive and interactive
variants. Then we analyze the cost of each operation:
issuer-key generation, verifier-key generation, signature
issuance, and signature presentation.

We base our comparisons on an implementation in
Rust (at: https://gitlab.inria.fr/mgestin/rust_hidden_
issuer_signature). We use the BLS12-381 curve [22], a
widely used curve for pairing-based cryptography with
efficient computation time. BLS is a type-3-pairing-
friendly curve with 256-bit-prime group size. This group
size gives us a 128-bit AES security level. We ran our
experiments on an i7-1185G7, 3.0 GHz CPU, with no
multi-processor optimizations.
Non-Interactive vs Interactive Version. Section 6
presented two versions of our scheme: a non-interactive
and an interactive one. The non-interactive version
requires repeating VerifierSetup and IntegrityVer-
ification at each credential-presentation transaction,
which involves sending two aggregators whose size de-

Fig. 1. Number of issuers beyond which the interactive scheme is
more efficient than the non-interactive one based on the available
bandwidth. The hatched areas represent the area where the inter-
active protocol is more efficient than the non-interactive one. The
red curve and hatching from bottom left to top right consider a
first-time interaction: both variants needs to verify the verifier’s
keys. The blue curve and hatching from top left to bottom right
considers a subsequent transaction with the same verifier without
a change in the aggregator or key: the interactive scheme does
not need to verify the verifier’s keys and aggregators as they are
already present on the user’s device.

pends on the number of issuers. As a result, the interac-
tive version becomes more and more interesting as the
number of issuers in these aggregators increases. Fig-
ure 1 depicts, for a given value of available upload band-
width, the number of issuers beyond which the interac-
tive version is more efficient than the non-interactive
one. For non-first-time interactions (in blue) the inter-
active protocol turns out to be more efficient as soon
as there are more than a few issuers in the aggregator
(7 issuers for 40 kbps of upload bandwidth). For first-
time interactions (in red), the interactive protocol re-
mains more efficient as long as the upload bandwidth is
reasonable albeit for a slightly larger number of issuers
(beyond 13 issuers for 40 kbps).

In scenarios where the presentation of credentials
cannot be done interactively, it is necessary to run Ver-
ifierSetup and IntegrityVerification at each trans-
action. But even then, our experiments show that the
running time of each of these two operations remains
under 250 ms with 100 trusted issuers. Moreover, in SSI
systems the presentation of credentials is generally an
interactive process, so using the interactive protocol ap-
pears natural. For this reasons, we concentrate on the
interactive protocol in the following.

Issuer-Key Generation. The generation of an is-
suer key (IssuerKeyGen) takes approximately twice
as long in our scheme (average: 4.17 ms) as in PS (av-
erage: 2.17 ms). This is because our scheme needs to

https://gitlab.inria.fr/mgestin/rust_hidden_issuer_signature
https://gitlab.inria.fr/mgestin/rust_hidden_issuer_signature


Hidden Issuer Anonymous Credential 583

Fig. 2. Average time to build one verifier commitment
(VerifierSetup) with the HIAC scheme as a function of the num-
ber of trusted issuers added to the aggregator.

compute 3 more elements: two to build a verifier key,
and one to issue a signature. However, key generation
is run only once in a long period of time. Therefore this
difference is not a major drawback for our scheme.

Verifier-Key Generation. The verifier-key-
generation algorithm is unique to the HIAC scheme.
It is run by the verifier after all trusted issuers have
created their keys and its performance depends on the
number of issuers that are being added to the aggre-
gator. Figure 2 shows that this relationship is linear.
Nonetheless, in the interactive version of our scheme,
this algorithm only needs to be run when the verifier’s
secret keys, sk, change. Moreover, since the dependence
is on the number of added issuers, this update can
actually be very efficient in a number of use cases.

Signature Issuance. The HIAC signature-issuance
protocol is equivalent to that of PS. However, our
scheme requires issuing the equivalent of two PS sig-
natures, thus taking approximately twice as long to run
(average: 9.7 ms) as in PS (average: 4.67 ms) on the
issuer’s side. In addition, our scheme requires the user
to compute 6 exponentiations during the issuance pro-
cess. This takes 4.91 ms on average on the user’s side.
In most of the use cases, a user only requests a few
credentials, and thus this additional computation time
remains negligible.

Signature Presentation. During the presentation of a
signature, on the user side, both schemes run a random-
ization process. In the PS scheme, this randomization
has a constant time complexity. With our scheme, there
are two different cases. The first time the user interacts
with the verifier, he must verify the integrity of the veri-
fier’s key. This verification has a linear time complexity.
Each new transaction with the same verifier will rely on

Fig. 3. Comparison of the running time to randomize a PS sig-
nature, and a HIAC Signature as a function of the number of
issuers.

Fig. 4. Time to verify one credential with the PS scheme and the
HIAC scheme, as a function of the Bandwidth.

the first integrity verification, so new transactions only
experience a constant time complexity for the user. Both
scenarios depend on the available bandwidth to run the
interactive protocol. Figure 3 compares these different
cases with the PS randomization process.

On the verifier side, the verifier needs to compute
the VerifyRandomized algorithm. The running time
of this algorithm depends on network bandwidth. The
comparison of the verification times of the PS scheme
and of the HIAC scheme is presented in Figure 4. With
a bandwidth of at least 2, 5 Mb/s, our verification algo-
rithm is four times slower than that of PS.

General Remarks. The above analysis highlights that
while the running time of most of the algorithms is
longer than that of an equivalent Anonymous Credential
scheme, interactive algorithms still exhibit efficient run-
ning times. In particular, the issuance and presentation
of a credential only take tenths of milliseconds.

The only concern on the user side lies in the ver-
ification of the verifier’s key and aggregator, which is
linear in the number of trusted issuers, and which must
be conducted with each unknown verifier. However, a
verification of a subset of the verifier’s aggregator may
be sufficient if it is enough to fulfill the requirements of
the conformity checker discussed in Section 7.
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From the point of view of issuers and verifiers, the
overhead with respect to the PS scheme is lower (at most
5 times less efficient with a 2500 kb/s bandwidth). Thus
the practicality of our scheme will depend on usage. If
the verifier (respectively, issuer) needs to verify (respec-
tively, issue) as many credentials per second as possi-
ble, the overhead becomes significant, but we expect our
scheme to be used mostly in interactions that involve hu-
mans, which are less sensitive to slightly higher latency.
Furthermore, in an SSI, the overall throughput in terms
of transactions per second increases with the number of
verifiers, unlike in centralized or blockchain-based ser-
vices. In particular, with a bandwidth of 2500 kb/s, each
new verifier added to the network adds a capacity of
38 transaction per second to the infrastructure. A ser-
vice provider can thus easily add a server to augment
its verification capacity.

8.2 Asymptotic Comparison

Table 19 presents an asymptotic comparison of our
signature scheme, with two other schemes. As men-
tioned, PS constitutes the basis which our scheme
builds upon. The differences between our scheme
and this building block highlight the real cost of
issuer-indistinguishability. The recent Issuer-Hidden
Attribute-Based Credential (IHABC) [8] achieves
issuer-indistinguishability in a trusted-setup setting, us-
ing bilinear pairings, and Groth [23] signatures.

Table 1 compares the number of exponentiations
and pairings required by our scheme, PS, and IHABC,
for the various operations. Table 7 in Appendix D shows
the same data after converting the running time G2 op-
erations and pairings into that of G1 operations.

The comparison with PS confirms the observations
we made in Section 8.1 with respect to our implemen-
tation. The one with IHABC depends on whether we
analyze the user, the verifer, or the issuer. We ana-
lyze the data with reference to Appendix D. On the
user’s side, the most frequent operations is Random-
ize. Albeit short, its running time is 15% faster for our
scheme for 10 trusted issuers. Even if less frequent, the
IntegrityVerification operation runs 3 times faster in
our scheme than in IHABC.

9 The BLS12-381 implementation we use gives us: 1 exponen-
tiation in G2 ≈ 2 exponentiation in G1 and 1 pairing operation
≈ 1.12 exponentiation in G2.

On the verifier’s side, the most frequent operation
is VerifyRandomized. The IHABC implementation
of this algorithm is 20% more efficient. In the interac-
tive version we are considering, VerifierSetup is exe-
cuted relatively rarely but it runs 4 times faster in our
scheme than in IHABC. Finally, on the issuer’s side,
Sign runs twice as fast in IHABC as in our scheme,
while IssuerKeyGen runs four times faster in IHABC.
However, both operations are very quick to execute, so
the difference remains very low in absolute value. More-
over, IssuerKeyGen is run only when the issuer starts
or changes its keys. To conclude, our scheme offers bet-
ter performance for the user, and comparable or slightly
worse performance for verifiers and issuers, but without
requiring a trusted setup.

8.3 Communication Cost

Finally, we study the communication cost of our ap-
proach. Table 2 presents the results based on the asymp-
totic evaluation of the size of the data structures pre-
sented in Appendix D.2, expressed using the BLS12-381
group elements’ size. The most expensive communica-
tion is related to the integrity-verification operation, in
which the verifier needs to transfer its aggregators for
verification by the user’s device. Yet, the table shows
that with 100 verifiers, this cost totals to only 25 kB.
All other operations exhibit very low communication
costs of less than 1 kB per transaction.

9 Qualitative Comparison
We now consider the security properties of HIAC in
comparison with those of other schemes as summarized
in Table 3. The first property is issuer indistinguisha-
bility (hidden issuer). Apart from our scheme, only one
other achieves it, Issuer Hidden Attribute Based Cre-
dential [8], but using a trusted setup. The second prop-
erty is the non-transferability of credentials. Our scheme
achieves it with the transformation presented in Ap-
pendix B. Camenisch and Lysyanskaya (CL01) [24] also
propose a signature scheme with such a property. The
third property to analyze is the ability to sign a com-
mitted message (One-show). Our scheme achieves it in
the same way as the PS scheme. Numerous signature
schemes, like CL01 or CL04, also have this property.

The fourth property relates to the fact that most AC
signature schemes offer a way to prove the possession of
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HIAC IHABC PS

IssuerKeyGen 3G1 + 2G2 1G2 2G2

Sign (User Side) 6G1 ∅ ∅
Sign (Issuer Side) 10G1 4G1 + 1G2 3G1

VerifierSetup 4kG1 (1 + k)G1 + 4kG2 ∅
IntegrityVerification 4kG1 6k Pairing ∅

Randomize 26G1 + 2G2 10G1 + 6G2 + 6 Pairing 2G1

VerifyRandomize 20G1 + 2G2 + 8 Pairing 4G1 + 2G2 + 12 Pairing 1G2 + 2 Pairing

Table 1. Comparison of the number of exponentiations in G1, G2 and number of pairings required to run our scheme (HIAC), the
Issuer Hidden Attribute Based Credential [8] (IHABC) without ZKP of knowledge signature, and the Pointcheval Sanders Signature
Scheme [11] (PS), with k being the number of trusted issuers.

Issuer User Verifier

Sign 1536 768 ∅
VerifierSetup 1536 ∅ ∅

IntegrityVerification ∅ ∅ 2k × 256 + 4k × 384
Credential ∅ 7680 1536

Presentation

Table 2. Communication costs of each operation of the interac-
tive HIAC scheme, for each issuer, user, and verifier, expressed
in bits, with k being the number of trusted issuers. Only upload
costs are considerated, round trip times are not taken into ac-
count. The Credential Presentation operation takes into account
the transmission of the user’s randomized credential and the com-
mitment reveal exchange.

a credential without revealing the associated message.
Our scheme could implement this by adapting the zero-
knowledge proof of a signature used by PS. However,
the prover would need to prove a relationship between
a message and its hash. Whereas this can be proven
in zero knowledge, any implementation would be ineffi-
cient, because hash functions are based on boolean cir-
cuits, for which zero knowledge proofs are known to be
inefficient. To achieve this property efficiently, we could
replace the hash function with a low-degree polynomial
fulfilling some conditions. We leave this as future work.
Another way to achieve this property would be to use
Groth’s signature like IHABC, but this would come at
the cost of a trusted setup as discussed in Section 10.

The fifth and last property often implemented by
AC schemes is credential revocation. Designing a revo-
cation mechanism while keeping issuer indistinguisha-
bility is non trivial. The most efficient way to achieve it
in our scheme would be for the issuers to regularly pub-
lish a revocation accumulator, accumulating all revoked
credentials. Users would later leverage this accumula-
tor to prove that their credentials do not appear in the
revocation list, as suggested by Camenisch et al. [26].
However, this can be rather complicated to achieve in

HIAC CL01 CL04 PS IHABC

Hidden issuer X X

Non transferable X X

One-show X X X

ZKP of signature X X X X

Revocation X X

Table 3. Qualitative comparison of different Anonymous Cre-
dential scheme. (HIAC: Hidden Issuer Anonymous Credential;
CL01: hidden size group based Anonymous Credential scheme
[24] ; CL04: bilinear pairing based Anonymous Credential scheme
[25]; PS: Short randomizable Anonymous Credential scheme [11];
IHABC: Issuer Hidden Attribute Based Credential [8])

a hidden-issuer context, and should be the subject of
further research.

10 Related Work
Anonymous Credentials (AC) have been a well stud-
ied topic since they were introduced by Chaum [6] in
1985. This first work defines them as signatures certify-
ing that an element was issued by a given entity, while
ensuring unlinkability between each use of this signa-
ture by a user. The first efficient implementation is due
to Camenisch and Lysyanskaya in 2001 [24]. This work
offers a cryptographic basis to build an efficiently com-
putable signature, with the properties listed by Chaum.
It also adds properties, in particular non transferabil-
ity. Several papers enhanced this first implementation
of Chaum’s principles with more efficient schemes, in-
cluding one from the same authors, in 2002 [27]. The
first two ACs we cited above are based on RSA groups.
Later evolution made it possible to work on elliptic-
curve-based groups with bilinear pairings. These include
the 2004 Camenisch and Lysyanskaya article [25], and
the 2016 Pointcheval Sanders (PS) Short Randomizable
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Signature [11]. The latter raised our interest because,
it contains few elements, and it does not contain trap-
doors. Even though the AC schemes presented here re-
quire a third-party issuer, it is important to notice that,
in some particular cases, such issuers are not needed.
Decentralized anonymous credentials [28] propose an ef-
ficient scheme for cases such as the mitigation of sybil
attacks or Direct Anonymous Attestation.

Other interesting signatures have been developed in
the meantime, in particular, ring signatures [29], and ad
hoc group signatures [30]. These signatures do not dis-
close the identity of the issuer of a credential. This prop-
erty comes from the fact that the issuer is able to hide
among a group of other potential issuers. To create such
a signature, the issuer chooses a set of issuers. It signs
a message using these issuers’ public keys and its own
secret key. It is then computationally impossible to find
the original issuer. However, only the issuer can create
such a ring, which makes ring signatures impractical for
the user, who wants to be able to use his credential with
numerous different verifiers, who do not trust the same
set of issuers. An answer to this problem can be found
in oblivious signatures [31], and more precisely in the
Universal ring Signature (US) scheme [32]. The latter
makes it possible for a user to recreate a ring signa-
ture from a simple signature, without knowledge of any
secret key. Although this signature seems to meet our
issuer indistinguishability requirement, it presents ma-
jor drawbacks with respect to HIAC. First, it does not
provide unlinkability: the signature in the US scheme is
given to the verifier without randomization. Secondly,
the US scheme does not offer collusion resistance: a ver-
ifier colluding with the issuer of a given credential can
directly find the real issuer inside the produced ring,
by making a comparison between the elements in the
ring and the previously signed elements. Finally, the
US scheme always exhibits linear complexity both in
verification and in the ring-generation process that ef-
fectively hides the identity of the issuer. On the other
hand, HIAC always runs verification in constant time,
and only exhibits linear-time complexity for hiding the
public key of the issuer when a user interacts with a
given verifier for the first time.

During the writing of this paper, a new AC scheme
was proposed by Bobolz et al. [8]. Their paper also of-
fers an AC scheme with issuer indistinguishability. As
shown in Table 3, their scheme provides anonymity and
credential revocation by means of a revocation author-
ity. However, it uses an aggregator-like construct that
is less efficient than our own (VerifierSetup and In-
tegrityVerification lines of Table 1) and it employs

Groth’s signature scheme [23], which requires a trusted
setup—the value Y in the signature.

The use of Groth’s signature provides nonetheless
an advantage over the implementation proposed in this
paper, it enables efficient Zero Knowledge Proofs of
Knowledge of signatures. Because both our solution and
theirs use bilinear pairings, and because our aggregator
is more efficient, but their signature offers more prop-
erties, it seems interesting to explore the perspective of
a HIAC scheme built using their signature scheme and
our aggregator.

Our new aggregator primitive makes it possible to
prove the set-membership of a value, without reveal-
ing it, and while knowing only a commitment to it.
The state of the art in the domain of set-membership
uses two different approaches. The first one is based on
cryptographic accumulators [33–37]. These objects en-
able the aggregation of multiple elements in one object
and the proof that a given element was indeed accu-
mulated. The second way is more direct, without accu-
mulators [38, 39]. However, all these approaches require
the prover to know the value it proves set-membership
of. Our aggregator removes this need: the prover only
needs to know a commitment to the value.

11 Conclusion
We provided a formal definition of an Anonymous Cre-
dential scheme that hides the issuer of a credential inside
the set of issuers trusted by a verifier. We gave an instan-
tiation of this scheme, based on a new primitive called
aggregator, and a modified Pointcheval Sanders signa-
ture scheme. This new Hidden Issuer Anonymous Cre-
dential (HIAC) enhances the minimization principle of
SSIs, and it improves the collusion resistance of Anony-
mous Credential schemes. It achieves EUF-CMA, un-
linkability, issuer indistinguishability, and the trusted-
issuer property; and it does not require a trusted-setup.
The aggregator primitive can be used in other issuer-
indistinguishable signature schemes, and its instantia-
tion is interoperable with state-of-the-art signatures.

Our work opens new research topics. First, we want
to explore the use of low-degree polynomials to make it
practical to prove the possession of a credential without
revealing the associated message. Second, an interesting
but complex task that must be addressed before apply-
ing our scheme in SSIs consists in identifying how to
best address the several deployment challenges we dis-
cussed in Section 7.
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A Notations
We give a summary of the notations used in the aggre-
gator scheme, and the hIAC scheme.

A.1 General Notations

A general notation table is given in Table 4.

A.2 Aggregator Notations

A summary of the notations used for the aggregator is
given in Table 5.

A.3 Hidden Issuer Anonymous Credential
Notations

A summary of the notations used in the HIAC scheme
is given in Table 6.

B Possible Additional Properties
We presented the general hidden issuer Anonymous Cre-
dential scheme in 6.1.2. in this section we will present
alternative properties we can achieve with the same sig-
nature, by modifying it slightly.

B.1 Non Transferable Signature

It can be useful for the verifier to ensure that a given
credential was actually issued to the user who is using

https://ia.cr/2013/622
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Notation Correspondence Set

G1,G2,GT Three groups of prime order p linked by a bilinear pairing e, such that e : G1 × G2 → GT

g1, g2, gT Generator of the groups G1,G2, and GT respectively
p Prime order of the groups G1,G2, and GT P
e Bilinear pairing e : G1 × G2 → GT

H Collision-free one-way hash function H : Z→ {0, · · · , k}

Table 4. General notations

Notation Correspondence Value Set

xi Secret values aggregated in the aggregator Z∗p

S Set of values aggregated in the aggregator {g
1

x1
1 , · · · , g

1
xk
1 } (Z∗p)k

C Commitment to one element s ∈ S gxs
2 G2

sk Secret set-membership verifcation key Z∗p

W Aggregator set-membership set of witnesses {g
sk 1

xj

1 }k
j=1 G1

(W )(j) j-th element of W g
sk 1

xj

1 G1

β Aggregator integrity verification proof NI-ZKPoE{(sk) :∧k

j=1(W )(j) = (Wp)sk
(j)}

r1, r2 Two randomizing elements used by the user Z∗p
to hide the values he commits to

C′ Randomized commitment to one element s ∈ S gxsr1
2 G2

πs Proof that C′ belongs to the set Scomm ((W )′(l) = (W )r2
(l), h = gr1r2

1 ) (G1,G2)

Table 5. Aggregator notations

it, and not to someone else. Because of the unlinkability
property, this cannot be straightforward. For example,
the easiest way to obtain this property consists in adding
an element in the message that is linked to its user.
However, this would break the unlinkability property.
We offer a way to make our signature non transferable
without this drawback.

The idea consists in discouraging transfers by re-
lying on an external escrow where the user stores some
valuable item, or money. Sharing a credential would also
imply sharing the valuable in the escrow. This is called
PKI-assured non-transferability [40].

We propose to adapt this property to our scheme.
The user will put something valuable inside an escrow,
and lock it in place with a private key. The user then
uses this private key instead of the random value Ry in
step 4 (Sign algorithm). He then proves to the issuer,
that the value he gives to it (which in our protocol was
named u = Y

Ry
1 gR1 ) is a commitment to a key that can

open the escrow. The value of this escrow will depend on
the requirements of the issuer. Afterward, the process is
the same, except for the protocol VerifyRandomized.
We add an interactive ZKP verification to the original
algorithm:

ZKPoK{(Ryrur(u,y)) : hy = g
Ryrur(u,y)
2 }

This allows the verifier to ensure that the user knows
the blinding elements, in particular the non-transferable
element Ry. If all the issuers follow the requirements of
the verifier, then the credentials are non transferable.
This technique can also be used to link credentials be-
tween themselves. A verifier can verify that different
credentials embed the same Ry’s values. It proves that
they were issued to the same user.

This modification can be added to the PS signature
scheme to enable non-transferability property.

B.2 Signature on Commitments and
One-Show Credential

An interesting feature to have in a credential scheme
is optional one-show property. In this configuration, a
credential can only be used once. It can be particularly
useful in e-vote systems for example.

To enhance this property, the easiest way is for the
issuer to sign committed message. If the issuer’s key is
used for this purpose only, the message can represent
a nonce, that will identify the credential. Before show-
ing the credential, the user will un-commit the message,
while keeping the signature structure. Thus, the verifier
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Notation Correspondence Value Set

iski i-th issuer secret key (xi, yi) (Z∗p)2

ipki i-th issuer public key (X(i) = g
xi
2 ,

¯
X

(i)
1 = g

1
xi
1 , Y

(i)
1 = g

yi
1 , (G2 × G1

¯
Y

(i)
1 = g

1
yi
1 , Y

(i)
2 = g

yi
2 ) ×G1 × G1

×G2)
m Message certified by a credential Z∗p
Ry User’s random secret element used to enhance Z∗p

issuer indistinguishability property of a
credential. Used with only one credential.

R User’s secret random element used to hide Ry Z∗p
in the issuance protocol

u1 User commitment to the i-th issuer key Y (i)
1 (Y (i)

1 )RygR
1 G1

u2 User commitment to the i-th issuer key Y (i)
1 (Y (i)

2 )Ry G2

φ Proof of knowledge of Ry and R in u1 NI-ZKPoK{(Ry, R) :
u1 = (Y (i)

1 )RygR
1 }

(r(I,1), r(I,2)) I-th issuer’s random secret elements used to (Z∗p)2

enhance the security of the VerifyRandomized
algorithm. Used only once.

σ∆ Outputted value by the issuer I after running the (h1 = g
r(I,1)
1 , h2 = g

r(I,2)
1 , (G1)4

Sign algorithm. Depends on R. σ∆
1 = g

r(I,1)(xI+H(m)(yI+R))
1 ,

σ∆
2 = g

r(I,2)(xI+H(H(m))(yI+R))
1 )

σ User final credential. Does not depend on R. (h1 = g
r(I,1)
1 , h2 = g

r(I,2)
1 , (G1)4

σ1 = g
r(I,1)(xI+H(m)yI)
1 ,

σ∆
2 = g

r(I,2)(xI+H(H(m))yI)
1 )

Aggx Verifier’s aggregator referring to the x values of
the issuer’s secret keys

Aggy Verifier’s aggregator referring to the y values of
the issuer’s secret keys

auxx Verifier’s aggregator’s auxiliary values associated
to Aggx

auxy Verifier’s aggregator’s auxiliary values associated
to Aggy

Table 6. Hidden issuer Anonymous Credential scheme notations

will see the nonce, and will be able to add it to a shared
ledger. Any message with a nonce already added to the
ledger is thus revoked. With this protocol, the user gets
one-show property, without loosing any other security
properties.

To adapt this principle to our scheme, we use a mod-
ified PS signature on committed message protocol. In
fact, to achieve this property we only modify the Sign
algorithm:

Sign(pp, iskI , u, u′, φ): on input of a setup param-
eter pp„ an issuer’s secret key iskI = (xI , yI), two
values given by the user u = (Y (I)

1 )H(m)Ry · gR1 and
u′ = (Y (I)

1 )H(H(m))Ry · gR1 , where Ry and R are secret
random values, and m is the message, and φ a ZKPoK
of u, φ : NI − ZKPoK{(H(m)Ry, R) : u = Y

(I)H(m)Ry
1 ·

gR1 ∧u′ = Y
(I)H(H(m))Ry
1 ·gR1 }. Initially, the issuer outputs

a signature σ∆ = (h1, h2, σ
∆
1 , σ

∆
2 ), where h1 = g

r(I,1)
1 ,

h2 = g
r(I,2)
1 , σ∆

1 = (gxI1 ·u)r(I,1) , σ∆
2 = (gxI1 ·u′)r(I,2) , with

r(I,1), r(I,2) ←$ Z∗p. The user then uncommits the signa-
ture σ∆ into σ = (h1, h2, σ1 = σ∆

1 ·h
−R
1 , σ2 = σ∆

2 ·h
−R
2 ).

The user stores σ and Ry.
With this transformation, the other parts of the pro-

tocol are not modified, and the issuer does not learn the
message signed.

C Commitment Reveal Exchange
Implementation

Figure 5 presents an example of a three move protocol
that allows a user to commit to a verifier’s aggregator,
while none of the two actors learn unnecessary informa-
tion.
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Commitment reveal exchange
User(pp, σ, pk) Verifier(pp, sk)
ra, rb, rc ←$ Z∗p; (Comm′(s), πs, r2) = Randomize(σ, pk) rd ←$ Z∗p
(W )′′I = (W )r2

I g
ra
1 ; C1 = g

r2rb
1 ; C2 = grarc1

φ1 = NI − ZKPoK{(r2rb, rarc) : C1 = g
r2rb
1 ∧ C2 = grarc1 } (σ′, (W )′′I , C1, C2, φ1) VerifyZKP(φ1)

C′1 = C
skrd
1 ;C′2 = C

rd
2

φ2 = NI − ZKPoK{(sk, rd) :

VerifyZKP(φ2) (C′1, C′2, φ2) C′1 = C
skrd
1 ∧ C′2 = C

rd
2 }

C′′1 = (C′1)
1
rb (C′2)

1
rc C′′1 (W )′I = (W )′′I (C′′1 )−

1
rd

Fig. 5. Commitment reveal exchange

D Asymptotic Data Expressed in
BL12-381 Setup

In this section, we express the asymptotic data we pro-
duced in section Section 8 with actual the actual imple-
mentation cost of the BLS12-381 setup. Then we

D.1 Asymptotic Efficiency

Table 7 expresses the asymptotic efficiency of our
scheme, and the IHABC scheme in G1 equivalent op-
eration, based on the approximation : 1 exponentiation
in G2 ≈ 2 exponentiation in G1 and 1 paring operation
≈ 1.12 exponentiation in G2.

HIAC IHABC

IssuerKeyGen 9 2
Sign (Issuer Side) 10 6
VerifierSetup 40 90

IntegrityVerification 40 134.4
Randomize 30 35.44

VerifyRandomize 41.92 34.88

Table 7. Comparison of the number of operations to run our
scheme (HIAC), the Issuer Hidden Attribute Based Credential
[8] (IHABC) without ZKP of signature. Operations in G2 and
pairings operations are converted to G1. With 10 trusted issuers.

D.2 Size of the Data Structures

The size of the data structures of our scheme are given
in Table 8. With the BLS12-381 configuration10, the
elements of our signature scheme are relatively small.
Except from the verifier key, they are comparable to a
high or very-high strength RSA key (2048 - 4096 bits).
The only large element to transfer is the verifier key,
which contains multiple issuer keys, and the associated
aggregator. However, if this key is static, users will save
it in their device, and will only need to request it to a
the verifier once. The size of the elements of the IHABC
scheme are equivalent in most of the cases, except for
the issuer public key, which is smaller in their case. Ta-
ble 9 completes the picture by expressing the size of
the elements of each signature scheme in bits, using the
fact that, in BLS12-381 configuration, the size of the
element are : Zp : 256 bits, G1 : 384 bits, and G2 : 768
bits. Table 10 uses the data from previous tables to esti-
mate the communication costs of operations. This table
is the source for Table 2 in the paper.

E Proofs

E.1 Assumptions

Our signature scheme relies on several complexity as-
sumptions:

Definition 15. [Discrete Logarithm (DL) assumption]
Given h ∈ G, with G a group generated by g, no PPT ad-

10 In the BLS12-381 configuration, the size of the element are
: Zp : 256 bits, G1 : 384 bits, and G2 : 768 bits.
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HIAC IHABC PS

Issuer public key 3G1 + 2G2 1G2 2G2

Issuer secret key 2Zp 1Zp 2Zp

Verifier public key 2kZk + 4kG1 (k+ 1)G1 ∅
+3kG2

Verifier secret key 2Zp 1Zp ∅
Signature 1Zp + 4G1 2G1 + 1G2 2G1

Randomized signature 6G1 + 4G2 6Zp + 3G1 2G1
+4G2

Table 8. Asymptotic size of the keys and signatures of the HIAC
scheme, PS scheme, and IHABC scheme.

HIAC IHABC PS
(bits) (bits) (bits)

Issuer public key 2688 768 1536
Issuer secret key 512 256 512
Verifier public key 256× 2k 384× (k+ 1) ∅

+384× 6k +768× 3k
Verifier secret key 512 256 ∅

Signature 1792 1536 768
Randomized 4608 5760 768
signature

Table 9. Size of the keys and signatures of the HIAC scheme,
PS scheme, and IHABC scheme, using BLS12-381 setup, with
compressed elements.

versary can find x such that h = gx with non negligible
probability.

Definition 16. [Computational Diffie Hellman (CDH)
Assumption] Given (g, gx, gy) ∈ G, with G a group gen-
erated by g, no PPT adversary can find gxy with non
negligible probability.

Definition 17. [Bilinear Diffie Hellman(BDH) As-
sumption] Given a type 3 bilinear map e : G1 × G2 →
GT , with 〈g1〉 = G1, 〈g2〉 = G2 and (gai , gbj , gck),∀i, j, k ∈
{1, 2}, no PPT adversary can find e(g1, g2)abc with non
negligible probability.

Definition 18. [Decisional Diffie Hellman (DDH) As-
sumption] Given (g, gx, gy, h) ∈ G, with G a group gen-
erated by g, no PPT adversary can decide with non neg-
ligible probability if h = gxy .

E.2 Aggregator Correctness

We prove in this subsection that the aggregator pre-
sented in Section 6.1.1 is correct.

Proof. We prove the correctness of the aggregator by de-
veloping the verification equation with values produced

Issuer User Verifier

Sign 4G1 2G1 ∅
VerifierSetup 4G1 ∅ ∅

IntegrityVerification ∅ ∅ 2kZp + 4kG1

Credential ∅ 12G1 4G1
Presentation +4G2

Table 10. Communication costs of each operation of the inter-
active HIAC scheme, for each issuers, users, and verifiers. Only
upload costs are considerated. Credential PResentation opera-
tion takes into account the transmission of the user’s randomized
credential and the commitment reveal exchange.

following the entire protocol:

e((W )′(i), C
′) = e

(
g

sk r2
1
xl

1 , gxlr1
2

)
= e(g1, g2)sk r2 r1

= e
(
gsk

1 , g
r1 r2
2

)
= e(gsk1 , h)

E.3 Aggregator Collision-Freedom

We want to prove that the aggregator scheme proposed
in 6.1.1 is collision-free. We restate Theorem 2:

Theorem 2. CollisionFreedomGame(A, C), for a
challenger C, and an adversary A :
– Setup: C runs the aggregator Setup algorithm,
chooses a set S, runs the Gen algorithm to build a
commitment to S, and the associated verification key.
A is given the aggregator’s public information.

– Output: A outputs C∗ a commitment to s∗

and π∗s . The game outputs 1 if s∗ /∈ S, and
Verify(pp,Agg, aux, sk, C∗, π∗s) = 1, or 0 otherwise.

An Aggregator is said to be element-indistinguishable if
for a negligible ε, the probability for a PPT Adversary
A can to win the CollisionfreedomGame is:

Pr[CollisionfreedomGame(A, C) = 1] ≤ ε

We will prove Theorem 2 by contradiction, i.e. we as-
sume the adversary is able to find a tuple (C∗, π∗s =
((W )′∗(l), h

∗)) such that:

e((W )
′∗
(l), C

∗) = e(gsk
1 , h

∗))

We will process as follow:

1. Representation of the elements;
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Theorem− 6− Game1A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : PK1 = (X(1)
1 , ..., X

(k)
1 ) = (gx1

1 , ..., g
xk
1 )

3 : PK2 = (X(1)
2 , ..., X

(k)
2 ) = (gx1

2 , ..., g
xk
2 )

4 : P̄K1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)

6 : (h∗, C∗, (W )′∗(l), η)←$A(PK1,PK2, P̄K1,W );

7 : a1 := e((Wy)I∗,Comm(s∗))

8 : a2 := e(gsk
1 , h

∗)

9 : If a1 = a2 ∧X(I)∗
2 6= g

xlη
2 , ∀i ∈ {1, ..., k}:

10 : return 1;

11 : Else:
12 : return 0;

Fig. 6. Theorem 2 game representation. PK1 is the set of aggre-
gated values in G1 and PK2 is the set of aggregated values in
G2. η is a randomizing value, known by the adversary.

2. Proof that (W )′∗(l) is a combination of different (W )i
i ∈ {1, · · · , k};

3. Proof that (W )′∗(l) is composed on only one (W )i
i ∈ {1, · · · , k}; and

4. Proof of Theorem 2.

E.3.1 Representation of the Elements

Figure 6 is a game representation of Theorem 2.

Remark 1. Probability of success of a game i is writ-
ten as Pr[Si]. Success is obtained when a game returns
1. the adversary has a negligible advantage in Game1A
if Pr[S1] ≤ ε, where ε is negligible.
For the ease of the proof, we set a notation for each
element produced by the adversary :

C∗ =gsx2

π∗s =((W )
′∗
(l), h

∗)

=(gsw1 , gsh2 ) (1)

We develop the pairings a1 and a2 from Figure 6, using
notation from Equation (1).

a1 =e((W )∗(l), C
∗)

=e(gsw1 , gsx2 )
=gswsxT (2)

Theorem− 6− Game2A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : PK1 = (X(1)
1 , ..., X

(k)
1 ) = (gx1

1 , ..., g
xk
1 )

3 : PK2 = (X(1)
2 , ..., X

(k)
2 ) = (gx1

2 , ..., g
xk
2 )

4 : P̄K1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)
6 : (gsh2 , gsw1 , gsx2 , η)←$A(PK1,PK2, P̄K1,W );

7 : a′1 := swsx

8 : a′2 := shsk

9 : If a′1 ≡ a′2 (mod p− 1)∧gsx2 6= g
xiη
2 , ∀i ∈ {1, ..., k}:

10 : return 1;

11 : Else:
12 : return 0;

Fig. 7. Theorem 2 game - notation modifications

a2 =e(gsk
1 , h

∗)

=e(gsk
1 , g

sh
2 )

=gshsk
T (3)

From the Equation a1 = a2, the Equation (2) and the
Equation (3), we can write:

a1 = a2

⇔ gsxswT = gshsk
T

⇒ sxsw ≡ shsk (mod p− 1) (4)

We rewrite Game1A, using Equation (4) development.
This game is presented in Figure 7

Game1A and Game2A are exactly the same games,
with notation modification, this implies that Pr[S1] =
Pr[S2].

E.3.2 Proof that (W )′∗
(l) is a Combination of

Different (W )i i ∈ {1, · · · , k}

The goal is to prove that (W )′∗(l) is a composition of
(W )i. Informally, it is possible to understand this state-
ment as the fact that the adversary needs to output an
element in G1 containing sk. Under CDH assumption,
the only way he can achieve this is by using a combina-
tion of (W )i.

First, we state that under type-3 bilinear pairing as-
sumption, finding a morphism from G2 to G1 is as hard
as solving the DL problem [19]. Then, from the equation
a′1 = a′2, we know that swsx depends on sk. And sk is
only disclosed as an exponent in G1. Thus, under DL
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assumption, the adversary has to include sk inside sw.
In other words sw = skζ for some ζ. Because sk is only
known to the adversary in (W )i, under CDH assump-
tion we can deduct that (W )′∗(l) is a linear combination
of (W )i values.

From the above discussion, sw is composed of W
values. Therefore, we can represent sw as follow:

sw = sk
k∑
i=1

(
bi
xi

)
(5)

Where the bi ∈ Zp, 1 ≤ i ≤ k, are factors known and

chosen by the adversary, and
k∑
i=1

(|bi|) ≥ 1.

Furthermore, we know that swsx
sh

= sk. Let us as-
sume x1, · · · , xk = sk. In this case, deg(sw) = 0 in term
of values unknown by the adversary, i.e. sk, x1, · · · , xk
(from Equation (5)). We thus face an easier problem :
sx
sh

= sk. Solving the first problem implies being able to
solve the second one. Furthermore, sx and sh are out-
puted by the adversary in G2, this mean that they are
buil using (g2, g

sk
2 ). From the equation sx

sh
= sk we know

that sh should be of degree 0, or lower. However, getting
deg(sh) < 0 is directly equivalent to the Diffie Hellman
inversion problem in this case, which is equivalent to
CDH problem [12]. Thus deg(sh) = 0, in other world,
the adversary knows the discrete logarithm of gsh2 . We
can thus conclude that deg(sx) = 1.

According to this discussion, we write a new game,
presented in Figure 8. We call this new game: Game3A.

The transition between Game3A and Game2A is a
failure based transition, where the failure event is the
probability for the adversary to find a solution to the
CDH problem or the DL problem. This means :

|Pr[S3]− Pr[S2]| ≤ εCDH + εDL

E.3.3 Proof that (W )′∗
(l) is Composed of Only One

(W )i i ∈ {1, · · · , k}

If we rewrite the equation a′1 = a′2 from Game3A, we
obtain:

sxsk
k∑
i=1

(
bi
xi

)
= shsk

⇔sx
k∑
i=1

(
bi
xi

)
= sh

Theorem− 6− Game3A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : PK1 = (X(1)
1 , ..., X

(k)
1 ) = (gx1

1 , ..., g
xk
1 )

3 : PK2 = (X(1)
2 , ..., X

(k)
2 ) = (gx1

2 , ..., g
xk
2 )

4 : P̄K1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)

6 : (gsh2 , g
sk
∑k

i=1

(
bi
xi

)
1

7 : , gsx2 , η)←$A(PK1,PK2, P̄K1,W );

8 : a′1 :=sxsk
∑k

i=1

(
bi
xi

)
9 : a′2 := shsk

10 : If a′1 = a′2 ∧ g
sy
2 6= g

xiη
2 , ∀i ∈ {1, ..., k}:

11 : return 1;

12 : Else:
13 : return 0;

Fig. 8. sw representation game

We need to study the value sx
sh
. We want to prove

that no adversary can output sx
sh

= 1∑k

i=1

(
bi
xi

) unless

bi = 0 for (k − 1) i’s. Or, in other words, that sx
sh

=
xI
bI
, 1 ≤ I ≤ k, and bI ∈ Z∗p.
Another way to explain this expression is to say that

the Adversary has to use exactly one witness to build
the (W )∗I value.

Lemma 2. Given (g2, g
x1
2 , ..., gxk2 ), no adversary can

output, with non negligible probability, gsx2 and gsh2 such
that sx

sh
= 1∑k

i=1

(
bi
xi

) , and more than one bi 6= 0,∀i ∈

{1, ..., k}.
We will prove Lemma 2 by contradiction, proving that
finding such values gsh2 and gsx2 is at least as hard as
solving the CDH problem.

Proof. Hypothesis 1 : Given (g2, g
x1
2 , ..., gxk2 ), an adver-

sary can output, with non negligible probability, gsx2
and gsh2 such that sx

sh
= 1∑k

i=1

(
bi
xi

) , and more than one

bi 6= 0,∀i ∈ {1, ..., k}.
We know from the previous step of the proof that

deg(sh) = 0, thus, we only study the values taken by
sx, assuming sh is a value known by the adversary, in-
dependent of the variables xi,∀i ∈ {1, · · · , k}.

We study the case where they are only two variables,
i.e., we give to the adversary (g2, g

x1
2 , gx2

2 ). We will prove
that CDH problem can be reduced to this simplified
version of the problem. We write the restricted version
of the game:
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Theorem− 6− Game5A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : PK1 = (X(1)
1 , ..., X

(k)
1 ) = (gx1

1 , ..., g
xk
1 )

3 : PK2 = (X(1)
2 , ..., X

(k)
2 ) = (gx1

2 , ..., g
xk
2 )

4 : P̄K1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)

6 : (gsh2 , I, g
sk bI
xI

1

7 : , gsx2 , η)←$A(PK1,PK2, P̄K1,W );

8 : a′1 :=sksxbI bIxI
9 : a′2 := sksh

10 : If a′1 = a′2 ∧ g
sx
2 6= g

xiη
2 , ∀i ∈ {1, · · · , k}:

11 : return 1;

12 : Else:
13 : return 0;

Fig. 9. Theorem 2 game with reduction of the sw value

Game 1. Let G2 be a group, let g2 be a generator of
this group, and let x1, x2 be two elements in Z∗p. Given

(g2, g
x1
2 , gx2

2 ), output g
x1x2

x1b2+x2b1
2 , for some b1, b2 ∈ Z∗p.

Remark 2. It is easy to reduce Lemma 2 to Game 1,
by adding ad hoc values x3 = 1, · · · ,= xk = 1 to the
construction of Game 1.
If the adversary has a non negligible probability of suc-
cess in Game 1, then he has access to an algorithm
A, that given (g, gx1 , gx2), outputs with non negligible
probability g

x1x2
x1b1+x2b2 , for any values b1, b2, independent

from x1 and x2. Given this algorithm, the adversary

can query: A(g, g1+x1 , g1−x1) = g
(1+x1)(1−x1)

(1+x1)+(1−x1) = g
1−x2

1
2 .

Lets call this value a. Then, the adversary is able to ex-
tract gx2 = a−2 · g. Thus, the algorithm A can solve the
Diffie Hellman squaring problem, which is equivalent to
CDH problem [12]. Therefore, under CDH assumption,
no PPT adversary can solve Game 1 with probability
greater than εCDH, with εCDH the probability to solve
the CDH problem. By extension, hypothesis 1 is contra-
dicted. Thus Lemma 2 is proven.

E.3.4 Proof of Theorem 2

We have sx
sh

= xI
bI
, 1 ≤ I ≤ k, and bI ∈ Z∗p.

We rewrite Game3A using Lemma 2. This new game
is provided in Figure 9. We call this new game: Game4A.

Theorem− 6− Game6A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : PK1 = (X(1)
1 , ..., X

(k)
1 ) = (gx1

1 , ..., g
xk
1 )

3 : PK2 = (X(1)
2 , ..., X

(k)
2 ) = (gx1

2 , ..., g
xk
2 )

4 : P̄K1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

5 : (W, sk)←$Gen(PK1, PK2, P̄K1)
6 : (gsx2 , η′)←$A(PK1,PK2, P̄K1,W );

7 : If gsx2 = g
xIη
′

2 , ∀I ∈ {1, ..., k}

8 : ∧gsx2 6= g
xIη
′

2 , ∀I ∈ {1, ..., k}:

9 : return 1;

10 : Else:
11 : return 0;

Fig. 10. Theorem 2 game with develloped a′1 and a′2

The transition between Game4A and Game3A is a
failure based transition, where the failure event is the
probability for the adversary to find a solution to the
CDH problem. This means :

|Pr[S4]− Pr[S3]| ≤ F
≤ εCDH

We develop again a′1 = a′2 with values from Game5A:

sksx
bI
xI

= sksh
k∏
j=1

(xj)

⇔sx = xI
sh
bI

We write a final game, directly developing a′1 and
a′2, with

sh
bI

= η′. This game is presented in Figure 10
This last transition is a notation modification, thus

Pr[S5] = Pr[S4].
And the probability of success of Game6A is obvi-

ously 0, as the condition of success is a contradiction.
Now we can evaluate probability of success of

Game1A:

|Pr[S5]− Pr[S1]| ≤ 2 · εCDH + εDL

And, as Pr[S5] = 0:

Pr[S1] ≤ 2 · εCDH + εDL (6)

Probability of success of Game1A is negligible.
Therefore our aggregator construction is collision free.
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E.4 Proof of Element-Indistinguishability

Theorem 3. The aggregator scheme presented in Sec-
tion 6.1.1 is element indistinguishable. Given an aggre-
gator Aggx, the set of secret values accumulated in the
aggregator (x1, · · · , xk}, k ≥ 2, a set-membership proof
πs, and a randomized commitment C′ to an element of
the set S, no PPT adversary can find with non negligible
probability the element s the user committed to.

The element indistinguishable property states that
no malicious verifier can, with non negligible probabil-
ity, decide which elements the user commits to. In order
to prove this statement, we need a preliminary lemma:

Lemma 3. Given (g, gx1 , · · · , gxn) ∈ Znp . Under DDH
assumption, no PPT adversary is able to distinguish be-
tween non linear expression of the variables with non
negligible probability.

Proof. We will prove Lemma 3 by contradiction.
We assume that, given (g, gx1 , · · · , gxn , h), the ad-

versary (malicious verifier) is able to decide with non
negligible probability if h ?= gx1+···+xixj+···+xn , for
i, j ∈ {1, · · · , n}. If we set xk = 0,∀k 6= {i, j}, then
this decision the adversary is able to make is equivalent
to find, with non negligible probability, a solution to the
DDH problem. Under DDH assumption, this has negli-
gible probability to occur. This implies that Lemma 3
is true.

Given this lemma, it is possible to prove Theorem 3:

Proof. Let define element indistinguishability with two
elements x1 and x2. With the bilinear map e, and the
elements he is given, the adversary is able to compute
the tuple (gT , gr1a

T , gr2b
T , gr1r2

T , gr1r2ab
T ). He must decide,

with non negligible probability whether (a = x1 ∧ b =
x2) ∨ (a = x2 ∧ b = x1).

The order of G1,G2 and GT is prime, thus every
element of these groups is a generator, except from the
neutral element. Therefore, every elements presented in
Table 12 will be seen, from the adversary point of view,
as elements chosen uniformly at random in one of these
groups.

Furthermore the value gr1r2ab
T is symmetrical. The

adversary knows this value, but cannot use it in any
way to distinguish between a and b. And gr1r2

T does not
depend on a nor b.

Therefore, the adversary has to combine and com-
pare the different element he is given to be able to dis-
tinguish between a and b.

However, we can argue, using Lemma 3, that
the adversary is not able to combine the values
(gT , gr1a

T , gr2b
T , gr1r2

T ) to take its decision.
Thus the adversary is not able to decide whether

(a = x1 ∧ b = x2) ∨ (a = x2 ∧ b = x1) under DDH
assumption. Thus our aggregator implementation is el-
ement indistinguishable.

E.5 Signature Correctness

We prove in this subsection that the signature presented
in Section 6.1.2 is correct.

Proof. First, the aggregator is correct, thus, the ver-
ification of an honestly built aggregator will always
output 1. Then, let σ′ = (h′1, h′2, σ′1, σ′2) be a random-
ized signature built following the above protocol, let
(X(I)′ , Y

(I)′
2 ) be commitments to trusted issuer’s keys,

and let vsk = (skx, sky) be a secret verifier key. We can
verify that the signature is correct:

e(h
′

1, X
(i)′Y

(i)′H(m)
2 )

= e(grI,1r
′
u

1 , g
xIru+ruyIRyH(m)
2 )

= e(g1, g2)r(I,1)r
′
uru(xI+yIRyH(m))

= e(gr(I,1)r
′
uru(xI+yIRyH(m))

1 , g2)
= e(σ′1, g2)

e(h
′

2, X
(i)′Y

(i)′H(H(m))
2 )

= e(gr(I,2)r
′′
u

1 , g
xIru+ruyIRyH(H(m))
2 )

= e(g1, g2)r(I,2)r
′′
u ru(xI+yIRyH(H(m)))

= e(gr(I,2)r
′′
u ru(xI+yIRyH(H(m)))

1 , g2)
= e(σ′2, g2)

E.6 EUF-CMA Proof

We prove that the signature scheme presented in Sec-
tion 6.1.2 has the EUF-CMA property.

Here is a summary of the steps of the proof:

1. We use Appendix E.3 proof to represent the com-
mitment the adversary makes to the issuer’s keys;

2. We present the elements of the signature as poly-
nomials, as a function of the elements published by
the verifier and the issuers;
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3. We reduce these polynomials; and
4. We analyze the reduced polynomials, and we prove

that if the adversary is able to output such signa-
ture, either he is also able to invert a hash funcion,
or he is using an already queried signature.

As a preliminary, we give the notations we will use
to discuss a forged signature. This notation is used for
a potential σ∗ value, which is a forged signature on a
message m∗ never queried to one of the verifier’s trusted
issuer’s signing oracle. We note this signature:

σ∗ = (h∗1, h∗2, σ∗1 , σ∗2)
= (gs1

1 , gs2
1 , g

sσ1
1 , g

sσ2
1 ) (7)

Theorem 7. Given the tuple (g1, Y1, Y2, X, X̄1, Ȳ1),
and given access to a signing oracle, that can sign
messages on behalf of all issuers, no adversary can
output, with non negligible probability, a signature
(h∗1, h∗2, σ∗1 , σ∗2 , X(I1)∗, Y

(I2)∗
2 ) that was not queried to

the signing oracle, and that verifies:

e(h∗1, X(I1)∗(Y (I2)∗
2 )H(m∗)) = e(σ∗1 , g2)

e(h∗2, X(I1)∗(Y (I2)∗
2 )H(H(m∗))) = e(σ∗2 , g2)

Remark 3. Theorem 7 represents commitment to x

and y issuer’s keys as independent. Indeed, the two
aggregator, and therefore the two associated set-
membership proofs are independent. At this point of
the proof, we can not know if I1 and I2 are equal or
different. We will see later that they are indeed equal.

Proof. We will prove Theorem 7 by contradiction.
We present in Figure 11 the EUF-CMA property

as a game, for a generic signature scheme. We define
M as the set of messages already queried to the oracle.
OSign(sk, •) represents the access to the signing oracle.
Any query to the oracle outputs k different signature,
issued by the k different trusted issuers.

The advantage of the adversary in the EUF-CMA
game is:

Adveuf-cma
Σ (A) = |Pr[S1]− (p− 1)−1| (8)

Where Pr[Si] = Pr[GameiA = 1].

We modify the generic game presented in Figure 11
with the values of our protocol. The new game is pre-
sented in Figure 12.

We rewrite this game, using the result of Theorem 2,
i.e. X(I1)∗ = g

xI1ηx
2 and Y (I2)∗

2 = g
yI2ηy
2 . Where I1 and

I2 represent two verifier’s trusted issuers, and ηx and ηy

EUF− CMA1A
1 : (sk, pk)←$ KeyGen(1λ);
2 : (m∗, σ∗)←$AOSign(sk,•)(pk);
3 : If Verify(pk,m∗, σ∗) = 1 and m∗ /∈M :

4 : return 1;

5 : Else:
6 : return 0;

Fig. 11. EUF-CMA game. M represents the already queried mes-
sages.

EUF− CMA2A
1 : SKx = (x1, ..., xk)←$ (Z∗p)k;

2 : SKy = (y1, ..., yk)←$ (Z∗p)k;

3 : X = (X(1), · · · , X(k)) = (gx1
2 , · · · , gxk2 )

4 : Y1 = (Y (1)
1 , · · · , Y (k)

1 ) = (gy1
1 , · · · , gyk1 )

5 : Y2 = (Y (1)
2 , · · · , Y (k)

2 ) = (gy1
2 , · · · , gyk2 )

6 : X̄1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1 ) = (g
1
y1
1 , · · · , g

1
yk
1 )

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (m∗, h∗1, h∗2, σ∗1 , σ∗2 ,

10 : X(I1)∗, Y (I2)∗)←$AOSign(SKx,SKy,•)(PK);

11 : a1 = e(h∗1, X(I1)∗(Y (I2)∗
2 )H(m)∗ )

12 : a2 = e(σ∗1 , g2)

13 : a3 = e(h∗2, X(I1)∗(Y (I2)∗
2 )H(H(m))∗))

14 : a4 = e(σ∗2 , g2)

15 : If a1 = a2 ∧ a3 = a4 ∧m∗ /∈M :
16 : return 1;

17 : Else:
18 : return 0;

Fig. 12. EUF-CMA game - notation modifications. M represents
the already queried messages.
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EUF− CMA3A
1 : SKx = (x1, ..., xk)←$ (Z∗p)k;

2 : SKy = (y1, ..., yk)←$ (Z∗p)k;

3 : X = (X(1), ..., X(k)) = (gx1
2 , ..., g

xk
2 )

4 : Y1 = (Y (1)
1 , · · · , Y (k)

1 ) = (gy1
1 , · · · , gyk1 )

5 : Y2 = (Y (1)
2 , · · · , Y (k)

2 ) = (gy1
2 , · · · , gyk2 )

6 : X̄1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1 ) = (g
1
y1
1 , · · · , g

1
yk
1 )

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (m∗, gs1

1 , gs2
1 , g

sσ1
1 , g

sσ1
1 , X(I1)∗ = g

xI1ηx
2 ,

10 : Y (I2)∗ = g
yI2ηy
2 , ηx, ηy , )←$AOSign(SKx,SKy,•)(PK);

11 : a1 = e(gs1
1 , g

xI1ηx
2 g

H(m∗)yI2ηy
2 )

12 : a2 = e(gsσ1
1 , g2)

13 : a3 = e(gs2
1 , g

xI1ηx
2 g

yI2 H(H(m∗))ηy
2 )

14 : a4 = e(gsσ2
1 , g2)

15 : If a1 = a2 ∧ a3 = a4 ∧m∗ /∈M :
16 : return 1;

17 : Else:
18 : return 0;

Fig. 13. EUF-CMA game - Theorem 2 modifications

represent two random values known by the adversary.
We also use the notations from Equation (7). We assume
the adversary makes n queries to the Signing Oracles.
This new game is represented in Figure 13.

The difference between probability of success of the
game EUF− CMA3A and the game EUF− CMA2A is the
probability for the Adversary to solve the problem de-
fined in Theorem 2:

|Pr[S3]− Pr[S2]| ≤ 2 · εCDH + εDL

We develop the equations in line 13 from the game
EUF− CMA3A. The goal is to represent these equations
as polynomials as a function of public values given to
the adversary. With h∗ = H(m∗):

{
a1 = a2

a3 = a4

⇔

{
e(gs1

1 , g
xI1ηx
2 g

h∗yI2ηy
2 ) = e(gsσ1

1 , g2)
e(gs2

1 , g
xI1ηx
2 g

yI2 H(h∗)ηy
2 ) = e(gsσ2

1 , g2)

⇔

{
g
s1(xI1ηx+h∗yI2ηy)
T = g

sσ1
T

g
s2(xI1ηx+yI2 H(h∗)ηy)
T = g

sσ2
T

⇒

{
sσ1 = s1(xI1ηx + yI2h

∗ηy) (mod p− 1)
sσ2 = s2(xI1ηx + yI2H(h∗)ηy) (mod p− 1)

(9)

The adversary outputs gs1
1 , g

sσ1
1 , gs2

1 , g
sσ2
1 in G1.

Thus these elements must be computed using element
in G1 – because there is no efficiently computable mor-
phism from G2 to G1 and from GT to G1, under type-3
pairing assumption. The elements known to the adver-
sary in G1 after n queries to the Signing Oracles, are:

E =
(
g1, Y1, X̄1, Ȳ1, {g

(r(Ij,1))j
1 }nj=1, {g

(rIj,2)j
1 }nj=1,{

g
rIj,1(xIj+hjyIj (Ry)j)
1

}n
j=1

,{
g
rIj,2(xIj+H(hj)yIj (Ry)j)
1

}n
j=1

)
.

In our case we want to express s1, s2, sσ1 and sσ2

as polynomials, as a function of the values unknown to
the adversary. First, we represent an ad hoc element gzα1
in the form of a polynomial as a function of the values
unknown to the adversary under DL assumption.

We then represent each signature’s elements (i.e.
s1, s2, sσ1 , sσ2) in the same way as we did with the ad
hock element gzα1 .

We assume the adversary makes n queries to the
Signing Oracles. Therefore, he receives n signatures
from the issuer I1, and n signatures from the issuer
I2. The variable’s factors potentially added by the ad-
versary are represented by a 11 × n matrix α, and an
additional factor wα.

Here is the representation of gzα1 :

gzα1 =gwα1 ·
k∏
j=1

(
(X̄(j)

1 )α(1,j) · (Ȳ (j)
1 )α(2,j) · (Y (j)

1 )α(3,j)

)

·
n∏
i=1

(
h(1,I1))

α(4,i)
i · (h(1,I2))

α(5,i)
i · (h(2,I1))

α(6,i)
i

· (h(2,I2))
α(7,i)
i · (σ(1,I1))

α(8,i)
i · (σ(2,I1))

α(9,i)
i

· (σ(1,I2))
α(10,i)
i · (σ(2,I2))

α(11,i)
i

)
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⇒ zα =wα +
k∑
j=1

(
α(1,j)

1
xj

+ α(1,j)
1
yj

+ α(3,j)yj

)

+
n∑
i=1

(
(r(I1,1))iα(4,i) + (r(I2,1))iα(5,i)

+ (r(I1,2))iα(6,i) + (r(I2,2))iα(7,i)

+ (r(I1,2))iα(8,i)(xI1 +RyyI1hi)
+ (r(I1,2))iα(9,i)(xI1 +RyyI1H(hi))
+ (r(I2,1))iα(10,i)(xI2 +RyyI2hi)

+ (r(I2,2))iα(11,i)(xI2 +RyyI2H(hi))
)

(mod p− 1) (10)

Remark 4. If n > k, columns 1 to 3 of matrix α

are shorter than the other columns. We assume these
columns are filed with zeroes to match the size of the
matrix. If k > n then it is the columns from 4 to 11
which are filled with zeroes.

Furthermore, we assume that all Ry values are sim-
ilar. This does not change the validity of the proof, and
it simplifies the notations.

Lemma 4. The probability for the adversary to output
an element in G1 different from the zα representation is
inferior or equal to the probability of winning in one
instance of the CDH game.

Proof. We prove this lemma by contradiction. We as-
sume the adversary is able to output something different
from representation presented in Equation (10). This is
equivalent to say the adversary has access to an Ora-
cle O(g1, g

z1
1 , ..., gz3k

1 , g
z3k+1
1 , ..., g

z3k+1+8n
1 ). With zi, i ∈

{1, ..., 3k+ 1 + 8n}, the variables unknown to the adver-
sary. This oracle outputs with non negligible probabil-
ity an element gzα+zazb

1 , where a, b ∈ {1, ..., 3k+1+8n}.
This oracle allows the adversary to output gzaf(zb)

1 , with
f a polynomial function, and deg f(zb) 6= 0. Thus, for
any given CDH problem (g1, g

za
1 , gzb1 ), an adversary with

such an oracle can set all variables to 0, except za and
zb, and the oracle solves an instance of the CDH prob-
lem.

We represents s1, s2, sσ1 , and sσ2 in the same way
we represented zα in Equation (10). Then, we replace
s1, s2, sσ1 , and sσ2 in Equation (9) with this new repre-
sentation.

Factor matrices of s1, s2, sσ1 , and sσ2 representa-
tions (i.e. the α matrices in Equation (10)) will be writ-
ten respectively a, b, c and d. To simplify this discussion,
we will assume the transformations applied to the first

part of Equation (9) can be applied symmetrically to
the second part of the equation.

Let us take:

sσ1 = s1(xI1ηx + yI2h
∗ηy) (11)

If sσ1 and s1 validates Equation (11), then either
sσ1 = 0 and s1 = 0, or sσ1 and s1 depends on the vari-
ables xI1 , xI2 , yI1 , yI2 , (r(I1,1))i, (r(I1,2))i, (r(I2,1))i, and
(r(I2,2))i, ∀i ∈ {1, · · · , n}. However sσ1 = 0 or s1 = 0
is a rejecting condition, thus sσ1 and s1 depends on the
variables of the equation. Under DL and CDH assump-
tions, the adversary has a negligible probability to out-
put a value a, b, c or d that depends on these variables.
Therefore, we can reduce sσ1 and s1 to:

s1 =
n∑
i=1

(
(r(I1,1))ia(4,i) + (r(I2,1))ia(5,i)

+ (r(I1,2))ia(6,i) + (r(I2,2))ia(7,i)

)
(12)

sσ1 =
n∑
i=1

(
(r(I1,1))ic(8,i)(xI1 +RyyI1hi)

+ (r(I1,2))ic(9,i)(xI1 +RyyI1H(hi))
+ (r(I2,1))ic(10,i)(xI2 +RyyI2hi)

+ (r(I2,2))ic(11,i)(xI2 +RyyI2H(hi))
)

(13)

Now that we simplified representations of s1 and sσ1 we
want to study the possibility for I1 and I2 to represent
two distinct issuers.
We see that right side of Equation (11) contains ele-
ments (r(I1,1))i and (r(I1,2))i multiplied by yI2 . At the
same time, there are also elements (r(I2,1))i and (r(I2,2))i
multiplied by xI1 . These terms does not exist on the left
side of the equation (in sσ1). We can deduce that, either
the whole equation is reduced to zero, which is impos-
sible since gs1

1 6= 1G1 , or, I1 = I2 = I. This means that
all elements come from only one issuer.

We represent Equation (11) with these new repre-
sentations of sσ1 and s1.

Remark 5. In the Equation (14), c′1 is the concatena-
tion of c8 and c10, c′1 =

(
c8
c10

)
. c′2 is the concatenation

of row c9 and row c11, c′2 =
(
c9
c11

)
. a′1 is the concate-

nation of row a4 and row a5, a′1 =
(
a4
a5

)
. And a′2 is the

concatenation of row a6 and row a7, a′2 =
(
a6
a7

)
.
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2n∑
i=1

(
(r(I,1))ic′(1,i)(xI +RyyIhi)

+ (r(I,2))ic′(2,i)(xI +RyyI1H(hi))
)

=
2n∑
i=1

(
(r(I,1))ia′(1,i)

+ (r(I,2))ia′(2,i)

)
(xIηx + yIh

∗ηy)

⇔
2n∑
i=1

(
xI((r(I,1))i(c′(1,i) − a

′
(1,i)ηx)

+ (r(I,2))i(c′(2,i) − a
′
(2,i)ηx))

+ yI((r(I,1))i(Ryc′(1,i)hi − a
′
(1,i)ηyh

∗)

+ (r(I,2))i(Ryc′(2,i)H(hi)− a′(2,i)ηyh
∗)
)

= 0 (14)

In Equation (14), factors a′ and c′ have negligible prob-
ability to be function of the variables (i.e. r, x and y), as
this would imply the adversary is able to break DL or
CDH problem, from the Lemma 4 result. This directly
implies that each part of the above sum is independently
equal to zero.

We obtain the system of equations:



c′(1,1) − a
′
(1,1)ηx = 0

. . .

c′(1,2n) − a
′
(1,2n)ηx = 0

c′(2,1) − a
′
(2,1)ηx = 0

. . .

c′(2,2n) − a
′
(2,2n)ηx = 0

Ryc
′
(1,1)h1 − a′(1,1)ηyh

∗ = 0
. . .

Ryc
′
(1,2n)h2n − a′(1,2n)ηyh

∗ = 0
Ryc

′
(2,1)H(h1)− a′(2,1)ηyh

∗ = 0
. . .

RI,y,2nc
′
2,2nH(h2n)− a′2,2nηyh∗ = 0

(15)

We write :

– A′1 =

 a′(1,1) ... 0

. . .
0 ... a′(1,2n)

;

– A′2 =

 a′(2,1) ... 0

. . .
0 ... a′(2,2n)

;

– C′1 =

 c′(1,1) ... 0

. . .
0 ... c′(1,2n)

;

– C′2 =

 c′(2,1) ... 0

. . .
0 ... c′(2,2n)

;

– D′1 =

 d′(1,1) ... 0

. . .
0 ... d′(1,2n)


– D′2 =

 d′(2,1) ... 0

. . .
0 ... d′(2,2n)

;

– Ry =

(
Ry ... 0

. . .
0 ... Ry

)
;

– H =

(
h1 ... 0

. . .
0 ... h2n

)
; and

– H(H) =

( H(h1) ... 0
. . .

0 ... H(h2n)

)
.

We only use diagonal matrices, thus, each matrix
is inversible, and the product between two matrices is
commutative. We now have the linear system:


C′1 −A′1ηx = 0
C′2 −A′2ηx = 0
RyC

′
1H −A′1ηyh∗ = 0

RyC
′
2H(H)−A′2ηyh∗ = 0

(16)

⇔


C′1 = A′1ηx

C′2 = A′2ηx

RyC
′
1H = A′1ηyh

∗

RyC
′
2H(H) = A′2ηyh

∗

(17)

⇔


1
ηx
C′1 = A′1

1
ηx
C′2 = A′2

RyC
′
1H = 1

ηx
C′1ηyh

∗

RyC
′
2H(H) = 1

ηx
C′2ηyh

∗

(18)

We assume all elements on the diagonal of C′1 and
C′2 are different from 0:

⇔


1
ηx
C′1 = A′1

1
ηx
C′2 = A′2

RyH = 1
ηx
ηyh
∗I

RyH(H) = 1
ηx
ηyh
∗I

⇔


1
ηx
C′1 = A′1

1
ηx
C′2 = A′2

ηx
ηy
RyH = h∗I

ηx
ηy
RyH(H) = h∗I

⇔H(H) = H (19)
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This last equation is impossible with a collision re-
sistant hash function. This means that our hypothesis,
is wrong, i.e. C′1 = 0 or C′2 = 0.

Remark 6. We proved here that there is at least one
element equal to 0 in C′1 or C′2, but we can then reduce
the matrices to be of size 2n− 1× 2n− 1, and have the
same result, until C′1 or C′2 is totally reduced to 0.

Remark 7. From Theorem 2, we know that ηx and ηy
are different from zero. This implies that (C′1 = 0) ⇒
(A′1 = 0), and (C′2 = 0) ⇒ (A′2 = 0). From this, we
deduce that C′1 and C′2 can’t be reduced to 0 at the
same time, as this would imply that s1 = 0, which is a
rejecting condition for the verifier.
Symmetrically, we deduce the same thing from second
line of Equation (9):


1
ηx
D′1 = B′1

1
ηx
D′2 = B′2

RyD
′
1H = 1

ηx
D′1ηyH(h∗I)

RyD
′
2H(H) = 1

ηx
D′2ηyH(h∗I)

(20)

(21)

Thus D′1 = 0 or D′2 = 0, and D′1 and D′2 cannot be
both reduced to 0 at the same time.

There are four cases to study: (C′1, D′1) = (0, 0),
(C′1, D′2) = (0, 0), (C′2, D′1) = (0, 0), and (C′2, D′2) =
(0, 0).

First, (C′1, D′1) = (0, 0) and (C′2, D′2) = (0, 0) lead
back to H = H(H), which is impossible.

Then, case (C′2, D′1) = (0, 0) gives us the system:

{
ηx
ηy
RyH = h∗I

ηx
ηy
RyH(H) = H(h∗I)

(22)

If we apply the hash function, we obtain:

H
(ηx
ηy
RyH

)
= ηx
ηy
RyH(H)

There are two cases:

1. ηy
ηx

= Ry
2. ηy

ηx
6= Ry

Case 1 tells us that h∗I = H. In this case, the signa-
ture is a signature on an already signed message. Case
2 implies that the adversary is able to find a collision
in a collision resistant hash function. In the Random
Oracle Model, this has a negligible probability to occure.

EUF− CMA4A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : (y1, ..., yk)←$ (Z∗p)k;

3 : X = (X(1), ..., X(k)) = (gx1
2 , ..., g

xk
2 )

4 : Y1 = (Y (1)
1 , · · · , Y (k)

1 ) = (gy1
1 , · · · , gyk1 )

5 : Y2 = (Y (1)
2 , · · · , Y (k)

2 ) = (gy1
2 , · · · , gyk2 )

6 : X̄1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1 ) = (g
1
y1
1 , · · · , g

1
yk
1 )

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (ηx, ηy , Ry , h∗, H) ←$A(PK);

10 : t1 = ηx
ηy
RyH

11 : t2 = etax
ηy

RyH(H)

12 : t3 = H( ηx
ηy
RyH(H))

13 : t4 = H( ηx
ηy
RyH)

14 : t5 = H(H)

15 : If (t1 = t3 ∨ t2 = t4 ∨H = t5 ∨H = h∗I) ∧m∗ /∈M :

16 : return 1;

17 : Else:
18 : return 0;

Fig. 14. EUF-CMA game - reduction

Finally, case (C′1, D′2) = (0, 0) gives us the system:

{
ηx
ηy
RyH(H) = h∗I

ηx
ηy
RyH = H(h∗)I

(23)

If we apply the hash function, we obtain:

H
(ηx
ηy
RyH(H)

)
= ηx
ηy
RyH

This is equivalent for adversary to find a collision
in a collision resistant hash function.

The study of the four cases imply that succeeding
in (EUF− CMA3A) implies that either the adversary is
able to find a collision in a collision resistant hash func-
tion, or the message signed was already queried to the
singing oracle. We represent this as a new game transi-
tion. This transition is represented in Figure 14.

The transition between EUF− CMA3A and
EUF− CMA4A is a failure based transition, where the
failure is equivalent to the probability for the adversary
to break Lemma 4.
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EUF− CMA5A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : (y1, ..., yk)←$ (Z∗p)k;

3 : X = (X1, ..., Xk) = (gx1
2 , ..., g

xk
2 )

4 : Y1 = (Y (1)
1 , · · · , Y (k)

1 ) = (gy1
1 , · · · , gyk1 )

5 : Y2 = (Y (1)
2 , · · · , Y (k)

2 ) = (gy1
2 , · · · , gyk2 )

6 : X̄1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

7 : Ȳ1 = (Ȳ (1)
1 , · · · , Ȳ (k)

1 ) = (g
1
y1
1 , · · · , g

1
yk
1 )

8 : PK = {X, X̄1, Y1, Ȳ1, Y2}
9 : (ηx, ηy , Ry , h∗, H) ←$A(PK);

10 : t1 = ηx
ηy
RyH

11 : t2 = etax
ηy

RyH(H)

12 : t3 ←$ {1, · · · , p− 1}

13 : t4 ←$ {1, · · · , p− 1}

14 : t5 ←$ {1, · · · , p− 1}

15 : If (t1 = t3 ∨ t2 = t4 ∨H = t5 ∨H = h∗I) ∧m∗ /∈M :

16 : return 1;

17 : Else:
18 : return 0;

Fig. 15. EUF-CMA game - Random Oracle Model

|Pr[S3]− Pr[S2]| ≤ F
≤ εCDH

In the Random Oracle Model, we represent the hash
function as a Random Oracle. We build a new transi-
tion presented in Figure 15. The new game is called
EUF− CMA5A.

This transition is a representation of EUF− CMA4A
in the Random Oracle model. Thus Pr[S5] = Pr[S4].

We develop the success condition of the game pre-
sented in Figure 15:

(t1 = t3 ∨ t2 = t4 ∨H = t5 ∨H = h∗I) ∧ h∗ /∈M
⇔(t1 = t3 ∧ h∗ /∈M) ∨ (t2 = t4 ∧ h∗ /∈M)
∨ (H = t5 ∧ h∗ /∈M) ∨ (H = h∗I ∧ h∗ /∈M) (24)

We need to analyze each condition individually. The first
three conditions are true if the values t1 or t2 chosen
by the adversary are equal to a number, chosen uni-
formly at random in {1, · · · , p− 1}. The probability for
this condition to be true is (p− 1)−1. Furthermore, the
last condition is clearly a contradiction. It asks h∗ to
be at the same time different and equal to some previ-

ously signed message. We can represent the condition
presented in Equation (24) as:

⇔((p− 1)−1) ∨ ((p− 1)−1) ∨ ((p− 1)−1) ∨ (0)

We can deduce that, the probability for an adver-
sary to succeed in Game4A is 3·p−1. Now, we can deduce
the probability for a PPT adversary to forges the signa-
ture scheme:

|Pr[S5]− Pr[S1]| = |Pr[S4]− Pr[S3]|+ |Pr[S3]− Pr[S2]|
+ |Pr[S2]− Pr[S1]|
≤ 3 · εCDH + εDL

And Pr[S5] = 3 · (p− 1)−1. Thus :

Pr[S1] ≤ 3 · (p− 1)−1 + 3 · εCDH + εDL

Finally, we deduce that :

Adveuf-cma
Σ (A) = |Pr[S1]− (p− 1)−1|

≤ 2 · (p− 1)−1 + 3 · εCDH + εDL

If the order p is sufficiently large, this value is negli-
gible. Therefore, the adversary has a negligible probabil-
ity of forging this scheme, even with multiple access to
the signing oracles. In conclusion, our signature scheme
has EUF-CMA property.

E.7 Issuer-Indistinguishability proof

In this section, we will prove that the issuer of a ran-
domized signature is indistinguishable among the set of
trusted issuers of a malicious verifier. We assume the
adversary (in this case, the Malicious Verifier) keeps
track of multiple VerifyRandomized transactions.
We also assume the adversary can collude with all the
issuers, and therefore knows all their private keys, and
all (non randomized) issued signatures.

We define an issuer Indistinguishability game, repre-
sented in Figure 16. The adversary succeeds in this game
if he is able to distinguish between a re-randomized sig-
nature, issued by the issuer I1, and a signature issued
different issuer I2.

Remark 8. The R subscript is here to allows us to
fix the random variables of the algorithm Randomize.
This concerns the values ru, r′u, r′′u, r(u,x), and r(u,y).
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HiddenIssuerGame1A
1 : pp←$ C(1λ)
2 : (skI1 , pkI1 ) =IssuerKeygen(pp)

3 : (skI2 , pkI2 ) =IssuerKeygen(pp)

4 : (vpk, vsk)←$ VerifierSetup(pp, {I1, I2})

5 : m←$ Z∗p
6 : u←$ Z∗p
7 : σ1 = Sign(pp,m, skI1 , u)

8 : σ2 = Sign(pp,m, skI2 , u)

9 : a1 = (X(I1)′ , Y (I1)′ , πx, πy , σ′1) =

10 : RandomizeR(pp, pkI1 , vpk,

11 : {I1, I2}, σ1, u)

12 : a2 = (X(I1)′′ , Y (I1)′′ , π′x, π
′
y , σ
′′
1 ) =

13 : Randomize′R(pp, pkI1 , vpk,

14 : {I1, I2}, σ1, u)

15 : b←$ {0, 1}

16 : if b = 1:
17 : a2 = (X(I1)′′′ , Y (I1)′′′ , π′′x , π

′′
y , σ
′′′
1 ) =

18 : Randomize′R(pp, pkI2 , vpk,

19 : {I1, I2}, σ2, u)

20 : c←$A(m,a1, a2, skI1 , skI2 , pkI1 , pkI2 , vpk, vsk, σ1, σ2)

21 : If c = b:
22 : return 1;

23 : Else:
24 : return 0;

Fig. 16. Issuer indistinguishability game, where the randomize
algorithm uses as random values the R given in subscript.

Theorem 6. The signature scheme presented in 6.1.2
is issuer indistinguishable. No PPT adversary can win
the game presented in Figure 16 with probability greater
than 1

2 + ε, where ε is a negligible value.

HiddenIssuerGame2A
1 : pp←$ C(1λ)
2 : (skI1 , pkI1 ) =IssuerKeygen(pp)

3 : (skI2 , pkI2 ) =IssuerKeygen(pp)

4 : (vpk, vsk)←$ VerifierSetup(pp, {I1, I2})

5 : m←$ Z∗p
6 : u←$ Z∗p
7 : σ1 = Sign(pp,m, skI1 , u)

8 : σ2 = Sign(pp,m, skI2 , u)

9 : a1 = (X(I1)′ , Y (I1)′ , πx, πy , σ′1) =

10 : RandomizeR(pp, pkI1 , vpk,

11 : {I1, I2}, σ1, u)

12 : a2 = (X(I1)′′ , Y (I1)′′ , π′x, π
′
y , σ
′′
1 , σ
′′
2 ) =

13 : Randomize′R(pp, pkI1 , vpk,

14 : {I1, I2}, σ1, u)

15 : b←$ {0, 1}

16 : if b = 1 :

17 : a2 = ((X(I1)′′ )
x2
x1 , (Y (I1)′′ ))

y2
y1 , (Wx)

′′ x1
x2

I1
, (Wy)

′′ y1
y2

I1
,

18 :
h′′x, h

′′
y , σ

′′ x2+y2Rym
x1+y1Rym

1 , σ

′′ x2+y2RyH(m)
x1+y1RyH(m)

2 , h′′1 , h
′′
2 )

19 : c←$A(m,a1, a2, skI1 , skI2 , pkI1 , pkI2 , vpk, vsk, σ1, σ2)

20 : If c = b:
21 : return 1;

22 : Else:
23 : return 0;

Fig. 17. Issuer indistinguishability game, where the randomize
algorithm uses as random values the R given in subscript

The game presented in Figure 16 can be modified
to represent the signature built for the second issuer
as a modification of the first signature. This modifica-
tion is given in Figure 17. The transition between these
two games is a notation difference. Indeed, the result-
ing elements are the same in both cases. Therefore, the
probability of success of the second game is the same as
the probability of success of the first game.

The difference between the two possible signatures
given to the adversary only depends on x1, y1, x2, y2,
m, Ry, and the random elements added by the user.

We want to compare the re-randomized signature
(case b = 0), which we will call σ0, and the signature
with the modified issuer (case b = 1), which we will call
σ1.

σ0 and σ1 are exclusively composed of elements ex-
pressed in G1 and in G2. This means that the adversary
can combine them using the bilinear pairing e. There-
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fore, from one randomized signature, the adversary is
able to compute 40 different combinations in GT . We
represent all these combinations in Table 11 and in Ta-
ble 12. These combinations are represented in term of
variables (random elements added by the user), and in
term of distinguishing elements. It is to say the elements
that distinguish a message signed by one issuer, and the
other. These variables and distinguishing elements are
ru, r

′
u, r
′′
u, r(u,x), r(u,y), x1, y1, x2, y2, m, R, and Ry.

The order of G1,G2 and GT is prime, thus every
element of these groups is a generator, except from the
neutral element. Therefore, every elements presented in
Table 12 will be seen, from the adversary point of view,
as elements chosen uniformly at random in one of these
groups. This implies, under DL assumption, that a sin-
gle element cannot be used by an adversary to decide
whether the issuer of a credential is I1 or I2. Therefore,
the only way an adversary could identify the issuer of a
signature would be by comparing elements of the signa-
ture.

We can distinguish two types of elements in Table 11
and in Table 12: the elements which are function of the
variables x1, y1, x2, y2, and the elements which are not.
These variables are the one that the adversary can use
to identify the actual issuer of the signature. Using only
elements without variables would not allow him to dis-
tinguish the issuer, as these elements are equivalent in
σ0 and in σ1.

In the 40 elements list characterizing the re-
randomized signature σ0, we can see that there are
two cells of the tabular that matches with two other
cells. These are the elements e(g1, hx) = e(Wx, X

(1))
and e(g1, hy) = e(Wy, Y

(1)). In the σ1 representation,
these matching elements does not depend on the dis-
tinguishing variables, and are represented in the same
way in σ0. Furthermore, the aggregator’s integrity ver-
ification algorithm ensures that the different values
e((Wx)i, X(i)),∀i ∈ {1, · · · , k} are equal. This means
that the adversary cannot distinguish the issuer using
this method.

In these tables, there are two other matching ex-
pressions. These are the one that are supposed to match
in the VerifyRandomized algorithm. But these equa-
tions are symmetrical in term of distinguishing val-
ues, thus they do not distinguish σ0 and σ1. We could
think, from the representation we made in Table 11, that
e(σ1, g2) should match with e(h1, X

(I)), but σ1 is factor
of an element not represented here for clarity. This ele-
ment is (x1 +Ryy1m). Indeed, the values match, but the
adversary would still need to use the value e(h1, Y

(I))
to be able to decide anything.

We can verify, with an algorithm, that each element
the adversary as access to in GT is distinct from ev-
ery other one, by at least one random secret element.
Or more precisely, there are no linear relationship that
links the different element given to the adversary. The
only exception are the four cases discussed above, and
they do not allow the adversary to distinguish between
both cases (i.e. I1 issued the credential or I2 issued the
credential).

All elements given to the adversary are
disjoint in term of the random elements
(Ry, ru,x, ru,y, ru, r′u, r′′u, Ry+R). (Ry+R) is the element
given to the adversary during the Sign algorithm. This
element can be seen as random in Zp because of the
addition of R which is only used once. It is a Pedersen
commitment, which is totally hiding [41].

We know that the adversary can only distin-
guish between linear expression of the given elements
(Lemma 3). All the elements the adversary has access
to are chosen uniformally at random from the adver-
sary point of view, and one by one disjoint in term of
random variables. This means that all linear expression
of these elements are function of at least one random
element. This implies that the adversary cannot distin-
guish the variation induced by the modification of the
issuer unless he is able to break DL assumption or DDH
assumption.

Therefore, the adversary is not able to distinguish
between σ0 and σ1, under DL assumption and DDH
assumption. Our scheme is issuer indistinguishable.

Remark 9. The adversary model takes into account
potential replay attack. However two randomized signa-
tures use two set of newly generated random elements.
From the above proof, we know that a replay attack
would give to the adversary elements that would not
help the adversary to build linear relationships between
the elements. Thus the scheme is also secure against
replay attacks.

E.8 Interactive Protocol

In this section, we give proofs of correctness, collision
freedom, and element indistinguishability for the inter-
active version of HIAC discussed in Section 6.2.
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g2 hx hy X(1) Y (1)

g1 1 ruru,x Ryruru,y ru Ryru

h1 r′u rur
′
uru,x Ryrur

′
uru,y rur

′
u Ryrur

′
u

h2 r′′u rur
′′
uru,x Ryrur

′′
uru,y rur

′′
u Ryrur

′′
u

Wx ru,x rur
2
u,x Ryruru,xru,y ruru,x Ryruru,x

Wy ru,y ruru,xru,y Ryrur
2
u,y ruru,y Ryruru,y

σ1 rur
′
u r2

ur
′
uru,x Ryr

2
ur
′
uru,y r2

ur
′
u Ryr

2
ur
′
u

σ2 rur
′′
u r2

ur
′′
uru,x Ryr

2
ur
′′
uru,y r2

ur
′′
u Ryr

2
ur
′′
u

u (Ry +R) ruru,x(Ry +R) Ryruru,y(Ry +R) ru(Ry +R) Ryru(Ry +R)

Table 11. Resulting elements of the rerandomized signature σ0 after application of the bilinear pairing.

g2 hx hy

g1 1 ruru,x Ryruru,y

h1 r′u rur
′
uru,x Ryrur

′
uru,y

h2 r′′u rur
′′
uru,x Ryrur

′′
uru,y

Wx ru,x
x1
x2

rur
2
u,x

x1
x2

Ryruru,xru,y
x1
x2

Wy ru,y
y1
y2

ruru,xru,y
y1
y2

Ryrur
2
u,y

y1
y2

σ1 rur
′
u

x2+Ryy2m
x1+Ryy1m

r2
ur
′
uru,x

x2+Ryy2m
x1+Ryy1m

Ryr
2
ur
′
uru,y

x2+Ryy2m
x1+Ryy1m

σ2 rur
′′
u

x2+Ryy2H(m)
x1+Ryy1H(m) r2

ur
′′
uru,x

x2+Ryy2H(m)
x1+Ryy1H(m) Ryr

2
ur
′′
uru,y

x2+Ryy2H(m)
x1+Ryy1H(m)

u (Ry +R) ruru,x(Ry +R) Ryruru,y(Ry +R)

X(1) Y (1)

g1 ru
x2
x1

Ryru
y2
y1

h1 rur
′
u

x2
x1

Ryrur
′
u

y2
y1

h2 rur
′′
u

x2
x1

Ryrur
′′
u

y2
y1

Wx ruru,x Ryruru,x
y2
y1

x1
x2

Wy ruru,y
x2
x1

y1
y2

Ryruru,y

σ1 r2
ur
′
u

x2
x1

x2+Ryy2m
x1+Ryy1m

Ryr
2
ur
′
u

y2
y1

x2+Ryy2m
x1+Ryy1m

σ2 r2
ur
′′
u

x2
x1

x2+Ryy2H(m)
x1+Ryy1H(m) Ryr

2
ur
′′
u

y2
y1

x2+Ryy2H(m)
x1+Ryy1H(m)

u ru(Ry +R) x2
x1

Ryru(Ry +R) y2
y1

Table 12. Resulting elements of the signature with modified issuer σ1 after application of the bilinear pairing.

E.8.1 Correctness

Lemma 5. The interactive version of the aggregator
presented in Section 6.2 keeps it correct.

Proof. We want to prove that the value output (W )′I of
the interactive protocol Commitment reveal exchange in
Figure 5 is the same as the one outputted by the original

Randomize algorithm, i.e (W )′I = g
r1sk( 1

XI
)

1 . We have:

(W )′I = (W )
′′

I · (C
′′

1 )−
1
rd

= (W )
′′

I ·
(
(C′1)

1
rb · (C′2)

1
rc

)− 1
rd

= (W )
′′

I ·
(
(C1)sk 1

rb
rd · (C2)

1
rc
rd
)− 1

rd

= (W )
′′

I · (C1)−sk 1
rb · (C2)−

1
rc

= (W )
′′

I · g
−r1rbsk 1

rb
1 · g

−rcra 1
rc

1

= (W )
′′

I · g
−r1sk
1 · g−ra1

= (W )r1
I · g

ra
1 · g

−r1sk
1 · g−ra1

= g
r1sk(1+ 1

XI
)

1 · gra1 · g
−r1sk
1 · g−ra1

= g
r1sk( 1

XI
)

1
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Game1A
1 : (x1, ..., xk)←$ (Z∗p)k;

2 : X1 = (X(1)
1 , ..., X

(k)
1 ) = (gx1

1 , ..., g
xk
1 )

3 : X2 = (X(1), ..., X(k)) = (gx1
2 , ..., g

xk
2 )

4 : X̄1 = (X̄(1)
1 , · · · , X̄(k)

1 ) = (g
1
x1
1 , · · · , g

1
xk
1 )

5 : (W, sk)←$Gen(X1, X2, X̄1)
6 : C∗σ = ((C∗1 ), (C∗2 ),

7 : h∗, (W )∗I , X
(I)∗
2 ) ←$A(X1, X2, X̄1,W );

8 : rc ←$ Z∗p
9 : (C∗1 )′ = (C∗1 )rcsk

y

10 : (C∗2 )′ = (C∗2 )rcy
11 : (C∗1 )′′ ← A(C∗σ , pg, X1, X2, (C∗2 )′, (C∗1 )′)

12 : If e((W )∗I (C∗1 )
′′−( 1

rd
)
, X

(I)∗
2 )=e(T sk

1 , h
∗)∧

13 : X
(I)∗
2 6= g

xlη
2 ,∀i ∈ {1, ..., k}:

14 : return 1;

15 : Else:
16 : return 0;

Fig. 18. Collision freedom game for the interactive protocol of
Section 6.2

E.8.2 Collision Freedom

Lemma 6. The interactive version of the aggregator
presented in Section 6.2 keeps it collision free.

Proof. The goal is to show that the secret sk value keeps
the scheme unforgeable, even if the scheme is modified
accordingly to Section 6.2. To do so, we will analyze a
modified version of Theorem 2, and use the result of the
original theorem, along with the proof that the trans-
formation does not give an advantage to the adversary
(in this case, malicious user).

We represent Lemma 6 as a game, presented in Fig-
ure 18.

This new game is ultimately equivalent to the game
used in Theorem 2. Indeed, there is the same number of
unknown (potentially harmful) elements. And the suc-
cess condition is also equivalent. We only need to ana-
lyze the resulting (W )∗I(C∗1 )

′′−( 1
rd

) value.
Firstly, thanks to the proof of knowledge of the el-

ements (C1)∗ and (C2)∗, we know that these elements
cannot contain any of the given (Agg, X1, X2) under
DL assumption. Secondly, under CDH assumption, and
because of the rd value used by the verifier at the end
of the protocol, C′′1 must be a linear combination of C′1
and C′2. Otherwise, the resulting value would depend
on rd, and this value did not even exist when the ad-

versary computed the values (Comm′(s)(W )′′I , πs). Thus
if (W )∗I(C∗1 )

′′−( 1
rd

) depends on rd then the probability
for the verification algorithm to output 1 is negligible
(in fact, this probability is p−1). Always under CDH as-
sumption, C′′1 only contains sk, rc and elements known
to the adversary. This means that we can represent
(W )∗I(C∗1 )

′′−( 1
rd

) as gsw1 gs1sk
1 gs2

1 , with s1 and s2 value
known to the adversary.

We use the same idea as in Appendix E.3, we know
that gsw1 gs1sk

1 gs2
1 = gskγ

1 , for some γ independent from
sk. At this point, the only difference between the game
presented in Figure 18 and Appendix E.3’s proof is that
the adversary is given the extra values gskrd1 and grd1 .
We use Appendix E.3 proof again and more precisely
Appendix E.3.2 proof. The setup we have here is ex-
actly the same as the one used in the simplified game
of this proof. Thus the conclusion is the same, i.e. γ is
a composition of (W )i values.

We can resume Appendix E.3’s proof without fur-
ther modification, we will get the same result, i.e.
X

(I)∗
2 = gxlη2 .

E.8.3 Indistinguishability of the Signature with
Commitment Reveal Exchange

Lemma 7. The interactive version of the aggregator
presented in Section 6.2 keeps it element indistinguish-
able.

Proof. We want to prove that the indistinguishabil-
ity property is not affected by the modification made
in Section 6.2. This transformation can be proven to
keep issuer indistinguishability property and unlinkabil-
ity property, using the theorem proved in Appendix E.7.

Indeed, the transformation makes the user share
three more values, C1, C2, and C′′1 . We will prove these
values indistinguishable in the same way we did in Ap-
pendix E.7. We know that C1 = gr1rb

1 and C2 = grarc1 .
From the ZKP φ2 , we also know that C′1 = Cs1

1 and
C′2 = Cs2

2 , for some unknown values s1 and s2. This im-

plies that C′′1 = C
1
rb
s1

1 C
1
rc
s2

2 = g
r(u,x)s1+ras2
1 . Any new

request from the adversary would lead to a new commit-
ment value, with new random values. This implies that
the adversary has no advantage in requesting multiple
commitments.

The values disclosed by C1 and C2 are randomized
with elements used only once. The adversary cannot
extract any information from them. The value disclosed
by C′′1 can be considered as a value chosen uniformly at
random in G1 because of the addition of ra, used only
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there. Thus, C′′1 does not disclose information about the
issuer nor the user. There is no linear relationship be-
tween C1, C2, C

′′
1 and the other values of the scheme.

Thus the modification made in Section 6.2 keeps the
indistinguishability property.
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