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Private Aggregation of Trajectories
Abstract: In this paper, we study the task of aggre-
gating user-generated trajectories in a differentially pri-
vate manner. We present a new algorithm for this prob-
lem and demonstrate its effectiveness and practicality
through detailed experiments on real-world data. We
also show that under simple and natural assumptions,
our algorithm has provable utility guarantees.
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1 Introduction
The availability of location data in mobile systems and
applications has generated numerous opportunities for
designing smarter services such as routing platforms,
public transit, and recommendation systems. This po-
tential, however, is limited by growing concerns for user
privacy, particularly around the sharing and use of lo-
cation information, reflected in an expanding set of reg-
ulations and laws [1, 22, 47].

In recent years, differential privacy (DP) [28, 29] has
emerged as a popular notion for quantifying the privacy
leakage of algorithms, with deployments including the
2020 US Census [3], and numerous industry use cases [6,
25, 32, 38, 53]. DP is a strong notion of privacy, ensuring
that the algorithm’s output does not change noticeably
if the data of a single user is added or removed from the
dataset (see Definition 1 for a formal statement).

Trajectories are fundamental spatio-temporal ob-
jects. They arise in a variety of settings including human
mobility, animal behavior, transit, cursor/mouse move-
ments, eye gaze patterns, etc. Aggregating trajectories
is a well-studied task, often investigated along with clus-
tering. Such aggregate information can be invaluable

Badih Ghazi: Google Research, E-mail: badihg-
hazi@gmail.com
Neel Kamal: Google, E-mail: kamalneel@google.com
Ravi Kumar: Google Research, E-mail: ravi.k53@gmail.com
*Corresponding Author: Pasin Manurangsi: Google
Research, E-mail: pasin@google.com
Annika Zhang: Google, E-mail: annikaz@google.com

for several use cases such as studying different routes
to go between two locations, identifying public transit
routes based on trajectories, wildlife migration patterns,
etc. Several prior works have considered variants of this
problem, providing algorithms for clustering trajectories
under different distance measures (e.g., [13, 16, 46]).

Aggregating and clustering trajectories are far more
challenging problems than the corresponding versions
for points in the Euclidean space. Indeed, to perform
well, an algorithm has to truly exploit the underlying
geometric and temporal properties of a trajectory, often
encapsulated by an intricate distance measure such as
Fréchet, DTW, etc. In fact, even an apparently simple
one-cluster version of the problem—given a set of trajec-
tories, find their “aggregate”—is not a straightforward
task and its computational complexity depends on the
underlying distance function [4, 52, 57]. In this work, we
initiate the study of these problems through the lens of
DP; specifically, we consider the simple task of privately
aggregating trajectories.

1.1 Our Contributions

We consider the setting where each of n users is associ-
ated with a trajectory that consists of m points in the
two-dimensional Euclidean space. The goal is to (pri-
vately) output a curve that well-approximates the “ag-
gregated” trajectory. We give an efficient algorithm for
this task, and prove that it satisfies the DP property. (In
fact, it satisfies the strongest user-level DP variant.)

Furthermore, we prove that, under certain mild
technical assumptions, our algorithm can recover a high-
accuracy aggregate trajectory. Finally, we show the ef-
fectiveness and practicality of our algorithm by evalu-
ating it on different real-world trajectories.

To describe the overall ideas behind our algorithm,
recall that a prototypical DP algorithm works (among
other things) by adding noise that is calibrated to the
sensitivity of the function. It turns out that applying
this idea naively to trajectory aggregation—by adding
noise proportional to the radius of the input space—
renders the signals in the data to be largely over-
whelmed by the noise.

To overcome the aforementioned barrier, our central
observation is that two consecutive points in natural tra-
jectories are often close; their distance is much smaller



Private Aggregation of Trajectories 627

than the diameter of the input space or even the length
of the entire trajectory. This leads us to a notion of a
local bounding circle, an object that allows us to ag-
gregate each point privately while adding noise that is
only roughly proportional to the distance between two
consecutive points, which (as we demonstrate both ex-
perimentally and theoretically) results in a significantly
better utility guarantee compared to a naive algorithm.

We note that while we focus in this work on two-
dimensional aggregation, our algorithm can be naturally
extended to DP aggregation of curves in higher dimen-
sions.

1.2 Related Work

Clustering is somewhat related to track aggregation.
While clustering solves the more general problem of
partitioning the input trajectories into groups, we are
interested in the one-cluster version: combining the in-
put (trajectories) into a single aggregate (trajectory).
In this sense, our work is closer to the 1-median set-
ting, a special case of clustering. In the context of pri-
vacy, there has been significant recent work on DP al-
gorithms for clustering points (see [19] and the refer-
ences therein) and finding frequent patterns in sequen-
tial data [11, 12, 21]. However, none of these algorithms
applies to the more challenging case of clustering tra-
jectories. The trajectory clustering problem is usually
formulated in terms of the number of clusters and some
measure of the complexity of describing the centers; sev-
eral clustering algorithms have been designed for differ-
ent formulations [13, 16, 34, 46, 57]. Unfortunately, two
reasons make these algorithms unsuitable for our prob-
lem: most of these algorithms are degenerate for the
1-median setting and to the best of our knowledge, and
private versions of these algorithms have not been stud-
ied. For the latter point, we stress that, to the best of
our knowledge, these algorithms cannot be made pri-
vate via simple techniques. For example, [13, 16] initial-
ize the cluster centers by (simplifications of) some input
trajectories. Since each center is created from a single
trajectory, making this private would require adding a
vacuously large amount of noise, so large that the cen-
ter is essentially a random point. A similar issue also
arises in the related context of k-means/median clus-
tering. Works on the topic of private k-means/median
(e.g. [7, 19, 36, 55]) employs various sophisticated tech-
niques to solve this issue, demonstrating its challenging
nature.

A completely different approach to private track ag-
gregation is via private synthetic data generation. The
idea is to design a private generative mechanism based
on the input trajectories. By the post-processing prop-
erty of DP, the aggregated track can then be computed
non-privately using a few synthetically generated tracks.
This method was explored in a few works [35, 40]. While
this method is appealing at a conceptual level, cur-
rent versions of the algorithms, unfortunately, require
much larger inputs, e.g., they need millions of trajecto-
ries whereas our algorithms can work with hundreds.

There has been substantial work on variants of DP
tailored to the geographic setting, including [5, 20, 45],
real-time traffic monitoring [33, 41], points-of-interest
recommendation [42], and sharing trajectories [23]. To
the best of our knowledge, none of theses prior works
tackled private track aggregation.

At a technical level, the idea of “clipping” to bound
the sensitivity has been employed before, e.g., for learn-
ing [2] and mean estimation [18]. However, we are not
aware of any work that applies such an idea in a tem-
poral setting similar to ours, where the local bounding
circle is moved along as the algorithm progresses.

1.3 Organization

In Section 2, we recall some notation, background, and
tools from previous works. We then present our algo-
rithm in Section 3. Our theoretical and experimental
results are presented in Section 4 and Section 5 respec-
tively. We then conclude by discussing several future
directions in Section 6.

2 Preliminaries
For every positive integer k, we use [k] to denote
{1, . . . , k}. Unless otherwise specified, we use ‖ · ‖ to
denote the Euclidean 2-norm. We use Br(c) to denote
the two-dimensional (closed) ball of radius r centered at
c, i.e., {x | ‖x − c‖ ≤ r}. When c is the origin, we use
Br as a shorthand for Br(c). We denote the number of
users by n.

Due to space constraints, we omit some of the proofs
from the main body of the paper, and defer them to the
Appendix.
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2.1 Differential Privacy

We say that two datasetsX,X ′ are neighboring, denoted
X ∼ X ′, if X ′ results from adding or removing a single
user from X.

Definition 1 (Differential Privacy [28, 29]). For any
privacy parameters ε ≥ 0 and δ ∈ [0, 1], a randomized
algorithm A is (ε, δ)-differentially private (DP) if for ev-
ery pair X ∼ X ′ of neighboring datasets and for every
subset S of outputs of A, it holds that Pr[A(X) ∈ S] ≤
eε · Pr[A(X ′) ∈ S] + δ, where the probabilities are over
the randomness in A.

For more background on DP, we refer the reader to the
monograph [31]. Combining multiple DP algorithms re-
sults in a DP algorithm, albeit with worse parameters.
This is captured next:

Lemma 2 (Basic Composition). Let A be an algo-
rithm that runs k ∈ N (possibly adaptive) algorithms
A1, . . . ,Ak on the same dataset1 such that Ai is (εi, δi)-
DP for εi, δi ≥ 0 for each i ∈ [k]. Then, A is
(
∑k
i=1 εi,

∑k
i=1 δi)-DP.

2.1.1 Gaussian Mechanism

Let X be any set, and f : Xn → Rd be an arbitrary
d-dimensional function. Its `2-sensitivity is defined as
∆2f := maxx∼x′ ‖f(x) − f(x′)‖. The Gaussian mecha-
nism with parameter σ adds independent noise sampled
from N (0, σ2) to each of the d coordinates of the output.

We let Φ denote the cumulative density func-
tion of the standard normal distribution, i.e., Φ(z) =

1√
2π

∫ t
−∞ e−y

2/2dy. The following theorem gives a tight
(ε, δ)-DP bound for the Gaussian mechanism under
adaptive compositions2.

Theorem 3 (Theorem 5 of [54]). Let ε > 0, δ ∈ (0, 1).
Let σ(ε, δ) denote the smallest value of σ such that
δ ≥ Φ

(
−εσ + 1

2σ
)
− eεΦ

(
−εσ − 1

2σ
)
. Then, applying

the Gaussian mechanism with standard deviation ∆
√
m·

1 By “adaptive”, we mean that the choice of algorithm Ai can
depend on the outputs of algorithms A1, . . . ,Ai−1. Here we as-
sume that A does not access the dataset except through algo-
rithms A1, . . . ,Ak.
2 We remark that the formulation below is slightly different
compared to the exact statement of Theorem 5 of [54], because
we use Φ instead of erfc and our noise is already scaled by ∆

√
m.

σ(ε, δ) on (possibly adaptive) functions f1, . . . , fm where
∆2fj ≤ ∆ for all j ∈ [m] is (ε, δ)-DP.

We note that, while this bound was stated in [54] for the
special case of scalar-valued functions and non-adaptive
composition, it extends readily to vector-valued func-
tions (since the spherical symmetry of the Gaussian
distribution can be used to reduce to the scalar case
without loss of generality) and adaptive composition.
For completeness, we provide a full proof (based on a
slightly different technique of Gaussian Differential Pri-
vacy [26]) in Appendix A.

2.1.2 Discrete Laplace Mechanism

The discrete Laplace distribution centered at 0 and with
scale b > 0, denoted by DLap(b), is the distribution with
the probability mass function equal to 1

C(b) · e
−|k|/b at

every integer k, where C(b) =
∑∞
k=−∞ e−|k|/b is the nor-

malization constant. The discrete Laplace mechanism
with parameter b applied to an integer-valued function
f adds to it noise sampled from the DLap(b) distribu-
tion. The `1-sensitivity of such a function f is defined
as ∆f := maxx∼x′ |f(x)− f(x′)|. The next lemma gives
a DP bound for the discrete Laplace mechanism.

Lemma 4. For every ε > 0, the discrete Laplace mech-
anism with parameter b ≥ ∆f/ε is ε-DP.

2.1.3 Sparse Vector Technique

We will use the so-called sparse vector technique
(SVT) [30, 39, 51]. The input to this method is a se-
quence f1, . . . , fk : Xn → R of functions together with
a threshold τ and a sensitivity parameter L; its out-
put is an index3 `∗ ∈ [k + 1]. We say that an algorithm
is (α, β)-accurate if its output `∗ satisfies the following
with probability at least 1− β: f`′(x) < τ for all `′ < `∗

and, if `∗ 6= k + 1, then f`∗(x) ≥ τ − α. Thus the goal
of an accurate algorithm is to find the first index `∗

at which f`∗(x) is above the given threshold. The next
theorem gives an accurate algorithm for this problem.

3 Note that, for notational convenience, we assume that the
method is allowed to return k + 1 rather than ⊥ often used in
literature.
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Theorem 5 (Sparse Vector Technique). Suppose that
the `1-sensitivities of f1, . . . , fk are at most L. For
every ε > 0 and β ∈ [0, 1/2], there exists an algo-
rithm AboveThresholdL,ε that is ε-DP and (O(L ·
log(k/β)/ε), β)-accurate.

For a more comprehensive review of SVT and its vari-
ants, see [43].

2.1.4 Partition Selection

The following primitive has been studied in prior works
including [24, 37].

Definition 6 (Partition Selection). Let ε > 0, δ ∈
(0, 1) be real numbers, and L and n be positive integers.
In the PartitionSelectionL,n,ε,δ(T ) problem, each of
n users gets up to L (possibly repeated) elements from
a (possibly infinite) set; let T be the union of all the el-
ements held by all users. The output is required to be
(ε, δ)-DP, and to consist of a subset S ⊆ T along with
a non-negative count associated with each element in S.
An algorithm for this problem is said to be α-accurate
if for each element of S whose count is at least 2α, it is
contained in the output set S and its associated count is
within an additive α from its true count (i.e., its total
number of occurrences in T ).

Thus the goal of an accurate algorithm is to obtain
the elements that occur at least the given frequency,
along with an estimate of the number of their oc-
currences. Note that we use user-level DP for Par-
titionSelection: a neighboring dataset results from
adding/removing a user’s (≤ L) points.

Theorem 7 (DP Partition Selection Algorithm). For
every ε > 0, δ ∈ (0, 0.5), and positive integers n and
L, there is an O(L · ln(1/δ)/ε)-accurate (ε, δ)-DP algo-
rithm for PartitionSelectionL,n,ε,δ.

The special case of Theorem 7 where L = 1 has been
studied in previous work, e.g., [17, 24]. Moreover, the
case where L ≥ 1 but where a user cannot hold re-
peated elements was studied in [10]. To the best of our
knowledge, the version in Theorem 7 which is needed
for our algorithms has not previously appeared in the
literature. We give the proof in Appendix B. (Also note
that the accuracy for PartitionSelection is a deter-
ministic guarantee since the noise has bounded support;
see Appendix B.1.)

2.2 Trajectories and Curves

A trajectory p is a sequence (p1, . . . , pm) of points, where
pi = (xi, yi) and m is the length of the trajectory. We
assume throughout that xi, yi ∈ [−R,R] for some R > 0.

A curve C is a continuous mapping from [0, 1] to
[−R,R]2.

2.2.1 Dissimilarity Metric (Fréchet distance)

We will use the Fréchet distance to measure the dis-
similarity between two curves. Recall that the Fréchet
distance between two curves C,C′ is defined as

F (C,C′) := inf
α,α′

sup
t∈[0,1]

‖C(α(t))− C′(α′(t))‖,

where the infimum is over all non-decreasing and sur-
jective functions α, α′ : [0, 1]→ [0, 1]. This distance is a
natural and popular curve dissimilarity measure, used
in different areas, see, e.g., [8, 56] and the references
therein.

Given a trajectory p = (p1, . . . , pm) together with
0 ≤ t1 < · · · < tm ≤ 1, we may view p as a piece-wise
linear curve C with the following parameterization: for
any t ∈ [t1, tm], write t = ζtj + (1 − ζ)tj+1 for some
ζ ∈ [0, 1] and j ∈ [m− 1], and then let

C(t) = ζpj + (1− ζ)pj+1.

Furthermore, let C(t) = p1 for all t < t1 and C(t) = pm
for all t > tm. Observe that changing t1, . . . , tm does not
change the Frechet distance between two trajectories.

By picking α such that α(ζj/m+(1−ζ)(j+1)/m) =
ζtj+(1−ζ)tj+1 for all ζ ∈ [0, 1], j ∈ [m−1] and similarly
picking α′, we arrive at the following observation:

Observation 8. For any pair p,p′ of trajectories each
of length m, we have F (p,p′) ≤ maxj∈[m] ‖pj − p′j‖.

2.3 Private Trajectory Aggregation

In the trajectory aggregation problem, we are given n

user-generated tracks p1, . . . ,pn. Our goal is to output
an “aggregated” trajectory p̂. When p1, . . . ,pn are gen-
erated from a probabilistic model with an underlying
ground truth p∗, we would like p̂,p∗ to be close in the
Fréchet distance. When there is no such ground truth,
we simply take p∗ to be the average p̂ of the input
tracks: assuming all tracks have the same number m of
points, we compute p̂ by averaging each of the m points
from all tracks.
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In the private version of the problem, the algorithm
computing the aggregation is required to be DP. Note
that we consider the stringent user-level DP guarantee
where the output of the algorithm is required to remain
indistinguishable if the entire trajectory of any user is
added or removed (instead of the weaker record-level
notion where the requirement would only apply to the
addition or removal of a single point from one user’s
trajectory).

3 Algorithms
In this section, we present our track aggregation algo-
rithms. Before we do so, let us try to understand why
direct applications of known algorithms fail.

Perhaps the simplest way one could attempt to solve
the track aggregation problem is to view each track as a
(2m)-dimensional vector and use the Gaussian mecha-
nism to aggregate the tracks. Unfortunately, this results
in poor utility mainly because the noise required to be
added to each point is proportional to the parameter
R (together with a dependency on the privacy parame-
ters). Recall that R can be very large, e.g., [−R,R]2 is
supposed to cover all areas of interest, such as an en-
tire country or a continent; this results in an amount of
noise that far exceeds the sum of the coordinates (for
reasonable values of n and privacy parameters).

We instead propose a simple, but effective, strategy
to bypass this issue via what we call a bounding cir-
cle (and bounding box). Roughly speaking, we privately
identify a circle that is much smaller than [−R,R]2,
which contains most of the points that we would like
to aggregate, and only adds noise proportional to the
radius of the circle (instead of R). This is our first algo-
rithm, named GaussianGlobalBoundingCircle, be-
cause the bounding circle is still required to “globally”
cover almost all points in the tracks. Our second algo-
rithm is a refinement of this idea, in which we instead
find a “local” bounding circle that is sufficient to con-
tain almost all points for two consecutive indices in the
sequence. We then aggregate the points in each index,
and move the circle along as we progress in the sequence.
This allows us to add noise proportional to the radius
of the local bounding circle, which in turn can be much
smaller than that of the global bounding circle.

3.1 Bounding Circle Computation

Our algorithm employs what we call a bounding box and
a bounding circle. The former is simply a square box
[xlo, xup)× [ylo, yup) while the latter is a circle of radius
r centered at a point (x, y).

We provide an algorithm, denoted by Bounding-
Circle (Figure 1), that, starting with the trivial bound-
ing box [−R,R]2, refines it into a smaller bounding circle
that can be later used in aggregation. Our algorithm is
divided into two phases: in the first phase, we use the
sparse vector technique (Theorem 5) to find the box side
length r. To compute each fi(S), we divide [−R,R]2 into
grid cells of side length r = R/2k+1−i and let fi(S) de-
note the largest number of points that belong to the
same cell. Notice that fi(S) is increasing in i and, that
if fi(S) exceeds the threshold of τ , then there is a “good”
bounding box of length r = R/2k+1−i that contains τ
points. The latter is not yet sufficient to provide a suf-
ficient accuracy guarantee because it is possible that
there is in fact a bounding box of length r that contains
say 1.1τ points but our division cuts this cell into four
pieces where each piece contains 1.1τ/4 < 0.3τ points.
This issue however can be solved relatively easily by
taking a “random shift” (denoted by sx, sy in the algo-
rithm) before dividing the initial region into grid cells.

The full pseudo-code of our algorithm is presented
in Figure 1. We remark that for the purpose of our ex-
periments, we implement AboveThreshold as in [31,
Algorithm 1] and implement PartitionSelection as
in [24, 37]. Since the primitives used in our algorithm
are just the sparse vector technique and the partition se-
lection algorithm, it is simple to argue its privacy guar-
antee:

Lemma 9. Algorithm BoundingCircle is (εb, δb)-
DP.

Proof of Lemma 9. First, observe that the sensitivity of
each of f1, . . . fk is at most L. Indeed, the input consists
of L points per user and hence adding/removing a user
can change fi by at most L. Thus, by Theorem 5, the
index i∗ computed in line 10 of Algorithm 1 is εradius

b -
DP. Moreover, the output {ĉountG : G ∈ Gr} of the call
on line 17 to the PartitionSelectionL,n,ε,δ procedure
is (εbox

b , δb)-DP by Theorem 7. By basic composition
(Lemma 2), the output c, r of Algorithm 1 is (εradius

b +
εbox
b , δb)-DP. The lemma now follows from the setting of
εradius
b , εbox

b in line 3 of Algorithm 1.

We remark that other algorithms for similar tasks
(sometimes referred to as 1-Cluster in literature) have
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Fig. 1. Algorithm for bounding circle.

Algorithm BoundingCircle.

1: Input: A multiset S of points, threshold τ ∈ N of
desired number of points in the circle.

2: Parameters: Privacy parameters εb, δb > 0, maxi-
mum number L ∈ N of points from each user, max-
imum depth k ∈ N of radius search.

3: εradius
b , εbox

b ← εb/2
{Phase I: Find Radius}

4: sx, sy ← uniform random number ∈ [−R, 0]
{Random Shifts}

5: for ` = 1, . . . , k do
6: r ← R/2k+1−`

7: Gr ← {[x, x+ r)× [y, y + r) | x ∈ {−R+ sx,−R+
r + sx, . . . , 2R + sx} and y ∈ {−R + sy,−R + r +
sy, . . . , 2R+ sy}}

8: f`(S)← maxG∈Gr
|S ∩G|

9: end for
10: `∗ ← AboveThresholdL,εradius

b
(f1, . . . , fk, τ)

11: r ← R/2k+1−`∗

{Phase II: Find Box}
12: T ← empty multiset.
13: for all i ∈ S do
14: G← interval in Gr that contains i
15: Add G to multiset T
16: end for
17: (ĉountG)G∈T ← PartitionSelectionL,n,εbox

b
,δb

(T )
18: [xlo, xup)× [ylo, yup)← arg maxG∈T ĉountG
19: c = ((xlo + xup)/2, (ylo + yup)/2)
20: return c, r

been devised in [36, 48–50], but all of these works mainly
focus on theoretical guarantees for high dimensions and
thus their algorithms are much more involved. Our algo-
rithm is simple and still yields a satisfactory guarantee
for our purposes.

3.2 Baseline: Global Bounding Circle

Our first algorithm is one that simply computes a
bounding circle for all the input points. Then, for each
index j ∈ [m], it computes the aggregate by projecting
the points onto the ball and aggregating them using the
Gaussian mechanism. For the latter, note that in order
to keep the sensitivity small we have to subtract the
center from each projected point before adding it back
to the aggregate. Figure 2 contains a formal description.
It deviates slightly from the previous simplified descrip-

tion in that it also contains an “enlargement factor” λ
that gets multiplied to the radius r (Line 8). This helps
us avoid considering circles that are too small, which
would prevent us from capturing the points outside the
bounding circle. Indeed, if a bounding circle is too small,
then many points might be outside it, resulting in error
as points are projected to it before averaging. On the
other hand, if the bounding circle is too large, then we
have to add a larger noise, also resulting in more error.
From our experience, the former error is larger, hence
we enlarge the circle.

In Line 6 of the algorithm, the constant 0.6 is an
arbitrary choice; any value more than 0.5 works and will
ensure that the circle contains both the first points and
second points from the tracks. In Line 12, it is necessary
to divide by n̂ to hide the the number of points, since the
DP notion we use is under addition/removal of users.

Fig. 2. Algorithm for global bounding circle.

Algorithm GaussianGlobalBoundingCircle.

1: Input: Trajectories p1, . . . ,pn each containing m
points.

2: Parameters: Privacy parameters εa, δa, εb, δb, εc >
0, ratio λ > 1 used to inflate the bounding circle,
maximum depth k ∈ N of radius search in Bound-
ingCircle.

3: n̂← n+ DLap(1/εc)
4: S ← multiset of all points from p1, . . . ,pn

5: L← m

6: τ ← 0.6n̂m
7: c, r ← BoundingCircleεb,δb,L,k(S, τ)
8: r′ ← λ · r
9: σ′ ←

√
mr′ · σ(εa, δa) {From Theorem 3}

10: Π ← projection operator from R2 to Br′ , i.e., Π(x)
is the point in Br′ closest to x

11: for j ∈ [m] do
12: p̂′j ←

1
n̂

((∑
i∈[n] Π(pij − c)

)
+N (0, σ′2)⊗2

)
13: p̂j ← c+ Π(p̂′j)
14: end for
15: return p̂ = (p̂1, . . . , p̂m)

Due to the projection and subtraction, it is easily
seen that the `2-sensitivity of each point in the aggre-
gation is at most r′. This allows us to argue the privacy
of the algorithm as follows.

Lemma 10. Algorithm GaussianGlobalBounding-
Circle is (εa + εb + εc, δa + δb)-DP.
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Proof of Lemma 10. By the DP property of the discrete
Laplace mechanism (Lemma 4), the value n̂ computed
on line 3 of Figure 2 is εc-DP. Using the DP property of
the BoundingCircle algorithm (Lemma 9) along with
basic composition (Lemma 2), we get that the center c
and radius r computed on Line 7 of Figure 2 are (εb +
εc, δb)-DP. Finally, let X = R2, and consider the func-
tion f : Xn → R2 given by f(x) :=

∑
i∈[n] Πr′(xi − c)

(where c is fixed, as computed in line 7). Note that the
`2-sensitivity of f satisfies ∆2(f) ≤ r′. Thus, using the
DP property of the Gaussian mechanism (Lemma 3)
along with another application of basic composition
(Lemma 2), we conclude that the output p̂ of Figure 2
is (εa + εb + εc, δa + δb)-DP.

3.3 Improvement: Local Bounding Circle

Our improved algorithm, denoted by GaussianLocal-
BoundingCircle, instead finds the bounding circle us-
ing just the first two points from each track. This bound-
ing circle is then used to aggregate the first points of the
track. We then move the center of the bounding circle to
this aggregated point. This process is repeated for the
ith point in the tracks for i = 2, . . . , n, where the center
used is the result from the previous (i.e., (i − 1)th) ag-
gregation. A demonstration of the algorithm is shown
in Figure 4.

The privacy analysis of this algorithm is similar to
its global bounding circle counterpart.

Lemma 11. Algorithm GaussianLocalBounding-
Circle is (εa + εb + εc, δa + δb)-DP.

We end by noting that Figure 3 runs in time O(mn+kn),
because finding the bounding circle (Line 7) takes O(kn)
time whereas the remaining steps require O(mn) time.
Note that we typically set k < m; in this regime of
parameters, the running time is O(mn), which is linear
in the input size.

Proof of Lemma 11. By the DP property of the discrete
Laplace mechanism (Lemma 4), the value n̂ computed
on line 3 of Figure 3 is εc-DP. Using the DP property
of the BoundingCircle algorithm (Lemma 9) along
with basic composition (Lemma 2), we get that the
center c0 and radius r computed on line 7 of Figure 3
are (εb + εc, δb)-DP. Finally, let X = R2, and consider
the functions fj : Xn → R2, for all j ∈ [m], given by
fj(x) :=

∑
i∈[n] Πr′(xi − cj−1) (where cj ’s are set on

lines 7 and 14). Note that cj−1 depends on the outputs
of f1, . . . , fj−1, and that the `2-sensitivity of each fj sat-

Fig. 3. Algorithm for local bounding circle.

Algorithm GaussianLocalBoundingCircle.

1: Input: Trajectories p1, . . . ,pn each containing m
points.

2: Parameters: Privacy Parameters εa, δa, εb, δb, εc >
0, the ratio λ > 1 used to inflate the bounding circle,
maximum depth k ∈ N of radius search in Bound-
ingCircle.

3: n̂← n+ DLap(1/εc)
4: S ← {p1

1, p
1
2, . . . , p

n
1 , p

n
2 } {First two points}

5: L← 2
6: τ ← 1.2n̂
7: c0, r ← BoundingCircleεb,δb,L,k(S, τ)
8: r′ ← λ · r
9: σ′ ←

√
mr′ · σ(εa, δa) {From Theorem 3}

10: Π← projection operator from R2 to Br′
11: for j ∈ [m] do
12: p̂′j ←

1
n̂

((∑
i∈[n] Π(pij − cj−1)

)
+N (0, σ′2)⊗2

)
13: p̂j ← cj−1 + Π(p̂′j)
14: cj ← p̂j
15: end for
16: return p̂ = (p̂1, . . . , p̂m)

isfies ∆2(fj) ≤ r′. Thus, using the DP property of the
Gaussian mechanism (Theorem 3 applied to the com-
position of m adaptive queries) along with another ap-
plication of basic composition (Lemma 2), we conclude
that the output p̂ of Figure 3 is (εa + εb + εc, δa + δb)-
DP.

4 Utility Analysis
In this section, we prove that our GaussianLocal-
BoundingCircle algorithm outputs a provably good
aggregate trajectory, under a few mild assumptions. The
track aggregation problem has typically been formu-
lated as an optimization problem, in which the goal is
to minimize a certain (1-mean or 1-median) objective
function (e.g., [14, 15, 27]). Unfortunately, these algo-
rithms, which have some theoretical guarantees, are far
more complicated than ours, and it is unclear how to
make them provably DP. On the other hand, there are
several works that provide algorithms for track aggre-
gation, but with no performance guarantees (e.g., [16]).



Private Aggregation of Trajectories 633

(a) (b) (c) (d)

Fig. 4. An illustration of GaussianLocalBoundingCircle algorithm at stage i of the algorithm. Red objects correspond to the ith
stage and green to the (i + 1)th stage. For a given color, the cloud of points are from the input trajectories, the one marked × is the
privately aggregated point, and the circle is the bounding circle. In (b), the ith privately aggregated point is first obtained by a noisy
average of the ith points from the trajectories projected onto the ith bounding circle. In (c), the (i + 1)th bounding circle is centered
at the ith aggregated point and has the same radius as the ith circle.

4.1 Model and Assumptions

To quantify the performance of our algorithms, we fol-
low a modeling-based approach: we assume that there
is an underlying curve from which each input trajec-
tory is observed, and our objective is to minimize the
(Fréchet) distance between the output (aggregated) tra-
jectory and the underlying curve.

Even in this setting, it is still not yet possible to
prove any non-trivial bound. For example, if all the
points in the trajectories are just the same point, then
there is no way to reconstruct other points on the curve.
As such, we need additional assumptions to allow us to
prove concrete guarantees. In addition to the assump-
tion that every point comes from the underlying curve
that we call accurate samples, roughly speaking, there
are three properties we assume:
– Lipschitzness: no two consecutive points are too far

apart.
– Initial Inverse-Lipschitzness: the first two points in

each trajectory are sufficiently far apart.
– Cross-User Synchronization: the jth points of all

trajectories come before the (j + 1)th points of all
trajectories.

The Lipschitzness property is perhaps the most in-
tuitive: every data-collection device (e.g., GPS) that
records at regular time intervals has a physical limita-
tion on how far the object can move during that interval.
Initial inverse-Lipschitzness generally says that the user
cannot stay idle at the starting point; it is typically not
hard to enforce, e.g., by removing the first few points
that are too close to the starting point. Cross-user syn-
chronization is perhaps the hardest to motivate but it
can be reasonable in the case where the object moves

at roughly the same rate along the curve (e.g., trains or
scheduled buses); in other cases, one might attempt to
achieve it by interpolating and resampling each trajec-
tory at the same rate. (Pre-processing does not affect
DP guarantees when it is applied on each input individ-
ually.)

We formalize these properties in Assumption 12. Be-
fore we move forward, we remark that our guarantees
still hold for relaxed versions of these assumptions. We
defer this discussion to Section 4.4.

Assumption 12. There exists a curve C : [0, 1] →
[−R,R]2 and an number rlo, rup ∈ [γR,R] where γ ∈
(0, 1] such that:
– (Accurate Samples) For every i ∈ [n], j ∈ [m], there

exists a tij ∈ [0, 1] such that pij = C(tij).
– (Cross-User Synchronization) Let tmax

j :=
maxi∈[n] t

i
j and tmin

j := mini∈[n] t
i
j . Then, for all

j ∈ [m− 1], tmin
j+1 > tmax

j .
– (Lipschitzness) For every j ∈ {0, . . . ,m} and t, t′ ∈

[tmin
j , tmax

j+1 ], we have ‖C(t)− C(t′)‖ < rup where we
use the convention tmin

0 = tmax
0 = 0 and tmin

m+1 =
tmax
m+1 = 1.

– (Initial Inverse-Lipschitzness) For every i ∈ [n],
‖C(ti1)− C(ti2)‖ ≥ rlo.

We stress that Assumption 12 is made only for utility
analysis and not for privacy, which holds even for worst-
case datasets. Also note that there is no obvious way to
check if real-world datasets satisfy Assumption 12.

Given Assumption 12, we can establish the follow-
ing bound on the Fréchet distance between the underly-
ing curve and the DP aggregated trajectory output by
GaussianLocalBoundingCircle.
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Corollary 13. Let εa = εb = εc = ε/3 and δa =
δb = δ/2. Suppose that Assumption 12 holds with
γ ≥ 2−k and rup/rlo = O(1). If n ≥ κ(log(k/δ) +√
m logm log(1/δ))/ε for some sufficiently larger con-

stant κ and if the parameter λ of the algorithm is a
sufficiently large constant, then with probability at least
3/4, the output p̂ of GaussianLocalBoundingCircle
satisfies F (C, p̂) ≤ O(rup).

We remark that our bound is at least Ω(rup) regard-
less of the value of n. This might be surprising at first
glance, but it is actually to be expected: even under
Assumption 12, it is still possible that all trajectories
are the same and every pair of consecutive points are
rup apart. In this case, there is no way to reconstruct
the points on the curve between these m points, and
thus a Fréchet distance of Ω(rup) is necessary. Note that
if we were to use the global bounding circle, the error
bound would scale linearly with the radius of the small-
est ball that contains all points, which may be as large
as m × rup. (Similarly, the trivial bounding box would
lead to a bound that scales linearly with R.)

4.1.1 Concrete Parameters and Bounds

Although for simplicity of presentation we did not com-
pute the exact constants in our theoretical analysis
(e.g., κ in Corollary 13), we remark that our bounds
can still give fairly concrete guarantees. For example,
suppose that k = 20, which allows our assumption on
rlo, rup (in Assumption 12) to be [2−20R,R]. If we take
the upper bound R to be generous, e.g., the diame-
ter of Earth, 2−20R is still less than 15 meters; this
range is likely to be sufficient for any real-world geo-
graphic applications. Similarly, suppose that we have
as many as m = 1000 points per trajectory. Further-
more, suppose that we are selecting the privacy param-
eters ε, δ to be 1 and 10−8 respectively. Then, the quan-
tity (log(k/δ) +

√
m logm log(1/δ))/ε in Corollary 13 is

smaller than 165. Even though we did not calculate κ
precisely, it is not hard to verify that it is no more than
20 when rup/rlo = 2. In this case, we therefore only
require n ≥ 3300 trajectories for our theoretical guaran-
tees to hold.

4.1.2 Proof Overview

In fact, Corollary 13 is a simplified version of a more
general guarantee from Theorem 18, which we state in

Section 4.3 below. We now briefly describe the high-level
ideas of the proof. First, we show that the bounding
circle we find is “good”. Roughly speaking, this means
that the starting circle c0, r should contain all the first
points in the trajectories, and that the value of r is in the
“right” range. The latter is important because if r were
too large, we would be adding too much noise; on the
other hand, if r were too small, the bounding circles may
not contain subsequent points in aggregation, leading to
large errors. Indeed, we will show, using the guarantee of
AboveThreshold, that r is between Ω(rlo) and O(rup),
meaning that if we set λ sufficiently large, we will have
r � rup. The latter, together with concentration bounds
for the (discrete) Laplace and Gaussian noise distribu-
tions, will allow us to argue that all the points we ag-
gregate in each step always belong to the bounding cir-
cle. This means that the error between the (unnoised)
average and the output p̂ only comes from the Gaus-
sian noise, which we can bound. Furthermore, we show
below that, when Assumption 12 holds, the (unnoised)
average is a good approximation of the underlying curve
(Lemma 15). Combining these two bounds gives us our
main utility guarantee.

4.1.3 Additional Notation and Conventions

For every j ∈ [m], let p̃j = 1
n

(∑
i∈[n] Πj(pij)

)
and let

p̃ = (p̃1, . . . , p̃m) denote the (unnoised) average trajec-
tory. In this section, we will assume that κ is a suffi-
ciently large constant and that β is any real value in
(0, 0.5); these will not be made explicit in the formal
statements for brevity.

The following are simple useful observations that
can be obtained from Assumption 12. The first is an
upper bound on the distance between two nearby points,
using the Lipschitzness property.

Observation 14. If Assumption 12 holds, then for ev-
ery i, i′ ∈ [n] and j, j′ ∈ [m] where |j − j′| ≤ 1, we have
‖pij − pi

′

j′‖ ≤ rup.

Proof of Observation 14. We may assume without loss
of generality that j ≤ j′. Recall that pij = C(tij), pi

′

j′ =
C(ti′j′). Appealing to Cross-User Synchronization, we
have tij , t

i′

j′ ∈ [tmin
j , tmax

j′ ]. Applying the Lipschitzness
property then yields the desired bound.

The second is an upper bound on the Fréchet distance
between the underlying curve and the unnoised average
trajectory, obtained by a careful case analysis.
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Lemma 15. If Assumption 12 holds, then we have
F (C, p̃) ≤ rup.

Proof of Lemma 15. Let us view p̃ = (p̃1, . . . , p̃m) as a
curve C′ with the following parameterization (see Sec-
tion 2.2.1): tj = tmin

j for all j ∈ [m]. More specifically,
for any t ∈ [tmin

1 , tmin
m ), write t = ζtmin

j + (1− ζ)tmin
j+1 for

some ζ ∈ [0, 1) and j ∈ [m+ 1], and then let

C′(t) = ζp̃j + (1− ζ)p̃j+1.

Furthermore, for t ∈ [0, tmin
1 ) and t ∈ [tmin

m , 1), we let
C(t) = p̃1 and C(t) = p̃m respectively.

Notice that we have

F (C, p̃) = F (C,C′) ≤ max
t∈[0,1]

‖C(t)− C′(t)‖2.

Thus, it suffices to show that ‖C(t)− C′(t)‖2 ≤ rup for
all t ∈ [0, 1]. To prove this, consider three cases, based
on whether t < tmin

1 , t ∈ [tmin
1 , tmin

m ) or t ≥ tmin
m .

Case I: t < tmin
1 . We have

‖C(t)− C′(t)‖2 = ‖C(t)− p̃1‖2

=

∥∥∥∥∥∥C(t)− 1
n

∑
i∈[n]

pi1

∥∥∥∥∥∥
2

≤ 1
n

∑
i∈[n]

‖C(t)− pi1‖2

= 1
n

∑
i∈[n]

‖C(t)− C(ti1)‖2.

Notice that each of t, t11, . . . , tn1 belongs to [0, tmax
1 ] =

[tmin
0 , tmax

1 ]. Applying the Lipschitzness condition from
Assumption 12, we can conclude ‖C(t)−C′(t)‖2 ≤ rup.

Case II: t ≥ tmin
m . Similar to the previous case, we

have ‖C(t)− C′(t)‖2 ≤ 1
n

∑
i∈[n] ‖C(t)− C(tim)‖2 ≤ rup

where the latter inequality follows from the Lipschitz-
ness condition from Assumption 12 together with the
fact that t, t1m, . . . , tnm ∈ [tmin

m , 1] = [tmin
m , tmax

m+1].
Case III: t ∈ [tmin

1 , tmin
m ). In this case, t = ζtmin

j +
(1 − ζ)tmin

j+1 for some ζ ∈ [0, 1) and j ∈ [m]. We may
bound ‖C(t)− C′(t)‖2 as follows:

‖C(t)− C′(t)‖2
= ‖C(t)− ζp̃j − (1− ζ)p̃j+1‖2
≤ ζ · ‖C(t)− p̃j‖2 + (1− ζ) · ‖C(t)− p̃j+1‖2

= ζ ·

∥∥∥∥∥∥C(t)− 1
n

∑
i∈[n]

pij

∥∥∥∥∥∥
2

+ (1− ζ) ·

∥∥∥∥∥∥C(t)− 1
n

∑
i∈[n]

pij+1

∥∥∥∥∥∥
2

≤ ζ

n

∑
i∈[n]

∥∥C(t)− pij
∥∥

2 + 1− ζ
n

∑
i∈[n]

∥∥C(t)− pij+1
∥∥

2

= ζ

n

∑
i∈[n]

∥∥C(t)− C(tij)
∥∥

2

+ 1− ζ
n

∑
i∈[n]

∥∥C(t)− C(tij+1)
∥∥

2 .

Finally, observe that t, t1j , . . . , t
n
j , t

1
j+1, . . . , t

n
j+1 ∈

[tmin
j , tmax

j+1 ]. Thus, applying the Lipschitzness condition
from Assumption 12, we can conclude that ‖C(t) −
C′(t)‖2 ≤ rup in this case as well.

4.2 Bounding Circle Guarantee

To prove that the bounding circle we compute is “good”,
we start by proving the guarantee on the radius r that
is found:

Lemma 16. Suppose that Assumption 12 holds with
γ ≥ 2−k. If n ≥ κ(log(1/β)/εc + log(k/β)/εb), then with
probability 1 − 5β, the value r computed on line 11 of
Figure 1 satisfies r ∈ [rlo/

√
2, 2rup/β].

Proof of Lemma 16. First, with probability 1 − β, we
have that |n − n̂| ≤ ∆n = O(log(1/β)/εc). Conditioned
on this event, we will separately prove that r ≥ rlo/

√
2

holds with probability 1− β and that r ≤ 2rup/β holds
with probability 1 − 3β. A union bound will yield the
desired claim.

First, let us show that r ≥ rlo/
√

2 with probability
1 − β. Let `∗ be the index returned on line 10. Notice
that if `∗ = k + 1, then we simply have that r = R

and thus the condition is trivially satisfied. Otherwise,
if i∗ ≤ k, then the guarantee of the AboveThreshold
algorithm (Theorem 5) ensures that, with probability
1−β, we have f`∗(S) ≥ τ −α = 1.2n̂−O(log(k/β)/εb) ≥
1.2n − ∆n − O(log(k/β)/εb). When n ≥ κ · log(k/β)/εb
for a sufficiently large constant κ, this lower bound is
larger than n. This means that for some i ∈ [n], both
pi1 = C(ti1) and pi2 = C(ti2) belong to some cell G ∈ Gr.
This implies that ‖pi1−pi2‖ ≤

√
2·r. However, the inverse

Lipschitzness property in Assumption 12 asserts that
the left hand side quantity must be at least rlo. As such,
we can conclude that r ≥ rlo/

√
2 as desired.

Next, we show that r ≤ 2rup/β with probability
1 − 3β. If rup ≥ βR/2, then this obviously holds; thus,
we may assume henceforth that rup < βR/2. Observa-
tion 14 implies that p1

1, p
1
2, . . . , p

n
1 , p

n
2 all lie within some

rup × rup box B. For r0 ≥ rup, observe that the proba-
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bility (over sx, sy) that B is a subset of some G ∈ Gr0 is
at least 1− 2rup/r

0.
Let ˆ̀ := k+1−blog2(βR/rup)c and r̂ = R/2k+1−ˆ̀≥

rup/β. From the last bound derived in the previous
paragraph, B is contained in some G ∈ Gr̂ with prob-
ability 1 − 2β. When this occurs, we have fˆ̀(S) ≥ n.
Moreover, the guarantee of the AboveThreshold algo-
rithm (Theorem 5) ensures that, with probability 1−β,
f`(S) < τ < n for all ` < `∗. This means that `∗ ≥ ˆ̀.
Since we eventually set r = 2k+1−`∗ ≥ 2k+1−ˆ̀, we
have r ≤ 2rup/β with probability at least 1 − 3β as
desired.

Having argued that r is in the desired range, we can now
show that the bounding circle itself satisfies two prop-
erties that will allow the analysis of the noise addition
step to go through.

Lemma 17. Suppose that Assumption 12 holds with
γ ≥ 2−k. If n ≥ κ(log(1/β)/εc+log(k/β)/εb+(rup/rlo)2 ·
log(1/δb)/εb) and λ ≥ 3(rup/rlo)/β, then with probabil-
ity 1−5β, then center c0 and radius r computed on Line
7 of Algorithm 3 satisfies the following:
1. p1

1, . . . , p
n
1 ∈ Bλr(c0), and,

2. For every i ∈ [n] and j ∈ [m − 1], ‖pij+1 − p̃j‖ ≤
0.5λr.

Proof of Lemma 17. From Lemma 16, we have r ∈
[rlo/
√

2, 2rup/β] with probability 1−5β. Recall from the
proof of Lemma 16 that p1

1, p
1
2, . . . , p

n
1 , p

n
2 belong to some

rup × rup box B. Hence, there exists G ∈ Gr s.t.

|S ∩G| ≥ 2n(r/rup)2/4
(From r ≥ rlo/

√
2) ≥ n(rlo/rup)2/4
≥ 0.25κ · log(1/δb)/εb.

When κ is sufficiently large, Theorem 7 implies that
the error incurred in each reported count is less than
|S ∩ G|/2. This means that the selected box must con-
tain at least one point pij ∈ S (where i ∈ [n] and
j ∈ {1, 2}). Conditioned on this, we have ‖c − pij‖ ≤
r/
√

2 ≤
√

2rup/β, which, from the fact that all points in
S belong to an rup × rup box B, implies that ‖c− p‖ ≤
(
√

2/β + 1)rup. From our choice of λ, this is no more
than λ · r. Hence, we have that p1

1, . . . , p
n
1 ∈ Bλr(c0) as

desired.
We can now prove the second property. By the trian-

gle inequality and Observation 14 respectively, we have

‖pij+1 − p̃j‖ ≤
1
n

∑
i′∈[n]

∥∥∥pij+1 − pi
′

j

∥∥∥ ≤ 1
n

∑
i∈[n]

rup = rup.

Finally, from r ≥ rlo/
√

2 and λ ≥ 3(rup/rlo)/β, we can
indeed conclude that ‖pij+1− p̃j‖ ≤ 0.5λr as desired.

4.3 Aggregation Error Guarantee

By using the guarantee of the bounding circle from the
previous section and the concentration of the noise dis-
tributions, we can now prove the full utility guarantee
as stated below in Theorem 18. Note that Corollary 13
is an immediate consequence of Theorem 18 because it
is known that σ(εa, δa) ≤ O(

√
log(1/δa)/εa) [31].

Theorem 18. Let

Λ :=
(√

m log(m/β) · σ(εa, δa) + log(1/β)/εc
)
.

Suppose that Assumption 12 holds with γ ≥ 2−k. If n ≥
κ(log(1/β)/εc + log(k/β)/εb + (rup/rlo)2 · log(1/δb)/εb +
Λ) and λ ≥ 3(rup/rlo)/β, then with probability at least
3/4, the output p̂ of GaussianLocalBoundingCircle
satisfies

F (p̃, p̂) ≤ rup ·O(Λ/n), and

F (C, p̂) ≤ rup (1 +O(Λ/n)) .

Proof of Theorem 18. Notice that, from Lemma 15 and
the triangle inequality, F (p̃, p̂) ≤ rup · O(Λ/n) implies
F (C, p̂) ≤ rup (1 +O(Λ/n)). Thus, it suffices to just
show the former.

To do this, observe that, with probability 1− β, we
have |n − n̂| ≤ ∆n := O(log(1/β)/εc). Secondly, from
standard concentration bounds for the Gaussian distri-
bution, we also have that with probability 1 − β, the
Gaussian noise random variables sampled on line 12 all
have magnitude at most ∆g := O

(√
log(m/β) · σ′

)
.

Thirdly, from Lemma 17, with probability 1 − 5β, we
have that

p1
1, . . . , p

n
1 ∈ Bλr(c0), (1)

and

‖pij+1 − p̃j‖ ≤ 0.5λr, (2)

for all i ∈ [n] and j ∈ [m − 1]. We will condition on all
these events for the rest of the proof. Since the second
event holds, we have∥∥∥∥∥∥n̂ · p̂′j −

∑
i∈[n]

(
Π(pij)− cj−1

)∥∥∥∥∥∥ ≤ √2 ·∆g. (3)

We will now show by an induction on j that ‖p̂j− p̃j‖ ≤
λr · O(Λ/n) for all j ∈ [m]. Notice that Observation 8
then implies that F (p̃, p̂) ≤ λr ·O(Λ/n) as desired.
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Base case. From (1), we can conclude that pi1 −
c0 = Π(pi1 − c0) for all i ∈ [n]. Thus, from (3) and the
definition of p̃i1, we get∥∥n̂ · p̂′1 − n · (p̃1 − c0)

∥∥ ≤ √2 ·∆g. (4)

As a result, from the triangle inequality, we can derive

‖p̂1 − p̃1‖

≤ 1
n
‖n̂ · (p̂1 − c0)− n · (p̃1 − c0)‖

+ 1
n
‖(n− n̂) · (p̂1 − c0)‖

= 1
n

∥∥n̂ ·Π(p̂′1)− n · (p̃1 − c0)
∥∥+ 1

n
‖(n− n̂) · p̂′1‖

≤ 1
n

∥∥n̂ · p̂′1 − n · (p̃1 − c0)
∥∥+ 1

n
‖(n− n̂) · p̂′1‖

(4)
≤

O(∆g)
n

+ O(∆n)
n

· λr

≤ λr ·O(Λ/n),

where the second inequality follows from the fact that
p̃1 − c0 ∈ Br′ and thus the projection Π does not in-
crease the distance. Thus, for sufficiently large κ, the
right hand side is at most 0.5λr.

Inductive step. Suppose that the statement holds
for some j ∈ [m − 1]. Observe that the error guarantee
‖p̂j − p̃j‖ ≤ λr · O(Λ/n) implies that ‖p̂j − p̃j‖ ≤ 0.5λr
when κ is sufficiently large. This, together with (2), en-
sures that pij+1−cj = Π(pij+1−cj). The rest of the proof
of the inductive step then follows exactly the same as
that of the base case, with 0, 1 replaced by j, j + 1 re-
spectively.

4.4 Robustness of the Algorithm

We conclude by discussing relaxations of Assumption 12
for which a guarantee similar to Corollary 13 still holds.
Notice that when averaging each point, we can tolerate
an additional error of c · rup for a sufficiently small con-
stant c while still retaining essentially the same error;
notice also that, due to the projection, each point con-
tributes only up to λ · rup to the summation. Similarly,
in the bounding box accuracy proof, it suffices if, say,
a 0.6 fraction of the points belong to the “correct” box
B. This means that we can maintain the guarantee as
in Corollary 13 while (i) allowing an Oβ(rup/λ) fraction
of points at each index to be completely arbitrary and
(ii) for the remaining points, allowing them to deviate
from its corresponding point on the curve by as much as
O(rup). This theoretically demonstrates the robustness
of our method.

5 Experiments
In this section, we present experimental results evaluat-
ing the performance of our algorithm compared to the
baselines, and the effect of various parameters.

As stated earlier, we use the Fréchet distance as
the dissimilarity metric; we remark that we also ex-
perimented with other metrics including the dynamic
time warping (DTW) distance and the general trends
are similar. We omit these results for brevity.

5.1 Datasets Description

We have conducted experiments on three data sets.

5.1.1 Pigeon Flight Trajectory Data

This dataset (Pigeon) consists of flight paths of 7 pigeons
released 24 times from one site and 8 pigeons released
20 times from three other sites each [44]. All four flight
paths lead to the same destination. While pigeons have
no privacy concerns, we use this dataset as a proxy for
real-world trajectories. As we will see, there is a lot of
variation in their flight paths (compared to what one
would expect in a GPS dataset from public transport),
which will test the robustness of our algorithm against
data with outliers.

5.1.2 NYC Bus Data

This dataset (NYCBus)4 contains bus location (lati-
tude and longitude), route name, and timestamp data
(among other fields), collected from the NYCMTA SIRI
Real Time data feed and the MTA GTFS Schedule data.
We use 101 trajectories representing unique routes from
the NYC Bus Data in our experiments.

We use each trajectory as a ground truth and gen-
erate n different trajectories by sampling m equidis-
tant points from it and shifting them randomly. More
precisely, let p∗ = (p∗1, . . . , p∗M ) be a trajectory in the
NYC Bus Data, where p∗i consists of the true latitude
and longitude of the bus route; this naturally defines a
piecewise-linear curve C∗, which we assume to be the
ground truth. We define m points c∗1, . . . , c∗m on C∗ such

4 Available at https://www.kaggle.com/stoney71/new-york-
city-transport-statistics.

https://www.kaggle.com/stoney71/new-york-city-transport-statistics
https://www.kaggle.com/stoney71/new-york-city-transport-statistics
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that they are placed at equal distances with c∗1 = p∗1
and c∗m = p∗M . For convenience, let c∗0 = 2c∗1 − c∗2 and
c∗m+1 = 2c∗m − c∗m−1. We next perturb these points to
mimic the behavior of a user traveling on the curve C;
this defines a sample trajectory from C∗. To generate
the sample, we first uniformly sample x from [−0.2, 0.2].
If x ≥ 0, we define pi = c∗i + x · (c∗i+1 − c∗i ) for i ∈ [m];
if x < 0, we define pi = c∗i + x · (c∗i − c∗i−1). Now,
p = (p1, . . . , pm) is the perturbed trajectory given by
our model, generated from the ground truth p∗.

We repeat this process n times for each of the 101
trajectories, and the resulting n trajectories are then
used as the input to our algorithms and to the baselines
for DP trajectory aggregation.

5.1.3 Character Trajectories Data Set

This dataset (HWChar)5 consists of around 200 exam-
ples each for 20 classes, where each class is a lower case
English alphabet written with a single stroke. We as-
sume distance unit in meters for each character sample
while calculating Fréchet distance in evaluations.

5.2 Baselines and Implementation Details

In addition to GaussianGlobalBoundingCircle
and GaussianLocalBoundingCircle, we also imple-
mented as a baseline the Gaussian mechanism with a
“trivial” bounding circle, i.e., for the two GPS-based
data sets (Pigeon and NYCBus6), adding noise propor-
tional to the smallest circle containing [−180, 180] ×
[−90, 90].

We stress that, although the baselines may seem
weak, we are not aware of any previous trajectory ag-
gregation algorithm that can be naturally adapted to
satisfy DP. The only exception is perhaps the work of
He et al. [40] which considers private synthetic trajec-
tories; these synthetic trajectories can then be used to
compute a private aggregated trajectory. However, the
algorithm from [40] requires much larger datasets (each
of their experiments uses at least 4 million trajectories
whereas ours uses at most one thousand trajectories).

5 Available at https://archive.ics.uci.edu/ml/datasets/
Character+Trajectories.
6 GaussianGlobalBoundingCircle for NYCBus is roughly
similar to a bounding circle that covers New York City.

5.2.1 Pre-Processing

Algorithm 3 assumes that each input trajectory has the
same number of points. To satisfy this, we add a pre-
processing step where each input trajectory is first re-
sampled to construct an equidistant trajectory (in the
same way as we construct an equidistant trajectory for
NYCBus). This does not affect the DP guarantees as it
is applied to each input trajectory individually.

5.2.2 Post-Processing

For NYC Bus dataset, sometimes the “raw” trajectories
output by our algorithm were noisy in a manner unchar-
acteristic of real-world road networks (caused by the
independent noise addition in our algorithm). This mo-
tivates a post-processing step to smoothen the raw out-
put trajectory via piecewise-linear regression. Suppose
that the raw output trajectory defines a curve Cr. In the
smoothening step, we find a curve Cs with the minimum
number of linear segments such that F (Cr, Cs) < θ for
some threshold θ. This θ is a configurable tolerance on
deviation from the output. Due to the post-processing
property of DP [31], the smoothened track remains DP.
Thus smoothening can yield “realistic-looking” tracks
and even slightly reduce the error; unfortunately, we do
not have any formal accompanying statement.

Figure 5 shows a comparison between a raw aggre-
gated trajectory and a smoothened one, together with
the ground truth, from one of the runs of our Gaus-
sianLocalBoundingCircle algorithm. Note that we
only apply post-processing on NYC Bus data set but
not on the other two, since a priori pigeon flying routes
and strokes need not be (close to) piecewise linear.

5.2.3 Parameters

In all of our experiments, we set δ = 10−4 unless stated
otherwise. For both the GaussianGlobalBounding-
Circle and GaussianLocalBoundingCircle, we let
εa = 0.5ε, εb = 0.3ε, and εc = 0.2ε, while we let
δa = δb = 0.5δ.

For the bounding circle computation, we set the
maximum depth k to be 16 and the inflation factor λ
to be 1.2 throughout, as we observed that this setting
results in reasonably good performances across different
combinations of n, ε,m.

https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
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Fig. 5. Illustration of post-processing by smoothening.

5.3 Results

For each data point presented below, we run the algo-
rithms 10 times on the n input trajectories. We then
compute the average Fréchet distance of the output
and the “true aggregate” over those runs. In the case
of NYCBus, the “true aggregate” is the ground truth
trajectory used to generate the input trajectories. For
Pigeon and HWChar, these empirical datasets have no
clear ground truth, and thus we use the average of all
trajectories as the “true aggregate”.

5.3.1 Comparison Against Baselines

We start with the comparison between GaussianLo-
calBoundingCircle, GaussianGlobalBounding-
Circle, and the “trivial” baseline. We report the aver-
age error in the case of ε = 4,m = 50 in Table 1. Our
GaussianLocalBoundingCircle algorithm clearly
demonstrates significant advantage (by an order of
magnitude) over the other algorithms. This is indeed
the result of having a much smaller noise proportional
to just the local bounding circle, instead of the global
or trivial bounding circles. “Trivial Box” and “Global
Box” baselines perform similarly on HWChar because
the latitude, longitude ranges for this dataset are small.

Pigeon NYCBus HWChar
(Baseline) Trivial Box 5,208,500 4,401,392 74.30
(Baseline) Global Box 7,649.10 4,161.31 78.80
Gaussian Local Box 338.93 200.87 44.01

Table 1. Fréchet distance (in meters) of different algorithms.

A visualization of the resulting trajectories obtained
by each algorithm is given in Figure 6. Given its clear
advantage, we will henceforth just focus on Gaussian-
LocalBoundingCircle.

5.3.2 Effect of Varying Different Parameters

To understand the effect of each parameter on the qual-
ity of the algorithm’s output, we keep all but one param-
eter the same and report the average Fréchet distances
for different values of that parameter. The parameters
of interest here are the privacy parameter ε, the number
n of users, and the number m of points per trajectory.

In Table 2, we fix n but vary one of ε or m. In the
former case, as expected, when ε increases, the distance
decreases, since larger ε means adding smaller amounts
of noise. Arguably the most interesting behavior is ob-
served in the latter case, i.e., varying m but fixing ε.
We see a non-monotonic pattern in this case: the dis-
tance first decreases asm increases but, afterm becomes
sufficiently large, the distance starts to increase. This
demonstrates the tension between the error from the
approximation and the error from Gaussian noise addi-
tion. When m is small, most of the error comes from
the fact that there are too few points to suffice for a
good approximation of the ground truth. On the other
hand, a large m means that more noise is added to each
point. Such a tension is also corroborated by the utility
analysis in Theorem 18 (where rup is the approximation
error).

In Table 3, we fix ε = 4, m = 50, and vary n. Again,
as expected, when n increases, the distance decreases.
This is simply because the same amount of noise is di-
vided over a larger number of users. This experiment
could only be done on NYCBus since we can control the
number of generated samples for that dataset.

6 Conclusions
In this work, we proposed an algorithm for privately ag-
gregating trajectories, employing the concept of a local
bounding circle. We empirically demonstrated its util-
ity on real-world datasets, showing that it gives highly
accurate results even for moderate values of ε (e.g.,
ε ∈ [1, 5]) and number of users (e.g., ≥ 200). It remains
interesting to push this further to obtain an algorithm
for smaller number of users, say, less than 50. Another
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Fig. 6. Sample illustration of different algorithms for a trajectory from NYCBus.

Pigeon
ε(m = 50) 2.0 2.4 3.2 4.0 5.0
Distance 539.20 457.70 405.07 338.93 311.60
m(ε = 4) 10 20 35 50 80
Distance 380.67 326.48 328.22 338.93 384.89

NYCBus
ε(m = 50) 1.0 1.2 2.0 2.4 3.2 4.0
Distance 367.8 315.7 249.3 237.9 228.6 222.9
m(ε = 1) 35 50 80 120 160 200
Distance 457.5 403.7 335.1 308.2 421.4 466.4

HWChar
ε(m = 50) 2.0 2.4 3.2 4.0 5.0
Distance 76.16 66.34 51.09 44.01 36.17
m(ε = 4) 5 10 20 35 50
Distance 23.41 15.32 21.13 33.16 43.47

Table 2. Fréchet distance (in meters) vs ε and m for the three
datasets.

n 150 200 500 1000
Distance 398.79 309.79 207.70 190.53

Table 3. Fréchet distance (in meters) vs number of user
trajectories for NYCBus (ε = 4 and m = 50).

interesting research direction is to algorithmically ex-
ploit the underlying geometry (e.g., road networks) bet-
ter.

Under simple and natural assumptions on the tra-
jectories and the underlying ground truth curve, we
proved that the private aggregated trajectory output by
our algorithm is close, in Fréchet distance, to the ground
truth. As stated earlier, a different way to formulate the
trajectory aggregation problem is via clustering-like ob-
jectives (see, e.g., [14, 15, 27]). An interesting direction
here would be to obtain DP algorithms with provably
guarantees for such objectives as well.

Fig. 7. Illustration of non-private and DP aggregated trajectory
for ‘s’ in HWChar (left) and ‘Horspath’ trajectory in Pigeon
(right).

Finally, there are relaxations of standard DP no-
tions that are more tailored towards location-based
data, such as geo-indistinguishibility [5]. It is interesting
to explore whether such notions can allow better utility;
this might also require generalizing these DP variants to
accommodate a sequence of points (rather than just a
single point), which itself might be of independent in-
terest.
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A Proof of Theorem 3
In this section, we provide a proof of Theorem 3; we
stress that this is not a novel contribution of the paper
and we only provide the proof for completeness. There
are multiple ways to prove this result. Here we use the
notion of Gaussian Differential Privacy (GDP) [26] for
convenience. Although the original definition of GDP is
in terms of f -DP which is in turn defined based on a

hypothesis testing scenario, it can also be equivalently
defined as follows [26, Corollary 2.13].

Definition 19 (Gaussian Differential Privacy [26]).
For any µ > 0, a mechanism M is µ-GDP iff, for
all ε ≥ 0, M is (ε, δ(ε))-DP where

δ(ε) = Φ
(
− ε
µ

+ µ

2

)
− eεΦ

(
− ε
µ
− µ

2

)
.

A key property of GDP that we will use is the following
composition theorem, which works even in the case of
adaptive composition [26, Corollary 3.3].

Theorem 20 (Adaptive Composition for GDP [26]).
Let M1, . . . ,Mk, where Mi : X × Y1 × · · · × Yi−1, be
mechanisms such that Mi(·, y1, . . . , yi−1) is µi-GDP
for all i = 1, . . . , k. Then, the composed mechanism
M(x) := (y1, . . . , yk) defined by yi =Mi(x, y1, . . . , yi−1)
is
√
µ2

1 + · · ·+ µ2
k-GDP.

We will also use is [9, Theorem 8], which provides the
tight (ε, δ)-DP guarantee for the Gaussian mechanism.

Theorem 21 (Gaussian Mechanism DP Guarantee [9]).
For any ε, δ ≥ 0, the Gaussian mechanism (defined in
Section 2.1.1) satisfies (ε, δ)-DP iff

δ ≥ Φ
(
− εσ

∆2f
+ ∆2f

2σ

)
− eεΦ

(
− εσ

∆2f
− ∆2f

2σ

)
.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let σ′ = ∆
√
m · σ(ε, δ).

From Theorem 21, each fi satisfies (ε′, δ(ε′))-DP for
all ε′ ≥ 0 and

δ(ε′) = Φ
(
− ε′σ′

∆2fi
+ ∆2fi

2σ′

)
− eε

′
Φ
(
− ε′σ′

∆2fi
− ∆2fi

2σ′

)
≤ Φ

(
− ε
′σ′

∆ + ∆
2σ′

)
− eε

′
Φ
(
− ε
′σ′

∆ − ∆
2σ′

)
,

where the inequality follows from ∆2fi ≤ ∆.
From Definition 19, this means that fi is (∆/σ′)-

GDP. Then, Theorem 20 ensures that the m-fold (pos-
sible adaptive) composition of the Gaussian mechanism
applied on f1, . . . , fm satisfies (

√
m∆/σ′)-GDP. Thus,

from Definition 19, this implies that the mechanism is
(ε, δ∗)-DP for

δ∗ = Φ
(
− εσ′√

m∆
+
√
m∆
2σ′

)
− eεΦ

(
− εσ′√

m∆
−
√
m∆
2σ′

)
= Φ

(
−εσ(ε, δ) + 1

2σ(ε, δ)

)
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− eεΦ
(
−εσ(ε, δ)− 1

2σ(ε, δ)

)
≤ δ,

where the inequality follows from our choice of σ(ε, δ).
Therefore, we can conclude that the algorithm is (ε, δ)-
DP as desired.

B Proof of Theorem 7
In this section, we prove Theorem 7. We in fact prove
a more general version where a user can contribute an
arbitrary vector of non-negative real numbers (not nec-
essarily integers), as long as its `1-norm is bounded.
Theorem 7 then corresponds to the special case where
the `1-norm is ∆ = L and where each user contribution
is integral.

B.1 Laplace Mechanism with Thresholding

In the below, we assume that there are n users where
each user i holds a vector xi = (xi1, . . . , xiB) ∈ RB≥0 such
that ‖xi‖1 ≤ ∆ and the goal is to output an estimate of∑
i∈[n] xi.
The truncated Laplace distribution, denoted by

tLapb,t, is the distribution supported on [−t, t] where
its probability density at x is proportional to e−|x|/b for
all x ∈ [−t, t].

We use notation Threshτ : R → R ∪ {⊥} for a real
number τ ∈ R, to denote the function

Threshτ (x) =

{
⊥ if x ≤ τ,
x otherwise.

We also overload the notation Threshτ to take in a vec-
tor and perform thresholding on each coordinate.

The clipped truncated Laplace mechanism with
parameters b, t, τ is an algorithm that outputs
Threshτ

(
z +

∑
i∈[n] xi

)
where z ∈ RB is a noise vector,

whose entries are sampled i.i.d. from tLap(b, t).
We remark that this algorithm is t-accurate since

the noise added to each entry has magnitude less than
or equal to t.

B.2 DP Analysis

Due to the post-processing property of DP, it suffices to
consider the truncated Laplace mechanism that outputs

z+
∑
i∈[n] xi where z ∼ tLap(b, t). For this, we prove the

following:

Theorem 22. For any ε > 0 and any δ ∈ (0, 1), the
truncated Laplace mechanism with parameter b ≥ ∆/ε
and t ≥ b · (ε+ ln(1/δ)) is (ε, δ)-DP.

B.2.1 Additional Preliminaries

For any continuous distribution µ, we write fµ to denote
its probability density function.

Definition 23. For a given mechanismM and two ad-
jacent databases X,X ′, its privacy loss random vari-
able PLM,X,X′ is a random variable selected by first
picking o ∼ M(X) and let the privacy loss random be
ln
(
fM(X)(o)/fM(X′)(o)

)
.

We will use the following well-known result7.

Lemma 24. Let M be any mechanism. Let ωX,X′ de-
note the privacy loss random variable with respect to
M, X,X ′. If we have

Pr[ωX,X′ ≥ ε] ≤ δ

for all adjacent X,X ′, then M is (ε, δ)-DP.

B.2.2 Proof of Theorem 22

Proof of Theorem 22. We write M as a shorthand for
the mechanism.

Consider two adjacent databases X,X ′. We will
give the proof in the case where X ′ results from re-
moving a user from X; the other case can be proved
analogously. Suppose that X = (x1, . . . ,xn) whereas
X ′ = (x1, . . . ,xn−1). From Lemma 24, it suffices for
us to show that

Pr
o∼M(X)

[
ln
(
fM(X)(o)
fM(X′)(o)

)
≥ ε
]
≤ δ. (5)

Let us write y =
∑
i∈[n−1] xi. In our setting, we may

write the left hand side as

Pr
o∼M(X)

[
ln
(
fM(X)(o)
fM(X′)(o)

)
≥ ε
]

= Pr
z∼tLap(b,t)⊗B

[
ln
(
fM(X)(y + xn + z)
fM(X′)(y + xn + z)

)
≥ ε
]

7 See, e.g., [9, Theorem 5], which has an even tighter version of
the bound.
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= Pr
z∼tLap(b,t)⊗B

[
ln
(

ftLap(b,t)⊗B (z)
ftLap(b,t)⊗B (xn + z)

)
≥ ε
]

= Pr
z∼tLap(b,t)⊗B

[
ln

( ∏
j∈[B] ftLap(b,t)(zi)∏

j∈[B] ftLap(b,t)(xni + zi)

)
≥ ε

]

= Pr
z∼tLap(b,t)⊗B

∑
j∈[B]

ln
(

ftLap(b,t)(zi)
ftLap(b,t)(xni + zi)

)
≥ ε

 .
(6)

Now, recall that the probability density function
ftLap(b,t)(a) is proportional to e−|a|/b for all a ∈ [−t, t].
This means that, if zj ∈ [−t, t− xnj ] for all j ∈ [B], then
we have∑

j∈[B]

ln(ftLap(b,t)(zj)/ftLap(b,t)(xnj + zj))

≤
∑
j∈[B]

xnj /b = ‖xn‖1/b ≤ ε.

Plugging this back into (6), we have

Pr
o∼M(X)

[
ln
(
fM(X)(o)
fM(X′)(o)

)
≥ ε
]

≤ Pr
z∼tLap(b,t)⊗B

 ∨
j∈[B]

zj > t− xnj


(∗) ≤

∑
j∈[B]

Pr
zj∼tLap(b,t)

[zj > t− xnj ]

≤
∑
j∈[B]

∫ t
t−xn

j
e−|a|/bda∫ t

−t e
−|a|/bda

= 1

2
(∫ t

0 e
−a/bda

)
∑
j∈[B]

t∫
t−xn

j

e−a/bda


= 1

2b
(
1− e−t/b

)
∑
j∈[B]

b
(
e−(t−xn

j )/b − e−t/b
)

= 1
2
(
et/b − 1

)
∑
j∈[B]

(
ex

n
j /b − 1

)
(∗∗) ≤ 1

2
(
et/b − 1

) (e‖xn‖1/b − 1
)

≤ eε − 1
2
(
et/b − 1

)
≤ 1

2et/b−ε
≤ δ,

where (∗) follows from a union bound and (∗∗) follows
from (eu1−1)+(eu2−1) ≤ (eu1+u2−1) for all u1, u2 ≥ 0.

Thus, we can conclude that the algorithm is (ε, δ)-
DP as desired.
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