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Homomorphically counting elements with the
same property
Abstract: We propose homomorphic algorithms for
privacy-preserving applications where we are given an
encrypted dataset and we want to compute the number
of elements that share a common property. We consider
a two party scenario between a client and a server, where
the storage and computation is outsourced to the server.
We present two new efficient methods to solve this prob-
lem by homomorphically evaluating a selection function
encoding the desired property, and counting the number
of elements which evaluates to the same value. Our first
method programs the homomorphic computation in the
style of the the functional bootstrapping of TFHE and
can be instantiated with essentially any homomorphic
encryption scheme that operates on polynomials, like
FV or BGV. Our second method relies on new homo-
morphic operations and ciphertext formats, and it is
more suitable for applications where the number of pos-
sible inputs is much larger than the number of possible
values for the property. We illustrate the feasibility of
our methods by presenting a publicly available proof-of-
concept implementation in C++ and using it to evaluate
a heatmap function over encrypted geographic points.
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1 Introduction
The need of selecting and counting objects occurs in
many security protocols. Counting objects with a same
property is a task that occurs in many security proto-
cols and machine learning applications. A typical ex-
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ample is that of the heatmap computation, in which a
2-dimensional map is divided into a grid of cells and the
property of interest is the cell in which a point lies in.
Thus, counting how many points share the same prop-
erty, i.e., lie in the same cell, provides a graphical repre-
sentation of the distribution of the points. The heatmap
itself has several applications and can be used, for ex-
ample, in algorithms designed to count the number of
objects in a certain area in order to prevent future con-
gestion or people with a certain behavior.

The goal of this work is to design efficient solutions
for selecting and counting dataset elements while pre-
serving the privacy of the inputs. We investigate privacy
preserving techniques based on fully homomorphic en-
cryption (FHE) to solve this problem. We show two gen-
eral approaches and demonstrate how they work with a
heatmap example. Before going through our techniques,
let us first describe our target scenario.

Scenario.
Given an encrypted dataset X = {x1, · · · ,xn} with n

inputs, where each input has m variables, i.e., xi ∈ Zm

and a function f : Zm → Z, we want to homomor-
phically count how many inputs evaluate to the same
value in the image of f . In other words, by defining
Xi := {x ∈ X : f(x) = i}, we want to obtain cipher-
texts encrypting |Xi| for each i ∈ img(f). By viewing
f as some property over dataset elements, we want to
know how many points have the same property.

For example, X could contain medical data of n
people and we would like to know how many of them
have a high risk of developing some disease. Then, the
function f can be defined as f(x) = 1 if a patient with
data input labeled as x has a risk of developing the
disease and 0 otherwise. At the end, we get a final output
of the form (0, n0), (1, n1) where n0 (resp. n1) is the
number low risk (resp. of high risk) patients.

We can imagine more complex functions, like f de-
fined as f(x) = k if the estimated probability px of
developing the disease belongs to [k/10, (k + 1)/10[ for
0 ≤ k < 10, for example. Then, the final output, af-
ter decryption, would be of the form (0, n0), · · · , (9, n9),
where ni indicates the number of people having a risk
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with probability between i
10 and i+1

10 . For instance, (9, 6)
would tell us that six people are estimated to have a risk
larger than 90% of having the disease.

1.1 Computation challenges

Homomorphically selecting and counting requires the
evaluation of a function f on each input of the dataset,
then somehow grouping values that are equal and count-
ing how many elements each group has. It seems hard
to use fully homomorphic encryption (FHE) schemes
like BGV [BGV12] and FV [FV12] for this task, since
even simple non-algebraic functions, like f(x) = bx/5e,
are hard to compute with them. Moreover, the “scor-
ing” step, where we count the equal values, seems highly
non-trivial with such schemes.

By using FHE schemes of the so-called third
generation, like FHEW [DM15], TFHE [CGGI20],
GAHE [Per21], or FINAL [BIP+22], we can express f
as a lookup table and efficiently evaluate f(x), which
is an advantage over BGV/FV when f cannot be eas-
ily represented by polynomials. However, the size of the
lookup tables that can be supported by the current tech-
niques with reasonable timing — either in leveled and
bootstapped mode — is typically very small, say with
6-bit inputs and outputs. Moreover, the additional ag-
gregation step to count how many f(x) have the same
image remains hard with TFHE-like schemes.

Essentially, we need a way to represent bins for each
possible value in the set of the image of the function f ,
img(f), for instance, one ciphertext for each bin. Then,
after computing an encryption of y ∈ img(f), we have
to homomorphically add 1 only to the correct bin.

To solve this, instead of evaluating the function
as usual to obtain encryption of f(m), which we de-
note Encsk(f(m)), and then counting homomorphically,
we propose the following general strategy, which ex-
ploits the fact that most existing FHE schemes can en-
crypt polynomials: we evaluate f in the exponent of
the monomial X, generating thus Encsk(Xf(m)). Hence,
the counting step reduces to simply adding the cipher-
texts. Namely, messages that are evaluated to the same
value will produce encryptions of the same power Xy;
then adding all the ciphertexts will produce an en-
cryption of a polynomial a0 + a1X1 + · · · + aI−1X

I−1,
where I := |img(f)| and each coefficient ai tells us how
many messages m satisfy f(m) = i. For example, if
ten different messages mi satisfy f(mi) = 7, then, we
will obtain ten encryptions of X7 and adding all of
them will produce a ciphertext encrypting a polynomial

a(X) =
∑I−1
i=0 aiX

i such that a7 = 10. This is illustrated
in Figure 1.

We extend this technique to compute functions on
several variables. Namely, for a function g(x1, ..., xn) :=
α1 · f1(x1) + ... + αn · fn(xn), we first obtain Xfi(xi),
then we use automorphisms to multiply the exponents
by some constant αi and add all of them by using ho-
momorphic multiplications. After this, we can proceed
as before and simply add all the ciphertexts to obtain
a polynomial whose coefficients count how many points
(x1, ..., xn) evaluate to the same value in the image of g.

Overall, we present two different ways of implement-
ing this general strategy and as an application, we pro-
pose the evaluation of a heatmap over encrypted points.
We provide a proof-of-concept implementation to sup-
port the correctness of our two techniques and we obtain
that for a square grid with 210×210 cells, the evaluation
of one point with our first method takes around 0.174
seconds and 0.507 seconds with our second method. For
a larger number of cells, the second method becomes
faster than the first method: for a square grid with
214 × 214 cells for example, the evaluation of one point
with our second method takes around 0.635 seconds,
while the first one requires 1.061 s. Note that the timing
can be easily amortized as the number of points grows,
since the first computation step Eval in Figure 1 can be
done in parallel for each point, only the homomorphic
sum at the end involves several different points.

Related art for private heatmap computation.
Bampoulidis et al. [BBH+20] show how to build the
heatmap of an infection desease spread using cell phone
location data. To protect the privacy of cell phone own-
ers, they use a combination of homomorphic encryp-
tion, zero-knowledge proof techniques and differential
privacy. However, the authors assume that location-
sensitive data aggregation is performed by a cellular net-
work provider in the clear. In our work, we assume that
data of individual users or objects is encrypted before
aggregation.

Melis et al. [MDD16] show how to produce a
heatmap of San Francisco cabs. In [DPP17], Dahl et
al. showed a protocol computing a heatmap of pop-
ular shops in New York City districts according to
Foursquare users. In both papers, it is assumed that
users preprocess their input such that the aggregation
stage boils down to summation. In our work, we assume
that users send a ‘raw’ data, i.e. they have no prior
knowledge of how their input will be aggregated. Our
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use case can be considered as a special type of private
database queries. Namely, we query the number of val-
ues satisfying different input conditions.

Cheon et al. [CKK15] provided a framework for the
design of queries with equality and range conditions us-
ing SHE/FHE. For example, this framework turns a
heatmap use case to the computation of four compar-
ison functions per each pair (object, region) and then
counting the results per region. If N is the number of
regions, K is the number of objects and µ is the bitsize
of object coordinates, this algorithm requires O(µNK)
ciphertext-ciphertext multiplications and a circuit of
multiplicative depth logµ+ 4.

In our work, the same task can be done with (logN−
1)K ciphertext-ciphertext multiplications, (logN)2K

homomorphic automorphisms and a circuit of multi-
plicative depth log logN . If µ ≤ logN , our approach
is better in all respects.

Why we are using homomorphic encryption.
Since homomorphic encryption schemes are known for
not being very efficient in practice, one could wonder
if other cryptographic primitives could be used to per-
form such queries that evaluate a function then count,
while maintaining both the database and the results se-
cret. Hence, we consider a few alternatives and discuss
possible advantages and also their limitations.

– Searchable encryption (SE) allows a user to store
an encrypted database in a server, then securely re-
trieve elements that match some keyword. Thus,
SE is not designed to evaluate the same type of
queries that we are considering in this work, be-
cause the server cannot compute a function f on
the encrypted database using SE. To overcome this,
the user would have to precompute the values f(m)
for every m in the database, encrypt f(m) and
include it in the encrypted database. Then, for
each k ∈ img(f), the client would perform a query
using k as keyword, retrieving the elements that
match f(m) = k. However, with this solution, the
client would be essentially downloading the whole
database, thus, the communication cost would be as
bad as the one of the trivial solution, which consists
in downloading the encrypted database, decrypting
all the column corresponding to f(m) and counting
by itself. We stress that in our proposed solutions,
the client just downloads one ciphertext.

– CryptDB [PRZB11] is a tool that can perform
search on encrypted database and is particularly de-

signed to support SQL queries. The architecture as-
sumes a semi-honest proxy and is built on the com-
bination of property preserving encryption, additive
homomorphic encryption and searchable encryp-
tion. Because of the primitives used by CryptDB,
the server cannot evaluate a function f on the en-
crypted database, thus, again, the client would have
to compute f(m) beforehand, encrypt it and include
it in the database. This is not ideal, since f can
be hard to compute or can even be private (e.g., f
corresponds to machine learning model trained by
the server and which the server does not want to
reveal). Notice that in our solution, the client just
needs to know some upper bounds on the size of
the domain and the image of f . But assuming that
the client could compute f on the entire database,
then, using CryptDB, they could run select and sum
queries for each k ∈ img(f) and obtain ciphertexts
corresponding the number of elements m such that
f(m) = k, as desired. Such queries take less that
1 ms which is much faster than what we obtain
using our FHE-based solution. However, while we
provide data privacy as long as the underlying FHE
scheme is IND-CPA secure and the server is semi-
honest, CryptDB uses order-preserving encryption
(OPE) to enable these select-and-count queries, but
OPE is deterministic and does not offer the same se-
curity level as our solutions. In particular, [NKW15]
presented a series of attacks showing that sensitive
information can be recovered from the encrypted
database when OPE is used.

– Private information retrieval (PIR) protocols offer
the following functionality: suppose that a server
stores a database with n elements. Then, the client
can choose an index i and download the i-th element
of the database without revealing the value i to the
server. Also, the communication cost is sublinear in
the size of the database. It is clear that PIR does
not give the server the ability to compute a function
f over encrypted data. Moreover, it is not possible
for the client to select elements based on the value
of any chosen column, just based on the index. In
particular, the client would not be able to select
elements m that satisfy f(m) = k.

Since we want the server to compute f and we do
not want to leak information about the data or the re-
sults of the queries, homomorphic encryption is a nat-
ural solution. Nevertheless, simply using FHE schemes
in a black box manner would not produce efficient solu-
tions as previously discussed in this section. As a con-
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Fig. 1. General strategy to perform the homomorphic counting,
where Encsk(m) denotes the homomorphic encryption of m un-
der secret key sk. The function f is evaluated in each of the n
elements of the dataset, then the counting step is performed by
a simple addition. Each coefficient ai of the output is equal to
number of elements z such that f(z) = i.

crete example, in Appendix A, we show how schemes
like BGV and FV could be used to evaluate a homo-
morphic heatmap and argue that the running times one
would obtain would be between 57 and 219 times slow-
ers than the timings we obtain with our solutions.

1.2 Summary of our techniques

In both methods, instead of simply encrypting the in-
puts denoted as zi, we actually encrypt the inputs in the
exponent as Xzi , as this allows us to homomorphically
evaluate f(zi) and obtain directly encryption of Xf(zi).
If the final function we want to evaluate is simply f ,
then we can add all the obtained ciphertexts Xf(zi) for
all the possible inputs zi’s to obtain an encryption of
the desired polynomial whose coefficients count the ele-
ments.

First method: the general idea is to use the so-
called “test-vector polynomials” akin to the ones em-
ployed in the TFHE bootstrapping [CGGI20] to ob-
tain encryptions of the binary decomposition of f(z),
then, use these encryptions to construct an encryption
Encsk(Xf(z)). In more details, consider a function f with
`-bit output. Then for 0 ≤ i ≤ ` − 1, we define a poly-
nomial Ti(X) that encodes the i-th bits of all target
outputs of f . In particular, we define Ti(X) such that
the constant term of Ti(X) ·Xz is equal to the i-th bit
of f(z). We show that given Ti(X) and an encryption of
Xz, we can homomorphically compute the encryption
of the i-th bit of f(z), which we denote by f(z)[i].

Then, since b(X2i − 1) + 1 = Xb·2i for any bit b,
we can obtain encryptions of X2i·f(z)[i]. Multiplying
all these ciphertexts homomorphically, we finally obtain
the encryption of X

∑
2i·f(z)[i] = Xf(z). If we want to

compute more complex functions like g(x0, · · · , xm−1) =∑m−1
i=0 αifi(xi), we just need to repeat this process to

obtain encryptions of Xfi(xi), then use the automor-
phisms and multiplications in order to obtain the ho-
momorphic encryption of αifi(xi) and

∑m−1
i=0 αifi(xi)

encoded in the exponent.
In this approach, the parameter N defining the “de-

gree” of the polynomial ring R := Z[x]/〈XN + 1〉 used
in the FHE scheme, has to be larger than or equal to
the size of all the domains and images of fi and g. How-
ever, sometimes they have very different sizes and it
would be desirable to work with a smaller N for some
of the functions, since all the homomorphic operations
become more expensive as N increases. In particular, it
may happen that |dom(f)| � |img(f)| and thus, it would
be better to choose N as the size of the image instead
of the domain.

Second method: with this approach, we are able
to work with different rings. This method is specially
suitable for the cases where the domain is larger than
the image. It starts with the following observation: for
a power Xz ∈ R, consider the indicator vector φ(Xz) :=
(0, · · · , 0, 1, 0, · · · , 0) ∈ {0, 1}N with a single 1 at posi-
tion z + 1, i.e., a vector indicating the position of the
corresponding exponent. Also, for a given function f ,
define

uf := (Xf(0), Xf(1), · · · , Xf(N−1)).

Then, if we want to obtain f(z) for some 0 ≤ z ≤ N −1,
it is clear we can compute Xf(z) = φ(Xz) ·uf . Thus en-
crypting all the monomials Xzi for each possible dataset
input zi and somehow multiplying each ciphertext by uf
gives us encryptions of Xf(zi), and it remains to sum all
the encryptions to count the number of inputs with the
same property.

However, ideally, we would like to evaluate more
general functions, such as multivariate functions of the
form g(z0, · · · , zd−1) =

∑d−1
i=0 αifi(zi). In order to do so,

we need to multiply the encryptions of Xfi(zi), but af-
ter multiplication by ufi

, we obtain ciphertexts whose
format does not allow us to perform efficient homomor-
phic multiplications, because multiplication by ufi

is
not a native operation in any existing FHE scheme.
Thus, we propose a new key-switching procedure to
obtain again regular Ring-LWE ciphertexts encrypting
Xfi(zi), allowing us also to switch the dimension from
N to a bigger N , so that we are able to perform usual



Homomorphically counting elements with the same property 674

homomorphic multiplications and get an encryption of
Xg(x0,...,xd−1). An example with d = 2 and α1 = α2 = 1
is shown in Figure 2.

2 Preliminaries

2.1 Notations

We let R = Z[X]/〈XN + 1〉, where N is a power of two.
We denote the quotient ring R/qR by Rq.

We denote the set of integers modulo M by ZM
and its multiplicative group by Z?M . We let ζ2N be a
primitive 2N -th root of unity and we denote K = Q(ζ2N )
the 2N -th cyclotomic field, which is a Galois extension
of Q. For σd ∈ Gal(K/Q), we have σd(ζ2N ) = ζd2N , for
d ∈ Z?2N . Note that the trace function TrK/Q sends an
element a ∈ K to TrK/Q(a) =

∑
d∈Z?

2N
σd(a). We will

recall later how to homomorphically evaluate the trace
function.

For any c ∈ R, let φ(c) ∈ ZN be the coefficient vector
of c and Φ(c) ∈ ZN×N be the anti-circulant matrix of c,

i.e. Φ(c) =
(
φ(c ·X0), · · · ,φ(c ·XN−1)

)T
. Notice that

φ(c+ c′) = φ(c) + φ(c′) and φ(c · c′) = Φ(c) · φ(c′).
For a real number x, dxe, bxc, and bxe denote the

rounding up, rounding down, and the nearest integer
to x, respectively. We denote by [N ] the set of integers
{0, · · · , N − 1} and by [a, b], the set of integers {a, a +
1, · · · , b}. For an integer with bit decomposition a, let
a[i] be the i-th bit of a. For a polynomital a(X) or a
vector a, we abuse notation and write ai to denote its
i-th coefficient.

We denote by χerr the error distribution over R
where each coefficient is sampled from a discrete Gaus-
sian distribution of small variance and by χkey the uni-
form distribution over polynomials in R with coefficients
in {−1, 0, 1}.

2.2 Ring-LWE encryption

2.2.1 Message encoding and RLWE encryption.

We present a symmetric-key version of the RLWE en-
cryption scheme known as FV [FV12]. We use it as the
base of our solutions. Specifically, the method presented
in Section 3 uses FV as a black-box, adding only an en-
coding layer before encryption, while the method pre-
sented in Section 4 proposes new homomorphic opera-
tions that generate ciphertexts whose format no longer

satisfies the FV format. It is worth noticing that the
choice of the FV scheme is somehow arbitrary and our
techniques also work with the BGV scheme [BGV12]
or essentially any other RLWE-based homomorphic en-
cryption scheme that supports additions, multiplica-
tions, and automorphisms evaluation.

– ParamGen(1λ): given the security parameter, choose
N as a power of two and some integers q and
t. Define ∆ := bq/te. Let R := Z[X]〈XN + 1〉,
Rq := R/qR and Rt := R/tR. The message and the
ciphertext spaces are Rt and R2

q , respectively. De-
fine two distributions χerr and χkey over R. Output
params := (N, q,∆, χerr, χkey).

– KeyGen(params): Sample s← χkey and let rlk be the
relinearization key with respect to s. Output sk := s

and rlk.
– KeyGenAut(params, sk, k): Interpret sk as s ∈ R.

Given an odd k ∈ [N ], output a key-switching key
swtk from s(Xk) to s.

– Encsk(m): Consider m ∈ Rt. Sample a uniformly at
random from Rq, and e ← χerr. Compute b := a ·
sk + e+ ∆ ·m ∈ Rq. Output c := (a, b).

– Decsk(c): Let (a, b) := c. Compute b? := b − a · sk
over R. Output bt · b?/qe mod t.

Thus, for a ciphertext (a, b) ← Encsk(m), we have
b = a · sk + e + ∆m. Decryption is guaranteed to be
correct if the noise satisfies ‖φ(e)‖∞ < q/t.

To simplify the exposition, the homomorphic oper-
ations will be presented in a high-level way. Consider
that ci is an encryption of mi.

– Add(c0, c1): Output c := c0 + c1, which is an en-
cryption of m0 +m1 ∈ Rt.

– Mult(c0, c1, rlk): Compute the tensor product c′ :=
c0⊗ c1 ∈ R4

q , which encrypts mmult := m0 ·m1 ∈ Rt
under sk2, then use rlk to transform c′ into cmult ∈
R2
q , which encrypts mmult under sk again. Output

cmult.
– Aut(ci, k, swtk): Let (a, b) := ci. Interpret both a

and b as polynomials in Z[X]. Substitute X by Xk

and reduce modulo 〈XN + 1, q〉, obtaining c′ :=
(a(Xk), b(Xk)) ∈ R2

q , which encrypts m(Xk) under
sk(Xk). Use swtk to transform c′ into a ciphertext
ck under sk. Output ck.

Roughly speaking, the relinearization key is an en-
cryption of s2 under s. It is used during the homomor-
phic multiplication so that the output ciphertext is en-
crypted under the same key as the input ciphertexts.
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Encsk(Xz2)
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Encsk′(Xf1(z1))

Encsk′(Xf1(z2))

Non
standard
ciphertexts

ffk1

ffk2

Encs̄k(Xf1(z1))

Encs̄k(Xf2(z2))
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Fig. 2. Computing a function g(x1, x2) := f1(x1) + f2(x2). The ciphertexts in the first layer are defined over R := Z[X]/〈XN + 1〉,
the ones in the middle are not regular RLWE ciphertexts, and the ones in the last layer are defined over R̄ := Z[X]/〈XN̄ + 1〉, where
we can set N̄ > N if the image of g is larger than the image of both f1 and f2. The format-fixing key-switching keys are denoted by
ffk1 and ffk2.

The key-switching keys are used in the automorphisms
for the same reason and it is essentially an encryption of
s(Xk) mod XN + 1 under s. For more details, we refer
to Section 1.2 of [Zuc18].

3 Full domain approach
In this section, we present our first approach to instan-
tiate the general strategy shown in Figure 1. Firstly, we
present the univariate case, i.e., we consider a function
f : [D] → [I] where D and I are integers smaller than
N and show how to obtain Encsk(Xf(z)). As discussed
previously, it is easy to generalize this strategy for multi-
variate functions of the form g(x1, ..., xn) =

∑
αifi(xi).

Any input and output of f is encoded by a monomial
Xz ∈ Rt. The main idea of this approach is to obtain
encryptions of the binary decomposition of f(z), then
combine then into an encryption of Xf(z).

Let’s start with a warm up example.

Example with f(x) =
⌊

x
3
⌋
and N = 8.

Let R = Z[X]/
〈
X8 + 1

〉
, i.e. N = 8. For a polynomial

a ∈ R, we denote by coeff0(a) the constant term of a.
We consider the following look-up table for f(z) where
z ∈ [0, 7]:

The idea is first to define test-vector polynomials
that encode the bits of all possible outputs of f . Since,
f : [N ] → [3], just 2 bits are enough to describe the

z 0 1 2 3 4 5 6 7
f(z) =

⌊
z
3

⌋
0 0 0 1 1 1 2 2

output of f(z), and thus, we just need two test-vector
polynomials T0(X) and T1(X).

1. We begin by defining two polynomials
T0(X), T1(X), such that:
– for z ∈ [0, 7], coeff0(T0(X) ·Xz) = f(z)[0];
– for z ∈ [0, 7], coeff0(T1(X) ·Xz) = f(z)[1].

2. Hence, the next step consists of homomorphically
extracting the constant terms f(z)[i] of these two
polynomials Ti(X) ·Xz by applying the trace func-
tion. This step will be detailed later in the paper.

3. Since f(z)[i](X2i − 1) + 1 = Xf(z)[i]·2i , we then ho-
momorphically combine the encryption of the bits
f(z)[i] in order to obtain X

∑
2i·f(z)[i] = Xf(z).

Thus, we compute the products of f(z)[i](X2i−1)+1
for all i in order to obtain Xf(z).

4. In order to obtain the number of elements z such
that f(z) = i, we sum all the obtained monomials
together. The coefficient ai of Xi is the number of
elements that are mapped to f(z).

Now, going back to our example, let’s define the two
test-vector polynomials such that the constant term of
T0(X) ·Xz (resp. T1(X) ·Xz) is equal to the first (resp.
second) bit of f(z). We thus have:

T0(X) = X−3 +X−4 +X−5,

T1(X) = X−6 +X−7.
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It is clear that for any z ∈ {0, 1, 2}, we have

coeff0(T0(X)Xz) = 0 = f(z)[0],
coeff0(T1(X)Xz) = 0 = f(z)[1].

Extracting these constant terms and then combin-
ing them we obtain

(f(z)[0](X − 1) + 1)(f(z)[1](X2 − 1) + 1) = 1 = Xf(z).

For any z ∈ {3, 4, 5}, we have

coeff0(T0(X)Xz) = 1 = f(z)[0],
coeff0(T1(X)Xz) = 0 = f(z)[1].

Extracting these constant terms and then combining
them we obtain

(f(z)[0](X − 1) + 1)(f(z)[1](X2 − 1) + 1) = X = Xf(z).

For any z ∈ {6, 7}, we have

coeff0(T0(X)Xz) = 0 = f(z)[0],
coeff0(T1(X)Xz) = 1 = f(z)[1].

Extracting these constant terms and then combining
them we obtain

(f(z)[0](X − 1) + 1)(f(z)[1](X2 − 1) + 1) = X2 = Xf(z).

Then, we sum all the combinations obtained in order to
perform the counting step, such that the coefficient of
the monomials Xi, for 0 ≤ i ≤ 2, gives the number of
elements which are mapped to i.

3.1 Computing output bits.

The crucial idea of this solution is to compute all the
possible bit outputs of f(z) inspired by a look-up table
encoding in the TFHE functional or multi-value boot-
strapping. Namely, we design the so-called ‘test vector’
polynomials Ti(X) ∈ Rq for i ∈ [0, dlog2 Ie−1] such that
the constant term of Ti(X) · Xz is equal to the ith bit
of f(z).

Denoting the i-th bit of f(z) by f(z)[i], such poly-
nomials Ti(X) are defined as follows

Ti(X) =
N−1∑
j=0

f(j)[i] ·X−j . (1)

Lemma 3.1. Let Ti(X) be defined as in Equation 1.
Then, the constant term of Ti(X) ·Xz is equal to f(z)[i].

Proof. Note that X−k = −XN−k in R as we work mod-
ulo XN + 1, thus, Ti(X) ∈ R. Furthermore, Ti(X) satis-
fies the following equality

Ti(X) ·Xz = f(z)[i] +
∑
j 6=z

f(j)[i] ·Xz−j

︸ ︷︷ ︸
g(X)

Now, we want to show that the constant term of g(X) is
zero. But that is easy to see, since g0 is defined by z− j
such that z − j ≡ 0 mod N , and because both z and j
belong to {0, ..., N − 1}, it is clear that −N < z− j < N

and the only value congruent to 0 modulo N in this
interval is the zero itself. Therefore, for the constant
term of g(X) to be different from zero, we would need
z = j to be included in the sum defining g(X).

Hence, given Encsk(Ti(X)·Xz), we can homomorphically
compute Encsk(Ti(X)·Xz) for 0 ≤ i ≤ dlog2 Ie−1, which
gives us encryptions of polynomials that have the de-
sired bits in the coefficient factors. This requires dlog2 Ie
plaintext-ciphertext multiplications.

3.2 Extraction of bits.

In Lemma 3.1, we see that after multiplication by the
test-vector polynomial, we obtain a Encsk(a(X)) for
some polynomial a(X) whose constant term is the i-
th bit of f(z), denoted by f(z)[i]. But we are interested
only in that bit, thus, we want to “remove” all the other
coefficients of a(X) and obtain Encsk(f(z)[i]). This can
be done by computing the trace function Tr : Rt → Z
that maps a(X) =

∑N−1
i=0 aiX

i ∈ Rt to Na0. Since t and
N are co-prime, the multiple of N can be removed by
computing N−1 · Tr(a(X)) = a0 mod t.

To describe the trace function, we need the auto-
morphisms of Rt, which are defined as

τi : a(X) 7→ a(Xi)

where i ∈ Z?2N . It is a standard fact that the set {τi}i∈Z?
N

forms a group under the composition of functions.
To perform an automorphism τi homomorphically,

one needs to compute τi on both components of an in-
put RLWE ciphertext, i.e., (a, b) 7→ (τi(a), τi(b)), then
perform key-switching from τi(sk) to sk using the key-
switching key swti, as described in subsection 2.2. More
details can be found in [GHS12].

Our goal now is to show that the trace operation de-
fined in Algorithm 1 indeed extracts the constant term
of the message. For 0 ≤ ` ≤ log2N − 1, define J` as the
set of integers k2` for odd k ∈ [1, N/2` − 1]. Also, let
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Algorithm 1: Trace operation
Input: a(X) ∈ Rt
Output: r(X) = Na0 where a0 is the constant

term of a(X)
1 r0(X)← a(X)
2 for `← 1 to log2N do
3 r`(X)← r`−1(X) + τi`(r`−1(X))

4 Return rlog2 N (X).

Jlog2 N := {0} and J−1 := ∅ Notice that J` ∩ J`′ = ∅
if ` 6= `′ and that [1, N − 1] = ∪log2 N−1

`=0 J` with dis-
joint union. Furthermore, the product of any j ∈ J` and
i` := N/2`+1 is equal to i` ·j = j+kN = j+N mod 2N
since k is odd. In other words, τi`(Xj) = Xj+N = −Xj

for any j ∈ J`. And for j ∈ Jlog2 N , j · i` = j mod 2N ,
hence Xj·i` = Xj .

Lemma 3.2. Algorithm 1 outputs Na0 mod t.

Proof. Let r`(X) ∈ Rt be the polynomial obtained at
the `-th iteration for ` ∈ [0, log2N ]. We have r0(X) =
a(X) and I = [0, N − 1]. We prove by induction that at
the `-th iteration:

r`(X) = 2` ·
∑

j∈I\∪k<`Jk

a[j]Xj mod t

Indeed, for the base case ` = 0, r0(X) =
2`
∑
j∈I\J−1

a[j]Xj , i.e r0(X) = a(X). By induction, the
following holds modulo t:

r`−1(X) = 2`−1 ·
∑

j∈I\∪k<`Jk

a[j]Xj

+ 2`−1 ·
∑

j∈J`−1

a[j]Xj
(2)

Applying τi` gives:

τi` (r`−1(X)) = 2`−1 ·
∑

j∈I\∪k<`Jk

a[j]Xj

− 2`−1 ·
∑

j∈J`−1

a[j]Xj mod t
(3)

Summing (2) and (3) gives :

r`(X) = 2` ·
∑

j∈I\∪k<`Jk

a[j]Xj mod t

At the end of Algorithm 1, we obtain rlog2 N =
2log2 N ·

∑
j∈I\∪k<log2 NJk

a[j]Xj mod t, i.e rlog2 N =
N ·
∑
j∈Jlog2 N

a[j]Xj = Na0 mod t.

Hence, performing the trace function homomorphically
on Encsk(Ti(X) · Xz) and multiplying by N−1 mod t,
we obtain Encsk(f(z)[i]) for all i ∈ [0, dlog2 Ie− 1]. Since
the trace function needs log2N automorphisms to be
performed, the running time complexity of this step is
equal to (log2N)(dlog2 Ie) automorphisms. Multiplica-
tions by N−1 mod t are very fast and thus ignored in
this analysis.

3.3 Combining output bits.

It remains to combine the encrypted bits f(z)[i] via
tree-based homomorphic multiplication. The following
lemma shows how to perform the computation:

Lemma 3.3. Let bi = Encsk(f(z)[i]) for i ∈
[0, dlog2 Ie−1]. The following product is a valid encryp-
tion of Xf(z):

dlog2 Ie−1∏
i=0

bi · (X2i

− 1) + 1.

Proof. Notice that bi · (X2i −1)+1 is a valid encryption
of Xf(z)[i]·2i as f(z)[i] ∈ {0, 1}. As a result, the above
product is a valid encryption of X

∑dlog2 Ie−1
i=0

f(z)[i]·2i

=
Xf(z) under key sk.

This step needs dlog2 Ie plaintext-ciphertext multipli-
cations by powers of X, which boil down to negacyclic
shifts of polynomial coefficients and thus they are ex-
tremely fast and noise free. In addition, it requires
dlog2 Ie − 1 ciphertext-ciphertext multiplications that
result in a circuit of depth dlog2 dlog2 Iee.

3.3.1 Complexity of the full domain approach.

The method we present in this section computes
Xf(z) with dlog2 Ie plaintext-ciphertext multiplica-
tions, (log2N)(dlog2 Ie) automorphisms and dlog2 Ie −
1 ciphertext-ciphertext multiplications. Its multiplica-
tive depth in ciphertext-ciphertext multiplications is
dlog2 dlog2 Iee. For any known RLWE-based leveled
FHE scheme [FV12, BGV12], the functional require-
ment is that log q ∈ O(L(log t + logN)) where L is
the multiplicative depth of computation. This implies
that in this method one ciphertext needs O(NL(log t+
logN)) bits of memory where L ∈ O(log log I) and
the public key material including various key-switching
keys amounts to O(NL2(log t + logN)2). The running
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time complexity of ciphertext-ciphertext multiplication
or time complexity of an automorphism in such schemes
is bounded by O(N · logN · polylog(q)) basic opera-
tions. Hence, this approach requires running time O(N ·
(logN)2 · log I · polylog(L(log t+ logN))).

4 Split domain approach
In this section, we propose another method to homo-
morphically compute encryptions of Xg(x1,··· ,xn), where
g(x1, ..., xn) =

∑n
i=0 αifi(xi) for known integers αi’s

and functions fi’s, as discussed in Section 1.2. We first
show how to evaluate univariate functions in the expo-
nent, then we proceed showing how to combine them to
obtain g(x1, · · · , xn). This method is specially suitable
for the cases where |dom(f)| > |img(f)|, as it allows us
to choose the parameter N of the RLWE scheme equal
to |img(f)|.

4.1 Computing univariate functions

For two positive integersD and I, whereD ≥ I, consider
a function f : [D]→ [I]. Let N be a power of two larger
than or equal to I and define k = dD/Ne. The idea here
is to split the domain of f to reduce the degree N that
we need to use when we instantiate the RLWE problem.
Then, basically, the client sends k ciphertexts instead
of one and the server repeats the same computation k

times, using different ciphertexts as inputs. Notice that
the size of a ciphertext is linear in the degree N , hence,
using N ≈ D and sending one single ciphertext or using
N ≈ D/k and sending k ciphertexts represents the same
communication complexity for the client. However, the
computation executed by the server is super linear in N ,
therefore, it takes less time to execute it k times with
smaller N than one single time with a large N .

Thus, for 1 ≤ i ≤ k, let Pi := [(i− 1)N, iN ]. Notice
that |Pi| = N for all i, |Pi ∩ Pj | = 0 if i 6= j, and
dom(f) ⊂ [kN ] = P1 ∪ P2 ∪ · · · ∪ Pk. Thus, we can use
the sets Pi as a partition of [D].

Then, for each message m ∈ dom(f), the client pro-
duces k ciphertexts ci’s as follows: if m ∈ Pi, then we
can write m as m = (i− 1) ·N + j for some 0 ≤ j < N

and encrypt Xj , i.e., define ci := Encsk(Xj). If m 6∈ Pi,
let ci := Encsk(0), i.e., an encryption of zero. Thus, for
every message, we have k ciphertexts.

Now, the server defines k vectors ui’s as

ui := (Xf((i−1)N), Xf((i−1)N+1), · · · , Xf(iN−1)) ∈ Z[X]N

and it computes

(a′, b′) :=
k∑
i=1

ui · φ(ci) ∈ Zq[X]N+1

=
k∑
i=1

(
ui ·Φ(ai),ui · φ(bi)

)
(4)

where (ai, bi) = ci, φ denotes the coefficient vector, and
Φ the anti-circulant matrix, as explained in Section 2.1.
Notice that no reduction modulo XN + 1 is done, since
all monomials in ui have degree smaller thanN and they
are multiplied only by integers. Now we want to prove
that, although not being a normal RLWE ciphertext,
(a′, b′) is a valid encryption of Xf(m).

Lemma 4.1. Let (a, b) be an RLWE encryption of zero
under the secret key s ∈ R with noise e. Then (a′i, b′i) :=
(ui ·Φ(a), ui ·φ(b)) is of the form (a′i, b′i = a′i ·φ(s)+e′i).
Moreover, ‖e′i‖∞ ≤ N ‖e‖∞.

Proof. We know that b = a · s + e ∈ Rq for some noise
term e. Thus, φ(b) = Φ(a) · φ(s) + φ(e) ∈ ZN . There-
fore, by defining a′i := ui · Φ(a) and b′i := ui · φ(b),
we have b′i := a′i · φ(s) + e′i, where e′i := ui · φ(e) =∑N−1
j=0 Xf((i−1)N+j) · ei. Moreover, it is clear that

∥∥e′i∥∥∞ ≤ N−1∑
j=0

∥∥∥Xf((i−1)N+j) · ei
∥∥∥
∞
≤
N−1∑
j=0
|ei| ≤ N ‖e‖∞ .

Lemma 4.2. Let (a, b) be an RLWE encryption of Xj

under the secret key s ∈ R. Then (a′i, b′i) := (ui ·Φ(a), ui ·
φ(b)) is a valid encryption of Xf((i−1)N+j)) under key
φ(s), i.e. (a′i, b′i) is of the form (a′i, b′i = a′i · φ(s) + e′i +
∆Xf((i−1)N+j)). Moreover, ‖e′i‖∞ ≤ N ‖e‖∞.

Proof. We have b = a · s + e ∈ Rq, then, similarly to
Lemma 4.1, we have b′i := a′i · φ(s) + e′i + ∆ui · φ(Xj).
Because φ(Xj) has a single one at the j-th position and
zeros elsewhere, it is clear that ui ·φ(Xj) is equal to the
j-th entry of ui, which isXf((i−1)N+j) by definition.

Corollary 4.2.1. Consider the pair (a′, b′) defined in
Equation 4. It holds that b′ = a′ · φ(s) + e′ + ∆Xf(m).
Moreover, if the noise of each ciphertext ci is bounded
by some value B, then ‖e′‖∞ ≤ kNB.

Proof. It follows from lemmas 4.1 and 4.2 that a′ =∑k
i=1 a′i and b′ = a′ · φ(s) +

∑k
i=1 e

′
i + ∆Xf((i−1)N+j)

for some j. But from the encryption procedure run by
the client, we have m = (i− 1)N + j.
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Also, we have ‖e′i‖∞ ≤ NB, thus, the bound on the
noise term e′ follows.

Notice that since the client knows s, they can decrypt
(a′, b′) by subtracting a′ ·φ(s) from b′ then multiplying
by t/q and rounding, as it is done for a normal RLWE
ciphertext. Moreover, for i ∈ [N ], given encrypted mes-
sages mi, we can obtain (a′i, b′i) encrypting Xf(mi) and
add all of them to get (a′, b′) that encrypts a polyno-
mial w whose each coefficient wj is equal to the number
of messages that evaluate to j. Thus, if we just want
to count considering a univariate function f , then the
procedure presented so far is enough.
Notice that to compute ui ·Φ(ai) mod q we do not need
polynomial multiplications, thus, it can be computed
with O(N2) additions on Zq (e.g., by setting an accu-
mulator w ∈ Z[X] for each column of Φ(ai) and simply
adding an entry aj,` from Φ(ai) to the coefficient of w
defined by the degree of the `-entry of ui). Therefore, the
cost of computing (a′, b′) in Equation 4 is O(kN2) ad-
ditions on Zq. If D > I, we can set N ≈ I and kN ≈ D,
and obtain the final cost as O(|dom(f)| · |img(f)|).

4.2 Computing multivariate functions

In this section, we show how to transform encryptions
of Xfi(mi) obtained in Equation 4 into regular RLWE
ciphertexts. Once we are able to do so, we can then
use automorphisms to obtain encryptions of Xαifi(mi)

and homomorphic multiplications to get encryptions of
Xg(m1,...,mn), where g(m1, ...,mn) :=

∑n
i=1 αifi(mi).

Notice that the image of g can be different from the im-
age of the fi’s, so when we perform this transformation,
we want to switch to a new ring R̄ := Z[X]/〈XN̄+1〉,
defined with respect to N̄ instead of N , where N̄ ≥
|img(g)|.

Thus, we consider a second secret key s̄ ∈ R̄ and
define the format-fixing key from s ∈ R to s̄ ∈ R̄ as

ffk = [ā, b̄ := ā · s̄+ ē + Pφ(s)] ∈ R̄N×2
Pq (5)

for some integer P = Θ(q). Notice that ffk is essentially
a set of N RLWE ciphertexts, each one encrypting one
coefficient of the secret key s under the key s̄. We use an
extended ciphertext modulus Pq and multiply φ(s) by
P so that we can perform the key-switching similarly to
[GHS12]. It is also possible to use a gadget matrix with
powers of some base B and decompose the ciphertext in
base B, as it is done in the original formulation of the
key-switching presented in [BV11], however, this multi-
plies both the running time and the space by a O(log q)
factor.

Algorithm 2: Format-fixing key switching
Input: (a′, b′) ∈ Z[X]N+1 with

b′ = a′ · φ(s) + e′ + ∆Xf(m) and
ffk := (ā, b̄).

Output: An RLWE ciphertext
Encs̄(Xf(m)) ∈ R̄2

q

1 b′′ ← P · b′ − a′ · b̄ ∈ R̄
2 b← bb′′/P e . Division on Q[X]
3 a← −ba′ · ā/P e . Division on Q[X]
4 Return (a, b).

Our key-switching procedure is described in Algo-
rithm 2. Lemma 4.3 proves its correctness, i.e., that it
outputs a valid RLWE encryption of Xf(m) and that it
does not increase the noise too much.

Lemma 4.3. Let (a, b) ∈ R̄2
q be a pair output by Al-

gorithm 2. Let e′ be the noise term of the input ci-
phertext (a′, b′) and ē be the noise term of ffk. Then,
b = a·s̄+e+∆Xf(m) and ‖e‖ = Θ(‖e′‖+N ‖ē‖+N ‖s̄‖).

Proof. Since Pb′ = Pa′ · φ(s) + Pe′ + P∆Xf(m) and
a′ · b̄ = a′ · ā · s̄ + a′ · ē + Pa′ · φ(s), it holds that b′′ =
−a′ · ā · s̄ + Pe′ − a′ · ē + P∆Xf(m). Thus, for some
polynomial ε such that ‖ε‖ ≤ 1/2, we have

b :=
⌊
b′′/P

⌉
= b′′/P + ε

= −(a′ · ā/P ) · s̄+ e′ − (a′/P ) · ē + ε+ ∆Xf(m).

By writing a′ · ā/P = ba′ · ā/P e− ε′ for some ε′ ∈ R̄
such that ‖ε′‖ ≤ 1/2, we have

b = a · s̄+ ε′ · s̄+ e′ − (a′/P ) · ē + ε︸ ︷︷ ︸
e

+∆Xf(m).

Therefore, (a, b) is a valid RLWE encryption of Xf(m).
Moreover, since ‖ε′ · s̄‖ ≤ (N/2) · ‖s̄‖ and ‖a′ · ē/P‖ ≤
N ·Θ(1) · ‖ē‖, we have

‖e‖ ≤
∥∥ε′ · s̄∥∥+

∥∥e′∥∥+
∥∥a′/P · ē∥∥+ ‖ε‖

= Θ(N ‖s̄‖+
∥∥e′∥∥+N ‖ē‖).

4.2.1 Complexity of format-fixing procedure.

The time complexity of Algorithm 2 is dominated by
the first line, in which we compute an inner prod-
uct between two N -dimensional vectors, thus, we need
O(N) products on R̄Pq, and each one costs O(N̄ log N̄)
multiplications on ZPq. Therefore, the total cost is
O(NN̄ log N̄ log q log(log q)) basic operations.
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4.2.2 Putting it all together.

We now show the cost of computing an encryption
of Xg(m1,...,mn) where g(m1, ...,mn) :=

∑n
i=1 αifi(mi).

The basic idea is to produce RLWE encryptions of
Xfi(mi), as described above, then applying the auto-
morphism to obtain Xαi·fi(mi), then multiply all the
ciphertexts. We recall that when we apply the auto-
morphism X 7→ Xαi to a ciphertext encrypting some
message m under a key s̄, we obtain an encryption of
m(Xαi) under key s̄(Xαi), thus, a key-switching is re-
quired to obtain again a ciphertext under the original
key s̄. Moreover, the key-switching is much more expen-
sive than the automorphism itself. Thus, to remove this
key-switching, we propose the following:

– Let Ni be the dimension of the ring used to encrypt
mi (the Ni’s are not necessarily different).

– Let si be the key under which Xfi(mi) is encrypted
(the keys are not necessarily all different).

– For each αi, compute βi such that αi · βi = 1
(mod 2N̄).

– Using Equation 5, generate a format-fixing key ffki
from si to s̄(Xβi) ∈ R̄.

Thus, when we apply ffki, we obtain an RLWE
encryption of Xfi(mi) under the key s̄(Xβi). Then,
applying the automorphism produces an encryption
of Xαi·fi(mi) under s̄(Xαi·βi) = s̄(X), and no key-
switching is needed.

To add all the exponents, n homomorphic multi-
plications are needed. Each one costs O(log(q)) mul-
tiplications on R̄q, and each of those products re-
quire O(N̄ log N̄) products on Zq, thus, we need
O(nN̄ log N̄ log q) products on Zq to combine the en-
cryptions of Xαifi(mi).

Therefore, computing Encs̄(Xg(m1,...,mn)) costs
n∑
i=1

(
O(|dom(fi)| · |img(fi)|) +O(Ni · N̄ · log N̄)

)
+ O(nN̄ log N̄ log q)

operations on Zq or ZPq (they are assumed to cost the
same, since P = Θ(q)).

5 Application to
privacy-preserving heatmap

In this section, we show how to use our proposed
methods to homomorphic evaluate heatmaps and we

present practical results obtained with our proof-of-
concept C++ implementation, which is publicly avail-
able.∗

5.1 Model for homomorphic heatmap
computation

In a heatmap, there is a “map”, i.e., a rectangle of di-
mensions xmax×ymax, and several points (xi, yi) within
this map. Then, we divide the map in cells of dimen-
sion b× h and our goal is to count how many points lie
inside each cell. In our framework, this corresponds to
counting how many points evaluate to the same integer
in the image of the following function:

g(x, y) =
⌊x
b

⌋
·
⌊ymax

h
+ 1
⌋

+
⌊ y
h

⌋
.

Using the notation defined above, we have g(x, y) =
f1(x) · α1 + f2(y), where f1(x) :=

⌊
x
b

⌋
, f2(y) :=

⌊
y
h

⌋
,

and α1 :=
⌊
ymax
h + 1

⌋
. Thus, we can compute it in “two

levels”, by first computing Xf1(x) and Xf2(y), then com-
bining them.

We assume that a client encrypted a database of
points (xi, yi) and sent it to a server, which stores it in
encrypted form. Then, at any moment, the client can
send to the server a query (xmax, ymax, b, h) defining a
heatmap instance. The server computes the heatmap
homomorphically and sends to the client one cipher-
text c encrypting a polynomial

∑N−1
i=0 aiX

i where each
ai represents the number of points inside the i-th cell.
Then, the client can decrypt c using their own secret
key sk. We assume the server to be honest-but-curious;
in particular, the homomorphic computation steps are
public and we do not address circuit privacy in this
work.

5.2 Implementation results

In this section, we provide practical results of the ho-
momorphic evaluation of the heatmap with our both
methods. To instantiate the FHE schemes, we used the
parameters presented in Table 1, which provide at least
128 bits of security, according to the sieve BKZ reduc-
tion cost model of the online LWE estimator [APS15].
For the full domain strategy, we always used ternary
secret keys, that is, coefficients in {−1, 0, 1}, and pa-

∗ https://github.com/KULeuven-COSIC/Homomorphic-
Heatmap

https://github.com/KULeuven-COSIC/Homomorphic-Heatmap
https://github.com/KULeuven-COSIC/Homomorphic-Heatmap
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logN sk σ log q λ

Full
domain

12 ternary 3.2 109 128

13 ternary 3.2 130 229

14 ternary 3.2 145 454

15 ternary 3.2 157 939

Split
domain

9 uniform 3000 32 128

12 ternary 3.2 64 232

Table 1. Parameters used to evaluate the homomorphic heatmap
applications with both our methods. The security level is at least
128 bits and λ > 128 means that we can still increase log q to
support more noise (with some penalty in the performance).

rameter σ = 3.2 for the discrete Gaussian, then for each
N ∈ {212, 213, 214, 215}, we selected log q that allows us
to run our application and also gives us λ ≥ 128. For
the split domain strategy, we have one parameter set
with N = 29, which is used to compute the first level of
functions, that is, encryptions of Xbxi/bc and Xbyi/hc,
and another parameter set with N̄ = 212, for the final
result Xg(xi,yi).

Each heatmap instance was defined using xmax =
ymax and b = h, i.e., a square map divided in grid
of squares cells of side b, then we sampled 50 random
points (xi, yi), encrypted each of them into two cipher-
texts and executed both the full and the split domain
strategy. In Table 2, we show the running times per
point (evaluating a homomorphic heatmap with n en-
crypted points takes essentially n times the displayed
time). All the experiments were run on a single core of
an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz. In
all cases, the number of cells, therefore, the size of the
image of g(x, y) is smaller than or equal to 212, thus,
for 210 ≤ xmax ≤ 212, we could use N = 212 for the
full domain strategy. However, since xmax and ymax de-
fine the domain of f and N has to be larger than or
equal to max(|dom(f)|, |img(f)|), we have to increase N
and choose it as N = xmax for xmax ≥ 213. This explains
the slowdown in the running times presented in Table 2.
On the other hand, for the split domain, we always used
N = 29 and N̄ = 212. As the domain grows, only the
parameter k ≈ |dom(f)|/N grows, but it has little im-
pact in the running time. As a result, the split domain
method is slower for small domain, but becomes faster
as the size of the domain grows.

In tables 3 and 4, we show how the running times of
Table 2 are divided in the main steps of each method.
We can see that the format-fixing key switchings, which

xmax and ymax b and h Full domain Split domain

210 26 0.174 s 0.507 s

211 27 0.174 s 0.507 s

212 28 0.174 s 0.512 s

213 29 0.394 s 0.568 s

214 29 1.0617 s 0.635 s

215 29 2.832 s 0.820 s

Table 2. Time needed for our both methods to process each
point (xi, yi) of several different heatmap instances.

xmax Xf(x) ffkx Xg(y) ffky Mult.

210 3 232 3 232 17

211 7 228 7 227 17

212 13 226 13 225 17

213 23 233 25 231 17

214 58 255 62 255 17

215 147 243 147 242 17

Table 3. Time spent in each main subrotine of the split-domain
strategy, considering the running times presented in Table 2. The
time unit is millisecond. The second column refers to the homo-
morphic computation of Xf(x) given Enc(Xx). The third column
corresponds to the format-fixing key key switching applied to
Enc(Xf(x)). Third and fourth column are the same as the second
and third one, but for Enc(Xy). The final column shows the time
of the homomorphic multiplication used to compute an encryp-
tion of Xf(x)+g(y).

take a non-standard ciphertext and outputs a normal
RLWE ciphertext, dominates the running time of the
split-domain method. As for the full-domain strategy,
the procedures taking most of the execution time are the
traces to extract the bits bi of the evaluated functions
and the multiplications to group those bits and move
the values to the exponent of X.
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xmax Ti(X) ·Xx Trace Xf(x) Final mult.
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A Natural BGV/FV solution
Consider the BGV or the FV scheme over the cyclo-
tomic ring Z[X]/〈Φm(X)〉. Let t = pr be the plaintext
modulus, where p is prime. Let N = ϕ(m) be the de-
gree of the cyclotomic polynomial. Consider a function
f : J0, DJ→ J0, IJ.

Let d be the order of p modulo m and n := N/d. be
the number of plaintext slots. Then, in each ciphertext,
we can encrypt n elements, (x1, . . . , xn) ∈ J0, DJn, and
each homomorphic operation applies independently to
each slots. For example, if c1 := Encsk(x1, . . . , xn) and
c2 := Encsk(x′1, . . . , x′n), then c := Mult(c1, c2) encrypts
(x1 · x′1, . . . , xn · x′n). This is known as SIMD (single-
instruction multiple-data) or batching and allows us to
accelerate the homomorphic evaluation, by computing
a function in parallel in all the slots with the same num-
ber of homomorphic operations needed to evaluate the
function one single time. It is also possible to homomor-
phically rotate the slots. Namely, given an encryption of
(x1, . . . , xn) and an integer k prime with m, we can gen-
erate an encryption of (xk, xk+1, . . . , xn, x1, . . . xk−1).
We refer to [HS20] for more details.

Notice that the plaintext modulus t has to be larger
than the domain, so we have the restriction t ≥ D.

The first step then, would be to compute f (in each
slot via SIMD), obtaining (f(x1), · · · , f(xn)). This also
implies t ≥ I.

Then, to count how many elements evaluate to each
value in the image, we have to proceed as follows for each
0 ≤ i < I:

– Let ei : J0, IJ→ {0, 1} be a function that outputs 1
if, and only if, its argument is equal to i.

– Compute ei homomorphically, producing then an
encryption of (ei(f(x1)), ..., ei(f(xn))).

– Rotate and add all the slots, and multiply by the
plaintext (1, 0, ..., 0), which yields an encryption
(
∑n
j=1 ei(f(xj)), 0, 0, ..., 0). This step requires logn

rotations.

Let’s say that evaluating f is done in time Tf , each
ei in time Te, and each rotation in time Tr, then, the
total cost is

Tf + I · (Te + Tr · logn).

But notice that evaluating each ei is highly non-
trivial and is likely to require at least one bootstrap-
ping, which is very costly. In more detail, since ei im-
plements a comparison with i, the best methods to eval-
uate ei require at least blog2 tc homomorphic multipli-
cations [INZ21], so, considering that the bootstrapping
takes time Tb and each multiplication takes time Tm,
we can write Te ≥ Tm · log2 t+ Tb. Thus, the amortized
cost, or cost per each instance xi is at least

Tf + I · (Tm · log2 t+ Tb + Tr · logn)
n

(6)

For concreteness, consider that we use the HElib
implementation of BGV† to compute the homomorphic
heatmap, as in Section 5.2. Typical parameters of BGV
for 128 bits of security use N around 215, so we can fix
the set of parameters precomputed by HElib, namely
N = 42799 ≈ 215.3, ciphertext modulus with 970 bits,
and plaintext modulus t = 2r for any r. With this, there
are n = 2016 slots. Moreover, on the same machine used
in Section 5, we have Tm = 0.65 s and Tr = 0.37 s. To
run the heatmap we can fix t = xmax. Notice that as we
increase t, the bootstrapping time also increases. Hence,
even ignoring the time needed to compute f , that is,
setting Tf = 0 in Expression (6), the following holds.

– For the first row of Table 2, we have t = 210, I = 288,
and Tb = 61 s. Thus, the amortized time per point
(xi, yi) is at least 10 seconds, while our full domain
solution runs in 0.174 seconds, that is, at least 57
times faster.

– For the last row of Table 2, we have t = 215, I =
4224, and Tb = 72 s. Thus, the amortized time per
point (xi, yi) is at least 3 minutes, while our split
domain strategy runs in 0.820 seconds, i.e., at least
219 times faster.

† https://github.com/homenc/HElib/

https://github.com/homenc/HElib/
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