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ABSTRACT
Secure aggregation consists of computing the sum of data collected

from multiple sources without disclosing these individual inputs.

Secure aggregation has been found useful for various applications

ranging from electronic voting to smart grid measurements. Re-

cently, federated learning emerged as a new collaborative machine

learning technology to train machine learning models. In this work,

we study the suitability of secure aggregation based on crypto-

graphic schemes to federated learning. We first provide a formal

definition of the problem and suggest a systematic categorization

of existing solutions. We further investigate the specific challenges

raised by federated learning and analyze the recent dedicated secure

aggregation solutions based on cryptographic schemes. We finally

share some takeaway messages that would help a secure design

of federated learning and identify open research directions in this

topic. Based on the takeaway messages, we propose an improved

definition of secure aggregation that better fits federated learning.

KEYWORDS
Secure Aggregation, Homomorphic Encryption, Multi-Party Com-

putation, Federated Learning

1 INTRODUCTION
With the recent advances in information technology, the adoption

of distributed systems become a major trend for various applica-

tions/systems such as electronic voting [KSRW04], smart grids

[ADMC17], industry’s actuators and sensors, swarms of drones

etc. All these systems involve multiple geo-dispersed edge devices

that usually collect, store and collaboratively aggregate data. Re-

cently, federated learning emerged as a new collaborative machine

learning technology to train machine learning models. This new

technology consists of several federated clients holding private

data and contributing to the training of a machine learning model

in a collaborative manner: Each client first trains a local machine

learning model using its own dataset and further shares training
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parameter results with a server. The server aggregates the training

results and sends the aggregate back to the clients. The clients re-

peat the process so that they finally converge to one shared, global

model. The global model’s parameters consist of the average of each

local model’s parameters. Thanks to this new technology, clients

can train more accurate machine learning models using larger and

more diverse datasets (originating from other clients).

Consequently, aggregating data from multiple sources is never

more useful as in these days (such as their use in federated learn-

ing). Nevertheless, such operations that usually involve sensitive

data raise serious privacy concerns and call for suitable privacy en-

hancing technologies to protect the confidentiality of clients’ data

while still being able to perform the aggregation operation. During

the past 20 years, a huge amount of research focused on designing

secure aggregation solutions [ÖM07, LEM14a, BSK
+
19, BIK

+
17,

DA16, CMT05] for various applications that enable the compu-

tation of the sum of several parties’ inputs without leaking any

information about each individual input except the aggregate (the

sum). Secure aggregation can be achieved using four main privacy

enhancing technologies: differential privacy, Trusted-Execution En-

vironment (TEE), secure shuffling under anonymity assumptions,

and cryptography.

In this paper, we propose to study secure aggregation solutions

based on cryptographic schemes as these seem to be the most popu-

lar ones for federated learning (37 solutions). We believe that this is

mainly due to their practical setup and to the fact that they do not

affect the accuracy of the results.We first identify and investigate

the three phases of secure aggregation protocol: Setup, Protection,

and Aggregation. We categorize existing solutions based on two

cryptographic primitives: encryption and multi-party computation

(MPC). We further investigate the suitability of these solutions to

federated learning and identify additional security, privacy and

performance challenges, accordingly. More specifically, we study

whether and how encryption-based or MPC-based secure aggrega-

tion can cope with: client failures/dynamics, scalability in terms

of clients’ input size, scalability in terms of number of clients, the

presence of malicious clients or malicious server, and statistical

attacks that leak private information.

To summarize, our contributions are as follows:

• We propose a formal definition of secure aggregation based

on cryptographic schemes, by identifying a set of features

that help an effective comparison among existing solutions.
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• We study the existing secure aggregation solutions based

based on the underlying cryptographic schemes that are

masking, additive homomorphic encryption, functional en-

cryption, and multi-party computation. We analyze each

category with respect to the set of features we have identi-

fied.

• We further present a comprehensive study on the suitability

of secure aggregation based on cryptographic schemes for

federated learning, by identifying the main security, privacy,

and performance challenges raised by this integration and

their impact on each of the proposed categories.

• We review the 37 solutions that integrate secure aggregation

for federated learning and we propose a categorization based

on two axes: the challenges that each solution tackles and

the type of secure aggregation used.

• We finish with some key takeaways that can help developers

design, develop or improve secure aggregation schemes for

federated learning.

The remaining of the paper is organized as follows: Section 2

presents the scope of our study, a historical background on SA based

on cryptographic schemes and studies the threat model. Section 3

proposes a formal definition of SA and establishes a categorization

of existing schemes. Section 4 focuses on the deployment of SA

based on cryptographic schemes in federated learning. Furthermore,

section 5 describes the major takeaways of this research. Finally,

section 6 concludes this paper.

2 BACKGROUND AND MOTIVATION
This section briefly introduces federated learning and explains

the need for secure aggregation for such applications. Then, we

define the scope of our study by focusing our research on secure

aggregation based on cryptographic schemes that are appropriate

for federated learning. Third, we present a historical overview of

secure aggregation. Last but not least, we provide the threat model

and the security requirements.

2.1 Federated Learning
The term Federated Learning was initially introduced by McMahan

et al. [MMR
+
17] and refers to a technology that enables training

machine learning models on data from different sources without

the need to store the data at a central location. Federated Learning

(FL) is performed in several rounds with multiple clients and a

server. A FL client is installed at each data source location. At the

beginning, the FL server initiates the same model for all clients.

For each FL round, the clients perform local training on their own

data to improve the received machine learning model and send

the updated model to the server. The latter aggregates the trained

models received from clients by averaging them and then sends the

outcome back to the clients. After the clients receive the aggregated

model, a new FL round starts where the clients and the server repeat

the steps. FL stops when the aggregated model converges.

The main goal of FL is to protect the privacy of the local data

while still being able to use them for training public models. This

technology provides a great advantage over other techniques that

try to achieve the same goal (eg., training on encrypted data [VNP
+
20,

HTGW18, WGC19, DGBL
+
16, WTB

+
20]). The latter adds a large

computational overhead since it involves encryption of the inputs

then performing complex computations on encrypted data. FL re-

quires less computation as it only involves the averaging operation

at the server.

While FL is proposed for privacy preserving purposes, it lacks

formal guarantee of privacy. For example, adversaries who have

access to the training results sent from each client to the server

might be able to infer a training sample from a client’s private

dataset. Many types of inference attacks on FL are investigated and

researched in [MSDCS19, ZLH19, LHCH20, NSH19]. To prevent

such attacks, SA is used as a protection of the client’s input while

permitting the computation of the sum of all the updates.

2.2 The Scope of the Study
In this paper, aggregation refers to the process where data collected

from multiple sources are summed up. Usually, data is provided

in consecutive time periods and the sum (aggregate) is calculated

for each time period. For many applications including federated

learning, the data contain sensitive information.

Usually, SA involves two actors: Users (U) and Aggregators (A).

Users are parties that provide the input data while Aggregators
are the parties that perform the aggregation to obtain the sum.

Additionally, a Trusted Third Party (TP) may also be defined for

setup purposes.

There are mainly four types of secure aggregation: SA based on

differential privacy, SA based on Trusted-Execution Environment

(TEE), SA based on anonymity, and SA based on cryptography.

In this paper, we specifically focus on SA based on cyrptographic

schemes. In the following, we elaborate on each type of secure

aggregation and we clarify the choice of studying SA based on

cryptographic schemes.

SA based on differential privacy. Differential privacy (DP) is a no-

tion that theoretically studies whether a change in a single sample

in the training dataset of an algorithm, causes statistically insignifi-

cant changes to the algorithm’s output. To achieve secure aggrega-

tion using DP mechanisms, clients protect their trained models by

adding statistical noise[MASN21, ASY
+
18, TF19, YWW21, CYD20,

STL20, DHCP21]. The main concern with this approach is that the

added noise is amplified during the aggregation thus, significantly

affecting the accuracy of the aggregated model.

SA based on trusted-execution environment. Another method to

perform secure aggregation is to use a TEE at the server [ZJF
+
21,

NMZ
+
21, ZWC

+
21, MHK

+
21]. The TEE is a hardware-separated

area of the main processor that guarantees the confidentiality and

integrity of the processed data. SA can be achieved by computing

the aggregation within the TEE. This method requires strong trust

assumptions regarding the use of the TEE.

SA based on anonymity. A different method relies on anonymous

communication assumption [IKOS06]. This method is also known

as secure shuffling where users split their inputs into shares and

send them anonymously to the aggregator [ZWC
+
21]. Thanks to

the anonymous communication, the server cannot discover the

origin of the received shares and thus is unable to reconstruct the

user inputs. In the case of federated learning applications, it is
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Figure 1: Publications that use “secure aggregation”and
“privacy-preserving aggregation” in their title or abstract.
They are grouped based on their application domain (WSN
vs. FL).

often impossible to have completely anonymous communication

channels between the clients and the server.

SA based on cryptography. Finally, cryptographic techniques are
used to design secure aggregation protocols. Many researchers

are particularly interested in this type of secure aggregation (even

much before federated learning existed) since it does not signif-

icantly affect the accuracy of the aggregation result. It also does

not rely on impractical assumptions such as in the case of TEE

and secure shuffling which makes this choice suitable for federated

learning applications. Indeed, we count around 37 solutions based

on cryptographic schemes that are used for federated learning.

2.3 History of Secure Aggregation
SA was originally designed to aggregate private data generated

by nodes in wireless sensor networks (WSN) (also in smart grids

and smart meters applications). As far as we know, the “secure

aggregation” term first appeared around 2003 [HE03]. With the in-

crease in popularity of WSN and the Internet of Things (IoT), more

solutions were proposed [ÖM07, CMT05]. It also appeared with

alternative names that refer to the same concept. Namely, “privacy-

preserving aggregation” [SCR
+
11], “privacy-friendly aggregation”

[KDK11], and “private stream aggregation” [CSS12]. Later in 2017,

after the emerge of the federated learning technology, Bonawitz et

al. [BIK
+
17] identified the need for secure aggregation solutions

for federated learning and proposed the first secure aggregation

solution in this context. The scheme was an improvement and adap-

tation of an existing SA scheme [ÁC11]. After the first solution

of SA for federated learning appeared in 2017 [BIK
+
17], more re-

searchers further explored this area and propose more SA solutions

for federated learning. Most of the proposed solutions are enlight-

ened by existing solutions which were originally designed for WSN.

A study on the appearance of the term “secure aggregation” and its

alternatives is shown in Figure 1. The figure shows a clear research

trend on secure aggregation in the context of federated learning.

2.4 Threat Model and Security Requirements
A common security model for secure aggregation schemes is the

honest-but-curious model with collusions. An honest-but-curious

party is a party that correctly follows the protocol steps but remains

curious to discover any private information. Honest-but-curious

users may collude with each other or/and with the honest-but-

curious aggregator. In case of collusion, the colluding parties share

all their private information. In this model, a SA solution is said to

be secure if it achieves Aggregator Obliviousness.

Definition 1. Aggregator Obliviousness: This security notion
ensures that an honest-but-curious aggregator cannot learn more
than what could be learned from the sum of the users inputs. If some
users are corrupted (i.e., users sharing their private information with
the aggregator), the notion only requires that the aggregator gets
no extra information about the values of the honest users beyond
their aggregate value. This notion was initially proposed by Shi et al.
[SCR+11] for SA schemes in the context of WSN.

In addition to the honest-but-curious model, several research

works considered a malicious model where the adversaries are

more powerful. Malicious entities may alter their inputs to the

protocol to either learn private information or to alter the result

of the aggregation. There are two main malicious settings: The

malicious aggregator model and the malicious users model. A SA

solution is said to be secure if it achieves Aggregate Integrity and

Aggregator Obliviousness.

Definition 2. Aggregate Integrity: This security notion ensures
that a malicious aggregator cannot forge a false aggregation result
without being detected by the users. A forgery is defined as an ag-
gregation outcome that is not equal to the sum of the users’ inputs.
Additionally, a set of malicious users cannot compromise the aggre-
gation result as long as there is a sufficient number of honest users
(more than a threshold). A compromise is defined as a significant drift
in the value of the aggregation outcome from the sum of the honest
users’ inputs.

In this paper, we first study SA solutions based on cryptographic

schemes in the honest-but-curious model. Then, in section 4, we

show how these schemes are extended to consider the malicious

model adhering to federated learning use-cases.

3 SECURE AGGREGATION BASED ON
CRYPTOGRAPHIC SCHEMES

In this section, we systematize crypto-based secure aggregation

by first proposing a general definition that captures its different

instantiations. We define it by describing three consecutive phases.

Then, we regroup secure aggregation (SA) into two categories based

on the underlying cryptographic tools used to build the SA protocol.

Specifically, we distinguish encryption-based secure aggregation

and multi-party-computation (MPC)-based secure aggregation. For

each of the categories, we show how to build the baseline
1
secure

aggregation protocol from the existing cryptographic schemes by

defining the algorithms executed at each SA phase. We summarize

their advantages and disadvantages and provide some references

to the constructions of the different categories in Table 1 .

1
Baseline secure aggregation protocols correspond to the basic constructions from the

corresponding cryptographic tool.
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Schemes TP No SC Dynamic Comp. Comm.required required users

Masking (DC-net) [ÁC11, DA16] PKI O(n +m) O(n +m)

AHE [LEM14a, JL13, SCR
+
11] KD O(m) O(m)

En
cr
yp
tio

n

FE [ACF
+
18a, ABM

+
20, LŢ19] KD O(m) O(m)

n-out-of-n SS [BSMD10, GJ11]

M
PC t-out-of-n SS [Sha79]

- O(nm) O(nm)

Table 1: Table comparing the baseline constructions of the
different categories of secure aggregation. TP stands for
trusted third party. SC stands for pre-established secure
channels. Dynamic users property shows whether the ag-
gregation can be performed with a subset of the users, only.
Comp. stands for computation cost on users. Comm. stands
for communication cost between users and aggregators. n
and m represent the number of users and the size of user’s
input, respectively. means that the property is attained.

3.1 Secure Aggregation Protocol Phases
A secure aggregation protocol consists of three consecutive phases:

SA.Setup, SA.Protect, and SA.Agg. Each of these phases achieves
a specific task described as follows:

• SA.Setup: In this phase, the n users and the aggregator get

the public parameters and the key material. The public pa-

rameters and the keys are generated either using a trusted

third party (TP) or through a distributed mechanism. At

the end of this phase, each user stores a single, unique key ki
where i ∈ [1, ..,n] and the aggregator stores its aggregation

key k0.
• SA.Protect: Each userUi locally executes a protection algo-

rithm to protect its inputmi ,τ at time period τ . The resulting
protected input is sent to the aggregator(s).

• SA.Agg: Once the aggregators collect all the protected in-

puts, they collaboratively execute an aggregation algorithm

to retrieve the sum of user inputs for time period τ . In the

case with a single aggregator, the aggregation algorithm is

locally executed by the aggregator.

3.2 Encryption-based SA
Encryption-based SA protocols use encryption schemes to protect

the inputs of the users. Encryption utilizes a secret key to ensure

the confidentiality of the user input. To achieve Aggregator Oblivi-
ousness (see Definition 1), users should not be allowed to encrypt

their inputs with the same key. Moreover, the encryption scheme

should allow the computation of the sum of the inputs over the

ciphertexts without leaking the individual cleartext values. There

are three types of encryption schemes that are used to build a se-

cure aggregation protocol: (i) masking, (ii) additively homomorphic

encryption (AHE), and (iii) functional encryption (FE). In general,

encryption-based SAs rely on a single aggregator to perform the

aggregation which minimizes the communication overhead of the

protocol.

3.2.1 Secure Aggregation using Masking. Masking is a sym-

metric encryption technique based on one-time pad [Rub96]. It uses

modular addition to mask the data owner inputs. Given a shared

key k between two parties and an upper bound r of the message,

masking is defined by two algorithms:

• c ← Maskinд.Mask(k,m) : Masks an inputm with the mask-

ing key k (c =m + k mod r ).
• m ← Maskinд.UnMask(k, c) : Unmasks the ciphertext c
using the masking key k (c = c − k mod r ).

It is one of the oldest techniques for designing a secure aggre-

gation protocol. It was first used in tree-structured networks.

These schemes are called layered masking schemes [CMT05, ÖM07,

CCMT09]. We describe an example of these schemes in Appendix C.

More recently, Dining Cryptographers network (DC-net) variants

are proposed in [ÁC11, BIK
+
17, BBG

+
20, SGA21b].

In the SA.Setup phase, each pair of users (Ui , Uj ) agrees on

a random key k(i , j),τ using a Key Agreement protocol (ex., Diffie

Hellman (DH) [DH06] using the aggregator as a proxy to forward

the public keys). Also, each userUi agrees on a random key k(i ,0),τ
with the aggregator. As a result, each userUi and the aggregator

A computes their own unique key as follows:

ki ,τ ←
i−1∑
j=1

k(i , j),τ −
n∑

j=i+1
k(i , j),τ − k(i ,0),τ

s.t. k(i , j),τ = k(j ,i),τ and k(i ,i),τ = 0 ∀ i ∈ [0, ..,n]

(1)

In the SA.Protect phase, each user masks its own inputmi ,τ with

the key ki ,τ :

ci ,τ ← Maskinд.Mask(ki ,τ ,mi ,τ )

In the SA.Agg phase, the aggregator adds the masked inputs from

all users. Then, it removes the mask using its key k0,τ (all the

operation are mod R = nRu where [0,Ru ] is the range for the input
values of each user):

Maskinд.UnMask(k0,τ ,
n∑
i=1

ci ,τ ) =
n∑
i=1

ci ,τ − k0,τ

=

n∑
i=1
(mi ,τ +

i−1∑
j=1

k(i , j),τ −
n∑

j=i+1
k(i , j),τ − k(i ,0),τ ) − k0,τ

=

n∑
i=1

mi ,τ +

������������: 0
n∑
i=1
(

i−1∑
j=1

k(i , j),τ −
n∑

j=i+1
k(i , j),τ )

−

n∑
i=1

k(i ,0),τ − k0,τ

=

n∑
i=1

mi ,τ −

n∑
i=1

k(i ,0),τ − (−
n∑
i=1

k(0,i),τ ) =
n∑
1

mi ,τ

(2)

Figure 2: The main operations and communication between
parties in Masking-based SA.
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Analysis: This scheme does not require a key dealer (KD) to dis-

tribute the masks. However, it relies on a trusted public key in-

frastructure (PKI). On the other hand, the masking operations are

themselves very lightweight since they only include modular ad-

ditions. However, the setup phase incurs significant overhead in

terms of computation and communication costs per user which

increases linearly with the total number of users. Since masking

uses one-time pad encryption, the setup phase is performed on each

time period τ (notice the use of the tag τ for each key). Another dis-

advantage is that once keys are distributed, all users should provide

their protected inputs (i.e., does not support dynamic users). Indeed,

if some users did not participate, the masks on the aggregated value

cannot be removed. Note that masking itself is information theo-

retically secure but the setup relies on a key agreement protocol

that is computationally secure.

3.2.2 Secure Aggregation using AHE. A special type of Addi-

tively Homomorphic Encryption (AHE) schemes can be used for

secure aggregation. Specifically, multi-user AHE are proposed such

that “addition homomorphism” property is maintained across ci-

phertexts generated by different users with different keys. These

schemes are generally defined by the three following algorithms:

• (pp, {ki }i ∈[1, ..,n],k0) ← AHE.Setup(λ): Given a security pa-

rameter λ, it generates the public parameters, the encryption

keys, and the decryption key.

• ci ,τ ← AHE.Enc(pp,ki , τ ,mi ,τ ): It encrypts messagemi ,τ
for time period τ using key ki and outputs ciphertext ci ,τ .
•
∑n
1
mi ,τ ← AHE.Aдд(pp,k0, τ , {ci ,τ }i ∈[1, ..,n]): It evaluates

the homomorphic operation on the n ciphertexts generated

at time period τ . Then decrypts the resulting ciphertext using
decryption key k0.

A multi-user AHE scheme can guarantee Aggregator Obliviousness
if each user encrypts only one input per time period. Several instan-

tiations are proposed in [SCR
+
11, ET12, JL13, BJL16]. We present

examples of AHE schemes that guarantee Aggregator Obliviousness
in Appendix A.

Multi-user AHE schemes are specifically designed for se-

cure aggregation protocols: In the SA.Setup phase, TP runs

AHE.Setup(λ) and distributes the keys to the users and the

aggregator. The SA.Setup phase is executed only once; In the

SA.Protect phase,Ui executesAHE.Enc(pp,ki , τ ,mi ,τ ) and sends

the ciphertext to the aggregator; Finally, in the SA.Agg phase,

the aggregator executes AHE.Aдд(pp,k0, τ , {ci ,τ }i ∈[1, ..,n]) and
retrieves the sum of the inputs.

Figure 3: The main operations and the communication be-
tween parties in AHE-based SA.

Analysis: The main advantage of AHE schemes is that they require

to run the setup phase only one time, and hence they are effective

when aggregating a stream of data. This originally comes with a

cost of relying on a trusted key dealer (KD) to perform the setup.

Nevertheless, previous work has improved these schemes to enable

running them without the need for a key dealer [LEM14b]. The per

user computational cost resulting from SA.Protect does not depend
on the total number of users but remains significant. Similarly the

communication cost per user does not depend on the total number

of users but incurs a size expansion because of the size of the

ciphertext. Additionally, similar to masking schemes, AHE does not

support dynamic users since all users should provide their inputs

to correctly aggregate them.

3.2.3 Secure Aggregation using Functional Encryption.
Functional encryption (FE) is a type of encryption schemes that

enables a user to learn a function on the encrypted data [BSW11].

Multi-Input Function Encryption (MIFE), introduced by Gold-

wasser [GGG
+
14], enables the learning of a function over mul-

tiple encrypted inputs. A special type of MIFE schemes can be

designed to compute the inner product function of multiple inputs

[AGRW17, ACF
+
18b, DOT18]. Assuming that we have two vectors

x and y, each consisting of l elements, the inner product of x and y
is as follows:

IP(x,y) =
l∑

i=1
x[i]y[i] (3)

An inner product MIFE scheme is defined by four algorithms:

• {pp,msk, {ki }i ∈[1, ..,n]} ← MIFE.Setup(λ) : Given a secu-

rity parameter λ, it generates the public parameters pp, mas-

ter secret keymsk , and n user keys {ki }i ∈[1, ..,n].
• ci ,τ ← MIFE.Enc(pp,ki ,mi ,τ ): It encrypts message mi ,τ
using key ki and outputs ciphertext ci ,τ .
• dkτ ← MIFE.DKGen(pp,msk,yτ ) : It generates decryption
key dkτ using the master secret key and vector yτ of n ele-

ments.

• IP(mτ ,yτ ) ← MIFE.Dec(pp,dkτ , cτ ,yτ ) : It takes vector

cτ = [c1,τ , .., cn,τ ], vector yτ , and decryption key dkτ gener-

ated from yτ . It decrypts cτ such that the result is the inner

product ofmτ = [m1,τ , ..,mn,τ ] and yτ .

We show a simple construction of MIFE scheme in Appendix B.

MIFE schemes for inner product can be used to construct a secure

aggregation protocol [XBZ
+
19, WPX

+
20]. In the SA.Setup phase,

TP runs MIFE.Setup(λ) and distributes the keys to the users. In

the SA.Protect phase, Ui executes MIFE.Enc(pp,ki ,mi ,τ ) and

sends the ciphertext ci ,τ to the aggregator. Finally, in the SA.Agg
phase, the aggregator first sends vector yτ = [1, ..., 1] to TP
which executes MIFE.DKGen(pp,msk,yτ ) and sends decryption

key dkτ of time period τ to the aggregator. The aggregator then

executes MIFE.Dec(pp,dkτ , [c1,τ , .., cn,τ ],yτ ) and retrieves the

inner product

∑n
i=1mi ,τy[i] =

∑n
1
mi ,τ .

Analysis: Similar to AHE schemes, MIFE-based SA incurs constant

computation and communication cost per user with respect to the

total number of users. A very important property of these schemes

is that it can deal with dynamic users by replacing zero weights

in vector yτ for the users that do not provide input at time period

τ . On the other hand, the disadvantage of these schemes is that
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Figure 4: The main operations and the communication be-
tween parties in FE-based SA.

they require an online key dealer (KD) as a trusted third party to

generate the decryption key for each time period.

3.3 MPC-based SA
Another cryptographic tool used to build secure aggregation proto-

cols is multi-party computation (MPC). InMPC, keys are not needed

to protect user inputs. Instead, private messages are split into shares

and distributed to multiple servers such that t of them can collab-

orate to reconstruct them. The schemes are also called t-out-of-n
secret sharing and they are composed of two main algorithms:

• {[s]i }i ∈[1, ..,n] ← MPC .Share(s, t,n): It splits secret mes-

sage s into n shares such that the secret can be reconstructed

with t of the shares.
• s ← MPC .Recon({[s]i }i ∈U ⊂[1, ..,n]): It reconstructs secret s
from a subset of more than t shares ({[s]i }i ∈U ⊂[1, ..,n] where
|U | ≥ t ).

The widely used MPC scheme is Shamir’s secret sharing [Sha79].

This t-out-of-n sharing scheme uses polynomials to generate shares

of secret values. Alternatively, a simpler n-out-of-n secret sharing

can be constructed by simply splitting a secret value to n random

values that sum up to the secret.

To design a secure aggregation protocol from MPC, the

SA.Setup phase is not needed since no keys are generated. In

the SA.Protect phase, a user protects its input by splitting it

into l random shares using MPC .Share(mi ,τ , t, l) where l is the
number of aggregators. It then sends one unique share to each

aggregator. In the SA.Agg phase, each aggregator locally sums

up the shares. Because secret sharing is additively homomorphic,

the sum of the shares will result in a share of the sum. Finally, at

least t aggregators broadcast their shares of the sum so that any

aggregator can then runMPC .Recon and retrieve the sum

∑n
1
mi ,τ .

Figure 5: The main operations and communication between
parties in MPC-based SA.

Analysis: An important property of MPC-based SA is that it does

not need a trusted third party since it does not need a key setup

phase. Also, MPC supports dynamic users since it allows any subset

of users to participate in the aggregation. This is mainly because

Figure 6: One federated learning round with three FL clients
and one server.

MPC does not rely on secret keys that uniquely identify a user. On

the contrary, MPC incurs high computation and communication

costs since the protection of a user input involves creating O(nm)
shares where n is the number of users and m is the size of the

input. Furthermore, to distribute the shares, pre-existing secure

channels are needed between the users and the aggregators. The

secure channels ensure that each share is received and accessed

only by its destined aggregator.

4 SECURE AGGREGATION FOR FEDERATED
LEARNING

Secure aggregation is used in federated learning to preserve the pri-

vacy of the clients. In this section, we first elaborate on the different

categories of federated learning systems and we present the prob-

lem of inference attacks. Then, we show how secure aggregation

based on cryptographic schemes can mitigate these attacks. We

further study the suitability of the baseline SA categories presented

in Section 3 to federated learning. To study their suitability, we iden-

tify the unique requirements of federated learning and we analyze

whether the basic schemes presented in Section 3 meet these re-

quirements. Finally, we survey the existing work on improving the

existing SA protocols to cope with FL challenges, specifically. We

propose to regroup these solutions based on the specific challenges

they tackle.

4.1 Federated Learning and Inference Attacks
In FL, a modelM is trained on n datasets (D1,D2, ...,Dn ) each

maintained by a different FL client. For each FL round τ , the client
i receives the modelMτ from the server and trains it on Di which

results in the trained modelMτ
i . The server aggregates the model

and sends the aggregated modelMτ+1
back to the clients. Figure 6

illustrates one FL round.

Scale of federation. Based on the scale of the FL protocol, two

types of FL can be distinguished: cross-silo FL and cross-device

FL [KMA
+
19]. In cross-silo scenarios, a small number (order of
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tens) of powerful users host the data. These often have decent

computational power with a reliable and high bandwidth network

connection. On the contrary, cross-device scenarios involve a large

number of users. These users often correspond to end-devices with

moderate to low computational power. In many applications, these

devices directly interact with end-users from which they collect

data.

Partitioning of the training data. There exist three categories

of data partitioning [YLCT19, LWH19]: Horizontal partitioning,

vertical partitioning, and hybrid partitioning. In a horizontally par-

titioned dataset, each FL client holds a set of complete training

samples. Each sample contains all the training features and the cor-

responding label. Hence, each client is able to train a local model on

these samples. Differently, in a vertically partitioned dataset [DP21],

a client may hold part of the features of each training sample while

the other parts might be held by other FL clients. In this FL type, the

clients are not able to locally train a model without collecting the

missing information of each sample from other clients. A hybrid

partitioned dataset is a combination of horizontally and vertically

partitioned datasets. SA is only suitable to FL based on horizon-

tally partitioned datasets since those based vertically partitioned

datasets require more operations than just summing the clients’

updates. Therefore, in the remaining of this section, FL for vertical

and hybrid datasets will be omitted.

Learning algorithm. The most used learning algorithm for hor-

izontal FL is Federated Averaging [MMR
+
17], which is based on

Stochastic Gradient Descent (SGD) [iA93]. SGD is an iterative algo-

rithm used to train a model on a dataset (i.e., find the best weights of

a model that can fit the dataset). At each SGD step, client i uses cur-
rent weightswτ

of modelMτ
and a loss function Lf to compute

gradient дτi from the values in its dataset Di :

дτi = ∆Lf (w
τ ,Di ) = ∆

∑
(x ,y)∈Di

Lf (w
τ , x,y)

Then, the gradient is used to update the weights of the model with

learning rate η (wτ
i = wτ − ηдτi ). The FL clients send their new

trained modelMτ
i represented by the computed weightswτ

i to the

FL server who aggregates them:

mi ,τ ← wτ
i , wτ+1 ←

∑n
1
mi ,τ

n

Finally, each FL client obtains the aggregated modelMτ+1
repre-

sented by the aggregated weightswτ+1
i and starts a new federated

learning round.

Inference Attacks. An adversary having access to the model up-

dates sent by the clients can perform inference attacks. In more

details, the attacker learns some private information about the

clients’ datasets. These attacks could consist of membership infer-

ence attacks [SSSS17a, NSH19] where the attackers learn whether

a specific data record is part of the training dataset or not. One can

also consider data reconstruction attacks [DN03, WLW
+
09] (a.k.a.

model invasion attacks [FJR15]) where the attacker learns some of

the attributes of a record in the dataset. Furthermore, Ateniese et

al. [AMS
+
15] and Ganju et al. [GWY

+
18] present data properties

inference attacks where the attacker learns global properties of the

Figure 7: A secure aggregation protocol integrated in feder-
ated learning. The secure aggregation protocol ensures that
the aggregators do not learn anything about the clients’ lo-
cally trained ML models except their aggregate.

training dataset, such as the environment in which the data was

produced.

4.2 SA to Mitigate Inference Attacks on
Federated Learning

Secure aggregation based on cryptographic schemes aims to prevent

inference attacks by hiding the model updates from any potential

adversary. Based on the definition given in Section 3, it involves

two main players (i.e., usersU and aggregators A) which execute

the three SA phases (i.e., SA.Setup, SA.Protect, and SA.Agg). The
users correspond to the FL clients and their inputs in each round

are the locally trained model weights (mi ,τ ← wτ
i ). On the other

hand, the aggregator (or the set of aggregators) acts as the FL server.

Any secure aggregation algorithm consisting of the three defined

phases can be used for running a secure version of the FL protocol.

To run FL with secure aggregation, SA.Setup phase is performed

before the training starts. Then for each FL round τ , clientUi trains

its model on its local data and obtains the gradientwτ
i . It then runs

SA.Protect to protect the local trained model and sends it to the

server. Finally, the server runs SA.Agg after it collects all protected

trained models. As a result, the clients get the aggregated model
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and starts a new FL round. Figure 7 shows the components of secure

aggregation integrated in federated learning.

4.3 Challenges in using SA for FL

Masking-
based
SA

AHE-
based
SA

FE-
based
SA

MPC-
based
SA

Client Failure (C1)

High Dim. Inputs (C2)

Float Inputs (C3)

Scalability (C4)

Privacy Leaks (C5)

Malicious Users (C6)

Malicious Agg (C7)

Table 2: Challenges in using SA for FL based on the specific
requirements of FL. It shows for each challenge whether
the baseline SA protocols defined in Section 3 can originally
cope with that challenge.

Nowadays, the use of SA based on cryptographic schemes in fed-

erated learning becomes increasingly popular. We already witness

several federated learning frameworks such as FATE [Dep21], Pad-

dle FL [Pad21], or Pysyft [Ope21] integrating these technologies.

Nevertheless, these implementations are not practical in real-world

scenarios since they underestimate the impact of SA schemes based

on cryptographic schemes on FL. Indeed, federated learning fea-

tures some unique properties and characteristics that differ from

previous applications where SA was used. We hereby identify seven

unique properties for FL that raise significant challenges for the

integration of SA in FL. We further analyze the suitability of each

SA category (see Section 3) to cope with these characteristics. We

summarize the results in Table 2.

4.3.1 Failures and Drops of Clients at Realtime (C1). In cross-device
FL scenarios, it is common to have mobile, unreliable FL clients. The

mobility of a client may cause failures (drops) of some FL clients

causing their unavailability for some federated learning rounds.

Failures of clients may even happen within the FL round as well.

All this can be a problem for some secure aggregation schemes that

do not support dynamic users. In particular, SA schemes based on

masking and AHE are not fundamentally designed to cope with user

failures. Therefore, the need for fault-tolerant secure aggregation

is a new requirement for FL.

4.3.2 Client’s Inputs are Vectors of High Dimension (C2). In FL, the

user’s input is a vector that holds all the model parameters (weights).

Not all types of secure aggregation protocols can efficiently work

with vectors. For example, MPC-based SA incurs a significant com-

munication overhead since the shares of the inputs have the same

size of the input. Therefore, it is not practical to run secret sharing

to share large vectors. Also, in masking-based SA, the users should

run a key-agreement protocol to compute new masks for each FL

round. This adds a significant overhead. Additionally, for AHE, the

encryption algorithm results in large ciphertexts. Thus, encrypting

each element in the input vector adds a large overhead. This calls

for efficient packing techniques designed for AHE-based SA. Unlike

other methods, for FE-based secure aggregation, it is possible to

construct a solution where each party sends exactly one value of

size of the input vector (see the example in Appendix B).

4.3.3 Client’s Inputs are of Floating Point Type (C3). All the baseline
secure aggregation protocols are designed to operate on integer

types. In FL, the user’s input usually is of floating point (float)

type. This calls for efficient quantization techniques that transform

floats to integers while preserving a high accuracy in the result.

Representing floats with integers incurs an increase in the size of

the input. Hence, the use of quantization techniques helps achieve

a good trade-off between accuracy and communication overhead.

4.3.4 Huge Number of Clients (C4). Recently, we start to observe

FL applications involving thousands of FL clients. Google is re-

searching how to train Gboard (the Android’s keyboard application)

search suggestion system using federated learning on large scale

[YAE
+
18, HKR

+
18]. With secure aggregation integrated with feder-

ated learning, the scalability problem becomes a serious challenge.

MPC-based SA protocols do not scale well with huge number of

users since they suffer from a quadratic complexity in terms of com-

munication and computation. Similarly, masking-based SA suffers

from a quadratic complexity in the setup phase. Additionally, with

a large number of clients, the typical synchronized FL protocol is

not practical. In an asynchronous FL protocol, clients do not wait

for the updates of a sufficient number of users at each FL round.

Instead, the updates of the users are incorporated as soon as they

arrive at the server. Adopting SA for asynchronous FL is challeng-

ing because updates may be protected with keys corresponding to

different FL rounds.

4.3.5 Privacy Attacks that Bypass SA (C5). The aggregated model

Mτ+1
is a public information that is accessible for all FL clients.

Therefore, secure aggregation is not used to hide this value. There

exists a different type of inference attacks that can still infer pri-

vate information from the aggregated model, only [SSSS17b]. For

example, recently So et al. [SAG
+
21] pointed out a new attack to

leak the client’s updates even when protected with secure aggre-

gation. The authors notice that the models from the FL clients do

not change a lot between one training step and another one when

the trained model starts to converge. This causes a privacy leakage

if a FL client did not participate. In more details, if all FL clients

participate in round τ − 1 and all clients except one participate in

round τ , and if the inputs did not change a lot, an adversary who

has access to the aggregated model updates for rounds τ and τ − 1
will be able to approximate the inputs of the missing FL client. Such

specific attacks can bypass the security measures of SA. Gao et al.

[GHG
+
21] implemented these types of attacks and show how they

can effectively infer the category of the given data samples.

Secure aggregation protocols by definition do not provide pro-

tection against these types of attacks. Therefore, additional security

mechanisms should be used with secure aggregation to mitigate

these attacks.

4.3.6 Malicious Users (C6). Earlier SA protocols proposed before

the FL paradigm appeared, consider a honest-but-curious threat
model with colluding users (see Section 2). Such threat model is

not sufficient in the context of federated learning. Specifically, FL

clients cannot be trusted to provide their inputs truthfully at each FL
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round. Thus, we should consider an extended threat model which

considers malicious users.

Indeed, poisoning attacks (a.k.a., backdooring attacks) are at-

tacks where malicious FL clients manipulate their model updates

Mτ
i to affect the aggregated modelMτ+1

. Their goal is to install

a backdoor in the trained model. A “backdoored” model behaves

almost normally on all inputs except for some attacker-chosen in-

puts at which it outputs attacker-desired predictions. Malicious FL

clients use two main methods to poison a model: Dataset poisoning

[STS16] where attackers insert malicious records in their dataset;

and model poisoning [BVH
+
20a] (a.k.a., constrain-and-scale at-

tacks) where the attacker replaces the trained model by a malicious

model and send it instead of the trained model. An even more recent

attack method consists of distributed poisoning attacks [XHCL20]

in which the poison is distributed among several malicious clients

inputs so that it is harder to detect malicious models. On the other

hand, malicious clients can perform less stealthy attacks by sending

ill-formed inputs to prevent the calculation of the aggregation.

All SA protocols studied in Section 3 are designed to achieve

Aggregator Obliviousness in the honest-but-curiousmodel. To further

prevent poisoning attacks we need to implement additional security

mechanisms for SA.

4.3.7 Malicious Aggregator (C7). Similar to challenge C6, the
honest-but-curious threat model is not sufficient to prevent the

cheating of a server in the context of federated learning. More

specifically, the SA protocols described in Section 3 prevent a curi-

ous FL server from learning the clients inputs, but cannot protect

against a malicious server that modifies the aggregated model. In-

deed a malicious server can cause a huge damage because it has

full control of the final aggregated value. Therefore, an adversary

controlling the FL server can force the clients to receive an adver-

sary chosen model. In fact, the impact of a malicious aggregator

can even go beyond forging the aggregation result. Pasquini et

al. [PFA21] showed that a malicious aggregator can even compro-

mise the privacy by bypassing the secure aggregation protocol. An

example for these attacks illustrated by the authors is when the

malicious aggregator chooses specific values for the aggregated

result. The values are chosen such that when the clients train the

forged model sent by the aggregator, the training outputs a model

of zero parameters. Hence, the malicious aggregator can suppress

arbitrary clients of his choice from the aggregation by sending them

malformed models. Therefore, it can suppress all clients except a

targeted one and leak its input.

To prevent such attacks, SA protocols should consider amalicious

aggregator in their threat model.

4.4 Crypto-based SA Solutions Designed for FL
A lot of research has been conducted on designing SA protocols

based on cryptographic schemes for federated learning applica-

tions. Most of the proposed schemes are improvements of the basic

secure aggregation protocols described in Section 3 and tackle one

or more of the aforementioned challenges (C1-C7). The proposed
schemes can be categorized based on the challenge they tackle. We

summarize how these solutions propose different solutions for each

of the challenges. Table 3 presents an overview of these solutions

Figure 8: Summary of existing FL solutions that use crypto-
based secure aggregation grouped by the type of the SA used
and the specific challenge they tackle. Bordered boxes indi-
cate that the solution presents a technique that can be de-
ployed in other types of SA protocols (eg., [XLL+20] is imple-
mented on masking-based SA but can be also used for AHE-
based SA). Hatched boxes indicate that the scheme cannot
achieve the security requirements since they do not support
collusions (this is discussed in Section 5). Different colors
represent research groups of the authors.

grouped by their challenge scope. Also, Figure 8 regroups them per

SA category and shows the relation between the solutions.

4.4.1 Fault-tolerant SA. To tackle the problem of client failures

(seeC1), a fault-tolerant secure aggregation protocol should be used.
MPC-based secure aggregation, specifically, Shamir’s SS scheme

[Sha79] is by design fault-tolerant. It is used in [DCSW20, KRKR20]

where the FL server is replaced with a set of separated aggregators.

The high communication cost these solutions incur encouraged

researchers to look for alternative fault-tolerant solutions.

MIFE-based schemes also are fault-tolerant by design since

the data aggregator can assign zero weights for missing clients

[XBZ
+
19]. However, these schemes require a key dealer to stay

online for each federated learning round.

On the other hand, Bonawitz et al. [BIK
+
17] proposed a fault-

tolerant variant of the masking-based SA. Later, this scheme was

widely adopted and improved by [BBG
+
20, EA20, SGA21b, KLS21,

XLL
+
20, GLL

+
21]. The idea of this scheme is to merge Shamir’s SS

schemewithmasking. This merging can achieve best of both worlds.

Specifically, it benefits from the lightweight operations and low com-

munication overhead of the masking scheme and on the other hand,

it benefits from the fault-tolerance property of Shamir’s SS scheme.

Thanks to this trade-off, it is considered as a big jump towards

designing practical secure aggregation scheme for cross-device FL

scenarios. The details of this scheme are explained in Appendix D.

A similar scheme is proposed by Stevens et al. [SSV
+
21] that re-

place the standard masking with a Learning With Error masking

and use a packed and verifiable version of Shamir’s secret sharing.

Also, Yang et al. propose LightSecAgg [YSH
+
21] which replaces the

Shamir’s secret sharing scheme with a secret sharing scheme based

on Maximal Distance Separable (MDS) code [RL89]. The work of
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Scope Solution (year) SA scheme FL scale Technique

Fa
ul
t-

To
le
ra
nc
e

(
C
1
)

Bonawitz et al. [BIK
+
17] Masking X-Dev Integrating Shamir SS with Masking

HybridAlpha [XBZ
+
19] MIFE X-Silo Assigning zero weights for dropped clients

FastSecAgg [KRKR20] MPC-t-of-n X-Dev Using FFT with Shamir SS

Stevens et al. [SSV
+
21] Masking X-Dev Integrating Shamir SS with LWE-based Masking

LightSecAgg [YSH
+
21] Masking X-Dev Integrating MDS code with Masking

C
om

m
.

Effi
ci
en
cy

(
C
2
)

Phong et al. [PAH
+
18] AHE X-Silo Batch encryption

Liu et al. [LCV19] AHE X-Silo Batch encryption

BatchCrypt [ZLX
+
20] AHE X-Silo Batch encryption

Wu et al. [WPX
+
20] MIFE X-Silo All or nothing transformation

Bonawitz et al. [BIK
+
17] Masking X-Dev Generate masks from small seeds

A
cc
ur
ac
y

(
C
3
)

Bonawitz et al. [BSK
+
19] Masking X-Dev Auto-tuned quantization

HeteroSAg [EA20] Masking X-Dev Auto-tuned quantization

EastFly [DCSW20]

MPC-n-of-

n /

AHE

X-Silo Quantization: Ternary FL

Safer [BT20] MPC-n-of-n X-Silo Top-k sparsification with 1-bit quantization

Sc
al
ab
ili
ty

(
C
4
)

Bonawtiz et al. [BEG
+
19] Masking X-Dev Sub-grouping: Running multiple SA instances

Bell et al. [BBG
+
20] Masking X-Dev Sub-grouping: Creating random connected graphs

TurboAgg [SGA21b] Masking X-Dev Sub-grouping: Circular subgroups of clients

SAFE [SMH21] Masking X-Dev Arranging clients in a circular chain

So et al. [SAGA21] Masking X-Dev Adapting SA for asynchronous FL

SwiftAgg [JNMALC22] Masking X-Dev Sub-grouping: Running multiple SA instances

Pr
iv
ac
y

En
ha

nc
in
g
(
C
5
)

Truex et al. [TBA
+
19] AHE X-Silo DDP: clients add gaussian noise

Peter et al. [KLS21] Masking X-Dev DDP: clients add gaussian noise

So et al. [SAG
+
21] Masking X-Dev Multi-round privacy using client selection

Timothy et al. [SSV
+
21] Masking X-Dev DDP: clients use LWE-based masking

Joaquín et al. [FMLF21] Masking X-Dev DP: aggregator add noise to the aggregate

Ve
ri
fy

In
pu

ts
(
C
6
)

MLGuard [KTC20] MPC-2-of-2 X-Silo Boolean circuits to compute cosine distance

FLGuard [NRY
+
21] MPC-2-of-2 X-Silo Bool/Arth circuits to perform clustering

RoFL [BLV
+
21] AHE X-Silo Commitment scheme to compute euclidean distance

BREA [SGA21a] Masking X-Dev Arithmetic circuits to compute square distance

Karakoc et al. [KOB21] AHE X-Silo OPPRF to compare with a threshold

SAFELearning [ZLYM21] Masking X-Dev Multi-step aggregation to verify intermediate results

Velicheti et al. [VXK21] Masking X-Dev Multi-step aggregation to verify intermediate results

Ve
ri
fy

A
gg
.

(
C
7
)

Zhang et al. [ZFW
+
20] AHE X-Silo Using HHF based on Bilinear Maps

VerifyNet [XLL
+
20] Masking X-Dev Using HHF with ZKP scheme

VERSA [HKKH21] Masking X-Dev Using keyed HHF with ZKP scheme

NIVA [BTL
+
21] MPC X-Dev Verifiable secret sharing

DEVA [TLB
+
21] MPC X-Dev Verifiable secret sharing

VeriFL [GLL
+
21] Masking X-Dev Using commitment scheme with HHF

Table 3: Categorization of secure federated learning solutions based on the challenge tackled with a short description of the
proposed solution. All the solutions are secure in the HBC model except those addressing C7 (malicious aggregator) and C6
(malicious users) thus addressing a specific malicious setting. An exception is for the solutions in red which do not protect
against collusions between users and aggregators and thus are considered not secure (based on our security definitions in
Section 2).

Yang et al. reduces the computation time at the server. Another

approach is proposed by Swanand et al. [KRKR20] that uses Fast

Fourier Transform (FFT) for secret sharing.

4.4.2 Communication Efficient SA. Researchers propose some tech-

niques to bound the communication overhead incurred by SA (see

C2). For encryption-based schemes, batch encryption has been

leveraged by Liu et al. [LCV19], Phong et al. [PAH
+
18], and Yang

et al. [ZLX
+
20]. In BatchCrypt [ZLX

+
20], the authors propose a

method to quantize and batch the elements of a gradient before

encryption. The strength of their approach is that it preserves the

additively homomorphic property of the ciphertexts. Another in-

teresting technique presented by Wu et al. [WPX
+
20] is to use the

All Or Nothing Transformation (AONT) [Riv97]. The authors show

that by transforming clients’ gradients with AONT, it is sufficient

to encrypt a small part of the transformed gradient. This can de-

crease the size of the protected user input by several orders. For

masking-based schemes, Bonawitz et al. [BIK
+
17] propose to exe-

cute key agreement for small numbers that can be used as seeds of

a pseudo-random generator. These seeds are then used to generate

the masks.

4.4.3 Accurate SA. To deal with the floating point challenge while

preserving a good accuracy, researchers propose to use different

quantization techniques. Elkordy et al. [EA20] and Bonawitz et al.

[BSK
+
19] propose to use auto-tuned quantization. This technique
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is integrated with FT-Masking [BIK
+
17] and enables the data own-

ers to adapt their quantization level based on the requirements.

Alternatively, in [BT20], Beguier et al. propose a quantization tech-

nique called TopBinary quantization. This technique is essentially

a combination of top-k sparsification [SCJ18] with 1-bit quantiza-

tion [BWAA18]. One very important aspect for these quantization

techniques is that they can be used for all categories of secure

aggregation protocols.

4.4.4 Scalable SA. To tackle challenge C4, scalability of SA started

to gain researchers’ attention thanks to the new large-scale applica-

tions of FL. Bonawitz et al. [BEG
+
19] set up a general framework

to scale a secure aggregation framework to millions of devices. The

authors propose to simply run multiple instances of the scheme,

one for each subgroup of clients. Each subgroup computes interme-

diate aggregates which are combined later. The same intuition of

grouping clients is followed up by Bell et al. [BBG
+
20] and by So

et al. [SGA21b]. Bell et al. observe that the FT-Masking scheme in

[BIK
+
17] does not require that all the clients are connected. Thus,

they propose to generalize the scheme by creating random graphs.

Each FL client executes the FT-Masking with its neighbors. The new

protocol assumes that not all the neighbors will be corrupted at the

same time and it proposes a method to build the so-called “good”

graphs. Similarly, both So et al. (TurboAgg) [SGA21b] and Sand-

holm et al. (SAFE) [SMH21] propose a circular topology. Clients

perform a chain of aggregations by passing the aggregated updates

to the next client. To further deal with large number of clients, So et

al. [SAGA21] propose a SA protocol that can be integrated in asyn-

chronous FL. The solution uses the scheme proposed in [YSH
+
21]

and adapts it to enable to securely aggregate inputs from different

time periods.

4.4.5 SA Resilient to Privacy Attack. To deal with inference attacks

on the aggregated model (C5), Differential Privacy (DP) solutions

[Dwo06] should be used with secure aggregation. Notice that the

goal of using DP mechanims with SA is to protect the aggregated

model, only, and not user inputs.

A simple method is to let the aggregator apply DP on the aggre-

gated model [FMLF21]. However, this requires to trust the aggre-

gator. A better method is to use a distributed version of DP (DDP)

along with SA to mitigate the information leakage caused by the

public aggregated model. Few works have followed this approach

for FL [KLS21, TBA
+
19]. These solutions add Gaussian noise to the

FL clients’ inputs. They leverage the fact that FL clients’ inputs are

protected with cryptographic tools (thanks to SA) which permit

them to decrease the level of noise while achieving sufficient pri-

vacy level. Therefore, using DDP with SA limits the degradation

of the accuracy of the trained model compared to using DP alone.

Stevens et al. [SSV
+
21] follow a similar approach by using Learning

with Error (LWE) masking technique to make the final aggregate

differentially private.

On the other hand, a multi-round privacy concept is introduced

by So et al. [SAG
+
21]. This concept is to ensure that an adversary

cannot learn valuable information by monitoring the changes in the

aggregated model across different FL rounds. The authors propose

a solution enlightened by the work in [TNW
+
21]. They propose

to randomly and fairly (using weights) select participants in each

FL round based on well-defined criteria called Batch Partitioning.

Using this technique they can guarantee the long-term privacy of

the data at the FL clients.

4.4.6 SA Against Malicious Users. To deal with malicious users

that perform poisoning attacks (C6), the FL server needs a mech-

anism to validate the inputs of the clients. Mitigating poisoning

attacks is studied by researchers independently from using secure

aggregation for FL [FYB18, AMMK20]. One of the methods used to

prevent such attacks is to use the cosine distance [FYB18] to detect

poisoned inputs that deviate from the other benign inputs. Cluster-

ing [STS16, BEMGS17] and anomaly detectionmethods [AMMK20]

are also used to detect malicious model updates. An orthogonal ap-

proach is to use clipping and noising to smooth the model updates

and remove the differences [BVH
+
20b]. While all these solutions

are shown to be efficient in preventing poisoning attacks, using

them with secure aggregation is a big challenge. The problem is

that all these solutions rely on analyzing the FL clients’ inputs while

secure aggregation aims to hide and protect these inputs.

Several methods are proposed to verify the inputs while keeping

them protected to preserve their privacy. For MPC-based SA, it is

possible to build circuits that can perform complex operations on

the shares. This can be used to evaluate functions on the inputs other

than just computing the sum. Indeed, MLGuard [KTC20] proposes

to verify the users’ inputs by transforming a verification function

into a circuit which gets executed by the two servers using 2PC. The

verification function computes the distance between the clients’

inputs. The circuit compares the distance to pre-defined thresholds

and thus rejects the input if it exceeds it. FLGuard [NRY
+
21] fol-

lows the same approach by building two circuits: One circuit for

detecting poisoned inputs using a dynamic clustering algorithm

(HDBSCAN [CMS13]) and another circuit for reducing the impact

of poisoned inputs using clipping and noising. The communication

cost of running these circuits is significant thus making scalability

even harder to achieve for SA in the federated learning context. A

promising approach to reduce this cost is through the use of secret-
sharing non-interactive proof (SNIP). This approach was proposed in

[CGB17] (Prio). Using SNIP enables the aggregators to validate the

user inputs without interacting with the users and with minimal

interaction between themselves. This scheme is not yet deployed in

FL applications. SNIP brings a great advantage over standard 2-PC

validation circuits since it does not limit the number of aggregators

thanks to its lower communication cost. The limitation of SNIP is

that it only supports specific validation functions. Therefore, it is an

open challenge to design validation circuits for detecting poisoning

attack using SNIP.

On the other hand, regarding AHE-based SA, Karakoc et al.

[KOB21] propose OPPRF, an algorithm based on private set mem-

bership (PSM) [CO18] and oblivious transfer (OT) [NP05]. OPPRF
uses PSM to perform equality checks between values (i.e., equiv-

alent to finding intersection between sets of cardinality equal to

one [Cou18]). Using OPPRF, the users can create tags that are only

valid if their inputs are lower than a threshold provided by the ag-

gregator. Karakoc et al. [KOB21] applied this scheme for Multi-Key

AHE secure aggregation schemes and evaluated it in SFL applica-

tions. The scheme enables the FL server to detect poisoning attacks

by checking that the minimum, maximum and the average of the

gradient elements does not cross a certain threshold value. The
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threshold is configured based on an observation of the gradients

of benign clients. Another approach is proposed by Lukas et al.

[BLV
+
21]. The authors use a non-interactive commitment scheme

proposed in [Ped92]. Using this scheme, the users create proofs

that the Euclidean distance of their inputs satisfies the bound set

by the aggregator. Upon receiving the client protected input and

the commitment, the server verifies that the proof is valid.

For masking-based SA, two techniques are proposed. One tech-

nique is proposed by So et al. [SGA21a] in which users secretly

share their model updates with all other clients and then compute

the squared distance between the model shares. The server can fi-

nally reconstruct the squared distances and use the result to detect

malicious inputs. An alternative technique is proposed by Zhang

et al. [ZLYM21] and Velicheti et al. [VXK21]. In more details, users

are anonymously and randomly grouped into clusters. Aggregation

happens per cluster and then a second round of aggregation hap-

pens on the results of each cluster. For each cluster, the intermediate

aggregation results are checked to prevent poisoning attacks. The

fact that attackers do not know to which cluster the compromised

device belongs to, protects from distributed poisoning attacks (see

C6).

4.4.7 SA Against Malicious Aggregator. In a malicious aggregator

threat model, the FL server forges false aggregation results (C7).
Mitigating these attacks requires a verifiable secure aggregation

scheme. Many solutions are proposed to enable the verification of

the aggregation outcome [KShS12, SS11, DOS18, CDE
+
18]. How-

ever, these solutions do not fit well federated learning applica-

tions due to their high communication overhead. In the context of

federated learning, six solutions are proposed [GLL
+
21, HKKH21,

XLL
+
20, ZFW

+
20, TLB

+
21, BTL

+
21].

For masking-based and AHE-based SA, Zhang et al. [ZFW
+
20]

and Xu et al. (VerifyNet) [XLL
+
20] use Homomorphic Hash Func-

tions (HHF) to verify the result of the aggregation. HHF can be

built using bilinear maps [BGLS03, Fre12]. First, the data owners

create authentication tags of their inputs and send them to the

aggregator. The latter aggregates them to prove the outcome of

the aggregation. Finally, the aggregator verifies the result. Hahn

et al. [HKKH21] detect possible brute-force attacks on VerifyNet

and improv it by deploying a keyed HHF. All these solutions do
not prevent from collusions between the users and the aggregator.

Therefore, they cannot be considered secure based on our security

definitions (see Section 2). Another problem with these solutions is

that they significantly affect the performance of SA. This is because

of the linear increase in computation and communication overhead

with the increase of the dimension of inputs. This is a clear limi-

tation since the performance of the ML model highly depends on

their size (i.e., number of parameters). To solve this problem, Guo

et al. (VeriFL) [GLL
+
21] focus on designing a verification scheme

specifically for secure aggregation applications with inputs of high

dimension. To support user-aggregator collusions, the authors in-

tegrated a commitment scheme to prevent users from changing

their hashes after the computation of the aggregate. The authors of

VeriFL apply this scheme to the fault-tolerant masking scheme in

[BIK
+
17]. The evaluation on federated learning application show

a significant reduction in communication overhead with respect

to other verification schemes. However, VeriFL still suffers from a

Figure 9: New Components of Secure Aggregation

quadratic computation and communication cost with respect to the

number of FL clients. Achieving a better scalability for verification

systems is an open problem.

For MPC-based SA, Brunetta et al. [BTL
+
21] propose NIVA as

a non-interactive secure aggregation protocol that includes the

verification of the result. The users create a tag for each of their

input shares. Upon computing the aggregate, the result can be

verified using all the generated tags. Tsaloli et al. [TLB
+
21] propose

DEVA which improves the number of tags created for each user.

DEVA requires that a user creates a single tag for its input rather

than creating a tag for each share. Both approaches do not support

collusions between users and the aggregator and incur very high

communication overhead since they use MPC.

5 TAKEAWAY MESSAGES AND
OBSERVATIONS

We have extensively studied the federated learning solutions that

integrate secure aggregation schemes. In this section, we identify

and share the following observations and takeaway messages:

O1 We can clearly see that masking-based SA are the most inte-

grated secure aggregation solution for federated learning. More

specifically FT-Masking [BIK
+
17], appeared in 20 solutions where

each one tried to improve it in a certain direction. It will be very

nice to see all these parallel improvements integrated in a single

solution.

O2 We notice that secure aggregation solutions based on AHE

are not widely adopted in federated learning. This is mainly be-

cause they do not support user dynamics. However, we see that

AHE-based SA is promising since they provide long-term security

using the same user keys. We hope to see more research improving

these schemes towards a practical deployment in federated learning

context.

O3 We notice that some of the solutions proposed to preserve

the privacy in federated learning do not adhere to the minimal
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security requirements for secure aggregation protocols (see Ag-
gregator Obliviousness in Section 2). Specifically, AHE schemes

[PAH
+
18, LCV19, ZLX

+
20, ZFW

+
20] and masking-based verifica-

tion schemes [ZFW
+
20, XLL

+
20, HKKH21] that use the same key

for all users should not be considered secure since they do not

guarantee security in case of a collusion between a user and the

aggregator.

O4 We note that secure aggregation alone is insufficient to guaran-

tee the privacy of the clients’ datasets in the context of federated

learning. Although SA helps prevent inference attacks, the global

model that is collaboratively computed from private individual

inputs can still leak information. Therefore, additional protection

mechanisms are required. Differentially private mechanisms and

multi-round privacy solutions are suitable candidates to cope with

this problem.

O5 Poisoning attacks against federated learning call for some in-

tegrity mechanisms that would allow the aggregator (the FL server

in this context) to verify the correctness/veracity of received inputs.

Nevertheless, the cost of such mechanisms can be significant. There-

fore, we can consider the design of such mechanisms that can (i)

detect stealthy and sophisticated poisoning attacks, and (ii) ensure

the security and scalability requirements, as an open challenge.

O6 Similar to the previous observation, we identify the need for

an integrity mechanism for verifying the correctness of the actual

aggregate. Basic solutions would linearly increase the size of the

transmitted data between parties w.r.t. the model size. Using incre-

mental HHF is promising as shown in VeriFL [GLL
+
21]. However,

this solution is still far from being applied for FL applications in

larger scale since it still implies a linear increase in communication

and computation cost w.r.t the number of clients.

Based on all the previous observations, we propose to revisit

the definition of crypto-based secure aggregation to make it suit-

able for FL. Specifically, we revise the description of the protocol

phases (i.e., SA.Setup, SA.Protect, and SA.Agg) to meet all the

security requirements for FL applications. Following observation

O4, the SA.Protect phase should be modified such that users first

pre-process their inputs with distributed DP mechanisms before

running the actual protection algorithm. Additionally, based on

observation O5, SA.Protect should also generate integrity proofs

of inputs which are sent together with the protected inputs to the

data aggregators. On the other hand, SA.Agg should include a ver-

ification mechanism of the inputs which validates the integrity

proofs. Moreover, observation O6 indicates that SA.Agg should

compute a proof of the aggregation which is sent to the users along

with the aggregation result. In order for the users to validate the

aggregation result, we require an additional phase: Namely, the

SA.Verify phase should be performed as a final step by the users.

In this phase, the users verify the received result of the aggregation.

In summary, we propose a better definition of secure aggregation

protocols based on cryptographic schemes which copes with the

security requirements of federated learning. The definition consists

of four phases: SA.Setup, SA.Protect, SA.Agg, and SA.Verify.
Figure 9 shows the details of the improvements in each of the

phases. It is worth to note that this new definition combines and

generalizes all the improvements proposed by the state-of-the-art

solutions. It would be interesting to develop the first SA solution

for FL implementing our proposed definition by combining all the

state-of-the-art techniques.

6 RELATED STUDIES
To the best of our knowledge, there are no systematization of knowl-

edge in the literature focusing on secure aggregation protocols

based on cryptographic schemes and their application to federated

learning protocols. Recent works [KMA
+
19, SWRH20, MPP

+
21]

studied federated learning and the security and privacy issues of

machine learning. In all these three studies, the authors present

a high level overview of all the possible secure aggregation tech-

niques that can be deployed in federated learning. With respect to

our work, we concentrate our research on the solutions based on

cryptographic schemes, only, by performing an in-depth system-

atic study that results in a clear comparison of these solutions. For

example, none of theses studies give a formal definition of this con-

cept and shows how all the existing techniques can be instantiated

under this definition. More importantly, we extensively study the

use of such SA protocols for federated learning in the literature.

Therefore, we identify the specific challenges of using these SA

protocols in FL and we analyze the existing solutions.

In a recent work [CPTPH21], the study focuses on a cross-field

systematization of knowledge on privacy-preserving collaborative

training of tree-basedmodels such as decision-trees, random forests,

and boosting. The systematization is based on the learning algo-

rithm, the collaborative model, the protection mechanism, and the

threat model. In [HMSY21], the authors review and analyze tech-

niques and protocols used for privacy-preserving clustering with

respect to efficiency, privacy, and security models. The above stud-

ies focus on specific types of machine learning models that require

special treatment to be trained collaboratively. On the contrary,

our study focuses on general machine learning models that can be

trained using horizontal federated learning.

7 CONCLUSION
In this paper, we proposed a formal definition of secure aggrega-

tion based on cryptographic schemes and provided an overview

of the literature. We have first categorized the solutions based on

the underlying cryptographic techniques and further studied them

with respect to their architecture, performance and their support of

dynamic users. We then focused on the use of secure aggregation

in federated learning. We have identified seven main challenges:

FL clients’ failures, large dimension of client’s input, floating type

inputs, huge number of clients, inference attacks and multi-round

leakage, poisoning attacks from malicious users, and forged aggre-

gation from malicious aggregator. We studied the existing 37 SFL

solutions and categorized them based on the challenge they tackle

and the attack they mitigate. Thanks to this study, we were able

to present six main observations that we hope will help point the

research in this field to the right direction.
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A AHE SCHEMES FOR SECURE
AGGREGATION

A.1 Shi-Chan-Rieffel-Chow-Song Scheme
SCRCS scheme [SCR

+
11] is the first Key AHE scheme used for

secure aggregation. It guaranteesAggregator Obliviousness based on
Decisional Diffie Hellman (DDH) assumption. The three algorithms

(AHE.Setup, AHE.Enc , and AHE.Aдд) are defined as follows:

• (pp, {ki }i ∈[1, ..,n],k0) ← AHE.Setup(λ): Given security pa-

rameter λ, it chooses generator д ∈ G where G is a cyclic

group of prime order p for which Decisional Diffie-Hellman

is hard. Additionally, it defines the hash functionH : Z→ G.
It also generates n random secrets k1, ...,kn ∈ Zn and

k0 = −
∑N
1
si . It outputs the public parameters pp = (д,H ),

the secrets keys of each user {ki }i ∈[1, ..,n], and the secret

key of the aggregator k0.
• ci ,τ ← AHE.Enc(pp,ki , τ ,mi ,τ ):

ci ,τ ← дmi ,τ · H (τ )ki

•
∑n
1
mi ,τ ← AHE.Aдд(pp,k0, τ , {ci ,τ }i ∈[1, ..,n]):

cτ ←
n∏
1

ci ,τ = д
∑N

1
mi ,τ · H (τ )

∑N
1
ki

V ← H (τ )k0 · cτ = д
∑n

1
mi ,τ

mod n

Then, it computes the discrete logarithm base д of V to ob-

tain

∑n
1
mi ,τ mod p. For an efficient computation of the dis-

crete logarithm using Pollard’s method [Pol78], the output∑n
1
mi ,τ should be a small number.

For the proof of correctness and security of this scheme, refer to

[SCR
+
11].

A.2 Joye-Libert Scheme
JL scheme [JL13] is another AHE scheme for SA which is designed

as an improvement of the SCRCS scheme. JL scheme has a sim-

pler decryption function as it does not require the computation of

the discrete logarithm in a group in which the DDH assumption

holds. The JL scheme guarantees Aggregator Obliviousness based
on Decision Composite Residuosity (DCR) assumption [Pai99]. It

defines the three algorithms (AHE.Setup, AHE.Enc , and AHE.Aдд)
as follows:

• (pp, {ki }i ∈[1, ..,n],k0) ← AHE.Setup(λ): Given security pa-

rameter λ, it generates randomly two equal-size prime num-

bersp andq and setsN = pq. Then, it defines a cryptographic
hash function H : Z→ Z∗N 2

. It randomly generates n secret

keys {ki }1..n ∈ ZN 2 and sets k0 = −
n∑
1

ki . It outputs the

public parameters pp = (N ,H ), the secrets keys of each user

{ki }i ∈[1, ..,n], and the secret key of the aggregator k0.
• ci ,τ ← AHE.Enc(pp,ki , τ ,mi ,τ ):

ci ,τ ← (1 +mi ,τN ) · H (τ )
ki

mod N 2

•
∑n
1
mi ,τ ← AHE.Aдд(pp,k0, τ , {ci ,τ }i ∈[1, ..,n]):

cτ ←
n∏
1

ci ,τ = (1 + N
n∑
1

mi ,τ ) · H (τ )
∑n

1
ki

mod N 2

H (τ )k0cτ − 1

N
=

n∑
1

mi ,τ mod N

For the proof of correctness and security of this scheme, refer to

[JL13].

B MULTI-INPUT FE SCHEME
An efficient FE-based secure aggregation can be built using one-time

pad encryption and a pseudo-random generator, only. The MIFE

scheme from [ACF
+
18a] defines the four algorithms (MIFE.Setup,

MIFE.Enc ,MIFE.DKGen, andMIFE.Dec) as follows:

• {pp,msk, {ki }i ∈[1, ..,n]} ← MIFE.Setup(λ) : Given security

parameter λ, it chooses prime p and a pseudo-random gen-

erator PRG : (Zp ,Z) → Zp as the public parameter then

156



SoK: Secure Aggregation Based on Cryptographic Schemes for Federated Learning Proceedings on Privacy Enhancing Technologies 2023(1)

chooses n user keys at random ki ← Zp∀i ∈ [1, ..,n]. Finally
it sets the master keymsk = {ki }i ∈[1, ..,n].
• ci ,τ ← MIFE.Enc(pp,ki ,mi ,τ ): It first computes ki ,τ ←
PRG(ki , τ ) then ci ,τ ←mi ,τ + ki ,τ mod p
• dkτ ← MIFE.DKGen(pp,msk,yτ ) :

dkτ ←
∑

∀ki ∈msk

yi ,τ PRG(ki , τ ) mod p

• IP(mτ ,yτ ) ← MIFE.Dec(pp,dkτ , cτ ,yτ ) :

IP(cτ ,yτ ) − dkτ mod p

C LAYERED MASKING VARIANT
Another variant of masking-based secure aggregation is the layered

masking [CCMT09, CMT05, ÖM07, WGA06]. In this type of mask-

ing scheme, the users are assumed to have network connectivity

with each other. Hence, the users are arranged in a tree structure.

In the SA.Setup phase, the ones that are at a distance of h hops

from each other, share the same keys (h being a security parameter).

Each user representing a node in the tree runs a secure aggregation

process with its children. In SA.Protect, each child node masks its

input with the sum of the keys it holds usingMaskinд.Mask . It then
sends it to its parent node. In SA.Agg, the parent sums the masked

inputs received from all its children and then removes the layers of

the masks that correspond to their keys using Maskinд.UnMask .
The same process is repeated from bottom to up for each parent

node until the aggregated value reaches the root of the tree at which

the final layers are removed. Castelluccia et al. [CMT05] applied a

specific version of this scheme when h = ∞. Önen et al. [ÖM07]

later generalized this scheme.

D FAULT-TOLERANT SAWITH MASKING
Masking is one of the lightest techniques in terms of communica-

tion and computational overhead. It also offers, a descent security

against collusion attacks. However, using Masking for secure aggre-

gation is inefficient when the data owners are mobile or when the

network is highly disrupted. This is because the failure of one user

provides its input results in the failure of the entire secure aggrega-

tion operation. To bypass this limitation, Shamir’s Secret Sharing is

integrated with Masking which derive a new fault tolerance secure

aggregation technique [BIK
+
17, BBG

+
20, SGA21b]. This technique

uses the DC-net variant of masking. In the SA.Setup phase, the

users agree onmutual seeds using Diffie-Hellman similar to the case

in standard masking-based SA. However, for FT-Masking, users

additionally use the t-out-of-n Shamir’s Secret Sharing [Sha79] to

share their Diffie-Hellman secret key. Using this approach, masks of

dropped users can be recovered as long as t users are still alive. The
outcome owner can reconstruct the DH secret key of the missing

users and consequently compute their masks. While this solves the

problem of dropped users, it causes a new security problem. If a

user adds a delay in sending its masked input to the aggregator,

the aggregator may consider it as dropped and thus ask for recon-

structing its masks. Later, when the masked input is received, the

outcome owner is able to unmask its input. To solve this problem, a

double masking technique is used in the SA.Protect phase. In more

details, each user adds another layer of masking using a randomly

generated mask bi ,τ :

ci ,τ ←mi ,τ + ki ,τ + bi ,τ

where ki ,τ is computed as Equation 1. This new mask is generated

from a random generated seed which is also shared using Shamir’s

Secret Sharing with all other users. In SA.Agg, the aggregator first
collects t shares of the seed of each mask bi ,τ from every alive user

Ui and reconstruct it. Then, it gets t shares of the Diffie-Hellman’s

secret key of the dropped users and thus reconstruct the missing

masks kj ,τ for every dropped data ownerUj . Consider X and Y

as the set of remaining and dropped users, respectively (all the

operations are performed mod R = nRu where [0,Ru ] is the range
for the input values of each user).∑
Ui ∈X

ci ,τ −
∑
Ui ∈X

bi ,τ +
∑
Uj ∈Y

ki ,τ

=
∑
Ui ∈X

mi ,τ +
∑
Ui ∈X

ki ,τ +
∑
Ui ∈X

bi ,τ −
∑
Ui ∈X

bi ,τ +
∑
Uj ∈Y

ki ,τ

=
∑
Ui ∈X

mi ,τ +

���
���*

0∑
Ui ∈X∪Y

ki ,τ

=

n∑
1

mi ,τ
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