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ABSTRACT
Gait recognition is the process of identifying humans from their

bipedal locomotion such as walking or running. As such, gait data is

privacy sensitive information and should be anonymized where pos-

sible. With the rise of higher quality gait recording techniques, such

as depth cameras or motion capture suits, an increasing amount of

detailed gait data is captured and processed. The introduction and

rise of the Metaverse is an example of a potentially popular appli-

cation scenario in which the gait of users is transferred onto digital

avatars. As a first step towards developing effective anonymization

techniques for high-quality gait data, we study different aspects of

movement data to quantify their contribution to gait recognition.

We first extract categories of features from the literature on hu-

man gait perception and then design experiments for each category

to assess how much the information they contain contributes to

recognition success. We evaluated the utility of gait perturbation

by means of naturalness ratings in a user study. Our results show

that gait anonymization will be challenging, as the data is highly

redundant and inter-dependent.

KEYWORDS
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tion

1 INTRODUCTION
Human gait is a biometric trait that can be used to identify persons,

infer private information such as sex [45] or age [54], and is used

in the diagnosis of medical conditions. When compared to person

identification via faces, gait has advantages as it can be done from

distances at which the face is not yet recognizable or occluded

by objects such as face masks. It is believed that distinguishing

individuals from afar was an important human survival mechanism

in the past, as it allowed to recognize if an individual was a friend or

foe before the person was close enough to be a potential threat [53].

In today’s world, we no longer need to rely as much on gait recog-

nition for our own safety. However, the ease of gait recognition,

given near ubiquitous means of capturing and recording people,

creates novel threats to privacy. Examples from China
1
show that
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gait is very much suited to be used for surveillance purposes along-

side face recognition. As for the future, human gait will increasingly

be captured and processed (cf. Fig. 1 for recent examples), for ex-

ample, to realize visions like the Metaverse [14]. The Metaverse is

an immersive virtual world for which human behavior, including

human gait, is captured and then transferred onto digital avatars.

Another example is safe human-robot collaboration [38] in which

humans have to be closely tracked in order to avoid collisions with

robots. The technology used for these scenarios captures the hu-

man motion either via vision-based approaches using cameras (e.g.,

Kinect
2
) or wearable systems based on inertial measurement units

(IMUs) (e.g., SmartSuit Pro
3
).

Figure 1: Variety of recent motion capturing devices
recording gait of individuals in public and private spaces
from video or inertial measurement units (cf. OpenPose,
VFXVoice, Virtuix).

In order to preserve the privacy of individuals, anonymization

methods are required to remove or hide sensitive information of

their gait. We work towards this goal by investigating which fea-

tures of human gait make individuals identifiable or allow the

inference of personal attributes like sex. As a starting point for

finding categories of features for our computational experiments,

we look at the literature on human gait perception. This line of

research has long been a topic of cognitive science and investi-

gates how humans identify other humans by their gait (e.g., [25,

49, 11]). We would like to emphasize that we are not interested in

designing a novel attack, and we are less interested in investigating

the robustness of specific anonymization schemes that are hard

to interpret. Instead, we are interested in the question of which

2
https://azure.microsoft.com/en-us/services/kinect-dk/

3
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features in precise gait data yield identity or attribute disclosure

of the individuals, if they coincide with those known from psy-

chological research on gait and person perception—and to which

extent they are inter-dependent and hence cannot independently

be suppressed/perturbed for anonymization.

For a systematic analysis we use machine learning (ML) to get

an estimate of how much identifying information exists in gait data.

We then design perturbations for each of the feature categories

that remove specific features in the gait data, to then measure

how much the recognition performance drops. Where possible, we

try to manipulate a feature alone, so that we can estimate how

much identifying information the feature contains, as well as how

much it shares with other features. To establish how much utility is

retained after anonymization, we performed a user study in which

the participants rated the naturalness of the resulting gaits. Key

contributions of our work are as follows:

• human gait feature categorization extracted from the litera-

ture of cognitive science;

• systematic study of feature contribution for gait recognition

for both identification and sex classification;

• simple gait perturbation techniques;

• utility evaluation via perceived naturalness of the anonymized

gait.

In the following, we start by first explaining the system model

we follow and then review related work from the fields of com-

puter science and cognitive science in Section 2. This includes the

relevant literature in human gait recognition and person percep-

tion in the field of cognitive science. In Section 3 we describe our

general methodology and the design and implementation of our

computational experiments. We present the experimental results in

Section 4. Finally, Sections 5 and 6 offer a discussion and conclusion.

2 BACKGROUND AND RELATEDWORK
In the following section we provide background on current motion

capturing including potential threats, the human and automatic

recognition tasks based on gait, and the state of the art with regards

to anonymization and explainability-based analyses of identifying

features in gait.

2.1 System Model and Threats
Our main interest is to identify those features in gait data that

carry the most information for the identification of individuals,

or to infer their attributes, like sex. Our interest is based on the

observation that motion is increasingly captured and processed for

various purposes. Consider a user who is using a motion capture

system to transfer their motions onto a digital representation (e.g.,

an avatar or digital twin). Recent examples include various console

games, but also the current vision of the Metaverse. These examples

require the digital motion to mimic the motions of the user in a

natural looking way, resembling them as closely as possible.

The movements of the user are captured locally in real-time,

based on either visual recording or wearables with embedded sen-

sors. It is then locally pre-processed, for example to extract motions

from the video or sensory data, and then transmitted to the service

provider, who analyses and distributes it to their customers and

other users.

Recognizing or identifying a person in such services clearly has

social relevance [12, 40] and clinical power for certain disorder diag-

nostics (e.g., stroke, Parkinson’s disease) [13, 54]. This immediately

implies that there are privacy issues to be considered, both in terms

of recognition, for instance for surveillance, but also in terms of

attribute inference.

The service provider on the one hand will likely be in the position

of identifying and linking subsequent observations of an individual

based on their account. However, the processed motion data may

yield inferences of attributes that are private and not relevant to the

service, and the possibility of linking several independent accounts

of the same individual. On the other hand, third parties e.g., other
users or platform and advertising customers of the provider, will be

able to train recognition models of users in order to re-identify (for

instance in auxiliary video data), or also learn sensitive attributes

that are not shared voluntarily by the individual.

Hence, we aim to understand which features of the motion pro-

vide high predictive power for identity or attribute disclosure. This

would facilitate the development of local privacy-enhancing tech-

nologies for the pre-processing of data prior to their transfer. Under-

standing, which features carry information required for the motion

to be perceived as natural will help strike useful privacy-utility

tradeoffs.

2.2 Motion Analysis
Humans can recognize and identify biological traits visually through

the use of static information such as shape or other cues. Biological

motion is one additional important factor. Human newborns, infant

monkeys, and even freshly hatched, visually naïve chicks show a

preference for motion cues that move in motion patterns suggesting

animacy [31].

Figure 2: Example of a humanwalker represented as a point-
light display (PLD).

An established and reliable method of investigating biological

motion processing without other potential sensory information or

cues (e.g., color, texture, or form-based features such as facial con-

figurations, hairstyle, or clothing) is the use of point-light displays
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(PLDs) [25] (see Fig. 2). This method of using impoverished moving

dot displays helps to isolate motion information from other cues.

Thereby, a small number of dots represent the head and major joints

of a human body in various scenarios such as social interactions [7,

33] or—as the focus of this work—during gait [49]. Indeed, many

identifying features of a human walker can be recognized from

such PLDs.

Swing Left

Stance Right

Stance Left

Swing Right

Figure 3: A schematic representation of the gait cycle.

Gait analysis is the study of human locomotion (walking and

running) and defines walking as a series of gait cycles. A gait cycle
(stride) is the period when one foot contacts the ground to when that
same foot contacts the ground again (see Fig. 3). Each gait cycle has

two phases: the stance phase, when the foot is in contact with the

ground; and the swing phase when the foot is not in contact with

the ground. In vision-based gait analysis such as PLDs, kinematic

data such as position and velocity are captured. These are used

to relate motion parameters such as joint angles, joint velocity,

and center of mass with qualitative gait parameters— the general

prototypical bipedal motion characteristics such as step length,

walking speed, pace and rhythm of steps, stance, and swing times

[13] as well as arm swing, vertical head movement, pelvic rotation,

and the extension and flexion of limbs and shoulders. As walking

consists of a series of multiple gait cycles, gait data typically also

contains fluctuations. These are small variations such as asymmetry

and variability in step and stance time, step velocity, or step length

[13]. These gait parameters can subsequently be used to extract

statistical features (e.g., mean, standard deviation, skewness) for

gait analysis.

2.3 Human Gait Perception
Human observers have no trouble making sense of the very limited

information presented through PLDs’s disconnected dots, represent-

ing actions such as the specific categorical biological motion content

[53, 40] of human gait (walking or running). Research has suggested

that humans are especially tuned to recognizing conspecifics and

this preference is likely to already emerge in the visual system.

Psychophysical and neuroscientific studies have shown that at least

two processes play a role in person perception (here defined as the

recognition of human bodies and their biometric features based on

vision).

On the one hand, form-from-motion cues [46, 53] are cues that

are rooted in basic perceptual abilities to see structure from motion.

That is, the shape and form of an object or person are revealed more

clearly through motion. The human visual system benefits from

the motion direction information in order to extrapolate the overall

shape of an object or person. These cues provide time-invariant

information about body form by enhancing the shape presentation

of a person [53] and are susceptible to violations of the hierarchical

body form structure [10, 42] as well as to inversion effects [18].

That is, inverting a body in the image plane (i.e., placing it upside-

down) results in perceptual impairments. Previous research has

proposed that inversion is deleterious to normal humanwhole-body

perception, causing observers instead to rely on local part-based

visual features [18]. Evidence for first order configural processing

has shown that visual perception of bodies is mediated by spatial

configurations of body parts, such as the general body layout (e.g.,

legs attached to the hip, arms attached to the shoulders), and thus

providing intact spatial configurations of bodies [10].

On the other hand, dynamic identity signature [46, 53], describes

the idiosyncratic motion pattern of an individual. These features

describe the change over time during a walking cycle and rely on

nuanced, person-specific motion variations (e.g., the way Charlie

Chaplin walks). Furthermore, research has provided evidence for a

two-stream processing of biological motion perception in the brain.

That is, biological motion perception relies on—both dynamic and

static features through—motion processing in the dorsal pathway

(i.e., area V5 of visual cortex in the brain) in combinationwith bodily

form and appearance information in the ventral pathway in the

brain (see Peng et al. [42] for further details on visual recognition

of biological motion). In addition to action recognition, human

observers are able to identify soft biometric features of actors in

PLDs, including sex [37, 18, 28], age [54, 37], weight [39], height [39],

handedness [30], in addition to attractiveness [37, 39], identity [12],

emotions [37, 26] and causal intentions [33]. Specifically, Kozlowski

and Cutting [28] showed that the biomechanical factor center of

moment, which is derived from the relative movement of both – the

shoulders and hips, plays a crucial role in sex perception in PLDs.

Finally, person recognition depends on familiarity and might

take time for the human observer to learn, but is useful for recogniz-

ing a familiar person from a distance [12, 49]. Studies have shown

that human observers are more sensitive to PLDs of themselves

and friends [12, 32], or could learn to identify a small number of

individuals based on their motion [49]. Guided by these insights, we

aim to investigate if the removal of the certain features will reduce

recognition rates, and to which extent. Specifically, we focus on the

features that are easy to extract from existing data sets. Namely,

macro and micro features (i.e., statistical features, see Sect. 2.2), per-

turbations of intact bodies in natural spatial configurations, as well

as dynamic (i.e., temporal information) and static (i.e., structural)

features. Section 3.3 will describe the specific features used in the

present study in detail.

2.4 Automatic Gait Analysis
Current human movement analyses are based on biometric mea-

surements and motions. They are captured vision-based, or using

wearables with integrated inertial measurement units (IMUs). A

gait cycle is thereby composed of a chain of individual 2D (video)

or 3D (optical marker/IMU tracking) samples at each given time

point (pose).

Gait recognition using machine learning models is most com-

monly based on video data [51]. Video, providing rich information

about subjects, facilitates high recognition rates and hence is fre-

quently used for surveillance purposes [5].
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Also explicit motion capturing frequently uses video: High-

quality vision-based motion capturing uses specialized cameras

to track reflective markers on the subject’s body. The position of

these markers is later reconstructed into 3D position time series,

converted into joint angles as a function of time, and subsequently

analyzed according to specific research or clinical needs. However,

recently, approaches of using a single commodity camera in com-

bination with keypoint detection algorithms and neural networks

(e.g., Open Pose or DeepLabCut, cf. Fig. 1) have generated convinc-

ing results [27, 36, 34].

Gait recognition is also possible based on motion capturing

data [4]. Indeed, even simple kinematic features obtained from

IMU systems (e.g., position, velocity, and acceleration-based fea-

tures) or kinetic data from force plates and electromyography (e.g.,

ground or muscle force parameter) have been shown to yield high

recognition rates (see Connor and Ross [11] for an overview).

Anonymizing individuals in video surveillance footage for mul-

tiple moving object detection and tracking algorithm (e.g., human

action tracking) by representing their bodies as simplified objects

such as PLDs thus cannot protect their identities. Further, gait can

also be used to infer personal attributes like sex [45] and age [54,

15]. Being interested in those gait features that carry information

for identification and attribute disclosure of individuals, in the

present work we rely on marker-based motion capture data as it is

considered the gold standard in the field.

2.5 Existing Anonymization Approaches
As protection against gait recognition, gait anonymization recently

became an active field of research. However, in the present paper

we are not interested in evaluating their efficacy, but rather want

to establish an initial understanding as to which part of gait data

carries identifying information. Yet, we use the state of the art on

anonymization for guidance.

For example, Ivasic-Kos et al. [24] anonymized activity videos

by blurring the data. This clearly retains the gait information in the

data and does not facilitate insights into its influence on identifica-

tion. More sophisticated methods use neural network approaches

to perturb the video recordings of gait and then generate a new

natural-looking gait sequence [48, 21]. While manipulating, and

hence implicitly providing indicators about the influence of differ-

ent properties in gait, neither approach investigates the actual influ-

ence but rather provides ad-hoc anonymization. For accelerometer-

based data, it was proposed to add noise directly to signals collected

via smartphones [35]. This perturbation may have some effect given

singular smartphone-based measurements. However, it can be re-

moved from the data, asWang et al. [52] have shown for trajectories,

and it does not provide insights as to which details of the data are

identifying the users.

2.6 Investigations using Explainability
The field of explainable machine learning [44, 2] focuses on the

interpretability of learned machine learning models. It helps to

determine those features that are important for the classification,

for instance of gait recognition systems.

A common approach is layer-wise relevance propagation (LRP)

[3]. It is applied to neural networks (NN) to find the most relevant

features in the input data by tracing the classification back through

the layers of the NN. Another approach is to perturb areas in the

input data in order to find the area that results in the largest classi-

fication performance reduction [16]. The corresponding insights

are limited to implicit indicators to regions of the input data that

influence the classification accuracy. They do not provide insight as

to the explicit semantic feature of the data, in our case—the different

characteristic features of gait, that contribute to identification of

the individuals.

Approaches for explainable machine learning have also been

used to analyze gait patterns for clinical analyses [47]. Horst et

al. [23] used LRP to study which part of the gait cycle is relevant

to a non-linear machine learning model to recognize an individual.

Furthermore, Connor and Ross [11] investigated which features in

gait data make people identifiable. These approaches test trained

models for effects of the removal of features, without retraining

them. The question remains, whether other features were consid-

ered unnecessary and thus ignored by the initially trained model,

as all of their information is also contained in the features used by

the model.

Alvarez Melis and Jaakkola [1] proposed faithfulness as an im-

portant metric for evaluating explainable machine learning. Faith-

fulness is obtained by removing/perturbing the feature and then

measuring the drop in classification performance. While their in-

vestigation does not shed light on the contribution of explicit gait

features, it does provide instructive ideas for our analysis.

It can be concluded that several studies have investigated gait

recognition by both humans and machines, as well as implicit ap-

proaches to anonymize gait. However, so far the question of which

explicit features of gait have predictive power for identification

tasks—and hence have to be perturbed or removed for anonymiza-

tion—has not been investigated systematically.

3 METHODS

clear data

perturbation
technique

perturbed
data

test / train split

training set

test set

pre-processing

feature vector
calculation 

training 10-fold
cross. valdation

testing

Normalization +
PCA

Normalization +
PCA

Figure 4: The full data processing pipeline.

The question we sought to answer is how much specific features

in the data contribute to the overall gait recognition performance

of identity and sex using machine learning. Our overall approach

was to first train & test a gait recognition system for each of the

recognition goals on clear data to obtain baseline accuracy. Next

we obfuscated a feature at a time in the data by either perturbing

or removing it to investigate its impact on anonymization. We then

repeated the training & testing process and report the resulting
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recognition performance. The difference in recognition between

baseline and perturbed data gives us the unique amount a feature

contributes to the overall recognition performance. Further, we

also measured each feature independently from the other features.

However, this is only possible for features we can remove from the

data and not for features we only perturb. The full process is show

in Fig. 4.

In the following, we provide details about the data set, applied

feature perturbations, the implementation of the recognition sys-

tem, and utility evaluation.

3.1 Data Set
As our main goal was to understand the important features of hu-

man gait, we chose the highest quality of gait data and used optical

3D marker-based motion capture data for our experiments. This

data is considered the gold standard for motion capturing and is

recorded using multiple infrared cameras which capture markers

on the anatomic landmarks of participants. The benefit of the 3D

representation is that there is no dependency on the recording an-

gle like in video recordings. The data consists of multiple samples

per participant which are a time series of poses. Each pose con-

tains the 3-dimensional coordinates of each marker (placed on the

participant) at a given point in time (i.e., PLDs). The data is also

more appropriate for our purpose, as we focus on gait features in

the absence of potential additional information (e.g. video record-

ings). Furthermore, one can generate PLDs from the data, using

the tracked marker positions.

We used the open-source data set by Horst et al. [22, 23] which

consists of full-body kinematic and kinetic data of 57 individuals

(29 female, 28 male; 23.1 ± 2.7 years; 1.74 ± 0.10m; 67.9 ± 11.3kg).

An optical motion capture system and a full body marker set (62

markers corresponding to anatomical landmarks), as well as two

force plates, recorded self-paced walking trials at 250Hz (motion

capture) and 1000Hz (force plates). For each participant 20 samples

containing a full gait cycle have been recorded (for further details

on the data acquisition protocol see Horst et al. [23]).

3.2 Data Pre-processing
Following the methodology of Horst et al. [23], we trimmed the

gait samples to contain only a single stride by using the kinetic

force signals of the force plates, using a ground force threshold of

20N. This way all samples are aligned and start at the same point

in the gait cycle. The data was then normalized, in order to obtain

an equal number of poses for each individual, by resampling each

sample to 100 frames. Each frame represents one discrete pose of

the individual while walking, the 100 poses then constitute one

stride.

3.3 Retained and Masked Features
We based our feature categories on previous work in gait analysis

and human perception as described in Sections 2.2 and 2.3. The

category name always gives the kind of feature we sought to retain ,

while the perturbation techniques employed are aimed at removing

the other features from the data. For each technique, we strove to

design an inverse perturbation technique that only removes the

specific feature, while keeping all the others (micro vs. macro, dy-

namic vs. static). This way we sought to understand how much

each feature contributes to the overall recognition rate and if it

contains information that is unique to this feature. Since there is in-

terdependence between features, some of the features are partially

overlapping for example the walking frequency is dependent on

the walking speed and the length of the legs. Table 1 gives a brief

overview, while the used and obfuscated features are described in

detail in the following.

Our macro features describe the general characteristics of the

walker, such as walking speed, general movement trajectories, walk-

ing amplitude, the most significant parts of the walker positions,

and overall body parts. Its counterparts are the micro features

which contain the small variations of the trajectories that remain

when the overall trajectories are removed, the walker without its

walking speed and step length equalized over all walkers, the least

significant parts of the walker positions, and individual body parts.

Besides macro and micro, we also investigated the dynamic parts of

the gait motion. For this we have two contrary feature categories

static and dynamic. The static features contain the time-invariant

features, such as the average pose of the walker, or the first pose of

the walker. The dynamic features contain the features describing

the motion of the walker, including the differences between the

recorded poses, and walker where the static frame (body propor-

tions) has been removed. The following section describes the used

perturbation techniques for each feature category. The parameter

values have been chosen to match the used data set. In the end, we

briefly detail how we combined the perturbation techniques.

Table 1: used and obfuscated features

Macro Micro Static Dynamic

definition
Step length,
walking speed,
cadence

asymmetry and
variability
in the macro features

Shape and
general body layout

Time course
of changes

Perturbation 1 Remove variations Remove trajectories Static pose Motion extraction

Perturbation 2

Amplitude/

frequency equalization

Resampling Normalization

Perturbation 3 Coarsening macro Coarsening micro

Perturbation 4 Remove body parts Keep body parts

We provide a sample video rendering
4
of all perturbation meth-

ods alongside this paper.

3.3.1 Macro Features. The macro features keep the overall char-

acteristics of the walker and remove its smaller variations from

the data. We used three perturbation techniques for this: remove

variations, coarsening macro, and remove body parts.

Remove variations: In order to extract the ideal trajectory from

the gait data we removed the small variations that deviate from

the ideal trajectory. The ideal trajectory is here calculated by two

different methods: either using a moving window on the marker

poses and then calculating a rolling average, or an interpolation.

The difference between the two is that the rolling average takes all

poses in the window to calculate an average, while the interpola-

tion only uses the poses at the edge of the moving window. The

moving window size is given as the distance to the pose which is

calculated and is either one or three additional pose(s) before and

after e.g., spanning three poses in total or spanning seven poses in

4
https://github.com/anonPETs2023/PETs2023
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total, respectively. This strategy follows a similar idea to low-pass

filtering, as it retains the main movement but removes detailed

deviations.

Coarsening macro: As we were interested in the most significant

information of the walker position, we removed the least significant

part of each marker position in a pose for all poses. The effect is

that the grid on which the walker moves is becoming more coarse.

We removed all digits either below the thousandth (1000) or the

hundredth digit (100).

Remove body parts:Wemeasured howmuch an individual body part

(head, torso, hip, arms, legs) contributes to the overall recognition

performance. This was done by removing the body part from the

data by setting its marker positions to zero.

3.3.2 Micro Features. The micro features are the counterparts to

the macro features. Here we kept the small variations of the gait

cycle and the least significant parts of the marker positions.

Remove trajectories: Contrasting remove variations, we removed the

ideal marker trajectories from the data by calculating the ideal tra-

jectory as described in remove variation via either rolling average

or interpolation with a window size of 1 or 3. The ideal trajectory

was then subtracted from the real trajectory, which leaves us with

the distances of the ideal marker positions to the real ones. This

strategy resembles high-pass filtering, as it removes the main move-

ment and only retains the minor specifics of the current sample.

Coarsening micro: We eliminated the most significant part of the

walker positions by removing the most significant parts of each

marker position value. We removed all digits above the hundredth

(100), tenth (10), or first digit (1) position

Keep body part: We measured how much recognition performance

the individual body parts have alone without the rest of the body.

All remaining other body parts are set to zero.

Amplitude/Frequency equalization: The walking amplitude and fre-

quency were equalized between all individuals to perturb their

influence on the recognition. Informed by previous studies [49],

we calculated a gait representation of each individual by using the

average pose, the first four components of a principal component

analysis (PCA), and a sinus function fit on these components to rep-

resent the gait cycle of a person. We then equalized the frequency or

amplitude of the fitted sinus function by means of the group-level

average.

3.3.3 Static Features. The static features capture the time-invariant

features of the walker by removing the dynamic part of the gait

motion. We therefore kept the proportions of the walker.

Static pose: We used only an average pose or the first pose of each

sample, thus removing the dynamic component of the gait data.

Resampling: We downsampled the data to 10 frames, and therefore

removed most of the dynamic content from the data.

3.3.4 Dynamic Features. The dynamic features are the counterpart

to the static features and aim to only retain the dynamic part of the

motion.

Motion extraction: Instead of using the individual poses, we used

their difference (i.e., keeping only the variations between poses)

and hence removed the static features.

Normalization: We normalized the static features in a sequence by

either normalizing the height axis (y-axis), all axes or normalizing

each dimension over the entire sequence of poses.

3.3.5 Combinations of Perturbations. Besides evaluating each of

the features alone, we also investigated their combinations. Two

perturbation techniques were combined by applying them sequen-

tially to the data. Due to some techniques (first pose, average pose)

not returning a time series, not all combinations of methods are

possible. As the overall number of combinations is quite high, we

focused on representatives of each class of features. We picked

those representatives by their anonymization impact on the data.

3.4 Recognition System
To test the impact of omitting features from human gait, and hence

their contribution to inference, we implemented a gait recognition

system. It is based on the system by Horst et al. [23] using Python

3.8.3 [43], Scikit-learn 0.23.1 [41], and NumPy 1.18.5 [19]. We used

two feature vectors to represent a data sample: flatten which con-

catenates all poses of a sample into a single vector, and reduced
angles which first calculates a reduced representation of 17 mark-

ers representing the main body parts and then calculated 10 joint

angles from this representation.

Next, the data was split into train (75%) and test (25%) data. Here

we differentiated between the identity and sex recognition. For

identity recognition, we split the samples for each identity so that

we have every identity in both sets. While for sex recognition we

split the samples identity-wise, making sure that every identity is

only in one of the sets. We did so to make sure that the classifier

cannot learn the identity to perform sex recognition. Following the

split, we then scaled the data in each set by subtracting the mean

and then scaling with the standard deviation before we performed

a principal component analysis (PCA) to reduce the dimensions

of the samples. As a classifier, we used a support vector machine

(SVM) using a radial basis function (RBF) kernel. For the training of

the SVM we used 10-fold cross-validation with the train set before

we tested the best performing model on the test set. In order to

account for the random splitting of the data, we ran the entire

process 10 times.

3.5 Utility
Besides investigating the identity and sex recognition performance

of our features we also sought to understand howmuch the features

contribute to the utility of envisioned applications. As our use case

(see Sec. 2.1) is to transfer the gait motion onto a digital avatar, the

goal is to retain as much naturalness in the motion data as possi-

ble. In order to measure the corresponding effect, we performed

an online survey with 22 human participants (13 male, age: 18–60

years) which we asked to rate the naturalness of the perturbed

gait sequences. Participants were shown renderings of two gait

sequences for each perturbation in which the walkers (one male

and one female walker, individually) were shown from the side 45

degrees rotated around the z-axis towards the camera. The render-

ings are identical to the example videos we provided in Section 3.3.

All sequences were shown in random order. The participants then

rated on a scale from 1 (worst) to 5 (best) how natural looking the

gait sequence appeared to them. The survey data collection is under
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the umbrella of the project ("Privatsphäre von Körperbewegungen")

approved on 30.09.2021 by the ethical committee of KIT and was

conducted in accordance with the Declaration of Helsinki. The

survey data was collected in anonymized form.

4 RESULTS
In this section we present the results of our obfuscation experi-

ments, by reporting the recognition performance of the chosen

feature categories. The results for identity and sex recognition in

two contrasting feature categories (macro vs. micro, dynamic vs.

static) are reported each. Note, that we report the body part re-

movals (body parts vs. rest body) separate from the macro and

micro features for easier comparability.

As we conducted recognition experiments and the classified

classes (for both identity and sex recognition) have nearly the same

number of samples per class, we selected accuracy as our metric.

Accuracy is defined as the number of correctly classified samples

divided by the number of all classified samples. In Section 3 we

described the two feature vectors we used in our recognition system.

Since we were interested in how much identifiable information

remains in the data after the perturbation has been applied, we

always report the best performing feature vector.

4.1 Macro vs. Micro Features
We start by comparing macro to micro features. For both, iden-

tity (Fig. 5) and sex recognition (Fig. 6), we can see similar effects

for the macro features: The variation removal via rolling average

and interpolation shows no effect on the accuracy. The coarsening

of all digits below the 100th digit has no effect, while coarsening

from the 1000th digit position leads to a drop in accuracy for sex

recognition to 91% and identity recognition to 77%. For the micro

features, we see a difference between identity and sex recognition.

Only trajectory removal using an interpolation window of 1 drops

the accuracy of the identity recognition, while all of the others lead

to a drop in sex recognition to about 90%. For the micro coarsening

methods we again see that identity recognition is not affected by

coarsening everything higher than the 100th digit, while for sex

recognition we see a drop of accuracy to 90%. Then coarsening the

digits above the 10th digit leads for both, identity and sex recogni-

tion, to chance level accuracy. The results show that sex recognition

is more dependent on the macro feature than on the micro features,

while the identity can be perfectly inferred from both of them.

4.2 Individual Body Parts in Isolation vs.
Reduced Whole Bodies

Next, we evaluate perturbations of individual isolated body parts

in contrast to reduced whole body configurations (i.e., certain body

parts were removed) (see Fig. 7 and Fig. 8). On the one hand, only the

specified body part is used for the recognition (“keep”), while on the

other hand, the whole body minus the specific body part (“remove”)

is employed. Fig. 7 shows that the removal of the legs slightly

reduces the identity recognition accuracy to 97%. At the same time,

it is the only body part that achieves 100% recognition accuracy

alone. In contrast, keeping only the head as the standalone body

part achieves the strongest prevention from identity recognition,

Figure 5: Boxplot of accuracy results for micro and macro
features for identity recognition given in percent.

Figure 6: Boxplot of accuracy results for micro and macro
features for sex recognition given in percent.

reducing the accuracy to less than 60%. Only slightly improved

performance is achieved by the standalone body parts torso or hip.

Results for sex recognition with respect to perturbed body parts

are displayed in Fig. 8. We find the same small reduction in accuracy

for the removal of the legs as we saw for identity recognition,

while it is again the only body part to achieve the full recognition

accuracy as a standalone body part. However, for the other body

parts, we find that their removal does not impact the sex recognition
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Figure 7: Accuracy boxplots of results for individual body
parts and all of the remaining body parts for identity recog-
nition given in percent.

score. Additionally, our data shows only small effects on using

only individual body parts in isolation. Comparing identity to sex

recognition, head, hip, and torso alone fare much better for sex than

for identity recognition.These results suggest that even the limited

form information which is integrated over time into dynamic form

information is sufficient to identify biological traits such as sex

or even identity. This finding is in line with human perception

research. For example, Kozlowski et al. [28] found that longer strides

are perceived as more masculine. Center of moment contains sex

information (see also Section 2.3; [28, 37]). That is, as long as the

stimuli contains information about certain body parts, sex and

identity recognition is possible.

4.3 Dynamic vs. Static Features
Thirdly, we investigate the effects of dynamic and static feature

perturbation on recognition performance. In the case of identity

recognition, depicted in Fig. 9, we observe that only using the aver-

age pose or the first pose reduces the recognition accuracy slightly

to 91% and 94% respectively, while other feature manipulations

show no effect on identity recognition. For sex recognition (Fig. 10),

our results show that while static features have close to no effect on

accuracy, all dynamic features appear to do so. So we can conclude

that the static features are more important for the sex recognition

than the dynamic ones.

4.4 Combination of Features
Here, we evaluate the combination of selected perturbation tech-

niques from each category. Due to the further removal of data, we

expected to see larger reductions in the classification accuracy for

both identity and sex recognition. We also expected that with fewer

data available the classification process becomes more unsteady and

Figure 8: Accuracy boxplots of results for individual body
parts and all of the remaining body parts for sex recognition
given in percent.

Figure 9: Boxplots of accuracy results for dynamic and static
features for identity recognition given in percent.

therefore the variance between the results will be larger. Further,

the reduction of data can lead to a simplification of the data, which

then is easier to classify.

The combination of body parts head and legs with the static, dy-

namic, micro, andmacro categories for sex recognition are shown in

Fig. 8. Most of the legs combinations remain at 100% accuracy. Only

in combination with average pose and coarsening micro (100), a

slight decrease in accuracy can be observed. When the legs are com-

bined with coarsening macro (1000) we observe a large decrease in
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Figure 10: Accuracy boxplots of results for dynamic and
static features for sex recognition given in percent.

accuracy to close to 40%, while both of these perturbations alone do

not have an effect on the accuracy. The head (head alone achieves

60% identity recognition) combinations are more of a mixed bag.

While average pose and coarsening macro further reduce the accu-

racy; resampling, coarsening micro, and remove variations do not

have an additional effect on the accuracy. However, motion extrac-

tion, time normalization, and remove trajectory lead to an increase

in the recognition accuracy. All three methods focus more on the

smaller variations in the data, providing an indication that the iden-

tification of individuals via their head motion is more dependent

on the dynamic parts than the general movement.

Focusing on the combinations with head and legs for sex recogni-

tion, we find that while there is no effect on accuracy in combination

with static features, the combination with dynamic features has

deleterious effects on accuracy. Specifically, the combination of

head and motion extraction results in a drop of accuracy to 75%.

For the micro combinations, we again find that the combinations

with the head suffer the largest accuracy reduction. Here the com-

bination with micro coarsening nearly reaches chance level, while

the same combination with the legs stays above 90%. When we

compare this with the macro coarsening of the macro features, we

find that the legs drop to a lower accuracy than the head. This leads

us to conclude that the sex recognition via the head data is much

more dependent on the macro part of the head position, while the

sex recognition via the legs depends more on the micro part of the

positions.

The results of macro, micro, dynamic, and static feature combina-

tions for identity recognition are shown in Fig. 13. The macro-static

combinations show accuracy decreases for the combinations that

contain macro coarsening. We also see these decreases when we

look at the combination of macro dynamic features in which the

macro coarsening leads to a decrease in performance. The last

combinations show an accuracy decrease in the removal of the

Figure 11: Accuracy boxplots of results for legs and head in
combination with the other categories for identity recogni-
tion given in percent.

Figure 12: Accuracy boxplots of results for legs and head in
combination with the other categories for sex recognition
given in percent.

trajectory plus average pose which drops the recognition accuracy

to 45%. Comparing the removal of variations and trajectory in com-

bination with the average pose, show that the general trajectory of

the walker contains much identifiable information in their overall
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characteristic, while the small variations from the trajectories are

only meaningful when their dynamic features are preserved.

Figure 13: Accuracy boxplots of results for macro, micro,
dynamic, and static combinations for identity recognition
given in percent.

Lastly, we look at the same feature combinations as before but

this time for sex recognition (see Fig. 14). In the case of the combi-

nation of macro and static features, the removal of the variations

does not lead to a drop in accuracy, while both combinations with

coarsening macro drop to the same accuracy level of about 90%.

This suggests that obfuscations in combination with macro features

have a bigger impact on the accuracy in comparison to combina-

tions with static features. All macro-dynamic combinations result

in a decrease of performance to about 90%. Furthermore, removing

the variations plus macro coarsening increases the performance

slightly when compared to just performing the same macro coars-

ening alone (see Fig. 6). In the micro-static combinations, we find

the removal of the trajectory average pose combination to create a

large drop in accuracy.

4.5 Utility
Finally, we report the results of the naturalness evaluation for all

perturbation techniques that have a median rating score which is

greater than 1 (all techniques that retain some utility; on the 1-5

scale described in Sect. 3.5) and are shown in Fig. 15. Perturbations

that resulted in a median score below that, were assumed to retain

no utility and are therefore not plotted. First, we note that none of

the micro feature perturbations retained any gait naturalness. In the

static category only average and first pose managed to appear min-

imally natural, with median naturalness scores of 2. The exclusion

of body parts of the walkers had deleterious effects on the perceived

naturalness, while still maintaining some level of naturalness de-

pending on the specific removed body part. Interestingly, keeping

Figure 14: Accuracy boxplots of results for macro, micro, dy-
namic, and static combinations for sex recognition given in
percent.

only the arms or legs of the walker was rated as still somewhat nat-

ural, whereas all other individual body parts in isolation were rated

as non-natural. The normalization of all axes and the normalization

of the y-axes achieve the same level (median of 5) of naturalness

as the clear data. The only other techniques that achieve the same

naturalness ratings are the remove variation techniques. In general,

these results are within our expectations, as perturbing the data

should either maintain the same level of naturalness or decrease it.

The fact that most of the macro features retained the naturalness

of the walker is also unsurprising, as they preserve the majority of

the gait variations while the small variations we kept in the micro

features are not perceived as natural anymore. We did not evaluate

the naturalness of the combinations, however, we assume that a

combination will at most reach the minimum naturalness rating

score of its two used perturbation techniques.

5 DISCUSSION
Using ML for gait recognition based on motion capture data, we

investigated the importance of features based on findings in psy-

chology for identity and sex recognition. The findings reported

here, suggest that all of the features reported by psychology are

transferable to ML approaches in identification performance based

on walking motion. The identification procedure is robust as even

when large parts of the data are removed the identification rates

are high, only when multiple features are removed from the data

a significant impact on the accuracy can be observed. Consistent

with previous studies in psychology and neuroscience [42, 53, 49],

we found that dynamic and static features contain much identi-

fiable information, hinting at strong temporal and physiological

dependencies in the data. We anticipate that for the development
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Figure 15: Boxplots of the naturalness rating scores for the
perturbation techniques that retained utility.

of suitable anonymization techniques for gait data the dependen-

cies between the features have to be accounted for, as otherwise,

the reconstruction of the clear data is likely possible. For example,

noise that is applied to the marker positions could be removed by

smoothing the trajectories, or missingmarkers can be reconstructed

from the position of the remaining ones. Wang et al. [52] have con-

vincingly demonstrated this, showing how adding noise does not

effectively perturb correlated data. Interestingly, the removal of

body parts and the subsequent performance accuracy alone indi-

cates a high redundancy in the data, and as such focusing on a

single feature for anonymization is unlikely to achieve a meaning-

ful anonymization effect. This effect, albeit in a much weaker form,

has previously been shown in human person and biological motion

perception studies: The elimination of some local information, for

example by removing PLD dots corresponding to body parts, does

not affect the recognition as long as a certain degree of global form

revealing dynamic posture changes is preserved [6, 29].

Both, the overall trajectories of the gait as well as small varia-

tions in the data, allow for recognition of individuals. Thus, making

it necessary to adjust the overall gait trajectory for anonymization

purposes. The overall pattern of results here provides converging

evidence for the need to consider gait motion capture a strong

personal identifiable trait, even when recorded at low resolution

or low frame rate. Many features, as investigated here — macro,

micro, dynamic and static features as well as individual body parts

— contain strong identifiable information about both, the identity

and the sex of a human walker. With our simple ML-based feature

perturbation approach we found that coarsening the marker posi-

tions precision, with the respective recognition performances of

45% and 2% for sex and identity exhibited the strongest reduction

of classification accuracy while removing dynamic & static features

generally only reduced recognition slightly. However, our utility

evaluation of the features shows that the perceived naturalness

of the perturbed data is diminished when the general motion or

body structure of the walkers is removed. Thus we see a strong

indication that in order to develop strong anonymization for gait

data, while keeping its utility intact, a holistic approach is required.

Such an approach should take the dependencies in the data and the

requirement for natural-looking results into account, for example

by generating synthetic gait trajectories.

5.1 Limitations and Future Work
The present work is based on a data set of 57 young adult individuals

and as such it might be possible to achieve superior anonymization

results for larger sample sizes. However, as we have shown gait data

does contain a large amount of identifiable information, so larger

effects from bigger samples are unlikely. The present work presents

results on one sole gait cycle per sample, future work should include

multiple sequential gait cycles or gait data from multiple sessions.

Furthermore, all individuals were from a similar age cohort, includ-

ing different lifespan age brackets or longitudinal data might lead to

more meaningful and representative results. However, we believe

that having a cohort of very similar individuals also strengthens

the recognition results, as it becomes more difficult to tell the indi-

viduals apart. It is possible that with the improvements of machine

learning approaches, better classification results can be achieved on

our perturbed data. As such our approach only gives a lower bound

how much identifiable information remains in the perturbed data.

This fact is also shown by some of the combinations of perturbation

techniques where the combinations achieved higher recognition

accuracy than the individual techniques alone.

With regards to the user studywewould like to point out that our

definition of utility only takes into account how natural other peo-

ple perceived the anonymized PLD gait sequences shown to them.

We did not investigate if the original walker themself would find

their perturbed gait to be natural. We did so because we assumed

that the device used in our system-and-threats-model is trusted

by the user and therefore would display the real gait (pre-transfer

to the service provider described in Sect. 2.1; labeled "clear" in the

present work) to the user as it is recorded locally in real-time, in-

stead of an anonymized version of the user’s gait. Furthermore, we

based our present investigation on an existing open-source dataset

and therefore have no access in an ethical and legal way to the orig-

inal walkers due to inter alia data protection and privacy reasons.

Future studies that obtain their own motion capture recordings

could include an evaluation of utility by asking the recorded walk-

ers themselves to evaluate their perturbed gait or other movements

recorded with motion capture.

For additional future work we propose to conduct the same set of

experiments with human observers to directly compare human and

machine gait recognition, in order to gain insight into how both

differ in regards to identifying individuals and their sex. Although,

the human ability to process biological motion such as gait-based

person perception and recognition is susceptible to viewer-specific

influences such as age [8], social factors (e.g., interpersonal context,

stereotypes) [9, 26], neurodevelopmental disorders (e.g., autism,

schizophrenia) [9], and other potential experimental, concomitant,

and individual factors [17, 20, 50, 11, 26, 30]. Thus, utilizing machine
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gait recognition provides a more objective evaluation method for

different anonymization techniques.

6 CONCLUSION
In this paper, we address the question of howmuch specific features

of human gait contribute to the ability to discern the identity or

sex of different human individuals in gait data. Here, we found

that overall identification performance was indeed very robust.

Removing large parts of the data, either by omitting body parts or

reducing spatial and temporal resolution, did have little effect on

the recognition performance.

One possible interpretation of the findings is that gait is idiosyn-

cratic and very redundant. Moreover, gait can be considered an

individual trait that shows little variability over time and even lifes-

pan. Studies reported that major adult gait emerges already at the

age of five years, although age-related effects such as slower gait or

shorter steps as well as age-related body proportion changes have

been found as well [37].

Our results suggest that gait will be very hard to anonymize

effectively. This entails that anonymization cannot be achieved

with simple means, but will require intricate approaches that take

the inter -dependency of the connected body, as well as the overall

generating process of the walking human into consideration. Utility

can only be retained when the macro structure of the walker and

its dynamic are largely kept intact.
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