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ABSTRACT

Genome-wide association studies (GWASes) identify genomic varia-

tions that are statistically associated with a trait, such as a disease, in

a group of individuals. Unfortunately, careless sharing of GWAS sta-

tistics might give rise to privacy attacks. Several works attempted

to reconcile secure processing with privacy-preserving releases

of GWASes. However, we highlight that these approaches remain

vulnerable if GWASes utilize overlapping sets of individuals and

genomic variations. In such conditions, we show that even when

relying on state-of-the-art techniques for protecting releases, an

adversary could reconstruct the genomic variations of up to 28.6%

of participants, and that the released statistics of up to 92.3% of the

genomic variations would enable membership inference attacks.We

introduce I-GWAS, a novel framework that securely computes and

releases the results of multiple possibly interdependent GWASes.

I-GWAS continuously releases privacy-preserving and noise-free

GWAS results as new genomes become available.
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1 INTRODUCTION

Genome-wide association studies (GWASes) aim at identifying

genotype/phenotype associations – the genomic variants that are

statistically associated with a certain observable trait, such as a

disease – in a cohort of individuals. In a GWAS, genomes of the case

population – a group of individuals who express the trait of interest

– are compared to a control population comprised of individuals not

expressing this trait. Promises are enormous, from early prediction

and prevention of diseases to personalized medicine, and are of

primary interest to multiple stakeholders, including governments,

research, and private companies.

To improve the confidence and precision of results, biocenters

join forces and perform federated GWASes [34, 64, 67]. In particular,

the possibility to share genomic data among several independent

institutions, possibly located in different countries, leads to much

more accurate, precise, and hence much more expressive statistical

results than would be obtained by just considering the individually
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possessed datasets [19, 68]. Additionally, open data access accel-

erates medical/health research findings [7, 47]. Therefore, GWAS

results should be made public whenever safely possible [53, 64].

Unfortunately, inconsiderately releasing GWAS results gives rise

to privacy attacks [11, 40, 46, 48, 82]. Sankararaman et al. [70] and

Zhou et al. [88] detailed conditions that enable the safe release of

GWAS. The former work is based on statistical inference methods

to measure the probability of inferring membership of participants

using likelihood-ratio tests (LR-tests), while the latter argues in

terms of the algorithmic complexity of recovery attacks.

Several works proposed privacy-preserving schemes to secure

the computation of a GWAS in federated environments [8, 17, 19,

75], but they do not protect the release of their results. These works

are also limited to a static setting, where the genomic dataset re-

mains constant with exactly one GWAS release over the data. Re-

cently, DyPS [64] considered a scenario where the results of a

single-GWAS gets updated as more genomes become available or

when genomes are removed (a requirement imposed by privacy

regulations, such as GDPR [62]).

However, in real-life settings, GWASes might also consider over-

lapping sets of individuals and genomic variations, some of which

might also be re-used in other studies for economic reasons [21,

46, 61, 82]. Indeed, it is rather likely that federations will run dif-

ferent GWASes simultaneously (e.g., one on diabetes and a second

studying lung cancer) that possibly share data [27, 63]. In this work,

we show that an adversary might be able to base an attack on the

observation of the results of a single multi-trait study or even com-

bining results frommultiple GWASes of a federation. Besides, to the

best of our knowledge, existing federated GWAS protocols cannot

prevent these attacks (as shown in Table 6).

We theoretically establish and experimentally confirm that both

naïve and individually-safe releases enable privacy attacks in such

multi-GWAS settings. For instance, we show that an adversary

exploiting as little as two overlapping GWASes, can learn about the

participation of involved individuals by performing a membership

attack if no further protection is enforced. Moreover, an adversary

can reconstruct genomic variations of up to 28.6% of the participants

by launching a recovery attack leveraging overlapping data, even

if individually each release of a study is safe.

To address these issues, we introduce I-GWAS, a privacy-aware

solution for releasing to the public the results of interdependent

and dynamically updated Genome-Wide Association Studies. I-

GWAS successfully prevents privacy risks from such interdepen-

dent GWASes by withholding from studies only those genomic

variations that would enable membership inference attacks, and

by ensuring that the solution space is large enough to make recov-

ery attacks intractable, compensating in particular the reduction

of this search space due to overlapping data sets. The selection of
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which variants should be withheld is based on a statistical inference

method that bounds the risk of membership attacks [71], which

I-GWAS extends to overlapping studies.

The present work makes the following contributions:

• We quantify theoretically and experimentally the additional

privacy risk of recovery and membership attacks introduced

by interdependent GWASes.

• Leveraging existing TEE-enabled federated GWAS architec-

ture models, we propose I-GWAS, a novel privacy-protection

mechanism that enables privacy-preserving and dynamic

interdependent releases of GWASes.

• We extensively evaluate I-GWAS in several scenarios and

against Differential Privacy (DP) based schemes for dynamic

releases of interdependent GWASes.

Our analysis is based on real datasets comprised of 27,895 genomes.

Although both DP and I-GWAS successfully protect interdependent

GWAS results, we found our solution to exhibit a better utility-

privacy trade-off, in particular as the number of releases increases.

While DP inevitably has to stop releasing data once the privacy

budget is exhausted, I-GWAS’ exhaustive verification method en-

sures a continuous release of unperturbed GWAS statistics over a

variable number of genomic variations.

The rest of this paper is organized as follows. Sec. 2 provides

background on genomics, GWAS-associated privacy attacks, and

existing countermeasures. Section 3 presents our assumptions and

our objectives. Sec. 4 explains how interdependent GWASes fa-

cilitate recovery attacks. Sec. 5 presents our framework, I-GWAS,

which takes interdependencies into account to enforce privacy.

Sec. 6 discusses membership attacks on interdependent GWASes,

while Sec. 7 shows how I-GWAS prevents them. Sec. 8 presents our

experimental evaluation. Finally, Sec. 9 discusses the related work

and Sec. 10 concludes this paper.

2 BACKGROUND ON GWAS

Humans share 99.9% of their genetic code. Possible differences at

precise locations are called genomic variations. Short Nucleotide
Polymorphisms (SNPs) are the most typical variations and describe

the mutation of a single nucleotide. The most commonly found

nucleotide in a population is the major allele, whereas the rarest is
the minor allele.

GWASes analyze the SNPs of case and control groups to de-

termine the significance of a given SNP for the investigated trait.

Table 1 provides an example with N haploid genome sequences

дn∈{д1, . . . ,дN }, analyzed overL variants {SNP1, · · · , SNPL}. Note
that we consider haplotype sequences, i.e., single-strand, as in [64,

Table 1: GWAS genome encoding.

SNP1 SNP2 . . . SNPL Phenotype

Genome д1 0 1 1 Case

Genome д2 1 1 1 Control

.

.

.
Genome дN 0 1 0 Case

Result N case
m /N control

M 0 (major)

N case
M /N control

m . . . . . . 1 (minor)

70, 71, 88]. For each SNP in this record, a 1 encodes the fact that

a genome contains a minor allele, while a 0 denotes its absence.

The phenotype column details whether the individual expresses

the analyzed trait (e.g., diabetes), and therefore if he/she belongs

to the case or control group. Results are expressed as aggregates

computed from the information in the individual columns (in this

example, single allele counts).

2.1 GWAS aggregate and test statistics

To identify the SNPs that are frequently associated with a phe-

notype, a GWAS aggregates genomic data into Minor Allele Fre-

quencies (MAF), single and pairwise allele frequencies, Linkage

Disequilibrium (LD), or χ2 tests [6]. These metrics allow the identi-

fication of the top alleles whose frequencies differ the most between

the case and control groups. To compute those statistics, allele con-

tingency tables that contain the counts of the possible alleles of a

SNP in each population are computed.

Table 2: A singlewise contingency table for phenotype p.

Phenotypep
Population

SNPl Case Control Total

0 (major) N case
M N control

M NM
1 (minor) N case

m N control
m Nm

Total N case N control

Table 2 illustrates the contingency table associated to a vari-

ant SNPl and a certain phenotype p. N
pop
i is the count of ma-

jor/minor alleles i ∈ {M,m} in the case/control population pop ∈

{case, control}. N case
and N control

are the size of the case and the

control population, respectively. NM and Nm are the overall counts

of major and minor alleles, respectively. Similarly, Table 3 illustrates

pairwise allele frequencies of two SNPs, SNPi and SNPj . C
pop
i j re-

ports the number of occurrences of the four possible combinations

of alleles {00, 01, 10, 11} in a population.

Table 3: AGWASpairwise contingency table for two variants.

SNPi and SNPj , where i, j ∈ {1, · · · , L}.

Phenotypep
SNPj SNPj

SNPi 0 1 Total 0 1 Total

0 C case
00

C case
01

C case
0−

C control
00

C control
01

C control
0−

1 C case
10

C case
11

C case
1−

C control
10

C control
11

C control
1−

Total C case
−0

C case
−1

2N case C control
−0

C control
−1

2N control

The LD test identifies a correlation among any two SNPi and

SNPj ∈ {1, ..., L} and can be measured from the p-value on r2 =
(C i , j

00
·C i , j

11
−C i , j

01
·C i , j

10
)2

C i , j
0−

·C i , j
1−

·C i , j
−0

·C i , j
−1

. On the other hand, the χ2 hypothesis test de-

termines whether or not to reject the null hypothesis, which states

that allele frequencies in the case and control populations follow a

similar distribution. The χ2 statistic of a single SNP is defined as

χ2 =
∑
i ∈{0,1}

(N case
i −N control

i )
2

N control
i

. From the χ2 statistics, one can

compute the p-value of each SNP. A p-value lower than a given

threshold (e.g., 10
−8
) indicates that the variant might be signifi-

cant [6].
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Integrating genomic data from several data holders by com-

bining GWASes over different phenotypes gives more expressive

insights [21, 46, 61]. For such multi-GWAS analyses, several contin-

gency tables such as the above ones are generated across individual

analyses, and their genotype-phenotype correlations are individu-

ally computed for interpreting GWASes findings.

2.2 Privacy attacks on GWAS results

The results of a GWAS are typically communicated along the set L
of SNPs and the set N of genome pseudonyms considered in the

study. Based on the observation of GWAS results and metadata,

researchers have reported two types of privacy attacks.

Recovery attacks aim at reconstructing the allele sequences of

individuals (i.e., inferring unknown cells of Table 1) [88]. Knowing

a set of alleles of a given genome, adversaries may proceed with

identifying the participation of individuals in a GWAS [70, 88].

Membership attacks aim at determiningwhether an individual

whose genome is known belongs to a specific population [40, 71].

By doing so, an adversary can associate the victim with the studied

phenotype. This has profound privacy implications (e.g., adversaries

discover that the victim has the investigated disease). Such illicitly

obtained information can lead to unfair treatment (e.g., different

insurance conditions, discrimination, etc.).

2.3 Safe release of GWAS results

To the best of our knowledge, our work is the first to establish

conditions for safe releases of statistics from multiple GWASes that

might share genomes and/or SNPs. In the following, we briefly

discuss how our methods relate to recent works.

Recovery attacks on allele frequencies and test statistics are NP-

hard [88]. Despite that, Zhou et al. argue that one needs to consider

a GWAS release safe only if the solution space an adversary has to

explore is significantly larger than the GWAS result space [88]. Let

us introduce Zhou et al.’s safety condition for a single GWAS study

comprised of L SNPs and N genomes. The size of the solution space
|S | is the number of possible matrices that verify a given statistical

result. |S | is at least
(
2
L

N
)
, that is, the complexity of selecting N SNP

sequences from 2
L
sequences into which the L SNPs expand. The

size of the allele frequency space |D | is equal to (N + 1)L+(
L
2
)
, which

corresponds to all possible values for L single SNPs and

(L
2

)
SNP

pairs over N sequences. The condition for a safe GWAS release of

this single study is that the size of the solution space S is larger than

the size of the frequency space D, i.e., |S |> |D |, which is equivalent

to:

(2N − 1)

loд(N + 1)
> L (1)

In this work, we show that an adversary can reduce its search

space during a recovery attack if GWASes share data, and there-

fore possibly succeed in an attack. Some works have studied how

the presence of more complex correlations in genomic data might

compromise privacy. Such correlations include dependent records

within a given study, e.g., the presence of individuals’ relatives [1–

3, 43–45]), or higher-order SNP correlations [29, 69, 80], which

might allow the inference of hidden SNPs. In contrast, our paper is

the first to evaluate the privacy risks that interdependent GWASes

introduce under continuous releases.

Solutions to mitigatemembership attacks include statistical infer-
ence methods, such as the likelihood-ratio test (LR-test) to measure

membership inference risk of individuals from published GWAS

statistics [11, 40, 48, 70, 82] and approaches that perturb a GWAS

result to enforce Differential Privacy at the expense of a reduced

data utility [49, 73, 74, 76, 78, 87].

Differential Privacy. DP guarantees that adding or removing a

record in a dataset does not substantially modify the distribution of

the outcome of a query [30]. There are several means to achieve DP

depending on the type of perturbation added. The most common

approach uses the Laplace distribution [30, 31]. More formally, letD
and D ′

be two neighboring datasets that differ by a single element,

and letO be the set of all possible outputs of a query. A release R is

ϵ-differentially private if:

Pr [(R(D) ∈ O ] ≤ exp(ϵ ) × Pr [R(D′) ∈ S ] (2)

where ϵ is the privacy parameter that determines the level of privacy

protection that comes as a random noise added to the outputs in O .

When leveraging the Laplace mechanism with l1 sensitivity level of
a function f defined as ∆f = maxD ,D′ | | f (D) − f (D ′)| | (which por-

traits the largest change in f when a single record is replaced) [32],

the applied noise is derived from the Laplace distribution with mean

0 and scale

∆f
ϵ . In particular, as the probabilities differ by a factor of

ϵ , DP has a privacy and data utility trade-off. Intuitively, a smaller

ϵ means stronger privacy with lower accuracy [31].

To avoid introducing noise, the scientific community has been

developing statistical methods that do not rely on data perturbation

to create private releases [73]. SecureGenome (SG) [70, 71] bounds

the membership inference risk of individuals from GWAS statistics

releases [3, 37, 64]. We extend this line of thought and build on

several previous works [40, 70, 71, 88]. In particular, we extend

SecureGenome [71] privacy-protection mechanism that encompass

several genomic privacy measurements.

SecureGenome foundations. From GWAS statistics, an adver-

sary might infer the participation of certain individuals since the

probability to detect particular genomes is a function of the size

of the cohort and the number of SNPs [40, 71, 88]. To bound such

risks, SG acknowledges features of the human genetic model to

measure and identify privacy risks from the observation of GWAS

releases [70, 82, 88]. In particular, SG applies several genome pri-

vacy verifications in combination with a LR-test to determine which

SNP statistics of a given dataset can be safely released.

As a first step, SG makes sure that only independent SNPs are

considered in the LR-test. To do so, SG first (i) checks SNP positions

with rare allele frequencies (e.g., MAF below a given threshold, e.g.,

≤ 0.05) and preliminary removes them from the original SNP-set of

a study; and then (ii) discards SNPs that presents a certain level of

pairwise linkage disequilibrium (e.g., p-value on r2 below < 10
−5
).

Posteriorly, SG proceeds with the following LR-test analysis.

SG’s LR-test null hypothesis represents the possibility for an

individual of interest to belong to the study population (consisting

of N independent individuals) under Hardy-Weinberg equilibrium
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(HWE)
1
. The alternative hypothesis represents the possibility for

the individual of interest merged with N−1 individuals (obtained

as under the null hypothesis and HWE), to belong to the case

population. In summary, the null hypothesis tests whether the

individual is not present in both populations (case and controls) of

the study. On the other hand, the alternative hypothesis measures

whether the tested individual belongs to the case population. These

hypotheses yield the following LR-formula (adapted from [71]):

LR =
L∑
l=1

[xn,l log
p̂l
pl
+ (1 − xn,l ) log

1 − p̂l
1 − pl

] (3)

where L is the number of pre-selected independent SNPs in a study

(recall steps (i) and (ii) discussed above), xn,l is the allele informa-

tion at SNP position l of individual n ∈ [0,N − 1], pl is the allele fre-
quency of SNP position l in the population, and p̂l is the frequency
of SNP position l in the reference set. According to Sankararaman

et al. [71], the SG’s LR-test approximates the Gaussian distribution

that is parameterized by the relationship between sample size N ,

number of independent SNPs L, statistical power 1 − β , and type

I error probability (or significance level) α when both L and N
are moderately large, according to the central limit theorem. The

extended version of SG [71] further demonstrates that this approx-

imation also holds when N is not assumed to be large using the

Lindeberg-Feller central limit theorem. Besides, the authors empir-

ically show that this approximation also holds for small N and L
values. We present additional details of SG’s analysis in Appendix A.

As a summary, SG empirically finds a safe subset of SNPs from

the original set L whose statistics (if released) would keep the iden-

tification power for each individual below a specified identification

power threshold. Under this approximation, the LR-test is proven

to provide a higher bound on the identification power (1− β) of any
test given parameters (N , L,α), according to the Neyman-Pearson

lemma [71]. Additionally, SG can also cope with the existence of

relatives in a cohort by enabling the use of the γ parameter to repre-

sent the probability of detecting relatives of a particular individual.

For instance, the authors found that identification power for first-

order and second-order relatives is lower, and decreases with the

number of exposed SNPs [3, 71].

Comparison between SG and DP. DP is a generic approach to

protect data releases against membership inference, and therefore

has also been used to protect GWAS releases [5, 34, 67, 73]. DP

has the advantage of not requiring a reference set (as SG does) to

generate private GWAS releases. Besides, DP does not make any

assumption on the background knowledge of adversaries and its

computational cost is cheap once the privacy budget is calibrated (in

case of static setting). However, Liu et al. [56] have identified that

the presence of correlated data within a dataset can be exploited by

adversaries to breach DP guarantees. Similarly, Almadhoun et al. [1,

2] recently showed that this issue also impacts genomic privacy. In

particular, they demonstrated that inference attacks might become

possible when adversaries leverage dependencies (e.g., statistically

linked genomic variations or kinship) among the genomes in a

study. In contrast, SG impedes inference attacks by preventing the

release of statistics over SNPs that have a low frequency, are highly

1
HWE states that genomic variations are stable among generations given the absence

of disturbing/external factors.

associated with another SNP (linkage disequilibrium), or whose

release would lead to a high identification power through a LR-test.

In this work, we extend SG because it does not manage a privacy

budget, which would eventually be exhausted and prevent releases.

However, since we consider a dynamic setting, where data is re-

leased (queried) multiple times, and the presence of overlapping

studies, which might impact the privacy guarantees of both SG and

DP, we identify new privacy conditions that need to be enforced.

In particular, managing the privacy budget of DP mechanisms

for protecting continuous observation [13, 30] and also growing

databases [23] are at an early development stage, and we are un-

aware of a practical implementation of these concepts. Equivalently,

SG does not directly support dynamic releases and overlapping

datasets [64]. I-GWAS builds on SG [70] and Zhou et al’s. work [88],

and presents new privacy conditions for the continuous release of

overlapping GWASes, whose results are continuously updated as

additional genomes become available or are removed. Given the

availability of the genome sequences participating in the studies,

I-GWAS securely executes the LR-test leveraging the selected data

(genome and SNPs) to empirically check the identification power an

adversary would achieve from the observation of statistics over the

selected SNPs for every particular individual. In Section 8, we pro-

vide detailed discussion on the privacy properties and guarantees

that I-GWAS and a DP-based mechanism achieve under dynamic

and interdependent GWASes scenario.

2.4 Secure and privacy-preserving processing

of GWAS

A federation of biocenters aiming to conduct a GWAS could rely

on several privacy-preserving schemes, such as Secure Multiparty

Computation (SMC) [17, 19, 38, 75], Homomorphic Encryption

(HE) [8, 83, 85], local DP-based approaches [20, 58], and Trusted

Execution Environment (TEE)-based solutions [9, 12, 15, 52, 64, 68].

The works mentioned above ensure privacy while computing the

results of a GWAS. However, they are insufficient to prevent privacy

leaks once the GWAS result is made accessible to an adversary.

Inspired by existing TEE-based deployments for federated GWAS

[9, 12, 15, 52, 68], we also opted for TEE-based implementation to

compute GWAS statistics and to assess whether results can be safely

released [64], but also to demonstrate that our algorithm can run

in a secure environment, even if this is hosted by an untrustworthy

third party. We have chosen Intel SGX [60] as a vehicle for our

implementation without relying on any specific feature of SGX.

Our choice for SGX is motivated by previous works leveraging

this technology and by its increased availability in cloud services.

However, our solution applies equally well to other TEE implemen-

tations and to secure servers deployed specifically for the task of

identifying safe releases [9, 64, 68]. We present existing SGX-based

architectures for federated GWAS in Table 6.

Limitations of Intel SGX. Despite recent works leveraging

advantages of Intel SGX for GWAS [9, 12, 15, 52, 64, 68] or read

alignment [33, 54], SGX-based solutions need to cope with some lim-

itations. First, SGX has a reduced size of enclave memory (only 96

MB is available to applications executing inside the enclave). Since

SGX2, the enclavememory can be expanded using dynamicmemory

management and paging mechanisms within enclaves [14, 15, 60].
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Nevertheless, such mechanisms possibly decrease performance. In-

tel might remove such limitations in the future and some processors

already support enclaves that manipulate up to 512 GB of mem-

ory [55]. Another problem remains related to enclave-side paging.

In fact, several works have shown that SGX enclaves are vulnerable

to side-channel attacks that observe and exploit the memory cache

access patterns of algorithms that run inside enclaves. Recently,

some countermeasures have been proposed [59], such as adapting

genomic workflow algorithms to work in a data-oblivious fashion

(ensuring random memory access patterns), further increasing the

performance penalty one has to pay when offloading computation

to enclaves. Other ad-hoc solutions have been proposed, such as

encoding techniques to rearrange genomic data in a certain way

so that paging attacks cannot succeed. For instance, by fitting data

within 4 KB page-sized blocks [14] or by processing a limited num-

ber of SNPs at a time [15]. Finally, enclaves can also be subject to

Denial-of-Service (DoS) attacks [16, 77]. Although those attacks

do not compromise privacy, they might disrupt the pipeline and

the expected behavior of the application. However, addressing this

vulnerability falls out of the scope of this work.

3 SYSTEM AND THREAT MODEL

System model. We mirror the system model and workflow of ex-

isting TEE-based architectures for federated GWAS [9, 12, 15, 52,

64, 68]. However, assuming the presence of multiple interdepen-

dent studies. In particular, we assume a federation comprised of

multiple biocenters, each sequencing genomes and requesting the

addition or removal of individuals from the federation. The federa-

tion jointly operates several GWASes, where each GWAS on the set

G {GWAS1, · · · ,GWASG } represents a study with a corresponding

phenotype, set of SNPs and genomes, possibly added or removed

dynamically to update results continuously.

Following previous works [40, 64, 71, 82, 88], we assume that

all GWASes publicly release GWAS metadata, allele frequencies

and test statistic introduced in Section 2. Therefore, I-GWAS de-

termines the minimal number of genomes each GWAS should use

for any type of statistics to prevent recovery attacks and performs

additional checks to detect vulnerable data to avoid membership

attacks. All requests are evaluated in rounds, and I-GWAS certi-

fies that a safe batch of requests (that meets the interdependent

GWASes criteria) can be selected. If a safe batch of genomes cannot

be found in a round, I-GWAS aborts the round. Eventually, a safe

release will take place as new genome requests come over time.

Each biocenter must ensure the genome privacy of individu-

als it has sequenced. For that reason, they encrypt all sequenced

genomes and offload their processing into a mutually TEE-enabled

server. I-GWAS performs its privacy-protection analysis inside a

TEE enclave. Moreover, we assume that no information leaves the

TEE before I-GWAS explicitly releases it and that cryptographic

primitives are secure. In addition, TEE’s remote attestation [22, 60]

ensures to biocenters that the piece of software deployed in the

TEE is the expected one. The encryption is constructed in such a

way that only the TEE can decrypt the data from the biocenter (e.g.,

by placing the private key required for encrypting this biocenter’s

genomes into the sealed memory of the TEE [22]). Sealed memory

only grants access to attested enclaves to the private data they

Dataholder (biocenters)

Encrypts raw DNA data

Third-party (untrusted) server 
TEE-enabled 

Uploads encrypted data

Trusted area 
(TEE enclave) 

Untrusted area 

(2) 

Decrypts data
Processes data

Remote Attestation
(1) 

Seals/unseals data

(3) 

Data  
sealing

Encrypted data 
outsourcing 

...
Federation of biocenters

Individuals' DNA samples

DNA sequencing

...

I-GWAS

GWASes public  
releases 

(4) 

Figure 1: A typical federated GWAS setting leveraging TEE.

have sealed. Furthermore, data sealing is also used to increase the

scalability of TEE-based solutions by allowing the retrieval of data

at later stages for future steps of an algorithm running inside an

enclave [9, 22, 64].

Threat model. We assume that all biocenters in the federation

follow the protocol and provide high-precision data [64, 67, 68,

86]. We assume that our system faces an external probabilistic

polynomial time adversary capable of observing released GWASes

results, which it uses to mount recovery and membership attacks

following previous works [64, 70, 88].

Workflow overview. In a round, I-GWAS proceeds in the fol-

lowing steps, depicted in Fig. 1: (1) Before a biocenter starts in-

teracting with the TEE, it remotely attests the authenticity of the

hardware, software, and configuration of the TEE and finally es-

tablishes a secure connection with it. (2) Each biocenter locally

encrypts and transfers data to the TEE, i.e., new genomes and their

corresponding requests to add genomes to a study or to remove

their participation from existing studies. (3) Upon reception of re-

quests, the TEE decrypts the genomes, includes them in the data

structures it maintains, and selects a batch of genomes (ideally

including the newly added genomes) that can be safely used for a

candidate release while impeding recovery attacks. Next, I-GWAS

performs its extended LR-test analysis to evaluate the feasibility of

membership attacks on the selected genome set merged with poten-

tially overlapping releases. Only SNPs that would not allow such

an attack will be considered in the study. (4) Finally, the TEE uses

the data (genomes and SNPs) selected in step (3) to compute and

release the actual GWAS statistics. The TEE periodically executes

this workflow.

In summary, this paper contributes precise conditions under

which interdependent GWAS preserve the privacy of the individuals

who share their genetic data.

4 SAFETY CONDITIONS FOR

INTERDEPENDENT GWASES

The overlapping of SNPs and genomes can be leveraged by adver-

saries to reduce the solution space for inferring the matrices that
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verify an observed statistical result. In this section, we review re-

covery attacks and extend the safety conditions proposed by Zhou

et al. [88] for interdependent GWASes.

In Fig. 2, we consider two studies GWAS1 and GWAS2 that re-

lease statistics over L1 SNPs and N1 genomes, and over L2 SNPs and
N2 genomes, respectively. The studies overlap inNovl genomes and

Lovl SNPs. Individually, both studies fulfill Zhou’s safety condition,

that is, |S1 |> |D1 | and |S2 |> |D2 | (recall § 2.3).

Figure 2: Illustration of two overlapping GWASes.

However, leveraging knowledge about the overlapping regions of

GWAS1 and GWAS2, adversaries might be able to reduce the search

space analysis for each possible situation in which these studies may

overlap (i.e., evaluating addition, subtraction and union mappings

over releases’ solution spaces). Eventually, if the solution space of

a combination of releases is not large enough (i.e., |D | ≈ |S | [88]
– recall § 2.3) such a combination might be subject to a recovery

attack. Due to space constraints, we refer the reader to Appendix B

for further details on how adversaries might map releases.

Next, we formally define the complexity of the search space anal-

ysis when adding, subtracting, and taking the union of statistical

results for single and pairwise allele frequencies, and for test statis-

tics when releases can be combined and leveraged by adversaries

to circumvent privacy conditions in place.

4.1 Singlewise allele frequencies

In this case, GWAS1 and GWAS2 release two mapsm1 andm2 that

associate a SNP to its minor allele counts (V1, V2) in N1 and N2.

The space of possible solutions for addition is therefore |Sadd | =
2
L1 ·N1+L2 ·N2−Lov l ·Nov l and |Ssub | = 2

L1 ·N1+L2 ·N2−2·Lov l ·Nov l for

subtraction. The latter formula comes from the fact that values

in the intersection of the two matrices are canceled out under

subtraction. Intuitively, |Sunion | = |Sadd |.
For the frequency spaces, we obtain |Dadd | and |Dsub | by com-

puting the product of the number of possible values for each SNP

that they contain:

|Dadd | = (N1+1)
L1−Lov l · (N2+1)

L2−Lov l · (N1+N2−Novl+1)
Lov l .

|Dsub | = (N1+1)
L1−Lov l · (N2+1)

L2−Lov l · (N1+N2−2Novl+1)
Lov l .

|Dunion | is the product of the frequency spaces of both releases

divided by the frequency space over the overlapped area: |Dunion | =
(N1+1)

L
1 ·(N2+1)

L
2

(Nov l+1)
Lov l

.

4.2 Pairwise allele frequencies

This analysis produces maps (also presented in Appendix B) that

associate tuples (i, j,p,q) to pairwise allele counts in the respective

datasets. Here, i , j denote the SNPs and p, q the allele types [88].

The solution space complexities for |Sadd | and |Sunion | are the
same as for singlewise allele frequencies. In contrast, |Ssub | =

2
L1 ·N1+L2 ·N2−(Lov l ·Nov l ), becausemsub depends on the values in

the intersection (i.e., (i, j) ∈ (Novl , Lovl )), which are canceled out.

Like in the singlewise frequencies case, |Dadd | and |Dsub | are

obtained by computing the product of possible values of the SNPs

over the released frequencies.

Let |DN1
| = (N1 + 1)

(
L
1
−Lov l
2

)+(L1−Lov l )·Lov l+(L1−Lov l )
and

|DN2
| = (N2 + 1)

(
L
2
−Lov l
2

)+(L2−Lov l )·Lov l+(L2−Lov l )
. Then,

|Dadd | = |DN1
| · |DN2

| · (N1+N2−Novl+1)
Lov l+(

Lov l
2
)
and |Dsub | =

|DN1
| · |DN2

| · (N1+N2−2Novl+1)
Lov l+(

Lov l
2
)
. |Dunion | is the prod-

uct of the frequency spaces divided by the frequency space of the

overlapped area: |Dunion | =
(N1+1)

L
1
+(
L
1

2
) ·(N2+1)

L
2
+(
L
2

2
)

(Nov l+1)
Lov l +(

Lov l
2

)
.

4.3 Test statistics

From a GWAS release, apart from observing the sets of SNPs L
and genomes N that participated in a study, adversaries can also

observe the p-values statistics of the χ2 test along with the r2 values
of linkage disequilibrium. However, the r2 values encompass fewer

information than pairwise frequency statistics from the adversary’s

perspective [82, 88], which leads to the safety condition |R2 | =

(N+1)L+(
L
2
)

2
(L
2
)

being smaller than |D | = (N + 1)L+(
L
2
)
(recall § 2.3

analysis).

We can therefore derive the solution space for test statistics

using the same approach as for pairwise frequency space (which

is actually the theoretical upper bound since other allele frequen-

cies, such as singlewise frequencies, can be derived from them).

Hence, |Sadd | = |Sunion | = 2
L1 ·N1+L2 ·N2−Lov l ·Nov l , and |Ssub | =

2
L1 ·N1+L2 ·N2−(Lov l ·Nov l ).

Test statistics space complexities are derived from the prod-

uct of possible values for the SNPs over the released test statis-

tics with |DN1
|, |DN2

| as above: |R2add | =
|DN

1
|

2
(
L
1
−Lov l
2

)+(L1−Lov l )·Lov l
·

|DN
2
|

2
(
L
2
−Lov l
2

)+(L2−Lov l )·Lov l
·
(N1+N2−Nov l+1)

Lov l +(
Lov l

2
)

2
(
Lov l

2
)

.

|R2sub | =
|DN

1
|

2
(
L
1
−Lov l
2

)+(L1−Lov l )·Lov l
·

|DN
2
|

2
(
L
2
−Lov l
2

)+(L2−Lov l )·Lov l

·
(N1+N2−2Nov l+1)

Lov l +(
Lov l

2
)

2
(
Lov l

2
)

.

|R2union | is computed as the product of the test statistics spaces

of both releases over the overlapping area:

|R2union | =

(N
1
+1)

L
1
+(
L
1

2
)

2
(
L
1

2
)

·
(N

2
+1)

L
2
+(
L
2

2
)

2
(
L
2

2
)

(Nov l +1)
Lov l +(

Lov l
2

)

2
(
Lov l

2
)

.

In addition, although inferring correct values of r2 (to measure

associations between SNPs that can be used to facilitate attacks)
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Figure 3: Smallest number of genomes N2 that a GWAS that overlaps with a previous GWAS should use for a safe release

depending on their overlapping SNP-set size (Lovl ) and genomes set size (Novl ).

from GWAS test statistics is NP-hard [88], I-GWAS not only con-

ducts the searching space analysis (assuming the full SNP-set L) but
also certifies that SNPs found to be in linkage disequilibrium (LD)

do not have their statistics released. This conservative approach

impedes adversaries from leveraging LD to mount attacks.

5 PROTECTING INTERDEPENDENT GWASES

AGAINST RECOVERY ATTACKS

As shown in Section 4, releases of interdependent GWASes must

satisfy particular safety bounds. In particular, these new bounds

enforce that the conditions of Eq. 1 also holds for overlapping

releases so that the solution space of combinations of releases is

sufficiently large.We now detail how I-GWAS protects the release of

statistics against recovery attacks using sequential releases, which

assumes that studies are dynamically updated as new genomes are

sequenced and/or removed [64]. We start by providing the intuition

behind the release of GWAS statistics using an example where only

one interdependent GWAS has been previously released, before

generalizing to G GWASes.

5.1 Sequential releases of GWASes

Let us assume that a first GWAS1 has released statistics over L1
SNPs with N1 genomes, and that a second, GWAS2, aims at releas-

ing statistics over L2 SNPs. We note LtoNsinдle (L) the minimum

number of genomes to use to release the results of a single GWAS

on L SNPs (cf. Equation 1). Our approach consists in increasing

the number N2 of genomes that GWAS2 uses so that the safety

bounds for interdependent studies are verified. Particularly, we

discovered that releasing GWAS2 with LtoNsinдle (L2) genomes is

not safe with overlapping datasets.

We evaluate in Fig. 3 the smallest safe value for N2 when L1=
1,000 and N1=LtoNsinдle (L1), and when Lovl ∈ [0, L1] and Novl ∈

{
N1

2
,N1}. In this figure, the default line represents LtoNsinдle (L2),

i.e., the state-of-the-art formula that assumes independent and

single releases. By observing the behavior of N2, one can notice

that depending on the attack (i.e., targeting the addition, subtraction,

or union), N2 exceeds LtoNsinдle (L2). In such situations, we can

identify that interdependent releases are not safe if relying on

LtoNsinдle (L2). In addition, it can be noticed that protecting against
the union and addition attack always requires more genomes than

for the other cases.

Besides, we can note that the addition and subtraction attack

lines against r2 releases (Fig. 3 (b)) always stay below the default

line (note that the lines plotted for the addition and subtraction

mappings overlap each other at the bottom of the chart). This means

that adding or subtracting r2 values to launch a privacy attack is

not practical and matches previous works findings [82, 88].

Interestingly, one can also notice that N2 decreases when Lovl
increases for all type of attacks. This downwards behavior comes

from the fact that the solution spaces (e.g., |Sadd |) grow faster

than the frequency spaces (e.g., |Dadd |) with Lovl , and because a

recovery attack is deemed possible depending on their ratio (e.g.,

|Sadd |/|Dadd |) [88].

In summary, interdependent releases are safe when the space

analysis for each type of attack is kept within safe boundaries, i.e.,

the combined solution space between the releases is sufficiently

larger than their combined frequency spaces. In particular, the

number N2 of genomes required to protect interdependent releases

depends on Lovl and Novl . For instance, for these experiments,

if such conditions are not enforced, up 28.6% of the genomes are

vulnerable to recovery attack.

Therefore, to mitigate recovery attacks, I-GWAS identifies N2

such that |Sop |> |Dop | for op ∈ {add, sub,union} given the overlaps

a study haswith previous GWAS. For pairwise allele frequencies and

for test statistics, the union attack provides the theoretical bound

for interdependent releases. Hence, it is sufficient to check that N2

verifies |Sunion |> |Dunion |. For singlewise allele frequencies (not

illustrated in Fig. 3 for space reasons), the subtraction attack defines

the safety bound. In summary, I-GWAS selects the largest bound as

the safety threshold and apply its conditions when selecting safe

batches of genomes for the creation of safe releases.

5.2 Scaling with the number of GWASes

We now extend this method to the case where G GWASes have

previously released statistics. Let us note |Si | the solution space

443



Proceedings on Privacy Enhancing Technologies 2023(1) Pascoal et al.

for a given GWASi , and |Di | its frequency set space. Due to space

restriction, we present only the analysis for the pairwise frequency

space. The analysis for the other statistics (i.e., singlewise and r2)
is similar.

Before introducing I-GWAS’ solution for multiple releases of

interdependent GWASes, let us first discuss an intuitive solution

to this problem. Indeed, to enforce that several interdependent re-

leases are safe, one could compute all possible combinations of

existing releases. Then, measure and evaluate if the solution space

is sufficiently large given the released statistics space. Such a brute

force approach is secure but has exponential complexity and is not

reasonable in practice [64]. Motivated by that, I-GWAS offers a

novel solution with linear complexity. I-GWAS relies on the follow-

ing Theorem that defines how and when multiple interdependent

GWASes can be dynamically released without infringing on the

genomic privacy of their participants.

Theorem 1 (Safe releases of interdependent GWASes). For
every GWASi and GWASj , if (1) |Si |> |Di | and (2)

|Sj |
|D j |
>
∏

i,j |Si ∩

Sj |, then any combination of releases from GWASi and GWASj in-
volves enough genomes to prevent recovery attacks.

Proof. The very first release of a GWAS in the federation does

not overlap with any other GWAS, and therefore meets the condi-

tion for independent GWAS releases, i.e., |Si |> |Di |. The release is

safe. Let us assume that any combination of i ≥ 1 GWAS releases is

safe. Let further j be the id of the (i+1)-th GWAS, {S1, S2, ..., Si } the
sets of the i previous GWAS solution spaces, and {D1,D2, ...,Di }

their corresponding frequency spaces. All these GWASes also con-

tain enough genomes to meet the single-GWAS safe condition (i.e.,

|Sj |> |D j |). The inclusion-exclusion formula states that

|

i⋃
j=1

Ej | =

∏д
j=1 |Ej |∏

1≤j<k≤д |Ej∩Ek |∏
1≤j<k<l≤д |Ej∩Ek ∩El |

. . .
(−1)д−1 |Ej∩···∩Eд |

where all |Ej | can be substituted by either |Sj | or |D j | to compute

the sizes of the combination solution and frequency spaces, re-

spectively. Given this formula, one easily obtains that |
⋃i
j=1 Sj | ≥∏д

j=1 |Sj |∏
1≤j<k≤д |Sj∩Sk |

and that 1 ≤ |
⋃i
j=1 D j | ≤

∏д
j=1 |D j |. Therefore, if

one ensures that

∏д
j=1 |Sj |∏

1≤j<k≤д |Sj∩Sk |∏д
j=1 |D j |

≥ 1 then |
⋃i
j=1 Sj | > |

⋃i
j=1 D j |.

This condition is equivalent to

∏
j≤д−1

|Sд |
|Dд |

·

(
|Sj |
|D j |

· 1∏
k≤д |Sд∩Sk |

)
≥

1, which is provided since

∏
j≤д−1

|Sд |
|Dд |

≥ 1 because of condition

(1), and since

|Sj |
|D j |

· 1∏
k≤д |Sд∩Sk |

≥ 1 because of condition (2).

□

I-GWAS relies on Theorem 1 to verify that a GWAS can release

or update its results, given that other GWASes have already re-

leased theirs. This verification has a complexity that is linear with

the number of GWASes. To illustrate this process, we present its

pseudocode in Appendix C as Algorithm 1.

5.3 Allowing safe genome removals

I-GWAS provides dynamic processing of genomes and their safe

removal, similarly to DyPS [64], and extends it to interdependent

GWASes. For the update of a given (single) GWAS, DyPS assembles

a batch of genome additions and removals, respectively represented

by A and R, such that |A| + |R | ≥ LtoNsinдle (L) and |A| ≥ |R |. The
rationale behind this approach is that even if some genomes that

participated in a GWAS are removed, the solution space an adver-

sary has to explore only increases with time. I-GWAS, however,

offers a method that acknowledges interdependent GWASes. Before

a GWAS can release its results, I-GWAS determines the minimum

number of genomes it should use, which might also depend on

other GWASes and which we denote as LtoNI-GWAS, to satisfy the

conditions of Theorem 1.

Let us consider an example with two (possibly overlapping) re-

leases of two interdependent GWASes. The first GWAS, GWASi ,

consists of genome additions Ai and removals Ri , and the sec-

ond GWAS,GWASj , consists of genome additions Aj and removals

Rj . Since these releases were orchestrated by I-GWAS, we have

|Ai | + |Ri | ≥ LtoNI-GWAS(i) and |Aj | + |Rj | ≥ LtoNI-GWAS(j). Let
us then assume that GWASi is updated with new genome oper-

ations Ai′ and Ri′ , such that Ai′ > Ri′ . Then, each GWAS con-

sidered alone stays safe. The number of remaining genomes in

GWASi is |Ri | + |Ai \ Ri′ | + |Ri′ \ Ai | + |Ai′ | > |Ri | + |Ai | >
LtoNI-GWAS(i) ≥ LtoNsinдle (i). The combination of GWASi and

GWASj is also safe because Theorem 1 enforces that it contains

more than LtoNI-GWAS(i) genome operations.

6 MEMBERSHIP ATTACKS ON

INTERDEPENDENT GWASES

As with novel recovery attacks presented in Section 4, an adversary

can leverage the fact that some genomes might have been used

in multiple interdependent studies for succeeding in membership

attacks. In particular, an adversary can launch membership attacks

over release combinations, which might increase the identification

power of the attack.

DyPS [64] combines SG’s LR-test (cf. §2.3) with an exhaustive

verification process to dynamically update the statistics of a single

GWAS. In particular, every SNP in a candidate release is checked

against existing releases to identify if it statistics has been released

before by another study. DyPS does not consider multiple inter-

dependent GWASes. In practice, we show that an adversary could

combine statistics across several overlapping releases and mount

a successful membership attack (as shown by our experiments in

Section 8). Therefore, we detail additional required verifications to

support dynamic releases of interdependent GWASes.

Like previous works [37, 64, 71] I-GWAS also leverages SG for

membership protection. However, in contrast to existing solutions,

which evaluate the conditions of safe releases considering stud-

ies separately, I-GWAS offers a novel pipeline able to protect the

privacy of participating genomes by implementing an exhaustive

verification step that acknowledges all possible sets of genome and

SNPs combinations among existing studies. Particularly, I-GWAS

applies an exhaustive local verification (on a single-GWAS level)

combined with a global verification that considers all existing com-

binations of GWASes on a per-SNP basis.
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7 PROTECTING INTERDEPENDENT GWASES

AGAINST MEMBERSHIP ATTACKS

After selecting a safe batch of genomes using the conditions pre-

sented in Section 4 to prevent recovery attacks on interdependent

GWASes presented in Section 5, I-GWAS identifies data that can

be released without posing membership privacy risks. I-GWAS

leverages SG’s to run membership inference tests over the selected

genomes and SNPs of the candidate GWAS (recall Section 2.3). Thus,

identifying the set of safe SNP positions regarding a candidate re-

lease selected data.

However, the above verification is not enough. Indeed, I-GWAS

also needs to enforce that the selected SNPs statistics can be safely

updated within a single GWAS previous releases (i.e., verifying

which SNPs are “locally” safe). This task consists in executing addi-

tional LR-test verifications over all possible combinations of releases

(and so genome distributions) within previous releases of a par-

ticular study (depicted on the left side of Fig. 4). Recall that rare

alleles and SNPs in LD are primarily blocked from participation, and

therefore such information could not be leveraged by adversaries.

In addition, to prevent an adversary from leveraging the com-

bination of released statistics from other studies, I-GWAS retains

in the candidate GWAS only those SNPs of the previous step that

remain “globally” safe. For this, I-GWAS first identifies overlapping

SNPs and then executes additional LR-tests over the combination

of genomes from heterogeneous studies that shared SNPs with the

candidate GWAS (depicted on the dashed lines coming from the

right side of Fig. 4). After this procedure, I-GWAS has identified

a list of SNPs that survived all verifications and therefore can be

used for a safe release.

Let us consider the example illustrated in Fig. 4, where GWAS1

releases take place first, and SNPs are selected following the local

verification only (represented by solid lines) because there was only

one study. The notation Ni_r represents the genome set selected

for GWASi , release r . We now present and discuss the different

scenarios I-GWAS considers when any candidate release is found:

Local verifications (solid lines). A first situation occurs when

a SNP that is labeled as safe by I-GWAS and has never been stud-

ied before can be released without global verification because an

adversary cannot combine releases. This is the case for all selected

SNPs in N1_1 of GWAS1 and id4 in N2_1 of GWAS2. When SNPs

have been considered in previous releases of a study, e.g., id1, id2
and id3 of GWAS1 at N1_2 and N1_3, those releases are combined

by I-GWAS and extra LR-tests rounds are conducted to certify

that candidate SNPs are also identified as safe when the release

combinations are tested. In this example, id1 succeeds in all local

verifications of GWAS1 releases (green lines). In contrast, id2 failed
(red lines) when tested against the (N1_2,N1_1) combination. Thus,

id2 statistics are withheld in N1_2 release.

Local and global verifications (dashed lines). In this case, a

SNP is found to be safe for a single GWAS release, but has been

released in another study before. For example, id1 is safe over the
N2_1 genome set of GWAS2, but id1 statistics has been released

in GWAS1 before (over the overlapping genome set Novl ). In this

case, I-GWAS evaluates new LR-test rounds to certify that a SNP

is also identified as safe over the combinations of genomes among

the two studies. This is represented by the dashed line coming

from the selected SNPs of GWAS2. In our example, id3 is detected
as safe over the N2_1 set in GWAS2, but when combined with the

other genome sets from GWAS1, the LR-test identified that this SNP

cannot have its statistics safely released anymore (dashed red lines).

On the other hand, id1 passed all tests when GWAS1 releases are

combined with those of GWAS2 (dashed blue lines), and therefore

might have its statistics published. SNP id4 is not tested since it has
never been released before by any study.

Figure 4: Exhaustive verification process to protect interde-

pendent GWASes releases against membership attacks.

Furthermore, to avoid that previously released SNPs (and poten-

tially not considered in the future) being leveraged by adversaries,

I-GWAS keeps track of all released SNPs so that when combining

releases for further verification, those SNPs are also checked. These

“ghost” SNPs are represented by dashed boxes (id2 and id3) in Fig. 4,

which allow I-GWAS to apply the exhaustive verification step for

all released SNPs regardless if they can currently be observed or

not. For instance, even though SNP id2 was not released in N1_2 of

GWAS1, it is checked anyway once it is a candidate SNP selected

for N1_4 release. In that example, id2 has been labeled as safe over

all runs of membership verification and therefore is allowed to have

its statistics released at N1_4 of GWAS1.

In summary, the goal of I-GWAS’s exhaustive verification is to

replicate the behavior of an adversary that accumulates knowledge

by combining releases to launch membership attacks leveraging

overlapping data. Thus, certifying that only the SNPs mutually se-

lected as safe after multiple membership test verifications (over the

combinations of overlapping releases and their respective genomes)

are allowed to release statistics. As a result, maintaining the identifi-

cation power of individuals within safe boundaries over all releases

and therefore impeding the adversary to use such a strategy.

We present the pseudocode of I-GWAS for the membership

tests in Algorithm 2 (Appendix C). The complexity of I-GWAS’

verification increases with the number of releases and studies.

In particular, the computational complexity for the verification

is O(L′ · 2LocalRel ·Over lappedRel ), where L′ is the number of se-

lected SNPs after the first run of the LR-test on the candidate re-

lease set, LocalRel is the number of releases within a study, and

OverlappedRel is the number of overlapping releases from other

GWASes. The full I-GWAS’ workflow for interdependent GWASes

is shown in Algorithm 3.
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8 EXPERIMENTAL EVALUATION

We implemented and run I-GWAS on Intel SGX using C++ and

Graphene SGX [77]. Experiments were performed on an Intel i7-

8650U machine (2.11 GHz, 16GB RAM) with Ubuntu 18.04. We

used real genomes from the phs001039.v1.p1 dbGAP dataset [81],

which consists of 14,860 case and 13,035 control genomes. We adopt

the parameters suggested in SecureGenome [71] for the genomic

privacy protection tests to decide which SNPs might have their

allele frequencies safely released (recall §2.3). Namely, 0.05 MAF

cut-off, 10
−5

LD cut-off, 0.1 false-positive rate and a 0.9 detection

power rate. We evaluate I-GWAS along 3 metrics: privacy, data
utility (accuracy loss and release utility score) and run-time.

We compare I-GWAS against DyPS [64], a state-of-the-art ap-

proach to dynamically release GWAS privacy-preserving results,

and against ϵ-DP using Laplacemechanism for the dynamic releases

of GWAS statistics. We consider several ϵ and privacy budgets (pvb)
spent over releases to evaluate trade-offs. pvb is used to keep DP

properties over multiple releases.pvb starts at 1 (100% of ϵ) and each
release consumes a fraction of ϵ . When pvb is exhausted, DP cannot

release data with original privacy guarantees. We utilized PyDP, a

Python wrapper for Google’s Differential Privacy C++ library [36].

We do not compare I-GWAS with a method based on local

DP since it introduces higher perturbation than a centralized DP

scheme [20, 58]. Moreover, we identified that the system-side per-

formance (e.g., bandwidth, memory, and CPU consumption) of

I-GWAS is very similar to that of other TEE-based solutions [9,

12, 15, 52, 64, 68]. Additionally, I-GWAS only imposes a penalty of

requiring extra genomes to protect overlapping releases (cf. Table 5)

when compared to DP-based releases. Such a limitation depends

on the assumed workload, e.g., the rate at which new genomes are

added and the frequency of overlapping data (cf. Fig. 3).

To be fair when comparing I-GWAS against DP-based releases,

we create a release utility metric that acknowledges both data

coverage (amount of data allowed to be used in a release) and

accuracy loss. Otherwise, DP utility score would always perform

worse than I-GWAS. We evaluate the utility of a release as follows:

L∑
l=0

SNPl r el · SNPl acc

L
(4)

In this formula, L is the original SNP-set of the GWAS, SNPl r el ∈

{0, 1}, i.e., 1 if statistics over SNP l has been released and 0, oth-

erwise, and SNPl acc is the accuracy of the released statistics of

SNP l compared to its original (noise-free) result. Note that we still

evaluate I-GWAS along other traditional metrics mentioned before

individually.

Privacy and data utility. Fig. 5 illustrates the impact of privacy,

i.e, preventing the release of GWAS results at some SNP positions,

on data utility. In this experiment, we use all 14,860 case genomes

and consider two GWASes over 10,000 SNPs and varied the fraction

of overlapping genomes among studies between 1% to 50%. The

vulnerable SNPs are positions that would put participating genomes

at risk of being identified in a membership attack. These SNPs

need to be identified and secluded from public releases. The GWAS

results are only known by the I-GWAS’s trusted enclave, and only

the results of SNPs that can be safely exposed are publicly shared.

With the dbGAP dataset that we consider, the release cover-

age decreases when the number of overlapping genomes increases
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Figure 5: Release coverage when protecting interdependent

GWASes against membership attacks.

because more SNPs are withheld by I-GWAS. In the worst case,

statistics computed over 81.8% of the SNPs could be used to identify

individuals and are therefore withheld. Interestingly, in this use

case, we noticed that all SNPs could be released if very few genomes

are shared between studies (between 1% – 10%).

Table 4 presents the results of our second scenario where we

considered 4 GWASes. The first 3 GWASes used disjoint sets of

4,953 genomes each, while the last one shares each of its 14,860

genomes with the other three GWASes. For each experiment/line,

we considered a different number of SNPs. We identify that using

DyPS, which cannot protect releases of interdependent studies, the

number of SNP positions at risk increases with the overall number

of SNPs, from 80% to 92.3%, which is aligned with the findings of

Simmons et al. [73]. As a result, I-GWAS presents a smaller release

coverage since it refrains statistics of vulnerable SNPs from being

released. In this experiment, I-GWAS released statistics over 20% to

7.7% of the original SNP-set depending on the scenario.

Table 4: I-GWAS: protection of vulnerable SNPs.

# SNPs Vulnerable SNPs using DyPS [64] (%) Release coverage w/ I-GWAS (%)

1,000 80 20

2,500 81.8 18.2

5,000 84.6 15.4

10,000 92.3 7.7

Comparison with ϵ-DP. We now consider a scenario where a

first GWAS (GWAS1) has already released allele frequencies over

1,000 SNPs using 7,430 genomes (note that LtoN (1, 000) = 6,320).

A second study (GWAS2) aims at releasing allele frequencies over

1,000 SNPs from 14,860 genomes. GWAS1 shares half of the SNPs

and genomes with GWAS2. Therefore, Novl = 7,430 and Lovl = 500.

We compare the overall score of the release up to the GWAS2 release,

using I-GWAS or DP. Setting ϵ and a privacy budget (pvb) with DP is
necessary to support a given number of releases. These parameters

interfere on the noise applied to protect a release [23, 31]. We

repeat this experiment 100 times and report the average results. We

illustrate the results of this experiment in Table 5.

I-GWAS evaluates that the second study would need 350 addi-

tional genomes (i.e., 5.53% more genomes) than the state-of-the-art

LtoN formula, which indicates 6,320 genomes would be enough to

protect GWAS2, in order to prevent recovery attacks on overlapping

studies. Relying on additional genomes to enforce privacy slightly
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Table 5: Comparison between I-GWAS and the standard ϵ-DP
using Laplace mechanism (average of 100 repetitions).

Approach Maximum

# releases

Accuracy

loss (%)

Coverage

(% SNPs)

Required

additional

genomes

(%)

Release

utility

score

ϵ=0.5 (pvb=0.12) 8 290.98 100 0 1.86

ϵ=0.5 (pvb=0.25) 4 116.46 100 0 52.77

ϵ=0.5 (pvb=0.33) 3 85.09 100 0 63.85

ϵ=0.5 (pvb=0.50) 2 52.62 100 0 76.41

ϵ=1 (pvb=0.12) 8 122.15 100 0 50.8

ϵ=1 (pvb=0.25) 4 52.48 100 0 76.46

ϵ=1 (pvb=0.33) 3 38.29 100 0 82.37

ϵ=1 (pvb=0.50) 2 24.95 100 0 88.2

ϵ=1.5 (pvb=0.12) 8 75.67 100 0 84.32

ϵ=1.5 (pvb=0.25) 4 33.90 100 0 88.97

ϵ=1.5 (pvb=0.33) 3 25.02 100 0 90.66

ϵ=1.5 (pvb=0.50) 2 16.52 100 0 92.87

ϵ=2 (pvb=0.12) 8 55.95 100 0 86.08

ϵ=2 (pvb=0.25) 4 25.15 100 0 90.64

ϵ=2 (pvb=0.33) 3 18.78 100 0 92.27

ϵ=2 (pvb=0.50) 2 12.33 100 0 94.11

I-GWAS ∞ 0 66 5.53 66

delays releases. Future work could be to use synthetic genomes

while preserving statistical properties for this purpose [41, 66].

ϵ-DP releases statistics over all SNPs and presents a better re-

lease utility score in several scenarios (compare blue and green

scores in Table 5), but it perturbs the results (accuracy loss column).

The accuracy loss metric corresponds to how distant the DP result

is from the original statistics one would obtain without privacy

guarantees. While I-GWAS release utility score is equal to 66 irre-

spective of the number of subsequent releases, DP release utility

scores varied from 76.41 to 94.11 in the best cases. Nevertheless, DP

showed poor performance in settings that would allow more future

releases (red scores in Table 5). In fact, the limited privacy budget

of DP-based releases restricts the number of conceivable releases,

whereas I-GWAS can afford releases by virtue of its exhaustive ver-

ification methods. To allow more releases, ϵ-DP should use smaller

pvb over releases so that some privacy budget is kept to protect

future releases. Nevertheless, smaller pvb means increased accu-

racy loss. Intuitively, using larger values of pvb over releases would

increase the release utility of ϵ-DP releases but reduces the number

of allowed safe releases. Therefore, when adopting DP, GWAS feder-

ations have to carefully select the privacy budget that will be spent

over dynamic releases. For instance, considering pvb = 0.12 per

release, ϵ-DP could afford only up to 8 safe releases with decreased

utility. In contrast, using half of the total privacy budget per release

(pvb = 0.50) would only allow two safe releases but higher utility.
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Figure 6: Analysis of the accuracy loss per SNP using ϵ-DP
releases (cut-off of the first 200 of 1,000 SNPs).

Analyzing the impact of noise with ϵ-DP. Assuming the

same scenario, we also evaluate in more detail the accuracy loss

impact of ϵ-DP on allele frequencies of each SNP. The error bar

plots show the average (black circles, ideally at “0”, i.e., without

noise), standard deviation (black rectangles), minimal and maximal

values (grey lines) of accuracy loss of the DP-based releases over

100 repetitions. Fig. 6 presents a cut-off of the first 200 SNP posi-

tions of the release for the second study using ϵ = 2 and pvb = 0.12

(the setting with highest utility score and maximum releases).

Allele frequencies were applied 4.14% of noise on average, with

a 0.41% average standard deviation, which kept the perturbation ap-

plied over SNPs results in the 3.73 - 4.55% accuracy loss interval. For

some SNPs, original statistics were distorted above 40%, e.g., SNP

id 1, 51 and 119. Using I-GWAS, the same study released statistics

over 66% of the original SNP-set without any noise addition.

Run-time and complexity. Fig. 7 shows I-GWAS’s run-time

for a GWAS that overlaps with 5 previous GWASes that consider

500 (left side) or 1, 000 SNPs (right side). We assumed that half of

the genomes and SNPs that participated in theG previous GWASes

releases were re-used by the current GWAS. First, a batch of re-

quests for the candidate release is selected individually, and then

its requests are checked against previous overlapping studies. Eval-

uating all possible combinations of existing releases with the brute

force method has an exponential complexity. However, thanks to

Theorem 1, I-GWAS’s run-time scale linearly with the number of

existing releases and are shorter than those of a brute force ap-

proach. In addition, I-GWAS has a linear complexity even when

considering a larger number of SNPs. For instance, with 1,000 SNPs,

I-GWAS run-time varied from 111 seconds for 2 GWASes to 157

seconds for 5 GWASes, whereas the brute force approach lasted

from 111 seconds to 955 seconds, respectively. A similar behavior

also happened with the experiments over 500 SNPs. While I-GWAS

varied from 4 to 14 seconds, the brute force needed 4 to 69 seconds

according to the number of GWASes, respectively. For the member-

ship inference protection, we measured the average run-time for

one analysis over the largest dataset (i.e.,14,860 genomes and 10,000

SNPs). I-GWAS computes this verification in 12.73 seconds. Keep-

ing the number of SNPs and considering fewer genomes, I-GWAS

takes on average 6.45 seconds for 9,906 genomes, 4.61 seconds for

7,430 genomes, and 2.96 s for 4,953 genomes. Lastly, the average

memory consumption of I-GWAS in the enclave was 2 MB. Hence,

respecting SGX’s memory limitations.

Further discussion. Both I-GWAS and DP are valid approaches

and can even be complementary to each other for membership

protection of GWAS releases. They should be chosen according to

the expectations of the federation in terms of precision of the results,

foreseen number of releases and privacy-protection guarantees.

Unfortunately, due to the unavailability of DP-based mechanisms

for continuous dynamic releases of GWASes, we claim that that

giving up accuracy (to the scale as presented in Table 5) for privacy

when using standard DP, might not be reasonable, especially when

dealing with high-precision studies, such as GWAS [72, 73].

In I-GWAS, we have chosen to extend SecureGenome [71] to cope

with dynamic and overlapping releases given its genome-oriented

nature, for being used in previous TEE-based privacy-preserving

architectures [64], and because it is a noise-free approach. We show

that I-GWAS can afford an infinite number of releases thanks to its

447



Proceedings on Privacy Enhancing Technologies 2023(1) Pascoal et al.

Figure 7: Run-times of the brute force approach and of I-GWAS to protect against recovery attacks on interdependent GWASes.

exhaustive verification scheme, which is not the case when using

DP because limited privacy budget. In particular, I-GWAS certifies

that individuals’ identification power is kept within safe bound-

aries even when an attacker has the ability to observe and combine

releases. Moreover, we show that I-GWAS is scalable and has lin-

ear complexity depending on the number of existing overlapping

studies. However, I-GWAS’s utility score might be impacted de-

pending on the number of vulnerable SNPs found in the original

SNP-set. Moreover, I-GWAS needs additional genomes to protect

releases against recovery attacks, which depends on how large are

overlapping regions among studies.

I-GWAS and DP might be vulnerable to the presence of depen-

dent records [1, 2, 23, 30]. However, Sankararaman et al. [71] demon-

strated that SG can also be configured to detect the presence of

relatives in a cohort. I-GWAS can be extended to include this feature,

while we are not aware of this possibility for DP-based solutions.

Besides, we envision that genome-oriented privacy protectionmeth-

ods can be combined with DP mechanisms to provide better utility.

In particular, running I-GWAS as a first step to detect vulnerable

SNPs (which need further protection that can be enforced with DP-

based releases), while the statistics of the remaining SNPs can be

released without perturbation. Thus, increasing the overall utility

score of releases. Such a study is left for future work. Finally, even

though we evaluated I-GWAS using the same privacy parameters

adopted in previous works [64, 71], we recall that I-GWAS can

also support stricter privacy-protection levels by specifying more

conservative thresholds and statistical confidence levels.

I-GWAS’s limitations. I-GWAS considers SNP correlations up

to the level of pairwise linkage disequilibrium (LD), like several pre-

vious works [42, 71, 76, 82, 88]. Several attacks assume adversaries

that might leverage high-order correlations [29, 69, 80], pheno-

type data [29], and kinship [3, 28, 29, 43, 44]. Recent research on

genome-wide LD identified that: (i) using kth Markov Chain Mod-

els (MCM) to identify higher-order correlations might not scale,

whereas leveraging recombination models is linear with the num-

ber of SNPs [29]; (ii) inference power of an attack does not increase

much when considering MCM with k > 3 [69]; (iii) relying on

a Hidden Markov Model (HMM) presents better accuracy than

MCM [29, 69]. I-GWAS can be extended to remove SNPs that are

involved in kth higher-order correlations or SNPs that could be

inferred using HMM. Future work would be required to determine

the minimum order of correlations to consider to prevent privacy

attacks under dynamic and overlapping settings. Besides that, we

note that I-GWAS’s exhaustive verification is computationally more

expensive than DP-based algorithms. Moreover, we note that the

number of SNPs I-GWAS is able to update depends on the current

number of overlapping studies and how high their data are corre-

lated, which can impact the release coverage of studies, as verified

in our experiments. Lastly, although novel discoveries of correla-

tions are becoming rarer [18], I-GWAS can adapt its algorithm to

changing control population statistics but only a posteriori.

9 RELATEDWORK

There is a known tension between genomic data sharing and pri-

vacy [50, 79] in genomics research, and a pressure to enable indi-

viduals to control how their data are used [24, 25]. To comply with

current data-privacy regulations’ constraints, such as the US HIPAA

the EU GDPR, data subjects shall have the right to withdraw their

consent to participate in a GWAS at any time. Lastly, data holders

are encouraged to produce public releases of GWAS [7, 47, 64].

Privacy-preserving GWAS. Cho et al. [17] offer a SMC mech-

anism where both individuals and computing parties (CPs) pri-

vately share their data using the Beaver multiplication triples secret

sharing mechanism. Constable et al. [19] propose a Secure Two-
Party Computation (STPC) approach to perform privacy-preserving

computation of χ2 and MAF. Tkachenko et al. [75] offer a similar

framework to compute χ2 and p-tests. These approach only con-

sider two parties, and therefore cannot be used in practical and

large-scale federated GWAS. Several methods leveraged homomor-

phic encryption (HE) to store encrypted genomes in a cloud and

compute GWAS statistics [10, 51, 57]. Aziz et al. [5] presented new

DP-based algorithms that dynamically manage privacy budgets of

the DP mechanism to find optimal values for ϵ . MedCo [67] is a

distributed protocol built on Unlynx [34], that allows exploratory

medical analysis combining HE, DP, and other improvements to

compute statistics over medical data privately. SAFETY [68] com-

bines HE for the aggregating data holder’s genomic data inputs

and SGX enclaves for more complex statistical processing. Simi-

larly, SCOTCH [16] uses SGX and HE to gather genomic data from

several data holders and compute aggregate statistics in a faster

manner. More recently, Bomai et al. [9] combined multi-key HE

and SGX to enable secure sharing of genomic data from multiple

data holders to a SGX-enabled cloud provider that computes χ2

GWAS statistics to answer queries from authorized users.
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These works focus on the sharing and processing part, and not on

the privacy-preserving release of GWAS. If publicly released, their

results might be subject to genomic privacy attacks. In contrast,

I-GWAS enforces privacy during both data processing and releasing
of interdependent GWASes leveraging a TEE-based framework and
privacy-preserving release algorithms.

Privacy-preserving release of GWAS. Cai et al. [11] describe

a practical membership attack based on as little as 25 random SNPs,

while He et al. [39] leverage belief propagation methods. Humbert

et al. [43] show that an attacker might correctly infer genotype

information of individuals by leveraging statistical relationships

among genomic variants. Ayday et al. [3] identified a victim’s hid-

den genomic data by using data of its relatives. DP has been used

to enforce safe releases of GWAS. Uhlerop et al. [78] release GWAS

statistics over the M most significant SNPs using Laplace noise.

Jiang et al. [49] propose to use a new privacy-budget approach that

balances data perturbation with privacy risks using statistics of a

LR-test. DP was also used to enable differentially private logistic

regression by perturbing the objective function [84] instead of the

final output of a GWAS. Simmons et al. [72] leverage the neigh-

bor distance algorithm to apply noise more efficiently. PrivSTRAT

applies data perturbation considering the group stratification in a

study, and PrivLMM is based on Linear Mixed Models (LLMs) [74].

In a later study, Simmons et al. [73] enable differentially private

releases of GWAS relying on Bayesian statistics, MCM and HMM.

Furthermore, Almadhoun et al. [1, 2] have shown that the exis-

tence of dependent records in a genomic database decrease the

privacy guarantees of DP mechanisms. Several works aimed at pro-

viding DP in a dynamic environment, such as DP under continual

observation [13, 30] and for growing databases [23]. To the best

of our knowledge, these techniques have not been used under a

dynamic GWAS or closely related scenario. Recently, Ayoz et al. [4]

showed that recovery and membership attacks can be launched by

sequentially querying genomic data-sharing Beacons.

Alternative methods ensure that the identification power over

released genomes is sufficiently low without data perturbation.

For this purpose, one can use the hypothesis test with Tr [82]

or Λ [88] metrics. Recently, GenDPR [65] proposes a distributed

implementation of the LR-test that only manipulates intermediary

results in a TEE and does not require genomic data to be exchanged.

We establish conditions for safe interdependent GWASes under
continuous releases, and propose algorithms to enforce them. I-GWAS

extends and combines genome-oriented privacy-preserving release

algorithms with exhaustive verification methods to provide ge-

nomic privacy over continuous releases without data perturbation.

Overview of federated GWAS solutions. Table 6 investigates

recent federated GWAS works and their properties. In summary,

few works [5, 64, 67] combine privacy-preserving processing with

privacy-preserving releasing of GWAS. Only DyPS and I-GWAS

support public GWAS results releases that are dynamically updated.

More importantly, I-GWAS is the only solution to allow dynamic

privacy-preserving releases of interdependent GWASes.

10 CONCLUSION

We highlighted that sharing genomes and SNP positions in differ-

ent GWASes requires the development of new privacy-preserving

Table 6: Overview of federatedGWAS solutions. GC: Garbled

circuit; *: Releases yes/no answers, which is vulnerable to

similar Beacon’s privacy attacks [4].

Work Cryptographic

scheme

Privacy-

preserving

releases

Public

releases

Dynamic

releases

Interdepend.

releases

Cho et

al. [17]

SMC % % % %

Tkachenko

et al. [75]

SMC (ABY

frame-

work [26])

% % % %

Hasan et

al. [38]

HE + GC-based

SMC

% % % %

Sadat et al.

(SAFETY) [68]

TEE (Intel

SGX)

% % % %

Carpov and

Tortech [12]

TEE (Intel

SGX)

% % % %

Kockan et

al. [52]

TEE (Intel

SGX)

% % % %

Bomai et

al. [9]

TEE (Intel

SGX)

% % % %

Blatt et

al. [8]

HE % % % %

Froelicher et

al. [35]

Multiparty HE % % % %

Bonte et

al. [10]

HE and SMC !* % % %

Aziz et al. [5] Improved ϵ-DP ! % % %

Raisaro et

al. [67]

HE + DP +

Unlynx [34]

! % % %

Pascoal et

al. [64]

TEE (Intel

SGX)

! ! ! %

This work

(I-GWAS)

TEE (Intel

SGX)

! ! ! !

methods. In those settings, we showed that previous techniques

that aim at preventing recovery and membership attacks might

be ineffective. Using known statistical methods that enable safe

and dynamic data releases for a single independent GWAS, we

evaluated that up to 28.6% of the processed genomic information

could be recovered by an adversary in a scenario that involved two

interdependent GWASes. We also identified that between 80% and

92.3% of the SNPs might expose individuals to membership attacks.

To fill this gap, we present I-GWAS, a novel framework that ex-

tends privacy-preserving algorithms to protect the genomic privacy

of individuals participating in interdependent GWASes. I-GWAS

offers a linearly scalable algorithm to select which genomes and

SNPs can safely participate in releases of GWAS statistics, while

not allowing recovery and membership attacks even if adversaries

can leverage overlapping data among releases.

I-GWAS does not introduce noise and produces safe releases by

slightly delaying the release of statistics until sufficiently enough

additional genomes become available and withholding vulnerable

SNPs. In contrast, although Differential Privacy can be adapted to

support dynamic releases of overlapping studies and sometimes

presents a better release utility score, it limits the number of possible

releases and the accuracy of the released statistics.

Future work include analyzing and improving the interplay be-

tween differential privacy and tolerable privacy budgets, and com-

bining differential privacy with I-GWAS to improve its utility.
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A SECUREGENOME - DETAILS

Likelihood-Ratio tests (LR-tests) have been used to evaluate the

probability for individuals to be reidentified given released GWAS

statistics [40, 82]. Both privacy attacks and membership inference

protectionmechanisms used LR-tests [11, 64, 70, 88]. SecureGenome

(SG) [70, 71] performs a LR-test and several additional statistical

checks to bound the privacy risks for each individual participating

in released GWAS statistics.

Goal. The goal of SG is to select a subset of SNPs from the origi-

nal SNP-set of a GWAS over which statistics can be computed and

released without allowing any membership inference. To reach that

goal, SG applies several checks using the pool of genomes partici-

pating in a study and a reference genome set, which is assumed to

be available.

Assumptions. SG assumes that the SNPs considered in the LR-

test are independent, i.e., in linkage equilibrium, which can be

justified when selected SNPs are located in distant regions. In ad-

dition, SG assumes that there are no genotyping errors, i.e., the

allele information over the SNPs are precise. This is a common

assumption in the literature. However, SG’s authors have shown by

experimentation that genotyping errors decrease the identification

power of the attack. Furthermore, SG’s LR-test assumes that SNP

allele frequencies in the population are strictly bounded by 0 and

1. Hence, there is an a > 0 such that a ≤ pl ≤ 1 − a, where pl
corresponds to the allele frequency of SNP l in the cohort. This is

an expected assumption due to the fact that GWAS only considers

SNPs whose minor allele frequencies (MAF) are well represented

in the selected population.

SecureGenome executes the following processing steps:

Step 1: Removing SNPs with rare allele frequencies. In this

step, SG pools and computes the allele frequencies at each position

(considering both case and control genome sets) and checks if the

MAF of SNPs are below or equal to a parameterMAF
cutoff

, usually

equal to 0.05. SNP positions with low MAF are outliers that could

be used by adversaries to infer membership. They are therefore not

considered for the subsequent steps.

Step 2: Removing SNPs in high LD. High linkage disequilib-

rium between two SNPs (e.g., p-value on r2 < 10
−5
) can be lever-

aged to attack individuals by using the association levels among

SNPs, as shown in [70, 88]. For this step, SG employs a greedy

algorithm to remove one of two SNPs that are in LD. If any two

SNP positions are found to be in LD, the most ranked SNP is kept

for further verification. Notice that Steps 1 and 2 enforce the as-

sumption that SNPs are independent for the subsequent LR-test

analysis.

Step 3: Identifying SNPs that would allowmembership in-

ference. A LR-test verification is performed over the remaining

SNPs at specified detection power threshold and false-positive rates.

SG uses the remaining SNPs from the previous steps to conduct the

LR-test described below.

SG’s null hypothesis draws the probability of an individual be-

longing to the case genome set consisting of N genomes under

Hardy-Weinberg Equilibrium (HWE) coming independently from

the distribution drawn from the reference genome set. In contrast,

SG’s alternative hypothesis draws the probability of the individ-

ual belonging to the pool consisting of N − 1 genomes under the

null hypothesis and HWE. In summary, the null hypothesis tests

whether the individual is not present in any population of the study

(case and control genomes). On the other hand, the alternative

hypothesis measures whether the tested individual belongs to the

case population. These hypotheses yield the formula presented in

Equation 3 of Section 2.3.

The power 1 − β of the LR-test can be found as a function of the

pool size N , the number of SNPs L with a tolerable false-positive

rate α . Conversely, using the Neyman-Pearson lemma that states

that no test can have larger power than the LR-test, the power 1− β
achievable for the LR-test given (L,N ,α) determines the largest L
so that no (α, β)-test can be obtained for a pool of size N .

In [71], Sankararaman et al. demonstrate that SG’s LR-test ap-

proximates the Gaussian distribution that is parameterized by the

relationship between sample size N , the number of independent

SNPs L, statistical power 1−β , and type I error probability (or signif-
icance level) α when both L and N are moderately large, according

to the central limit theorem (cf. [71], §T8, pp. 40-43). Additionally,

the authors demonstrates that the LR-test also approximates the

Gaussian distribution thanks to the Lindeberg-Feller central limit

theorem when N is not assumed to be large (cf. [71], §T8.2, pp.

43-44)

In particular, SG uses the LR-test to empirically verify the iden-

tification power of the N individuals in a study by sampling their

allele sequences over several subsets of SNPs ∈ L in an iterative

fashion while removing SNPs that would keep the identification

power of any participant above a specified detection power thresh-

old. Thus, SG prevents the release of GWAS statistics of SNPs that

would pose membership inference risks of any individual.

To conclude, after its LR-test, SG has identified a SNP-set L′

belonging to the original SNP-set L (i.e.,
′L ∈ L), from which the

observation of GWAS statistics over these SNPs would not allow an

adversary to identify the presence of individuals participating in

the study respecting the configured (i) upper bound on the power

(the probability that an individual is correctly identified to be in

the population); and (ii) upper bound on the false positive rate

(the probability that an individual that is not in the population is

erroneously identified to be in the population) of the LR-test.

Therefore, the SNPs belonging to L′ can then be safely used in a

GWAS as their statistics would not allow inferring the presence of

underlying individuals at the specified confidence level of the test.

B RECOVERY ATTACK MAPPINGS

In the following, we precise the statistics an adversary is able to

compute from the results of two GWASes. From these formulas, one

can verify the formulas we provided in Section 4 for Dadd , Dsub ,

Dunion , Sadd , Ssub , and Sunion for allele frequencies and for test

statistics.

Singlewise statistics mapping. From them1 andm2 maps in

Fig. 2 an adversary can compute three other maps,madd ,msub and

munion , whose elements are defined over L1 ∪ L2 as follows:

madd [i] =


m1[i] if i ∈ L1\L2

m2[i] if i ∈ L2\L1

m1[i] +m2[i] if i ∈ L2 ∩ L1
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msub [i] =


m1[i] if i ∈ L1\L2

−m2[i] if i ∈ L2\L1

m1[i] −m2[i] if i ∈ L2 ∩ L1

munion = {(m1,m2) ∈ {0, 1}(L1 ·N1) · {0, 1}(L2 ·N2)

|m1[i, j] =m2[i, j] for (i, j) ∈ (Novl , Lovl )}

Pairwise statistics mapping. Following the same idea, from

m1 andm2, one can compute other maps,madd ,msub andmunion ,

whose elements are defined for (i, j) ∈ N1 or (i, j) ∈ N2 as follows:

madd [i, j,p,q] =



m1[i, j,p,q] if (i, j ∈ L1\L2)
∨ (i ∈ L1\L2 ∧ j ∈ Lovl )

m2[i, j,p,q] if (i, j ∈ L2\L1)
∨ (i ∈ L2\L1 ∧ j ∈ Lovl )

m1[i, j,p,q] +
m2[i, j,p,q]

if i, j ∈ Lovl

msub [i, j,p,q] =



m1[i, j,p,q] if (i, j ∈ L1\L2)
∨ (i ∈ L1\L2 ∧ j ∈ Lovl )

−m2[i, j,p,q] if (i, j ∈ L2\L1)
∨ (i ∈ L2\L1 ∧ j ∈ Lovl )

m1[i, j,p,q] −

m2[i, j,p,q]
if i, j ∈ Lovl

munion = {(m1,m2) ∈ {0, 1}(L1 ·N1) · {0, 1}(L2 ·N2)

|m1[i, j,p,q] =m2[i, j,p,q] for (i, j,p,q) ∈ (Novl , Lovl )}

C I-GWAS ALGORITHMS (PSEUDO-CODE)

Algorithm 1 illustrates the operations that I-GWAS performs in

order to select a safe batch of genome requests considering over-

lapping GWASes. Every time a safe batch of genome requests for

a single-GWAS is found, its requests are simulated (line 5), and

then the solution spaces are checked acknowledging existing po-

tentially overlapping releases (from line 6 to 10). In other words,

the algorithm checks if the conditions presented in Sections 4 and

5 hold). If the candidate release presents safe boundaries and meets

the conditions, it can proceed to the next verification.

Algorithm 1 Verification of a set of genome requests to prevent

recovery attacks on overlapping GWAS releases.

1: procedure isSaf e
I-GWAS

(д,G , Add_Req, Rmv_Req)
2: Input: д: candidate GWAS with Add_Req and Rmv_Req genome additions and re-

movals, respectively;G : set of released GWASes

3: Output: set of selected genome addition and removal requests for interdependent

GWASes (LtoN
I-GWAS

)

4: Uses: Si and Di respectively return the solution and frequency space sizes for a GWAS

i (or an intersection of GWASes); copyAndApplyRequests(д, Add_Req, Rmv_Req)
applies a batch of request to a copy of a GWAS and returns it.

5: д′ = copyAndApplyRequests(д, Add_Req, Rmv_Req)

6: tmp = S (д′)
D(д′)

7: for i inG do

8: tmp = tmp . SiDi .
1

S (д′∩i )
9: end for

10: return tmp ≥ 1

11: end procedure

After selecting a safe batch of genomes (that would allow a safe

release against recovery attacks), I-GWAS now evaluates which

SNPs might have their GWAS statistics safely released without

allowing membership inference. Algorithm 2 details such a pro-

cess. First, I-GWAS identifies which SNPs can be released over the

bath of selected genomes for the single-GWAS candidate release

(line 5) using the SNPSelection function that represents the Se-

cureGenome’s [70] step introduced in Section 2.3, which is used

to find SNPs that can be safely exposed while avoiding member-

ship attacks. Recall that in this step, SNPs that presents rare allele

frequencies are in LD are also identified and blocked from partici-

pation.

Algorithm 2 Selection of SNPs to prevent membership attacks

on overlapping GWAS releases.

1: procedure checkInterdependentMembership(Add_Reqs , Rmv_Reqs ,G )

2: Input:Add_Req and Rmv_Reqs of candidate study д andG set of released GWASes

3: Output: set of selected SNPs for safe interdependent GWASes

4: Uses: AllCombinations(r elsToCombine) creates combinations of releases in

r elsToCombine ; SN PSelect ion(Add_Reqs , Rmv_Reqs , д) runs the LR-test and

returns the safe SNP-set for a single GWAS д
5: selected_SN Ps := SN PSelect ion(Add_Reqs , Rmv_Reqs , д)
6: for SNPl in selected_SN Ps do // for each selected safe SNP in a single GWAS, is-

SafeSingleBiocList

7: relsToCombine := ∅

8: for д inG do //check each existing GWAS д
9: for r el in д do //check each release of GWAS д
10: if (SNPl == r el .s ) then // SNP position SNPl has been released in a release

r el
11: relsToCombine.add (rel)
12: end if

13: end for

14: for combRel in AllCombinations(r elsToCombine) do
15: testSet := combRel .Add_Reqs + combRel .Rmv_Reqs +

Add_Reqs + Rmv_Reqs // merge genomes requests

16: checkSaf eSN Ps := SN PSelect ion(testSet )
17: if (SNPl in checkSaf eSN Ps ) then
18: continue // this SNP can be released

19: else

20: saf e_SN Ps .del (SNPl ) // this SNP cannot be released

21: end if

22: end for

23: end for

24: end for

25: return selected_SN Ps // set of safe SNPs for candidate release

26: end procedure

Nevertheless, the standard SNPSelection function (i.e., the Se-

cureGenome approach) only works in a static GWAS release setting.

To enable dynamic GWASes releases under the presence of over-

lapping data, I-GWAS conducts additional verifications explained

in Section 7 and described in the following paragraph.

I-GWAS enforces that each SNPl (from the original SNP-set L of

a study д) that is identified as safe by the SNPSelection function

is to be tested over all possible combinations of existing releases

(lines 6 to 24). In particular, I-GWAS first identifies and collects

all releases where SNPl has previously participated (lines 7 to 13).

Then, I-GWAS loops and run the SNPSelection function for each

possible combination of intersected releases that used SNPl (lines

14 to 16). If SNPl is labeled as safe in all verifications (i.e., over all

combinations), it means that it can be safely released. Otherwise,

SNPl is withhold from the candidate release (line 20). In the end of

this loop, I-GWAS has identified a list of SNPs that survived (i.e.,

was labeled as safe when checked against existing combinations of

releases) and therefore can have their statistics safely released (line

25).

Algorithm 3 details the full pipeline of I-GWAS’ framework for

privacy-preserving releases of interdependent GWASes. From lines

6 to 13, I-GWAS check if there exists a safe batch of requests for a

single-GWAS. If this is the case, those requests are checked now
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Algorithm 3 Full I-GWAS workflow.

1: procedure I-GWAS workflow for interdependent GWASES(G )

2: Input: setG of GWASes

3: Output: updated statistics of a safe GWAS д
4: Uses: NtoLsinдle (д) returns the list of selected biocenters and

their corresponding batch of requests to update a single-GWAS д; and

NtoL
I-GWAS

(д,G , Add_Req, Rmv_Req) returns the list of selected biocenters

and their corresponding batch of requests to update GWAS д
5: isSafeSingleBiocList := ∅

6: isSafeFinal := False
7: selected_SNPs := ∅

8: for д inG do //check each existing GWAS д
9: isSafeSingleBiocList := LtoNsinдle (д)
10: if (isSafeSingleBiocList , ∅) then // assemble the requests from selected biocen-

ters

11: for b in isSaf eSinдleBiocList do
12: Add_Reqs := isSafeSingleBiocList.addRequests
13: Rmv_Reqs := isSafeSingleBiocList.rmvRequests
14: end for

15: end if

16: isSafeFinal = isSaf e
I-GWAS

(д,G , Add_Reqs , Rmv_Reqs)
17: if (isSafeFinal) then // update the requests from selected biocenters

18: selected_SNPs := checkInterdependentMembership(Add_Reqs ,
Rmv_Reqs ,G)

19: end if

20: end for

21: computeT estStats(Add_Reqs, Rmv_Reqs) // update test statistics over selected re-

quests

22: computeAддr eдateStats(selected_SNPs) // update aggregate statistics over se-

lected SNPs

23: end procedure

considering interdependent GWASes (line 14, which is the combi-

nation of Algorithms 1 and 2). If this evaluation succeeds, aggregate

GWAS statistics can be computed over the selected genomes and

SNPs and are publicly published. Only the SNPs identified as safe

by Algorithm 2 will have both aggregate and test statistics released.

On the other hand, the others (unsafe) SNPs are secluded from

having their GWAS statistics released. Note that only the I-GWAS’s

TEE enclave has access to the identified unsafe SNP ids and their

respective GWAS statistics, and therefore these SNPs cannot be

leveraged by adversaries to mount genomic privacy attacks.
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