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ABSTRACT

Private multi-winner voting is the task of revealing k-hot binary
vectors satisfying a bounded differential privacy (DP) guarantee.

This task has been understudied in machine learning literature

despite its prevalence in many domains such as healthcare. We

propose three new DP multi-winner mechanisms: Binary, τ , and
Powerset voting. Binary voting operates independently per label

through composition. τ voting bounds votes optimally in their ℓ2
norm for tight data-independent guarantees. Powerset voting oper-

ates over the entire binary vector by viewing the possible outcomes

as a power set. Our theoretical and empirical analysis shows that

Binary voting can be a competitive mechanism on many tasks un-

less there are strong correlations between labels, in which case

Powerset voting outperforms it. We use our mechanisms to enable

privacy-preserving multi-label learning in the central setting by ex-

tending the canonical single-label technique: PATE.We find that our

techniques outperform current state-of-the-art approaches on large,

real-world healthcare data and standard multi-label benchmarks.

We further enable multi-label confidential and private collabora-

tive (CaPC) learning and show that model performance can be

significantly improved in the multi-site setting.
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1 INTRODUCTION

Differential privacy techniques for machine learning have predom-

inantly focused on two techniques: differentially private stochastic

gradient descent (DPSGD) [1] and private aggregation of teacher

ensembles (PATE) [35]. At the core of these techniques are two

mechanisms. The Gaussian mechanism enables arbitrary private

queries of data (e.g., gradients in DPSGD [1]). Instead, the noisy

arg max can only reveal themax count. This is used to reveal the pre-

dicted label in Private Aggregation of Teacher Ensembles (PATE) [35].
These two mechanisms appeal well to the canonical single-label
classification per input (a.k.a. multi-class classification).

In contrast, more real-world tasks, such as multi-label classifi-
cation [44], can be modeled using multi-winner elections [21, 23].

These are settings where more than one candidate can win, i.e., each

input can have > 1 class present. Outside of elections, other multi-

winner election scenarios include canonical computer visions tasks

like object recognition, where models must recognize all objects

present in an image [7]. Another scenario is the task of inferring

which topics were written about in a corpus of text (document):

e.g., a news article may discuss politics, finance, and/or education.

The principal setting we consider is healthcare, in which patient

data (e.g., symptom reports or X-rays) may be indicative of multiple

conditions [28, 29].

We thus focus on creating private mechanisms for releasing the

outcome of a multi-winner election. We first formalize the multi-

winner election. Then, we propose Binary voting, a simple yet

powerful solution that answers the k single-winner (for each class)

elections independently. We prove that it is optimal when there

is a lack of correlation among the outcomes of particular candi-

dates and show empirically that this mechanism can outperform

state-of-the-art baselines based on DP-SGD. Recognizing that cor-

relations can often exist in data, we then propose τ and Powerset

voting for obtaining tighter guarantees. τ voting obtains a tight

data-independent privacy bound by limiting the number of votes

from each voter, obtained via an ℓ2 bound on their ballot. Powerset
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voting is created by casting the multi-winner election to an anal-

ogous single-winner election—thus, Powerset voting reveals the

result for all k candidates jointly.

By replacing the noisy arg maxmechanism in (single-label) PATE,

we create multi-label PATE for DP multi-label semi-supervised ma-

chine learning. We conduct extensive empirical evaluation on large

datasets, including Pascal VOC, a common multi-label benchmark,

as well as CheXpert [28], MIMIC [29], and PadChest [9] which

are healthcare datasets. Despite different public data assumptions,

we compare against DPSGD (including an improved adaptive vari-

ant [48]) because it is the only private baseline in multi-label classi-

fication thus far. We find that with the modest assumption of public

unlabeled data (required for PATE), we achieve new state-of-the-art

DP multi-label models with 85% AUC (17% better than DPSGD)

on Pascal VOC. Because many multi-label settings may benefit

from distributed, multi-site learning (e.g., healthcare), we further

integrate our methods with the CaPC protocol for Confidential and
Private Collaborative learning [10].

We find that training with our mechanisms can improve model

performance significantly on large, real-world healthcare data with

sensitive attributes. Our main contributions are as follows:

(1) We create three new DP aggregation mechanisms for private

multi-winner voting: Binary voting, τ voting, and Powerset vot-

ing. We show theoretically and empirically that Binary voting

performs better unless there is high correlation among labels.

(2) We enable private multi-label semi-supervised learning that

achieves SOTA performance on large real-world tasks: Pascal

VOC and 3 healthcare datasets.

(3) We enable multi-label collaborative learning in the multi-site

scenario and show empirically that this significantly improves

model performance.

2 BACKGROUND AND RELATEDWORK

2.1 DP for Machine Learning

Differential Privacy (DP) is the canonical framework for measuring

the privacy leakage of a randomized algorithm [19]. It requires the

mechanism (in our work, the training algorithm), to produce statis-

tically indistinguishable outputs on any pair of adjacent datasets:
those differing by any but only one data point. This bounds the

probability of an adversary inferring properties of the training data

from the mechanism’s outputs.

Definition 1 (Differential Privacy). A randomized mecha-
nismM with domain D and range R satisfies (ε, δ )-differential pri-
vacy if for any subset S ⊆ R and any adjacent datasets X ,X ′ ∈ D,
i.e. ∥X −X ′∥1 ≤ 1, the following inequality holds: Pr [M(X ) ∈ S] ≤
eεPr [M(X ′) ∈ S] + δ .

We use Rényi Differential Privacy (RDP) [33]. Because RDP

bounds the privacy loss with the Rényi-divergence, it enables tighter

accounting for our mechanisms that use Gaussian noise. RDP is a

generalization of (ε, δ = 0) − DP . We use standard conversions to

report (ε, δ ) − DP .

Definition 2 (Rényi Differential Privacy). A randomized
mechanismM is said to satisfy ε-Rényi differential privacy of order

λ, or (λ, ε)-RDP for short, if for any adjacent datasets X ,X ′ ∈ D:

Dλ(M(X ) | | M(X
′)) =

=
1

λ − 1

logEθ∼M(X )

[(
Pr[M(X ) = θ ]

Pr[M(X ′) = θ ]

)λ−1

]
≤ ε,

where Dλ(P | |Q) is the Rényi Divergence between distributions

P and Q defined over a range R. It is convenient to consider RDP

in its functional form as εM (λ), which is the RDP ε of mechanism

M at order λ. Our privacy analysis builds on the following result.

Lemma 2.1. RDP-Gaussian mechanism (for a single-label
setting) [33]. Let f : X → R have bounded ℓ2 sensitivity for any
two neighboring datasets X ,X ′, i.e., ∥ f (X ) − f (X ′)∥

2
≤ ∆2. The

Gaussian mechanism M(X ) = f (X ) + N(0,σ 2) obeys RDP with

εM (λ) =
λ∆2

2

2σ 2
.

Another notable advantage of RDP over (ε, δ )-DP is that it com-

poses naturally. This will be helpful when analyzing our approach

which repeatedly applies the same private mechanism to a dataset.

Lemma 2.2. RDPAdaptive Sequential Composition [33]. Given
a sequence of k adaptively chosen mechanismsM1, . . . ,Mk , each
saatisfying (λ, εi )-RDP, then their union satisfies (λ,

∑k
i=1

εi )-RDP.

2.2 PATE and CaPC

PATE (Private Aggregation of Teacher Ensembles) [35] is a single-

label semi-supervised DP learning approach. First, an ensemble

of models is trained on (disjoint) partitions of the training data.

Each (teacher) model is then asked to predict (label) a test input

by voting for one class. To provide the DP guarantee, only the

noisy arg max of the teacher votes are released—instead of each

vote directly. To do so, teacher votes are organized into a histogram

where ni (x) indicates the number of teachers that voted for class i .
Then, argmax{ni (x) +N(0,σ

2

G )} is released, where the Gaussian

variance σ 2

G controls the prediction’s privacy loss. Finally, these

DP-labeled test inputs are used to train a student model which can

be used by the model owner. Note that unlike DPSGD, this requires

the additional but modest assumption of unlabeled data. Here, each

noisy label incurs additional privacy loss (rather than gradients in

DPSGD). Loose data-independent guarantees are obtained through

advanced composition [20]. Tighter data-dependent guarantees,

which can be safely released with additional analysis, are possible

when many teachers agree on the predicted label [36]. To further

reduce privacy loss, Confident GNMax only reveals predictions

when maxi {ni (x)} + N(0,σ
2

T ) > T , i.e., there is high consensus

among teachers.

CaPC (Confidential and Private Collaboration) is a distributed

collaborative learning framework that extends PATE from the cen-

tral to the collaborative setting [10]. In addition to bounding the

training data DP privacy loss, CaPC also protects the confidential-

ity of test data and teacher model parameters by introducing new

cryptographic primitives. In CaPC, teacher models are known as

answering parties and are distributed across sites, communicating

via these cryptographic primitives—we use answering parties when
referring specifically to CaPC and teacher models otherwise.

We now clarify the two privacy protection terms we use. Confi-
dentiality refers to the notion that no other party (or adversary) can
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view, in plaintext, the data of interest—it protects the inputs to our

mechanism. This differs from DP which reasons about what can be

inferred from the outputs of our mechanism, in our case about the

training set for each teacher model. Both protect data privacy in

different ways. In CaPC, each answering party is a unique protocol

participant with their own (teacher) model. The querying party

initiates the protocol by (1) encrypting unlabeled data; other (an-

swering) parties return an encrypted label. Then, (2) the encrypted

vote is secretly shared with both the answering party and the Pri-

vacy Guardian (PG), such that each has only one share (neither

knows the label in plaintext); the PG follows PATE to achieve an

(ε, δ ) − DP bound for all the answering parties. Finally, (3) the PG

returns the DP vote to the querying party via secure computation.

The goal is to maximize the number and quality of votes that can be

returned to the querying party under a chosen (ε, δ )−DP guarantee.

2.3 Prior Work on Multi-label Classification

The closest to our work is that of [51], which provides a privacy-

preserving nearest neighbors algorithm formulated using PATE.

The neighboring training points are the teachers and their labels

the votes. Our mechanisms can similarly be used to extend [51]

to the multi-label setting. However, their work assumes the exis-

tence of a publicly-available embedding model (used to project the

high-dimensional data to a low-dimensional manifold for mean-

ingful nearest-neighbor distance computation). This is a strong

assumption that is often not applicable to the multi-site scenario

we consider and especially for sensitive tasks like healthcare. Our

approach does not make this assumption. Further, we show in Sec-

tion 3 that their ℓ1 vote clipping scheme is not optimal for the

commonly used Gaussian distribution. Instead, we prove tighter

bounds by clipping votes to an ℓ2 ball.

The multi-label voting problem can also be formulated as simul-

taneously answering multiple counting queries which has been

studied extensively in the theoretical literature, e.g., [15]. These

have yet to show promise empirically in settings such as multi-label

voting. We explored these approaches in our setup (not shown) find-

ing looser data-independent guarantees compared to our proposed

mechanisms. Another alternative multi-label method is differen-

tially private stochastic gradient descent (DPSGD), which is agnos-

tic to the label-encoding because the mechanism releases gradient

updates. Abadi et al. [2] proposed and evaluated this approach in

the single-label setting. Zhang et al. [48] applied it to the multi-

label setting to train multi-label models (for k = 5 labels). We

compare with [48] and find that our methods perform better. Many

works explore using public labeled datasets to reduce privacy costs,

e.g., [32]—this is a stronger assumption than ours. Finally, we stress

that our evaluation includes large-scale healthcare datasets with

a natural need for privacy and the additional challenge of being

severely imbalanced.

Private heavy hitters is a related problem to private multi-label

classification, where a set of n users each has an element from

a universe of size d . The goal is to find the elements that occur

(approximately) most frequently, but do so under a local differential

privacy constraint [4, 50]. However, these methods release the value

of the heavy hitter rather than the argmax.

3 DIFFERENTIAL PRIVACY MECHANISMS

FOR MULTI-WINNER ELECTIONS

Multi-winner election systems are direct generalizations of popu-

larly used single-winner elections. They are adopted commonly in

real-life elections and their comprehensive analysis can be found

in [21] and [23]. Here, we formally define a multi-winner system

and propose DP mechanisms to facilitate the private release of the

outcome of a multi-winner election.

Compared to single-winner elections, multi-winner elections are

more challenging for designing a DP mechanism: single-winner

elections only output a single scalar per collection of ballots, in-

dicating the sole winner, whereas multi-winner elections output

a vector of winners and thus have higher sensitivity (use more ε)
per query. DP mechanisms for single-winner voting have been well

studied before, where the noisy arg max achieves tight privacy loss

resulting from tight sensitivity and information minimization [20].

However, to the best of our knowledge, no prior work formally

defines and analyzes DP mechanisms for multi-winner election

systems; hence, we provide and analyze Definition 3 to then get

formal privacy loss bounds in Section 4.

Definition 3. θ-multi-winner election. Given a set of n voters,
each with a ballot of k candidates (coordinates) b ∈ {0, 1}k such that
∥b∥2 ≤ θ . The outcome of a θ -multi-winner election with thresholdT
is defined as

f (b1, . . . ,bn ) ≜

i :

n∑
j=1

bj [i] > T

 ,
whereT = n

2
and with the binary decision per label i ,

∑n
j=1

bj [i]

represents the number of positive votes. Note that this definition is

deterministic since no noise is added and setting the threshold T =
n
2
is equivalent to using the number of negative votes (n−

∑n
j=1

bj [i])
as T .

3.1 DP∞-Multi-Winner Elections

Observe that in Definition 3, we only require the release of a binary

vector. Intuitively, this makes other related private mechanisms that

release the entire privatized histogram sub-optimal, e.g., multiple

counting queries and the Gaussian mechanism—they should require

no less (and often much more) budget than mechanisms that only

release the binary vector because of information minimization [20].

Thus, we instead focus on private release of the∞-multi-winner-

election
1
. Because the noisy arg max is a well-studied mechanism

for single-winner elections, our first multi-winner approach is to

decompose it into k separate single-winner elections. Then, we can

obtain a tight final guarantee on the multi-winner ballot via RDP

composition over the k independent applications (Lemma 2.2). We

call this Binary voting and state it formally in Definition 4 below.

We again use RDP composition to obtain a total privacy budget

across separate queries (instances of the multi-winner elections).

Definition 4 (DP Binary VotingMechanism). For an∞-multi-
winner election, the binary voting mechanism based on noisy arg max

1
We use ∞ to emphasize that any vote b ∈ {0, 1}k is allowed but a tighter bound

exists: ∥b ∥2 ≤
√
k < ∞.
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is:

Mσ (b1, . . . ,bn ) ≜

i :

©­«
n∑
j=1

bj [i] +N(0,σ
2

G )
ª®¬ > Ti

 ,
whereTi = n−

∑n
j=1

bj [i] is the number of negative votes.We use

this per-candidate threshold Ti instead of a fixed T = n/2 because

this reduces the privacy cost. However, to preserve privacy, we

must add noise to both the positive and negative vote counts (each

bin of the histogram). Though we show only the noise added for

positive votes, this is equivalent to adding less noise for each label.

Note that this definition follows directly from PATE by viewing the

i-th label release as a binary task of the label being present or not.

The distinguishing feature of the above Binary mechanism is

that it releases a binary result independently, per candidate. Thus,

there are many possible Binary voting mechanisms satisfying this

goal. We base ours on the noisy arg max mechanism because of

its advantageous privacy guarantees stemming from information
minimization [20]: changing the training set to any adjacent one can
only modify a single ballot. Thus, this mechanism has advantageous

properties both theoretically, and as well empirically as presented

in [35, 36]. Next, we show that an independent, per-candidate voting

mechanism (e.g., our Binary voting) is optimal in the coordinate-

independent setting (Definition 5 below).

Definition 5. A function f (X ) : Rd → Rk is coordinate-
independent if the i’th output coordinate of f , fi , is determined only
by a unique subset Pi (X ) of the input X . Pi is a function that parti-
tions (selects) columns of its input X and uniqueness means that that
∀i, j if i , j then Pi ∩ Pj = ∅ so no columns are shared by any Pi .

We first build an intuition for our guarantee and then provide

the formal statement (in Proposition 3.1). Recall from Section 2 that

the crux of DP analysis is to bound the sensitivity of the random

mechanismM, which is the noisy output of the function
2 f .

Definition 6. Sensitivity is the maximum deviation

∆p f = max

(X ,X ′): | |X−X ′ | |1=1

| | f (X ) − f (X ′)| |p

of f ’s output for any adjacent pair of inputs X and X ′, i.e., have a
Hamming distance | |X − X ′ | |1 of 1, on their rows [20].

Recall εM (λ) ∝ ∆pM; thus, we seek to decompose a multi-

label function (with range k) in terms of the sensitivities of its

corresponding k single-label functions, i.e., the scenario of Binary

voting. Observe that each output fi : i ∈ [k] of a Binary voting

mechanism depends only on a unique subset of columns Pi (X )
of the input ballots X . Without loss of generality, let each output

coordinate be binary, i.e., fi (X ) ∈ {0, 1}, and let each output depend
on only one input column, i.e., let d = k and Pi (X ) = Xi such that

fi (X ) = fi (Xi ). Then, ∆p f is upper bounded by k1/p
. To see this,

recall sensitivity is defined as the function’s maximum p-norm
deviation between any (but only) two datasets X and X ′. Thus,
pick X and X ′ so that each binary output fi (·) is flipped between

predicted (1) and not predicted (0). If f is coordinate-independent,

then its sensitivity will always be k1/p
because fi (X ) = fi (Xi )

and thus X (X ′) are the horizontal stacks of Xi (X ′i ) such that

2
Because the random mechanism differs minimally from the function, we use the two

interchangeably.

fi (Xi ) − fi (X
′
i ) = 1. In other words, the sensitivity of the multi-

label function is the sum of sensitivities of the single-label functions

that comprise it. Because Binary voting is applied independently on

each single-label function, it thus achieves the optimal sensitivity in

the coordinate-independent setting. Proposition 3.1 below formally

states our result. Appendix A contains supporting lemmas and the

proofs.

Proposition 3.1. For a coordinate-independent multi-label func-
tion f (X ) : Rd → Rk , the ℓ1 sensitivity ∆1 f is equal to that of
Binary voting applied per label and thus simultaneous private release
of f has no tighter privacy loss than k applications of Binary voting.

Proposition 3.1 shows that Binary voting has optimal sensitivity

if f is coordinate (candidate) independent. However, if the function

were coordinate-dependent, Binary voting may be sub-optimal.

To see this, consider the case where output coordinates i and j
both solely depend on the input coordinate l . Then it may not be

possible to find a pair of databases that simultaneously flips both

outputs i and j. For instance, if max fi occurs at Xl = a and min fi
at Xl = b, but one of max fj or min fj does not occur at these
values, then now ∆p fj cannot be maximized while simultaneously

maximizing ∆p fi . Thus, ∆p f <
∑k
i ∆p fi . Since the sensitivity may

be less, the privacy loss may also be lower. This implies that if the

underlying function is coordinate-dependent, Binary voting may

now have larger sensitivity and thus a sub-optimal privacy loss.

We will discuss one method for leveraging such correlations in

Definition 9 and this overall approach in Section B.

We also find that Binary voting may be sub-optimal when the

sensitivity is calculated via p > 1 norms. This is a direct result of

Hölder’s Inequality [26]. We explore this in Section 3.2 by clipping

in the ℓ2 norm.

3.2 DP Mechanisms for τ -Multi-Winner

Election

Many real-world ballots may not have many chosen candidates, e.g.,

in Pascal VOC there are on average fewer than 2 positive labels out

of 20 , enabling τ <
√
k . Thus, instead of allowing arbitrarily many

votes per ballot, the τ -multi-winner election restricts the votes in

their ℓ2 norm, in turn limiting the sensitivity of the mechanism. In

doing so, tighter data-independent privacy guarantees are obtained.

However, this can come at a cost in utility if ballots were cast with

more candidates selected than the chosen τ allows for, because the

ballot must now be ‘clipped’. This is analogous to norm clipping
in DPSGD [1], which is commonly studied in DP literature. To be

meaningful, we require τ <
√
k ; otherwise, this is equivalent to

Binary voting (Definition 4).

Definition 7 (DP τ Voting Mechanism). Mechanism for τ -
Multi-Winner Election. For a τ -multi-winner election the τ Voting
mechanism is

Mσ (b1, . . . ,bn ) ≜

{
i :

( n∑
j=1

vj [i] +N(0,σ
2

G )

)
> Ti

}
,

vj ≜ min(1,
τ

bj



2

)bj ,

where we choose Ti = n −
∑n
j=1

vj [i], which represents the num-

ber of clipped negative votes. The clipping itself was done on the
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positive votes (through the vj ’s). To obtain the number of negative

votes, we subtract the number of clipped positive votes from the

total number of votes (in this case n) and thus call these clipped
negative votes. To analyze the privacy loss of this new mechanism,

we propose an extension of Lemma 2.1 for this multi-voting task.

Lemma 3.2. RDP-Gaussianmechanism for amulti-label set-
ting. Let f : X → Rk obey ∥ f (X ) − f (X ′)∥

2
≤ ∆2 for neighboring

datasetsX ,X ′. The Gaussian mechanismM(X ) = f (X )+Nk (0,σ
2I )

obeys RDP with εM (λ) =
λ∆2

2

2σ 2
.

The following proof is similar to the one for Proposition 7 in [33]

(the crucial steps are 6 and 7 to transform the integral and obtain

the Gauss error function):

Proof.

Dλ(M(X )| |M(X
′)) (1)

= Dλ(Nk (f (X ),σ
2I )| |Nk (f (X

′),σ 2I )) (2)

=
1

λ − 1

log

{
1

σk
√
(2π )k

∫ ∞
−∞

exp

(
−λ

2σ 2
∥θ − f (X )∥2

2

)
(3)

· exp

(
−(1 − λ)

2σ 2



θ − f (X ′)


2

2

)
dθ

}
(4)

=
1

λ − 1

log

{
1

σk
√
(2π )k

∫ ∞
−∞

(5)

exp

(
−λ ∥θ − f (X )∥2

2
− (1 − λ) ∥θ − f (X ′)∥2

2

2σ 2

)
dθ

}
(6)

=
1

λ − 1

log

{
σk

√
(2π )k

σk
√
(2π )k

exp

(λ − 1)λ

2σ 2



f (X ) − f (X ′)


2

2

}
(7)

=
λ ∥ f (X ) − f (X ′)∥2

2

2σ 2
≤

λ∆2

2

2σ 2
(8)

■

3.2.1 Norms for Clipping. Recall that RDP provides tight privacy

analysis for the Gaussian mechanism and that it analyzes sensitivity

using the ℓ2 norm. This motivates our choice of ℓ2 vote clipping, be-

cause it exactly bounds the mechanism’s sensitivity. Compared with

the ℓ1 clipping proposed in [51] our bound is no larger, and often

much smaller, than theirs. We can see this by comparing the privacy

loss in terms of the mechanism’s sensitivity (see Definition 6).

ϵM (λ) =
λτ 2

2

σ 2
=

λ∆2

2

2σ 2
≤

λ∆2

1

2σ 2
=

λ(2τ1)
2

2σ 2
=

λ2τ 2

1

σ 2
(9)

where in the first inequality we use the fact that ∥x ∥
2
≤ ∥x ∥

1
.

Empirically, we confirm that τ voting achieves amuch tighter bound

on many multi-label datasets. Take τ1 to represent clipping in the

ℓ1 norm and similarly τ2 to represent clipping in the ℓ2 norm. On

Pascal VOC with k = 20 labels, we find that we can set a much

smaller τ2 = 1.8 but only a τ1 = 3.4 without deteriorating the

mechanism’s balanced accuracy. This leads to a >6x tighter (data-

independent) privacy loss with the ℓ2 norm clipping compared

to [51] and Binary voting. In practice, we select τ to be marginally

larger than the average p-norm of labels in the training data.

3.3 Casting∞-Multi-Winner Elections as

Single-Winner Elections

Similar to Section 3.1, we again explore how single-winner elections

can be used to reveal outcomes of multi-winner elections. Instead,

here we remove the independence assumption and cast the multi-

winner election to one single-winner election (not k independent

ones). This improves on one of the major shortcomings of Binary

voting: by simultaneously revealing all k candidate’s results in one

outcome, we can leverage correlations in their results to reduce the

privacy loss.

We achieve this new mechanism by encoding each of the 2
k
dif-

ferent outcomes as a separate candidate for a single-winner voting

mechanism. We call this mechanism the Powerset voting mecha-

nism.

Definition 8 (DP Powerset Mechanism). Denote the Powerset
operator asP(·). For a∞-multi-winner election with ordered outcomes
P({0, 1}k ), where |P({0, 1}k )| = 2

k ,

Mσ (b1, . . . ,bn ) ∈ {0, 1}
k

≜ arg max

i

P({0, 1}k )i :

n∑
j=1

1bj=P({0,1}k )i
+N(0,σ 2

G )


where 1 represents the indicator function. Importantly, this mecha-

nism only approximates the true Multi-Winner solution because it

can only reveal an outcome that was cast as a ballot. If the set of

true plurality candidates had no associated ballot, then this result

cannot be returned. However, with enough ballots, the resulting

utility degradation is reduced.

4 FROM PRIVATE ELECTIONS TO PRIVATE

MULTI-LABEL CLASSIFICATION

Single-winner elections, and their DP mechanisms, have played an

important role in privacy-preserving machine learning. Notably,

PATE adopted the noisy arg max mechanism to enable training of

single-label models via semi-supervised knowledge transfer. By

replacing the noisy arg max mechanism with our proposed DP

multi-winner mechanisms, we thus create new multi-label PATE

systems for private multi-label semi-supervised learning.

Binary PATE, τ PATE, and Powerset PATE: We refer readers

to Section 2.2 for a detailed description of single-label PATE. Multi-

label PATE is nearly unchanged from a systems perspective because

we only replace the DP mechanisms used. Notably, both forms of

PATE leverage a bank of unlabeled data which is used for the semi-

supervised knowledge transfer; this data is often widely available

since it is unlabeled [35]. Each query uses some ε − DP which,

once the total composed RDP budget is exhausted, terminates the

labelling process. Our mechanisms are used to label and calculate

the per-query ε . These m privately labeled data points are then

used to train the student model which can be released. All of our

mechanisms are compatible with propose-test-release [18] (used in

Confident GNMax) which we leverage to reduce the privacy budget

usage. We show the full τ -PATE in Algorithm 1.

5 ANALYSIS OF MULTI-LABEL PATE

We now analyze the privacy guarantees of our mechanisms within

multi-label PATE. Importantly, we have designed our mechanisms
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Algorithm 1 τ PATE: Multi-label classification with τ -clipping in

ℓ2-norm and with the Confident GNMax.

Input: Data point x , clipping threshold τ2, Gaussian noise scale

σG , Gaussian noise scale for Confident GNMax σT , n teachers,

each with model fj (x) ∈ {0, 1}
k
, where j ∈ [n].

Output: Aggregated vector V with Vi = 1 if returned label/feature

present, otherwise Vi = 0.

1: for all teachers j ∈ [n] do
2: vj ← min(1, τ2

∥fj (x )∥
2

)fj (x) ▷ τ -clipping in ℓ2 norm

3: V 1 =
∑n
j=1

vj ▷ Number of positive votes per label

4: V 0 = n −V 1 ▷ Number of negative votes per label

5: for all labels i ∈ [k] do
6: if max{V 0

i ,V
1

i } +N(0,σT ) < T then

7: Vi =⊥ ▷ Confident-GNMax

8: else

9: V 0

i ← V 0

i +N(0, 0.5σ
2

G ) ▷ Add Gaussian noise

10: V 1

i ← V 1

i +N(0, 0.5σ
2

G ) ▷ for privacy protection

11: if V 1

i > V
0

i then ▷ Decide on the output vote

12: Vi = 1

13: else

14: Vi = 0

to be compatible with the data-dependent analysis of [36] (by mak-

ing them extensions of the noisy arдmax ) because it is often tighter

than the data-independent guarantee which we discuss below.

5.1 Data-Independent and Data-Dependent

Analysis

Data IndependentAnalysis:Wefirst compare our data-independent

guarantees with respect to the noisy arg max mechanism in a single-

label setting, for one query. When it satisfies a εM (λ)-RDP, our

Binary voting achieves a data-independent bound of

∑k
i=1

εM (λ)i ,

τ -voting of λτ 2

σ 2
, and Powerset voting of εM (λ).

Data-Dependent Analysis: However, tighter privacy budgets

may be reported when there is high empirically observed consensus

on the binary vector, i.e., there is a high likelihood for the returned

outcome. The tight data-dependent analysis of [36] bounds the

privacy loss in terms of the probability of the returned single-

label outcome, calculated from the histogram of teacher votes.

This data-dependent privacy loss is often much lower than the

data-independent bounds above—even after the required sanitation

before release. This sanitation is achieved by smooth sensitivity

analysis of the mechanism to protect against information leakage

resulting from the release of the budget—because its particular de-

pends on the data itself. We follow the steps and additionally report

the expected sanitized privacy budgets.

Because each of our multi-label mechanisms view the votes in dif-

ferent manners, the resulting data-dependent privacy budgets can

vary significantly. Below, we compare the data-dependent guaran-

tees for Binary and Powerset PATE, where we empirically observe

that τ PATE only marginally differs from Binary PATE resulting

from how ℓ2 clipping impacts the vote distributions.

5.2 Comparing Binary and Powerset PATE

We begin with preliminaries on our Binary and Powerset mecha-

nisms, and the data-dependent DP analysis of [36].

Recall that Binary PATE has 2 ·k events: the presence or absence

independently for each of the k labels. Instead, Powerset PATE

operates on the entire binary vector, where each configuration

(subset) of this vector is an event—thus, there are 2
k
events. This

leads to three concrete differences of Powerset PATE: (1) it has

exponentially more possible events, (2) when any labels i ∈ [k]
occur simultaneously, it rapidly improves the privacy loss, and (3)

it only adds noise once to the entire binary vector. These directly

impact the calculated data-dependent bounds.

The data-dependent privacy bound is a function of the proba-

bility distribution between events, estimated using the observed

votes as follows. Calculate the difference between the two most

likely events (label presence/absence in Binary voting, binary vec-

tor subsets in Powerset voting). The gap is this difference scaled

by the inverse of the noise standard deviation, which bounds the

probability of any non-plurality event occurring. To provide a final

guarantee for the mechanism, as in single-label PATE, we upper

bound the Renyi divergence using Theorem 5.2 below. The main

random variable influencing this privacy loss is the gap, q(n̄), which
we calculate using Proposition 5.1 below. Theorem 5.2 shows how

to select ideal higher order moments µ1, µ2 and ε1, ε2, using the

data-dependent value for q(n̄) so that the RDP bound is a nonlinear

function of q(n̄) solely.

Proposition 5.1 (From [36]). For a GNMax aggregatorMσ , the
teachers’ votes histogram n̄ = (n1, · · · ,nk ), dataset X , and for any
i∗ ∈ P({0, 1}k ), where P(·) denotes the Powerset, we have

Pr[Mσ (X ) , i
∗] ≤ q(n̄),

and

q(n̄) ≜
1

2

∑
i,i∗

er f c

(
n∗i − ni

2σ

)
Where this is a minimal modification of [36] to go from single-label
PATE to multi-label Powerset PATE.

Theorem 5.2 (From [36]). Let M be a randomized algorithm
with (µ1, ε1)-RDP and (µ2, ε2)-RDP guarantees and suppose that there
exists a likely outcome i given a dataset X and bound q̃ ≤ 1 such
that q̃ ≥ Pr[M(X ) , i]. Additionally suppose the λ ≤ µ1 and
q̃ ≤ exp(µ2−1)ε2

( µ1

µ1−1
·

µ2

µ2−1

)µ2 . Then for any neighboring dataset
X ′ of X , we have:

Dλ(M(X )| |M(X
′)) ≤

1

λ − 1

log

(
(1 − q̃) · A(q̃, µ2, ε2)

λ−1 + q̃ · B(q̃, µ1, ε1)
λ−1

)
where A(q̃, µ2, ε2)

∆
= (1 − q̃)/

(
1 − (q̃eε2 )

µ
2
−1

µ
2

)
and B(q̃, µ1, ε1)

∆
=

expε1/q̃
1

µ
1
−1 .

When the top 3 vote counts, n1 > n2 > n3 satisfy n1 − n2,n2 −

n3 ≫ σ (the gap is sufficiently large), the RDP bound can be well

approximated as

ε
powerset
Mσ

(λ) ≤ exp(−2λ/σ 2)/λ,where λ = (n1 − n2)/4, (10)
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which is from [36, Corollary 11]. Though q(n̄) is the formal gap,

we will often refer to q̃(n̄) = n1 − n2 as the gap too when these

assumptions are satisfied. We plot the cdf of the gaps across votes

in CheXpert and Pascal VOC in Figure 8 of Appendix F, finding that

Binary PATE is indeed in this regime. Assuming Powerset PATE is

too, we analyze under what circumstances it outperforms Binary

PATE. To do this, we will analyze the respective data-dependent

bounds under the expected gap E[q̃(n̄)].

5.3 Data-Dependent Binary PATE Analysis

We aim to specify E[εbinary ] for Binary PATE in terms of the prob-

ability of the most likely outcome, denoted p. By using the same p
for Powerset PATE, we can compare how the privacy budgets vary

with respect to p.
Wemodel each teacher’s independent label prediction as a Bernoulli

trial of probability pi , i ∈ [k]. With t independent trials, we can
model each gap as a binomial distribution of probability pi . To sim-

plify our exposition we assume ∀i,pi = p and will later discuss how

this impacts our analysis. Using composition, we get an expected

privacy loss of

E[εbinary ] = k ·

q̃=t∑
q̃=q̃′

(
P(q̃ = q̃′)

4

q̃
exp

(
−q̃

2 · σ 2

))
= k ·

q̃=t∑
q̃=q̃′

((
t

q̃

)
pq̃ (1 − p)1−q̃

4

q̃
exp

(
−q̃

2 · σ 2

))
Due to the assumptions of Equation 10, we require that low gap

events (q̃′ → 0) have sufficiently low probability so that they can

be ignored. Figure 8 of Appendix F provides justification for this.

5.4 Data-Dependent Powerset PATE

We now estimate how E[q̃(n̄)] changes with changes in p for Power-

set PATE—this directly impacts E[ε
powerset
Mσ

]. This is more involved

because it operates over the entire binary vector. If each label has

probability pi = p of being present, then we can express the proba-

bility (denoted P , note the upper case) of an outcome (binary vector

subset) as the union of these probabilities. Though exact, this is

infeasible to calculate and analyze for all 2
k
subsets when k is large.

This is one reason we estimate only q̃(n̄) rather than q(n̄)—we need

only estimate n1 and n2.

We define the Powerset mechanism in Definition 9 of Appen-

dix A, which is similar to Powerset Voting (Definition 8) except

that we use standard PATE notation. Here, our histogram n counts

subsets with ni (x) representing the vote count for the i−th subset.

We sort the votesni (x) such thatni ≥ nj∀i > j . We seek to upper

bound our best-case expected privacy loss for Powerset PATE. Using

Equation 10, we get

E[ε
powerset
Mσ

(q̃)] =

∫
4

q̃
exp(

−q̃

2 · σ 2
)PDF (q̃)dq̃,

where PDF (q̃) is the probability density function of q̃ and we again

require that low gap events q̃ < 1 have no density.

E[ε
powerset
Mσ

(λ)] → 0 as the density of q̃ →∞ as expected. The

base case gap with O(1) probability can be found by viewing the

binary vectors of Powerset PATE as a non-uniform balls and bins

problem. We have 2
k
subsets, i.e., |P({0, 1}k )| = 2

k
. Each subset

i ∈ [2k ] is represented by a bin with probability Pi of having a ball

land in it (be voted on by a teacher). The t teachers (Σi n̄i = t ) each
vote independently for a bin (subset).

We estimate q̃ by calculating the load of the maximally loaded

bin (most voted outcome), denoted as τ , when Powerset PATE has

the highest gap, i.e., where each other bin has at most 1 ball. Then,

q̃ = τ − 1; by upper-bounding τ , we upper bound the gap.

To upper-bound τ , we use an indicator random variable Cc rep-

resenting the event of c collisions occurring in any bin, i.e., c votes
for that bin. Using Markov’s inequality followed by Stirlings ap-

proximation, we get (see also Appendix I):

Pr [Cc ≥ 1] ≤ E[Cc ] =

(
t

c

)
2
k∑
i
Pci ≤ (

t · e

c
)c

2
k∑
i
Pci .

As with n̄, we sort our probability [P1, · · · , P2
k ] such that P1 ≥

P2 · · · ≥ P
2
k . Because n1 ≫ n2, we have that ∀i , 1, P1 ≫ Pi . As

the gap increases, P1 → 1, and Pci → 0, we get that

∑
2
k

i Pci ≤ Pc
1

and thus Pr [Cc ≥ 1] ≤ ( t ·ec )
cPc

1
. In particular, we care about the

regime where the max load occurs with high-probability (Pr [Cc ] →
1):

Pr [Cc ≥ 1] ≤ (
t · e · P1

c
)c → 1

exp(ln(
t · e · P1

c
)c ) → 1

=⇒ c · ln(t · P1) + c − c · ln(c) → 0

=⇒ c · ln(t · P1) + c = c · ln(c). (11)

Specifying t and P1, we can then directly calculate the max colli-

sions c , then q̃, and finally the best-case expected privacy loss. In

the next Section 5.5, we analyze how the max load changes with

respect to P1.

5.5 Privacy Analysis Comparison

From the assumptions above, we can directly calculate each Pi , for
Powerset PATE. We do this by recognizing that a single teacher’s

binary vector can be modeled as a binomial distribution of k (the

number of labels) trials and probability p. To calculate the probabil-

ity of any one of the 2
k
possible binary vectors from the Powerset

vector, we express each one as a l−hot binary vector (l labels present,
independent of their coordinate position). Each possible subset sat-

isfying l−hot will have equal probability of occurring (because we

fixed p for all labels). Then, the maximum probability binary vector,

when k sufficiently large (k > 5, approximately) and p → 0 or

p → 1 is when l = 0 or l = k as otherwise the combinatorics leads

to a probability split amongst too many choices. This implication

may appear unnatural at first; however, it well models our output

label distribution: when there are a set of label coordinates that

share similarly high (or low) probabilities of predicting presence

(or absence) of that label, then their most likely binary vector is

all 1’s or 0’s. We will next analyze the three major contributors to

changes in the gap.

Impact of Random Labels. To model more complex distribu-

tions where in general pi , p, we can bucket the ranges of p present
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and analyze these buckets separately. Let us operate under the as-

sumption of coordinate-independence. In this case, we have the

maximal variance for the binomial distribution and thus largest

gaps for Powerset and Binary PATE. In this case, we expect both

methods to perform poorly: however, because the data-independent

bound for Powerset PATE is tighter than for Binary PATE, Powerset

PATE performs better, as shown in Figure ??. This gives us our first

two observations: (1) Powerset PATE has a better worst-case privacy
loss (data-independent bound) and (2) both Powerset and Binary PATE
degrade to their data-independent bounds as p → 0.5.

Impact ofCorrelation (CoordinateDependence). Evenwhen

a bucket of labels hasp ≈ 1 orp ≈ 0 (but not equal), we can still have

a varying distribution of outcomes. In particular, with coordinate-

independence, we can directly use our binomial analysis above and

find that there is a uniform probability for all outcomes in each

l−hot vector. In particular, there are factorially many outcomes

each with equal probability. This drastically degrades the gap by

reducing P1. However, when there is coordinate-dependence, e.g.,

the best-case when each label’s value directly implies the rest, then

we have only two outcomes for each l−hot vector. This improves

the gap by reducing the possible subsets and improving P1. We

formalize this as follows: if we have some subset of d vectors that

are dependent, then we can reduce k in our above analyses to (k−d).
This gives us our third observation: (3) coordinate dependence has
a combinatoric improvement for Powerset PATE and at best a linear
improvement for Binary PATE.

Impact of Higher Noise Multipliers. Appealing back to the

data-dependent q(n̄) calculation of Proposition 5.1, we see that Bi-

nary PATE has a gap calculated as 2P − t/2σ for t teachers. This

gives qbinary (n̄) = er f c(2P − t/2σ ) However, for a similar gap,

which is bounded for both to a max(q̃(n̄)) = t , we see that Pow-

erset PATE will have qpowerset (n̄) =
∑

2
k

i er f c(q̃(n̄)/2σ ), which is

always worse when the дaps are equal. We can see this effect in

Figure ??. Further, because we union bound across the 2
k
classes, a

higher noise multiplier has a larger impact on Powerset PATE, as

shown in Figure 2. These give our fourth and fifth observations: (4)

in the best case, and for any equal gaps, Powerset PATE has a higher
privacy loss, and (5) higher noise multipliers will impact Powerset
PATE more for similar gaps.

Overall, we find that there are two regimes where Powerset

voting (PATE) outperforms Binary voting (PATE). The first regime is
when there are high correlations between the multi-winner candidates,
i.e., there is strong coordinate dependence. We found empirical

evidence of this case, as we will describe later, in Figure 3. The
second regime is when neither mechanism can leverage stronger data-
dependent privacy guarantees, the data-independent guarantees of
Powerset PATE are tighter (see Section 5.1). We find that though

Powerset PATEmay not always be capable of returning the plurality

vote, the utility of the votes remains high (see Figure 2).

5.6 Choosing the PATE Mechanism

As we will see from the empirical results in the next section, we

recommend choosing τ PATE in all cases where a reasonable τ <
√
k can be chosen based on the average ℓ2 norm of the training

data. Otherwise, Binary PATE is generally preferred, unless there

is a significant correlation between labels detected (we show one

example of this analysis in Appendix B).

6 EMPIRICAL EVALUATION

We compare our proposed mechanisms for multi-label classification

on real-world datasets. Our goal is to answer the following ques-

tions: (1) How do the multi-label PATE methods work in practice

and which of them should be selected by practitioners? (2) In the

centralized learning setting, how does our proposed multi-label

PATE compare with the other method of choice - DPSGD? Finally,

(3) how our private multi-label classification performs in the frame-

work of a distributed collaborative learning system, such as CaPC,

which preserves privacy and confidentiality? We observe that the

τ PATE is the preferred multi-label method that outperforms other

PATE-based methods as well as DPSGD, and can provide benefits

when used by collaborating parties.

6.1 Experimental Setup

We carry out the evaluation on threemedical datasets CheXpert [28],

MIMIC-CXR [29], PadChest [9], and on a vision dataset Pascal VOC

2012 [22]. We use DenseNet-121 [27] for the medical datasets and

ResNet-50 [25] for the vision dataset. DenseNet has been shown

to be the best architecture for X-ray data [13]. See Appendix C for

dataset and model descriptions. Our main exposition chooses safe

δ < 1/N where N is the number of records in the dataset. Only

one experiment uses δ = 1e − 4 to compare directly with [48]. We

experiment with (ε = 8, δ = 1E − 4) for 5 labels on CheXpert (see

Appendix F.2), (ε = 10, δ = 1E − 5) for predictions on PascalVOC,

(ε = 20, δ = 1E − 6) for 11 labels on CheXpert or MIMIC, and also

(ε = 20, δ = 1E − 6) for 15 labels on PadChest (see also Section 6.5).

As an example, we show how the number of answered queries

decreases gradually with orders of magnitude lower δ values for

the PascalVOC dataset in Table 14. We note that though τ should

use DP protection [37], it is commonplace to tune hyperparameters

non-privately. Our mechanisms add a negligible run-time perfor-

mance overhead on top of PATE, where the main bottleneck is the

training of the teacher models.
3

EvaluationMetrics.We use the following metrics: (1) accuracy

(ACC) - a proportion of correct predictions per label, (2) balanced

accuracy (BAC) - mean recall and specificity per class [8], (3) area

under the receiver operating characteristic curve (AUC) [24], and (4)

mean average precision (MAP), where average precision per class is

the area under the precision-recall curve. We compute each metric

per label using methods from sklearn.metrics and then average

them across all the labels. The definitions per label of the metrics

are as follows: (1) accuracy per label (ACC):
T P+T N

T P+T N+F P+FN , (2)

Balanced Accuracy per label (BAC) =
1

2
( T P
T P+FN +

T N
TN+F P ), where

TP = True Positive; FP = False Positive; TN = True Negative; FN

= False Negative, (3) Area-Under-the-Curve (AUC) =

∫
1

0
t(f ) d f ,

where t(f ) is the TP rate against the FP rate, (4) mean Average

Precision (MAP) =
1

n
∑n
i=1

Pi , where Pi is the precision for the i-th

label equal to
T P

T P+F P for that label and n is the number of labels

per example. More details on the evaluation metrics can be found

3
Our code can be found at this link: https://github.com/anonymous-user-

commits/private-multi-winner-voting.
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Figure 1: LEFT: Powerset PATE outperforms Binary PATE as more labels are generated randomly, i.e., p=0.5 with ε = 20. If

all votes are random, then both Binary and Powerset PATE fall back on the data independent bound. RIGHT: Binary PATE

outperforms Powerset PATE when they both have a similarly high gap.. Here, all teachers always output 0 for all labels. We

use ε = 2. BOTH: we use 50 teachers and privacy noise σGNMax = 7.

in Appendix D and further information on the experimental setup

in Appendix E.

6.2 Queries Answered vs Label Count

We analyze how our methods scale with a different number of labels

in a dataset. We set the privacy budget ε = 20 throughout the whole

experiment. The scale of the Gaussian noise σGNMax is adjusted

per label count so that we can preserve high values of the metrics

(ACC, BAC, AUC, MAP), with maximum performance drop by a few

percentage points. We find the values of σGNMax separately for

the Binary and Powerset methods so that their performance metrics

are the same for a given label count. For example, in Figure 2 for 11

labels, we select σGNMax = 11 for Binary PATE and σGNMax =

4 for Powerset PATE, where the values of the metrics for both

methods are ACC=.95, AUC=.66, and MAP = .37 on Pascal VOC. For

the CheXpert dataset, we set σGNMax = 20 for Binary PATE and

σGNMax = 5 for Powerset PATE, where the values of the metrics

for both methods are ACC=.71, AUC=.68, and MAP = .45. Here, we

observe that the private multi-label classification with Binary PATE

performs better and preserves higher values of the metrics with

more noise added, compared to the Powerset PATE method.

Next, we compare the Binary and Powerset methods across many

labels and in terms of how many queries can be answered privately

for a given number of labels in the dataset. We run the experiment

on the Pascal VOC and CheXpert datasets and present results in Fig-

ure 3 (as well as in Tables 11-12 in the Appendix). Our analysis

shows that the private multi-label classification with Binary PATE

performs better (answers more queries) than Powerset PATE for

Pascal VOC. The CheXpert dataset is more noisy in terms of label-

ing, the pathologies are sparse and difficult to detect; this dataset

does not give us a clear preference of the multi-label PATE method

in terms of the number of answered queries.

6.3 Query-Utility Tradeoff in PATE

In comparing how the privacy parameter σG impacts the query-

utility tradeoff of each mechanism, under a fixed ε = 20 across all

datasets, we find that under high consensus Binary voting performs
best and under lower consensus τ voting performs best. In Figure 4,

we compare each multi-winner election mechanism used in τ PATE

and find that each mechanism has a range of σG where it performs

best. In particular, as σG → 0, no queries can be answered by any

mechanism because doing so would require more than the allot-

ted privacy budget ε . For sufficiently small σG and with suitable

consensus amongst voters, which is the case for Pascal VOC, CheX-

Pert, and MIMIC-CXR, we find the data-dependent analysis for

Binary voting outperforms all others while remaining in a regime

of high-performance metrics. As σG →∞, the τ voting mechanism

outperforms all others, though in most cases at a decrease in the

performance metrics; however, on PadChest, this is the best bound.

This can be explained by the fact that on PadChest we can only train

10 teachers before each individual model’s accuracy degrades too

much. An important distinction is that τ PATE can perform worse

than Binary PATE when the chosen τ bound is too small (because

ballot clipping can change the vote distribution). For well-chosen

values of τ we observe only marginal decrease in the number of

queries answered and the performance metrics (c.f. Figure 4 with

Figures 11, 12, and 13 in Appendix F). Inspecting the tradeoff of

Powerset PATE (see Figure 2), we find that a much lower noise

can be tolerated before a steep decline in performance metrics. Be-

cause of this, we find that much fewer queries can be answered

(see Tables 11 and 12). Thus, we recommend τ PATE as the de-facto

mechanism.

6.4 Private Centralized Learning

We now show that even in the centralized setting, our multi-label

PATEmethods outperform the competitive baselines. We train mod-

els on Pascal VOC and CheXpert which include 20 and 5 labels for

this experiment, respectively. We leverage the entire training set

to train a single non-private model and a single private model via

DPSGD [2]. For our multi-label PATE we instead train 50 teachers

each on a separate disjoint partition of the centralized training set

(and thus, with 1/50 number of samples compared with DPSGD and

the non-private model). We use these teacher models to privately

train a student model using semi-supervised learning with Mix-

Match [6] (where modifications are made to adapt MixMatch to the

multi-label setting). Though the DPSGD algorithm does not assume
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Figure 2: Binary vs Powerset PATE performance. We compare the utility of the private votes returned in terms of ACC, AUC,

and MAP, with respect to Gaussian noise scale σGNMax . We select the first 11 labels in Pascal VOC and all 11 labels from

CheXpert. We find that Binary PATE can tolerate a much higher noise scale σGNMax compared with Powerset PATE before

significant degradation in the votes is observed.
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Figure 3: Binary vs Powerset PATE: number of answered queries. We compare the number of answered queries vs the number

of k first labels selected from the Pascal VOC and CheXpert datasets. We keep the privacy budget ε = 20.

a public unlabeled dataset, we compare it with our methods because

DPSGD is the only baseline for multi-label prediction. DPSGD for

multi-label was studied in prior work [48], and cannot directly

leverage public unlabeled data. On the other hand, our PATE-based

approaches leverage a public pool of unlabeled samples that have

noisy labels provided by the ensemble of teachers. The added noise

protects the privacy of the centralized training data. We then train

the student on the newly labeled samples. Our Binary PATE does

not use τ clipping or the confident GNMax improvement so as to

fairly compare with Powerset PATE. Binary PATE has the benefit of

using non-private learning on public data whereas DPSGDmust add

noise in training which impedes model learning. Finally, DPSGD

incurs a high computational cost (which multi-label PATE does not)

due to the expensive per-example gradient computations [42].

Pascal VOC.The studentmodel, non-private baseline, andDPSGD

baseline were all pre-trained on ResNet-50 models. Observing Ta-

ble 1, we see that our Binary PATE algorithm outperforms all other

privacy-preserving techniques by a significant margin. The non-

private model achieves strong performance across all metrics where

the model trained using DPSGD incurs significant degradation

across all metrics.

Though Binary PATE outperforms DPSGD and Powerset PATE,

it falls short of the non-private model by a wide margin, indicating

much room for improvement in multi-label privacy-preserving
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Figure 4: With sufficient consensus, the best query-utility tradeoff obtained lies in a regime of σG where the data-dependent

bound is used. In the 1st row, we maximize the σG of τ PATE while maintaining sufficiently high values of the performance

metrics. The chosen values for (σG , τ ) are 9, 1.8 for Pascal VOC, 10, 3 forMIMIC-CXR, and 7, 2.8 for CheXPert and 7, 2.7 PadChest.

When there is a lack of consensus (on PadChest), we see that the data-independent ℓ2 (L2-DI) mechanism bound outperforms

all others. For a well chosen τ , there is little-to-no impact on the consensus of the data-dependent regime (c.f. Binary PATE and

τ PATEwhich leverage the data-dependent boundwhen it reduces privacy loss). Because of this, τ PATE achieves a competitive

query-utility tradeoff. See Figure 13 in Appendix F.4 for tuning of Binary PATE as an∞-Winner Election.

Table 1: DPSGD vs PATE on Pascal VOC for all 20 labels.

Comparison between standard non-private model, DPSGD,

Powerset and Binary multi-label in terms of utility us-

ing metrics: Accuracy (ACC), Balanced Accuracy (BAC),

Area-Under-the-Curve (AUC), and Mean Average Precision

(MAP).

Method ACC BAC AUC MAP

Non-private .97 .85 .97 .85

DPSGD .92 .50 .68 .40

Powerset PATE .94 .58 .70 .29

Binary PATE .94 .62 .85 .57

techniques—in particular, in extreme multi-label settings, which we

motivate and expand on in Appendix B. We observe that Powerset

PATE answers much fewer queries (leading to less training data for

the student model) than Binary PATE, at only 78 compared to 427.

Though the student model only trains on 427 samples compared to

5717 for DPSGD.

CheXpert.We follow the experimental setup provided for Adap-

tive DPSGD from [48]. We use the DenseNet-121 model pre-trained

on ImageNet and fine-tune only the last fully connected layer while

keeping all the other (convolutional) layers fixed. Across all of the

experiments, we use ε = 8 as the privacy budget. We use the whole

CheXpert test set, and here report results for δ = 1E − 4. We set

δ = 1E − 4 only in this case to compare fairly with prior work [48].

In all other cases, we use the standard δ = 1/(number of records),

which is δ = 1E − 6. To evaluate the performance of the models, we

Table 2: DPSGD vs PATE on Chexpert for the first 5 labels.

We compute the Area-Under-the-Curve (AUC)metric per la-

bel. We denote Adaptive DPSGD as Adaptive.

Method AT CA CO ED EF Average

Non-private 0.84 0.80 0.87 0.90 0.91 0.87

DPSGD 0.56 0.53 0.66 0.56 0.62 0.58

Adaptive 0.75 0.73 0.84 0.79 0.79 0.78

Binary PATE 0.78 0.75 0.84 0.76 0.81 0.79

use the CheXpert test set (from the valid.csv file in CheXpert-v1.0-

small). As shown in the Table 2, similarly to the results for Pascal

VOC, we also observe a gap in performance (about 8%) between

the non-private model and Binary PATE. For the direct comparison

between private methods, in this setting, the Binary PATE also

outperforms the state-of-the-art Adaptive DPSGD on four out of

five labels, and in the average AUC across all the first 5 labels.

6.5 Varying Privacy Budget ϵ
Because multi-label classification uses k > 1 labels, our work signif-

icantly outperforms the naive expectation of using k times higher

privacy budget from single-label (k = 1) classification. We note that

since we deal with multi-label scenarios and complicated vision and

medical datasets, rather than the typical single-label classification

tasks, it is more difficult to attain tighter DP guarantee. Our choice

of ε <= 20 falls within the range that is generally considered in

prior work [10, 36] and has been found to be robust to privacy

attacks [11, 34]. We explore the privacy utility trade-off. The value
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Table 3: Pascal VOC with 20 labels: Performance of Binary

PATE for different values of the privacy budget ε w.r.t. num-

ber of answered queries, ACC, BAC, AUC, and MAP as mea-

sured on the test set with the specified σGNMax. PB (ε) is the
privacy budget. We use 50 teacher models. We set σGNMax =

7.

PB (ε )
Queries

answered ACC BAC AUC MAP

1 0 - - - -

2 6 .86 .62 .62 .44

3 13 .93 .67 .67 .53

4 22 .93 .64 .64 .44

5 31 .95 .63 .63 .39

6 40 .95 .67 .67 .45

7 64 .95 .64 .64 .35

8 81 .95 .66 .66 .40

9 101 .95 .60 .60 .28

10 113 .96 .63 .63 .30

11 135 .96 .64 .64 .33

12 165 .96 .65 .65 .35

13 199 .96 .63 .63 .32

14 217 .96 .64 .64 .35

15 239 .96 .63 .63 .32

16 272 .96 .63 .63 .31

17 306 .96 .63 .63 .30

18 332 .96 .63 .63 .31

19 362 .96 .63 .63 .30

20 403 .96 .63 .63 .30

of ε can be decreased with fewer queries answered by teachers in

PATE, which is shown in Table 3, where we vary the privacy budget

from a tight guarantee (ε = 1) to looser guarantees (up to ε = 20).

6.6 Multi-Label CaPC

By replacing the single-label PATE in [10]with ourmulti-label PATE

mechanisms, we enable multi-label learning in a multi-site setting:

the framework of CaPC allows for distributed collaboration across

models located at different sites. We scale the evaluation of multi-

label CaPC learning to real-world datasets and models by providing

a decentralized (independent) evaluation of each answering party,

enabling large models. Our multi-label CaPC experiments replicate

the setup of [10] using the source code provided.

We train 1 model per participant on separate distinct portions

of the training set and then use multi-label CaPC to improve the

performance of 3 participants. Details are in Appendix E. Observing

Table 18, we see that multi-label CaPC consistently improves the

BAC, with the greatest improvement of a considerable 5 percentage

point increase on Pascal VOC and improvement across all other

metrics. These improvements are echoed in the larger and more

privacy-sensitive CheXpert and MIMIC-CXR datasets; however, we

observe some performance degradation on PadChest, likely because

of the degraded vote utility compared to the original training data.

As one of the main applications for CaPC is the healthcare domain,

the on-average performance improvements and associated privacy

guarantees demonstrate the utility of multi-label CaPC in a realistic

use case.

Inspecting Figure 5, we see that multi-label CaPC leads to signif-

icant improvements in low-sample, low-performance labels (e.g.,

labels EN and FR on CheXpert). Thus, poorer performing models

and classes can gain from the noisy aggregation of more perfor-

mant teacher models through multi-label CaPC. This has potential

ramifications for fairness because our experiments consistently

demonstrate that private multi-label CaPC can improve model per-

formance on its poorer performing subpopulations—where [43]

show that differentially private can hurt performance on these sub-

populations. We reiterate that these subpopulations are common

in many settings such as healthcare due to imbalanced labels, e.g.,

rarer diseases (see Figure 7 of Appendix C).

7 CONCLUSIONS

Single-label classification requires us to return one categorical out-

put. Instead, multi-label classification is more complicated since

we return k > 1 class-labels for each input. Naively, one could

apply single-label classification repeatedly for each of the k labels.

However, there are correlations between these k labels. We thus

show that this is suboptimal. For example, there are fewer than

τ = 3 positive labels per query in our medical datasets. Intuitively,

a teacher in PATE should only vote for up to τ positive labels in

this setting.

We address the need for privacy in the multi-label setting with

three new multi-label voting mechanisms. We show and prove that,

while simple, our Binary voting cannot be outperformed without

strong candidate correlations. When these correlations exist, we

prove new data-independent bounds for our τ voting mechanism

and theoretically analyze when Powerset voting performs better.

We also compare all possible norms used for τ -clipping and analyt-

ically demonstrate that the ℓ2 norm is optimal. These fundamental

insights allow us to scale privacy-preservingML tomulti-label tasks.

Using these three new mechanisms, we create multi-label PATE

which outperforms DPSGD in the centralized private learning set-

ting. We further enable multi-label learning in multi-site scenarios

by creating multi-label CaPC. We test our methods on standard

vision and medical datasets. Our results show new state-of-the-art

for private learning in multi-label settings and demonstrate a need

for further exploration to lessen the gap between private methods

and non-private baselines.
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Figure 5: Using CaPC to improvemodel performance.Dashed lines represent mean balanced accuracy (BAC).We retrain a given

model using additional data labelled by all other models from the same ensemble. We observe a mean increase of BAC by 2.0

percentage points on CheXpert.

Table 4: Model improvements through retraining with multi-label CaPC.

Dataset

# of

Models State PB (ε ) ACC BAC AUC mAP

Pascal VOC

1 Initial - .97 .85 .97 .85

50 Before CaPC - .93±.02 .59±.01 .88±.01 .54±.01

50 After CaPC 10 .94±.01 .62±.01 .88±.01 .54±.01

50 After CaPC 20 .94±.01 .64±.01 .89±.01 .55±.01

CheXpert

1 Initial - .79 .78 .86 .72

50 Before CaPC - .77±.06 .66±.02 .75±.02 .58±.02

50 After CaPC 20 .76±.07 .69±.01 .77±.01 .59±.01

MIMIC

1 Initial - .90 .74 .84 .51

50 Before CaPC - .84±.07 .63±.03 .78±.03 .43±.02

50 After CaPC 20 .85±.05 .64±.01 .79±.01 .45±.03

PadChest

1 Initial - .86 .79 .90 .37

10 Before CaPC - .90±.01 .64±.01 .79±.01 .16±.01

10 After CaPC 20 .88±.01 .64±.01 .75±.01 .14±.01
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A THEORETICAL MECHANISM ANALYSIS

Lemma A.1. If f (X ) : Rd → Rk is coordinate-independent, there
exists a pair of databases (X ,X ′) with | |X − X ′ | |1 = 1 (a change in
only one row) which achieves the worst-case sensitivity for each of
the coordinates fi .

Proof. The proof follows by extension of the case where d = k
and fi∗(X ) = fi∗(Xi∗), i.e., each output coordinate is determined by

a unique input coordinate. Thus, we can independently maximize

the sensitivity for each fi∗ and horizontally stack these to obtain a

single X and X ′ that maximizes the sensitivity of f .
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∆1 fi∗ = max

(X ,X ′)
| |X−X ′ | |1=1

| | fi∗(X ) − fi∗(X
′)| |1

= | | fi∗([Xi |i ∈Pi∗ ,Xi |i<Pi∗ ]) − fi∗([X
′
i |i ∈Pi∗

,X ′i |i<Pi∗
])| |1

= | | fi∗([Xi |i ∈Pi∗ ,Xi |i<Pi∗ ]) − fi∗([X
′
i |i ∈Pi∗

,Xi |i<Pi∗ ])| |1

Therefore we can choose the members in Pi∗(X ) arbitrarily and

independently to achieve the worst case sensitivity for fi∗ while
the members not in Pi∗(X ) can take any value because they do not

affect the output. Using the fact that the Pi ’s are disjoint, we can
continue this over all values of i∗ from 1 to k to get the desired

result.

■

Proof of Proposition 3.1 FromLemmaA.1, because f = [f1, . . . , fk ],

then the worst-case sensitivity is ∆f = (
∑k
i (∆fi )

p )1/p by expan-

sion of sensitivity from Definition 6. Similarly, we can construct an

equivalent query by k applications of Binary voting which gives a

sensitivity of ∆f =
∑k
i (∆fi ). These two are equivalent for p = 1,

i.e., the ℓ1 norm. Binary voting is suboptimal for norms of p > 1 as

a result of Hölder’s inequality.■

Proposition A.2. For a multi-label function f (X ) : Rd → Rk

to have a lower sensitivity than the sum of the worst-case sensitivities
for each coordinate, i.e., ∆1 f < Σki=1

∆1 f i , f must be coordinate-
dependent.

Proof. Follows by contradiction since the function cannot be

coordinate-independent. ■

Definition 9 (Mechanism for Powerset PATE). Denote the
Powerset operator as P(·). For a sample x and 2

k subsets (classes), let
fj (x) ∈ {0, 1}

k denote the j−th teachermodel binary vector prediction.
Let ni (x) be the vote count for the i−th subset (class), i.e., ni (x) ≜ |{j :

fj (x) = P({0, 1}k )i }|. We define the Powerset PATE mechanism as

Mσ (x) ≜ arg max

i

{
ni (x) +N(0,σ

2)
}
.

B TOWARDS PRIVATE EXTREME

MULTI-LABEL CLASSIFICATION

We face extreme multi-label classifications [41] in many real-world

applications such as semantic segmentation [49], hash-tag sugges-

tions for user images [17], product categorisation [3] and webpage

annotation [38] where both input size and label size are extremely

large. In this section, we investigate the privacy-accuracy tradeoffs

of private semantic segmentation (a common and underlying exam-

ple in extreme multi-label settings) that links each image pixel to

its corresponding object class (an integer value) with a reasonable

accuracy of above 60% but an expensive privacy cost of ε ≈ 3, 000,

for a relative "small" image of size 200 × 200, or ≈ 40, 000 pixels.

We conclude this section by proposing future directions to alleviate

the privacy-accuracy tradeoffs in extreme multi-label settings.

We consider MIT ADE20K semantic segmentation dataset [49]

that contains 150 objects including 35 stuff objects (e.g. sky, build-

ing) and 115 discrete objects (e.g. person, car). The label size for

each image pixel is fixed (=150). However, the number of predicted

labels for each image is the number of pixels, which varies across

the dataset. To perform private semantic segmentation, we use

PATE to label each image pixel. We split the training set of MIT

ADE20K dataset into equally sized partitions for 20 teachers and

train a Pyramid Pooling ResNet50-Dilated architecture of the Cas-

cade Segmentation Module. The test accuracy of the ensemble of

teachers (using 2000 of the test images) with respect to the PATE

noise standard deviation σG between 0 and 5 varies from 67% to 47%.

We observe that the level of noise must be quite small, σ < 3, or

there is a steep drop in accuracy of more than 10 percentage points.

The privacy cost is too high to provide meaningful guarantees ε ,
due to the small σ and large number of pixels required to be labeled.

Opacity

Consolidation

Pneumonia

...

Figure 6: Example hierarchical structure of labels in Chest

radiography setting.

We believe that privacy analysis in extreme multi-label settings

can be tightened by exploiting the semantics of inputs. For example

in the semantic segmentation task, we can reduce the privacy costs

by taking advantage of the dependency between pixels so that

instead of releasing an answer per pixel, we can release only a

single label per semantic region (a grouping of pixels). Exploring

label dependence, rather than assuming label independence, may

also enable tighter privacy loss analysis and improve accuracy,

as our analysis of Proposition 3.1 suggests. Label dependence is

prevalent in many tasks, e.g., in healthcare labels are naturally

organised into tree-like hierarchies such that domain experts (e.g.

doctors) perform observations and diagnoses conditioned upon

their parent node [46]. Figure 6 shows an example of the label

structure where the root label node corresponds to the most generic

disease of Opacity, while the leaf label node represents the most

specific disease of Pneumonia [40]. Pneumonia implies the presence

of both Consolidation and Opacity diseases. Thus, there exist many

possible methods to optimize the answering of queries. It may be

possible to tighten the privacy loss due to the implications (or,

correlations) between labels; or, to query labels in a specific order

such that the all dependent nodes (Consolidation and Opacity) can

be inferred by the agreed presence of parent nodes (Pneumonia) by

the teacher ensemble.

In addition to exploiting the knowledge of input and label do-

mains, our analysis of the optimal settings for Binary PATE shows

that privacy mechanisms can be tailored to the multi-label classifi-

cations. For example, k-fold adaptive bounds [30] that draw tighter

(≪ sublinear) privacy bounds for homogenous privacy settings can

be extended to heterogeneous ε per label and per query settings

of multi-label classification. However, it is unclear if and under
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what scenarios we can achieve a tighter bound. For instance, it is

possible to take the maximum ε across all queries, but if there is
a large gap k-fold adaptive composition may yield looser bounds.

These settings of coordinate dependence, high label correlations,

and heterogeneous k-fold adaptive composition are interesting for

future work.

We design an experiment where the baseline method obtains

answers to all the labels while the new proposed method exploits

the semantics and queries labels selectively.

First, we generate positive dependency matrices for labels in

each dataset and present results in Tables 6,7,8, and 9. We find that

the positive dependencies (e.g., if disease A is present then disease

B is present as well) constitute a small fraction of the whole dataset.

This is because there are many more negative than positive exam-

ples in the CheXpert dataset, which is caused by a class imbalance,

a common problem in medical datasets. For instance, we find that

if both Pneumonia and Pneumothorax are present then Lung Opac-

ity occurs in 83.3% of the cases. However, both Pneumonia and

Pneumothorax are present in only 0.06% of samples of the dataset.

Thus, we consider negative instead of positive dependencies. For

example, if Atelectasis is absent then Consolidation is absent as

well in 98.7% of the cases. After ignoring samples for which at least

one of Atelectasis or Consolidation have missing values, the per-

centage of samples where both labels are negative is 83%. We obtain

the negative dependencies using the training set and generate the

dependency matrix in Table 5.

We compare multi-label PATE executed for each label vs using

the semantics and querying the first label (Atelectasis) only, fol-

lowed by (1) skipping the remaining labels and setting them as

negative if the first label is negative, or (2) querying the other labels

if the first label is positive. As expected, leveraging the semantics

increases the number of answered queries from 35 to 127 for the

same privacy budget ε = 8 of at the cost of lower performance (less

accurate answers to the queries). However, increasing the number

of answered queries by adding more privacy noise (σ = 67.5) causes

the answered queries to be less accurate than by exploiting the label

dependencies. We show a detailed comparison in Table 10.

Note that in the above example we consider the first five labels

from the CheXpert dataset. We use the same setup as for the com-

parison between DPSGD and multi-label PATE F.2. The metrics are

computed on the same 127 queries (to obtain 127 answered queries

for the Answer all labels we increase its privacy budget from 8 to

26.5).

C DATASETS AND MODEL ARCHITECTURES

We experiment on four multi-label datasets. First, we use the com-

mon computer vision multi-label dataset, Pascal VOC 2012. Three

other of these datasets are privacy sensitive large-scale medical

datasets that are commonly used in ML for healthcare: CheX-

pert [28],MIMIC-CXR [29] and PadChest [9]. Thesemedical datasets

present a realistic and large-scale application for multi-label CaPC.

Pascal VOC 2012 contains 11, 540 images that are split into

5, 717 images for training and 5, 823 images for validation [22].

There are 20 classes of object labels (with their index in parentheses)

– aeroplane (1), bicycle (2), bird (3), boat (4), bottle (5), bus (6), car

(7), cat (8), chair (9), cow (10), dining table (11), dog (12), horse (13),

motorbike (14), person (15), potted plant (16), sheep (17), sofa (18),

train (19), and tv monitor (20). We use a ResNet-50 model [25] that

was pre-trained on ImageNet [16].

Medical Datasets contain chest radiographs (X-ray) images.

CheXpert [28] has 224, 316 radiographs. MIMIC-CXR-JPG [29] con-

tains 377, 110, and PadChest [9] has 160, 868. The goal in each

dataset is to predict presence of pathologies. However, there are

differences between pathology labels across these three datasets.

X-ray images of CheXpert are annotated with 11 pathologies– At-

electasis, Cardiomegaly, Consolidation, Edema, Effusion, Enlarged

Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, Pneumo-

nia and Pneumothorax. MIMIC-CXR-JPG includes 11 pathologies–

Enlarged Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung

Lesion, Edema, Consolidation, Pneumonia, Atelectasis, Pneumoth-

orax, Pleural Effusion, Pleural Other, Fracture, Support Devices.

PadChest includes 15 pathologies– Atelectasis, Cardiomegaly, Con-

solidation, Edema, Effusion, Emphysema, Fibrosis, Fracture, Hernia,

Infiltration, Mass, Nodule, Pleural_Thickening, Pneumonia and

Pneumothorax.

The pathology and its code (in parenthesis) is as follows: Atelec-

tasis (AT), Cardiomegaly (CA), Consolidation (CO), Edema (ED),

Effusion (EF), Emphysema (EM), Enlarged Cardiomediastinum (EN),

Fibrosis (FI), Fracture (FR), Hernia (HE), Infiltration (IN), Lung

Lesion (LL), Lung Opacity (LO), Mass (MA), Nodule (MO), Pleu-

ral_Thickening (PT), Pneumonia (PN), Pneumothorax (PX).

All datasets obtain labels from associated reports. Both CheXpert

and MIMIC-CXR-JPG use the CheXpert labelling system, which

is a rule based approach. PadChest obtains reports annotated by

trained radiologists, then trains an attention-based recurrent neural

network to predict on these annotations, and labels the remaining

data. On all three datasets, we train a DenseNet-121 [27] model and

filter only frontal images (AP and PA). The main difference between

our setup and the one from [13] is that we use both frontal views

AP and PA, while the cited work uses only one of the frontal views,

thus either AP and PA.
The label distribution for each multi-label dataset (Pascal VOC,

CheXpert, MIMIC-CXR, and PadChest) is presented in Figure 7.

The label distribution for medical datasets is more unbalanced than

for Pascal VOC, due to prevalence or rarity of certain diseases.

D EVALUATION METRICS

The accuracy metric (ACC) used refers to the average accuracy over

all labels, i.e., the accuracy is measured for each label individually

over the samples in the test set and then averaged to give an overall

accuracy for the classifier. This corresponds to micro averaging

in [31]. To put the above definition in words, the per label accuracy

is the proportion of correct predictions (both true positives and

true negatives) among the total number of cases examined. We use

the function sklearn.metrics.accuracy_score from [39] in the code.

The balanced accuracy (BAC) is the macro-average of recall and

true-negative-rate scores per class. In the binary case, balanced ac-

curacy is equal to the arithmetic mean of sensitivity (true-positive-

rate, recall) and specificity (true-negative-rate). We use the standard

method sklearn.metrics.balanced_accuracy_score from [39] to com-

pute the balanced accuracy per label and then average the scores

across all labels. If the data set is balanced or the classifier performs
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Table 5: Negative Dependency Matrix for the first 5 labels form the CheXpert dataset.

Atelectasis Cardiomegaly Consolidation Edema Effusion

Atelectasis 0.975 0.987 0.976 0.983
Cardiomegaly 0.736 0.836 0.784 0.869

Consolidation 0.527 0.591 0.631 0.790

Edema 0.625 0.665 0.758 0.822

Effusion 0.485 0.567 0.731 0.633

Table 6: Positive dependency (co-prevalence) matrix for labels in the Pascal-VOC dataset.

aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor

aeroplane 1.000 0.000 0.001 0.007 0.000 0.004 0.061 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.133 0.003 0.000 0.000 0.000 0.000

bicycle 0.000 1.000 0.004 0.005 0.060 0.030 0.163 0.005 0.039 0.004 0.009 0.005 0.002 0.035 0.564 0.042 0.000 0.007 0.004 0.009

bird 0.001 0.003 1.000 0.012 0.004 0.001 0.005 0.003 0.008 0.004 0.001 0.006 0.004 0.000 0.052 0.008 0.006 0.000 0.000 0.001

boat 0.010 0.006 0.017 1.000 0.008 0.008 0.039 0.000 0.019 0.006 0.006 0.008 0.000 0.010 0.378 0.012 0.000 0.004 0.002 0.004

bottle 0.000 0.044 0.004 0.005 1.000 0.001 0.029 0.022 0.236 0.000 0.254 0.038 0.003 0.007 0.592 0.065 0.005 0.070 0.000 0.100

bus 0.007 0.040 0.002 0.009 0.002 1.000 0.384 0.000 0.000 0.000 0.000 0.002 0.002 0.026 0.477 0.009 0.002 0.000 0.007 0.000

car 0.033 0.076 0.003 0.016 0.018 0.134 1.000 0.005 0.020 0.007 0.006 0.030 0.018 0.089 0.445 0.020 0.004 0.002 0.018 0.005

cat 0.000 0.003 0.002 0.000 0.016 0.000 0.006 1.000 0.066 0.001 0.016 0.028 0.000 0.000 0.076 0.027 0.001 0.060 0.000 0.020

chair 0.001 0.017 0.005 0.008 0.139 0.000 0.019 0.055 1.000 0.000 0.335 0.065 0.002 0.005 0.428 0.159 0.000 0.156 0.002 0.152

cow 0.000 0.006 0.010 0.010 0.000 0.000 0.026 0.003 0.000 1.000 0.000 0.013 0.006 0.003 0.159 0.000 0.003 0.000 0.000 0.000

diningtable 0.000 0.008 0.002 0.005 0.304 0.000 0.011 0.027 0.679 0.000 1.000 0.017 0.000 0.000 0.551 0.159 0.000 0.090 0.000 0.051

dog 0.000 0.002 0.004 0.003 0.022 0.001 0.029 0.023 0.065 0.003 0.008 1.000 0.003 0.002 0.240 0.024 0.008 0.076 0.000 0.013

horse 0.000 0.002 0.006 0.000 0.004 0.002 0.046 0.000 0.006 0.004 0.000 0.008 1.000 0.002 0.472 0.004 0.004 0.000 0.002 0.002

motorbike 0.002 0.037 0.000 0.009 0.009 0.021 0.203 0.000 0.011 0.002 0.000 0.006 0.002 1.000 0.575 0.032 0.006 0.002 0.000 0.000

person 0.021 0.074 0.009 0.045 0.104 0.047 0.125 0.019 0.127 0.011 0.081 0.071 0.052 0.070 1.000 0.041 0.013 0.069 0.036 0.050

pottedplant 0.004 0.042 0.011 0.011 0.088 0.007 0.042 0.051 0.363 0.000 0.180 0.055 0.004 0.030 0.319 1.000 0.000 0.164 0.014 0.106

sheep 0.000 0.000 0.015 0.000 0.012 0.003 0.015 0.003 0.000 0.003 0.000 0.031 0.006 0.009 0.169 0.000 1.000 0.000 0.000 0.000

sofa 0.000 0.006 0.000 0.003 0.078 0.000 0.003 0.094 0.291 0.000 0.083 0.142 0.000 0.001 0.433 0.134 0.000 1.000 0.001 0.125

train 0.000 0.004 0.000 0.002 0.000 0.005 0.040 0.000 0.004 0.000 0.000 0.000 0.002 0.000 0.287 0.015 0.000 0.002 1.000 0.000

tvmonitor 0.000 0.008 0.002 0.003 0.129 0.000 0.010 0.037 0.331 0.000 0.055 0.029 0.002 0.000 0.365 0.101 0.000 0.146 0.000 1.000

Table 7: Positive dependency (co-prevalence) matrix for labels in the MIMIC-CXR dataset.

Enlarged Cardiomediastinum Cardiomegaly Lung Opacity Lung Lesion Edema Consolidation Pneumonia Atelectasis Pneumothorax Pleural Effusion Pleural Other Fracture Support Devices

Enlarged Cardiomediastinum 1.000 0.254 0.353 0.056 0.173 0.078 0.076 0.349 0.093 0.391 0.017 0.032 0.527

Cardiomegaly 0.041 1.000 0.263 0.021 0.246 0.059 0.079 0.316 0.044 0.400 0.012 0.022 0.477

Lung Opacity 0.050 0.231 1.000 0.059 0.157 0.057 0.166 0.278 0.047 0.343 0.015 0.019 0.381

Lung Lesion 0.063 0.145 0.466 1.000 0.073 0.082 0.115 0.194 0.049 0.284 0.026 0.017 0.228

Edema 0.046 0.410 0.297 0.017 1.000 0.092 0.116 0.257 0.029 0.531 0.008 0.012 0.440

Consolidation 0.052 0.245 0.271 0.049 0.231 1.000 0.224 0.230 0.057 0.532 0.010 0.016 0.525

Pneumonia 0.033 0.212 0.505 0.044 0.186 0.143 1.000 0.222 0.018 0.307 0.012 0.012 0.285

Atelectasis 0.055 0.311 0.311 0.027 0.152 0.054 0.082 1.000 0.068 0.501 0.007 0.024 0.471

Pneumothorax 0.063 0.186 0.224 0.030 0.073 0.057 0.028 0.291 1.000 0.332 0.011 0.047 0.602

Pleural Effusion 0.052 0.333 0.325 0.034 0.266 0.106 0.096 0.423 0.066 1.000 0.010 0.021 0.481

Pleural Other 0.061 0.267 0.402 0.084 0.108 0.057 0.102 0.159 0.062 0.281 1.000 0.077 0.321

Fracture 0.050 0.211 0.213 0.024 0.073 0.038 0.044 0.239 0.109 0.243 0.033 1.000 0.304

Support Devices 0.066 0.372 0.338 0.025 0.206 0.098 0.083 0.373 0.112 0.450 0.011 0.024 1.000

Table 8: Positive dependency (co-prevalence) matrix for labels in the CheXpert dataset.

Atelectasis Cardiomegaly Consolidation Edema Enlarged Cardiomediastinum Fracture Lung Lesion Lung Opacity Pneumonia Pneumothorax Pleural Effusion

Atelectasis 1.000 0.107 0.055 0.056 0.048 0.053 0.056 0.414 0.033 0.084 0.471

Cardiomegaly 0.118 1.000 0.049 0.192 0.101 0.039 0.050 0.354 0.030 0.023 0.354

Consolidation 0.118 0.095 1.000 0.047 0.042 0.024 0.100 0.384 0.128 0.036 0.426

Edema 0.105 0.327 0.041 1.000 0.042 0.019 0.042 0.431 0.045 0.024 0.483

Enlarged Cardiomediastinum 0.107 0.205 0.044 0.050 1.000 0.045 0.086 0.343 0.017 0.049 0.258

Fracture 0.119 0.079 0.026 0.023 0.046 1.000 0.068 0.284 0.014 0.054 0.193

Lung Lesion 0.085 0.068 0.071 0.033 0.058 0.045 1.000 0.533 0.063 0.054 0.323

Lung Opacity 0.136 0.106 0.059 0.076 0.051 0.041 0.116 1.000 0.072 0.062 0.384

Pneumonia 0.088 0.073 0.160 0.064 0.020 0.017 0.112 0.585 1.000 0.017 0.235

Pneumothorax 0.149 0.037 0.030 0.023 0.039 0.042 0.064 0.336 0.011 1.000 0.381

Pleural Effusion 0.186 0.127 0.079 0.102 0.046 0.034 0.085 0.463 0.035 0.085 1.000

equally well on either class, the balanced accuracy metric reduces

to the conventional accuracy (i.e., the number of correct predictions

divided by the total number of predictions).

The Area-Under-the-Curve (AUC) refers to the area under the

receiver operating characteristic (ROC) curve. The ROC curve plots

the TP rate against the FP rate. The AUC can be interpreted as

the probability that the model ranks a random positive example

more highly than a random negative example. We use the method

sklearn.metrics.roc_auc_score from [39] to compute the AUC per

label which we then average over all of the labels. The AUC metric

is useful in that it does not depend on the classification threshold

used.

TheMean Average Precision metric (MAP) is the mean of the aver-

age precision of the model over all classes. The average precision for

each class is found as the area under the precision-recall curve. The

full code showing the functions for MAP and AP can be found in our

code at /datasets/deprecated/coco/helper_functions/helper_functions.py
which was originally written for [5].
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Table 9: Positive dependency (co-prevalence) matrix for labels in the PadChest dataset.

Atelectasis Cardiomegaly Consolidation Edema Effusion Emphysema Fibrosis Fracture Hernia Infiltration Mass Nodule Pleural Thickening Pneumonia Pneumothorax

Atelectasis 1.000 0.130 0.018 0.002 0.138 0.013 0.005 0.041 0.023 0.171 0.019 0.045 0.041 0.074 0.005

Cardiomegaly 0.062 1.000 0.010 0.011 0.077 0.002 0.013 0.035 0.031 0.129 0.007 0.028 0.036 0.029 0.001

Consolidation 0.071 0.081 1.000 0.005 0.227 0.013 0.009 0.032 0.009 1.000 0.018 0.065 0.018 0.452 0.004

Edema 0.036 0.462 0.025 1.000 0.416 0.000 0.010 0.015 0.010 0.736 0.015 0.030 0.041 0.137 0.005

Effusion 0.165 0.194 0.068 0.025 1.000 0.013 0.007 0.053 0.008 0.301 0.028 0.064 0.043 0.095 0.007

Emphysema 0.055 0.015 0.014 0.000 0.049 1.000 0.015 0.048 0.007 0.145 0.018 0.077 0.102 0.054 0.015

Fibrosis 0.030 0.159 0.013 0.003 0.037 0.021 1.000 0.037 0.039 0.569 0.009 0.043 0.085 0.036 0.003

Fracture 0.063 0.113 0.012 0.001 0.068 0.017 0.010 1.000 0.030 0.084 0.011 0.058 0.058 0.026 0.007

Hernia 0.062 0.174 0.006 0.001 0.018 0.004 0.018 0.053 1.000 0.073 0.063 0.043 0.049 0.014 0.001

Infiltration 0.088 0.140 0.129 0.019 0.130 0.017 0.049 0.028 0.014 1.000 0.012 0.067 0.043 0.292 0.004

Mass 0.093 0.071 0.022 0.004 0.115 0.020 0.007 0.035 0.115 0.117 1.000 0.125 0.030 0.071 0.015

Nodule 0.049 0.064 0.018 0.002 0.058 0.019 0.008 0.041 0.017 0.142 0.028 1.000 0.063 0.070 0.005

Pleural Thickening 0.051 0.095 0.006 0.003 0.045 0.029 0.018 0.048 0.023 0.104 0.008 0.072 1.000 0.035 0.003

Pneumonia 0.086 0.071 0.133 0.008 0.093 0.014 0.007 0.020 0.006 0.665 0.017 0.075 0.033 1.000 0.000

Pneumothorax 0.081 0.027 0.018 0.004 0.108 0.063 0.009 0.085 0.004 0.130 0.054 0.076 0.036 0.000 1.000

Table 10: Exploit label dependencies for the multi-label classification.

# ofqeries answered ACC BAC AUC MAP

Answer all labels 35 0.84 0.82 0.82 0.64
Increse privacy noise 127 0.63 0.61 0.61 0.44

Exploit negative dependencies 127 0.68 0.72 0.72 0.48

Figure 7: The label distribution for each multi-label dataset (Pascal VOC, CheXpert, MIMIC-CXR, and PadChest).

For a comprehensive evaluation of different algorithms, it is a

common practice to test their performance on various measures

and a better algorithm is the one that performs well on most of the

measures [47].

In the code, we followed the evaluation procedure from [5] and

also computed these metrics: true-positives, false-positives, false-

negatives, true-negatives, average per-Class precision (CP), recall

(CR), F1 (CF1), and the average Overall precision (OP), recall (OR)

and F1 (OF1).

E EXPERIMENTAL DETAILS

Our experimentswere performed onmachineswith Intel®Xeon®Silver

4210 processor, 128 GB of RAM, and four NVIDIA GeForce RTX

2080 graphics cards, running Ubuntu 18.04.

We train ResNet-50 [25] models on the Pascal VOC 2012 [22]

dataset by minimizing multi-label soft margin loss function in 1000

epochs. As the optimiser, we use SGDwith learning rate and weight

decay of 0.001 and 1e − 4, respectively. We split the 5, 717 images

of the training set to 50 private training sets in order to train 50

Pascal VOC teacher models.
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We train the medical datasets CheXpert, MIMIC-CXR, and Pad-

Chest using the standard DenseNet-121 architecture trained for

100 epochs, with a weight decay of 1e − 5 and the Adam optimizer

(learning rate=0.001) with the adam_amsgrad paremeter set. We

reduce the learning rate when it plateaus, batch size is 64. The loss

type is BCE (Binary Cross Entropy) with logits, and probability

threshold is adjusted per label (where the standard value is 0.5). For

50 CheXpert models, each model is trained on 3750 private train

samples. PadChest uses 9223 private samples per each of 10 teacher

models.

Regarding the metrics, balanced accuracy (BAC), area under the

curve (AUC), and mean average precision are common metrics used

to asses performance of the multi-label classification [5]. Note that

because we are in a sparse-hot multi-label setting (where a sample

has many 0’s - negative labels) the accuracy is not a preferred metric

because a model can achieve high accuracy by returning all 0’s; we

include the accuracy metric for completeness.

For our CaPC experiments, we sample uniformly, without

replacement, data points from the respective training data distribu-

tion to create disjoint partitions Di of equal size for each party i .
We use 50 total parties for Pascal VOC, CheXpert, and MIMIC-CXR,

as well as 10 for PadChest; this choice depended on the sizes of

the datasets and the performance of the models on the resulting

partitioned data (here, we ensured no single model dropped below

60% BAC). We use Q = 3 querying parties and sample (without

replacement) at least 1000 data points from the test distribution to

form the unlabeled set for each querying party. We leave at least

1000 held-out data points for evaluating models. We first train party

i’s model on their private data Di , then simulate multi-label CaPC

learning by having each querying party complete the protocol with

all other parties as answering parties. Using the new labelled data

provided by multi-label CaPC, we retrain each querying party’s

model on their original data Di plus the new labelled data. We

average metrics over at least 3 runs with each using a different

random seed.

F ADDITIONAL EXPERIMENTS

F.1 Powerset with τ -voting
The integration of τ -voting into the Powerset methods does not

lower the sensitivity of the mechanism because changing one of

the teachers potentially decreases the vote count from one class

and increase it in another one. Thus, the sensitivity remains 2.

Intuitively, up to τ positive labels could be selected based on

the confidence of the positive value for a label, where we would

choose the top τ labels with the highest confidence of being positive.
However, given that most deep multi-label models use indepen-

dent predictive heads (i.e., a separate sigmoid activation per output

label), naively comparing these values may not lead to the best

performance. Thus, no clear notion of what the desired subset is in

the case that > τ candidates are present.

For the Pascal VOC dataset, we set the same threshold of 0.5

probability per label, so the prediction heads for each label are

aligned. For the CheXpert dataset, different probability thresholds

are set per label, so the problem of deciding which of the labels

should remain positive (if there are more positive labels than the

max τ of positive labels) is difficult to resolve. This would likely

require some form of domain knowledge.

For the original train set of the Pascal VOC dataset (with 5823

samples), the average number of positive labels per example is 1.52,

with 20 total labels. More detailed statistics on the train set are

presented in Table 13.

When the τ -voting is applied with the fixed privacy budget, we

are able to answer more queries, while the performance metrics

(e.g., accuracy) remain comparable. When the initial number of

labels is set to k = 5, for τ = 2 the number of classes is 16 instead

of 32 (τ = 5, which is equivalent to no clipping) and we are able

to answer 5% more queries, for τ = 1, we have only 6 classes and

almost 14% more answered queries. For τ = 5 there is only 1 more

class than for τ = 4 and we observe a very small difference in the

number of answered queries (namely 8). The number of answered

queries using the Binary method is still higher than with Powerset

even when τ = 1 (the number of classes is C = k + 1).

We present performance of Powerset PATE with τ -clipping w.r.t.
number of answered queries in Table 15.

F.2 DPSGD vs PATE on CheXpert: Setup

The Adaptive DPSGD method from [48] does not publish the code,

thus the following is our best effort and the results for Adaptive

DPSGD come from Figure 5 in [48].We use the following parameters

to obtain our results for the Binary multi-label PATE:

sigma gnmax = 7.0
sigma threshold = 0
threshold = 0
method = multilabel
batch size = 20
learning rate = 0.001
epochs = 100
weight decay = 0
X-ray views = ['AP', 'PA']
Multilabel_prob_threshold = [
0.53, 0.5, 0.18, 0.56, 0.56]

F.2.1 CDF of Gaps. We show the Cumulative Distribution Func-

tion (CDF) for the gaps in Figure 8. We observe that the ensemble

of teachers is confident about the answers for most labels for the

Binary PATE and there are very small gaps for most queries when

using Powerset PATE, which showsmuch lower confidence of teach-

ers in choosing the same (super) classes, which are created from

aggregated label predictions (the values of the labels are collected

in a binary vector that constitutes a class).

F.2.2 Gaps and Performance Metrics. With more labels for the

Powerset method, we have more possible classes and the votes

become more spread out. This can be measured by the gap, which

is the difference between the maximum number of votes per class

and the runner-up (the number of votes for the next class with

the highest number of votes). In Figures 9 and 10, we plot the

average gap (on the y-axis) for the test set across all histograms

for a given number of labels (presented on the x-axis). We compare

the Powerset PATE (denoted as Powerset) vs the Binary PATE

per label (denoted as Binary). The average gap between votes is

comparable for different number of labels of Binary PATE since this
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Table 11: Pascal VOC: Performance of Binary PATE vs Powerset PATE w.r.t. number of answered queries, ACC, BAC, AUC, and

MAP as measured on the test set with the specified σGNMax. PB (ε) is the privacy budget. We use 50 teacher models. When we

limit number of labels per dataset, we select the first k labels.

Dataset Mode

# of

Labels

Queries

answered PB (ε ) σGNMax ACC BAC AUC MAP

Pascal VOC Binary 1 5464 20 2 .98 .84 .84 .75

Pascal VOC Powerset 1 5464 20 2 .98 .84 .84 .75

Pascal VOC Binary 2 5442 20 5 .97 .74 .74 .54

Pascal VOC Powerset 2 5464 20 5 .97 .74 .74 .55

Pascal VOC Binary 3 3437 20 7 .97 .72 .72 .51

Pascal VOC Powerset 3 3416 20 7 .97 .72 .72 .51

Pascal VOC Binary 5 2398 20 8 .96 .66 .66 .39

Pascal VOC Powerset 5 2040 20 8 .96 .65 .65 .33

Pascal VOC Binary 8 1543 20 7 .96 .69 .69 .46

Pascal VOC Powerset 8 1192 20 7 .95 .68 .68 .37

Pascal VOC Binary 11 1190 20 11 .95 .66 .66 .37

Pascal VOC Powerset 11 702 20 4 .95 .66 .66 .37

Pascal VOC Binary 14 888 20 12 .95 .65 .65 .36

Pascal VOC Powerset 14 417 20 3 .95 .65 .65 .37

Pascal VOC Binary 15 465 20 8 .94 .66 .66 .36

Pascal VOC Powerset 15 165 20 3 .94 .66 .66 .36

Pascal VOC Binary 16 461 20 7 .95 .65 .65 .38

Pascal VOC Powerset 16 94 20 2 .95 .65 .65 .38

Pascal VOC Binary 18 446 20 2 .95 .65 .65 .36

Pascal VOC Powerset 18 94 20 2 .95 .65 .65 .36

Pascal VOC Binary 20 427 20 7 .95 .65 .65 .37

Pascal VOC Powerset 20 78 20 2 .95 .65 .65 .33

Figure 8: Binary vs Powerset PATE: CDF of gaps (differences

between vote counts). We use 50 teacher models trained on

the Pascal VOC and CheXpert datasets. These are raw gaps

without adding any noise to the vote histograms.Most of the

gaps are relatively large (> 40) for the Binary PATE per label,

which shows that teachers are confident about the answers

to queries. The average gap for the Powerset method is rela-

tively low (only 18 for Pascal VOC and 13 for CheXpert).

method considers each label separately and there are always only

two classes. The average gap between votes decreases very fast for

Powerset because of the exponential growth of number of classes

with more labels considered. Additionally, the performance metrics:

acc (accuracy), bac (balanced accuracy), area under the curve (auc),

and mean average precision (map), are also higher for the Binary

than Powerset method in case of CheXpert dataset and comparable

for Pascal VOC.

F.3 General Tuning of Hyper-Parameters

We set the hyper-parameters by considering the utility and privacy

of our proposed method. Based on Lemma 3.2, we minimize the

privacy budget by maximizing the σ parameter of the Gaussian

noise and minimizing the τ parameters. In Figure 1, we tune the

value of the σ parameter of the Gaussian noise based on the utility

metrics: accuracy (ACC), balanced accuracy (BAC), mean average

precision (MAP). We set σ as 9, 10, and 7 for Pascal VOC, MIMIC,

and CheXpert datasets, respectively. This allows us to answer many

queries with high performance in terms of ACC, BAC, and MAP.

Similarly, we tune the τ values for ℓ2 norm in Figure 11 and for

ℓ1 norm in Figure 12.

Regarding the values of parameters σG ,T , and σT , we follow the

original work on PATE [35] and perform a grid search over a range

of plausible values for each of the hyper-parameters.

The detailed analysis of tuning the hyper-parameters are for: τ -s
in Section F.4, σG in Section F.5, PATE’s thresholding (T , and σT )
in Section F.6, and probability thresholds in Section F.8.

F.4 Tuning τ -Clipping
We determine the minimum value of τ for clipping in ℓ2 and ℓ1
norms for each dataset so that the performance as measured by ac-

curacy, BAC, AUC, and MAP, is preserved. We present the analysis

in Figures 11 and 12.

F.5 Tuning σGNMax

We determine how much of the privacy noise, expressed as the

scale of Gaussian noise σ , can be added so that the performance
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Table 12: CheXpert: Performance of Binary PATE vs Powerset PATE w.r.t. number of answered queries, ACC, BAC, AUC, and

MAP (as measured on the test set with the specified σGNMax. PB (ε) is the privacy budget. We use 50 teacher models. When we

limit number of labels per dataset, we select the first k labels.

Dataset Mode

# of

Labels

Queries

answered PB (ε ) σGNMax ACC BAC AUC MAP

CheXpert Binary 1 988 20 8 .71 .71 .71 .63

CheXpert Powerset 1 988 20 8 .71 .71 .71 .63

CheXpert Binary 2 898 20 18 .73 .72 .72 .62

CheXpert Powerset 2 872 20 12 .72 .72 .72 .60

CheXpert Binary 3 399 20 13 .75 .77 .77 .55

CheXpert Powerset 3 674 20 10 .74 .76 .76 .55

CheXpert Binary 4 554 20 17 .74 .75 .75 .60

CheXpert Powerset 4 323 20 5 .76 .78 .78 .60

CheXpert Binary 5 320 20 17 .74 .76 .76 .59

CheXpert Binary 5 932 20 29 .70 .70 .70 .54

CheXpert Powerset 5 582 20 10 .74 .76 .76 .54

CheXpert Binary 6 299 20 18 .74 .75 .75 .56

CheXpert Powerset 6 392 20 7 .74 .75 .75 .55

CheXpert Binary 7 157 20 12 .73 .74 .74 .51

CheXpert Powerset 7 338 20 7 .73 .72 .72 .51

CheXpert Binary 8 145 20 13 .73 .73 .73 .51

CheXpert Powerset 8 200 20 5 .73 .71 .71 .50

CheXpert Binary 9 159 20 16 .71 .70 .70 .50

CheXpert Powerset 9 241 20 6 .71 .70 .70 .50

CheXpert Binary 10 105 20 11 .74 .72 .72 .50

CheXpert Powerset 10 146 20 4 .73 .71 .71 .50

CheXpert Binary 11 201 20 5 .71 .68 .68 .45

CheXpert Powerset 11 152 20 20 .71 .68 .68 .44

Table 13: Statistics about the positive labels per data point in

the Pascal VOC dataset.

# of positive labels # of train samples

6 1

5 17

4 105

3 484

2 1677

1 3539

0 0

Table 14: Parameter δ vs the number of answered queries.

We show how the number of answered queries decreases

gradually with orders of magnitude lower δ values for the

PascalVOC dataset with ε = 16,σGNMax = 9.

δ value for (ε , δ )-DP # of answeredqeries

10
−5

170

10
−6

158

10
−7

151

10
−8

139

as measured by accuracy, BAC, AUC, and MAP, is preserved. The

experiment is run using the binary PATE per label and presented

in Figure 13.

F.6 Tuning PATE

There are three parameters to tune: the differential privacy Gauss-

ian noise standard deviation σG , the count threshold T , and the

thresholding Gaussian noise standard deviation σT . We first disable

the thresholding (σT and T ) and tune σG to achieve a high BAC

of the noisy ensemble while maximizing the number of answered

queries. In Figure 18 we tune the σG parameter from PATE for

different configurations of retraining. The goal is to maintain a

high accuracy while selecting σG with high value so that as many

queries as possible are answered. After tuning σG , we grid-search
σT and T . Thresholding is useful if we want to add a relatively

small amount of Gaussian noise (σG ) in the noisy max. For example,

for σG = 7 and 50 teacher models trained on CheXpert, the maxi-

mum number of labels answered without thresholding is 737 (67

queries) with a BAC above 0.69. With thresholding, e.g., at T = 50

and σT = 30, we can answer an average of 756 labels, up to 834. A

well tuned threshold can also help reduce σG , which is the major

influencing factor on the final BA of the noisy ensemble. Note that

tuning the threshold benefits from a confident ensemble: here, we

find the ensemble is often confident with a positive-negative vote

difference of 40 of max 49. Also note that the BAC can be higher

on easier queries.

F.7 Compare Different Methods

In Figure 14, we directly compare the Binary PATE (denoted as

PATE), τ -PATE, and clipping in ℓ2 and ℓ1 norms. The error regions

are for the three querying parties.
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Table 15: Pascal VOC: Performance of Powerset PATE with τ -clipping w.r.t. number of answered queries with the specified

σGNMax. The ACC, BAC, AUC, and MAP are measured on the answered queries from the test set. PB (ε) is the privacy budget.

Weuse 50 teachermodels.Whenwe limit the number of labels per dataset, we select the firstk labels. The τ denotes amaximum

number of positive labels that a teacher is allowed to return per data sample.

# of

Labels τ
Queries

answered PB (ε ) σGNMax ACC BAC AUC MAP

1 1 5464 20 2 .98 .84 .84 .75

2 1 5464 20 5 .97 .75 .75 .55

2 2 5464 20 5 .97 .74 .74 .55

3 1 3437 20 7 .97 .71 .71 .48

3 2 3421 20 7 .97 .71 .71 .49

3 3 3416 20 7 .97 .72 .72 .51

4 1 2547 20 7 .97 .68 .68 .43

4 2 2527 20 7 .97 .69 .69 .43

4 3 2485 20 7 .97 .69 .69 .43

4 4 2485 20 7 .97 .69 .69 .43

5 1 2321 20 8 .96 .65 .65 .36

5 2 2151 20 8 .96 .65 .65 .34

5 3 2077 20 8 .96 .65 .65 .34

5 4 2048 20 8 .96 .65 .65 .33

5 5 2040 20 8 .96 .65 .65 .33

8 8 1192 20 7 .95 .68 .68 .37

10 1 947 20 5 .97 .65 .65 .36

10 2 896 20 5 .96 .65 .65 .36

10 3 895 20 5 .96 .65 .65 .33

10 4 885 20 5 .96 .65 .65 .33

10 5 877 20 5 .96 .65 .65 .33

10 6 861 20 5 .96 .64 .64 .30

10 7 849 20 5 .96 .64 .64 .29

10 8 848 20 5 .96 .66 .66 .34

10 9 848 20 5 .96 .64 .64 .32

10 10 848 20 5 .96 .64 .64 .30

11 11 702 20 4 .95 .66 .66 .37

14 14 417 20 3 .95 .65 .65 .37

15 15 165 20 3 .94 .66 .66 .36

16 16 94 20 2 .95 .65 .65 .38

18 18 94 20 2 .95 .65 .65 .36

20 1 111 20 2 .95 .63 .63 .33

20 2 99 20 2 .96 .67 .67 .41

20 3 81 20 2 .96 .61 .61 .32

20 4 78 20 2 .96 .63 .63 .33

20 5 78 20 2 .96 .63 .63 .34

20 10 78 20 2 .95 .65 .65 .34

20 20 78 20 2 .95 .65 .65 .33

In Table 17, we show the performance of the retrained models

when using CaPC with various privacy budgets ε . In Figure 15 we

show the detailed per label change in BAC for the retraining with

privacy budget ε = 10. We observe an increase in average BA by

around 0.03 after retraining when the privacy budget is set to ε = 10.

We present detailed analysis of the Binary PATE performance in

Table 3 on the Pascal VOC dataset when selecting the privacy budget

ε in the range from 1 to 20. The number of answered queries is

proportional to the square of the privacy budget.

We also compare the performance after re-training with and

without the (confidence) thresholding mechanism used in PATE

(represented by σT and thresholdT parameters). We observe that in

case of the medical datasets, there can be a slightly higher increase

of the metrics (accuracy, BAC, AUC,MAP), whenwe do not perform

the thresholding. For example, for the CheXpert dataset, when

thresholding is not used, the improvement is higher by about one

percentage point across all metrics when compared to the option

with thresholding. For PadChest, such increase is for AUC andMAP,

for BAC we see a drop by one percentage point, and there is no

difference in terms of accuracy (remains at the level of about 0.86).

This requires further investigation. Intuitively, we observe that the

metrics can increase substantially with thresholding for the labels

(pathologies) that are easy to classify. However, the most difficult to

predict pathologies are left without answer and no improvement is

made on them. On the other hand, without thresholding, we have

to answer all labels and correct predictions on the hardest labels

can produce substantial improvement in the classification of these

hard labels.
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Figure 9: Binary vs Powerset PATE: gaps and metrics for Pascal VOC. We use 50 teacher models. These are raw gaps without

adding any noise to the vote histograms.

F.8 Tuning Probability Threshold

We tune the global (applied to all labels) probability threshold γ
that determines if a given probability denotes positive (P > γ ),
or a negative (P ≤ γ ) vote. The best global γ for the 50 models

trained on the CheXpert dataset is 0.32 with the balanced accuracy

of 0.702 and the µ value of 0.45, where µ is the average probability

of predictions after applying the element-wise sigmoid function to

the logits.

We also tune the γ threshold per label for CheXpert. We find the

following probability thresholds per label using the validation set on

the ensemble: 0.53, 0.5, 0.18, 0.56, 0.56, 0.21, 0.23, 0.46, 0.7, 0.2, 0.32.

Next, we select the 3 teacher models with the lowest BAC and re-

train themwith CaPC. The average metrics BAC, AUC, andMAP be-

fore retraining are 0.63, 0.70, 0.53, and after retraining, we observe

a significant improvement to 0.68, 0.75, 0.58, respectively. Thus, the

value for each metric increases by around 0.05. We find the biggest

performance improvement for these weakest models after learning

from better teachers and retraining. We present detailed results per

label and for BA as well as AUC metrics in Figure 17.

F.9 New Data Independent Bound

We also proved a new data-independent bound that achieves tighter

guarantees (Lemma 3.2). The results for the method are displayed

in Figure 4 under the label L2-DI, which denotes ℓ2-norm τ clipping

of the ballots. L2-DI can be compared with the Binary PATE data-

dependent analysis, which is under the label Binary PATE. For the

data sets like Pascal VOC, on which we achieve higher value of

the metrics (Accuracy (ACC) 94%, BAC 64%, AUC 89%, MAP 55%),

the data-dependent analysis allows us to release around 3.5x more

queries (427 queries whereas the data-independent one only 123

queries, with all the parameters, such as amount of Gaussian noise

added, being equal). On the other hand, for the data sets like MIMIC
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Figure 10: Binary vs Powerset PATE: gaps and metrics for CheXpert. We use 50 teacher models. These are raw gaps without

adding any noise to the vote histograms.

with lower performance on the metrics (Accuracy (ACC) 85%, BAC

64%, AUC 79%, MAP 45%), the difference is less pronounced and

the data-dependent analysis allows us to release around 1.9x more

queries (94 queries whereas the data-independent one releases 48

queries).

F.10 Cross-Domain Retraining

In real-world healthcare scenarios, there are often rare diseases that

may be difficult to accurately model with machine learning. Even

coalitions of hospitals sharing similar data distributions of the same

domain may not see benefits, due to poor aggregate performance.

However, cross-domain collaboration throughmulti-label CaPC can

help improve performance in these cases. The hospital annotation

discrepancies may pose barriers: here, we simulate this by the

different X-ray image labels between PadChest and CheXpert (see

Supplement Section C).

To overcome this, we take the union of labels between the medi-

cal datasets and follow the experimental setup of [13]. We observe

poor performing models on the PadChest dataset, with a low av-

erage performance of BAC = 0.57. Because of this, the benefits

of multi-label CaPC within this coalition of hospitals are limited,

since the ensemble is only marginally better. However, if this group

of hospitals collaborated with another from a different but related

domain, here represented by CheXpert, theymay be able to see addi-

tional benefits. The models trained on this dataset achieve a higher

BA (particularly on the first 5 shared pathologies as presented in

Figure 16). Thus, the ensemble of all models engages in multi-label

CaPC, and the models trained on CheXpert act as answering par-

ties to provide labels for querying parties from PadChest. Using a

σG = 9, T = 50, and σT = 30, we observe a higher BAC on all of

those 5 pathologies, where we do not see a significant decrease on
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Table 16: Performance of multi-label CaPC w.r.t. ACC, BAC, AUC, and MAP, on Pascal VOC (PA), CheXpert (CX), MIMIC (MC),

and PadChest (PC). (-) denotes N/A. PB (ε) is the privacy budget.

Dataset

# of

Models State PB (ε ) ACC BAC AUC MAP

PA

1 Initial - .97 .85 .97 .85

50 Before CaPC - .93±.02 .59±.01 .88±.01 .54±.01

50 After CaPC 10 .94±.01 .62±.01 .88±.01 .54±.01

50 After CaPC 20 .94±.01 .64±.01 .89±.01 .55±.01

CX

1 Initial - .79 .78 .86 .72

50 Before CaPC - .77±.06 .66±.02 .75±.02 .58±.02

50 After CaPC 20 .76±.07 .69±.01 .77±.01 .59±.01

MC

1 Initial - .90 .74 .84 .51

50 Before CaPC - .84±.07 .63±.03 .78±.03 .43±.02

50 After CaPC 20 .85±.05 .64±.01 .79±.01 .45±.03

PC

1 Initial - .86 .79 .90 .37

10 Before CaPC - .90±.01 .64±.01 .79±.01 .16±.01

10 After CaPC 20 .88±.01 .64±.01 .75±.01 .14±.01

Table 17: Performance of multi-label CaPC with τ -PATE w.r.t. ACC, BAC, AUC, and MAP, on Pascal VOC (PA), CheXpert

(CX), MIMIC (MC), and PadChest (PC). (-) denotes N/A. PB (ε) is the privacy budget. T (Y/N) in the table refers to the PATE

thresholding i.e. corresponding to the parametersT andσT beingused (Y) or not used (N). Note that the probability thresholding

per layer was used in these experiments (as described in Section F.8).

Dataset

# of

Models State T(Y/N) PB (ε ) ACC BAC AUC MAP

PA

1 Initial - - .88 .97 .91

50 Before CaPC - - .93±.01 .59±.01 .89±.01 .54±.02

50 After CaPC N 20 .94±.01 .60±.01 .89±.01 .54±.02

CX

1 Initial - - .79 .78 .86 .72

50 Before CaPC - - .75±.02 .69±.01 .77±.01 .59±.01

50 After CaPC Y 20 .73±.01 .69±.01 .76±.01 .59±.01

50 After CaPC N 20 .74±.01 .70±.01 .77±.01 .59±.01

MC

1 Initial - - .90 .74 .84 .51

50 Before CaPC - - .84±.07 .63±.03 .78±.03 .43±.02

50 After CaPC Y 20 .84±.02 .64±.04 .77±.02 .44±.01

PC

1 Initial - - .86 .79 .90 .37

10 Before CaPC - - .82±.01 .64±.01 .79±.01 .17±.01

10 After CaPC Y 20 .86±.04 .61±.01 .71±.03 .14±.02

10 After CaPC N 20 .86±.02 .60±.01 .72±.02 .15±.03

the other pathologies. Thus, multi-label CaPC provided benefits for

the PadChest models in this cross-domain scenario.

G PREVIOUS ALGORITHM FOR THE

MULTI-LABEL CLASSIFICATION

For completeness, we present the previously proposed algorithm 2

from [51].

H DATA-DEPENDENT PRIVACY ANALYSIS

Our binary voting mechanism does leverage both the smooth sensi-

tivity and propose-test-release methods. For example, the Confident

GNMax (proposed by [36]) is a form of the propose-test-release

method described in Section 3.2 in [45].

First explored by [14], differential privacy guarantees can

be data-dependent. These guarantees can lead to better utility

with a long history, with several works using them [12, 14, 35, 36].

One main caveat is that the released epsilon score must now also be

noised because it is itself a function of the data. [36] provide a way

to do this via the smooth sensitivity (Section B in Appendix). Indeed

our data-dependent differential privacy guarantees are formally

proven and are based on the following intuition. Take the expo-

nential mechanism which gives a uniform privacy guarantee. For

instance, when the top score and the second score are very close,

applying the exponential mechanism to this data there is a nearly

uniform chance of picking either coordinate. However, for some

inputs, the utility can be very strong—when the top score is much

higher than the second score, then this mechanism is exponentially

more likely to pick the top score than the second. This does not

require local sensitivity of stability based methods, but is rather

derived from the likelihood of picking either coordinate for this

mechanism given the gap in the scores.
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Figure 11: Value of the metric vs τ -clipping of votes in ℓ2
norm. For a given τ , we plot accuracy (ACC), balanced accu-

racy (BAC), and mean average precision (MAP).

Figure 12: Value of the metric vs τ -clipping of votes in ℓ1
norm. For a given τ , we plot accuracy (ACC), balanced accu-

racy (BAC), and mean average precision (MAP).

I FROM STIRLING’S APPROXIMATION TO

UPPER BOUND OF FACTORIAL

Stirling’s approximation:

√
2πn(n/e)n ≤ n! ≤ e1/12n√

2πn(n/e)n

Algorithm 2 Multi-label classification with τ -clipping in ℓ1-norm

from Private kNN by [51].

Input: Data point x , clipping threshold τ1, Gaussian noise scale

σG , n teachers, each with model fj (x) ∈ {0, 1}
k
, where j ∈ [n].

Output: Aggregated vector V ∈ {0, 1}k with Vi = 1 if returned

label present, otherwise Vi = 0, where i ∈ [k].

1: for all teachers j ∈ [n] do
2: vj ← min(1, τ1

∥fj (x )∥
1

)fj (x) ▷ τ -clipping in ℓ1 norm

3: V 1 =
∑n
j=1

vj ▷ Number of positive votes per label

4: V 0 = n −V 1

5: V 0 ← V 0 +N(0,σG ) ▷ Add Gaussian noise for privacy

protection

6: V 1 ← V 1 +N(0,σG )
7: for all labels i ∈ [k] do
8: if V 1

i > V
0

i then ▷ Decide on the output vote

9: Vi = 1

10: else

11: Vi = 0
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Figure 13: Value of the metric versus noise standard deviation σ . For a given σ , we plot accuracy (ACC), balanced accuracy

(BAC), and mean average precision (MAP).

Table 18: Model improvements through retraining with multi-label CaPC. DD - denotes Data Dependent. We also present the

results with sanitized epsilon values.

Dataset

# of

Models State

DD

ε
Sanitized

ε ACC BAC AUC MAP

Pascal VOC

1 Initial - - .97 .85 .97 .85

50 Before CaPC - .93±.02 .59±.01 .88±.01 .54±.01

50 After CaPC 10 12.97 .94±.01 .62±.01 .88±.01 .54±.01

50 After CaPC 20 26.00 .94±.01 .64±.01 .89±.01 .55±.01

CheXpert

1 Initial - .79 .78 .86 .72

50 Before CaPC - - .77±.06 .66±.02 .75±.02 .58±.02

50 After CaPC 20 25.80 .76±.07 .69±.01 .77±.01 .59±.01

MIMIC

1 Initial - - .90 .74 .84 .51

50 Before CaPC - - .84±.07 .63±.03 .78±.03 .43±.02

50 After CaPC 20 25.80 .85±.05 .64±.01 .79±.01 .45±.03

PadChest

1 Initial - - .86 .79 .90 .37

10 Before CaPC - - .90±.01 .64±.01 .79±.01 .16±.01

10 After CaPC 20 25.80 .88±.01 .64±.01 .75±.01 .14±.01

Figure 14: Compare methods: number of answered queries

vs σ - using the Pascal VOC dataset, with τ1 = 3.4 (set for

ℓ1−norm clipping, and τ2 = 1.8 set for τ -PATE and ℓ2−norm

clipping. The red vertical line denotes the selected value of

σ .

Figure 15: Retraining with privacy budget ε = 10 for the Pas-

cal VOC dataset.
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Figure 16: Cross-domain retraining with CaPC. We train 10

models on PadChest (PC) and compare their performance

on PadChest test set against the ensemble of these models

(PC Ensemble), the ensemble of 50 CheXpert models (CX

Ensemble), and finally retrain the 10 PadChest models via

binary multi-label PATE using the CheXpert ensemble (af-

ter CaPC on CX).
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Figure 17: Using CaPC to improve the weakest models. Dashed lines represent mean values of the metrics: Balanced Accuracy
(BAC) and AUC. We retrain a given model using additional CheXpert data labelled by the ensemble of all the other models

trained on CheXpert. All metrics are improved after retraining by around 0.05 on average.

Figure 18: The analysis of the balanced accuracy (y-axis) of votes from the ensemble as we increase the (sigma of the Gaussian)

noise (x-axis) from the binary multi-label PATE. We search for variance of the noise σG that can preserve high BAC for the

ensemble. Left: 50 CheXpert models with train and test on CheXpert, σG ≤ 9.0 preserves more than 0.69 of BAC. Middle: 50

CheXpert models with train on CheXpert and test on PadChest test set, σG ≤ 9.0 preserves more than 0.75 of BAC. Right: 10

PadChest models with train and test on PadChest, σG ≤ 5.0 preserves more than 0.75 of BAC.
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