
Find thy neighbourhood: Privacy-preserving local clustering
Pranav Shriram A

National Institute of Technology
Tiruchirappalli

Tamil Nadu, India
pranavshriram99@gmail.com

Nishat Koti
Indian Institute of Science

Bangalore, India
kotis@iisc.ac.in

Varsha Bhat Kukkala
Indian Institute of Science

Bangalore, India
varshak@iisc.ac.in

Arpita Patra
Indian Institute of Science

Bangalore, India
arpita@iisc.ac.in

Bhavish Raj Gopal
Indian Institute of Science

Bangalore, India
bhavishraj@iisc.ac.in

ABSTRACT
Identifying a cluster around a seed node in a graph, termed local
clustering, finds use in several applications, including fraud de-
tection, targeted advertising, community detection, etc. However,
performing local clustering is challenging when the graph is dis-
tributed among multiple data owners, which is further aggravated
by the privacy concerns that arise in disclosing their view of the
graph. This necessitates designing solutions for privacy-preserving
local clustering and is addressed for the first time in the literature.
We propose using the technique of secure multiparty computa-
tion (MPC) to achieve the same. Our local clustering algorithm is
based on the heat kernel PageRank (HKPR) metric, which produces
the best-known cluster quality. En route to our final solution, we
have two important steps: (i) designing data-oblivious equivalent
of the state-of-the-art algorithms for computing local clustering
and HKPR values, and (ii) compiling the data-oblivious algorithms
into its secure realisation via an MPC framework that supports
operations over fixed-point arithmetic representation such as multi-
plication and division. Keeping efficiency in mind for large graphs,
we choose the best-known honest-majority 3-party framework of
SWIFT (Koti et al., USENIX’21) and enhance it with some of the
necessary yet missing primitives, before using it for our purpose.
We benchmark the performance of our secure protocols, and the
reported run time showcases the practicality of the same. Further,
we perform extensive experiments to evaluate the accuracy loss of
our protocols. Compared to their cleartext counterparts, we observe
that the results are comparable and thus showcase the practicality
of the designed protocols.

KEYWORDS
privacy-preserving local clustering, privacy-preserving heat kernel
PageRank, secure multiparty computation

1 INTRODUCTION
Many real-world applications, such as communication networks,
traffic networks, social networks, etc., generate an enormous amount

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(2), 23–39
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0039

of unstructured data. A natural and conventional approach to model
such data is via graphs [57] owing to their highly expressive ca-
pabilities and ease of processing. Specifically, modelling a system
as a graph involves representing each entity as a node and captur-
ing their interactions as edges. Further, various techniques enable
deriving meaningful information about the modelled system. One
such useful approach is that of clustering, which allows analyz-
ing the topology of a graph to identify entities that are related
to each other [10, 21, 32, 46, 54]. At a high level, clustering is the
process of grouping together similar nodes in a graph and finds
use in several applications such as community detection in social
networks [26, 30, 45, 60], behavioural analysis [15, 36], structural
characterization of chemical networks [16, 25, 31, 51], etc.

Most clustering algorithms are designed to categorize every
node into its specific cluster, termed global clustering. However,
more often than not, one may be interested in identifying a local
cluster around a specific node. For example, consider the COVID-
19 contact network, where users are modelled as nodes, and their
interactions are modelled as edges. Identifying the close-knit cluster
around a user who has recently contracted the virus is important
and enables the implementation of preventive measures. A global
clustering algorithm may not correctly identify such a local cluster.
Other examples, where identifying a local cluster is of importance,
include targeted advertising [5], fraud detection [37], etc.

Graph-based local clustering algorithms in the literature [17, 34,
55, 56] assume that the topology of the graph is available in its
entirety. However, this may not always be the case. For instance,
as described earlier, contact networks may be held in a distributed
fashion where each node is aware only of its neighbouring nodes. In
general, the graph may be distributed across multiple data owners,
such that each of them is aware of only a subset of the edges
in the overall graph. Performing local clustering on distributed
graphs thus requires data owners to disclose their view of the graph.
However, data privacy concerns prevent them from doing so. Hence,
the distributed nature of the global graph clubbed with privacy
concerns makes it challenging to perform local clustering when
accounting for the entire graph topology. We illustrate the above
challenge with the help of a plausible use case of fraud detection.

Fraudulent account detection in banks. To closely monitor suspi-
cious accounts that could possibly be a part of fraudulent transac-
tions, consider the problem of computing a local cluster around a
given fraudulent account. Identifying such a cluster requires the par-
ticipation of multiple banks and cannot be performed locally by an

23

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0039

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

individual bank. For example, consider a fraudulent account AccX
in bank BankA. Note that AccX could have its accomplice (fraud-
ulent) accounts in other banks that could transact with AccX via
intermediate accounts to camouflage fraud. Hence, BankA cannot
locally determine the cluster around AccX, and may require inves-
tigating accounts that lie beyond the immediate neighbourhood
of AccX. Thus, to identify such fraudulent accounts, banks require
knowledge of the global transaction graph, where a node repre-
sents an account, and an edge captures the financial transaction
between the corresponding accounts. This global transaction graph
is distributed across multiple banks, with each bank being aware of
transactions pertaining to only its own accounts. Thus, identifying
the cluster requires cooperation from multiple banks. However,
banks may not wish to reveal their view of the transaction graph
to each other since it contains highly sensitive data. This motivates
the need for designing a privacy-preserving protocol that allows
computing a local cluster over the global transaction graph without
requiring the banks to reveal their view of the transactions.

Consequent to the above discussion, our goal is to perform lo-
cal clustering in a privacy-preserving manner. This will facilitate
multiple data owners to perform local clustering on a graph that
is held in a distributed fashion while ensuring that none of them
is required to disclose their data in the clear. To achieve this, we
rely on the technique of secure multiparty computation (MPC).
Informally, MPC enables a set of parties to compute a function on
their private inputs without leaking any information other than the
output of the computation. In our setting, the private input is the
graph (held distributedly) and a target seed node, while the output
comprises a local cluster around the seed node. Since real-world
graphs are massive, we focus on designing efficient solutions by
relying on the optimal setting of 3-party computation (3PC) with
honest-majority [27]. Further, we use the GraphSC paradigm [3, 44],
to enable efficient, secure computations over graphs.

1.1 Our contributions
Our primary objective is to provide a privacy-preserving solution
for local clustering, which is achieved for the first time. For this,
we design a secure protocol for the state-of-the-art (cleartext) algo-
rithm in [13]. This local clustering algorithm relies on heat kernel
PageRank (HKPR) metric to quantify the similarity of nodes and
thereby identify the cluster. Thus, a secure protocol for computing
local clustering demands a secure protocol for computing HKPR
values, which is also designed in our work. The state-of-the-art algo-
rithm of [59] forms the basis for our secure HKPR protocol. We refer
to §1.2 for justification of the choice of the cleartext algorithms.

To obtain as efficient a solution as possible, our protocols are
designed in the GraphSC paradigm [3, 44] that provides a generic
framework for evaluating message-passing graph algorithms se-
curely while ensuring efficiency through parallel computations.
At a high-level GraphSC paradigm works as follows. It takes as
input a message-passing graph algorithm which involves updating
data/state of the vertices in an iterative manner. Each round of the
message-passing algorithm is translated into the GraphSC para-
digm via the primitive operations of Scatter andGather. Informally,
Scatter involves propagating data computed at a vertex over its
outgoing edges. On the other hand, Gather involves aggregating
data present on the incoming edges into a vertex to update its state.

These Scatter-Gather primitives, when performed on the appro-
priate (sorted) list representation of the graph, aid in obtaining a
data-oblivious algorithm1. A secure realization of this algorithm via
MPC eventually yields a secure realization of the graph algorithm.
A discussion of the GraphSC paradigm is deferred to §2.3.

Given the above high-level idea, securely computing local clus-
tering and HKPR metric via GraphSC entails the following steps:
1 cleartext→message-passing algorithm: This involves identifying
components of the relevant cleartext algorithm that can benefit
from GraphSC and translating these to the message-passing para-
digm. This is non-trivial to achieve since the graph algorithm under
consideration may not lend itself as a message-passing one.
2 message-passing→ data-oblivious algorithm: This entails design-
ing a data-oblivious variant of the message-passing algorithm by
casting it in the GraphSC paradigm by defining the Scatter and
Gather primitives. We emphasize that since GraphSC is a generic
framework, it treats the operations within Scatter-Gather as a black-
box (see §2.3) in the process of designing a data-oblivious solution.
Hence, we define these specific to the considered graph algorithms.
Note that our definitions of Scatter-Gather do not follow trivially
and entail challenges as elaborated in §4.2, §5.2. Moreover, opera-
tions performed within Scatter-Gather should be defined carefully
since these directly impact the efficiency of the resulting protocol.
3 data-oblivious → secure protocol: This involves designing secure
protocols from the data-oblivious variant for which we rely on the
state-of-the-art robust 3PC of SWIFT [27]. However, the framework
of SWIFT lacks several essential primitives, such as division re-
quired for evaluating the local clustering algorithm in the GraphSC
paradigm. We design these additional primitives, making SWIFT
more comprehensive. Our detailed contributions appear below.

Secure local clustering. Naively translating the local clustering
algorithm in [13] via the above steps results in a data-oblivious al-
gorithm (and thereby a secure protocol) that has O (|V| (|V| + |E|))
round complexity. This complexity results from the |V| iterations
of the clustering algorithm, each of which requires computing a
cluster-specific parameter (as described in §5.2) via Scatter-Gather
where the latter has O (|V| + |E|) complexity. Instead, we introduce
a novel approach and design an algorithm (step 1) which can
compute this cluster parameter incrementally, by reusing infor-
mation from prior iterations without relying on Scatter-Gather.
Elaborately, we augment the data associated with each vertex with
a new component (to be computed via Scatter-Gather) that fa-
cilitates this incremental computation. Our reliance on a single
call to Scatter-Gather to compute this new component, enables
designing a significantly better data-oblivious algorithm having
O(|V|+ |E|) round complexity (step 2). This complexity can further
be improved to O(log (|V| + |E|)) relying on the parallel variant of
GraphSC described in [44] (recalled in §B.1). Our new message-
passing algorithm (step 1) coupled with efficient definitions of
Scatter-Gather for it (step 2), aid in obtaining a more efficient
secure protocol for local clustering (step 3).

Secure HKPR.Although obtaining the message-passing algorithm
(step 1) for computing HKPR is relatively simpler compared to
the one for local clustering, we note that the resulting algorithm

1Data-oblivious algorithm is one whose control flow does not depend on input data.

24

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

requires to keep track of several parameters. Thus, keeping effi-
ciency in mind, we define Scatter and Gather (step 2) such that
we eliminate the overheads resulting from additional bookkeeping
present in the message-passing variant. This results in obtaining
an efficient realization of the secure protocol (step 3).

Note that our secure HKPR protocol can also be of independent
interest since it finds use in other applications such as community
detection [26], classification [40], etc. As in the case of the cleartext
algorithm in [59], our secure protocol for computing HKPR is also
versatile and allows computing several other graph propagation
metrics such as L-hop transition probability, PageRank [47], per-
sonalized PageRank (PPR) [47], single-target PPR [33], Katz [22]
measure, to name few. For further details, we refer to §4.4.

Enhancing the 3PC framework of SWIFT. The GraphSC frame-
work [3, 44] treats the underlying MPC as a black-box, and hence
does not require explicitly handling fixed-point arithmetic (FPA)
operations. However, the algorithm of clustering requires operating
over FPA and demands new primitives such as division, support for
which is missing in SWIFT [27]. Hence, we design a secure protocol
for division, which in turn requires designing secure protocols for
conversion between arithmetic and Boolean representation and pre-
fix OR. These primitives were originally missing in the framework
of SWIFT. The addition of these makes SWIFT a more compre-
hensive framework. While SWIFT originally provided support for
privacy-preserving machine learning (PPML) inference only (for
neural networks), the inclusion of secure division protocol now also
facilitates privacy-preserving training of neural networks. Further,
since SWIFT was originally designed as an MPC framework for
PPML, making it compliant with the GraphSC framework addition-
ally requires a shuffle protocol. We rely on the shuffle protocol used
in the GraphSC framework of [3] for the same. However, adapting
this to work over SWIFT is non-trivial due to the difference in the
sharing semantics of the two and the need for additional primitives.

We note that SWIFT and its enhanced version, as above, provide
the strongest security of guaranteed output delivery (GOD). GOD
ensures that the output of the computation is always delivered,
irrespective of any adversarial misbehaviour. Thus, our designed
secure protocols are also robust and inherit the security guarantee
of SWIFT. Although this may be beneficial for several applications,
it is worthwhile to note here that our protocols allow settling for
the weaker security guarantee of fairness2 or even security with
abort3, depending on the application scenario. Moreover, we note
that the added security of GOD is achieved at no extra (amortized)
cost over the weakest guarantee of abort security.

Benchmarks The designed secure protocols for clustering and
HKPR operate on FPA, which has limited precision compared to
its floating point counterpart. Further, probabilistic truncation and
approximate division in the secure computation setting result in
additional loss of accuracy. Hence, we perform extensive bench-
marks to evaluate the accuracy loss of our secure clustering and
HKPR protocols. Further, recall that the secure protocol for HKPR
supports evaluating other graph propagation metrics. Hence, we
also evaluate accuracy loss involved in securely realizing all these
metrics. We observe that accuracy loss of our secure protocols is in

2This ensures that either all parties learn the output or none do.
3This may allow the corrupt party alone to learn the output.

the order of 10−5, which is insignificant compared to their cleartext
counterparts. We also benchmark the secure clustering and HKPR
protocols over [27], and report the run time for the same. Our im-
plementation also accounts for parallelization that can be achieved
in the multiprocessor setting using the techniques described in [44].
The parallel variants witness improvements of up to 6.7× in the
computation of HKPR as well as clustering when considering a
graph of size 106. The reported numbers showcase the practicality
of the designed protocols.

1.2 On the choice of cleartext algorithms
Keeping the quality of the output cluster in mind, we rely on the
state-of-the-art works in the literature for computing the HKPR
metric as well as for performing clustering using the same. However,
one could question the performance of these algorithms when
translated to their secure variants via MPC, i.e., do there exist other
algorithms that can provide better performance in MPC by trading
off the output quality? For this, we note that our solution comes
at no extra cost. For example, consider randomized alternatives to
state-of-the-art (in cleartext) that trade-off quality of the output
to obtain a more efficient solution. The improved efficiency can
be attributed to operating only on a subset of the nodes (sampled
based on nodes that satisfy some condition) rather than considering
the entire graph. However, when translating the same to a secure
variant, it is required that the computations are input-independent.
Thus, if the secure computation algorithm works on a subset of
nodes that are sampled based on some condition, this will leak
information about the number of nodes that satisfy the condition by
simply observing which nodes are operated on. The number of such
nodes may thereby leak information about the structure of the input
graph, which should otherwise be kept private. Hence, to prevent
such leakage, it is required that the secure algorithm operates on
all nodes, albeit performing dummy operations on some nodes of
the input graph (which ensures that computations are independent
of the graph structure). Thus, the secure variants can no longer
leverage the efficiency gains obtained by performing computations
specific to a chosen subset of vertices. Hence, a secure variant of
a graph algorithm is required to operate on the entire graph. This
results in the asymptotic complexity of all alternatives being similar
in the MPC domain. Hence, the designed secure protocols in no
way trade-off output quality for efficiency.

With respect to the choice of [59] as the basis of our work,
we note that the protocols in [59] outperform the prior protocols
for HKPR-based clustering [13, 61] not only in terms of accuracy
but also in terms of efficiency (see comparisons reported in [59]).
Thus, [59] forms the state-of-the-art. We would further like to note
that other solutions [13, 26, 61] are based on computing random
walks, for which, to the best of our knowledge, there do not exist
efficient MPC protocols. Naively performing the same would be
highly expensive as it would require multiple scans of the edge-list
(to ensure obliviousness) when identifying each node of the random
walk. Further, random walks only constitute one component of the
algorithm, and hence additional overhead will be incurred due to
other algorithmic components. For real-world graphs with number
of nodes and edges in the order of 106, this is highly inefficient.
Hence, we conclude that the choice of our algorithm results in an
efficient solution via MPC without compromising accuracy.

25

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

1.3 Related work
Local clustering, as well as computing HKPR metric via MPC, has
not been explored. Hence, we discuss the related works that con-
sider cleartext computation of the same. Local clustering was initi-
ated in the work of [55, 56], which identified clusters around a seed
node by performing random walks over the graph. Since random
walks starting from the seed node are more likely to visit nodes
near the seed node, they help in identifying the local structure.
Random walk-based method was improved in [1, 2] by relying on
approximate PageRank vectors instead. When given a seed node,
the PageRank vector provides a ranking of the nodes such that
nodes that are more likely to be the endpoints of a random walk
starting from the seed node get assigned a higher probability. Thus,
the set of nodes with a higher rank constitutes a local cluster around
the seed node. The state-of-the-art works on local clustering [13, 26]
are based on heat kernel PageRank (HKPR) [12]. The advantage
of HKPR over PageRank is that shorter random walks are more
heavily weighted in HKPR, resulting in the walks being concen-
trated around the seed node. Hence, HKPR-based local clustering
algorithms are known to provide a better quality cluster. Since [13]
provides state-of-the-art solution in terms of cluster quality, we
rely on the same while designing a secure protocol.

Computing the HKPR vector, as required for clustering, has
been considered in a series of works [13, 26, 35, 59, 61] that aim to
optimize the computation. Among these, [59] forms the state-of-
the-art which outputs the most accurate HKPR vector compared to
the prior works while also performing better in terms of efficiency.
Since our goal is to identify the most accurate local cluster around
a seed node, we rely on [59] for computing the HKPR vector.

Although we are the first to consider designing MPC protocols
for local clustering as well as HKPR, several works in the literature
use MPC, albeit for global clustering and graph propagation met-
rics other than HKPR. Despite these works addressing a different
problem, we include a brief discussion on these in §A.

1.4 Organization of the paper
We start with preliminaries in §2 where we describe the system
model, the MPC used, and the GraphSC paradigm. In §3, we de-
scribe the additional primitives designed over [27] as required for
clustering. In §4 we describe the algorithm for securely computing
the HKPR metric, followed by the secure clustering protocol in §5.
These are followed by benchmarks for accuracy and performance
in §6. Appendix §A discusses further related works, §B describes
additional details of the GraphSC paradigm [3, 44] and §C provides
a proof sketch for the security of the designed protocols,.

2 PRELIMINARIES
2.1 System model
MPC and threat model. We rely on secret-sharing based robust
3PC of [27]. We let P = {P1, P2, P3} denote the three compute
parties connected via pairwise private and authentic channels in
a synchronous network. We assume a static, malicious adversary
corrupting at most one party in P.
Secure outsourced computation setting.We work in the secure out-
sourced computation setting where three (possibly hired) servers
carry out the secure computation by emulating the three parties in

3PC. Any number of clients can send their inputs in a secret-shared
manner to the servers. These servers hold secret-shared inputs of
clients, on which they perform 3PC to obtain secret-shared output.
Hence, our protocols assume that the input is already available in
a shared (used interchangeably with secret-shared) format. The
shared output is then reconstructed towards the intended client(s).
Preprocessing paradigm. Protocols are cast in the preprocessing
model, where heavy, input-independent (yet function-dependent)
computations are carried out in a preprocessing phase, followed
by a fast input-dependent online phase. Here, the input comprises
the graph represented as an adjacency list (as defined later). The
preprocessing phase generates data for entries in the adjacency list,
which is used to perform lightweight computations once the input
graph structure is populated in this list (albeit in a secret-shared
format) in the online phase.
Data representation.Computations are carried out over the algebraic
ring structure, Z2ℓ (arithmetic) or Z2 (Boolean). We use fixed-point
arithmetic (FPA) to deal with decimal values. Here, a decimal value
is represented as an ℓ-bit number in signed 2’s complement notation,
where the most significant bit (msb) is the sign bit, f least significant
bits denote the fractional part, and the input is k bits long. We set
ℓ = 64, k = 32 and f = 16. Operations are performed on the ℓ-bit
integer, treated as an element of Z2ℓ , modulo 2ℓ . We use (x)f to
denote that x has f bit precision.

2.2 3PC of SWIFT
We first explain the 3PC sharing semantics of SWIFT [27] followed
by its protocols that our work relies on.
Sharing semantics. SWIFT performs computation via masked eval-
uation and relies on a variant of replicated secret sharing (RSS)
among 3 parties with threshold 1.
– A value v ∈ Z2ℓ is said to be RSS-shared (or [·]-shared) among
parties P if there exist v1, v2, v3 ∈ Z2ℓ such that v = v1 + v2 + v3,
and P1 holds (v1, v2), P2 holds (v2, v3) and P3 holds (v3, v1).
– A value v ∈ Z2ℓ is said to be J·K-shared among parties in P if
there exists αv ∈ Z2ℓ that is RSS-shared among P, and βv = v + αv
is held by all parties in P. That is, P1 holds (αv1,αv2, βv), P2 holds
(αv2,αv3, βv) and P3 holds (αv3,αv1, βv).
Sharing over Z2ℓ is referred to as arithmetic sharing (J·K) while
over Z2 is referred to as Boolean sharing (J·KB), where arithmetic
operations (addition/subtraction) are replaced with Boolean XOR.
Protocols. The protocols we rely on from SWIFT, together with their
description, are listed in Table 1.

2.3 GraphSC paradigm
Since real-world graphs are known to be sparse, naively using the
adjacency matrix representation of the graph for computations
would be expensive. Hence, designing an efficient solution to ad-
dress the same involves- (i) designing an effective representation
of the graph structure, (ii) ensuring the computation does not leak
any private information, (iii) designing solutions that are highly
parallelizable. The work by Nayak et al. [44] is the first to address
the above problem and provides a framework for the same. The
framework operates on a data augmented directed graph G(V, E,
Data) which consists of a directed graph G(V, E) where V is the set
of vertices (or nodes, used interchangeably), E is the set of edges and

26

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

Building block Notation Description

Joint sharing JvK = ΠJsh(Pi , Pj , v) Enables Pi , Pj ∈ P to generate JvK where v ∈ Z2ℓ is held by Pi , Pj
Multiplication with truncation JzK = Πmult(JxK, JyK, f) Multiplies x, y and outputs z = x · y by truncated by f bits

Comparison JbKB = Πcomp(JxK, JyK) Outputs b = 1 if x < y, else outputs b = 0

Oblivious select JxbK = Πsel(Jx0K, Jx1K, JbKB) Obliviously selects xb among x0, x1

Bit2A JbK = Πbit2A(JbKB) Converts bit to its arithmetic equivalent

3-input multiplication JzKB = Π3-mult(JaKB, JbKB, JcKB) Multiplies (Boolean AND) 3 bits at once

4-input multiplication JzKB = Π4−mult(JaKB, JbKB, JcKB, JdKB) Multiplies (Boolean AND) 4 bits at once

Negation Jb̄KB = ΠNOT(JbKB) Outputs b̄ = 1 ⊕ b where b ∈ Z2

Table 1: Description of protocols from SWIFT [27].

Data is a set of user-defined data values associated with each vertex
and edge of the graph. The data augmented graph is expressed as
a list of vertices and edges where every vertex v ∈ V is encoded
as a tuple (v, v, 1, data) and every edge (u, v) ∈ E is encoded as a
tuple (u, v, 0, data). The third entry in each tuple is a bit, isV, which
equals 1 for a vertex and 0 otherwise, while data refers to the state
information stored at each vertex and edge. These tuples constitute
the data augmented graph list (DAG-list). The DAG-list representa-
tion of the graph is used to effectively represent the graph. Note
that an undirected graph can be converted into a directed graph
by accounting for each edge twice (incoming and outgoing edge).
To perform secure computation over the graph while hiding its
topology, each tuple in the data augmented graph is secret-shared
entry-wise between the computing parties. This ensures that par-
ties cannot distinguish between shares of a tuple corresponding to
a vertex from that of an edge.

In principle, the framework of [44] enables securely evaluating
message-passing graph algorithms. The latter are graph algorithms
that operate in multiple rounds, where in each round, the nodes
in the graph- (i) use their state information to send messages over
their outgoing edges; (ii) receive messages along their incoming
edges and aggregate these messages; (iii) use these messages to
update their state. These three operations are abstracted into three
primitives–Scatter, Gather, and Apply, respectively. Assuming that
the graph algorithm can be expressed as a composition of the above
primitives, [44] enables its secure evaluation via MPC 4. Since de-
signing an MPC protocol naively may leak information regarding
the graph topology, the framework first designs a data-oblivious
algorithm for each of these primitives, followed by a translation of
the same using the generic 2-party protocol of [62]. In general, an
algorithm is said to be data-oblivious if the instructions executed
and the memory accesses made during the run of the algorithm
are independent of the input and hence leak no information about
the input. To obtain a data-oblivious algorithm for the GraphSC
primitives, it is important to ensure that each entry in the DAG-list
is visited when realizing these primitives to ensure no information
about the association between the entries (such as an edge being
incident on a node) is leaked. Observe that Apply can be computed
obliviously by scanning through the DAG-list representation and
applying the user-defined function if the element is a vertex and
performing a dummy operation otherwise. To compute Scatter and

4The operations within Scatter andGatherwill vary across different graph algorithms.
Hence, [44] provides a generic GraphSC framework, where the operations to be
performed within Scatter and Gather are assumed as a black-box.

Gather obliviously, [44] relies on two different sorted orders of the
DAG-list representation. The source order requires the DAG-list to
be sorted such that every node in the graph is placed before all
edges that originate from it. The destination order requires the DAG-
list to be sorted such that all edges that end at a particular node
are placed before that node. Let ΠSort(J®xK,key) denote an oblivious
sort protocol that outputs a sorted list of elements in vector ®x based
on the key key. Given a data-oblivious sort protocol such as Bitonic
sort [49], switching between the source order and destination order
each time a Scatter or Gather is applied, ensures obliviousness as
follows. Scatter can be accomplished obliviously by linearly scan-
ning through the DAG-list sorted in the source order. For this, if
the current tuple in the list is a node, the data value at the node is
picked up, and if the current tuple is an edge, then the value picked
up at the most recent tuple is used to update the edges. Gather
can also be done obliviously by a linear scan through the DAG-list
sorted in the destination order. During the scan, if the current tuple
is an edge, its value is stored in an aggregate variable by applying
an aggregation operation, and if the current tuple is a node, then
the aggregate variable is stored along with the node. This approach
of performing Scatter and Gather by performing a linear scan over
a sorted order is oblivious as every node and edge of the graph is
operated on, without revealing the relationship between the nodes
and edges. Given that the primitives can be performed obliviously,
as described above, the graph computation can be performed se-
curely using MPC protocols. To summarize, message-passing graph
algorithms can be computed obliviously by using the following
steps in every message-passing round– (i) sort based on source or-
der, (ii) Scatter, (iii) sort based on destination order, (iv) Gather and
(v) Apply. An illustration of the operations involved in GraphSC
paradigm of [44] is given in Fig. 9. Further, the framework in [44]
provides a parallel algorithm for each of the individual primitives–
Scatter, Gather, and Apply. In a multiprocessor setting, the paral-
lel variants allow the computations to be performed in sub-linear
complexity rather than the linear complexity of O(|V| + |E|) in the
size of the graph. We remark that this technique of obtaining a
sub-linear solution in the multiprocessor setting also extends to
our protocols. An overview of the sub-linear solution of [44] is
provided in §B.1.

The work of [3] improves on the work of [44]. First, it com-
bines Gather and Apply primitives such that both operations can
be achieved in a single pass through the DAG-list. Moreover, [3]
observes that the approach of [44] has the drawback of requiring
an oblivious sort each time a Scatter or Gather primitive is applied.

27

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

This amounts to two calls to an oblivious sort in every message-
passing round. Instead, [3] observes that a secret shuffle followed
by an insecure sort (which reveals the result of the comparisons)
can be used to realize an oblivious sort. Let ΠShuffle(J®xK) denote
an oblivious shuffle protocol that outputs the elements of ®x in a
random shuffled order (see §B.2 for details of shuffle used in [3]).
Observe that since the list is first shuffled, revealing the result of
comparisons during sort does not break the obliviousness property.
On the other hand, the insecure sort is required to be performed
only once in the beginning, subsequent to which, the public permu-
tation (obtained as output from the insecure sort) can be applied
to sort the DAG-list, non-interactively. In summary, in the first
message-passing round, a secret shuffle followed by an insecure
sort (e.g., a comparison sort algorithm) is applied to get the required
source or destination order. The permutations which map from the
shuffled orders to the source and destination order are made public,
as they do not reveal any information about the DAG-list. In the
subsequent rounds, the secret shuffle, followed by the public per-
mutation, is applied to get the required sorted order. Since shuffle
can be performed much more efficiently than a sort, this change
brings in significant efficiency improvements. An illustration of the
operations involved in GraphSC paradigm of [3] is given in Fig. 9.
Finally, to perform secure computation, [3] considers a 3PC setting
to further enhance efficiency.

3 PRIMITIVES FOR CLUSTERING
Most of the primitives required for clustering can be obtained from
SWIFT [27] (described in Table 1). However, clustering additionally
requires other primitives, which we detail in this section. These
primitives can be seen as making the SWIFT framework more
comprehensive to support applications beyond PPML. The addition
of these primitives also enables neural network training, which
was not originally supported in SWIFT. Since these primitives are
known from the literature [8, 28, 42, 48], we provide a high-level
intuition of realizing them in SWIFT next.

Arithmetic to Boolean conversion. Given arithmetic shares of x ∈

Z2ℓ , denoted by JxK, protocol ΠA2B enables generating its Boolean
shares, JxKB, where each bit in x ∈ Z2ℓ is Boolean shared. Recall
that any J·K-shared value x in SWIFT can be written as a sum of
three values x = (βx − αx2) − αx1 − αx3, where each summand
is held by a pair of parties, i.e., P1, P3 hold x1 = αx1, P1, P2 hold
x2 = βx − αx2, and P2, P3 hold x3 = αx3. Each pair jointly generates
Boolean shares of the summand that it holds, via the joint sharing
protocol of SWIFT, resulting in generating Jx1KB, Jx2KB, Jx3KB. The
correct generation of these Boolean shares is guaranteed because
each xi for i ∈ {1, 2, 3} is held by two parties, at most one of
which can be corrupt. The presence of an honest party in each pair
enforces correct behaviour. Following the approach of [42], parties
then evaluate a full adder circuit (FA) with Jx1KB, Jx2KB, Jx3KB as
input to obtain J·KB-shares of carry c and sum s as output, where x
can be written as x = x1+x2+x3 = 2c+s . Elaborately, c is the vector
of carry bits generated when performing the bit-wise addition of
x1, x2, x3 using the FA, and s is the vector of bits denoting its sum.
Having generated J·KB-shares of c, s , parties evaluate the optimized
parallel prefix adder circuit of [48] on J·KB-shares of 2c, s to obtain
J·KB-shares of the sum x = 2c + s . This generates J·KB-shares of x.

Boolean to arithmetic conversion. The protocol ΠB2A takes as in-
put Boolean shares JxKB of x ∈ Z2ℓ , and generates its corresponding
arithmetic shares JxK. Note that x can be written as x =

∑ℓ−1
i=0 2ixi ,

where xi for i ∈ {0, . . . , ℓ − 1} is the ith bit of x. Thus, to obtain
arithmetic shares of x, we invoke bit to arithmetic conversion pro-
tocol of SWIFT on each bit of x to generate its arithmetic share, and
combine these shares of xi to obtain JxK using the above equation.

Secure Prefix OR. Given a sequence of Boolean shared bits, xℓ−1,
. . . , x0, protocolΠPreOr outputs Boolean shares of a sequence of bits
yℓ−1, . . . , y0 such that yi = ∨ℓ−1

j=i xj , where ∨ denotes the OR oper-
ator and i ∈ {0, . . . , ℓ − 1}. An efficient realization of this primitive
appears in the work of [8]. However, it exploits the property that
every element has an inverse in the field algebraic structure. Since
SWIFT works over the ring algebraic structure where all elements
do not have inverses, we resort to a different approach. Observe
that OR can be written as a combination of NOT and AND gates,
where NOT can be performed non-interactively. Hence, we rely on
a series of Boolean multiplications (AND), specifically multi-input
multiplications [58], to compute the prefix OR. For example, the
prefix OR of four J·KB-shared bits x3, x2, x1, x0 can be computed in
a single round by computing the following in parallel.
– Compute Jx̄i KB = ΠNOT(Jxi KB) for i ∈ {0, . . . , ℓ − 1}
– Set Jy3KB = Jx3KB

– Set Jy2KB = ΠNOT

(
Πmult(Jx̄3KB, Jx̄2KB)

)
– Set Jy1KB = ΠNOT

(
Π3-mult(Jx̄3KB, Jx̄2KB, Jx̄1KB)

)
– Set Jy0KB = ΠNOT

(
Π4-mult(Jx̄3KB, Jx̄2KB, Jx̄1KB, Jx̄0KB)

)
Proceeding along similar lines, prefix OR of more than four bits
can be performed by computing the 2,3,4-input multiplication with
respect to every consecutive group of four bits in each level and
repeating this process in a tree-based approach to compute the
result. Similarly, prefix OR of up to 16 bits can be computed in two
rounds and up to 64 bits in three rounds.

– α = (2.9142)k−1

– JbKB = ΠA2B(JbK)
– for i = 1 to k − 2 do

◦ Jb′i K
B = Jbi KB ⊕ Jbk−1KB

– {Jyi K}k−2
i=0 = ΠPreOr({Jb′i K

B }k−2
i=0) and Jyk−1KB = J0KB

– for i = k − 2 to 1 do: Jyi KB = Jyi KB ⊕ Jyi+1KB

– JvK = ΠB2A

(
{Jyi KB }0

i=k−1

)
(in reverse order)

– JzKB = ΠNOT(Πmult(Jbk−1KB, Jy0KB))
– Jw′K = α (1 − Πbit2A(Jbk−1KB) − 2Πmult(JbK, JvK, 0)
– JwK = Πmult(JvK, Jw′K, 2(k − f − 1))
– return JwK, JzKB

Protocol ΠAppRec(P, JbK)

Figure 1: Protocol for computing initial approximation

Secure division.We rely on the Goldschmidt algorithm [38] for
division and extend the techniques of [8] to SWIFT. To compute a/b,
the approach is to normalize b to a value c in [0.5, 1), and obtain an
initial approximate reciprocal of b asw0 ≈ 1/b = 2.9142 − 2c . This
term has relative error ϵ0 = 1 − bw0 < 1 [9]. Letting ei = ϵ2i

0 , the
28

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

recurrence equation for approximating a/b is given by d1 = aw0,
di+1 = di (1 + ei−1), ei = e2

i−1. After i iterations, di+1 = (a/b)(1 −

ϵ2i
0) ≈ a/b with relative error ϵ2i

0 . Since division is non-trivial to
extend to SWIFT, we detail the protocol for computing the initial
approximation for 1/b in Fig. 1 and for computing a/b in Fig. 2.
With f = 16 bit precision and k = 32 bit inputs, we note that 4
iterations suffice for obtaining good accuracy in our applications
while working over Z264 . Correctness of division follows from [8].

– JwK, JzKB = ΠAppRec(P, JbK)
– α = (1)2f ; JeK = α − Πmult(JbK, JwK, 0); JdK = Πmult(JaK, JwK, 0)
– for i = 1 to θ do

◦ JdK = Πmult(JdK, α + JeK, 2f); JeK = Πmult(JeK, JeK, 2f)

– return JdK = Πmult(JdK, α + JeK, 2f)

Protocol ΠDiv(P, JaK, JbK)

Figure 2: Protocol for division
Security of the designed protocols.Observe that the designed proto-

cols rely on invoking protocols given in SWIFT [27] whose security
was established therein in the standard real-world/ideal-world sim-
ulation paradigm. Hence, security of the designed protocols follows
directly from security of underlying protocols of SWIFT.

4 PRIVACY-PRESERVING HKPR
To measure the similarity of nodes prior to performing local clus-
tering, we rely on the graph propagation metric of heat kernel
PageRank (HKPR). The HKPR metric is favourable since it is known
to converge fast and produce good quality cluster [12, 13, 61]. Hence,
we provide a secure local clustering algorithm that uses HKPR as
the graph propagation metric (or the similarity measure), and can
be accomplished in two steps. Given a seed node as input, we first
compute the HKPR values of all vertices in the graph, assuming the
seed node to be the source. The computed HKPR values are then
used as input to a clustering algorithm to find a suitable cluster
around the seed vertex. In this section, we describe how HKPR
values can be generated securely, followed by describing the secure
clustering algorithm in §5. Although the protocols are described as
linear round solutions, they can easily be translated to a sub-linear
round solution following the techniques of [44] (see §B.1). We begin
by describing the cleartext algorithm for HKPR, followed by a se-
cure protocol for its data-oblivious variant. Note that translation of
cleartext to message-passing algorithm is accounted for implicitly
by identifying (in place) the cleartext algorithm components that
can benefit from computation via GraphSC.

4.1 The cleartext algorithm
For a seed node s ∈ V, the HKPR value ®ρ[v] of a node v, captures
the probability of a heat kernel random walk from s terminating
at v. Thus, the graph propagation equation to compute HKPR of
all nodes with respect to a specific seed node can be given as a
|V|-dimensional vector as :

®ρ =
∞∑
i=0

wi · (AD−1)
i
· ®x, (1)

where wi =
e−t t i
i ! is the weight with t being the Poisson distribu-

tion parameter, A is the adjacency matrix of the input graph, D is

degree matrix of the input graph with ith diagonal entry storing
degree of ith vertex in the graph (degi), and ®x is the signal vector
(of dimension |V|), which is a one-hot encoding of s , that is, entry
at position s is set to 1 (i.e., ®x[s] = 1) and the rest are set to 0.

We rely on the basic propagation algorithm in [59] that approxi-
mates ®ρ for each vertex by iteratively computing the sum in Eq. (1)
only up to L terms. In fact, the algorithm in [59] is capable of com-
puting various other graph propagation metrics such as PageRank,
Personalized PageRank, L-hop transition probability, etc. Each of
these metrics can be computed using the generalized graph prop-
agation equation (Eq. (2)) and by appropriately parameterizing it.
Further details regarding this are provided in §4.4. Steps for comput-
ing propagation vector ®ρ in Eq. (2) via graph propagation algorithm
are described in Algorithm 1. The intuition is described next.

®ρ =
∞∑
i=0

wi · (D−aAD−b)
i
· ®x (2)

Algorithm 1: Graph propagation
Input: Undirected graph G = (V, E), signal vector ®x of dimen-
-sion |V|, number of iterations L, parameters of graph propag-
-ation equation a, b, weights {wj }

L
j=0, partial weights {Yj }

L
j=0

Output: Estimated propagation vector ®ρ of dimension |V|
1 ®r(0) = ®x, ®ρ = ®0 (the all zero vector);
2 for i = 0 to L − 1 do
3 for each u ∈ V with non-zero ®r(i)[u] do
4 for for each v ∈ Nu do

5 ®r(i+1)[v] = ®r(i+1)[v] +
(
Yi+1
Yi

)
®r(i)[u]

(degv)a (degu)b

6 end

7 ®q(i)[u] = ®q(i)[u] +
(
wi
Yi

)
®r(i)[u]

8 end
9 ®ρ = ®ρ + ®q(i)

10 end

The algorithm requires that the weights add up to 1, and hence
the weight entries in the generalized graph propagation equation
(Eq. (2)) are normalised in such a way that wi =

wi
Σ∞i=0wi

. The ith

iteration of the algorithm computes the ith term in the infinite
sum of ®ρ. To compute this efficiently, the authors in [59] make
the following observation that any two consecutive terms i and
i + 1 in the infinite sum in Eq. (2) have a lot of computation in
common. To identify a recursive structure and avoid unnecessary
re-computation, two vectors known as residue vector ®r and reserve
vector ®q are defined as follows:

®r (i) = Yi · (D−aAD−b)
i
· ®x, ®q (i) = wi · (D−aAD−b)

i
· ®x

Here, the partial weight sum, Yi , is defined as Yi = Σ∞k=iwk . Thus,
it is clear that the (i + 1)th residue vector can be derived from
the ith residue vector as given in Eq. (3). Similarly, the ith reserve
vector is nothing but the ith term in the infinite sum of the graph
propagation equation, and it can be expressed in terms of the ith
term of the residue vector as given in Eq. (3).

®r (i+1) =
Yi+1
Yi

· D−aAD−b · ®r (i), ®q (i) =
wi

Yi
· ®r (i) (3)

By using ®r(0) and the relation between ®r (i), ®r (i+1), all residue
vectors ®r(i) for i ∈ {0, . . . , L} can be computed. Each of the reserve

29

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

vectors can also be obtained from the corresponding residue vectors,
which can then be used to compute the graph propagation vector as
®ρ = Σ∞i=0®q

(i). Given the above background, the steps of Algorithm
1 can be summarised as follows. Initially, residue vector ®r(0) = Y0 ·

(D−aAD−b)
0
· ®x is set as the signal vector ®x with the partial sum Y0

= Σ∞k=0wk = 1. The algorithm repeats for L iterations where in each
iteration i , the ith term of the graph propagation sum is computed.
Lines 4-6 in the algorithm compute the residue vector ®r (i+1). Note
that the term (D−aAD−b) in ®r (i+1) is a square matrix with the (u, v)
entry having the corresponding value of A weighted by a factor of

1
(degu)a (degv)b

. Hence, entries in A that are 0 will not contribute in

the computation of ®r (i+1). Thus, the algorithm makes use of the
fact that the index v of the residue vector, ®r (i+1)[v] is only updated
by the residue entries of all it’s neighbours u such that v ∈ Nu.
Here Nu denotes the neighbours of node u. In this way, the authors
in [59] design a vertex-centric algorithm that operates on vectors
rather than matrices. In line 8, the reserve vector is derived from the
residue vector, and in line 10 the reserve vector is used to update
the graph propagation result vector ®ρ. Note that, for the case of
HKPR, the above computation is parameterized with a = 0,b = 1.

4.2 The data-oblivious variant
We begin by discussing the challenges that arise in naively using
MPC to translate Algorithm 1 into a secure variant, followed by
discussing the resolutions for the same. Consider the steps in Algo-
rithm 1. For each node u, step 3 executes for only those nodes in
the input graph that have a non-zero value in the corresponding
component of the residue vector ®r[u]. Hence, step 3 reveals whether
a given node u has a non-zero value ®r[u]. Further, steps 4-6 selec-
tively update the residue vector components ®r[v] corresponding
to each neighbour v of the current node u. Hence, the number of
times the residue vector ®r is updated reveals the degree of the node
u. Thus, the algorithm clearly does not qualify to be data-oblivious.
Translating Algorithm 1 via MPC to obtain its secure variant by
using secure protocols for operations used in Algorithm 1, will
thus result in leaking the above-mentioned information. Hence,
designing a secure variant of Algorithm 1 first requires designing a
data-oblivious equivalent of the same. Since Algorithm 1 adheres to
the message-passing paradigm, we obtain its data-oblivious equiva-
lent by relying on the GraphSC paradigm. This requires defining
the Scatter, Gather primitives specific to the considered algorithm,
which we describe next.

To adhere to the GraphSC paradigm, the input graph is expressed
using a DAG-list representation G (see §2.3). The ith tuple in the
list is denoted by G[i]. The data values associated with each tuple
G[i] in the list representation includes–(i) G[i].dt to store messages
that are sent across the edges, (ii) G[i].deg to store the degree of a
node, (iii) G[i].r to store the residue vector component of a node,
and (iv) G[i].ρ to store the propagation vector component of each
node (i.e., HKPR values). Recall that G[i].isV denotes whether a
tuple corresponds to a vertex or not. Since the graph propagation
Algorithm 1 proceeds in an iterative manner, assuming the index
of the current iteration to be j, the GraphSC primitives of Scatter
and Gather are defined in Fig. 3. Running one iteration of Scatter
followed by Gather accomplishes the same computation as in one

iteration of Algorithm 1, albeit in a data-oblivious manner, as fol-
lows. Computing the graph propagation value ®ρ[v] for a node v
requires the residue vector component ®r[u] corresponding to each
of its neighbour u as well as (degu)b . Hence, the required informa-
tion is made available on the edges via Scatter. Since the weights
wj and partial sums Yj are public parameters, each node prop-
agates Yj+1G[i].r

Yj (G[i].deg)b
across its outgoing edges in Scatter. During

Gather, these values over incoming edges are aggregated in agg
by summing them up. The residue vector component at vertex v
is updated as agg

Yj (G[v].deg)a
. However, note that this generates the

residue vector ®r (j+1), required for the next iteration. Hence, prior
to performing this update, the value stored in the residue vector
®r(j) is used to update the graph propagation vector at vertex v as

G[v].ρ = G[v].ρ + wjG[v].r(j)

Yj+1
. Our approach of designing Gather in

this way does not require explicitly storing the reserve vector ®q as
well as both, ®r (j) and ®r (j+1).

Scatter(G)
for i = 1 to |V | + |E | do
if G[i].isV then
val =

(
Yj+1
Yj

)
G[i].r

(G[i].deg)b

else
G[i].dt = val

Gather(G)
for i = 1 to |V | + |E | do
if G[i].isV then
G[i].ρ = G[i].ρ + wj

Yj
G[i].r

G[i].r = agg
(G[i].deg)a

agg = 0
else
agg = agg + G[i].dt

Figure 3: Scatter and Gather for jth iteration of Algorithm 1

4.3 The secure variant
We now describe the MPC protocol ΠSGP designed to securely eval-
uate the graph propagation algorithm Fig. 4. The protocol begins by
assuming the required inputs G, ®x, are already held in secret-shared
fashion among the parties. It also takes as input the public param-
eters of Yj ,wj for j ∈ {0, . . . , L − 1}. Since the components of the
residue vector ®r are initialized using the entries in the signal vector
®x, unlike in the cleartext variant, ®x is required to be of the same
size as the DAG-list G. That is, ®x must be secret shared as a vector
of dimension |V| + |E|, with value 1 at the location of the source
vertex and 0 at all other entries. As in the definition of Scatter in
Fig. 3, val should be computed only at the tuples corresponding to
nodes. Hence, ΠSGP computes val′ at each tuple. However, val is
obliviously updated to store the correct value using Πsel (see Ta-
ble 1). Similarly, for Gather, aggregation is obliviously performed
only at the tuples corresponding to edges using Πsel. Further, note
that multiplying values that are secret shared requires invoking
the Πmult protocol. Finally, note that an explicit call to division
for computing J 1

G[i].deg K is avoided by ensuring this value is made
available in shares when obtaining shares of G (and it is set to 0
whenG[i] represents an edge). Since public parameters a,b ∈ {0, 1},
no additional multiplications are required.

4.4 Other graph propagation metrics
The graph propagation Algorithm 1 is used to compute the graph
propagation result vector ®ρ using the graph propagation equation ®ρ

30

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

Graph propagation metric
Parameters

Graph propagation equation
a b wi

L-hop transition probability 0 1 wi = 0 (i , L), wL = 1 ®ρ = (AD−1)
L
· ®x

PageRank 0 1 α(1 − α)i ®ρ = Σ∞i=0α(1 − α)i · (AD−1)
i
· ®x

Personalised PageRank 0 1 α(1 − α)i ®ρ = Σ∞i=0α(1 − α)i · (AD−1)
i
· ®x

Single Target PageRank 1 0 α(1 − α)i ®ρ = Σ∞i=0α(1 − α)i · (D−1A)i · ®x
Heat Kernel PageRank 0 1 e−t t i

i ! ®ρ = Σ∞i=0
e−t t i
i ! · (AD−1)

i
· ®x

Katz 0 0 βi ®ρ = Σ∞i=0β
i · (A)i · ®x

Note that ®x denotes the signal vector, which is the one-hot encoding of the seed node. However, in the case of PageRank, ®x is set as the uniform probability distribution vector
with each entry being 1

|V| . Similarly, in the case of Personalized PageRank, it is set as the teleportation probability distribution vector corresponding to the seed node.

Table 2: Graph propagation metrics

= Σ∞i=0wi · (D−aAD−b)
i
· ®x. Recall that this graph propagation equa-

tion can also be used to compute many other graph propagation
metrics such as PageRank, personalised PageRank, Katz central-
ity score etc. These propagation metrics, as described in the work
of [59], are listed in Table 2. Given the parameters of the graph
propagation equation, such as a,b, weights w and the initial seed
node captured in the signal vector ®x, the graph propagation algo-
rithm can be used to find the corresponding information regarding
the nodes of the graph. Hence, using the secure protocol given in
Fig. 4, several graph propagation metrics can be computed without
leaking any private information.

– for i = 1 to |V | + |E | do: JG[i].rK = Jx[i]K , JG[i].ρK = J0K
– for j = 0 to L − 1 do

◦ JGK = ΠShuffle(JGK); apply public permutation to source sort G. Set
JvalK = J0K
Scatter(G)

◦ for i = 1 to |V | + |E | do

- Jval′K =
(
Yj+1
Yj

)
· Πmult

(
JG[i].rK, J 1

(G[i].deg)b
K, f

)
- JvalK = Πsel(JvalK, Jval′K, JG[i].isVKB)
- JG[i].dtK = JvalK

◦ JGK = ΠShuffle(JGK); apply public permutation to destination sort
G
Gather(G)

◦ for i = 1 to |V | + |E | do

- JG[i].ρK = JG[i].ρK +
(
wj
Yj

)
JG[i].rK

- JG[i].rK = Πmult

(
JaggK, J 1

(G[i].deg)a K, f
)

- JaggK = Πsel(JaggK + JG[i].dtK, J0K, JG.isVKB)

Protocol ΠSGP

(
P, JGK, JxK, {Yj , wj }

L
j=0, a, b

)

Figure 4: Protocol for secure HKPR computation

5 PRIVACY-PRESERVING CLUSTERING
Here, we describe the protocol for realizing local clustering in a
privacy-preserving manner using the computed HKPR values.

5.1 The cleartext algorithm
We rely on the HKPR-based clustering algorithm described in [13]
as it provides state-of-the-art results for local clustering. The steps
for the same are provided in Algorithm 2, which describes an ap-
proximate algorithm to find a local cluster around a given seed
node. To find a suitable local cluster, the algorithm uses heat kernel

PageRank values of all vertices in the graph, computed with respect
to the seed node. To assess the quality of the cluster, the algorithm
uses Cheeger ratio as the metric. Cheeger ratio Φs with respect to
a set of nodes S is defined as in Eq. (4) where, ∂ is the number of
edges that cross from the set S to the set of remaining vertices in
the graph V\S, and volume volS of a set S is defined as the sum of
degrees of all vertices present in the set S.

Φs =
∂

min {volS, volV\S }
(4)

Thus, a smaller Cheeger ratio signifies a better cluster, since it
minimizes the number of edges that cross the cluster and maximizes
the degree of nodes within the cluster. The clustering algorithm
takes as input the target Cheeger ratio ϕ and the target cluster
volume ς , with the constraint that ς must be less than or equal to
volG/4. The algorithm identifies Si as a suitable cluster if it satisfies
the following condition:

ς/2 ≤ volSi ≤ 2ς and Φs i ≤
√

8ϕ (5)

Cluster Si with lowest Cheeger ratio among all suitable clusters,
if found, is output. As clusters are identified based on HKPR, the
algorithm also requires the HKPR values ®ρ supplied as input.

The algorithm begins by sorting the vertices in the graph in the
descending order of ®ρ[v]

degv
, where degv is the degree of vertex v. This

ensures that a higher priority is given to those vertices having high
HKPR values and low degrees when forming the cluster. In lines
3-12, the algorithm performs a linear scan over the sorted vertices
such that in each iteration i , the cluster Si under consideration is the
set of vertices

⋃
j≤i vj . If the volume of this cluster is more than 2ς ,

then the protocol can break and consider no further clusters. Since
each subsequent iteration includes more vertices in the considered
cluster, the corresponding volume will continue to increase. Thus,
the volume constraint will continue to fail, and hence the larger
clusters can be discounted. We refer an interested reader to [13] for
further details on Algorithm 2 and its correctness.

5.2 The data-oblivious variant
Algorithm 2 does not qualify as a data-oblivious algorithm since
many of the steps are input-dependent. For example, step 1 requires
sorting the vertices in the graph with respect to the ratio ®ρ[v]

degv
. The

sorted order clearly is dependent on the structure of the graph G.
Further, computing the Cheeger ratio in step 5 depends on the cur-
rent cluster and the overall topology of G, as evident from equation
4. Thus, similar to the graph propagation algorithm, we first design
a data-oblivious algorithm, followed by designing its secure variant.

31

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

Algorithm 2: HKPR-based graph clustering
Input: Undirected graph G = (V, E),
®ρ : Graph propagation vector of dimension |V|,
ς : Target cluster volume,
ϕ : Target Cheeger ratio, u = Seed vertex
Output: S = Set of nodes that satisfies the constraints in
equation 5 and have minimum Cheeger ratio

1 sort vertices of G with respect to ®ρ[v]/degv;
2 ϕmin =∞, S = Empty set;
3 for i = 1 to |V| do
4 Si =

⋃
j≤i vj ;

5 Φs i = Cheeger ratio of Si as per Eq. (4)
6 if volSi > 2ς then
7 Break;
8 else if ς/2 ≤ volSi and Φs i ≤

√
8ϕ then

9 if Φs i < ϕmin then
10 ϕmin = Φs i; S = Si;
11 end
12 end
13 end
14 if S is not an Empty set then Output S ;
15 else Output “No Cluster found”;

Given that the vertices are sorted with respect to the ratio ®ρ[v]
degv

,
note that each iteration of the clustering algorithm computes the
Cheeger ratio specific to the considered set Si. This requires compu-
tation of ∂, volSi , volV\Si , which can benefit from translation to the
GraphSC paradigm. Taking Algorithm 2 as the input algorithm to
GraphSC, computing volSi , volV\Si can be performed in one linear
scan given the degree of the nodes. With respect to computation
of ∂, a naive approach via Scatter and Gather would require com-
puting ∂ for each Si, and thereby require a linear scan each time.
Since performing Scatter and Gather has O(|V| + |E|) complexity,
computing ∂ for all vertices has a complexity of O(|V|(|V| + |E|)).
This is highly inefficient. We overcome the inefficiency and avoid
the need for multiple linear scans by carefully modifying the al-
gorithm such that only a single scan over the DAG-list G suffices
for computing ∂ for all vertices. The complexity of our resulting
data-oblivious algorithm is thus drastically reduced to O(|V| + |E|)
from O(|V|(|V| + |E|)) of the naive approach. Recall that this lin-
ear complexity in |V| + |E| can further be reduced to sub-linear
following the technique of [44]. To achieve this, the data values as-
sociated with G[i] (see §4.2), are augmented with a new component
G[i].greaterCount. This component is used to store the number of
neighbors v of a given node that have a greater ®ρ[v]

degv
value than the

current node. As will be described next, greaterCount is used to
determine the number of edges that cross a cluster of vertices, and
thereby compute ∂ in a single scan of the DAG-list. Thus, Scatter
and Gather are defined to populate the greaterCount component.

We let FindCluster (Algorithm 3) denote the modified version
of Algorithm 2 that relies on greaterCount to compute local clus-
ters. We now discuss how FindCluster uses greaterCount to com-
pute ∂, and then define the Scatter and Gather primitives to com-
pute greaterCount. FindCluster proceeds to sort the DAG-list in

descending order of ®ρ[v]
degv

, assuming that greaterCount is computed.
This is followed by performing a scan of the DAG-list to identify
the suitable cluster with the minimum Cheeger ratio. Each time
a vertex vi is encountered, it is added to the existing cluster, say
Si−1, to form a new cluster, say Si . To compute the Cheeger ratio
of the new cluster, we require the number of edges ∂ that cross the
new cluster Si. We observe that the computation of the same can
be simplified by accounting for (i) ∂ of the previous cluster Si−1,
(ii) new cross edges (i.e., cross edges between vi and V \ Si−1), and
(iii) previous cross edges that now lie within the new cluster (i.e.,
cross edges between Si−1 and vi). Since greaterCount was defined
to count the number of neighbors u of the vertex vi that had a
higher value of ®ρ[u]

degu
, it implicitly tracks the number of neighbours

of vi that were part of the previous cluster Si−1.

Algorithm 3: FindCluster(G)
Input: Undirected graph G = (V, E)
Output: S = Set of nodes that belong to the local cluster

1 Sort G in source order;
2 Perform Scatter as given in Fig. 5 ;
3 Sort G in destination order ;
4 Perform Gather as given in Fig. 5 ;
5 Sort G by ®ρ[v]/degv ;
6 ∂ = 0, volS = 0, volV\S =

∑
v∈V G[v].deg ϕmin =∞, flag = 0 ;

7 for i = 1 to |V| + |E| do
8 if G[i].isV then
9 ∂ = ∂ + G[i].deg − 2 · G[i].greaterCount ;

10 volS = volS + G[i].deg ;
11 volV\S = volV\S - G[i].deg ;
12 Φs = ∂

min(volS,volV\S)
;

13 if (ς/2 ≤ volS ≤ 2ς)& (Φs ≤
√

8ϕ)&(Φs < ϕmin) then
14 ϕmin = Φs ; flag = i ;
15 end
16 end
17 end
18 if flag > 0 then Output the first flag elements of G ;
19 else Output “No Cluster found”;

Thus, greaterCount keeps track of the number of type (iii) edges.
Given that all the edges of vi are either of type (ii) or type (iii),
the number of edges of type (ii) can be computed as G[v].deg −

G[v].greaterCount. Further, volSi and volV\Si can be updated based
on the degree G[vi].deg of the vertex vi being added to the cluster.
Hence, the Cheeger ratio of the new cluster Si can be calculated
using the updated ∂ and volSi , volV\Si . Further, note that since
G[i].ρ component for an edge will be 0, when G is sorted in the
descending order according to ρ

deg , all the vertices will be placed
before the edges. Hence, the flag variable is used to keep track of
the number of vertices in the sorted list that constitute the largest
cluster that satisfies the condition in Eq. (5).

We now define the Scatter and Gather primitives to compute
greaterCount. During Scatter, the vertices scatter ®ρ[v]

degv
across their

outgoing edges. To compute greaterCount, Gather is defined to
32

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

first perform a reverse scan of the DAG-list, followed by a forward
scan. During the reverse scan, the data value at each edge (u, v)

is updated to store the difference ®ρ[u]
degu

−
®ρ[v]
degv

corresponding to its
end points. In the forward scan, each vertex counts the number
of incoming edges having data value (i.e., the above difference)
greater than zero and stores the same in greaterCount. In this way,
performing a Scatter followed by Gather allows every node v to
count the number of neighboring vertices u with a greater ®ρ[u]

degu

than ®ρ[v]
degv

. The Scatter and Gather primitives are defined in Fig. 5.

Scatter(G)
for i = 1 to |V | + |E | do
if G[i].isV then

val = G[i].ρ
G[i].deg

else
G[i].dt = val

Gather(G)
agg = 0
for i = |V | + |E | to 1 do
if G[i].isV then

val = G[i].ρ
G[i].deg

else
G[i].dt = G[i].dt − val

for i = 1 to |V | + |E | do
if G[i].isV then
G[i].greaterCount = agg
agg = 0

else
if G[i].dt > 0
agg = agg + 1

Figure 5: Scatter and Gather to compute greaterCount

5.3 The secure variant
The secure protocol for computing local cluster is given in Fig. 6. It
takes as input secret shares of G, ρ, and the public target Cheeger
ratio ϕ. In addition to the primitives required for securely comput-
ing HKPR metric, the current protocol mainly requires ΠComp for
securely evaluating the conditional statements that require compar-
ison and ΠDiv for computing the Cheeger ratio securely. The secure
protocol for computing local cluster internally relies on the secure
protocol to compute greaterCount via the Scatter, and Gather. The
secure protocol for the latter appears in Fig. 7.

5.4 Security of the protocols
Observe that our secure protocols for HKPR computation and clus-
tering invoke the underlying 3PC protocols of SWIFT and the newly
designed protocols provided in §3. Since the designed 3PC protocols
invoke the protocols of SWIFT (as described in §3), whose security
has been established therein, the security of ΠSGP and ΠSClustering
follows directly. While correctness and obliviousness of the de-
signed protocols were given in place, an overview is provided in
§C for completeness.

6 EXPERIMENTAL EVALUATION
In this section, we demonstrate the applicability of our protocols
by benchmarking their performance. We benchmark the secure
HKPR-based clustering protocol on synthetic graphs, and YouTube
social network [41]. We additionally compare the accuracy of our
secure protocols to their cleartext counterparts.

– ΠgreaterCount(P, JGK, J ®ρK)
– JGK = ΠSort(G, JG. ®ρK)
– ∂ = J0K, JvolSK = J0K, JvolV\SK =

∑
v∈VJG[v].degK

– JϕminK = J232K and JflagK = J0K
– for i = 1 to |V | + |E | do

◦ J∂K = J∂K + JG[i].degK - 2·JG[i].greaterCountK
◦ JvolSK = JvolSK + JG[i].degK, JvolG\SK = JvolG\SK - JG[i].degK
◦ JminKB = ΠComp(JvolG\SK, JvolSK)
◦ JvolminK = Πsel(JvolSK, JvolG\SK, JminKB)
◦ JΦs K = ΠDiv(J∂K, JvolminK)
◦ Jθ1KB = 1⊕ΠComp(2JςK, JvolSK), Jθ2KB = 1⊕ΠComp(JvolSK, JςK/2),

Jθ3KB = 1 ⊕ ΠComp

(
J
√

8ϕK, JΦs K
)

◦ JminKB = ΠComp(JΦs K, JϕminK)
◦ Jθ KB = Π4-mult(Jθ1KB, Jθ2KB, Jθ3KB, JminKB)
◦ JϕminK = Πsel(JϕminK, JΦs K, Jθ KB)

JflagK = Πsel(JflagK, JiK, Jθ KB)

– Reconstruct flag. If flag > 0, reconstruct and output the first flag
elements of G

Protocol ΠSClustering(P, JGK, J ®ρK, ϕ)

Figure 6: Protocol for secure clustering

– Compute JGK = ΠShuffle(JGK) and apply public permutation to source
order DAG-list
Scatter(G)

– JvalK = J0K
– for i = 1 to |V | + |E | do

◦ JG[i].ρK = Πmult(JG[i].ρK, J 1
G[i].deg K, f)

◦ JvalK = Πsel(JvalK, JG[i].ρK, JG[i].isVKB)
◦ JG[i].dtK = JvalK

– Compute JGK = ΠShuffle(JGK) and apply public permutation to desti-
nation order DAG-list
Gather(G)

– JaggK = J0K
– for i = |V | + |E | to 1 do

◦ JvalK = Πsel(JvalK, JG[i].ρK, JG.isVKB)
◦ JG[i].dtK = JG[i].dtK − JvalK

– for i = 1 to |V | + |E | do
◦ JG[i].greaterCountK = JaggK
◦ JaggK = Πsel

(
JaggK, 0, JG[i].isVKB

)
◦ JcKB = ΠComp(0, JG[i].dtK)
◦ JaggK = Πsel(JaggK, JaggK + 1, JcKB)

Protocol ΠgreaterCount(P, JGK, J ®ρK)

Figure 7: Protocol for computing greaterCount

6.1 Accuracy results
Computing the HKPR metric, as well as the Cheeger ratio used in
clustering demands operating on decimal values. Hence, the secure
computation of these proceeds via fixed-point arithmetic (FPA).
Since numbers in FPA representation have limited precision, oper-
ating over FPA introduces errors in comparison to floating-point
arithmetic since the latter allows for higher precision. This holds
true even when performing the computations on cleartext. Further,

33

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

the method of probabilistic truncation and approximation of divi-
sion used for secure computation introduces additional errors over
the cleartext FPA algorithm. To showcase that secure computation
via FPA does not result in significant accuracy loss in comparison
to computations performed on cleartext floating-point equivalent,
we compare and report the accuracy of both. Further, to showcase
the error introduced when moving from floating-point to fixed-
point representation, we report the difference in the accuracy of
the two when considering the cleartext algorithm. All the imple-
mentations are in python over a 64-bit ring and use NumPy[19]
and NetworkX[18] libraries. Henceforth, the terms float and fixed
denote the floating-point and fixed-point computation of the clear-
text algorithm, respectively. Similarly, the term secure refers to
the secure fixed-point computation. We report accuracy of graph
propagation algorithm first, followed by that of clustering.
Datasets: We benchmark accuracy of algorithms on three different
types of synthetic graphs. To showcase the accuracy loss when com-
puting over large real-world networks, we also consider YouTube
social network [41]. Table 3 summarises details of these graphs.

Model |V| d p

Small world

100 5 0.1

500 5 0.1

800 5 0.1

1000 5 0.1

Powerlaw cluster
100 5 0.1

500 5 0.1

800 5 0.1

Preferential Attachment
100 5 -

500 5 -

800 5 -

Youtube 1134890 - -

|V | denotes number of vertices, d denotes number of neighbours each vertex is
assigned, and p denotes probability of switching an edge for the case of a small
world graph, or probability of forming a triangle for the case of powerlaw cluster.

Table 3: Graph datasets used for accuracy testing

6.1.1 Graph propagation metrics. Recall that our secure graph
propagation protocol ΠSGP allows to compute various graph prop-
agation metrics. Since accuracy varies with the propagation metric
under consideration, we account for the following metrics– L-hop
transition probability, PageRank, single target PageRank and HKPR.
We use MaxError and L1 error to capture accuracy loss. Given two
graph propagation vectors ®ρ1 and ®ρ2, the MaxError is computed
as maxv∈V

(��� ®ρ1[v]
degv

−
®ρ2[v]
degv

���) . The MaxError measures the maximum
absolute error in ®ρ2 with respect to ®ρ1. Similarly, the L1 error is
given by L1 = 1

|V |
∑
v∈V

(��� ®ρ1[v]
degv

−
®ρ2[v]
degv

���) . The L1 error measures the
average absolute error in ®ρ2 with respect to ®ρ1 over all vertices
of the graph. We compute the MaxError and L1 error in the fixed-
point cleartext as well as secure algorithms, each with respect to
the floating-point cleartext algorithm. The errors are reported with
respect to the YouTube graph in Table 4. As evident from results of
Table 4, both the MaxError and L1 error is in the order of ×10−5 or
smaller with respect to floating-point algorithm. This implies that
the difference in accuracy is visible only after the 5th decimal digit,
and thus, the loss is very small. Benchmarks on synthetic graphs
yield errors in similar orders, and hence are not reported.

Similarity measures
MaxError L1 Error

Fixed Secure Fixed Secure

L-Hop transition 1.3674 × 10−5 6.0872 × 10−5 1.6719 × 10−6 1.6719 × 10−6

PageRank(PR)∗ 1.8223 × 10−08 1.8622 × 10−8 5.0661 × 10−7 3.7420 × 10−7

Single target PR 3.2904 × 10−5 5.2424 × 10−5 1.7061 × 10−7 3.0636 × 10−7

HKPR 1.3865 × 10−5 2.2393 × 10−5 0.7911 × 10−8 1.0205 × 10−8

* Precision is set to 28 bits when operating on fixed-point to accommodate small
values of signal vector

Table 4: MaxError and L1 error comparison of cleartext FPA
and secure FPA algorithms with cleartext floating-point

algorithm for various graph propagation metrics

6.1.2 Clustering. Weperform local clustering on the various graphs
described in Table 3 and report the accuracy results. While report-
ing the accuracy of the secure local clustering algorithm, we also
account for the accuracy loss incurred in securely computing the
HKPR propagation vector (®ρ), which is fed as input to our secure
clustering algorithm. Although Personalized PageRank has also
been used to perform local clustering, it is known from the litera-
ture [13, 26, 61] that HKPR-based clustering outputs better quality
clusters. Hence, we report accuracy results for clustering based on
HKPR only. We take the Cheeger ratio (Φs) and intersection differ-
ence (dist) as parameters to analyze the quality of the clusters out-
put by the clustering algorithm. The Cheeger ratio for a cluster S, as
explained in section §5.1, is given by Φs = ∂

min(volS,volG\S)
. Note that

a lower Cheeger ratio implies a cluster of higher quality. We report
the Cheeger ratio of the cluster output by the cleartext algorithm
(which operates with floating-point as well as fixed-point represen-
tation) and our secure algorithm (which operates over fixed-point
representation) in Table 5. The intersection difference, dist, mea-
sures the similarity between two sets. Given two clusters S and S ′
sorted with respect to ®ρ[v]/degv, the intersection difference of S ′

with respect to S is given by dist(S, S ′) = 1
n
∑n
i=1

|(Si ⊕S ′i) |
2i . Here,

Si , S
′
i are sets containing first i elements of S and S ′, respectively,

and Si ⊕ S ′i = (Si \ S
′
i)
⋃
(S ′i \ Si). The values of set intersection dif-

ference lies between [0, 1] where it is 0 for absolutely identical sets,
and 1 for disjoint sets. We compute the dist of the cluster generated
by our secure protocol (operating over fixed-point representation)
with respect to the cluster generated by the floating-point cleartext
algorithm. We also compute the dist of cluster generated by the
fixed-point cleartext algorithm with respect to that generated by
the floating-point cleartext algorithm to showcase the effect of mov-
ing from floating-point computation to fixed-point computation.
These values are reported in Table 5. As evident from Table 5, the
Cheeger ratio of the output clusters in the three variants of the clus-
tering algorithm are small and almost similar. This indicates that
the quality of the cluster output by the secure protocol is similar to
that output by the cleartext algorithm. Further, the set intersection
distance is also very close to 0. This too, implies the cluster output
by the secure protocol is nearly identical to the cluster generated
by the cleartext algorithm.

6.2 Secure computation
To show the practicality of our secure protocols, we benchmark
and report their performance. We describe the benchmark envi-
ronment and parameters first, followed by our observations. We

34

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

Model |V| ς
Minimum Cheeger ratio Intersection Difference

Float Fixed Secure Fixed Secure

Small world

100 100 0.24223 0.24221 0.24221 0.01149 0.01942

500 500 0.1737 0.17507 0.17466 0.07723 0.03248

800 500 0.14965 0.14964 0.14964 0.02118 0.01312

1000 500 0.17176 0.17224 0.17218 0.01866 0.07169

Powerlaw cluster
100 20 0.63963 0.63963 0.63963 0.03439 0.01587

500 100 0.45454 0.45452 0.45452 0.02120 0.06819

800 100 0.4923 0.49227 0.49227 0.01830 0.04332

Preferential Attachment
100 100 0.45915 0.45913 0.45913 0.01252 0.01234

500 500 0.45213 0.45211 0.45211 0.01761 0.02174

800 500 0.54759 0.54747 0.54757 0.01809 0.02302

YouTube 1134890 500 0.61556 0.61433 0.61433 0.01020 0.01281

Table 5: Cluster quality with respect to Cheeger ratio and
intersection difference. |V| denotes the number of vertices
and ς denotes the target cluster volume. We set the target
Cheeger ratio, ϕ, to 0.1 for all the graphs. The choice of

parameters ς and ϕ follow from [13]

report results in LAN (1 Gbps bandwidth) with 2.3 GHz Quad-Core
Intel Core i7 machines having 16GB RAM. The average round trip
time (rtt) for communicating 1KB data between a pair of machines
is 0.29 milliseconds (ms). The protocols build on the ENCRYPTO
library [14] in C++17 over a 64-bit ring. We use multi-threading,
wherever possible, to facilitate efficient computation and communi-
cation among the parties. We report the time taken (in seconds) for
the protocols to complete as the benchmark parameter.

Since the complexity of graph propagation and clustering algo-
rithms depend on the size of the edge list (G), we analyze these
algorithms by varying |V|+ |E| between 100 and 106. We benchmark
the performance in a multiprocessor setting with four processors
and report the maximum time taken by a processor. GraphSC pro-
vides a way to perform Scatter,Gather operations in parallel, which
we use in the multiprocessor setting to ensure that our algorithms
do not require linear complexity in |V| + |E|. To perform the sort
operation in parallel, we use bitonic sort, which can be performed in
parallel at the circuit level [49]. We use the secure shuffle protocol
of [3]. However, it is not trivial to perform the shuffle in a paral-
lel setting. Hence, the reported times for multiprocessor setting
account for a non-optimized version of the secure shuffle.

For secure graph propagation, we estimate the run time for one
iteration of the algorithm. Note that since all the graph propagation
metrics can be computed viaΠSGP, the cost of evaluation of all these
is the same. As expected and is evident from Table 6, the run time
of the algorithm increases linearly with increasing |V| + |E| in both
single and multiprocessor settings. The parallelized algorithm gives
4× saving in run time in comparison to the single processor setting.
The gain is even more eminent (up to 6.7×) for a higher number
of processors. Fig. 8 gives a visual representation of variation in
run time of graph propagation and clustering algorithm when the
number of processors is varied.

We perform similar benchmarks for the secure clustering algo-
rithm. Unlike the algorithm in [13], our algorithm takes the graph
propagation vector (®ρ) as input, and hence, the run times reported
do not account for the HKPR computation time. We report the re-
sults in Table 7 and observe the same trend as seen secure in HKPR.
A visual representation of the variation in run time with increasing
processors appears in Fig. 8.

|V| + |E|
Single Processor Multi Processor

Preprocessing (s) Online(s) Preprocessing (s) Online(s)

102 0.084 0.321 0.084 0.258

103 0.259 1.767 0.201 0.785

104 1.32 12.685 0.614 4.332

105 12.361 114.838 4.101 31.523

106 139.614 1161.475 41.149 295.073

Table 6: HKPR: Sequential computation and parallel computation
(4 processors) for varying |V | + |E |

2 4 8 16

0

1,000

2,000

3,000

Number of processors

Ti
m
e(
s)

HKPR Preprocessing
HKPR Online
Clustering Preprocessing
Clustering Online

Figure 8: Run time for varying number of processors for
|V | + |E | = 106

|V| + |E|
Single Processor Multi Processor

Preprocessing (s) Online(s) Preprocessing (s) Online(s)

102 0.109 0.446 0.14 0.3

103 0.761 3.634 0.777 1.131

104 6.928 33.805 6.4 7.65

105 68.716 331.812 61.925 64.101

106 695.913 3325.92 619.749 622.032

Table 7: Clustering: Sequential computation and parallel
computation (4 processors) for varying |V | + |E |

7 CONCLUSION
We design secure protocols for local clustering and for comput-
ing HKPR graph propagation metric. To ensure that the designed
protocols scale for large-sized graphs, we rely on the framework
of GraphSC [3, 44] and the 3PC of SWIFT [27]. Through exten-
sive experiments, we showcase that the accuracy loss of the secure
protocols, in comparison to the cleartext counterparts, is very low.
Further, the run time reported for the secure protocols showcases
their practicality for real-world problems such as identifying a local
cluster around an infected COVID-19 patient. In this way, relying on
the state-of-the-art techniques for local clustering [13], HKPR met-
ric [59], secure parallel graph computation framework [3, 44], and
3-party computation [27], facilitates achieving an efficient solution
for privacy-preserving local clustering. Finally, our secure algo-
rithm for computing HKPR also enables evaluating graph neural
networks (GNN) [59]. Given that we also provide secure protocols
for division, we believe that extending our techniques to provide
support for GNN training and inference is an interesting question.

35

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

ACKNOWLEDGMENTS
Arpita Patra, Varsha Bhat Kukkala, Nishat Koti and Bhavish Raj
Gopal would like to acknowledge financial support from National
Security Council, India. Nishat Koti would also like to acknowledge
support from Centre for Networked Intelligence (a Cisco CSR initia-
tive) at the Indian Institute of Science, Bengaluru. The authors also
acknowledge the support from Google Cloud for benchmarking.

REFERENCES
[1] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using

pagerank vectors. In FOCS.
[2] Reid Andersen and Yuval Peres. 2009. Finding sparse cuts locally using evolving

sets. In ACM STOC.
[3] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin,

and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In ACM SIGSAC.
[4] Gilad Asharov, Francesco Bonchi, David García-Soriano, and Tamir Tassa. 2017.

Secure centrality computation over multiple networks. In WWW.
[5] Yikun Ban and Jingrui He. 2021. Local clustering in contextual multi-armed

bandits. In The Web Conference.
[6] Beyza Bozdemir, Sébastien Canard, Orhan Ermis, Helen Möllering, Melek Önen,

and Thomas Schneider. 2021. Privacy-preserving density-based clustering. In
ACM CCS.

[7] Paul Bunn and Rafail Ostrovsky. 2007. Secure two-party k-means clustering. In
ACM CCS.

[8] Octavian Catrina. 2018. Round-Efficient Protocols for Secure Multiparty Fixed-
Point Arithmetic. In COMM.

[9] Octavian Catrina andAmitabh Saxena. 2010. Secure computationwith fixed-point
numbers. In FC.

[10] Pak K Chan, Martine DF Schlag, and Jason Y Zien. 1994. Spectral k-way ratio-cut
partitioning and clustering. IEEE TCAD (1994).

[11] Jung Hee Cheon, Duhyeong Kim, and Jai Hyun Park. 2019. Towards a practical
cluster analysis over encrypted data. In SAC.

[12] Fan Chung. 2007. The heat kernel as the pagerank of a graph. PNAS (2007).
[13] Fan Chung and Olivia Simpson. 2018. Computing heat kernel pagerank and a

local clustering algorithm. European Journal of Combinatorics (2018).
[14] Cryptography and Privacy Engineering Group at TU Darmstadt. 2018. EN-

CRYPTO Utils. https://github.com/encryptogroup/ENCRYPTO_utils.
[15] Priyanka Das and Asit Kumar Das. 2017. Behavioural analysis of crime against

women using a graph based clustering approach. In ICCCI.
[16] Jennifer A Dunne, Richard J Williams, and Neo D Martinez. 2002. Food-web

structure and network theory: the role of connectance and size. PNAS (2002).
[17] Shayan Oveis Gharan and Luca Trevisan. 2012. Approximating the Expansion

Profile and Almost Optimal Local Graph Clustering. In FOCS.
[18] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,

dynamics, and function using NetworkX. Technical Report. LANL.
[19] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature (2020).

[20] Angela Jäschke and Frederik Armknecht. 2018. Unsupervised machine learning
on encrypted data. In SAC.

[21] Ravi Kannan, Santosh Vempala, and Adrian Vetta. 2004. On clusterings: Good,
bad and spectral. JACM (2004).

[22] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika (1953).

[23] Hannah Keller, Helen Möllering, Thomas Schneider, and Hossein Yalame. 2021.
Balancing Quality and Efficiency in Private Clustering with Affinity Propagation.
In SECRYPT.

[24] Hyeong-Jin Kim and Jae-Woo Chang. 2018. A privacy-preserving k-means
clustering algorithm using secure comparison protocol and density-based center
point selection. In IEEE CLOUD.

[25] Pan-Jun Kim, Dong-Yup Lee, and Hawoong Jeong. 2009. Centralized modularity
of N-linked glycosylation pathways in mammalian cells. PloS one (2009).

[26] Kyle Kloster and David F Gleich. 2014. Heat kernel based community detection.
In ACM SIGKDD.

[27] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-
fast and Robust Privacy-Preserving Machine Learning. In USENIX Security.

[28] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively
Secure 4PC for Secure Training and Inference. In NDSS.

[29] Varsha Bhat Kukkala and SRS Iyengar. 2020. Identifying influential spreaders in
a social network (While preserving Privacy). PETS (2020).

[30] Yanhua Li, Zhi-Li Zhang, and Jie Bao. 2012. Mutual or unrequited love: Identifying
stable clusters in social networks with uni-and bi-directional links. In WAW.

[31] Chung-Shou Liao, Kanghao Lu, Michael Baym, Rohit Singh, and Bonnie Berger.
2009. IsoRankN: spectral methods for global alignment of multiple protein
networks. BMC Bioinformatics (2009).

[32] Frank Lin and William W Cohen. 2010. Power iteration clustering. In ICML.
[33] Peter Lofgren and Ashish Goel. 2013. Personalized pagerank to a target node.

preprint arXiv:1304.4658 (2013).
[34] László Lovász and Miklós Simonovits. 1990. The mixing rate of Markov chains,

an isoperimetric inequality, and computing the volume. In FOCS.
[35] Zhenqi Lu, Johan Wahlström, and Arye Nehorai. 2021. Local clustering via

approximate heat kernel PageRank with subgraph sampling. Scientific Reports
(2021).

[36] David Lusseau, Karsten Schneider, Oliver J Boisseau, Patti Haase, Elisabeth
Slooten, and Steve M Dawson. 2003. The bottlenose dolphin community of
Doubtful Sound features a large proportion of long-lasting associations. Behav-
ioral Ecology and Sociobiology (2003).

[37] Jun Ma, Danqing Zhang, Yun Wang, Yan Zhang, and Alexey Pozdnoukhov. 2018.
GraphRAD: a graph-based risky account detection system. In ACM SIGKDD.

[38] Peter Markstein. 2004. Software division and square root using Goldschmidt’s
algorithms. In RNC.

[39] XMeng, D Papadopoulos, A Oprea, and N Triandopoulos. 2019. Private two-party
cluster analysis made formal & scalable. preprint arXiv:1904.04475 v2 (2019).

[40] Ekaterina Merkurjev, Andrea L Bertozzi, and Fan Chung. 2018. A semi-supervised
heat kernel pagerank MBO algorithm for data classification. Communications in
Mathematical Sciences (2018).

[41] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and
Bobby Bhattacharjee. 2007. Measurement and Analysis of Online Social Networks.
In IMC.

[42] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework
for Machine Learning. In ACM CCS.

[43] PaymanMohassel, Mike Rosulek, and Ni Trieu. 2020. Practical privacy-preserving
k-means clustering. PETS (2020).

[44] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and
Elaine Shi. 2015. Graphsc: Parallel secure computation made easy. In IEEE S&P.

[45] Mark EJ Newman and Elizabeth A Leicht. 2007. Mixture models and exploratory
analysis in networks. PNAS (2007).

[46] AndrewNg,Michael Jordan, and YairWeiss. 2001. On spectral clustering: Analysis
and an algorithm. In NeurIPS.

[47] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[48] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:
Improved Mixed-Protocol Secure Two-Party Computation. In USENIX Security.

[49] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2011. Fast
in-place, comparison-based sorting with CUDA: A study with bitonic sort. Con-
currency and Computation: Practice and Experience (2011).

[50] Fang-Yu Rao, Bharath K Samanthula, Elisa Bertino, Xun Yi, and Dongxi Liu. 2015.
Privacy-preserving and outsourced multi-user k-means clustering. In IEEE CIC.

[51] Corban G Rivera, Rachit Vakil, and Joel S Bader. 2010. NeMo: network module
identification in Cytoscape. BMC bioinformatics (2010).

[52] Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wigger-
man, Jan Veldsink, Oscar Bloemen, and Daniël Worm. 2019. Secure multiparty
PageRank algorithm for collaborative fraud detection. In FC. Springer.

[53] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks (1983).

[54] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE PAMI (2000).

[55] Daniel A Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear systems. In ACM
STOC.

[56] Daniel A Spielman and Shang-Hua Teng. 2013. A local clustering algorithm for
massive graphs and its application to nearly linear time graph partitioning. SIAM
Journal on computing (2013).

[57] Steven H Strogatz. 2001. Exploring complex networks. Nature (2001).
[58] Ajith Suresh. 2021. MPCLeague: Robust MPC Platform for Privacy-Preserving

Machine Learning. CoRR (2021). https://arxiv.org/abs/2112.13338
[59] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. 2021. Approximate Graph Propagation. In ACM SIGKDD.
[60] Yuchung J Wang and George Y Wong. 1987. Stochastic blockmodels for directed

graphs. J. Amer. Statist. Assoc. (1987).
[61] Renchi Yang, Xiaokui Xiao, ZheweiWei, Sourav S Bhowmick, Jun Zhao, and Rong-

Hua Li. 2019. Efficient estimation of heat kernel pagerank for local clustering. In
ACM SIGMOD.

[62] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended
Abstract). In FOCS.

36

https://github.com/encryptogroup/ENCRYPTO_utils
https://arxiv.org/abs/2112.13338

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

[63] Samee Zahur and David Evans. 2013. Circuit structures for improving efficiency
of security and privacy tools. In IEEE Symp. Secur. Priv. IEEE.

[64] Jian-Xiong Zhang, Duan-Bing Chen, Qiang Dong, and Zhi-Dan Zhao. 2016. Iden-
tifying a set of influential spreaders in complex networks. Scientific reports
(2016).

A RELATEDWORK
Since many graph propagation metrics qualify as centrality mea-
sures, here we discuss works that securely compute other such
measures such as PageRank, K-shell decomposition, followed by
privacy-preserving global clustering algorithms.

Among the various measures, computing PageRank via MPC has
been looked at [3, 4, 29, 44, 52], with several works in the 2PC setting.
[44] securely computes PageRank using garbled circuits, while, [52]
uses homomorphic encryption (HE) for the same. The work of [29]
continues to be in the 2PC setting and focuses on ORAM-based
implementation to securely compute PageRank. Additionally, [29]
considers other centrality measures such as K-shell decomposition
[53] and VoteRank [64]. [3] improves on the works of [44] and
provides an efficient implementation of PageRank in the 3-party
malicious setting. The work of [4] gives an n-party protocol for
computing PageRank and Katz centrality in the semi-honest setting.
Despite the popularity of the PageRank, due to it being a global
network parameter, it is a misfit for use as a similarity measure in
local clustering algorithms. Hence, we are the first to address the
problem of securely computing HKPR, which is known to be the
apt fit as a similarity measure for local clustering.

With respect to clustering, privacy-preserving variants of global
clustering algorithms has been actively looked [6, 7, 11, 20, 23,
24, 39, 43, 50, 63]. There are several works [7, 20, 24, 43, 50] that
realize privacy-preserving K-means clustering using HE in the two-
party setting. However, these are not parallelizable and are highly
inefficient. The work of [11] provides an efficient implementation
of mean-shift clustering using HE that achieves linear complexity.
[23] looks at the secure computation of affinity propagation-based
clustering algorithms using arithmetic secret sharing. [63] performs
DBSCAN clustering using garbled circuits in a 2 party setting. The
work of [6] improves on [11] and gives an efficient implementation
of DBSCAN for clustering using garbled circuits and arithmetic
secret sharing in the two-party setting. The work of [39] describes
hierarchical clustering using homomorphic encryption and garbled
circuits in the two-party setting.

B GRAPHSC PARADIGM OF [3, 44]
The transformations involved in a GraphSC application and the
improvements of [3] are depicted with the help of an example
graph in Fig. 9. Although the framework of [44] requires an explicit
“Apply” operation, we note that it can be performed along with
“Gather” operation and hence, is not explicitly depicted in Fig. 9.
Table 8 provides a list of most frequently used notations.

B.1 Parallel variant of GraphSC paradigm [44]
We provide an overview of the steps involved in translating the
linear round sequential protocols for computing Scatter andGather
to attain a logarithmic round parallel protocol, in the presence of
multiple processors, as described in the work of [44]. Assuming
that there are M = |V| + |E| processors, we begin by describing

Notation Description

V Set of vertices
E Set of edges

Data Set of Data values
G(V, E,Data) Data augmented graph
DAG-list List representation of data augmented graph
G[i] ith entry/tuple of the DAG-list

G[i].isV Denotes if tuple i corresponds to a vertex
G[i].dt State information stored at tuple i

A Adjacency Matrix
®z[v] vth component of a vector ®z
(x)f Denotes that x ∈ Z2ℓ has f bits of precision

Table 8: Table of notations

how Gather can be performed in parallel. The parallel variant of
Scatter can also be achieved similarly. We conclude by describing
the approach to perform Scatter-Gather in parallel when there are
only P < M processors. We refer an interested reader to [44] for
further details.

Performing Gather in parallel. Let ⊖ represent the aggregate
operation to be performed within Gather. Recall that when consid-
ering the destination sorted list, the aggregate operation updates
the data associated with every vertex with the data present in the
longest consecutive sequence of edges preceding it. Let LPS[i, j) for
1 ≤ i < j ≤ |V| + |E| denote the “sum” (aggregation with respect to
⊖ operator) of the data present in the longest consecutive sequence
of edges before j beginning from (and including) i . Observe that
computing LPS[1, j) for 1 ≤ j ≤ |V| + |E| and updating a vertex
j with LPS[1, j), is equivalent to updating the data at the vertices
as done in Gather. Thus, to obtain the parallel variant of Gather
given M = |V| + |E| processors, we assign the task of computing
LPS[1, j) to the jth processor.

To attain the logarithmic round complexity, in each time step
τ , the parallel algorithm computes LPS values for all segments of
length 2τ . The LPS values of the consecutive 2τ -length segments
computed in time step τ are then used to compute LPS values of
2τ+1-length segments in the next time step, τ + 1. In this way,
since the input is a segment of length |V| + |E|, the computation
of the last LPS entry, LPS[1, |V| + |E|) can thus be accomplished
in log(|V| + |E|) time steps. Concretely, in time step τ , a processor
j ∈ {1, 2, . . . , |V|+ |E|} computes LPS[j−2τ , j) (a τ -length segment).
Thus, in the next time step, it can compute LPS[j − 2τ+1, j) by com-
bining LPS[j − 2τ+1, j − 2τ) and LPS[j − 2τ , j). A subtle thing to
note here is that a segment can be aggregated with the immediately
preceding segment of equal size only if a vertex has not been en-
countered in between. At the end of log(|V| + E) time steps, vertex
j’s data for j ∈ {1, 2, . . . , |V| + |E|} is updated with LPS[1, j). The
formal protocol for the same appears in Algorithm 4.

Performing Scatter in parallel. Recall that in the propagate oper-
ation performed as part of Scatter, each edge updates its data with
the data of the nearest vertex preceding it. This propagate operation
can also be performed in parallel, similar to as done in the aggregate
operation. In fact, propagate can be represented as a special case of
aggregate as follows. Initially, each edge either stores the value of
the vertex if a vertex immediately precedes it, else it stores−∞. Next,

37

Proceedings on Privacy Enhancing Technologies 2023(2) Shriram et al.

v1 v2 v3 e12 e13 e23DAG-List

Secure Sort

v1 e12 e13 v2 e23 v3
Source Ordering

(Scatter)

Destination Ordering
(Gather) v1 e12 v2 e13 e23 v3

Secure Sort

(a) GraphSC paradigm of [44]

v1 v2 v3 e12 e13 e23DAG-List

 ΠA

v2 e23 e13 v1 e23 v3 Insecure Sort v1 e12 e13 v2 e23 v2

(PUBLICLY KNOWN MAPPING)

Order-A

ΠB

e13 e12 v3 v2 e23 v1 v1 e12 v2 e13 e23 v2

Secure Shuffle ΠB
-1

Order-B Insecure Sort

(PUBLICLY KNOWN MAPPING)

Secure Shuffle

Source Ordering
(Scatter)

Destination Ordering
(Gather)

v1

v2 v3

e12

e23

e13

Graph

(b) GraphSC paradigm of [3]

Figure 9: Overview of operations involved in GraphSC

an aggregate operation can be performed where ⊖ is the max opera-
tor, i.e., LPS[j − 2τ+1, j) = max{LPS[j − 2τ+1, j − 2τ), LPS[j − 2τ , j)}.
At the end of log(|V| + E) time steps, the jth processor computes
LPS[1, j) which is the value of the nearest vertex preceding j . Thus,
if j is an edge, its data can be updated with LPS[1, j).

Performing Gather in parallel with P < M processors. In such a
scenario, instead of holding a processor responsible for comput-
ing a single cell of LPS, it is assigned a consecutive range of cells
to be computed. Without loss of generality, assume that M is a
multiple of P . Let processor j be assigned the range [sj , tj] where

sj = (j − 1) ·
M

P
+ 1 and tj = j ·

M

P
. Each processor first computes

LPS[sj , tj + 1) sequentially in O(
M

P
) time steps. Then, assuming

that each LPS[sj , tj + 1) is a single value, the processors run the
parallel algorithm forGather on this segment of length P . Thus, the

number of time steps required for this algorithm is O
(
M

P
+ log P

)
.

Algorithm 4: Parallel Gather(G)
Initialization: Every processor j computes ;

1 LPS[j − 1, j) =

{
G[j − 1].dt, if G[j − 1].isV = 0
0, otherwise

2 isV[j − 1, j) =

{
1, if G[j − 1].isV = 1
0, otherwise

Main Algorithm: ;
3 For τ = 0 to log (|V| + |E|) − 2, each processor j computes:

4 LPS[j − 2τ+1, j) =


LPS[j − 2τ+1, j − 2τ)
⊖LPS[j − 2τ , j), if isV[j − 2τ , j) = 0
LPS[j − 2τ , j), otherwise

5 isV[j − 2τ+1, j) = isV(j − 2τ+1, j − 2τ) ∨ isV[j − 2τ , j)
end
∗∨ denotes the OR operation

B.2 Details of shuffle protocol of [3]
The shuffle protocol from the work of [3] uses two subroutines,
a semi-honest shuffle pair ΠShuffle−Pair and a robust maliciously
secure set equality ΠSet−Equality. It makes three invocations to
ΠShuffle−Pair where in each invocation it takes as inputs the RSS
shares of a vector ®v to be shuffled, [®v], and a set of two distinct par-
ties who hold a common permutation, π (generated using a shared
secret key). The output consists of RSS shares of π (®v). After every
invocation of shuffle pair, a protocol ΠSet−Equality is called to verify
the correctness of the shuffle pair, i.e., it checks whether the shares
of the vector output by ΠShuffle−Pair is a permutation of the shares
of the vector that was input to this ΠShuffle−Pair. Thus, ΠSet−Equality
takes in as input the shares of the vector that constitute the input
and output to the ΠShuffle−Pair, and outputs a bit, indicating the
correctness of ΠShuffle−Pair.

The described shuffle protocol, however, cannot be adapted di-
rectly to the framework of SWIFT, and there are two challenges that
need to be addressed– (i) the shuffle of [3] uses RSS secret sharing
semantics ([·]-shares), and hence in order to adapt the protocol to
SWIFT where values are J·K-shared, the vector which is shuffled
needs to be converted from SWIFT sharing semantics (J·K-shares)
to RSS sharing ([·]-shares) and vice-versa, (ii) the shuffle of [3] op-
erates entirely in Boolean worlds whereas our clustering protocol
requires operating in the arithmetic world. To address the first chal-
lenge, we use the fact that conversion from J·K-shares to [·]-shares
can be performed non-interactively, relying on local operations.
On the other hand, conversion from [·]-shares to J·K-shares re-
quires invoking the ΠJsh primitive of SWIFT. To address the second
challenge, we note that ΠShuffle−Pair that operates in the Boolean
world can be easily translated to work in the arithmetic world by
replacing the XOR operations in the former with the corresponding
addition/subtraction operations in the latter. A similar translation
does not hold true for ΠSet−Equality. Hence, to enable operating
in the Boolean world while performing ΠSet−Equality, we perform
an arithmetic to Boolean conversion on the inputs of ΠSet−Equality.
Formal details of the shuffle protocol appear in Fig. 10.

38

Find thy neighbourhood Proceedings on Privacy Enhancing Technologies 2023(2)

1. Let ®αv1, ®αv2, ®αv3, ®βv denote the J·K-shares of ®v. Compute [®v] from
J®vK by setting ®v1 = ®αv1, ®v2 = ®αv2 and ®v3 = ®αv3 − ®βv.

2. Compute Boolean shares of J®vK as J®vKB = ΠA2BJ®vK. Generate [®v]B

from J®vKB as described above.
3. Compute [®v ′] = ΠShuffle−Pair([®v] , P0, P1, π01) where ®v ′ = π01(®v)

and P0, P1 hold π01 on clear.
4. Let ®v ′

1 , ®v
′

2 , ®v
′

3 denote the three shares of [®v ′]. Invoke ΠJsh on each
®v ′
i to generate J®v ′

i K. Compute J®v ′K = J®v ′
1 K + J®v ′

2 K + J®v ′
3 K.

5. Compute Boolean shares of J®v ′K as J®v ′KB = ΠA2BJ®v ′K. Generate
[®v ′]

B from J®v ′KB as described above.
6. Check correctness of ΠShuffle−Pair, i.e., ®v ′ = π01(®v), by asserting

ΠSet−Equality([®v]
B , [®v ′]

B
) is equal to 0.

7. Parties compute [®v ′′] = ΠShuffle−Pair([®v ′] , P1, P2, π12) where ®v ′′ =

π12(®v ′) and P1, P2 hold π12 on clear.
8. Perform similar steps as described in steps 4, 5 to generate [®v ′′]

B.
9. Check correctness of ΠShuffle−Pair, i.e., ®v ′′ = π12(®v ′), by asserting

ΠSet−Equality([®v ′]
B , [®v ′′]

B
) is equal to 0.

10. Repeat steps 7, 8, 9 to robustly compute [®v ′′′] = [π02(®v ′′)] where
P0, P2 hold π02 on clear.

11. Parties compute J®v ′′′K from [®v ′′′] via ΠJsh, as described before.

Protocol ΠShuffle
(
J®vK

)

Figure 10: Shuffle of [3] adapted over the framework of SWIFT

C SECURITY OF THE PROTOCOLS
In this section, we give an overview of the security of our protocols
for secure graph propagation and secure local clustering that were
described in §4 and §5 respectively. These protocols rely on the
GraphSC paradigm for setting forth the algorithms in an oblivious
fashion. These oblivious algorithms are then evaluated in a secure
manner using the MPC protocols of SWIFT [27], together with the
protocols described in §3. Since the protocols in §3 rely on invoking
secure protocols of SWIFT, their security follows directly from the
security of SWIFT. Thus, the security of our clustering and graph
propagation protocols too follows from SWIFT.

Now, it remains to be shown that the algorithms described in
sections §4.2 (oblivious graph propagation) and §5.2 (oblivious clus-
tering) are data-oblivious. In §4.2, the graph propagation algorithm
is given using the Scatter and Gather primitives of GraphSC. Ob-
serve that in each of these primitives, every entry in the entire
DAG-list representation (including both nodes and edges) is ac-
cessed in each iteration. Further, the steps within these primitives
can be made data-oblivious. Combined with the fact that Scatter
and Gather are data-oblivious due to source and destination sort
as provided by GraphSC, this ensures that the graph propagation
algorithm in 4.2 is data-oblivious.

Regarding the algorithm in §5.2, the Scatter and Gather primi-
tives are oblivious using the same arguments given as above. The
only other function in §4.2 is FindCluster. FindCluster makes use
of the number of neighbours of a vertex v, u ∈ Nv, that have

a greater value of
®ρ[u]

degu
than that of vertex v’s ®ρ[v]

degv
. This value

is called G[v].greaterCount, and is computed during the Scatter-
Gather step. Then, the function makes a single sweep over the
list representation of the graph. If a vertex satisfying the required
constraints is found, it is added to a set S. The correctness of Find-
Cluster relies on correctly computing the Cheeger ratio Φs of set
S. For this, the volumes of sets S, V \ S, denoted as volS and volV\S,

respectively, can be computed easily by adding or subtracting the
degree of the vertex v being added to the set S. Next, ∂, which is
the number of edges crossing the cluster S needs to be computed. A
common global variable is used for computing ∂ by accumulating
edges in it during a sweep over the DAG-list that is sorted according
to ®ρ[i]

degi
for all G[i] belonging to the DAG-list.

The edges incident on a vertex v that is yet to be added to the set
S can be categorized as either (i) having one endpoint within S and
the other endpoint outside S, or (ii) having both endpoints outside
S. The number of edges at v of type (i) are G[v].greaterCount,
while those of type (ii) are G[v].deg - G[v].greaterCount. Thus,
the number of edges that cross the new cluster S ∪ v is updated
by subtracting the number of edges of type (i) and adding the
number of edges of (ii). Updating ∂ in this way ensures that the
Cheeger ratio is computed correctly. This ensures the correctness
of FindCluster. Observe that during the computation of FindCluster,
all the edges and vertices of the graph are swept through once.
Further, since every update happens depending on only whether
the current entry in the DAG-list is a vertex or an edge, and not
based on the structure of the graph, the sweep is oblivious. Finally,
since the Scatter, Gather, and FindCluster is oblivious, this ensures
that the entire algorithm is oblivious.

39

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 On the choice of cleartext algorithms
	1.3 Related work
	1.4 Organization of the paper

	2 Preliminaries
	2.1 System model
	2.2 3PC of SWIFT
	2.3 GraphSC paradigm

	3 Primitives for clustering
	4 Privacy-preserving HKPR
	4.1 The cleartext algorithm
	4.2 The data-oblivious variant
	4.3 The secure variant
	4.4 Other graph propagation metrics

	5 Privacy-preserving clustering
	5.1 The cleartext algorithm
	5.2 The data-oblivious variant
	5.3 The secure variant
	5.4 Security of the protocols

	6 Experimental evaluation
	6.1 Accuracy results
	6.2 Secure computation

	7 Conclusion
	Acknowledgments
	References
	A Related work
	B GraphSC paradigm of
	B.1 Parallel variant of GraphSC paradigm
	B.2 Details of shuffle protocol of

	C Security of the protocols

