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ABSTRACT

Privacy and interpretability are two important ingredients for achiev-

ing trustworthy machine learning. We study the interplay of these

two aspects in graph machine learning through graph reconstruc-

tion attacks. The goal of the adversary here is to reconstruct the

graph structure of the training data given access to model explana-

tions. Based on the different kinds of auxiliary information avail-

able to the adversary, we propose several graph reconstruction

attacks. We show that additional knowledge of post-hoc feature ex-

planations substantially increases the success rate of these attacks.

Further, we investigate in detail the differences between attack

performance with respect to three different classes of explanation

methods for graph neural networks: gradient-based, perturbation-

based, and surrogate model-based methods. While gradient-based

explanations reveal the most in terms of the graph structure, we

find that these explanations do not always score high in utility. For

the other two classes of explanations, privacy leakage increases

with an increase in explanation utility. Finally, we propose a de-

fense based on a randomized response mechanism for releasing

the explanations, which substantially reduces the attack success

rate. Our code is available at https://github.com/iyempissy/graph-

stealing-attacks-with-explanation.
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1 INTRODUCTION

Graphs are highly informative, flexible, and natural ways of repre-

senting data in various real-world domains. Graph neural networks

(GNNs) [19, 23, 37] have emerged as the standard tool to analyze

graph data that is non-euclidean and irregular in nature. GNNs

have gained state-of-the-art results in various graph analytical

tasks ranging from applications in biology, and healthcare [2, 7] to

recommending friends in a social network [12]. GNNs’ success can

be attributed to their ability to extract powerful latent features via

complex aggregation of neighborhood aggregations [16, 46].
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Figure 1: The importance scores for the features, as provided

by an explanation, can be exploited to infer the graph struc-

ture. Here, we show an example of a binary explanation

where a score of 1 indicates that the corresponding feature

is part of the explanation.

However, these models are inherently black-box and complex,

making it extremely difficult to understand the underlying reason-

ing behind their predictions. With the growing adoption of these

models in various sensitive domains, efforts have been made to

explain their decisions in terms of feature as well as neighborhood

attributions. Model explanations can offer insights into the inter-

nal decision-making process of the model, which builds the trust

of the users. Moreover, owing to the current regulations [28] and

guidelines for designing trustworthy AI systems, several proposals

advocate for deploying (automated) model explanations [17, 31].

Nevertheless, releasing additional information, such as expla-

nations, can have adverse effects on the privacy of the training

data. While the risk to privacy due to model explanations exists for

machine learning models in general [34], it can have more severe

implications for graph neural networks. For instance, several works

[8, 27] have established the increased vulnerability of GNNs to

privacy attacks due to the additional encoding of graph structure

in the model itself. We initiate the first investigation of the effect

of releasing feature explanations for graph neural networks on the
leakage of private information in the training data.

To analyze the information leakage due to explanations, we take

the perspective of an adversary whose goal is to infer the hidden

connections among the training nodes. Consider a setting where
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the user has access to node features and labels but not the graph

structure among the nodes. For example, node features could be

part of the public profile of various individuals. The graph structure

among the nodes could be some kind of social network which is

private. Now, let’s say that the user wants to obtain a trained GNN

on her data while providing the node features and labels to a central

authority that has access to the private graph structure. We ask

here the question: how much do the feature-based explanations leak
information about the graph structure used to train the GNN model?
We quantify this information leakage via several graph reconstruc-

tion attacks. A visual illustration is shown in Figure 1. Specifically,

our threat model consists of two main settings: first, where the ad-

versary has access only to feature explanations, and second, where

the adversary has additional information on node features/labels.

Note that we only focus on feature-based explanations for GNNs

in this work. For other explanation types such as node or edge

explanations, as the returned nodes and edges belong to the node’s

neighborhood, it becomes trivial to reconstruct the graph structure.

1.1 Our Contributions and Findings

Ours is the first work to analyze the risks of releasing feature expla-

nations in GNNs on the privacy of the relationships/connections

in the training nodes. We quantify the information leakage via

explanations by the success rate of several graph reconstruction at-

tacks. Our attacks range from a simple explanation similarity-based

attack to more complex attacks exploiting graph structure learning

techniques. Besides, we provide a thorough analysis of information

leakage via feature-based explanations produced by three classes

of GNN post-hoc explanation methods, including gradient-based,
perturbation-based, and surrogate model-based.

To analyze the differences in the robustness of the explanation

methods to our privacy attacks, we investigate the explanation

utility in terms of faithfulness and sparsity. We find that the gradient-

based methods are the most susceptible to graph reconstruction

attacks even though the corresponding explanations are the least

faithful to themodel. In other words, they have low utility. This is an

important finding as the corresponding explanations could release

a large amount of private information without offering any utility

to the user. The perturbation-based approach Zorro and its variant

show the highest explanation utility as well as a high success rate

of the attack, pointing to the expected trade-off between privacy

and explanation utility.

We perform our study over three types of datasets with varying

properties. For instance, our first dataset (Cora) has a large number

of binary features, but the feature space is very sparse. Our second

dataset (CoraML) has fewer but denser features. Our final dataset

(Bitcoin) has a very small number of features. We find that the

information leakage varies with explanation techniques as well

as the feature size of the dataset. The dataset (Bitcoin) with the

smallest feature size (8) is the most difficult to attack. Through

experiments on three additional datasets (CiteSeer, PubMed, and

Credit), we later show that although a small feature sizemight limit

the information leakage, the correlation between node features with

node connections plays a significant role. All baseline attacks which

rely on knowledge of only features and labels perform no better than

a random guess. In such a case, explanation-based attacks provide

an improvement, though not very huge, in inferring private graph

structure information. We also perform additional experiments to

evaluate the effectiveness of the attacks on three other datasets.

Also, we perform a subgraph reconstruction attack when only a

subset of the explanations is available to the attacker.

Finally, we develop a perturbation-based defense for releasing

feature-based explanations. Our defense employs a randomized

response mechanism to perturb the individual explanation bits. We

show that our defense reduces the attack to a random guess with a

small drop in the explanation utility. Our code is available at https://

github.com/iyempissy/graph-stealing-attacks-with-explanation.

2 PRELIMINARIES

2.1 Graph Neural Networks

Graph neural networks (GNNs) [19, 23, 37] are a special family

of deep learning models designed to perform inference on graph-

structured data. The variants of GNNs, such as graph convolutional

network (GCN), compute the representation of a node by utilizing

its feature representation and that of the neighboring nodes. That

is, GNNs compute node representations by recursive aggregation

and transformation of feature representations of its neighbors.

Let G = (V , E) denote a graph where V is the node-set, and E
represents the edges or links among the nodes. Furthermore, let

x (ℓ)i be the feature representation of node i at layer ℓ, Ni denote
the set of its 1-hop neighbors and θ is a learnable weight matrix.

Formally, the ℓ-th layer of a graph convolutional operation can be

described as

z(ℓ)i =AGGREGATION
(ℓ)

({
x (ℓ−1)i ,

{
x (ℓ−1)j | j ∈ Ni

}})
(1)

x (ℓ)i =TRANSFORMATION
(ℓ)

(
z(ℓ)i

)
(2)

Then a softmax layer is applied to the node representations at the

last layer (say L) for the final prediction of the node classes C

y ← argmax(softmax(z(L)i θ )), (3)

GNNs have been shown to possess increased vulnerability to pri-

vacy attacks due to encoding of additional graph structure in the

model [8, 27]. We further investigate the privacy risks of releasing

post-hoc explanations for GNN models.

2.2 Explaining Graph Neural Networks

GNNs are deep learning models which are inherently black-box

or non-interpretable. This black-box behavior becomes more crit-

ical for applying them in sensitive domains like medicine, crime,

and finance. Consequently, recent works have proposed post-hoc

explainability techniques to explain the decisions of an already-

trained model. In this work, we are concerned with the task of node

classification, where the model is trained to predict node labels in a

graph. For such a task, an instance is a single node. An explanation

for a node usually consists of a subset of the most important fea-

tures as well as a subset of its neighboring nodes/edges responsible

for the model’s prediction. Depending on the explanation method,

the importance is usually quantified either as a continuous score

(also referred to as a soft mask) or a binary score (also called a hard

60

https://github.com/iyempissy/graph-stealing-attacks-with-explanation
https://github.com/iyempissy/graph-stealing-attacks-with-explanation


Private Graph Extraction via Feature Explanations Proceedings on Privacy Enhancing Technologies 2023(2)

mask). In this work, we consider three popular classes of explana-

tion methods: gradient-based [3, 29, 32], perturbation-based [16, 46],

and surrogate [21] methods.

Gradient-based Methods. These approaches usually employ the

gradients of the target model’s prediction with respect to input

features as importance scores for the node features. We use two

gradient-based methods in our study, namely Grad[35] and Grad-

Input (Grad-I) [36]. For a given graph G and the trained GNN

model f (X ,G, θ ) (where θ is the set of parameters and X is the

features matrix), Grad generates an explanation EX by assigning

continuous valued importance scores to the features. For node i

and xi is its features vector, The score is calculated by
∂f
∂xi

. Grad-I

transforms Grad explanation by an element-wise multiplication

with the input features (xi ⊙
∂f
∂xi

).

Perturbation-based Methods. Perturbation-based methods ob-

tain soft or hard masks over the features/nodes/edges as expla-

nations by monitoring the change in prediction with respect to

different input perturbations. We use two methods from this class:

Zorro [16] and GNNExp [46]. Zorro learns discrete masks over

input nodes and node features as explanations using a greedy al-

gorithm. It optimizes a fidelity-based objective that measures how

the new predictions match the original predictions of the model

by fixing the selected nodes/features and replacing the others with

random noise values. This returns a hard mask for the explanations.

GNNExp learns soft masks over edges and features by minimizing

the cross-entropy loss between the predictions of the original graph

and the predictions of the newly obtained (masked) graph. We also

utilize the Zorro variant that provides soft explanation masks

called Zorro-S. Zorro-S relaxes the argmax in Zorro’s objective

with a softmax, such that the masked are retrievable with stan-

dard gradient-based optimization. Together with the regularization

terms of GNNExp, Zorro-S learns sparse soft masks.

Surrogate Methods. Surrogate methods fit a simple and inter-

pretable model to a sampled local dataset corresponding to the

query node. For example, the sampled dataset can be generated

from the neighbors of the given query node. The explanations from

the surrogate model are then used to explain the original predic-

tions. We use GraphLime[21], which we denote as GLime from

this class. As an interpretable model, it uses the global feature selec-

tion method HSIC-Lasso [44]. The sampled dataset consists of the

node and its neighborhood. The set of the most important features

returned by HSIC-Lasso is used as an explanation for the GNN

model.

Remark: Please note that in this work, we assume that only

feature-based explanations are released to the user. In the presence

of node/edge explanations, an adversary can trivially reconstruct

large parts of the neighborhood as the returned nodes/edges are

part of the node’s original neighborhood.

2.2.1 Measuring ExplanationQuality. We measure the quality of

the explanation by its ability to approximate the model’s behav-

ior which is referred to as faithfulness. As the groundtruth for

explanations is not available, we use the RDT-Fidelity proposed

by [16] to measure faithfulness. The corresponding fidelity score

measure how the original and new predictions match by fixing the

selected nodes/features and replacing the others with random noise

values. Formally, the RDT-Fidelity of explanation EX corresponding

to explanation mask M(EX ) with respect to the GNN f and the

noise distribution N is given by

F (EX ) = EYEX |Z∼N

[
1f (X )=f (YEX )

]
, (4)

where the perturbed input is given by

ĨEX = X ⊙ M(EX ) + Z ⊙ (1 −M(EX )),Z ∼ N, (5)

where ⊙ denotes an element-wise multiplication, and 1 is a matrix

of ones with the corresponding size.

Sparsity. We further note that by definition, the complete input is

faithful to the model. Therefore, we further measure the sparsity of

the explanation. A meaningful explanation should be sparse and

only contain a small subset of features most predictive of the model

decision. We use the entropy-based sparsity definition from [16] as

it is applicable for both soft and hard explanation masks. Let p be

the normalized distribution of explanation (feature) masks. Then

the sparsity of an explanation is given by the entropy H (p) over
the mask distribution,

H (p) = −
∑
f ∈M

p(f ) logp(f ).

Note that the entropy here is bounded by log(|M |), where M cor-

responds to the size of the feature set. The lower the entropy, the

sparser the explanation. We will utilize these two metrics used in

measuring explanation quality to argue about the differences in the

attack performance.

3 THREAT MODEL AND ATTACK

METHODOLOGY

3.1 Motivation

We consider the setting in which different data holders hold the

features and graph (adjacency matrix) in practice. Specifically, the

central trusted server has access to the graph structure and trains a

GNN model using the node features and labels provided by the user.

The user can further query the trained GNN model by providing

node features. As the features are already known to the user, re-

vealing feature explanations for the prediction might be considered

a safe way to increase the user’s trust in the model. We investigate

such a scenario and uncover the increased privacy risks of releas-

ing feature explanations even if the original node features/labels are
already known to the adversary.

Our setting is inspired by previous works and practical scenar-

ios [4, 10, 18, 45, 48]. We elaborate on one such scenario in the

following. Consider a multinational company with several subdivi-

sions. For simplicity, we consider two subdivisions (the marketing

and product departments). The marketing department collects the

interaction between users (edge information), while the product

department collects data on user behavior (features). Under privacy

law(e.g., GDPR), such user interactions cannot be shared because

they are collected for different purposes. However, they aim to

train a GNN model jointly since it would benefit both teams. The

product department then sends the node features to the marketing

department, which in addition, uses their edge information to train

a predictive model and releases an API (similar to MLaaS). The API
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returns both the prediction for the features and the corresponding

feature explanations for such predictions. The product department,

having observed how useful the exploratory analysis is, aims to

recover the private edges using the information returned by the

API (explanations) and their node features.

3.2 Threat Model

We consider two scenarios: first, in which the adversary has access

to node features and/or labels and obtains additional access to

feature explanations, and second, in which the adversary has access

only to feature explanations. The goal of the adversary is to infer

the private connections of the graph used to train the GNN model.

Corresponding to the above settings, we categorize our attacks as

explanation augmentation (when explanations are augmented with

other information to launch the attack) and explanation-only at-

tacks. Through our five proposed attacks, we investigate the privacy

leakage of the explanations generated by six different explanation

methods.

Our simple similarity-based explanation-only attack already al-

lows us to quantify the additional information that the feature-based

explanation encodes about the graph structure. Our explanation

augmentation attacks are based on the graph structure learning

paradigm, which allows us to effectively integrate additional known

information in learning the private graph structure. Besides, our ex-

planation augmentation attacks also result in a successfully trained

GNN model without the knowledge of the true graph structure,

offering an additional advantage to the adversary.

3.3 Attack Methodologies

Here, we provide a detailed description of our two types of attacks.

We commence with the explanation-only attack in which we utilize

only the provided explanation to launch the attack, followed by

the explanation augmentation attacks in which more information

such as node labels or/and features are exploited in addition to the

explanation. The taxonomy of our attacks based on the attacker’s

knowledge is presented in Table 1.

Explanation-onlyAttack.This is an unsupervised attack inwhich

the attacker only has access to the explanations and does not have

access to the features or the labels. The attacker measures the dis-

tance between each pair of explanation vectors and assigns an edge

between them if their distance is small. The intuition is that the

model might assign similar labels to connected nodes, which leads

to similar explanations. We experimented with various distance

metrics, but cosine similarity performs best across all datasets. We

refer to this similarity-based attack as ExplainSim. This attack is

illustrated in Figure 2. We report the performance using the area

under the receiver operating characteristic curve (AUC) and av-

erage precision (AP). Rather than choosing one threshold which

could be domain-dependent, these metrics allow us to provide a

holistic evaluation across the complete range of thresholds.

Explanation Augmentation Attacks. Towards explanation aug-

mentation attacks, we leverage the graph structure learning para-

digm of [13]. In particular, we employ two generator modules for
generating graph edges corresponding to features and explanations,

respectively. The generators are trained using feature/explanation

1
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Figure 2: ExplainSim attack. Each node is assigned a fea-

ture explanation vector where blue (1) and red (0) indicate

whether the feature is part of the explanation or not. The at-

tacker then assigns an edge by computing the pairwise simi-

larity represented as d(nodei ,nodej ) between nodes’ explana-

tion vectors. We show the representation of Zorro’s expla-

nation for easier visualization.

reconstruction-based losses and node classification loss. We com-

mence by describing the common architecture of the attack model

followed by its concrete usage in the four attack variations in Sec-

tion 3.3.1.

Generators. The two generators take the node features/explana-
tions as input and output two adjacency matrices. We employ

the full parameterization (FP) approach to model the generators

similar to those used in [13, 15]. In other words, each element of

the adjacency matrix
˜A is treated as a separate learnable parame-

ter, i.e., the adjacency matrix is fully parameterized. We initialize

these learnable parameters by the cosine similarity among the fea-

ture/explanation vectors of the corresponding nodes. Let the output

adjacency matrix function be given as
˜A = GF P (X ;θG) = θG where

θG ∈ R
n×n

and GF P (·; ·) denotes the generator function. To ob-

tain a symmetric adjacency matrix with all positive elements, we

perform the following transformation

A = D−
1

2

(P[0,1]( ˜A) + P[0,1]( ˜A)T
2

)
D−

1

2 ,

where P is a non-negative function defined by

P[0,1][x] =


0 x < 0,

1 x > 1,

x otherwise .

The final adjacency matrix is computed by adding the matrices

corresponding to the two generators. Any element greater than

one is trimmed to 1. In other words, a cell in the adjacency matrix

follows a Bernoulli distribution. The final graph is then generated by

sampling from the learned Bernoulli distributions. More precisely,

we select edge (i, j) with probability p where p ∈ [0, 1] is the learnt
weight for cell (i, j).

Training With Self-supervision and Node Classification

Loss. We remark that only some nodes used to train the attack
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Figure 3: Overview of GSEF. The generator takes node features and explanations as input and outputs an adjacency matrix

which may be non-normalized by the adjacency normalizer. The normalized adjacency matrix is used in predicting both

the class labels and reconstructing the node features (explanations) by the denoising autoencoders. The final reconstructed

adjacency is the one that minimizes the reconstruction error on each of the node features and explanations and the loss of

the class label prediction.

model are labeled. To learn effective representations of both labeled

and unlabeled nodes, we employ a self-supervision module in addi-

tion to training with the supervised classification loss. In particular,

for the self-supervision module, we use denoising graph autoen-
coders, which takes noisy features/explanations and the graph sam-

pled from the generator as input. The goal is to reconstruct the true

node features and explanations.

Let DAE and DAEEX denote the feature and explanation re-

construction modules respectively. They take the noisy node fea-

tures(explanations) as input and output a denoised version of the

features (explanations) with the same dimension. To generate the

noisy features/explanations, we first select random indices. We then

add random noise to feature/explanation values corresponding to

the selected indices. Concretely, for binary features/explanations,

we randomly flip r = 20% of the indexwith original values 1 to 0. For

features and explanations with continuous values, we add indepen-

dent Gaussian noise to r = 20% percent of feature/explanation

elements (corresponding to selected indices). To train our self-

supervision module, we employ binary cross entropy loss for bi-

nary features/explanations and mean squared error for continu-

ous features/explanations. Let LDAE and LDAEEX denote the loss

functions corresponding to feature and explanation reconstruction,

respectively.

For supervised training, we employ a graph convolution network

(GCN)which takes as input the node features and the graph sampled

from the generator to predict node labels. Note that the GCN used

here is not the target model. We use the cross-entropy loss (CE)
between the predicted labels (Ỹ ) and the ground-truth labels (Y ),
LC = CE(Y , Ỹ ).

The final training loss for private graph extraction is then given

by

L = LDAE + LDAEEX + LC .

We refer to the above attack framework as Graph Stealing with

Explanations and Features (GSEF), and the schematic diagram is

given in Figure 3. Besides, we have three attack variations that

employ a single generator module, as described below.

3.3.1 Attack Variations. Besides GSEF, we have three attack vari-

ations that employ explanations (i) GSEF-concat in which we

Table 1: Attack taxonomy based on attacker’s knowledge of

node features (X ), labels (Y ) and feature explanations (EX ).

Attack X Y EX

ExplainSim ✗ ✗ ✓

GSEF ✓ ✓ ✓

GSEF-concat ✓ ✓ ✓

GSEF-mult ✓ ✓ ✓

GSE ✗ ✓ ✓

concatenate the node features and explanations and feed the con-

catenated input to a single generator module (ii) GSEF-mult in

which we perform element-wise multiplication between the fea-

tures and the explanations and feed them into a single graph gen-

erator module. This is equivalent to assigning importance to the

node features, which emphasize the essential characteristics of the

nodes. Similar to GSEF-concat, we reconstruct the adjacency ma-

trix using one generator of Figure 3 and (iii) GSE in which the

attacker only has access to the explanations and labels. Here, we

also employ only one generator with explanations as input.

4 EXPERIMENTS

In this section, we present the experimental results to show the

effectiveness of explanation-based attacks. Specifically, our experi-

ments are designed to answer the following research questions:

RQ 1. How does the knowledge of feature explanations influence
the reconstruction of private graph structure?

RQ 2. What are the differences between explanation methods with
respect to privacy leakage?

RQ 3. What is the additional advantage of the adversary (for
example, in terms of the utility of the inferred information on a
downstream task) on explanation augmentation attacks?

RQ 4. How much does the lack of knowledge about groundtruth
node labels affect attack performance?
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4.1 Experimental Settings

4.1.1 Attack Baselines Without Explanations.

FeatureSim. In this unsupervised attack, the attacker com-

putes the pairwise similarity between pairs of the actual features

to reconstruct the graph. Specifically, an edge exists between two

nodes if the distance between their feature representation is low.We

use cosine similarity as a measure of similarity because it performs

better than other distance metrics.

Lsa [20]. Lsa (Link stealing attack) is a black-box attack that as-

sumes that the attacker has access to a dataset drawn from a similar

distribution to the target data (shadow dataset). Additionally, Lsa

knows the architecture of the target model and can train a corre-

sponding shadow model that replicates the behavior of the target

model. The goal of the attack is to infer sensitive links between

nodes of interest. We compare our results with their proposed

attack-2, where an attacker has access to the node features and

labels. They trained a separate MLP model (reference model) using

the available target attributes and their corresponding labels to ob-

tain posteriors. Then, Lsa computes the pairwise distance between

posteriors obtained from the target model and that of the reference

model for the nodes of interest. We use cosine similarity as the

distance metric.

GraphMI [48]. GraphMI is a white-box attack in which the

attacker has access to the parameters of the target model, node

features, all the node labels, and other auxiliary information like

edge density. The goal of an attacker is to reconstruct the sensitive

links or connections between nodes. The attack model uses the

cross entropy loss between the true labels and the output posterior

distribution of the target model, along with feature smoothness

and adjacency sparsity constraints, to train a fully parameterized

adjacency matrix. The graph is then reconstructed using the graph

autoencoder module in which the encoder is replaced by learned

parameters of the target model, and the decoder is a logistic func-

tion.

Slaps [13]. Since our attack model is built on top of the graph

structure learning framework of SLAPS, we performed an exper-

iment using the vanilla SLAPS. Given node features and labels,

SLAPS aims to reconstruct the graph that works best for the node

classification task.

4.1.2 Target GNN Model. We employ a 2-layer graph convolution

network (GCN) [23] as our target GNN model. We used a learning

rate of 0.001 and trained for 200 epochs.

4.1.3 Evaluation Metrics. Following the existing works [20, 48],

we use the area under the receiver operating cost curve (AUC) and

average precision (AP) to evaluate our attack. For all experiments

(including baselines), we randomly sample an equal number of pairs

of connected and unconnected nodes from the original graph to

construct the test set. We measure the AUC and the AP on these

randomly selected node pairs. We elaborate more in Appendix B.

All our experiments were conducted for 10 different instantiations

using PyTorch Geometric library [14] on 11GB GeForce GTX 1080

Ti GPU, and we report the mean values across all runs. The standard

deviation of the results is in Appendix D.

Table 2: Dataset statistics. |V | and |E | denotes the number

of nodes and edges respectively, C, Xd , and deg denotes the

number of classes, size of feature dimension and the average

degree of the corresponding graph dataset.

Cora CoraML Bitcoin

|V | 2708 2995 3783

|E | 10858 8226 28248

Xd 1433 300 8

C 7 7 2

deg 4.00 2.75 7.50

4.1.4 Datasets. We use three commonly used datasets chosen

based on varying graph properties, such as their feature dimen-

sions and structural properties. The task on all datasets is node

classification. We present the data statistics in Table 2. We also

performed additional experiments using PubMed, CiteSeer, and

Credit datasets (See Appendix E.1).

Cora. The Cora dataset [33] is a citation dataset where each

research article is a node, and there exists an edge between two

articles if one article cites the other. Each node has a label that shows

the article category. The features of each node are represented by

a 0/1-valued word vector, which indicates the word’s presence or

absence from the article’s abstract.

CoraML. In CoraML dataset [33], each node is a research arti-

cle, and its abstract is available as raw text. In contrast to the above

dataset, the raw text of the abstract is transformed into a dense

feature representation. We preprocess the text by removing stop

words, web page links, and special characters. Then, we generate

Word2Vec [25] embedding of each word. Finally, we create the fea-

ture vector by taking the average over the embedding of all words

in the abstract.

Bitcoin. The Bitcoin-Alpha dataset[24] is a signed network of

trading accounts. Each account is represented as a node, and there

is a weighted edge between any two accounts, which represents

the trust between accounts. The maximum weight value is +10,

indicating total trust, and the lowest is -10, which means total

distrust. Each node is assigned a label indicating whether or not the

account is trustworthy. The feature vector of each node is based on

the rating by other users, such as the average positive or negative

rating. We follow the procedures in [38] for generating the feature

vectors.

4.2 Result Analysis

4.2.1 Analysing the Information Leakage by Explana-
tions (RQ1). The detailed results of different attacks are provided
in Table 3. Our results show that the explanation-only (ExplainSim)

and explanation augmentation (GSEF) attacks for all explanation

methods other than GLime and GNNExp outperform all baseline

methods and by far reveal the most information about the private

graph structure. We attribute the superior performance of GSEF to

the multi-task learning paradigm that aims to reconstruct both the

features and explanations. Our results also support our assumption
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Table 3: Attack performance and baselines. The best performing attack(s) on each explanation method is(are) highlighted in

bold, and the second best attack(s) is(are) underlined.

Exp Attack Cora CoraML Bitcoin

AUC AP AUC AP AUC AP

B
a
s
e
l
i
n
e

FeatureSim 0.799 0.827 0.706 0.753 0.535 0.478

Lsa [20] 0.795 0.810 0.725 0.760 0.532 0.500

GraphMI [48] 0.856 0.830 0.808 0.814 0.585 0.518

Slaps [13] 0.736 0.776 0.649 0.702 0.597 0.577

G
r
a
d

GSEF-concat 0.734 0.773 0.640 0.705 0.527 0.515

GSEF-mult 0.678 0.737 0.666 0.730 0.264 0.383

GSEF 0.948 0.953 0.902 0.833 0.700 0.715

GSE 0.924 0.939 0.699 0.768 0.229 0.365

ExplainSim 0.984 0.978 0.890 0.891 0.681 0.644

G
r
a
d
-
I

GSEF-concat 0.734 0.775 0.674 0.734 0.525 0.527

GSEF-mult 0.691 0.742 0.717 0.756 0.252 0.380

GSEF 0.949 0.950 0.887 0.832 0.709 0.723

GSE 0.903 0.923 0.717 0.781 0.256 0.380

ExplainSim 0.984 0.979 0.903 0.899 0.681 0.644

Z
o
r
r
o

GSEF-concat 0.823 0.860 0.735 0.786 0.575 0.529

GSEF-mult 0.723 0.756 0.681 0.697 0.399 0.449

GSEF 0.884 0.880 0.776 0.820 0.537 0.527

GSE 0.779 0.810 0.722 0.777 0.596 0.561

ExplainSim 0.871 0.873 0.806 0.829 0.427 0.485

Z
o
r
r
o
-
S

GSEF-concat 0.907 0.922 0.747 0.791 0.601 0.590

GSEF-mult 0.794 0.815 0.712 0.740 0.490 0.491

GSEF 0.918 0.923 0.776 0.819 0.598 0.565

GSE 0.893 0.915 0.742 0.784 0.571 0.564

ExplainSim 0.908 0.934 0.732 0.787 0.484 0.496

G
L
i
m
e

GSEF-concat 0.643 0.710 0.610 0.652 0.473 0.493

GSEF-mult 0.516 0.522 0.517 0.528 0.264 0.371

GSEF 0.730 0.773 0.681 0.740 0.542 0.525

GSE 0.558 0.571 0.540 0.555 0.236 0.361

ExplainSim 0.505 0.524 0.520 0.523 0.504 0.512

G
N
N
E
x
p

GSEF-concat 0.614 0.650 0.653 0.705 0.467 0.489

GSEF-mult 0.724 0.760 0.637 0.692 0.390 0.454

GSEF 0.762 0.796 0.700 0.695 0.590 0.563

GSE 0.517 0.552 0.490 0.508 0.386 0.451

ExplainSim 0.537 0.541 0.484 0.508 0.551 0.543

Summary of attack comparisons

• The amount of information in the explana-

tion alone for the graph structure can be

quantified using the ExplainSim attack.

• Explanation only (ExplainSim) and expla-

nation augmentation (GSEF) attacks for all

explanation methods other than GLime and

GNNExp outperform all baseline methods.

• Among the baseline approaches, the white-

box access-based attack, GraphMI, per-

forms the best, followed by FeatureSim.

• The relatively good performance of Fea-

tureSim in datasets points to a high correla-

tion of node features with node connections

in all datasets other than Bitcoin.

• The information leakage for Bitcoin is lim-

ited by small feature size. Our results on

additional datasets with varying feature di-

mensions, as discussed in Section 4.2.2, sup-

port our observation about the effect of

small feature size on the attack’s success.

• For GLime and GNNExp, we observe that

the explanation contains little information

about the graph structure. The reason be-

hind this is further revealed in the fidelity-

sparsity analysis of the obtained explana-

tions.

that a graph structure that is good for predicting the node labels is

also suitable for predicting the node features and explanations.

In the following, we provide an in-depth result analysis.

◦ Baseline Methods. Among the baseline methods, GraphMI

is the best-performing attack. This is not very surprising as

GraphMI has white-box access to the target GNN in addition

to access to node features and labels. On the contrary, the Fea-

tureSim attack, which only uses node features, shows competi-

tive performance. This highlights the fact that the features alone

are very informative of the graph structure of the studied datasets

(except Bitcoin in which all baseline attacks almost fail with an

AUC score of close to 0.5).

◦ Comparison of thePrivacy Leakage via ExplanationsWith

That of Features. Figure 4 compares the performance of two

similarity-based attacks using explanations (ExplainSim) and fea-

tures (FeatureSim), respectively. Note that these attacks do not

use any other information except explanations and features, re-

spectively. Hence, allowing us to compare their information con-

tent. We note that except for GLime and GNNExp, ExplainSim

outperforms FeatureSim for all datasets except Bitcoin. More-

over, for Bitcoin, both attacks fail (with AUC close to 0.5) except

for gradient-based explanation methods.

◦ ExplanationAugmentationWith Features andLabels.Next,

we compare the explanation augmentation attack GSEF with the
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Figure 4: Performance of explanation-only attack (ExplainSim) on the different datasets. The adopted baseline is FeatureSim

which performs the pairwise similarities using the true node features.

vanilla graph structure learning approach Slaps, which only

uses node features and labels. GSEF outperforms Slaps (Figure

6), which points to the added utility of using explanations to

reconstruct the graph structure.

◦ Explanation Augmentation Attack Variants. In Figure 5, we

compare the performance of GSE, which have no access to the

true features, with Slaps, which utilizes the true features. We ob-

serve that on most datasets, the attack significantly outperforms

Slaps. This emphasizes that explanations encode the feature in-

formation albeit the importance. Comparing the performance of

GSEF-concat and GSEF-mult with GSEF on all datasets shows

that independently extracting the adjacency matrix from the fea-

tures and explanations respectively and then combining the two

adjacency matrices is better than combining the features and

explanations at the input stage.

◦ Attack on Bitcoin.We observe that all baseline attacks fail for

Bitcoin. We attribute this to the very small feature size (=8) and

the small number of labels (=2). The attacks are not able to exploit

the little information exposed by a small set of features/labels.

Explanation-based attacks, especially in the case of gradient-

based explanations, are more successful than baselines but less

than for other datasets.

4.2.2 Results on Additional Datasets. We further investigate our

observation of the impact of feature dimension and disasno on

the attack success by performing experiments on the additional

datasets (namely CiteSeer, PubMed, and Credit) with varying

graph properties (details on datasets are provided in Section E.1).

The detailed result is in the Appendix in Table 12. We observe

that the result on CiteSeer and PubMed supports our observa-

tion of the effect of the feature size on the attack success on Cora

and CoraML, respectively. First, a dataset with a high feature di-

mension is most vulnerable to the attack, as seen in the relative

performance of CiteSeer on all explanation methods and attacks.

Secondly, on the Grad and Grad-I explanations, simply augment-

ing backpropagation-based explanations with the actual feature

via concatenation (GSEF-concat) or element-wise multiplication

(GSEF-mult) does not encode the necessary information for launch-

ing a successful attack. Instead, it introduces new noise to the re-

constructed graph because the explanations are generated such

that larger gradients, which only reflect the sensitivity between

input and output, may not accurately indicate the importance of the

feature. We also observe this phenomenon on other explanations

methods, including Zorro, Zorro-S, andGLime, whereGSE, which

uses only explanations as input, performs better thanGSEF-concat

and GSEF-mult on the Cora, CoraML, CiteSeer, and PubMed

datasets. Thirdly, explanation methods that are robust to input per-

turbation, such as Zorro and Zorro-S, achieve better attack perfor-

mance than backpropagation-based explanations on all explanation

augmentation attacks. Finally,GLime andGNNExp explanations are

more robust to the attacks except on GSEF attack, which achieves

a high AUC and AP scores.

Among all the additional datasets, the results of the baseline

attacks (FeatureSim, Lsa, GraphMI, and Slaps, which all rely

only on feature information) on the Credit dataset are the least.

Recall that the Credit dataset has only 13 features. This supports

our observation that small feature size affects the attack’s success.

Notably, the best performing baseline (GraphMI), which utilizes

white-box access to the trained model, has a very low AUROC of

0.59 and 0.51 on the Bitcoin andCredit datasets, respectively. This

is in contrast to the performance of GraphMI on Cora, CiteSeer,

PubMed, and CoraML with AUROC of 0.86, 0.79, 0.80, and 0.81,

respectively.

Furthermore, in comparison with Bitcoin, which has only 8

features, we observe that the performance of FeatureSim on the

Credit dataset is 34% higher (0.54 on Bitcoin and 0.72 on Credit),

which points to high connectivity among similar nodes on the

Credit dataset. This, in turn, boosts our attack performance and

allows better reconstruction of the private graph. Therefore, the

poor performance of our attacks on the Bitcoin dataset is due to

disassociativity on the Bitcoin dataset. Moreover, it is worth noting

that our explanation augmentation attack is highly successful on

the Credit dataset.
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4.2.3 Differences in Privacy Leakage (RQ 2). All expla-
nation method leaks significant information via the reconstruction

attacks except for GLime and GNNExp. We observe that for GLime

and GNNExp, the explanation-based attacks do not perform better

than the baselines, which do not utilize any explanation. Moreover,

gradient-based methods are most vulnerable to privacy leakage. To

understand the reason behind these observations, we investigate

the explanation quality. We measure the goodness of the explana-

tion by its ability to approximate the model’s behavior which is also

referred to as faithfulness. As the groundtruth for explanations is

not available, we use the RDT-Fidelity proposed by [16] to measure

faithfulness. The results are shown in Table 4. We further note that

by definition, the complete input is faithful to the model. There-

fore, in addition, we measure the sparsity of the explanation. A

meaningful explanation should be sparse and only contain a small

subset of features most predictive of the model decision. We use

the entropy-based sparsity definition from [16] as it is applicable

for both soft and hard explanation masks. The results are shown

in Table 4. We analyze the tradeoffs of privacy and explanation

goodness in the following.

• First, we observe that GNNExp has the lowest sparsity (the

higher the entropy, the more uniform the explanation mask dis-

tribution, i.e., higher the explanation density). In other words,

almost all features are marked equally important. Hence, it is not

surprising that it shows a high fidelity. This is the main reason

why ExplainSim fails because there is no distinguishing power

contained in the explanations.

• Second, we observe that gradient-based explanations (Grad and

Grad-I) contain the most information about the graph structure

though they have low fidelity, i.e., they do not reflect the model’s

decision process. It appears that these two methods provide the

most similar explanations for connected nodes. This is really

the worst case when the explanations are not useful but leak

maximum private information about the graph structure.

• Third, GLime has the highest sparsity and lowest fidelity. GLime

runs the HSIC-Lasso feature selection method over a local dataset

created using the node and its neighborhood. HSIC-Lasso is

known to output a very small set of most predictive features

[6] when used for global feature selection. But for the current

setting of instance-wise feature selection, i.e., finding the most

predictive features for decision over an instance/node, GLime’s

explanation turns out to be too short, which is neither faithful

to the model nor contains any predictive information about the

neighborhood.

• Finally, the explanations of Zorro and Zorro-S show the high-

est fidelity and intermediate sparsity, pointing to their high

quality. The GSEF attack also obtains high AUC scores for two

datasets pointing to the expected increased privacy risk with an

increase in explanation utility.

4.2.4 Adversary’s Advantage in Termsof TrainedGNN
Model (RQ 3). Here, we formalize a quantitative advantage mea-

sure that captures the privacy risk posed by the different attacks.

The attacker is at an advantage if she can train a well-performing

model (on a downstream task) using the reconstructed graph. As

the attack models based on graph structure learning implicitly

train a GNN on the reconstructed graph, we quantify the attacker’s

Table 4: RDT-Fidelity and sparsity (entropy) of different ex-

planation methods. For fidelity, the higher the better. For

sparsity, the lower the better

Exp Cora CoraML Bitcoin

Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity

Grad 0.23 3.99 0.22 5.24 0.83 0.64

Grad-I 0.19 3.99 0.20 5.30 0.82 0.64

Zorro 0.89 1.83 0.96 3.33 0.99 0.37

Zorro-S 0.98 2.49 0.84 2.75 0.95 0.96

GLime 0.19 0.88 0.20 0.98 0.82 0.13

GNNExp 0.74 7.27 0.55 5.70 0.90 2.05

advantage by the performance on the downstream task of node

classification.

Hypothesis 1. If the explanations and the reconstructed graph
can perform better on a downstream classification task with high
confidence, then the reconstructed adjacency is a valid representation
of the graph structure. Hence, the attacker has an advantage quantified
by Equation 6.

We define the attacker’s advantage as

Advantaдe = R(f (EX ;Adjr ec ;θW ),y), (6)

where f is a 2-layer GCN model parameterized by θW , EX is the

explanation matrix, Adjr ec is the reconstructed graph by the at-

tacker, y is the groundtruth label and R is an advantage measure

that compares the predictions on f and the groundtruth label. We

use accuracy as the choice of R.

We compare the results to that of Slaps that uses the actual

features and groundtruth label for learning the graph structure and

the original performance (denoted byMax ) in which the model is

trained with true features, labels, and graph structure. We analyze

the attacker’s advantage corresponding to four attacks;

GSEF-concat, GSEF-mult, GSEF, and GSE. The intuition is that

if the attacker’s advantage is not better than Slaps, then the best

advantage an attacker can have is similar to having the actual fea-

ture and performing graph structure learning. Also, if the attacker’s

advantage is greater or equal to Max , then the attacker has an

equivalent advantage as she would have by possessing the actual

feature and graph. An example use case of the attacker’s advantage

is shown in Figure 7. Specifically, if a model trained with, say, Jane’s

full data (true features and graph) and another trained only with her

explanations (no graph or true features), both models will make the

same prediction about Jane. The detailed results for the attacker’s

advantage are plotted in Figure 8. We observe that on Cora, the

attacker obtains the highest advantage for Grad, Grad-I, Zorro,

and Zorro-S explanations. On CoraML, the highest advantage

is obtained with Grad and Zorro-S explanations. Usually, the at-

tacker’s advantage is positively correlated with the success rate of

corresponding attacks for both Cora and CoraML. On Bitcoin,

the attacker’s advantage for all explanation methods is usually high.

This is surprising as the success rate for attacks is relatively lower

than for other datasets. This might imply that the reconstructed
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Figure 5: Average AUC and AP of GSE attack on the different datasets. The adopted baseline is Slaps which use the true node

features.
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Figure 6: Average AUC and AP ofGSEF attack on the different datasets. The adopted baseline is Slapswhich use the true node

features.

Model A

GNN 

Jane's true data 
(Feature and graph) 

Jane has cancer

Model B

GNN

Jane's Explanation 
(No feature, no graph) 

Jane has cancer

Figure 7: An example use case of the attacker’s advantage

graph has the same semantics as the true graph, if not the exact

structure.

4.2.5 Lack of Groundtruth Labels (RQ 4). We relax the as-

sumption that the attacker has access to groundtruth labels. Instead,

she has black-box access to the target model. This is made possible

with the popularity of machine learning as a service (MLaaS), where

a user can input a query and get the predictions as output. There-

fore, the "groundtruth" label is the one obtained from the target

model. As representative explanations, we show the performance

on Grad and Zorro on all datasets.

As shown in Table 5, on the Grad explanation, we observe a 3%

gain in attack performance on GSEF-concatwhen the attacker has

access to the target model on the Cora and CoraML dataset. On

the Bitcoin dataset, we observe a decrease of about 3% in AUC and

an increase of 6% in AP. The corresponding performance on Zorro

follows the same with no significant change in the performance on

CoraML and a 5% decrease in performance on Cora.

The performance ofGSEF-mult andGSEF attack decreases across

all datasets, with Bitcoin having the worst performance reduction

of up to 29% on Grad. However, on Zorro, there is a 2% gain

on Cora, a 4% decrease on CoraML, and up to 36% decrease on

Bitcoin. We observe performance drop on GSEF and GSE on all

datasets across both explanations except for GSE on Grad, which

has up to 5% gain in performance on theCora andCoraML datasets.

It is important to note that the Bitcoin dataset has the least perfor-

mance across all attacks, even when the true groundtruth label is

used. Therefore, the large disparity in performance when the label

is generated from the trained black-box model is not surprising.

Summary. In the absence of groundtruth labels, we used model

predictions. Intuitively, for incorrectly predicted nodes, the model

explanations which are based on incorrectly predicted labels should
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Figure 8: Accuracy of the reconstructed graph on a downstream node classification task by all models on different datasets.

The blue line is the original accuracy using the true features and edges, while the yellow line is the Slaps accuracy.

lead to lower performance in the presence of groundtruth labels.

For Cora and CoraML datasets, onGSEF-concat and GSE attacks,

having black-box access to the target model performs better than

the attacker having access to the groundtruth label. For GSEF-mult

and GSEF attacks, it is better to have access to groundtruth label to

achieve the best attack success rate. For the Bitcoin dataset, the

groundtruth labels perform better than the black-box access to the

target model on all attacks.

4.3 Attack Performance When Explanations

for Partial Node-set Are Available

In this section, we assume that the attacker has access to expla-

nations of only a subset of the nodes. The attacker is interested

in reconstructing the subgraph induced on the partial node set.

We perform the experiment on representative datasets Cora and

Credit. For each of the datasets, we only use 30% of the nodes to

obtain explanations. The result is shown in Table 6.

Unsurprisingly, we observe a drop in attack performance scores

when explanations for only a node subset are available. However,

we observe that explanation augmentation attacks perform best on

all explainers and datasets. Recall that when the full explanations

are available onGrad, the augmentation attacks rank second on the

Cora dataset. However, with explanations for the partial node set,

augmentation attacks rank first with AUROC and AP of 0.91 and

0.92. Moreover, on the Cora and Credit datasets, GSEF-concat

and GSEF-mult perform competitively with other attacks. Lastly,

as observed in the experiments, when the full explanations are avail-

able, attacks on the Grad and Zorro-S explanations are highly suc-

cessful, while attacks on the GNNExp are less successful. Nonethe-

less, we observe AUC and AP > 0.76 on both datasets for GNNExp.

4.4 When Do Augmentation Attacks Work?

To summarize, augmentation attacks perform best on all expla-

nation models except on Grad and Grad-I across all datasets.

Nonetheless, augmentation attack GSEF on the Grad and Grad-

I explanations perform comparable to or better than GSE attack,

which only uses explanations as input on CiteSeer, CoraML, Bit-

coin, and Credit datasets.

On explainers other than Grad and Grad-I, augmentation at-

tacks perform the best. For instance, on the CiteSeer dataset, aug-

mentation attack GSEF achieved AUROC and AP of 0.94 and 0.95

respectively on Zorro-S explanation, which is far better than all

baselines and explanation-only attacks. The multi-task learning par-

adigm that GSEF employs gives it an edge over other augmentation

attacks, baselines, and explanation-only attacks.

Overall, the strength of augmentation attacks depends on the

choice of the explanation method and the strategy of using the

additional feature information. For instance, GSEF-concat and

GSEF-mult augmentation attacks, which combine the additional

feature information by concatenation and element-wise multipli-

cation, perform worst on the Grad, Grad-I, Zorro, and Zorro-S

explanations. However, they perform best on surrogate method
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Table 5: Performance comparison of relaxing the availability of groundtruth labels (Y ) assumption. Here, the attacker has

black-box access to the target model (M). We perform the experiment on all datasets’ Grad and Zorro explanation methods.

∆ is the percentage difference. A negative value implies that the groudtruth labels are preferred over black-box access.

Dataset Attack YGrad MGrad ∆Grad YZorro MZorro ∆Zorro

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Cora

GSEF-concat 0.734 0.773 0.757 0.784 3.1 1.4 0.823 0.860 0.779 0.810 -5.3 -5.8

GSEF-mult 0.678 0.737 0.658 0.700 -2.9 -5.0 0.723 0.756 0.740 0.772 2.4 2.0

GSEF 0.948 0.953 0.927 0.932 -2.2 -2.2 0.884 0.880 0.871 0.881 -1.5 0.1

GSE 0.924 0.939 0.946 0.966 2.4 2.9 0.779 0.810 0.814 0.849 4.5 4.8

CoraML

GSEF-concat 0.640 0.705 0.661 0.734 3.3 4.1 0.735 0.786 0.738 0.792 0.4 0.8

GSEF-mult 0.666 0.730 0.650 0.693 -2.4 -5.1 0.681 0.697 0.653 0.692 -4.1 -0.7

GSEF 0.902 0.833 0.808 0.852 -10.4 2.3 0.776 0.820 0.751 0.796 -3.2 -2.9

GSE 0.699 0.768 0.735 0.795 5.2 3.5 0.722 0.777 0.713 0.759 -1.2 -2.3

Bitcoin

GSEF-concat 0.527 0.515 0.512 0.546 -2.7 6.0 0.575 0.529 0.523 0.517 -9.0 -2.3

GSEF-mult 0.264 0.383 0.241 0.367 -8.7 -4.2 0.399 0.449 0.255 0.369 -36.1 -17.8

GSEF 0.700 0.715 0.500 0.560 -28.6 -21.7 0.537 0.527 0.352 0.438 -34.5 -16.9

GSE 0.229 0.365 0.210 0.352 -8.3 -3.6 0.596 0.561 0.491 0.503 -17.6 -10.3

Table 6: Attack performance with explanations over partial node set for Cora and Credit datasets. The best performing

attack(s) on each explanation method is(are) highlighted in bold, and the second best attack(s) is(are) underlined.

Exp Attack Cora Credit

AUC AP AUC AP

G
r
a
d

GSEF-concat 0.683 ± 0.02 0.700 ± 0.03 0.821 ± 0.03 0.851 ± 0.03

GSEF-mult 0.674 ± 0.02 0.705 ± 0.02 0.806 ± 0.03 0.839 ± 0.02

GSEF 0.916 ± 0.03 0.920 ± 0.03 0.842 ± 0.04 0.875 ± 0.04
GSE 0.865 ± 0.02 0.871 ± 0.02 0.840 ± 0.02 0.870 ± 0.03

ExplainSim 0.881 ± 0.01 0.913 ± 0.01 0.835 ± 0.01 0.854 ± 0.01

Z
o
r
r
o
-
S

GSEF-concat 0.863 ± 0.04 0.896 ± 0.04 0.825 ± 0.03 0.842 ± 0.02

GSEF-mult 0.720 ± 0.03 0.757 ± 0.04 0.819 ± 0.02 0.840 ± 0.02

GSEF 0.901 ± 0.03 0.905 ± 0.03 0.835 ± 0.02 0.847 ± 0.03
GSE 0.881 ± 0.04 0.893 ± 0.01 0.762 ± 0.03 0.801 ± 0.02

ExplainSim 0.887 ± 0.02 0.901 ± 0.02 0.701 ± 0.01 0.721 ± 0.01

G
N
N
E
x
p

GSEF-concat 0.585 ± 0.04 0.600 ± 0.04 0.829 ± 0.03 0.840 ± 0.02
GSEF-mult 0.680 ± 0.03 0.699 ± 0.03 0.794 ± 0.02 0.802 ± 0.02

GSEF 0.762 ± 0.04 0.791 ± 0.06 0.782 ± 0.02 0.799 ± 0.02

GSE 0.500 ± 0.06 0.520 ± 0.05 0.688 ± 0.04 0.715 ± 0.04

ExplainSim 0.508 ± 0.02 0.515 ± 0.02 0.615 ± 0.02 0.660 ± 0.02

GLime and perturbation-based method GNNExp. Moreover, aug-

mentation attacks show the best performance when explanations

only for a partial node set are available.

5 DEFENSE

Explanation Perturbation. To limit the information leakage by

the explanation, we perturb each explanation bit using a random-

ized response mechanism [22, 40]. Specifically for 0/1 feature (ex-

planation) mask as in Zorro, we flip each bit of the explanation

with a probability that depends on the privacy budget ϵ as follows

Pr (E ′xi = 1) =

{
eϵ

eϵ+1 , if Exi = 1,
1

eϵ+1 , if Exi = 0,
(7)

where Exi and E
′
xi are true and perturbed ith bit of explanation

Ex respectively. Note that our defense mechanism satisfies dϵ-local
differential privacy.

Lemma 1. For an explanation with d dimensions, the explana-
tion perturbation defense mechanism in Equation 7 satisfies dϵ-local
differential privacy.
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Proof. Note that for an explanation corresponding to two graph

datasetsD andD ′ differing in a single edge, the ratio of probabilities
of obtaining a certain explanation can be bounded as follows.

Pr [EX (D) = S]

Pr [EX (D ′) = S]
=

d∏
i=1

Pr [Exi (D) = Si ]

Pr [Exi (D
′) = Si ]

≤

d∏
i=1

eϵ
eϵ+1
1

eϵ+1
= edϵ .

□

Defense Evaluation.We evaluate our defense mechanism on

ExplainSim attack as it best quantifies the information leakage due

to the explanations alone. All other attacks assume the availabil-

ity of other information, such as features and labels. We use two

datasets: Cora and CoraML. As evaluation metrics, we use the

AUC score and AP to compute the attack success rate after the

defense. Besides, we measure the utility of the perturbed explana-

tion in terms of fidelity, sparsity, and the percentage of 1 bit that is

retained from the original explanation (intersection).

Defense Results. As shown in Figure 9, the explanation pertur-

bation based on the randomized response mechanism clearly de-

fends against the attack. For instance, at a very high privacy level

ϵ = 0.0001, which gives dϵ = 0.14, the attack performance drasti-

cally dropped to 0.56 in AUC and 0.59 in AP, which is about 36%

decrease over the non-private released explanation. As expected,

the attack performance decreases significantly with increase in the

amount of noise (ϵ decreases). In Table 7, we analyze the change in

explanation utility due to our perturbation mechanism. We observe

that on Cora, with the lowest privacy loss level, there is a drop

of 5.61% in the fidelity when the attack is already reduced to a

random guess. The entropy of the mask distribution increases. In

other words, the explanation sparsity decreases. For Zorro, this

implies that more bits are set to 1 than in the true explanation mask.

Even though this decreases explanation utility to some extent, we

point out that 74.68% of true explanation is still retained. Moreover,

the sparsity is still lower than achieved by GNNExp explanations,

even without any perturbations.

While quantitatively, the change in explanation sparsity is accept-

able, more application-dependent qualitative studies are required to

evaluate the change in the utility of explanations. Nevertheless, we

provide a promising first defense for future development and possi-

ble improvements. We obtain similar results for CoraML, which

are provided in Appendix C.

Defense Variant for Soft Explanation Masks. Note that Equa-

tion 7 only applies to explanations that return binary values. For

explanations with continuous values, we can adapt the defense as

follows. We keep the original value (Exi ) when the flipped coin

lands heads, but when it lands tail, we replace (Exi ) with Ex
′
i

where Ex
′
i is a random number drawn from a normal distribution

(Ex
′
i ∼ N(0, 1)).

6 CONCLUSION

We initiate the first investigation on the privacy risks of releasing

post-hoc explanations of graph neural networks. Concretely, we

quantify the information leakage of explanations via our proposed

five graph reconstruction attacks. The goal of the attacker is to

reconstruct the private graph structure information used to train

a GNN model. Our results show that even when the explanations

Table 7: Fidelity, sparsity and percentage of 1 bits in the

true explanation that is retained in the perturbed explana-

tion (intersection) after defense for different ϵ on the Cora

dataset for Zorro explanation.∞ implies no privacy.

ϵ Fidelity Sparsity Intersection

0.0001 0.84 5.91 74.68

0.001 0.84 5.91 74.70

0.01 0.84 5.89 75.03

0.1 0.84 5.80 75.10

0.2 0.83 5.71 75.60

0.4 0.82 5.49 76.45

0.6 0.81 5.25 77.16

0.8 0.81 5.00 78.66

1 0.81 4.73 80.10

∞ 0.89 1.83 100
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Figure 9: Privacy budget and corresponding attack perfor-

mance of ExplainSim for Zorro explanation on the Cora

dataset.∞ implies that no perturbation is performed.

alone are available without any additional auxiliary information,

the attacker can reconstruct the graph structure with an AUC score

of more than 90%. Our explanation-based attacks outperform all

baseline methods pointing to the additional privacy risk of releasing

explanations. We propose a perturbation-based defense mechanism

that reduces the attack to a random guess. The defense leads to a

slight decrease in fidelity. At the lowest privacy loss, the perturbed

explanation still contains around 75% of the true explanation. While

quantitatively, the change in explanation sparsity seems to be ac-

ceptable, more application-dependent qualitative studies would be

required to evaluate the change in the utility of explanations.

We emphasize that we strongly believe in the transparency

of graph machine learning and acknowledge the need to explain

trained models. At the same time, our work points out the associ-

ated privacy risks which cannot be ignored. We believe that our

work would encourage future work on finding solutions to balance

the complex trade-off between privacy and transparency.
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APPENDIX

Organization. The Appendix is organized as follows. We first

present related works in private graph extraction attacks and other

attacks on GNN models. Next, we elaborated on the data sampling

used for evaluation in Section B followed by the results for defense

on the CoraML dataset in Section C. The performance and the

corresponding standard deviation of our main results are provided

in Section D. In Section E, we present the results of the additional

experiments on the CiteSeer, PubMed, and Credit datasets. Fi-

nally, we list the hyperparameters used for our attacks and target

model in Section F.

A RELATEDWORKS

Private Graph Extraction Attacks. Given a black-box access

to a GNN model that is trained on a target dataset and the adver-

sary’s background knowledge, He et al. [20] proposed link stealing

attacks to infer whether there is a link between a given pair of nodes

in the target dataset. Their attacks are specific to the adversary’s

background knowledge which range from simply exploiting the

node feature similarities to a shadow model-based attack. Wu et al.

[42] proposed an edge re-identification attack for vertically parti-

tioned graph learning. Their attack setting is different from ours

and is applicable in scenarios where the high-dimensional features

and high-order adjacency information are usually heterogeneous

and held by different data holders. GraphMI [48] aims at recon-

structing the adjacency matrix of the target graph given white-box

access to the trained model, node features, and labels.

Other InferenceAttacks andDefenses onGNNs. Several other
attacks, such as membership inference [9, 27] and model extraction

attacks [41] have been proposed to quantify privacy leakage in

GNNs. In a membership inference attack, the goal of the attacker is

to infer whether a node was part of the data used in training the

GNN model via black-box access to the trained model. In a model

extraction attack, the attacker aims to steal the trained model’s

parameter and hyperparameters to duplicate or mimic the func-

tionality of the target model via the predictions returned from

querying the model[41]. Recently, several defenses against these

attacks have been proposed, which are mainly based on differential

privacy. Olatunji et al. [26] proposed a method for releasing GNN

models by combining a knowledge-distillation framework with two

noise mechanisms, random subsampling and noisy labeling. Their

centralized setting approach trains a student model using a public

graph and private labels obtained from a teacher model trained ex-

clusively for each query node (personalized teacher models). Their

method, by design, defends against membership inference attacks

and model extraction attacks since only the student model (which

has limited and perturbed information) is released. Sajadmanesh

and Gatica-Perez [30] proposed a locally differentially private GNN

model by considering a distributed setting where nodes and labels

are private, and the graph structure is known to the central server.

Their approach perturbs both the node features and labels to ensure

a differential privacy guarantee. However, all attacks and defenses

are not applicable to explanations.

Membership Inference Attack and Explanations. On eucli-

dean data such as images, Shokri et al. [34] analyzed the privacy

risks of feature-based model explanations using membership infer-

ence attacks which quantifies the extent to which model predictions

and their explanations leak information about the presence of a

datapoint in the training set of a model. We emphasize that the

goal of Shokri et al. [34] differs from ours in that we focus on

reconstructing the entire graph structure from feature-based ex-

planations. Also, their investigations are limited to non-graph data

and the corresponding target and explanation models.

Adversarial Attacks and GNNs. Another line of research fo-

cuses on the vulnerability of GNNs to adversarial attacks [5, 39,

43, 47, 49, 50]. The goal of the attacker is to fool the GNN model

into making a wrong prediction by manipulating node features

or the structural information of nodes. A recent work [11] used

explanation method such as GNNExplainer as a method for de-

tecting adversarial perturbation on graphs. Hence, acting as a tool

for inspecting adversarial attacks on GNN models. They further

proposed an adversarial attack framework (GEAttack) that exploits

the vulnerabilities of explanation methods and the GNN model.

This allows the attacker to simultaneously fool the GNN model and

misguide the inspection from the explanation method. Our work

differs significantly from this work in that first, we aim to recon-

struct the graph from the explanations and, secondly, to quantify

the privacy leakage of explanations on GNN models.

B DATA SAMPLING FOR EVALUATION

In this section, we elaborate on the data sampling method used for

our evaluation as briefly explained in Section 4.1.3. To generate a

test set, we randomly select 10% of all nodes. We use the set of all

edges which are incident on at least one of the nodes in our selected

set. We then sample an equal number of negative edges (pairs of

nodes such that no edge exists between them; one of the nodes in

this pair is from the selected set of 10% nodes). In total, we generate

10 random test sets.

We employ 10 random instantiations of the attack models. Cor-

responding to each instantiation of the attack model, we test the

model with one of our random test sets. In total, we have 10 obser-

vations of the final scores. We evaluated all methods on the same

test sets. As we wanted to keep the number of observations the

same for all compared methods, including the non-parameterized

methods based on feature and explanation similarity (note that they

do not use a neural model, and there is no initialization required in

their cases), we tested each attack model (corresponding to each

initialization) on one test set. We computed the average precision

(AP) and AUROC result on the balanced pairs. For the partial ex-

planation experiment, we randomly sample 30% of the nodes only

once to generate a fixed subgraph. Evaluation is performed as in

73



Proceedings on Privacy Enhancing Technologies 2023(2) Olatunji et al.

the previous case. Here, the 10 test sets are generated from this

subgraph.

We remark that using AUC and AP scores allows us to evaluate

all methods across all ranges of cutoff decision thresholds. Our

evaluation is domain and dataset-independent. Nevertheless, in

real scenarios, an attacker might need to choose a single decision

threshold for which domain-specific knowledge or an auxiliary

validation dataset might be required.

C RESULTS FOR DEFENSE ON CORAML

The attack performance for different values of ϵ is plotted in Figure

10. For the lowest privacy budget, we observe that the attack is

reduced to a random guess (with an AUC score close to 0.55). The

variation in explanation utility and intersection with true explana-

tion is shown in Table 8. Here also, the perturbed explanation is

able to retain around 75% of the 1 bit of the true explanation. While

there is a drop in fidelity and the explanation becomes denser, we

note that the perturbed explanation still shows higher fidelity and

sparsity than other explanation methods (c.f. Table 4).
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Figure 10: Privacy budget and corresponding attack per-

formance of ExplainSim for Zorro explanation on the

CoraML dataset.∞ implies no privacy.

D DETAILED RESULTS

In Table 9, we present the mean and standard deviation of the

results in Table 3. Since our results have a low standard deviation

across the 10 runs of the experiment, our method is stable.

E ADDITIONAL EXPERIMENTS

We perform additional experiments on 3 additional datasets to

verify our observations and the effectiveness of our attacks. We

start by describing the additional datasets. The performance scores

are provided in Table 12, and results are discussed in the main paper.

E.1 Additional Datasets

We used CiteSeer and PubMed, which are conventional datasets

for node classification tasks and the Credit dataset. The details

about the datasets are in Table 10. The fidelity and sparsity for the

corresponding explanations are provided in Table 11.

Table 8: Fidelity, sparsity and percentage of 1 bits in the true

explanation that is retained in the perturbed explanation

(intersection) after defense for different ϵ on the CoraML

dataset for Zorro explanation.∞ implies no privacy.

ϵ Fidelity Sparsity Intersection

0.0001 0.86 4.53 74.96

0.001 0.86 4.53 74.98

0.01 0.86 4.53 75.12

0.1 0.87 4.46 75.08

0.2 0.87 4.39 75.20

0.4 0.87 4.24 75.70

0.6 0.87 4.08 77.07

0.8 0.88 3.95 78.70

1 0.89 3.81 80.75

∞ 0.96 3.33 100

PubMed and CiteSeer. Both PubMed and CiteSeer [33] are

citation datasets, where each node is a research article, and there

is an edge between two articles if one cites the other. In CiteSeer,

features are binary values like Cora, while in PubMed, the features

are represented by the TF/IDF weighted word vector of the unique

words in the dictionary.

Credit. The Credit defaulter graph [1] is a financial network

where an edge exists between individuals (nodes) if there is a sim-

ilarity in their spending and payment pattern. The task is to de-

termine whether an individual will default on their credit card

payment. We used a subset of this credit dataset which has 3000

nodes.

E.2 Ensuring the Stability of Results

To ensure the stability of the results, we perform an additional ex-

periment by slightly modifying the evaluation procedure in Section

B (hereafter referred to as 10-runs). Instead of testing the attacks on
one of our random test sets for each instantiation which resulted

in 10 observations of the final scores, we modify the evaluation as

follows. For each instantiation, we evaluate the attacks on all 10
held out balanced test sets. This results in 100 observations of the

final score (recall that we have 10 instantiations). We report the

mean and the standard deviation. This modification which we call

100-runs, further mitigates any sampling biases from the test sets

and any randomness. Similar to 10-runs, we evaluated all methods

on the same test sets. The ExplainSim attack is excluded since

there is no randomness involved, resulting in the same results as in

10-runs.

We observe that in most cases, the difference between all previ-

ous experiments, whichwere evaluated using the 10-runs procedure

and the modified 100-runs is 0. This shows that our experiments are

stable and the results are reliable. Although we observe some minor

variations in some results, however, such variations are relatively

small and do not invalidate our observations or experiments. For

example, on the PubMed dataset, GSE attack on the Grad expla-

nation for the 10-runs resulted in an AUC of 0.770 while that of

100-runs is 0.767. The results of the 100-runs are in Table 13.
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Table 9: Results with standard deviation of Table 3. The best performing attack(s) on each explanation method is(are) high-

lighted in bold, and the second best attack(s) is(are) underlined.

Exp Attack Cora CoraML Bitcoin

AUC AP AUC AP AUC AP

B
a
s
e
l
i
n
e

FeatureSim 0.799±0.04 0.827±0.04 0.706±0.08 0.753±0.07 0.535±0.03 0.478±0.02

Lsa [20] 0.795±0.03 0.810±0.02 0.725±0.04 0.760±0.01 0.532±0.05 0.500±0.06

GraphMI [48] 0.856±0.01 0.830±0.01 0.808±0.02 0.814±0.03 0.585±0.05 0.518±0.06

Slaps [13] 0.736±0.05 0.776±0.05 0.649±0.06 0.702±0.07 0.597±0.09 0.577±0.07

G
r
a
d

GSEF-concat 0.734±0.05 0.773±0.04 0.640±0.05 0.705±0.04 0.527±0.04 0.515±0.03

GSEF-mult 0.678±0.04 0.737±0.03 0.666±0.06 0.730±0.05 0.264±0.07 0.383±0.04

GSEF 0.948 ± 0.02 0.953 ± 0.01 0.902 ± 0.08 0.833 ± 0.07 0.700 ± 0.05 0.715 ± 0.04
GSE 0.924±0.03 0.939±0.02 0.699±0.07 0.768±0.05 0.229±0.03 0.365±0.02

ExplainSim 0.984 ± 0.01 0.978 ± 0.01 0.890 ± 0.04 0.891 ± 0.04 0.681 ± 0.03 0.644 ± 0.03

G
r
a
d
-
I

GSEF-concat 0.734±0.06 0.775±0.04 0.674±0.05 0.724±0.04 0.525±0.09 0.527±0.05

GSEF-mult 0.691±0.02 0.742±0.02 0.717±0.05 0.756±0.06 0.252±0.03 0.380±0.02

GSEF 0.949 ± 0.02 0.950 ± 0.02 0.787 ± 0.08 0.832 ± 0.07 0.709 ± 0.04 0.723 ± 0.03
GSE 0.903±0.04 0.923±0.04 0.717±0.08 0.781±0.06 0.256±0.03 0.380±0.02

ExplainSim 0.984 ± 0.01 0.979 ± 0.01 0.903 ± 0.04 0.899 ± 0.04 0.681 ± 0.03 0.644 ± 0.03

Z
o
r
r
o

GSEF-concat 0.823±0.04 0.860±0.05 0.735±0.02 0.786±0.01 0.575 ± 0.03 0.529±0.05

GSEF-mult 0.723±0.03 0.756±0.03 0.681±0.02 0.697±0.04 0.399±0.07 0.449±0.05

GSEF 0.884 ± 0.03 0.880 ± 0.04 0.776 ± 0.03 0.820 ± 0.02 0.537±0.05 0.527 ± 0.04

GSE 0.779±0.04 0.810±0.01 0.722±0.02 0.777±0.02 0.596 ± 0.03 0.561 ± 0.03
ExplainSim 0.871 ± 0.02 0.873 ± 0.02 0.806 ± 0.02 0.829 ± 0.03 0.427±0.06 0.485±0.05

Z
o
r
r
o
-
S

GSEF-concat 0.907±0.03 0.922±0.02 0.747 ± 0.06 0.791 ± 0.05 0.601 ± 0.06 0.590 ± 0.05
GSEF-mult 0.794±0.06 0.815±0.06 0.712±0.06 0.740±0.06 0.490±0.08 0.491±0.05

GSEF 0.918 ± 0.02 0.923 ± 0.02 0.776 ± 0.06 0.819±0.05 0.598 ± 0.03 0.565 ± 0.03

GSE 0.893±0.04 0.915±0.02 0.742±0.06 0.784 ± 0.05 0.571±0.03 0.564±0.04

ExplainSim 0.908 ± 0.03 0.934 ± 0.02 0.732±0.05 0.787±0.03 0.484±0.04 0.496±0.03

G
L
i
m
e

GSEF-concat 0.643 ± 0.05 0.710 ± 0.04 0.610 ± 0.05 0.652 ± 0.04 0.473 ± 0.07 0.492 ± 0.05

GSEF-mult 0.516±0.06 0.522±0.04 0.517±0.05 0.528±0.04 0.264±0.03 0.371±0.01

GSEF 0.730 ± 0.05 0.774 ± 0.03 0.681 ± 0.05 0.740 ± 0.05 0.542 ± 0.05 0.525 ± 0.03
GSE 0.558±0.06 0.571±0.05 0.540±0.06 0.555±0.05 0.236±0.04 0.361±0.02

ExplainSim 0.505±0.04 0.524±0.04 0.520±0.04 0.523±0.04 0.504±0.05 0.512±0.03

G
N
N
E
x
p

GSEF-concat 0.614±0.04 0.650±0.04 0.653±0.05 0.705±0.04 0.467±0.11 0.489±0.06

GSEF-mult 0.724 ± 0.05 0.760 ± 0.05 0.637 ± 0.05 0.692 ± 0.05 0.390±0.10 0.454±0.05

GSEF 0.762 ± 0.04 0.796 ± 0.03 0.700 ± 0.07 0.796 ± 0.06 0.590 ± 0.04 0.563 ± 0.03
GSE 0.517±0.04 0.552±0.03 0.490±0.05 0.508±0.04 0.386±0.11 0.451±0.07

ExplainSim 0.537±0.05 0.541±0.04 0.484±0.05 0.508±0.04 0.551 ± 0.04 0.545 ± 0.03

F HYPERPARAMETER SETTINGS

In Table 14, we provide the hyperparameters used in training the

different modules of our attack for reproducibility. We used hy-

perparameters from [13], which are already fine-tuned for these

datasets.

G LIMITATIONS AND FUTURE DIRECTION

This section highlights some limitations and future directions for

our work.

Partial Explanations. In the current work, the 30% nodes we

sampled to generate the fixed subgraph for the partial explanation

experiment were only sampled once. Such a sampling approach

might be subject to sampling bias. Hence, sampling the subgraph

multiple times may be desirable to avoid such bias.

More Work on Attacks and Defenses. A promising direction

will be to launch more attacks and defenses on other explanation

outputs, such as nodes or subgraph-level explanations. These are

natural derivatives of graph-based explanation methods, and it

is worth investigating to quantify the risk involved in releasing

explanations. More defenses that optimize the usefulness of the

explanations (fidelity and sparsity) are desirable.

Fidelity-sparsity Analysis. In this work, we analyzed the effect

of the usefulness of explanations as measured by their fidelity and
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Table 10: Dataset statistics for the additional datasets. |V |
and |E | denotes the number of nodes and edges respectively,

C, Xd , and deg denotes the number of classes, size of fea-

ture dimension and the average degree of the corresponding

graph dataset.

CiteSeer PubMed Credit

|V | 3327 19717 3000

|E | 9228 88651 28854

Xd 3703 500 13

C 6 3 2

deg 2.77 4.50 9.62

Table 11: RDT-Fidelity and sparsity (entropy) of different ex-

planation methods on the additional datasets. For fidelity,

the higher the better. For sparsity, the lower the better.

Exp CiteSeer PubMed Credit

Fidelity Sparsity Fidelity Sparsity Fidelity Sparsity

Grad 0.24 4.15 0.44 4.38 0.55 0.94

Grad-I 0.19 4.16 0.37 4.39 0.59 0.95

Zorro-S 0.90 2.62 0.96 2.17 0.94 1.23

GLime 0.18 0.65 0.38 1.59 0.60 0.49

GNNExp 0.65 8.21 0.79 6.21 0.65 2.56

sparsity. More work can be done in this direction. In general, our fi-

delity and sparsity metrics can be complemented with other domain

and dataset-specific metrics of explanation utility.
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Table 12: Attack performance and baselines for additional datasets (CiteSeer, PubMed, and Credit). The best performing

attack(s) on each explanation method is(are) highlighted in bold, and the second best attack(s) is(are) underlined.

Exp Attack CiteSeer PubMed Credit

AUC AP AUC AP AUC AP

B
a
s
e
l
i
n
e

FeatureSim 0.890 ± 0.04 0.909 ± 0.03 0.888 ± 0.01 0.889 ± 0.01 0.720 ± 0.01 0.753 ± 0.01

Lsa [20] 0.859 ± 0.03 0.893 ± 0.02 0.783 ± 0.05 0.801 ± 0.04 0.655 ± 0.03 0.671 ± 0.04

GraphMI [48] 0.789 ± 0.02 0.746 ± 0.02 0.795 ± 0.01 0.758 ± 0.02 0.510 ± 0.04 0.569 ± 0.05

Slaps [13] 0.834 ± 0.04 0.875 ± 0.03 0.579 ± 0.02 0.626 ± 0.02 0.723 ± 0.02 0.767 ± 0.02

G
r
a
d

GSEF-concat 0.811 ± 0.03 0.860 ± 0.03 0.672 ± 0.02 0.732 ± 0.01 0.825 ± 0.02 0.868 ± 0.02

GSEF-mult 0.748 ± 0.05 0.808 ± 0.04 0.579 ± 0.03 0.627 ± 0.03 0.820 ± 0.02 0.861 ± 0.01

GSEF 0.969 ± 0.02 0.971 ± 0.02 0.788 ± 0.02 0.856 ± 0.02 0.881 ± 0.02 0.918 ± 0.02
GSE 0.945 ± 0.03 0.955 ± 0.02 0.770 ± 0.03 0.846 ± 0.02 0.861 ± 0.02 0.899± 0.01

ExplainSim 0.991 ± 0.01 0.985 ± 0.01 0.987 ± 0.01 0.981 ± 0.01 0.861 ± 0.01 0.867 ± 0.01

G
r
a
d
-
I

GSEF-concat 0.810 ± 0.04 0.857 ± 0.04 0.583 ± 0.02 0.632 ± 0.02 0.826 ± 0.02 0.867 ± 0.02

GSEF-mult 0.745 ± 0.05 0.804 ± 0.04 0.574 ± 0.01 0.625 ± 0.01 0.813 ± 0.02 0.863 ± 0.01

GSEF 0.970 ± 0.02 0.974 ± 0.02 0.782 ± 0.02 0.853 ± 0.02 0.881 ± 0.02 0.918 ± 0.01
GSE 0.947 ± 0.02 0.960 ± 0.02 0.740 ± 0.02 0.836 ± 0.01 0.861 ± 0.02 0.893 ± 0.02

ExplainSim 0.992 ± 0.001 0.986 ± 0.001 0.988 ± 0.001 0.981 ± 0.001 0.864 ± 0.001 0.868 ± 0.001

Z
o
r
r
o
-
S

GSEF-concat 0.932 ± 0.02 0.944 ± 0.02 0.663 ± 0.02 0.729 ± 0.01 0.825 ± 0.03 0.868 ± 0.02

GSEF-mult 0.828 ± 0.06 0.855 ± 0.06 0.554 ± 0.03 0.601 ± 0.02 0.828 ± 0.03 0.868 ± 0.02

GSEF 0.953 ± 0.02 0.960 ± 0.02 0.901 ± 0.02 0.914 ± 0.02 0.822 ± 0.02 0.869 ± 0.02
GSE 0.932 ± 0.03 0.947 ± 0.03 0.753 ± 0.02 0.772 ± 0.02 0.785 ± 0.01 0.840 ± 0.01

ExplainSim 0.950 ± 0.01 0.957 ± 0.01 0.874 ± 0.02 0.904 ± 0.01 0.734 ± 0.02 0.768 ± 0.02

G
L
i
m
e

GSEF-concat 0.757 ± 0.05 0.801 ± 0.05 0.614 ± 0.03 0.641 ± 0.02 0.825 ± 0.03 0.867 ± 0.02

GSEF-mult 0.567 ± 0.03 0.637 ± 0.04 0.507 ± 0.10 0.509 ± 0.08 0.791 ± 0.01 0.855 ± 0.01

GSEF 0.862 ± 0.05 0.894 ± 0.04 0.697 ± 0.02 0.712 ± 0.02 0.845 ± 0.02 0.890 ± 0.01
GSE 0.571 ± 0.04 0.618 ± 0.04 0.602 ± 0.03 0.591 ± 0.03 0.798 ± 0.03 0.843 ± 0.03

ExplainSim 0.703 ± 0.06 0.705 ± 0.05 0.661 ± 0.03 0.724 ± 0.02 0.765 ± 0.03 0.810 ± 0.02

G
N
N
E
x
p

GSEF-concat 0.639 ± 0.04 0.713 ± 0.04 0.552 ± 0.03 0.590 ± 0.03 0.826 ± 0.03 0.869 ± 0.02
GSEF-mult 0.812 ± 0.05 0.862 ± 0.04 0.570 ± 0.01 0.618 ± 0.01 0.821 ± 0.02 0.865 ± 0.02

GSEF 0.847 ± 0.05 0.881 ± 0.05 0.612 ± 0.02 0.648 ± 0.02 0.817 ± 0.02 0.869 ± 0.02

GSE 0.594 ± 0.07 0.640 ± 0.06 0.507 ± 0.02 0.512 ± 0.02 0.760 ± 0.04 0.804 ± 0.05

ExplainSim 0.618 ± 0.05 0.654 ± 0.05 0.495 ± 0.01 0.499 ± 0.01 0.787 ± 0.02 0.845 ± 0.02
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Table 13: 100-runs results with standard deviation. The best performing attack(s) on each explanation method is(are) high-

lighted in bold, and the second best attack(s) is(are) underlined.

Exp Attack Cora CoraML Bitcoin CiteSeer PubMed Credit

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

G
r
a
d

GSEF-concat 0.740 ± 0.05 0.780 ± 0.04 0.639 ± 0.07 0.703 ± 0.05 0.474 ± 0.10 0.503 ± 0.07 0.814 ± 0.04 0.862 ± 0.03 0.666 ± 0.03 0.728 ± 0.02 0.825 ± 0.03 0.868 ± 0.02

GSEF-mult 0.682 ± 0.05 0.742 ± 0.04 0.667 ± 0.07 0.727 ± 0.06 0.283 ± 0.03 0.392 ± 0.02 0.750 ± 0.05 0.806 ± 0.04 0.576 ± 0.02 0.627 ± 0.02 0.820 ± 0.02 0.861 ± 0.01

GSEF 0.949 ± 0.02 0.955 ± 0.01 0.801 ± 0.07 0.836 ± 0.06 0.563 ± 0.15 0.552 ± 0.14 0.969 ± 0.02 0.972 ± 0.02 0.787 ± 0.02 0.855 ± 0.02 0.878 ± 0.02 0.916 ± 0.01
GSE 0.919 ± 0.04 0.935 ± 0.02 0.697 ± 0.07 0.767 ± 0.05 0.265 ± 0.04 0.380 ± 0.02 0.946 ± 0.03 0.955 ± 0.02 0.767 ± 0.03 0.845 ± 0.02 0.868 ± 0.02 0.902 ± 0.01

G
r
a
d
-
I

GSEF-concat 0.727 ± 0.05 0.767 ± 0.04 0.666 ± 0.06 0.719 ± 0.05 0.523 ± 0.08 0.528 ± 0.05 0.813 ± 0.04 0.860 ± 0.04 0.578 ± 0.02 0.628 ± 0.02 0.824 ± 0.03 0.867 ± 0.02

GSEF-mult 0.689 ± 0.02 0.741 ± 0.02 0.699 ± 0.06 0.747 ± 0.06 0.289 ± 0.06 0.403 ± 0.04 0.738 ± 0.04 0.797 ± 0.04 0.573 ± 0.02 0.625 ± 0.02 0.810 ± 0.02 0.860 ± 0.01

GSEF 0.949 ± 0.02 0.953 ± 0.02 0.792 ± 0.07 0.830 ± 0.06 0.557 ± 0.05 0.547 ± 0.03 0.969 ± 0.02 0.973 ± 0.02 0.784 ± 0.02 0.854 ± 0.02 0.879 ± 0.02 0.918 ± 0.01
GSE 0.900 ± 0.04 0.921 ± 0.03 0.706 ± 0.06 0.772 ± 0.05 0.242 ± 0.05 0.370 ± 0.02 0.945 ± 0.03 0.958 ± 0.02 0.734 ± 0.03 0.834 ± 0.02 0.858 ± 0.02 0.892 ± 0.02

Z
o
r
r
o
-
S

GSEF-concat 0.909 ± 0.03 0.924 ± 0.02 0.750 ± 0.06 0.790 ± 0.05 0.573 ± 0.04 0.569 ± 0.03 0.935 ± 0.02 0.947 ± 0.02 0.663 ± 0.02 0.730 ± 0.02 0.826 ± 0.03 0.868 ± 0.02

GSEF-mult 0.796 ± 0.05 0.821 ± 0.05 0.717 ± 0.06 0.744 ± 0.06 0.512 ± 0.09 0.512 ± 0.06 0.826 ± 0.06 0.853 ± 0.05 0.559 ± 0.03 0.606 ± 0.02 0.829 ± 0.03 0.869 ± 0.02
GSEF 0.902 ± 0.02 0.922 ± 0.02 0.772 ± 0.06 0.811 ± 0.05 0.602 ± 0.03 0.568 ± 0.03 0.953 ± 0.03 0.961 ± 0.03 0.686 ± 0.02 0.754 ± 0.02 0.818 ± 0.03 0.867 ± 0.02

GSE 0.889 ± 0.04 0.915 ± 0.02 0.745 ± 0.07 0.787 ± 0.06 0.547 ± 0.04 0.546 ± 0.04 0.933 ± 0.03 0.948 ± 0.03 0.664 ± 0.02 0.730 ± 0.01 0.785 ± 0.02 0.841 ± 0.01

G
L
i
m
e

GSEF-concat 0.655 ± 0.06 0.716 ± 0.05 0.614 ± 0.06 0.655 ± 0.05 0.537 ± 0.07 0.520 ± 0.05 0.762 ± 0.05 0.802 ± 0.05 0.614 ± 0.04 0.643 ± 0.03 0.827 ± 0.03 0.869 ± 0.02

GSEF-mult 0.518 ± 0.05 0.540 ± 0.05 0.559 ± 0.06 0.564 ± 0.05 0.232 ± 0.03 0.358 ± 0.01 0.566 ± 0.04 0.635 ± 0.05 0.529 ± 0.07 0.513 ± 0.06 0.791 ± 0.01 0.855 ± 0.01

GSEF 0.743 ± 0.04 0.784 ± 0.03 0.649 ± 0.06 0.697 ± 0.05 0.516 ± 0.05 0.512 ± 0.03 0.853 ± 0.05 0.887 ± 0.05 0.680 ± 0.03 0.698 ± 0.03 0.844 ± 0.03 0.889 ± 0.02
GSE 0.534 ± 0.05 0.565 ± 0.05 0.523 ± 0.05 0.542 ± 0.05 0.274 ± 0.05 0.373 ± 0.02 0.581 ± 0.05 0.620 ± 0.04 0.578 ± 0.05 0.569 ± 0.05 0.790 ± 0.03 0.830 ± 0.04

G
N
N
E
x
p

GSEF-concat 0.628 ± 0.04 0.648 ± 0.05 0.642 ± 0.06 0.695 ± 0.05 0.476 ± 0.09 0.497 ± 0.05 0.628 ± 0.05 0.704 ± 0.04 0.555 ± 0.02 0.596 ± 0.02 0.825 ± 0.03 0.868 ± 0.02

GSEF-mult 0.730 ± 0.05 0.768 ± 0.05 0.645 ± 0.06 0.699 ± 0.05 0.393 ± 0.11 0.453 ± 0.05 0.805 ± 0.05 0.854 ± 0.04 0.564 ± 0.02 0.613 ± 0.02 0.819 ± 0.02 0.863 ± 0.02

GSEF 0.762 ± 0.04 0.794 ± 0.03 0.644 ± 0.07 0.684 ± 0.06 0.601 ± 0.04 0.574 ± 0.03 0.856 ± 0.05 0.887 ± 0.04 0.616 ± 0.02 0.644 ± 0.02 0.818 ± 0.02 0.868 ± 0.02
GSE 0.515 ± 0.05 0.542 ± 0.04 0.500 ± 0.06 0.518 ± 0.05 0.311 ± 0.08 0.407 ± 0.04 0.593 ± 0.05 0.647 ± 0.05 0.499 ± 0.02 0.507 ± 0.02 0.766 ± 0.03 0.816 ± 0.03

Table 14: Hyperparameters of the different modules of the attack and target model

Param/Module Self-supervision Classification Target Model

num_layers 2 2 2

learning rate 0.01 0.001 0.01

epochs 2000 200 200

hidden_size 512 32 32

dropout 0.5 0.5 0.5

noisy_mask_ratio 20 – –

weight_decay – – 5e-4
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