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ABSTRACT
IoT devices constantly communicate with servers over the Internet,

allowing an attacker to extract sensitive information by passively

monitoring the network traffic. Recent research works have shown

that a network attacker with a trained machine learning (ML) model

can accurately fingerprint IoT devices learned from the (encrypted)

traffic flows of the devices. Such fingerprinting attacks are capable

of revealing the make and model of the devices, which can further

be used to extract detailed user activities.

In this work, we develop and propose iPET, a novel adversarial

perturbation-based traffic modification system that defends against

fingerprinting attacks. iPET design employs GAN (Generative Ad-

versarial Networks) in a tuneable way, allowing users to specify

the maximum bandwidth overhead they are willing to tolerate for

the defense. A fundamental idea of iPET is to deliberately intro-

duce stochasticity between model instances. This approach limits a

counter attack, as it inhibits an attacker from recreating an identical

perturbation model and using it for fingerprinting. We evaluate the

effectiveness of our defense against state-of-the-art fingerprinting

models and with three different attacker capabilities. Our evalua-

tions on synthetic and real-world datasets demonstrate that iPET

decreases the accuracy of even the potent attackers. We also show

that the traffic perturbations generated by iPET generalize well to

different fingerprinting schemes that an attacker may deploy.

KEYWORDS
IoT, privacy, fingerprinting, deep learning, adversarial machine

learning

1 INTRODUCTION
Internet of Things (IoT) devices are fast penetrating into different

markets such as consumer, enterprise, critical infrastructure, ed-

ucation, and healthcare. The number of IoT devices in the world
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is projected to go up to 41 billion by 2027, a steep rise from 8 bil-

lion in 2019 [33]. IoT devices have become part of our daily lives;

we use them to track and monitor heart beat rate, sleep quality,

sports activities, etc., as well as for smart, simplified and automated

operations such as controlling home environment and ordering

groceries. This unprecedented growth is, however, accompanied

with increasing threats and attacks [28]. In particular, user privacy

is vulnerable to eavesdropping attack — a network attacker having

access to the communication traffic of IoT devices can identify the

device types and even device activities.

Advances in machine learning (ML) have largely benefited our

society; unsurprisingly, they have also become a useful tool for

attackers. Many recent attacks leverage machine learning models

to target the privacy vulnerabilities of IoT devices [3, 10, 13, 27, 44,

47, 53]. These ML-based device fingerprinting attacks are capable of
identifying devices based on the communication patterns captured

by a trained model, even when the payloads are encrypted. This

leads us to an important question – how can we protect the privacy

of IoT users from network attackers that use state-of-the-art ML-

based fingerprinting attacks? While a possible solution would be

to modify the traffic by adding perturbations that are random or

by maintaining a constant traffic rate, such approaches are either

ineffective or incur high bandwidth overhead (Section 5.1.2).

Recently, researchers have shown that small changes in the in-

puts — adversarial perturbations — can effectively deceive trained

classification models [14, 30, 36, 51]. The properties of adversarial

perturbations i) of being small in magnitude, ii) fooling a classifier

to force misclassifications, iii) and generalizing between models,

make them suitable for a traffic obfuscation mechanism to counter

device fingerprinting attacks.

Applying these defense perturbations to network traffic, how-

ever, has its challenges: i) ensure the perturbations are within the

network constraints and do not disrupt device communications,

ii) minimize the cost of defense in terms of network bandwidth

and latency, and most importantly iii) make the defense robust to

adversarial training (wherein adversary retrain their classifier with

the knowledge of the defense deployed by a user) [14, 22, 54].

In this work, we overcome the above challenges by designing and

developing iPET, a privacy-enhancing technique for IoT devices,

that leverages adversarial ML to perturb network traffic and thereby

defeat fingerprinting attacks. iPET employs a generative deep learn-

ing model to produce device specific defense perturbations. The
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model is independent of live network traffic of communicating

devices, allowing the perturbations to be pre-generated, thereby

minimizing the network latency. We design iPET as a tuneable

defense, allowing users to choose the maximum bandwidth over-

head acceptable to them. An important aspect of iPET is that it is

resilient to adversaries retraining their models based on the un-

derstanding of the defense. The key idea is a training process that

ensures the iPET instances created, and thereby the perturbation

patterns generated at the defense (and also by an adversary), are

made to diverge significantly.

To the best of our knowledge, iPET is the first solution to use

adversarial ML to protect privacy of IoT users.

We summarise the contributions of our work below.

• We develop and present iPET, a novel technique that exploits

the stochasticity between instances of generative models to

add adversarial perturbations in a way that undermines ML-

based device fingerprinting models.

• iPET incurs low overhead in terms of network bandwidth

and latency, to achieve the privacy goal of averting device

fingerprinting attacks. At the same time, the tuneable nature

of iPET allows users to limit the maximum network overhead

they are willing to tolerate.

• We conduct comprehensive evaluations using synthetic data

as well real network traces of IoT devices. The experiments

demonstrate that iPET is effective against an attacker us-

ing different fingerprinting architectures. We also compare

iPET against existing traffic obfuscation techniques in the

literature and show that iPET is more effective and resilient

to powerful adversaries in countering device fingerprint-

ing attacks at a much lower network bandwidth overhead.

Going further, our evaluations consider an attacker with

different capabilities, with the most powerful attacker hav-

ing complete knowledge of the defense model. Finally, we

show that our approach is transferable across the defense’s

configuration parameters and effective in the open world.

• We implement iPET in Python using Keras libraries from

TensorFlow [52], and publish the source code online
1
.

In the following section, we present the background necessary

for our work and formally define the threat model. In Section 3, we

present the goals and challenges in developing a defense solution,

and provide an overview of iPET. We develop iPET in Section 4 and

analyze its resilience to various attack scenarios. In Section 5, we

pose important research questions on countering device fingerprint-

ing, and evaluate iPET in this context. Section 6 opens up further

discussions on iPET. Related works are discussed in Section 7.

2 BACKGROUND AND THREAT MODEL
2.1 System: Users and Attacker
We consider a systemwhere IoT devices communicate with different

servers on the Internet for routine operations. IoT devices connect

to the Internet often with the help of a gateway (e.g., home IoT

gateway) as shown in Figure 1. The potential victims here are the

users of IoT devices, who are concerned about privacy leaks on the

Internet links, despite the communications being encrypted.

1
https://github.com/akshayeshenoi/ipet
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Figure 1: Threat model: an IoT device communicates with a
server in the Internet; the attacker could be any router on
the communication path with access to (encrypted) traffic
exchanged between the IoT devices and their servers.

We assume that an attacker may control any network device (e.g.,

router) on the communication path between an IoT device and its

server, except the user gateway and the server, which are assumed to

be secured and hardened. The attacker may do so by compromising

a network device (e.g., a router) belonging to an Internet Service

Provider (ISP), or the attacker could just be a malicious ISP. The

attacker is capable of passively eavesdropping on both the incoming

and outgoing communications at the network device. However, the

attacker does not have access to home networks of users and their

internal traffic; we consider such attacks out of scope of the current

work.We also assume that DDoS attacks on gateways or IoT devices

(e.g., see [49]) are out of scope of our work, since we consider only

a passive attacker and attacks on user privacy.

2.2 Attacker: Goals and Capabilities
The attacker’s objective is to infer sensitive information about the

users of the IoT devices from the traffic captured at the network

entity under his control. The attacker uses a machine learning

(ML) classifier to carry out device fingerprinting attack — a net-

work attack that infers the type (make and model) of the IoT de-

vice [3, 10, 13, 27, 44, 47, 53]. Device fingerprinting could be the first

step of more serious attacks, such as those that infer fine-grained

sensitive information such as IoT user activity [2]. To build this ML

classifier, the attacker may purchase his own IoT devices, gener-

ate (potentially encrypted) traffic from them, label them to subse-

quently extract features and train a device-fingerprinting model.

This trained model is employed on traffic of users to classify and

identify IoT devices. Since packet payloads are often encrypted (e.g.,

due to the increasing adoption of TLS [15]), most of the features for

anML classifier come from the header fields of the packets. Features

may be extracted for each connection (e.g., HTTP connection), or

for a session (defined by static or dynamic time-window) of a device.

To be specific, we define two broad classes of fingerprinting models

for identifying IoT devices:

i) Magg: Model Based on Feature Aggregates. The features of
thismodel are extracted from sessions of fixed-length time-windows

of a device. Existing works select time-windows ranging in min-

utes to achieve high fingerprinting accuracy (e.g., DEFT [53] uses a
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window length of 15 minutes). For a given session, the features in-

clude, the number of packets, statistics (mean, minimum, maximum,

and sum) of the packet lengths, etc. The features are aggregated

separately for incoming and outgoing packets of a device (IP ad-

dress) and further grouped by the different protocols (e.g. DNS,

HTTP, NTP, etc.). Appendix A gives the full list of features. Ma-

chine learning classifiers such as Random Forest [5] can be used

for training.

ii) Mseq: Sequence-Based Device Classifier. With this model,

the goal is to capture the temporal relationships between pack-

ets in a device’s traffic session. For readability, we denote the fea-

tures of a session as a matrix τ of shape [f ,n], where each of the

n columns corresponds to a discrete time-slot ωi (say, of length
100ms) in a session. Essentially, τ captures the session as a time-

series; e.g., if session-length is 1s, there would be 10 columns in

τ . We consider f features (rows of τ ); they represent the num-

ber of incoming/outgoing packets in ωi , the sum of lengths of

incoming/outgoing TCP payloads in ωi , and the sum of lengths of

incoming/outgoing UDP payloads in ωi . Although these features

appear simple, they are known to be effective in fingerprinting

IoT devices [13, 55]; besides they can be extracted with minimal

processing. Additionally, we compute the silence period s between
two consecutive sessions (time between the first packet of current

session and last packet of previous session) as another feature. Deep

Neural Network (DNN) architectures such as LSTM [17], CNN [21],

GRU [7], and MLP [40] can be used to train such models.

We note that Magg relies on packet header information (e.g.,

application layer protocols) for computing aggregated features.

However, such features are unavailable when anonymous commu-

nication tools are used. For instance, Tor uses an overlay network

that routes encrypted user packets over relay nodes to hide the

packet headers. In such scenarios, we find that the classification

accuracy ofMagg reduces significantly due to the limited features

available. On the contrary, Mseq is expected to perform better

than Magg since it attempts to capture the sequence of features

(e.g., number and sizes of packets) in a window rather than aggre-

gating them. In Appendix B, we evaluate the accuracy of Mseq

and Magg against Tor, consequently conclude that Mseq is the

stronger fingerprinting model. Therefore, we only consider Mseq

in all our evaluations.

Furthermore, we endow our attacker with the knowledge of any

defense that an IoT device user may have in place. For instance,

when a user employs Tor for defense, we assume that an attacker

would be able infiltrate the overlay network and take control of a

Tor relay node. Similarly, if the user employs a traffic perturbation

technique for defense, we assume that the attacker may deploy the

defense at his own premises, route the traffic of his devices through

the defense, obtain the perturbed traffic and subsequently retrain

his ML classifier. We elaborate the attack scenarios in Section 4.1.

3 GOALS, CHALLENGES, AND OVERVIEW
3.1 Defense Goal and Challenge
Consider the communications between an IoT BP Monitor and its

server through the network path, namely, IoT Device → R0 → R1

→R2 →R3 → Server, as shown in Figure 2. The attacker is located

at R2 and is capable of eavesdropping the communications along

User

Server

IoT
BP Monitor

R
1

Gateway 

(R
0
)

iPET

Perturber

iPET

Extractor

Adversary

R
2

R
3

Figure 2: iPET, the proposed traffic perturbation technique
employed at the periphery (i.e., R0 and Server) of the net-
work that is under threat from the attacker.

the network path R0 → Server, to perform device fingerprinting.

The goal of the IoT user (who uses a defense solution) is to effec-

tively counter the ML-based fingerprinting attacks carried out by

the network attacker. This means, the defense should be able to sig-

nificantly reduce the probability of successful device classification

from the currently achievable very high accuracy (of over 99%, as

per our experiments in Section 5.1).

As mentioned in Section 2.2, an attacker trains a fingerprinting

model by extracting information from network traffic; such a model

learns specific characteristics of traffic (even if the payloads are

encrypted), to construct decision boundaries that differentiate the

patterns corresponding to different devices. To prevent this, the

defense employed by the user should be able to obfuscate traffic by

adding noise. For instance, the solution could add noise in the form

of cover traffic (i.e., dummy packets with arbitrary but realistic

sizes) to counter a fingerprinting model that uses packet count and

size as features.

Challenges: The challenge in coming up with a traffic obfuscation

technique is that it must be resilient to attackers that are aware of

the defense solution. In particular, an attacker that learns that a spe-

cific defense solution is in place, may retrain his model accordingly

to defeat the defense solution. In Appendix B, we show that Tor [11],

a popular privacy enhancing overlay network, is easily defeated

with our sequence-based fingerprinting modelMseq trained on Tor

output (Mseq achieves ≈ 81% accuracy). Furthermore, we need to

ensure that the defense does not disrupt the functioning of the IoT

devices by inducing high network latency or bandwidth overhead.

3.2 Overview of iPET
iPET is a deep learning-based traffic perturbation technique, and

consists of a Perturber and an Extractor. iPET Perturber, which

adds traffic perturbations, is deployed at the ingress of the network

path that is vulnerable to fingerprinting attacks. Likewise, comple-

mentary to this, the iPET Extractor removes the perturbations at

the egress of the vulnerable network path. Perturbations could be

in the form of (i) cover traffic to be added (e.g., dummy packets),

(ii) additional bytes to be added to the packets, or (iii) small and

limited delays to be added to the packets from the IoT devices.
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For illustration, we assume a simplified deployment model where

iPET Perturber is deployed at the home Gateway (R0) and the iPET

Extractor is deployed at the Server as shown in Figure 2. Real-world

deployments must consider the trust assumptions of the involved

network nodes and, additionally, consider real-world cases that

may require routing the traffic through multiple hops. We discuss

these in Section 6.

We present the design of iPET progressively. iPET-Basic (Sec-

tion 4.2) is a generative model that creates perturbation vectors,

whichwhen added to the original device traffic, causes the attacker’s

fingerprinting model to misclassify. This means that the fingerprint-

ing model’s inference of the make and model of the devices fails

with a very high probability. However, this form of defense is still

vulnerable against an attacker who retrains his device fingerprint-

ing model by deploying iPET at their end (refer to Section 4.2.3).

To thwart such retraining attacks, we present an enhanced defence

iPET-Advanced (Section 4.3), designed to enhance stochasticity be-

tween trained instances of the defense. The stochasticity ensures

differences in the perturbations added to the traffic in different

instances deployed by users. Thereby, an attacker’s fingerprinting

model trained on traffic perturbed by an iPET-Advanced instance

they have access to, will not generalize on the traffic as perturbed

by a specific victim’s iPET-Advanced. We later go a step further and

show that iPET-Advanced is resilient against an even more powerful

attacker (discussed in Section 4.1) that may retrain on multiple such

iPET-Advanced defense models to account for the stochasticity or

even learn the defense parameters and architecture.

4 IPET
iPET uses a deep learning model to generate traffic perturbations,

which when added to device traffic, will likely lead to misclassifi-

cation of the attacker’s ML classifier used for device fingerprint-

ing. The input to iPET is a one-dimensional vector ξ ∈ [0, 1]k

(k = 20) drawn from a Uniform distribution, and the output is a

one-dimensional perturbation vector δ of length n; Figure 3 illus-

trates this. The ith element of this vector specifies a perturbation

value, which determines how the traffic should be perturbed at a

discrete slot ωi , where 1 ≤ i ≤ n. The values in the perturbation

vector are used by iPET for a session of length n ×|ω |. The pertur-
bation value for a time-slot stipulates the number and aggregate

size of dummy packets to be added. We do not explore the use of

other forms of perturbations, such as packet delays, since it is easily

influenced by network conditions and requires complex buffering

mechanisms. However, the design of our defense is flexible and can

be easily extended to include other forms of traffic perturbations.

iPET trains on the traffic of IoT devices to generate perturbations

that will obfuscate potentially discernible patterns over sessions of

fixed length (n ×|ω |).
We introduce the attack scenarios in Section 4.1. We describe

the foundation of iPET design, namely, iPET-Basic in Section 4.2.

Subsequently, we develop iPET-Advanced, which is the final model

referred to as iPET.

4.1 Attack Scenarios
i) Naïve Attacker (Mnaive

seq ). A Naïve attacker deploys his own

IoT devices, captures their (possibly) encrypted traffic at his IoT

gateway, and labels them. He uses this labeled dataset for training

iPET
for 

Device A
ξ

Random
Input

Dummy pkts

1 . . . n

Perturbation 

Vector (δ)

12

72

84

Original Traffic

Perturbed Traffic

ω
n

ω
2

ω
1 . . .

τ

τ'

δPerturbations

Figure 3: The input to iPET is a random vector ξ , and the
output is a perturbation vector δ that specifies, for a specific
time-slot ωi , the number of dummy packets along with the
packet sizes to be added.

a sequence-based classifierMnaive

seq
(same asMseq, defined in Sec-

tion 2.2). As discussed in Section 2.2, the sequence-based classifiers

perform better than aggregate ones.

ii) Retraining Attacker (Mretrained
seq ). Different from the Naïve

attacker, a Retraining attacker deploys iPET on an IoT gateway,

gaining blackbox access to the iPET gateway. In other words, the

attacker deploys a set of devices, captures perturbed traffic from the

egress of iPET gateway, and retrains his fingerprinting classifier.

The attacker uses this iPET-aware ML classifier on (victim) user

traffic for device fingerprinting. We denote this retrained sequence-

based classifier as Mretrained

seq
.

iii) Powerful Attacker (Mpowerful
seq ). A Powerful attacker oper-

ates several iPET gateways. He can now deploy IoT devices at each

of his iPET gateways, capture their traffic, and label them. The

attacker builds a more robust ML classifier that is trained on the

traffic traces from several iPET instances running at the gateway he

controls. The newML classifier thus trained is calledM
powerful

seq
. Ad-

ditionally, we also assume that the attacker has learned the model

parameters and hyper parameters of iPET model (Section 4.3) from

the several instances that he has access to. However, he does not

have access to the exact weights of the neural network models

trained at the iPET instances for the different users.

4.2 iPET-Basic
The design of iPET-Basic is inspired by Generative Adversarial

Perturbations [36], which utilizes a generative network (i.e., a

generator) to formulate perturbations for defeating an image classi-

fier (i.e., a discriminator) with high confidence. For instance, when

a perturbation from the generator is added to an image of a dog,

the discriminator will label it as a cat with a high probability.

Analogous to this, in our work, iPET-Basic is the generator (G)

and the discriminator (D) is the naïve attacker (Mnaive

seq
). The basic

idea is that G progressively learns to generate better perturbations

that defeat D.

4.2.1 Model Design. Model Architecture. The generator’s model

architecture is described in Fig 4. We utilize a dense layer, where

each neuron learns an element in the perturbation vector δ . For
example, the number of packets to be added in the discrete slot

is learned by a neuron. The dense layer output is reshaped into

the perturbation vector δ . The custom limit layer is included to

scale the perturbation values within the constraints imposed either
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Dense 
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Custom
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Layer

Random
Input 

 

 
Perturbations 

 

Re-
shape

20x1
x1 x

x

x

Figure 4: Model architecture of the generator (G).

by the user (e.g., for saving bandwidth) or the network protocol

(e.g., the maximum allowed payload size). The following are some

relevant constraints:

• Control the number of dummy packets to add, and their sizes,

per discrete slot (ωi ).
• Ensure that the payload bytes for the dummy packets do

not result in the packet size exceeding the MTU (Maximum

Transmission Unit) imposed by the network.

• Ensure that the delay (in milliseconds) added to original

packets is within the user specified limits

We define control parameters for the above, which help iPET to

achieve a trade-off between privacy and bandwidth overhead, as

we demonstrate later in Section 5.1.2. In this work, the custom limit

layer controls only the number and size of the dummy packets since

we choose not to include the other forms of traffic perturbation.

However, as presented above, the layer can additionally control

other perturbation types as needed.

Training. The objective of iPET-Basic is to generate perturbations

G(ξ ) = δ , which when added to an input time series τ , creates an
adversarial input τ̃ = τ ⊕ δ , that causes the discriminator D to

misclassify the original traffic session τ . An example of the working

of ⊕ operator is shown in Figure 3. The perturbed traffic, along

with the silence period s of the device, is now used as an input to

the discriminator, as summarised in Figure 5. The discriminator

predicts the device type for the given input. Finally, the prediction

is used as a feedback to update the generator weights, and this

process continues.

There are two well-known approaches to generate perturbations.

i) Targeted approach [36, 39]: the generator attempts to force the

discriminator to misclassify the input into a specific target class.

ii) Untargeted approach [32, 36]: the generator does not have a

specific goal of forcing a misclassification into a particular class

label. Instead, the generator receives a positive feedback as long as

the discriminator misclassifies the input. The open-ended nature of

the training objective could likely result in a stochastically different

iPET generator being created each time the model is trained. This is

mainly due to the freedom in misclassifying an input into any of the

available classes. We, therefore, choose the untargeted approach

for our work. Thus, we train our generator G such that,

D(τ̃ , s) , cτ ,s , (1)

where τ is a traffic session (input time series of feature values), s is
the silence period of the IoT device, and cτ ,s is the ground truth label.

Random
Input 

 

Generator 
 

Feedback

Trainable
Layers 

Non Trainable
Layers 

Discriminator 
 

Network Data
Time Series 

Perturbed 
 Time Series 

 Perturbations  

Figure 5: Overview of generator training.

Loss Function. The loss function can thus be defined as a decreas-

ing function of categorical cross-entropy, denoted by

l =
C∑
i=1

yi log(ŷi ), (2)

where, ŷ is the model output and y is the corresponding ground

truth label, both of which are one-hot encoded. Following common

practice, the model is trained for sufficient number of epochs to

learn the perturbations that can deceive the discriminator with

high confidence.

4.2.2 Stochastic Differences between Generator Instances. In iPET,

every user gets a different instance of iPET-Basic installed at their

iPET gateway. The different instances (e.g., G1
, G2

, . . . , G#users
) of

iPET-Basic have the following similarities. i) The discriminator D

(refer Figure 5), which is used for training the different iPET-Basic

generator instances, is the same. ii) The model architecture and

the hyper-parameters of the generator instances are also the same.

However, due to their initial random weights and the untargeted

training objective, the final weights of the generators are likely to

be different. Thus, effectively, the perturbations generated by the

instances at a user (Guser
) and an attacker (Gadv

) are different;

this is illustrated in Figure 6(a).

4.2.3 Attack against iPET-Basic.
Naïve Attacker. In this scenario, the attacker uses the discrimina-

tor D =Mnaive

seq
to carry out fingerprinting attack against a user

that employs iPET-Basic generator at her premises.

Retraining Attacker. Figure 6(a) depicts generator instances at
the user (Guser

) and the attacker (Gadv
). Subsequently, as show

in Figure 6(b), the attacker, at his end, retrains a new discriminator

(D =Mretrained

seq
) using the instance of iPET-Basic generator (Gadv

)

available on his gateway, with an intention of fingerprinting devices

deployed by the user.

As we will see later in Section 5.3.1,Mretrained

seq
can easily finger-

print devices even after traffic is perturbed by iPET-Basic, thereby

motivating the need for a better defense.
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(a)

Generator
Training

Discriminator
Training

LEGEND

Fingerprinting  
Attack

(b)

Figure 6: (a) Two instances of iPET-Basic generators, one at a
user and another at an attacker. (b) The Retraining attacker
builds a stronger discriminator D based on Gadv at his own
iPET gateway.

4.3 iPET-Advanced
We first present the design of iPET-Advanced followed by a discus-

sion on the attack scenarios against iPET-Advanced.

4.3.1 Model Design. iPET-Advanced is build with iPET-Basic’s gen-

erator architecture (refer Section 4.2) as the fundamental building

block. Following the motivation shared in the Section 4.2, the gen-

erator uses an untargeted training objective. The goal of iPET-

Advanced is to ensure that the perturbations of the generator in-

stances at the gateways differ significantly from one another. Intu-

itively, the idea is to make it challenging for an attacker to use the

decision boundaries that he learns from his own generator instance

for employing against the traffic captured at another iPET user.

As with iPET-Basic, we use a GAN-based architecture for iPET-

Advanced. The distinct and important design principle of iPET-

Advanced is to chain a series of discriminator-generator training

sequences such that, at each stage, the perturbation patterns learned

by the generator diverges, allowing more random values to be ex-

plored in the state space. For illustration, let us take the example

of a generator instance trained specifically for a user, shown in

Figure 7(a). The subscript of the model denotes the stage in the

chain and the superscript denotes the user for which the model is

created. We begin with the discriminator D0 (same as the D used

in Section 4.2) on which the generator (Guser
0

) is trained. Subse-

quently, the Duser
1

is trained to fingerprint the traffic as perturbed

by Guser
0

. This newly trained discriminator is now used to create

the second stage generator (Guser
1

). Although the magnitude of

perturbations added at any stage remains small, the untargeted

training objective moves the data points randomly. The key idea of

this process is that the stochasticity introduced by the untargeted

training objective is magnified by the iterative training process

(a)

(b)

Fingerprinting 
Attack

Stage 0 Stage 1

Figure 7: (a) The training process for creating generator in-
stance Guser

i , and its deployment at a user. (b) The training
process for creating a generator instanceGadv

j at an attacker,

from which he builds his discriminator D.

since the generator at each stage is trained using a different dis-

criminator as a starting point. Therefore, the state space for the

perturbations is vast, resulting in sharply diverging generators

between two iPET-Advanced instances.

Observe that from Stage 1 onward, the discriminator on which

the user and the attacker train (i.e., Duser
1

and Dadv
1

) are different,

unlike Stage 0 (equivalent to iPET-Basic) where both train their

generators on the same D0. Therefore, a generator G
user
i ∀ i ≥ 1

will be suitable for use as the iPET-Advanced generator. Figure 7(a)

shows a chain, where Guser
i is chosen for installation at a user’s

iPET gateway. Note that only the generator at the end of the chain

is installed at the iPET gateway and the intermediate models are

not available to the iPET users. This design also ensures that the

generator installed at different users is likely to be different.

4.3.2 Attacks against iPET-Advanced.
Naïve Attacker. In this straight-forward attack scenario, the at-

tacker uses the discriminator D = D0 to contend against the users’

generator Guser
i .

RetrainingAttacker. Figure 7(b) shows the chain of discriminator-

generator sequences that leads to the generator instance Gadv
j

installed at the attacker’s iPET gateway. The attacker uses this gen-

erator instance to retrain his ML classifier, namely, D =Mretrained

seq
.

Powerful Attacker.We now describe the attack scenario where

the attacker (refer Section 4.1) creates a powerful discriminator

D = M
powerful

seq
to contend against the users’ generator Guser

i .

Figure 8(a) shows the access that a Powerful attacker has over the

several iPET gateways he controls. When the attacker uses the

iPET-Advanced at the gateways as a blackbox, he will have access

to the several last-stage generators such as Gadv
j and Gadv

k shown
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Figure 8: (a) Different generators that the attacker can build
based on its access to several iPET gateways. When the at-
tacker learns the iPET-Advanced architecture, he will also
have access to intermediate generators shown here. (b) The
attacker builds a discriminator D based on the generators
available to him (c) The attacker attempts to fingerprint a
user who uses a iPET-Advanced based generator Guser

i .

in the Figure. However, if he learns the architecture and parameters

of iPET-Advanced, he can even recreate the intermediate stage gen-

erators. Figure 8(b) shows the attacker training his D =M
powerful

seq

based on the generators that he has access to. In Figure 8(c), the at-

tacker uses D to fingerprint the iPET-Advanced based generator at

the user. This attack scenario is evaluated in detail in Section 5.3.3.

To the best of our knowledge, no previous research works in the

IoT domain have evaluated their defenses against an attacker as

powerful as M
powerful

seq
.

5 PERFORMANCE EVALUATIONS
Implementation.We implement iPET and the fingerprinting mod-

els in Python, using Keras libraries from TensorFlow v2.5.0 [52].
iPET generates a perturbation vector (δ ) intended to be used for a

session, such that the session length is n ×|ω | = 4 seconds, where

|ω | = 0.1s and n = 40. The perturbation vector is added to the origi-

nal device traffic, to prevent device fingerprinting attack. Generated

perturbations are then added to the original device traffic using a

python program.

Real-World Dataset.We conduct our experiments on real world

IoT device traffic from the UNSW Smart Home Traffic Dataset [47].

The dataset consists of traffic traces collected from 30 devices over

20 days, amounting to 20 pcap files, each representing a day’s worth
of data. We set our vantage point to be the IoT gateway, with the

devices communicating via the gateway to servers on the Internet.

For our evaluations, we do not consider traffic that is internal to

the home network that our attacker cannot observe.

Arch 
Layer

1

Arch 
Layer

2

Conca-
tenate Dense Softmax

Predicted
Label 

Silence 

Network
Data Time

Series 

Figure 9: Generalised Architecture for Mseq, taking a time
series τ and the silence duration s as input, to predict the
corresponding device.

Evaluation Metrics. We use weighted F1-score of device finger-

printing accuracy to measure the effectiveness of the defense. Ad-

ditionally, bandwidth overhead of the defense is measured in KB/s.
The objective of the defense is to minimize fingerprinting accuracy

of attacker while ensuring overheads are minimal.

Evaluation Scenarios. We attempt to answer several research

questions (RQs) as part of performance evaluation. In Section 5.1,

we measure the effectiveness of iPET against several device finger-

printing models and compare it with defenses from the literature.

In Section 5.2, we show the resilience of iPET when the attacker

exploits time-series parameters to come up with a better finger-

printing model. Subsequently, in Section 5.3, we provide further

insights into the design of iPET by comparing the efficacy of iPET-

Basic and iPET-Advanced against attackers with varying degrees

of capabilities (introduced in Section 4.1). Finally, in Section 5.4, we

evaluate iPET in an open-world scenario.

5.1 Performance of iPET
5.1.1 RQ1: Is iPET Resilient to State-of-the-Art Fingerprint-
ing Techniques?
Attack Setup.We consider the fingerprinting modelMretrained

seq

(described in Section 2.2). The following deep learning architec-

tures are considered in our evaluations: Bi-LSTM [17, 42], CNN [21],

GRU [7], and MLP [40]. The generic architecture for M
seq

is de-

picted in Figure 9. We use the notation Mretrained

seq:Bi-LSTM
to denote that

the Mretrained

seq
model uses Bi-LSTM units to replace Layer 1 and

Layer 2 in Figure 9.

Defense Setup. iPET requires training a generator model that

can be used to generate perturbations. For this experiment, we

use four different iPET generators, namely, iPETBi-LSTM, iPETCNN,

iPETGRU,and iPETMLP, which use the discriminator, namely, Bi-

LSTM, CNN, GRU, and MLP, respectively. In a real-world setting,

the best performing generator architecture can be chosen by the

defense. Refer to Figure 4 for details of the generator architecture.

Result: We consider a realistic scenario where the attacker and de-

fense are allowed to choose a classifier whose details are not known

to the other. Table 1 shows the fingerprinting accuracy (weighted

F1-Score) of various attacker fingerprinting models against various

iPET defense models. Each value in the table (e.g.,Mretrained

seq:CNN
attack
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Attacker Models forM
seq

iPET-Defenses

(iPET ) Bi-LSTM CNN GRU MLP

Undefended 99.75 96.36 99.5 99.42

Bi-LSTM 6.76 7.07 4.54 1.34

CNN 14.55 8.65 8.59 2.82

GRU 4.93 3.55 4.08 1.08

MLP 25.47 7.98 21.81 2.97

Table 1: Weighted F1-score achieved by various attackers
against iPET trained with different DL architectures.

model against iPETBi-LSTM) is an average of 18 experiments. For

reference, the first row of the table shows the case when the traffic

is undefended, where, unsurprisingly, all attack models identify

the devices with near perfect F1-score. Observe that, even in the

worst case — iPETMLP defense againstMretrained

seq:Bi-LSTM
— the F1-score

is limited to ≈ 25%, showing the effectiveness of iPET. Overall,

iPETGRU and iPETBi-LSTM are the most effective defenses against

all considered attack models. Most importantly, we find that the

attacker’s choice of training architecture does not provide undue

advantage when iPET is used as a defense.

5.1.2 RQ2: How Does iPET Compare to Other Traffic Ob-
fuscation Techniques?
We now compare iPET with traffic obfuscation techniques from

the literature. Following are the details of the traffic obfuscation

techniques used for comparison.

Constant Rate [1, 3]. We implement a version of this defense

based on Stochastic Traffic Padding (STP [1]). In this technique,

when a device starts transmitting at time t , we begin injecting

cover traffic in the form of dummy packets to maintain the

constant bit-rate of R for a time period T . If there is no device

activity, at the beginning of every interval T , a decision function
decides if cover traffic must be added. The decision function is

defined as a simple Bernoulli trial that succeeds with probability

Q . The defense will always add cover traffic when Q = 1, and

cover traffic will only be added when the device is transmitting

if Q = 0.

Random Rate. Introducing randomness in the traffic traces can

intuitively defeat device fingerprinting models. We develop a

traffic obfuscation defense where a target bit-rate Rrand is cho-

sen randomly from a normal distribution N(µ,σ ). This bit-rate
is maintained by the addition of dummy packets or by padding

packets until it reaches Rrand . Further, Rrand is re-sampled

once every Trand seconds for more randomness. We reduce po-

tentially high bandwidth costs by introducing a probabilistic

decision function similar to the Constant Rate technique.

Random Rate+. To further increase stochasticity, we develop an

advanced version of the Random Rate technique where the mean

of the normal distribution itself is randomized for every device.

Specifically, a mean µr is drawn from a uniform random sample

U[Rmin ,Rmax ] and assigned to each device. A target bit-rate

Rrand is then drawn from the normal distributionN(µr ,σ ) and

Attacks (M
seq

)

Defenses Bi-LSTM CNN

Tor 81.6 87.1

Constant Rate (R=10,Q=0) 95.28 88.9

Constant Rate (R=10,Q=0.45) 54.26 33.76

Constant Rate (R=10,Q=1) 56.47 30.09

Random Rate (Rrand∼N(18.5,3.6),Q=0.5) 56.71 41.61

Random Rate+ (µr∼U[5,40],N(µr ,10),Q=0.5) 45.84 25.35

MTU Padding 92.4 83.8

iPET 14.72 17.74

Table 2: Weighted F1-score achieved by attackersMretrained
seq:CNN

and Mretrained
seq:Bi-LSTM on IoT devices protected by different de-

fenses. All bit-rate parameters are represented as KB/s.

applied every Trand seconds. A probabilistic decision function

reduces the bandwidth overhead.

MTU Padding [55]. Every network packet is padded to the net-

work’s Maximum Transmission Unit (MTU) size.

Tor. Although not known for its traffic obfuscation, Tor is a widely

used practical privacy system that implements a traffic obfusca-

tion algorithm. Tor uses fixed-sized cells (512 bytes) and back-

ground noise [38] when transmitting network packets. Our in-

tention is to see if this is sufficient in providing some level of

protection against device fingerprinting attacks. To implement

this, we used a Tor emulation framework—Shadow [19]—and

the official Tor release v0.4.4.8 [37].

iPET. We use iPETBi-LSTM described in Section 5.1.1 for this ex-

periment and for all experiments henceforth. To control the

bandwidth overhead, iPET can be configured with parameters

[max no. of dummy packets, max payload size of dummy pack-

ets] which limit the maximum bandwidth required in a given

time-slot ωi (Section 4.2.1).

Attack Setup.We useMretrained

seq:CNN
andMretrained

seq:Bi-LSTM
fingerprinting

models for the attacker in these experiments. As observed in Ta-

ble 1, these two attack models perform the best when iPETBi-LSTM

is deployed as defense.

Results Table 2 summarizes the results. Our results show that

iPET has a very low F1-score against both the attackers, effectively

thwarting the fingerprinting attack. Tor and the MTU Padding de-

fense perform poorly (F1-score > 80%), since the attacker uses a

sequence-based classification model for fingerprinting. With MTU-

padding, the number of incoming and outgoing packets remains

unperturbed, allowing the attacker to model the traffic rate effec-

tively. For the constant rate technique, we evaluate three different

configurations. The time period parameter T is set to 1 second

in each configuration but we vary the rate R and probability Q .
For R = 10KB/s and Q = 0, the defense performs poorly, as spo-

radic device activity may be discernible when the attacker uses a

sequence-based model. Even at higher values of Q , the defense is
able to reduce the accuracy of the attack to just over 50% (and ≈30%)

against the Mretrained

seq:Bi-LSTM
(and Mretrained

seq:Bi-CNN
) fingerprinting models.
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Figure 10: Effect of higher bandwidth on F1-score for attack-
ers Mretrained

seq:CNN andMretrained
seq:Bi-LSTM.

The Random Rate defense configured with Rrand∼N(18.5, 3.6) re-

duces the accuracy to ≈50% and ≈41% against theMretrained

seq:Bi-LSTM
and

Mretrained

seq:CNN
attackers respectively.

On the other hand, the Random Rate+ defense configured with

µr∼U[5,40],N(µr , 10),Q = 0.5 performs much better against the

Mretrained

seq:CNN
attacker by limiting the F1-score to just ≈25%. How-

ever, when compared to the Mretrained

seq:Bi-LSTM
attacker, the accuracy is

relatively higher at≈45%. Yet, it may be possible to improve the Ran-

dom Rate+ defense by experimenting with different combinations

of distributions and their parameters. However, this would require

large number of experiments, as the state space that needs to be

explored to find the optimal configuration is vast (per-device distri-

butions, their parameters, etc. have to be estimated). Further, the

choice of parameters must also account for costs in terms of band-

width and latency. This can be viewed as an optimization problem.

On the contrary, iPET utilizes the strong function approximation

characteristics of neural networks to automate this process.

Traffic obfuscation techniques are known to perform better when

there are no limits on the bandwidth they consume. Figure 10

plots the performances of the best performing traffic obfuscation

techniques that allow us to control the bandwidth overhead. We

can see that the performance of both constant rate and random

rate techniques improve at a higher bandwidth overhead (e.g., 20

KB/s). iPET, however, performs better even at a significantly lower

bandwidth overhead of 0.5 KB/s.

5.1.3 RQ3: What is the Effect of Fingerprinting Attack on
Different IoT Devices in the Presence of iPET Defense?
We now analyze how iPET defends different IoT devices. Figure 11

presents a fine-grained analysis of the defenses using a CDF of the

F1-score measured per device. We can see that, for iPET, about 50%

of the devices have an F1-score less than 20 and no device has a

F1-score greater than 45.

0 20 40 60 80 100
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Figure 11: CDF of F1-score of IoT devices for attackers
Mretrained

seq:CNN .

Furthermore, we group the IoT devices in our dataset into five

categories based on their use case, and compare iPET and the Con-

stant Rate defense. We choose this defense since it allows us to

control the bandwidth overhead to be roughly the same, so that a

fair comparison with iPET can be made. Figure 12a compares the

F1-score of the IoT devices within popular categories based on their

use-case. We observe that iPET outperforms in all the categories.

The fingerprinting attack does not achieve more than ≈ 20% against

iPET. Figure 12b provides further insights on the worst performing

categories, namely, AI-Assistants and Smart Cameras.

5.2 Exploiting Time-Series Parameters
In this section, we evaluate the case where the attacker uses a fin-

gerprinting model that uses a time-series parameter that is different

from that of the discriminator iPET uses to train against, with an

intention of coming up with a better fingerprinting model. All re-

sults reported in this section are average over 18 test runs.

Defense and Attack Setup. We use the iPETBi-LSTM as the de-

fense model, andMretrained

seq:CNN
as the attack model for the evaluations

presented in this section.

5.2.1 RQ4: Is iPET Effective Against an Attacker Who Uses
a Different Input Time-Series Parameters in Their ML Clas-
sifiers?
Perturbation Slot Length |ω |. Perturbation slot length, which is

used for calculating the features within the time series input τ is

an important feature for a fingerprinting model. In this experiment,

we vary the value of |ω | but use a fixed observation time of 4 sec-

onds to see if the attacker’s fingerprinting model can discern useful

patterns. The defense model considered remains unchanged, gener-

ating perturbations for |ω | = 0.1s. Table 3 shows that the attacker

does not achieve any substantial improvement in the F1-score by

changing |ω |.

Observation Time n×|ω |. This is an important parameter of time-

series classification models used by both the attacker as well as the
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Figure 12: Performance of iPET on different IoT devices.

iPET generative model. In Figure 13, the X-axis plots the various

observation time used by the attacker’s fingerprinting model. Each

line plotted in the graph represents an iPET instance that uses a

different observation time for modeling perturbations. The Y-axis

plots the F1-score achieved by the attacker against the respective

model used by iPET. When iPET uses an observation time of 4 sec-

onds, the attacker achieves a maximum F1-score of ≈ 80% with an

observation time of 0.5 seconds and the F1-score reduces with in-

crease in attacker’s observation time. However, we can observe that

the attacker’s fingerprinting model is worse when iPET also uses

smaller observation times (e.g., 0.5s). Therefore, we recommend

that the observation time chosen by an iPET instance be as small

as possible.

|ω | (s) 0.05 0.1 0.2 0.5 1

Mretrained
seq:Bi-LSTM 27.44 26.27 29.28 24.18 28.96

Mretrained
seq:CNN 16.18 14.72 18.58 23.05 23.14

Table 3: Weighted F1-score achieved by attacker on Varying
|ω | in captured Time Series. The defence is fixed, adding per-
turbations for each |ω | = 0.1s.

5.3 Evaluating iPET-Basic and iPET-Advanced
Synthetic Dataset. In addition to the real-word dataset, in this

section, we consider a synthetic dataset for our evaluations. Our
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Figure 13: Varying the total observation time for the Time
Series asmodeled by the attacker andDefense. The sampling
rate ω remains constant.

synthetic dataset consists of data points from 50 classes (devices),

each with 50, 000 samples. The points are sampled from Gaussian

Mixture Model (GMM), one for each class. GMMs are commonly

used for modelling real-world network traffic (e.g., for traffic clas-

sification [12, 61]). The GMM itself is composed of five Gaussian

distributions. We also added sufficient noise to the data and ensure

minor overlaps between classes to emulate real-world behavior. For

reference, aMnaive

seq:CNN
(Section 4.1) classifier achieves an F1-score

of 98% in fingerprinting the synthetic classes when undefended.

Defense andAttack Setup.We compare the effectiveness of iPET-

Basic and iPET-Advanced against the attack scenarios that we de-

scribed in Section 4.1. As before, we use the iPETBi-LSTM as the

defense model for the evaluations presented in this section. The

attackers considered have the following characteristics:

i)Mnaive: AnM
seq:CNN

classifier trained on IoT device traffic and

does not have knowledge of iPET generators.

ii) Mretrained: An M
seq:CNN

classifier trained on one iPET gener-

ator instance.

iii) Mpowerful: An M
seq:CNN

classifier trained on multiple iPET
instances

Evaluation Setup (Real World). The iPET generator models pro-

vided to real users as well as attackers (pretending to be users)

are generated from iPET trained until Stage i , where 0 ≤ i ≤ 4.

This means that the generator instance available to them could be

from any of the stages 0 to 4. While the Mretrained
attacker has

access to one iPET generator instance, theMpowerful
is assumed to

have access to 20 iPET generators. For statistical significance, we re-

peat the experiments several times with different user-attacker pair.

Evaluation Setup (Synthetic). The iPET generator models pro-

vided to real users as well as attackers (pretending to be users) are

generated from iPET trained until Stage i , where 0 ≤ i ≤ 10. In this

case,Mpowerful
is assumed to have access to 44 iPET generators. We

repeat these experiments several times for statistical significance.
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5.3.1 RQ5: HowDo iPET-Basic and iPET-Advanced Perform
Against Different Attack Scenarios? Figure 14a plots the effec-

tiveness of Mnaive
and Mretrained

against iPET-Basic and iPET-

Advanced. The Naïve attackerMnaive
is unsuccessful in fingerprint-

ing the devices protected by both iPET-Basic and iPET-Advanced.

Whereas, the Retraining attacker Mretrained
achieves a high F1-

score of 89% against iPET-Basic. In comparison, iPET-Advanced is

highly effective in countering fingerprinting attack byMretrained
.

We conclude that chaining the discriminator-generator pair in iPET-

Advanced helps improve stochasticity of its generator, making it

effective against a retraining attacker.

5.3.2 RQ6: How Does the Stage of the Generator Affect the
Performance of iPET-Advanced? We analyze how the training

stage affects the resilience of iPET-Advanced. Figure 14b and Fig-

ure 14c present the results for the real-world and synthetic data,

respectively. The X-axis denotes the iPET generator Gi used to

defend the user’s traffic. Here i is the training stage of the iPET

generator. Each line in the graphs represents a particular attack

scenario. For example, the Mretrained
attacker D j represents an

attacker who has access to their own iPET generator from Stage j.
We observe that the attacker’s discriminators do not achieve

a weighted F1-score of more than ≈ 20% against iPET-Advanced

generators, i.e., when the generator is at Stage i ≥ 1.

5.3.3 RQ7: Is iPET-Advanced Resilient to the Powerful At-
tacker (Section 4.1)? Figure 14b shows that, on the real-world

dataset, although Mpowerful
performs better than the Retraining

attacker Dj = Mretrained
, the maximum F1-score against iPET-

Advanced is ≈50%. On the synthetic dataset, we get even bet-

ter results, with the F1-score of Mpowerful
converging to ≈20%,

demonstrating the effectiveness of the perturbations generated by

iPET-Advanced.

5.4 iPET in the Open World
Our evaluations so far have considered a closed-world scenario,

where the attacker trains and tests their classifier on traffic samples

from a monitored set of devices. In a realistic open-world scenario,

the attacker not only trains on a small set of all devices, but must

also distinguish if a sample belongs to the monitored device set or

not. We evaluate the accuracy of the device fingerprinting attack in

such an open-world setting.We consider iPETBi-LSTM as the defense

model, and Mretrained

seq:Bi-LSTM
as the attack model for the evaluations

presented in this section.

Datasets.Weutilise the real-world dataset and the synthetic dataset

introduced in Section 5.3.

5.4.1 RQ8: Is the Device Fingerprinting Attack Effective in
an Open-World Scenario?
Attack Setup. From the synthetic dataset containing 50 devices,

we categorize devices 1–30 as monitored devices, and 31–50 as

unmonitored ones. The unmonitored devices are labeled as a single

unmonitored class in the training set. Devices 41–50 are not in-

cluded in the training set. Therefore, we train Mretrained

seq
with only

31 classes, with the objective to classify the 30 monitored devices

correctly, and the remaining devices as unmonitored.

Results. In the open-world scenario with no defense employed

(i.e., the undefended gateway), the Mretrained

seq
classifier classifies

the traffic samples with an F1-score of 87.39%. Although we note a

drop in the fingerprinting accuracy from the closed-world, where

we observe an F1-score of 98%, the accuracy is still high enough to

motivate the need for a defense solution.

Defending the traffic against a fingerprinting attack with iPET,

the fingerprinting accuracy drops to less than a random guess with

an F1-score of 1.65%. Here, we have an iPET instance for each

monitored device and one to generate perturbations for all the

unmonitored devices.

5.4.2 RQ9: Can an Attacker Identify the Device Category in
an Open-World Scenario? Attack Setup. As discussed in 5.1.3,

we categorise the 30 devices in the real-world dataset into 5 cat-

egories based on their functionality, and the rest (e.g., Laptops,

Mobile phones, tablets) into a new category called background

devices. To emulate an open world scenario, we drop a few de-

vices from each category, leaving 22 devices in the training set. An

Mretrained

seq
model is then trained to classify the network flow into

one of the six categories.

Results. When no defense is used, the model effectively identifies

the device category with an F1-score of 95.13% in the open-world

scenario, compared to 99.53% in the closed world scenario. For

iPET, we train one iPET instance for each device category instead of

having one for each device. Therefore, the same instance will obfus-

cate the traffic for all the devices in a given category. The F1-score

achieved by anMretrained

seq
adversary to identify the device category

once the defense is deployed drops to an insignificant 19.93%.

6 DISCUSSIONS
Deployment Options. Deployment of iPET involves placing the

iPET Logic (i.e., the iPET Perturber and iPET Extractor modules)

at the ingress and egress of the network path that the user trusts.

Implementing iPET Perturber and iPET Extractor at an IoT user’s

home gateway and the server, respectively, is an option; as shown in

Figure 2. However, there is a dependency on servers to modify code

to support iPET. Furthermore, several IoT devices can be easily

mapped to their servers (i.e., destination IP addresses), thereby

revealing the identity of the devices.

In Figure 15, we illustrate a few other deployment options that

are suitable for real-world use cases. In the first scenario, an IoT

user may leverage a trusted third party service such as a VPN

server to implement iPET. The home gateway establishes a TLS

connection with the remote VPN server, and iPET logic would be

implemented at the home gateway (i.e., R0) and the VPN server

as shown in Figure 15a. Second, we illustrate a scenario where

anonymous onion-routing networks such as Tor [37] may be used.

iPET can indeed be implemented as a Tor pluggable-transport [48]

where the perturbed traffic is routed through a Tor circuit consist-
ing of multiple peers as shown in Figure 15b. While a user may not

have to trust one single entity, it comes at the cost of additional

bandwidth overheads due to onion-routing encapsulation. Finally,

an IoT user can consider a P2P (peer-to-peer) network of IoT gate-

way devices that support Trusted Execution Environments (TEEs),

e.g., Intel SGX [26]. Like Tor circuits, an IoT gateway first creates a

circuit of multiple peers, each of which implements iPET Logic as
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Figure 14: (a) iPET-Basic and iPET-Advanced against Mnaive and Mretrained. (b) Fingerprinting accuracy of attack discrimi-
nators Dj and Mpowerful (Powerful attacker), against different user generators Gi on Real-world dataset, and (c) Synthetic
dataset.
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Figure 15: iPET Deployment Scenarios.

shown in Figure 15c. Privacy sensitive operations such as encryp-

tion/decryption, traffic perturbations and routing can be performed

inside the TEE. This option simplifies the design as it eliminates the

need for complex protocols such as onion-encryption but instead

relies on hardware-backed privacy guarantees provided by the TEE.

iPET on IoT Devices. The unique constraints of IoT devices (low

power, compute, and storage capacity) have posed challenges in

running ML models directly on the IoT hardware. However, recent

developments in the TinyML space [9, 18, 41, 60] demonstrate the

potential to perform ML inference on IoT devices. By design, iPET

pre-trains compact device-specific traffic generators, which can

further help with direct deployment on the devices. iPET using

TinyML is an interesting future direction to explore.

iPETAgainstWebsite Fingerprinting.While iPET defends against

device fingerprinting attacks, a relevant question is if iPET can be

applied to other domains, for example, to defend against website

fingerprinting attacks. The diverse functionalities of IoT devices

lead to distinct device traffic characteristics, making device finger-

printing different from problems like website fingerprinting. For

instance, a smart plug and a smart camera will generate distinct

traffic rates compared to, say, web browsing, where most website

visits may not differ substantially (in rate). Therefore, both finger-

printing attacks and defenses may work differently for IoT devices

and websites. The applicability of iPET to other problems is worth

studying separately in future.

7 RELATEDWORKS
User traffic identification attacks are well-known, and several re-

search works have proposed fingerprinting attacks that identify

websites [4, 6, 16, 31, 34, 46, 50, 58], webpages [45, 57], videos [24,

29, 43, 62], browsers [23, 56], and even newer protocols [8] from

encrypted communications. In the widely studied website finger-

printing attack, an attacker identifies the websites visited by a user

over a network, with recent research works exploiting algorithms

from machine learning and deep learning.

Several defenses [6, 20, 31, 35, 39, 46, 58, 59, 62] have been pro-

posed to counter user traffic identification attacks, and website

fingerprinting in particular, and all of them use some form of traffic
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perturbation. Early countermeasures [6, 20, 35, 58, 59] for website

fingerprinting used anonymous communication (e.g., Tor, VPN) in

conjunction with a traffic perturbation algorithm. However, protect-

ing against attackers [4, 31, 46] that use Machine Learning (ML) and

Deep Learning (DL) has been a challenge. Recent countermeasures

for website fingerprinting [32, 39] use DL-based traffic perturba-

tions to deceive the ML/DL classifiers used by the attacker. These

countermeasures add perturbations such that the perturbed traf-

fic flows get incorrectly classified by the attacker’s ML model. A

key challenge is that an attacker can further retrain to learn the

added perturbations. In this context, Mockingbird [39], a website

fingerprinting defense, proposed the use of a semi-targeted objec-

tive function (i.e., chooses a set of target labels for misclassifying

a datapoint) to increase the stochasticity of the perturbations, to

counter retraining attackers.

In the context of fingerprinting IoT devices, many research

works [3, 10, 13, 25, 27, 44, 47, 53, 55] have shown that it is possi-

ble to identify the devices with high accuracy, highlighting their

vulnerability to passive network attacks. These attacks use ML

classifiers trained on network traffic to identify the IoT devices,

but assume that the IoT user has no defense in place. Trimananda

et. al. [55] propose MTU padding as a potential defense against a

similar attacker, however our evaluations in Section 5.1 show that

a retraining adversaryMretrained

seq
can easily defeat such a defense

with high accuracy (92.4%). Our work is also related to the liter-

ature on device activity fingerprinting. These works [1, 3] have

shown that IoT device activity (e.g., the on/off state of the devices)

can be fingerprinted and propose traffic obfuscation techniques to

prevent device activity fingerprinting. Although these works do

not directly pertain to our work, the traffic obfuscation algorithms

proposed could be applicable in preventing device fingerprinting

attacks. Unlike iPET, which attempts to learn device patterns and

generate device specific perturbations, their traffic obfuscation al-

gorithm is oblivious to the device characteristics and generates

constant rate perturbations. Moreover, the aforementioned solu-

tions do not assume a strong attacker who retrains the perturbed

traffic as a counter strategy. We push the boundary of defense in the

IoT domain by proposing the first deep learning-based perturbation

generator that is resilient to powerful attackers.

8 CONCLUSIONS
We developed and presented iPET, a new defense solution against

IoT device fingerprinting attacks that is resilient to different attack

capabilities. iPET uses a novel adversarial ML-based perturbation

technique to effectively reduce the accuracy of fingerprinting at-

tacks; our experiments demonstrate a reduction of fingerprinting

accuracy from a very high 96.36% to an ineffective ≈ 17%, at a very

low bandwidth overhead. Further, different from previous works,

we considered a powerful attacker with knowledge of the iPET

model’s architecture and parameters; and our experiments show

that such an attacker achieves only 50% accuracy against iPET. We

also show that iPET generalizes well against different fingerprinting

models (in existing studies) that an attacker may use.
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A AGGREGATE FEATURES MODEL
We list the features that Maдд adversary extracts in Table 4. We

use “statistics” to cumulatively denote the minimum, maximum

and mean values of the feature and “#” to denote the number of

occurrences of that feature. As explained in Section 2.2, the features

are grouped by different protocols (e.g., TCP, UDP, NTP, etc.) and

are aggregated over a session of some configured length.

An attacker in the undefended scenario has access to all the

features listed in Table 4. However, in some deployment scenarios

(Section 6), the packet protocol may not be known. For instance,

a VPN might overlay all UDP and TCP packets over a single TCP

connection. In that case, several protocol-specific features are un-

available, and instead, the attacker simply computes the total count

of packets, packet length statistics, and the flow duration. The flow

duration is the difference between the time at which the last and

the first packet were observed in a session. In order to maximise

the information drawn from these features, we group them based

on the direction of the packets.
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Protocol Feature Extracted

DNS

# DNS queries

# DNS errors in reply code

# DNS ’IN’ class queries

Average DNS response time

# Packets

Packet Length statistics

HTTP

# TCP keep Alive

# Unique HTTP status codes

# Unique HTTP request methods

# Unique HTTP request URI

# Packets

Packet Length statistics

All other protocols

# Packets

Packet Length statistics

Table 4: List of all features utilized. Other protocols include:
TCP, UDP, ICMP, TLS, SSDP, NTP, STUN, GQUIC.

B Magg VERSUSMseq
Anonymous communication tools such as Tor direct traffic through

a peer-to-peer overlay network to obscure many of the packet

headers that the Magg classifier uses. Table 5 shows the weighted

F1-score achieved by Magg and Mseq against Tor and undefended

traffic belonging to 30 IoT devices (Section 5 describes the dataset).

Note the drop in accuracy ofMagg compared toMseq.

Magg Mseq:CNN

Undefended 100 96.36

Tor 65.3 87.1

iPET 15.8 17.74

Table 5: Weighted F1-score achieved by attacker on IoT de-
vices with at least 0.5% support.
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