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ABSTRACT
Linking personal records from different databases is an essential

step in many data workflows. Privacy-Preserving Record-Linkage

(PPRL) techniques have been developed to link persons despite

errors in the identifiers without violating their privacy. Designing

efficient PPRL schemes with high linkage quality and a strong level

of privacy protection is challenging. PPRL based on Bloom filter

encoding (BF) is currently one of the most popular methods as they

offer high efficiency and linkage quality. However, it turned out

that these schemes are vulnerable to several attacks, with pattern

mining and graph matching attacks considered to be the most seri-

ous by far. While several proposals have been made to strengthen

BF-based PPRL schemes against these attacks, all these lack a proper

security analysis or do not preserve the high efficiency and linkage

quality. This paper shows that both problems can be addressed by

extending the scheme with an appropriate linear diffusion layer. As

opposed to previous schemes, we provide extensive theoretical and

experimental analysis that confirms that the resulting scheme pro-

vides high efficiency and linkage quality and significantly increases

security against the attacks mentioned above.
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1 Introduction
Vast amounts of data have been collected due to the digital

transformation of commercial and administrative processes. This

data is used for many purposes, including research. Notably, new

research interests have been created by the ability to link multiple

databases. The process linking entities from different databases

while still preserving privacy is called privacy-preserving record

linkage (PPRL) [8]. The three main challenges of a PPRL technique

are (1) scalability or efficiency, (2) linkage quality and (3) level of

privacy protection.

To provide privacy, PPRL schemes usually encode the records and

execute the linkage process on the encoded records only. Among

different encoding techniques used in PPRL, the use of Bloom filter

encoding (BF) has been proposed in [19]. Due to their high efficiency

and linkage quality level, BF-based PPRL has now been widely used

in real applications [2, 5]. However, research [14, 17, 25, 26] has also

shown that such schemes can be vulnerable to a variety of attacks.
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In particular, pattern mining attack [26] and graph matching attack

[25] are considered the most practical and advanced threats.

Consequently, various Bloom filter hardening techniques have

been proposed to enhance the scheme’s security, including salting,

balancing, adding random noise, and rule 90 [8, 22]. However, all

these techniques reduce the linkage quality or the efficiency [8, 10].

Moreover, as is remarked by [8], no proper security analysis has

been provided for any of these hardening techniques. Thus, it was

an open question of whether an extension of BF-based PPRL does

exist that is (i) able to preserve their advantages and (ii) increases

security against the two attacks mentioned above.

In this work, we positively answer this question. The core idea

is to adopt an established concept from cipher design and append

a linear diffusion layer at the end of the BF-based PPRL scheme.

Consequently, we refer to this concept as an BFD scheme (Bloom

filter with diffusion). In a nutshell, the idea is that each output bit

of the encoding process is a linear combination of secretly chosen

BF bits.

Even though this idea seems to be obvious, it hasn’t been fully

explored so far. For instance, a similar approach was considered in

[22]. The authors proposed to apply the so-called ’Rule 90’ [28], so

that each bit position in Bloom filter is modified by bitwise XORing

the predecessor and successor bit.

In [18], randomly sampling bits from Bloom filters and XOR-

ing them was suggested. However, for none of these propositions

(or any other hardening technique proposed so far), any security

analysis has been given.

In contrast, one of the major contributions of this work is the

extensive theoretical and experimental analysis of the proposed

scheme. Our theoretical analysis shows superior security compared

to the basic BF-based PPRL approach while preserving good linkage

quality. As a kind of side result, it also shows that the diffusion

induced by ’Rule 90’ as suggested in [22] is insufficient. Some of

the analysis techniques may have value on their own and could be

applied to other schemes well.

Besides theoretical analysis, extensive experiments confirm the

excellent properties of the BFD. Thanks to the simplicity of the

extension, high efficiency is also still given. To the best of our knowl-

edge, this is the first (BF-based) effective PPRL scheme providing

good linkage quality where a thorough security analysis has been

conducted. Moreover, we discuss how concrete parameter settings

can be derived.

The rest of the paper is organized as follows. In Section 2, we

describe the concept of privacy-preserving record linkage (PPRL),

emphasizing the variant based on Bloom filter encoding. In Sec-

tion 3, we explain the commonly considered attacker model and

the two most relevant attacks, namely pattern mining and graph

matching attacks. Section 4 gives the rationale of the design and a
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formal description of our BFD scheme. The security analysis of the

scheme is given in Section 5. In Section 6, we evaluate the scheme

for practical applications by investigating efficiency and linkage

quality. Parameter choices are discussed in Section 7. Section 8

summarizes the contribution and gives an outlook on potential

future work.

2 Privacy-Preserving Record Linkage
2.1 General Description

Privacy-preserving record linkage (PPRL) refers to identifying

records in different databases that refer to the same person without

revealing the identity of any individual in one of these databases.

Without loss of generality, we restrict our description to the

case of two databases. We consider two database holders, who

own databases D and D ′
, respectively. One assumes that each

record in any database can be written as r = (ID, λ, µ) where ID
is some randomly generated, unique identifier, λ is so-called link-

age data that will be used for linking records, e.g., name, and µ
is the microdata that is relevant for the analysis. Essentially, the

task of record linkage is to identify records r = (ID, λ, µ) ∈ D and

r ′ = (ID′, λ′, µ ′) ∈ D ′
that according to λ and λ′ refer to the same

person and hence shall be linked.

In PPRL, this process is executed by a third party called ’linkage

unit’ L. To prevent any re-identification of individuals from λ, each
database holder applies an encoding algorithm to transform the

plain linkage data λ into encoded linkage data, written as [λ]. The
linkage unit L receives encoded linkage data [λ] along with their

identifiers ID from holders and conducts the linkage using a linkage

algorithm. That is, for any pair of tuples (ID, [λ]) and (ID′, [λ′]),
the linkage unit L computes a similarity function sim on the en-

coded linkage data. If sim ([λ], [λ′]) is above a predefined threshold,
the records are classified as a potential match and (ID, ID′

) will

be recorded and be sent to another party for actually joining the

databases D and D ′
.

2.2 PPRL based on Bloom Filters
As the linkage process in a PPRL scheme is applied on the coded

linkage data, the choice of the encoding procedure has a significant

impact on the quality of the whole scheme. One encoding procedure

that became very popular in this context are Bloom filters. Bloom

Filters (BF) [3] were developed to allow to test the membership of

set elements without the need to access the set directly. A BF is

parameterized by a bit string of length ℓBF (also called the length of

the BF), a universe U of elements, and k hash functions h1, . . . ,hk
where hi : U → {1, . . . , ℓBF} for each i .

Given a set S ⊆ U, first a bit string B of length ℓBF is initialized

where each entry is set to zero, i.e., B[i] = 0 for i = 1, . . . , ℓBF. Then,

for each s ∈ S , (up to) k indexes h1(s), . . . ,hk (s) ∈ {1, . . . , ℓBF} are

computed and the bits in B at these positions are set to one. That

is, B[hi (s)] := 1 for each s ∈ S and each hash function hi .
In the case of BF-based PPRL schemes, Bloom filters are used to

encode the linkage data λ as follows. Attributes values contained

in λ are represented over some common alphabet Σ. A q-gram (for

some integer д ≥ 1) is a string of length q over characters from Σ.
To encode λ into a Bloom filter, it is interpreted as a sequence over

Σ, and then, using a sliding window approach, the set of q-grams

contained in λ is extracted. For instance, when using q = 2 (also

known as bigrams), the string "filter" is converted into the set of

bigrams S = { f i, il, lt, te, er }. Then, S is encoded into a ℓBF-bit

string as described above, using k hash functions hi : U = Σq →

{1, . . . , ℓBF}. An example is given in Fig. 1.

Figure 1: Example of generation of Bloom filters. ℓBF =

20,k = 2

Intuitively, two linkage data λ and λ′ are similar if the corre-

sponding sets of q-gram strongly overlap. However, for privacy

reasons, the linkage unit L does not have access to these sets di-

rectly but only sees the encoded linkage data B = [λ] and B′ = [λ′].
In BF-based PPRL schemes the similarity of these binary strings is

captured by the Dice coefficient Dice. Formally, the Dice coefficient

of two binary strings is defined as

dice(B,B′) =
2 |supp(B) ∩ supp(B′)|

|supp(B)| + |supp(B′)|
, (1)

where supp(B) := {i |B[i] , 0} refers to the set of indices of the

bits that are equal to 1. If the Dice coefficient is sufficiently large, i.e.

greater or equal to a pre-defined threshold τ , two records (ID, λ, µ)
and (ID′, λ′, µ ′) should be linked.

3 Security
3.1 Model

The workflow of PPRL is that each database holder encodes its

database and sends the result to the linkage unit L. No database

holder sees the data of any other database holder. However, data-

base holders may agree on shared secrets, e.g., the deployed hash

functions in the case of BF-based PPRL, before the encoding step.

The linkage unit L has access to all encoded databases and possibly

knows certain meta-data about the data sets, e.g., that they belong

to a specific hospital, the individuals are residents of a particular

area, etc. The goal of L as an attacker is to correctly re-identify

individuals represented in the databases from the encoded linkage

data better than pure guessing [8].

The overall goal of this work is to propose an extension for BF-

based PPRL schemes and to show that this modification makes it

more secure while preserving its practicability. Ideally, one would

rely here on a concise security definition and provide a proof of

security based on this definition. Unfortunately, we would face two

problems then.

First, the only formal security definition we are aware of is the

one provided in [12]. However, it models an interactive scenario

while we consider a one-shot-scenario where each database holder

obfuscates his database once and sends the result to the linkage unit.

The reason for this choice is that this is the predominant use case

in practice. For this scenario, there is no formal security definition
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(yet). For the same reason, we also rule out interactive PPRL based

on multiparty computation, e.g., see [24].

Second, proofs of security reduce the security of one crypto-

graphic scheme to the (alleged) difficulty of another problem. Expe-

rience shows that provably secure schemes either rely on problems

that are not thoroughly analyzed or the resulting schemes are less

efficient than other, non-provably secure schemes. Actually, no

symmetric cryptographic scheme in practical use, e.g., the encryp-

tion standard AES or the hash functions SHA2/SHA3, is provably

secure.

Instead, the conventional approach in the symmetric cryptogra-

phy community is to analyze the resistance of schemes against the

best-known attacks. In this work, we follow this approach. This is

also motivated by the fact that BF-PPRL exhibits the characteristics

of a symmetric-key cryptographic scheme. On the one hand, secrets

are shared between the database holders. On the other hand, the

efficiency of PPRL is of high importance.

While several attacks have been found against BF-based PPRL

(for an overview, see [13, 27]), the pattern mining [26] and graph

matching attacks [25] are considered to be the most powerful at-

tacks against Bloom filter based PPRL techniques among all other

attacks. Consequently, we aim to adapt BF-based PPRL to make

these attacks less effective without sacrificing the efficiency and

linkage quality.

In the following, we describe pattern mining attacks 3.2 and

graph matching attacks 3.3. In particular, we identify for each attack

a necessary property of BF-based PPRL. These properties will also

serve as the basis of the security analysis 3.

3.2 Pattern Mining Attacks
A pattern mining attack [26] is one of the most practical and

advanced attack methods as it is quite effective while assuming a

weak attacker model. In this attack, the attacker has access to an

encoded database and has some knowledge about the distribution

of q-grams in plaintext records, e.g., statistics from a population. In

particular, the attacker knows the frequency of the most common

q-grams.

To explain the attack, we introduce some notation that we will

re-use later in Section 5.2 for the security analysis. Let γ denote an

arbitrary q-gram, and let

I(γ ) := {h1(γ ), . . . ,hk (γ )} ⊆ {1, . . . , ℓBF}, (2)

where hi denotes the involved hash functions. By definition of

Bloom filters, it holds that if of a record contains γ , then we have

for the corresponding Bloom filter B that B[i] = 1 for all i ∈ I(γ ).
For a given set I ⊆ {1, . . . , ℓBF}, we denote by EI the event that

B[i] = 1 for all i ∈ I. Thus, we can rephrase the statement above

as follows:

γ occurs ⇒ Pr(EI(γ )) = 1. (3)

Note that I(γ ) usually is unknown to an attacker, due to the use

of secret hash functions. However, the attack exploits the fact that

frequent q-grams incur frequent ’1’-patterns in the Bloom filters.

Given this, let γ ∗ denote the most frequent q-gram according to

the known distribution ofq-grams in plaintext records. The attacker

searches the Bloom filters for the most frequent patterns, i.e., a set

of indices I∗
that are jointly equal to 1 with high frequency. The

assumption is that the most frequent pattern results from the most

frequent q-gram, i.e., I(γ ) ⊆ I∗
. In particular, if EI∗ holds for a

given Bloom filter, one assumes that the underlying record includes

γ . That is, one q-gram is identified from the underlying records.

Analogously, the second-most-frequent pattern is identified and so

on. Thus, step by step, certain q-grams are identified in the encoded

linkage data and eventually may result in the re-identification of

individuals.

In [27], the authors made a taxonomy of all existing attacks and

their results. Using the publicly available database called ’NCVR’

(North Carolina Voter Registration), in [27] it’s stated that at most

27,665 out of 222, 251 records are correctly re-identified by pattern

mining attacks.

3.3 Graph Matching Attacks
A graph matching attack [25] is considered to be the most pow-

erful attack against PPRL schemes, but assumes a stronger attacker

model. The attacker has access to a plaintext database D and an

encoded database [D ′], being the encoding of some database D ′
.

Such a scenario might be given if for example an attacker has some

knowledge about a super-set of the records contained in D ′
, e.g.,

D ′
being a database of patient records from a hospital while D is

publicly available phone book.

For a graphmatching attack, the databasesD andD ′
need to have

a significant overlap (in the sense of linkability). This is expressed

by the overlap rate

2 · |Matches(D,D ′)|

|D | + |D ′ |
where Matches(D,D ′) is

the set of all pairs in D ×D ′
that should/can be linked. The overlap

rate ranges from 0% to 100%, the latter being the case if D equals

[D]. In [25], it was demonstrated that graph matching attacks are

very powerful if the overlap rate is high, i.e., very close to 100%.

Given this, the attacker aims to identify elements in D ′
that can be

linked to records in D. As D is given in plaintext, this results in a

re-identification of the individual encoded in [D ′].

A second requirement for graph matching attack is that the

encoding scheme preserves the level of similarity. In the case of

BF-based PPRL, consider any pair of plaintext records with linkage

data λ and λ′ and let B and B′
be the corresponding Bloom filter

encodings. Let sim be the function that expresses the similarity

between plaintext records while the Dice coefficient expresses the

similarity between the Bloom filters (cf. Eq. 1). Then, a graph match-

ing attack exploits that these notions of similarity are correlated.

We express this by

sim(λ, λ′) ∼ Dice([λ], [λ′]) = Dice(B,B′) (4)

For example, in the case of BF-based PPRL, it holds that Dice(B,B′)

grows linearly with sim(λ, λ′) (cf. Fig. 2).
Thus, if a set of records inD is also contained

1
in [D] (in encoded

form), the relation between them in terms of similarity should

have a similar structure in both databases. The attacker constructs

”similarity graphs” for each database as follows. The nodes of the

graphs are the (encoded) entries, and the edges between nodes are

weighted with the level of similarity of their endpoints (the Dice

coefficient in the case of BF-based PPRL). The idea is now to look

for sub-graphs in both graphs structurally similar, i.e., match. The

1
In the sense of being linked to.
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Figure 2: Relation between the similarity of plaintext
records and the similarity of the corresponding Bloom fil-
ters (using the Dice coefficient in both cases).

assumption is that this indicates that the nodes of the sub-graph

constructed from [D ′] match the nodes in the sub-graph derived

from D. As the latter is given in plaintext, these records from [D ′]

have been re-identified.

Using the same database called ’NCVR’ as in [26], the authors

successfully re-identified 55.1% of the records using graph matching

attacks according to [27]. In [15], the authors pointed out that a

successful attack should result in more correct re-identifications

than random guessing. An equation given by [15] suggests one

re-identification as the expected value for our setting. Thus, any

privacy attack that correctly identifies significantly more than one

record should be considered a success, at least to some extent.

4 The BFD Scheme
4.1 Design Rationale

As motivated in Section 1, the challenge we address in this paper

is to extend the BF-based PPRL scheme explained in Section 2.2

such that (i) the extension does not change the original scheme too

much to preserve its benefits but (ii) one can show the security is

given against pattern mining attacks (Sec. 3.2) and graph matching

attacks (Sec. 3.3).

As a patternmining attack is similar to a frequency attack against

the substitution cipher, it is reasonable to consider as a counter-

measure the same protection mechanism that also helps to thwart

frequency attacks – diffusion. In cryptography, the purpose of diffu-

sion [23] is to hide the statistical relationship between the ciphertext

and the plaintext. Commonly, this is achieved by requiring that

small changes in the input have a potentially large impact on the

output. In the case of BF-based PPRL, we use this concept to break

the strong correlation between q-grams (input) and bits of the en-

coded linkage data (output). More precisely, a linear diffusion layer

is appended to the computation of the Bloom filters. Given some

Bloom filter B of length ℓBF, a bitstring E, also called an encoded

linkage data, of length ℓELD is constructed where each bit in E is

the XOR-sum of selected bits from B. An example is shown in Fig. 3.

There, BF refers to the Bloom filter alone while BFD stands for the

encoding of BF by applying a diffusion layer.

Figure 3: Example of the proposed extension. In the exam-
ple, each output bit is the sum of two Bloom filter bits.

The diffusion layer may also protect against graph matching

attacks. Consider two Bloom filters B and B′
and their respective

encoded linkage data E and E ′. To preserve linkage quality, it needs
to hold that if Dice(B,B′) is high, then this implies a high value for

Dice(E, E ′) as well. This requirement is because we use the same

criteria for deciding whether or not encoded linkage data shall be

linked. However, the lowerDice(B,B′), the less shall it be correlated

to the value of Dice(E, E ′). If this is given, the sub-graphs in [D] do
not reflect the structure anymore in D, and hence the attack would

fail.

4.2 Description
In the following, we provide a complete description of BFD,

being the BF-based PPRL scheme extended by a diffusion layer.

The BFD scheme comprises three algorithms: (i) an algorithm for

choosing the diffusion layer (Sec. 4.2.1), (ii) the encoding of the

linkage data (Sec. 4.2.2), and (iii) the linkage algorithm (Sec. 4.2.3).

4.2.1 Choosing the Diffusion Layer. During the setup phase of a

BF-based PPRL, i.e., when the database holders agree on shared

secrets such as the deployed hash functions, also the diffusion layer

needs to be selected. We assume this to be done by one database

holder, and the result is shared with the others.

Note that the diffusion layer transforms a Bloom filter B ∈

{0, 1}ℓBF
into an encoded linkage data E ∈ {0, 1}ℓELD

where each

bit of E is the XOR-sum of some bits from B. Thus, the diffusion
layer is specified by a list I of ℓELD sets Ij ⊂ {1, . . . , ℓBF}.

Alg. 1 displays the algorithm for selecting the diffusion layer.

To maximize the diffusion effect, we aim for two effects. First, the

change of any Bloom filter bit should impact as many bits in the

encoded linkage data as possible. Second, each bit should depend

on as many Bloom filter bits as possible.

To accomplish the first effect, Alg. 1 ensures in lines 4 and 9 that

each Ij is exactly of size t . As we are going to discuss in Sec. 3 and

Sec. 6, the parameter t will be one of the main parameters to adjust

the level of security and linkage quality.

301



Proceedings on Privacy Enhancing Technologies 2023(2) Armknecht et al.

To achieve the second effect, one would require to ensure that for

any indices j1 and j2, the intersection Ij1 ∩ Ij2 is as small as possi-

ble. However, this would require to solve an involved combinatoric

problem. To keep this procedure as efficient as possible, we opt for

a greedy approach instead. That is, we aim for that each index bit

in {1, . . . , ℓBF} should appear on average in the same number of

index sets Ij . This is accomplished by using a set Indices that keeps
tracks of indices chosen so far. After being initialized to {1, . . . , ℓBF}

(line 1), pairwise disjoint index sets Ij of size t are removed from

Indices as long as possible (lines 3–5). Once the number of remain-

ing indices is not sufficient (lines 6–11), the remaining indices are

used for the current index set (line 7), Indices is re-initialized to

{1, . . . , ℓBF} (line 8), and the procedure continues as before.

Algorithm 1 Choosing diffusion layer

Input: t : The number of selected Bloom filter bits (t ≤ ℓBF)

ℓBF: The length of Bloom filters

ℓELD: The length of the encoded linkage data

Output: I: The index list, specifying the diffusion layer

1: Indices := {1, ..., ℓBF} //Initialize set of indices

2: for j ∈ {1, ..., ℓELD} do
3: if |Indices | ≥ t then
4: Choose random Ij ⊆ Indices with |Ij | = t
5: Indices := Indices\Ij
6: else # |Indices | < t
7: Ij := Indices
8: Indices := {1, ..., ℓBF} //Reset Indices
9: Choose random S ⊆ (Indices\Ij ) with |S | = t − |Ij |

10: Ij = Ij
⋃
S

11: Indices := Indices\S

12: Return I := (I1, ...,IℓELD
)

4.2.2 Encoding. The encoding algorithm (Alg. 2) first computes

the standard BF encoding of linkage data (line 3) and then applies

the diffusion layer I produced by Alg. 1 (lines 4–6). We assume that

the parameters of the Bloom filters have been already negotiated

between the database holders (cf. Sec. 2.2).

Algorithm 2 Encoding

Input: D: Database of records r = (ID, λ, µ)
I: The index list

Output: [D]: Encoded database

1: Initialize [D] := ∅
2: for r = (ID, λ, µ) ∈ D do
3: Compute Bloom filter B = B[1, ..., ℓBF] from λ

4: Let E = E[1, ..., ℓELD] ∈ {0, 1}ℓELD

5: for j ∈ {1, ..., ℓELD} do
6: E[j] =

⊕
a∈Ij B[a]

7: Insert (ID, E) into [D]

8: Return [D]

4.2.3 Linking. The linking procedure (Alg. 3) is essentially the

same as for BF-based PPRL without diffusion. For a given pair of

encoded linkage data E and E ′, the Dice coefficient Dice(E, E ′) is
computed. Suppose this value is above a certain threshold τ . In that

case, this indicates a high level of similarity of the underlying link-

age data, and hence the corresponding pairs of identifiers (ID, ID′)

are added to the linkage result. We stress that the threshold τ de-

ployed here is not necessarily the threshold used for Bloom filters

and needs to be adapted.

Algorithm 3 Linking

Input: [D], [D ′]: Encoded databases

τ : Threshold for linkage

Output: Pairs of identifiers, indicating that these records shall be
linked.

1: Initialize L := ∅
2: for (ID, E) ∈ [D] do
3: for (ID′, E ′) ∈ [D ′] do
4: if Dice(E, E) ≥ τ then Insert (ID, ID′) into L

5: Return L

5 Security Analysis
5.1 Preliminaries

The following section provides a theoretical and experimental

security analysis of the proposed diffusion extension against pattern

mining attacks and security against graph matching attacks.

Piling-Up Lemma. In the theoretical analysis, we make use of

the so-called piling-up lemma:

Lemma 1 (Piling-up Lemma [16]). Given independent binary
variables X1, ...,Xn with Pr(Xi = 0) = 1

2
+ εi for i = 1, . . . ,n, it

holds that

Pr(X1 ⊕ X2 ⊕ · · · ⊕ Xn = 0) =
1

2

+ 2
n−1

n∏
i=1

εi . (5)

The value −0.5 ≤ εi ≤ 0.5 is called ’bias’ of the variable. The

smaller |εi |, the less biased the random variable Xi is and the closer
to the uniform distribution.

For the analysis, we are going to refer several times to the fol-

lowing notation and (trivial) consequence of the piling-up lemma:

Lemma 2. Let X1, ...,Xn be independent binary variables with
Pr(Xi = 0) = 1

2
+ εi for i = 1, . . . ,n. Then, it holds for any set

I ⊆ {1, . . . ,n} that

Pr(
⊕
i ∈I

Xi = 0) =
1

2

+ εI . (6)

where

εI := 2
|I |−1

∏
i ∈I

εi . (7)

Moreover, if J ⊆ I ⊂ {1, . . . ,n}, it holds that |εI | ≤ |ε J |.
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Proof. The claim in (6) is a straightforward consequence of the

piling-up lemma. Now, let J ⊆ I ⊂ {1, . . . ,n}. As |εi | ≤ 1/2, it holds

that |2 · εi | ≤ 1 for any i . We have

|εI | =

�����2 |I |−1

∏
i ∈I

εi

����� = 1

2

·
∏
i ∈I

|2 · εi | (8)

=
1

2

·
∏
i ∈J

|2 · εi | ·
∏
i ∈I\J

|2 · εi | (9)

≤
1

2

·
∏
i ∈J

|2 · εi | ·
∏
i ∈I\J

1 =
1

2

·
∏
i ∈J

|2 · εi | = |ε J |. (10)

□

Experiments Setup. In the experiments, the records have been

sampled from the publicly available North Carolina Voter Registra-

tion database of around 220,000 records
2
. This database is not only

popular in textbooks [8] but has been used already for parameter

choice recommendations [4] of BF-based schemes and to investigate

pattern mining attacks [9, 26] and graph matching attacks [25].

This database has been preprocessed as explained in [7]. The

records we used contained several attributes, including names, ad-

dresses, date of birth, state, etc. Following the suggestion of [4],

attributes to be used as linkage data are first name, last name, street

address, and city. We also introduced some errors to check for the

linkage quality for similar yet different records. As the ground truth

was given, the linkage quality could be computed.

Following earlier work [9, 19, 25, 26], for Bloom filters we use the

setting: ℓBF = 500, 1000 (size of the Bloom filter), k = 5, 10 (number

of hash functions). We used databases of size 2000. The database

size is sufficient to conduct the attacks since the expected difference

in proportions between different samples from the same population

of names would be small.
3
BFs were encoded using random hashing

[21] and the CLK approach [20]. The length ℓELD of the encoded

linkage data has been set to the same as the length of the Bloom

filters (see also the parameter discussion in Sec. 7).

For the implementation, we used Python 3.8.6. The experiments

were run on a computer with a 64-bit Intel Core i7-10750H 2.60

GHz CPU, 32 GBytes of memory, and Ubuntu 20.04.

5.2 Pattern Mining Attack
Pattern mining attacks exploit that the encoding of a q-gram

results in a (possibly characteristic) bit pattern, i.e., a selection of

positions where the bits are all equal to 1 (see also (3) on page

300). Thus, to thwart such attacks, one needs to ensure that in

the encoded database, no characteristic patterns occur anymore.

Let γ denote any q-gram, r some plaintext record, B its Bloom

filter encoding, and E the resulting encoded linkage data. We can

reformulate the necessary condition (3) for pattern mining attacks

against the Bloom filter by

γ occurs ∈ r ⇒ Pr(B[i] = 0) = 0 ∀i ∈ EI(γ ). (11)

To strengthen our scheme against this type of attack, we aim for

γ occurs ∈ r ⇒ Pr(E[i] = 0) ≈
1

2

∀i . (12)

2
See https://dl.ncsbe.gov/

3
Similar Bloom filter settings are widely used in practice also for large real-world

databases up to 20 million records, see for example [6].

In other words, no q-gram induces an observable pattern into the

encoded linkage data E.
In the following, we first show in Sec. 5.2.1 that for any bit E[i] in

the encoded linkage data, its value tends to be uniformly distributed

with increasing parameter t (see also Fig. 4). Next, we focus on the

case that the underlying Bloom filter exhibits a specific pattern.

We show that even under this condition, the bit values E[i] still
tend towards uniform distribution (Sec. 5.2.2) and that for any two

different bits in the encoded linkage data, the probability of these

being the same is also getting close to 1/2 (Sec. 5.2.3).

5.2.1 Distribution. First, we estimate the distribution of the bit

values in the encoded linkage data in dependence on the distribu-

tion of the Bloom filter bits. Note that having a close-to-uniform

distribution of bits is a necessary (but not sufficient) condition for

not having any characteristic patterns. Consequently, we determine

how close the distribution of single bits in the encoded linkage data

can get to the uniform distribution in the best case. For the sake of

simplicity, we base our analysis on the assumption that the Bloom

filter bits are pairwise independent. While this is not mathemati-

cally true, we consider it as a reasonable approximation as these bits

are computed from keyed hash-functions (which are independent)

and multiple q-grams (which are probably not independent, but

where the distribution is unknown). Moreover, this approximation

is also backed by our experiments.

In the following, let B denote the Bloom filter of length ℓBF that

has been computed at the beginning of Alg. 2 and E the encoded

linkage data of length ℓELD that has been derived fromB. We assume

that for any i ∈ {1, . . . , ℓBF}, there exists a bias εi such that

Pr(B[i] = 0) =
1

2

+ εi . (13)

The reason for introducing εi is to be able to discuss later on how

much the distribution of bits deviates from the uniform distribution.

Note that we do not make any assumptions on εi .
Now, let j ∈ {1, . . . , ℓELD} be an arbitrary but fixed index of a

bit in the encoded linkage data. From the definition of E[j] and the

piling-up lemma (Lemma 1), it follows that

Pr(E[j] = 0) =
1

2

+ εIj (14)

where εIj is defined as explained in Lemma 2. The higher the

bias εIj , the better for an attacker. Thus, we are interested into an

upper bound of this value. Recall that for any J ⊆ Ij , it holds that

|εIj | ≤ |ε J | (cf. Lemma 2). In particular, it follows that |εIj | ≤ εmin |

with εmin := mini ∈I {|εi |}. That is, the bias of Pr(E[j] = 0) is at most

as high as the smallest bias εi of all bits indexed by Ij (and also any
product of selected biases). That means, unless for the extreme case

that all biases have an absolute value of 1/2, the bias will go down.

In particular, this effect increases with increasing index list size t .
To validate this and get an idea of specific values, we measured

these values experimentally. In our experiment, we set the length

ℓBF of the Bloom filters to 500,1000 and the number k of hash func-

tions to 5,10. Then using the database described at the beginning

of Sec. 3 with 2000 randomly sampled records, we observed the

maximum bias ε := maxj ∈ℓELD
{|εIj |} for all bits in the encoded

linkage data as t increases. The results are shown in Fig. 4. As one
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can see, the maximum |εIj | decreases quite sharply as expected.

For example, for t ≥ 20, the maximums are all less than 0.1.

Figure 4: Observed maximum bias ε := maxj ∈ℓELD
{|εIj |} of all

bits in the encoded linkage data with increasing t

5.2.2 Conditional Distribution. Even though the previous analysis

showed that the distribution of individual bit values gets close to

uniform, it does not exclude the existence of characteristic patterns

in the encoded linkage data if the underlying BF B exhibits such a

pattern already.

Therefore, we will consider to what extent a pattern in the Bloom

filter may result in a pattern in the encoded linkage data.We assume

in the following that the underlying Bloom filters exhibit a certain

pattern, i.e., a set of indices I∗
where the Bloom filter bits are equal

to 1. Let EI∗ denote the event for an encoded linkage data that the

underlying Bloom filter shows this pattern. That is, we have

Pr(B[i] = 1|EI∗ ) = 1 ∀i ∈ I∗
(15)

We restrict to the case that the pattern has been induced by a single

q-gram as this is the approach used in pattern mining attacks [26]

and represents patterns with the highest frequency. This means

that the size of I∗
is bounded by the number of hash functions k

used for the Bloom filter encoding.

Now let us fix some bit index j ∈ {1, . . . , ℓELD} in the encoded

linkage data. By definition of the bits, it holds

Pr(E[j] = 0) = Pr(
⊕
i ∈Ij

B[i] = 0) (16)

Obviously, if Ij ∩ I∗ = ∅, then the pattern has no impact on the

value of E[j], that is

Pr(E[j] = 0) = Pr(E[j] = 0|EI∗ ) (17)

Hence, we restrict on the case that Ij ∩ I∗ , ∅ and define

I+ := Ij ∩ I∗
and I−

:= Ij \ I
∗. (18)

This allows to rewrite E[j] as follows:

E[j] =
⊕
i ∈I+

B[i] ⊕
⊕
i ∈I−

B[i] (19)

As B[i] = 1 for all i ∈ I∗
, the value

⊕
i ∈I+ B[i] is equal to

0 if and only if |I+ | is even. As we are only interested into the

absolute value of the bias of Pr(E[j] = 0) and not its concrete value,

we can assume without loss of generality that

⊕
i ∈I+ B[i] = 0.

Considering

⊕
i ∈I+ B[i] = 1 instead would result in the same bias

but with inverted sign.

Recall from Algorithm 1 that |Ij | = t = |I+ | + |I− | and from

the assumptions we have |I+ | ≤ |I∗ | = k . Thus, if t ≤ k , it may

happen that Ij = I∗
and I− = ∅. In this case, the value of E[j] is

fixed by the event EI∗ and one cannot exclude the existence of an

observable pattern in E. Therefore, we assume t ≥ k from now on.

Under this condition, also using the same line of arguments as

before, we get

Pr(E[j] = 0) = Pr(
⊕
i ∈I−

B[i] = 0) =
1

2

+ εI− . (20)

Also here, |εI− | is upper bounded by the smallest bias εmin :=

mini ∈I− {|εi |} and in general is expected to decrease significantly

when the size of I−
increases. In particular, the size of I−

is at

least t − k and increases with increasing t (and hence most likely

will decrease |εI− |).

Using the same parameter settings as previously discussed, we

studied the maximum of |εI− | as t − k increases. The results are

shown in Fig. 5. In general, the experiments support the theoretical

result that increasing t will decrease |εI− |. For example, for k =
5, ℓBF = 500, and from t − k ≥ 5 which means that t ≥ 10, the

resulting |εI− | will be less than 0.1.

Figure 5: Observed maximum of all encoded linkage data
bits under the assumption that the Bloomfilter exhibits a
certain pattern. Only bits that depend on pattern bits are
considered.

5.2.3 Conditional Co-Occurrence. The previous analysis shows

that if t is sufficiently high, the bias of Pr(E[j] = 0) decreases

significantly. That is, a single bit cannot be used for recognizing

the presence of a certain pattern in the Bloom filter. This, however,

does not exclude the case that the values of two or more bits are

correlated. For any choice of distinct indices i, j ∈ {1, . . . , ℓELD},

we therefore investigate now

Pr(E[i] = E[j]|EI∗ ), (21)
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that is the probability that both bit values in the encoded linkage

data are equal under the condition EI∗ , i.e., the event that the

underlying Bloom filter exhibits a pattern given by an index set I∗
.

From now on, we assume thatEI∗ does hold and aim to estimate

the bias of Pr(E[i] = E[j]) = Pr(E[i] ⊕ E[j] = 0). Similarly as

discussed before, we can re-write this as

Pr(E[i] ⊕ E[j] = 0) = Pr(
⊕
a∈Ij

B[a] =
⊕
a∈Ii

B[a]) (22)

=
⊕
a∈I+

B[a] ⊕
⊕
a∈I−

B[a] (23)

where

I+ :=
(
Ii ∪ Ij\Ii ∩ Ij

)︸               ︷︷               ︸
I

∩I∗
and I−

:= I \ I∗. (24)

Similar to the analysis conducted in Sec. 5.2.2, we assume that⊕
a∈I+ B[a] = 0 and get

Pr(E[i] ⊕ E[j] = 0) = Pr(
⊕
a∈I−

B[a] = 0) =
1

2

+ εI− . (25)

Note that as opposed to the previous situation, it may happen that

I− = ∅. This is possible ifIi \I
∗ = Ij \I

∗
happens by coincidence:

then all the non-pattern bits would cancel out. If we assume again

that |Ii | = |Ij | = t ≥ k = |I∗ |, then the probability of this event

decreases with increasing t .
Results of the largest bias |εI− | are shown in Fig. 6. The prob-

ability of co-occurrence under the condition of EI∗ decreases

as expected and when t ≥ 10, ε will be less than 0.1 except for

k = 5, ℓBF = 1000.

Figure 6: Observed maximum of the bias of co-occurrence
under the condition that EI∗ . Only bits E[i], E[j] where Ii ∩

I∗ , ∅ and Ij ∩ I∗ , ∅ are considered and t ≥ k .

5.3 Graph Matching Attack
5.3.1 Breaking Similarity Relationship. Recall that the graphmatch-

ing attack (cf. Sec. 3.3) is based on two conditions: (i) a high overlap

rate and (ii) sim(λ, λ′) correlates with Dice([λ], [λ′]) = Dice(B,B′)

for any pair of plaintext records with linkage data λ and λ′ and let

B and B′
be the corresponding Bloom filter encodings (see also (4)).

In [1], it was shown that the attack is quite fragile with respect to

the overlap rate. As soon as it deviates from 100%, the success rate

drops sharply. However, the overlap rate depends on the use case

and is out of the control of the PPRL scheme. Therefore, to protect

against graph matching attacks, we aim to weaken condition (ii)

significantly. That is, the values sim(λ, λ′) and Dice(E, E ′) should
not be strongly correlated anymore where E is the encoding of λ
and analogously E ′ of λ′.

In fact, there is a trade-off that needs to be taken into account.

For preserving linkage quality, i.e., correctness of the scheme, it is

important that a high value of sim(λ, λ′) has to imply a (relatively)

high value Dice(E, E ′). However, when sim(λ, λ′) decreases, i.e.,
the less similar the records are, the value Dice([λ], [λ′]) should not

decrease analogously.

In the following, we provide a theoretical analysis that this prop-

erty is given for the BFD scheme for appropriate choices of t . This is
also backed by experiments. As an example, the similarity relation

between sim(λ, λ′) and Dice(E, E ′) in our experiments is shown in

Fig. 7. The three graphs show the relationship for t ∈ {5, 10, 20}. We

see that for increasing value of t , the correlation between sim(λ, λ′)
and Dice(E, E ′) gets weaker. More precisely, except for the case of

sim(λ, λ′) being high, the value of Dice(E, E ′) is close to 0.5. That

is, when an attacker observes Dice(E, E ′), she cannot deduce the
value of sim(λ, λ′).

As the BFD scheme deploys the Bloom filter encoding as inter-

mediate step and as we know that sim(λ, λ′) and Dice(B,B′) are

strongly correlated, we investigate in the following the relation

between Dice(B,B′) and Dice(E, E ′). Recall that

Dice(B,B′) =
2 |supp(B) ∩ supp(B′)|

|supp(B)| + |supp(B′)|
(26)

Dice(E, E ′) =
2 |supp(E) ∩ supp(E ′)|

|supp(E)| + |supp(E ′)|
(27)

with supp(B) = {i |B[i] = 1}. Without loss of generality, we can

assume that |supp(B)| ≥ |supp(B′)|.We have

Dice(B,B′) =
2 |supp(B) ∩ supp(B′)|

|supp(B)| + |supp(B′)|
(28)

≤
2 |supp(B) ∩ supp(B′)|

|supp(B′)| + |supp(B′)|
(29)

=
|supp(B) ∩ supp(B′)|

|supp(B′)|
(30)

= Pr(B[i] = 1|B′[i] = 1). (31)

Likewise, it holds that

Dice(B,B′) ≥ Pr(B′[i] = 1|B[i] = 1). (32)

That is, max{Pr(B′[i] = 1|B[i] = 1), Pr(B[i] = 1|B′[i] = 1)} is an

upper bound on Dice(B,B′) and min{. . .} a lower bound, where

equality is achieved if |supp(B)| = |supp(B′)|. In particular, if both

Pr(B′[i] = 1|B[i] = 1) and Pr(B[i] = 1|B′[i] = 1) are large, then

Dice(B,B′) is large as well. On the other hand, if both probabilities

are low, then this holds for the Dice coefficient also. Of course, the

same observations hold with respect to E and E ′. We will make use

of these to estimate the impact of Dice(B,B′) on Dice(E, E ′).
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Figure 7: Similarity relation between sim(λ, λ′) (plaintext
records) and Dice(E, E ′) (encoded records in BFD) for differ-
ent values of t (top: t = 5, middle: t = 10, bottom: t = 20)

Let us start with two Bloom filters B and B′
that are similar,

being expressed by the fact that for all i ∈ {1, . . . , ℓBF}, it holds that

min{Pr(B′[i] = 1|B[i] = 1), Pr(B[i] = 1|B′[i] = 1)} ≥ δ (33)

for a sufficiently large value δ .
First, we show that under this condition, the probability of

Pr(B[i] = B′[i]) (34)

is also lower bounded by δ . We know already that

Pr(B′[i] = 1|B[i] = 1) ≥ δ . (35)

In the following, we assume that

Pr(B′[i] = 1) ≤ Pr(B[i] = 0). (36)

This is given in practice as the number k of hash functions is signif-

icantly smaller than the length ℓBF of the Bloom filter. This means

that the probability of a randomly position bit to be set to 1 is

smaller than the probability that is has been left to zero. Experi-

ments confirm this: Using our parameter choices, we observed that

maxi Pr(B′[i] = 1) ≈ 0.35 which means that Pr(B[i] = 0) ≥ 0.65.

Under this assumption, it follows

Pr(B′[i] = 0|B[i] = 0) (37)

= 1 − Pr(B′[i] = 1|B[i] = 0) (38)

= 1 − Pr(B[i] = 0|B′[i] = 1) ·
Pr(B′[i] = 1)

Pr(B[i] = 0)
(39)

(36)

≥ 1 − Pr(B[i] = 0|B′[i] = 1) (40)

≥ 1 − (1 − δ ) = δ . (41)

We can now deduce the following lower bound:

Pr(B[i] = B′[i]) (42)

= Pr(B[i] = 0 ∧ B′[i] = 0) + Pr(B[i] = 1 ∧ B′[i] = 1) (43)

= Pr(B′[i] = 0|B[i] = 0) · Pr(B[i] = 0) (44)

+ Pr(B′[i] = 1|B[i] = 1) · Pr(B[i] = 1) (45)

≥ δ · Pr(B[i] = 0) + δ · Pr(B[i] = 1) (46)

= δ · (Pr(B[i] = 0) + Pr(B[i] = 1)) (47)

= δ . (48)

Next, we pick some arbitrary index i ∈ {1, . . . , ℓELD} and aim

to derive bounds for Pr(E ′[i] = 1|E[i] = 1) in dependence of δ . We

define

∆ := {j ∈ Ii |B[j] , B′[j]}. (49)

One can see that

E ′[i] =
⊕
j ∈Ii

B′[i] =
⊕
j ∈Ii \∆

B[i] ⊕
⊕
j ∈∆

(B[i] ⊕ 1) (50)

=
⊕
j ∈Ii

B[i] ⊕
⊕
j ∈∆

1 = E[i] ⊕
⊕
j ∈∆

1 (51)

= 1 ⊕
⊕
j ∈∆

1 (52)

Obviously, E ′[i] = 1 if and only if |∆| is even.
Let p := Pr(B[i] = B′[i]), assuming that this probability does not

depend on i . Then:

Pr(E ′[i] = 1|E[i] = 1) = Pr(|∆|even) (53)

=

⌊ t
2
⌋∑

k=0

(
t

2k

)
· (1 − p)2k · pt−2k

(54)

Table 1 displays the values of Pr(E ′[i] = 1|E[i] = 1) for different

choices of t and p. Note that the same formula can be derived for

Pr(E[i] = 1|E ′[i] = 1) and hence can be used for estimating the

Dice coefficient.

As expected, the value increases or decreases depending on p for

a fixed t . However, the more t increases, the more does Pr(E ′[i] =
1|E[i] = 1) tend to 0.5 except for the case that p := Pr(B[i] =
B′[i]) is very close to 1, i.e., the case that B and B′

are very similar.

Therefore, it shows the behaviour that we aimed for, as described

at the beginning.

To further support this view, we can derive some lower and upper

bound on Pr(E ′[i] = 1|E[i] = 1) and hence on the Dice coefficient.

For a lower bound, observe that

Pr(E ′[i] = 1|E[i] = 1)
(54)

≥ pt
(48)

≥ δ t .

This shows that the Dice coefficient increases for increasing δ and

fixed t .
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Table 1: Computation of Pr(E ′[i] = 1|E[i] = 1) using (54) for
different choices of t (=size of the index list) and p (= prob-
ability that the two different Bloom filters show the same
value at an arbitrary position).

t
p

0.8 0.9 0.95 0.99

1 0.8 0.9 0.95 0.99

2 0.64 0.81 0.90 0.98

3 0.61 0.76 0.86 0.97

4 0.56 0.70 0.83 0.96

5 0.54 0.66 0.80 0.95

6 0.52 0.63 0.77 0.94

7 0.51 0.60 0.74 0.93

8 0.51 0.58 0.72 0.93

9 0.51 0.57 0.69 0.92

10 0.50 0.55 0.67 0.91

11 0.50 0.54 0.66 0.90

12 0.50 0.53 0.64 0.89

15 0.50 0.52 0.60 0.87

20 0.50 0.51 0.56 0.83

To give an upper bound on the Dice coefficient, let us define the

characteristic function even : N → {0, 1} by even(x) = 1 if and

only if x is even. Then, it holds

Pr(E ′[i] = 1|E[i] = 1) =

⌊ t
2
⌋∑

k=0

(
t

2k

)
· (1 − p)2k · pt−2k

=

t∑
k=0

even(k) ·
(
t

k

)
· (1 − p)k · pt−k

≤

t∑
k=0

(
t

k

)
· (1 − p)k · pt−k (55)

The expression in (55) is actually the cumulative distribution

function for the Binomial distribution. In particular, (55) tends to-

wards 0.5 for p → 0.5.

5.3.2 Correlation and Re-identification Rate. To further analyze

the security of the BFD scheme, we conducted several experiments

on two features: correlation and re-identification rate.

In statistics, correlation refers to the degree to which a pair of

variables are related. For the standard Bloom filter based schemes

without diffusion, the correlation between the similarity of plaintext

records and the similarity between encoded records is large (see

also Fig. 2). For our analysis, we computed the sample correlation

coefficient.

Definition 3 (Sample Correlation Coefficient). Given a se-
ries of nmeasurements of the pair (Xi ,Yi ) indexed by i = 1, . . . ,n, the
’sample correlation coefficient’ can be used to estimate the population
Pearson correlation ρX ,Y between X and Y . The sample correlation

coefficient is defined as:

ρEstX ,Y
def

=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

,

where x and y are the sample arithmetic mean of X and Y .

It holds for the sample correlation coefficient that ρEstX ,Y ∈ [−1, 1]

where |ρ | ≈ 1 indicates a high correlation and ρ ≈ 0 a low correla-

tion.

In a graph matching attack, the success of the attack is measured

by the re-identification rate. It’s defined as the number of correctly

re-identified records divided by the size of the encoded database.

Recall from Section 3.3 that the attacker is assumed to have access

to a largely overlapping pair of databases, namely D and [D ′]. In

[25], the overlap rate of two databases is defined as two times the

number of common records divided by the sum of the sizes of two

databases.

We conducted experiments to study the correlation between

similarities and re-identification rates for varying overlap rates and

sizes t of the index lists. The results are shown in Fig. 8 and Fig. 9.

The first point on the left shows the results for the scheme with

Bloom filters but without diffusion, while the remaining ones show

the results for the BFD scheme for varying t . Moreover, the four

graphs display the results for different overlap rates: 100%, and 95%.

As observed in [1], the re-identification rate decreases sharply when

the overlap between the encoded database and plaintext database

drops. Our experiments confirm this effect where the decrease is

stronger for the BFD scheme than for the original BF-based PPRL

scheme.

5.4 Other Attacks
Our analysis indicates a stronger resilience of BFD compared

to the plain BF-based PPRL against pattern mining attacks and

graph matching attacks. More precisely, we identified a necessary

condition for each attack in Sec. 3.2 and Sec. 3.3, respectively. Af-

terwards, we showed in Sec. 5.2 and Sec. 5.3, respectively, that the

introduction of a diffusion layer helps that these conditions do not

hold anymore (or at least to weaken these). Therefore, we conclude

that BFD is (more) secure against these attacks.

Naturally, two questions arise:

(1) Is BFD also secure against variants of these attacks?

(2) Is BFD also secure against other (possibly unknown) types

of attacks?

For the reasons explained in Sec. 3.1, we do not aim for a provably

secure PPRL scheme. Thus, we cannot give any definitive answer to

these two questions. However, for any variant of a pattern mining

and graph matching attack that relies on the same condition as

identified in Sec. 3.2 and Sec. 3.3, respectively, the same analysis

applies. In this sense, we conjecture that the diffusion layer should

also protect against these attack variants.

Moreover, one can prove that BFD does not introduce any new

weaknesses. More precisely, any attack that is possible against BFD
is likewise possible against the underlying BF-based PPRL scheme as

well. This can be shown with a standard proof by reduction. LetSBF
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Figure 8: Sample correlation coefficient and re-identification
rate of the graphmatching attack for varying index set sizes
t (overlap: 100%). The first point on the left side shows the
result for the plain BF-based PPRL scheme (without diffu-
sion) and the remaining points for the proposedBFD scheme
(with diffusion).

denote a plain BF-based PPRL scheme and SBFD the BFD scheme

that results from SBF by applying a diffusion layer (computed with

Alg. 1) to the BF filters. Furthermore, let ABFD denote any attacker

against SBFD. We use ABFD to construct an attacker ABF against

SBF that has exactly the same effort and success probability.

ABF works as follows. It gets as input one or several encoded

databases, where each entry is a Bloom filter B. First, it runs Alg. 1
to create a diffusion layer. Second, it applies the diffusion layer to

each Bloom filter B, getting the corresponding encoded linkage

data E. These linkage data are givenABFD. Note thatABF perfectly

simulatedSBFD based onSBF. Thus,ABFD can normally operate on

these inputs and return some result (to ABF). Attacker ABF simply

uses this result as its own result and is finished.

The consequence is that if there exists an efficient attacker

against SBFD, then this is likewise true for SBF. Thus, SBFD cannot

be less secure than SBF.

6 Evaluation
In the following, we evaluate the BFD scheme for practical appli-

cations by investigating its efficiency (Sec. 6.1) and linkage quality

(Sec. 6.2).

Figure 9: Sample correlation coefficient and re-identification
rate of the graphmatching attack for varying index set sizes
t (overlap: 95%).

6.1 Efficiency
Bloom filter based PPRL schemes are highly efficient, with only

modest time requirements for encoding and linking records. There-

fore, large real-world applications linking millions of records are

possible. As our proposed BFD scheme builds on that scheme by

adding a diffusion layer, the efficiency of our scheme can be evalu-

ated by analyzing the run time of the three procedures described in

Sec. 4 and comparing them with the BF-based PPRL scheme. The

results of our experiments can be found in Table 2 for a Bloom filter

length ℓBF = 500 and ℓBF = 1000.

The first thing to observe is that BFD requires in addition the

generation of a diffusion layer (Alg. 1). In comparison to the two

other procedures, it is significantly more time consuming. However,

while encoding and linking needs to be done for each record, the

diffusion layer needs to be computed only once. Moreover, as the

overhead is significantly less than a second, we consider this to be

acceptable.

Note that the size of data that needs to be transmitted here

is rather modest. A straightforward approach would be to send

the ℓELD index sets where each index set contains t values from
{1, . . . , ℓBF}, that is ℓELDt · ⌈log

2
(ℓBF)⌉/8 bytes. For example, if

ℓELD = ℓBF = 500 and t = 10 as suggested in Sec. 7, this would

sum up to less than 6 kB. If the random choices made in Alg. 1 are

derived from some seed, one can save even more data by sending

the seed only.

As expected, the effort to encode a record increases linearly with

the index size t , i.e., the number of BF bits used to compute one
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bit in the encoded linkage data. However, as the time effort is still

in the range of very few milliseconds and as rather small values

for t provide the best trade-off between feasibility and security (cf.

Sec. 7), we consider this to be acceptable.

Finally, one can see that the time required for linking two records

of the BFD scheme is approximately the same as the BF scheme as

they are in the same magnitude, namely, 10
−5

milliseconds. This

is also anticipated as ℓBF = ℓELD and as the linkage procedure is

essentially the same as before.

Note that another factor that impacts the run time is the length

ℓBF of the underlying Bloom filter. However, as we discuss in Sec-

tion 7, setting ℓELD = ℓBF is a reasonable choice. This has been

adopted here as well.

Table 2: Average execution time of the diffusion, encoding
and linking procedures for the plain BF-based PPRL scheme
(BF) and the BFD scheme for ℓELD = 500, 1000

t Diffusion Encoding Linking

(ms) (ms) (10
−5

ms)

BF 0.10 6.43

BFD, ℓELD = 500 1 24.03 0.21 6.32

5 25.07 0.40 6.32

10 25.53 0.60 6.82

15 26.07 0.86 6.75

20 26.94 1.10 6.69

30 26.75 1.46 6.90

50 31.48 2.33 6.66

BFD, ℓELD = 1000 1 103.44 0.36 6.50

5 109.94 0.65 6.72

10 117.89 0.96 6.65

15 128.14 1.37 7.10

20 127.06 1.94 6.78

30 126.42 2.30 6.52

50 128.90 3.57 6.60

6.2 Linkage Quality
We analyze the linkage quality of the BFD scheme by comparing

it with the plain BF-based PPRL scheme, as the latter is known to

provide good linkage quality. To this end, we adopt the suggestion

from [11] to express the linkage quality by MPR, being the mean of

precision and recall:

MPR =
1

2

· (Precision + Recall) =
1

2

·

(
tp

tp + fp

+
tp

tp + fn

)
(56)

Here, tp refers to the number of true positives, f p the number of

false positives, and f n the number of false negatives.

For comparing the linkage qualities of the two schemes, we

consider their relative MPR:

Relative MPR =
MPRBFD
MPRBF

. (57)

The linkage quality of BFD is the same or better than the plain BF

schemes if the relative MPR is ≥ 1 and comparable if this value is

close to 1.

Figure 10 shows the relative MPR for varying the index set size t
and threshold τ values of 0.6., 0.7, and 0.8. Note that the threshold

for the plain BF scheme is set to τBF = 0.8. However, as discussed

in Sec. 5.3.1, the Dice coefficient of encoded records can differ

before and after applying diffusion. These differences require the

modification of the threshold τ accordingly.

As expected, the relative MPR decreases for increasing t and/or
increasing threshold τ . However, apart from the case where k = 10

and ℓBF = 500, the relative MPR is above 0.9 when t ≤ 10. As we

are going to discuss into more detail in Sec. 7, this allows for a

parameter selection that offers a good trade-off between security

and feasibility.

Figure 10: Relative MPR in dependence of t for different
choices for the threshold τ (top: τ = 0.6, middle: τ = 0.7,
bottom: τ = 0.8)
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7 Parameter Selection
A record linkage process is usually organized by an authority to

fulfill tasks like granting permissions or organizing the agreement

on secrets between the database holders (like the deployed hash

functions in the case of BF-based PPRL). Generally, this authority is

also responsible for recommending specific parameter choices. In

practice, these recommendations are based on theoretical analysis

and experiments.

In comparison to the plain BF-based PPRL scheme, the BFD
scheme comprises a couple of new parameters, namely

(1) the length ℓELD of the encoded linkage data (Alg. 1),

(2) the size t of the index sets, being the number of BF bits used

to compute one bit (Alg. 1), and

(3) the (adapted) threshold τ , used as criteria for whether two

records shall be linked or not (Alg. 3).

Even if some parameters of existing BF schemes might be re-used,

at least some parameters need to be chosen. In the following, we

demonstrate this process in a concrete example, using the setup

explained in Sec. 5.1. In particular, we build on a BF-based schemes

that uses k ∈ {5, 10} hash functions to compute Bloom filters of

length ℓBF ∈ {500, 1000}.

The choice of the first parameter of the new parameters, the

length ℓELD of the encoded linkage data, is a matter of finding an

appropriate trade-off. Decreasing ℓELD too much (in comparison to

ℓBF) may result in a too substantial loss of information, negatively

impacting the linkage quality. On the other hand, choosing ℓELD

too large may render the diffusion layer useless, as an attacker may

reconstruct the BF bits by solving a system of linear equations.

Therefore, to make both schemes comparable in efficiency and

linkage quality, we suggest ℓELD = ℓBF.

A wide range of possible choices exist for the other two param-

eters, the number t of BF bits that define one bit in the encoded

linkage data and the threshold τ . In fact, by defining the index sets

by Ij := {j}, i.e., t = 1, and by keeping the same threshold as before,

the BFD scheme is just the original plain BF scheme. Of course, the

question is if better variants can be found.

Note that the value t impacts several properties such as security

and linkage quality while τ influences just the latter. Therefore,

we suggest fixing first t and then adapting τ . In the following, we

discuss the choice of t for the case of k = 5 hash functions and a

Bloom filter length of ℓBF = 500. The process works analogously

for the other settings as well.

For security, we always want t to be as large as possible. In the

security analysis regarding patternmining attacks in Section 5.2, we

assumed that t ≥ k which, in our scenario, results in a requirement

of t ≥ 5. However, we stress that this assumption was only made

to ensure that certain potential security risks cannot occur. In this

sense, it represents a sufficient but not a necessary condition. Our

experiments (cf. Fig. 6) indicate that setting t ≥ 10 provides good

resistance against pattern mining attacks.

With respect to security against graph matching attacks, our ex-

periments (cf. Fig. 7) show that t = 5 does not sufficiently weakens

the relation between sim(λ, λ′) and Dice(E, E ′)). From Fig. 8, we see

that t ≥ 10 will reduce the re-identification rate of graph matching

attack and correlation to half of those of BF.

While security benefits from large values of t , the opposite is true
with respect to the computational effort and linkage quality. Recall

that the purpose of diffusion (see Sec. 4.1) is that small changes

in the input result into large changes in the output. That is, by

increasing t , it may happen that the encoding of similar (but not

equal) records strongly differ and hence will not be linked. That

is, the number of false negatives fn will likely go up. On the other

hand, the encoding on non-similar records will remain non-similar.

Thus, the number of fp will either remain the same or decrease.

This means that by increasing t , precision will remain as it is while

recall will decrease. For health-related authorities, usually precision

has more importance over recall. However, recall is often more

important for criminal systems. Therefore the choices are from the

interested parties. Thus, the discussion above can be summarized

that t should be ≥ 10 but as small as possible. Naturally, we suggest

to use t = 10 for a reasonable compromise of security and feasibility.

It remains to fix the threshold accordingly. Here, experiments (cf.

Fig. 10) showed that good linkage quality is achieved for a threshold

of τ = 0.6. Concluding, the suggested parameter choices for the

setting of k = 5 and ℓBF = 500 are t = 10 and τ = 0.6. For the other

settings, Table 3 displays the suggested choices of t . The process
was more or less the same as described above. The only exception

is given in the case of k = 10, ℓBF = 500. In this case, the (sufficient)

condition of t ≥ k made for the security analysis against pattern

mining attacks could not be met.

Table 3: Suggested choice of t ( τ = 0.6)

k

Optimal t ℓBF

500 1000

5 10 20

10 5
∗

10

*: t = 5 has been found by experiments only

8 Conclusion
Privacy-preserving record linkage schemes based on Bloom fil-

ters (BF-based PPRL) are popular in practice and academia due to

their high efficiency and linkage quality. However, recent research

showed that these schemes are not sufficiently secure. This paper

proposed a new PPRL scheme, BFD, using Bloom filters extended

by a linear diffusion layer. Extensive theoretical and experimen-

tal analysis showed that the BFD scheme is more secure against

known attacks than the BF-based PPRL scheme while achieving

similar linkage quality and running within tolerable time compared

to BF-based PPRL. Thus, BFD could, in the long run, be considered

as a replacement for the standard BF-based PPRL scheme.

Besides, as no rigorous security analysis has been conducted on

the standard BF-based PPRL scheme (and likewise not for its vari-

ants that have been proposed), the analysis methods explained in

this paper may have merit on their own. For example, as explained,

there seems to be a positive relationship between the maximum

re-identification rate of the graph matching attack and the correla-

tion, which could be further investigated. Moreover, other encoding

methods than Bloom filters may be analyzed by the methods pro-

posed here.
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