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ABSTRACT

Synthetic data is often presented as a method for sharing sensi-
tive information in a privacy-preserving manner by reproducing
the global statistical properties of the original data without dis-
closing sensitive information about any individual. In practice, as
with other anonymization methods, synthetic data cannot entirely
eliminate privacy risks. These residual privacy risks need instead
to be ex-post uncovered and assessed. However, quantifying the
actual privacy risks of any synthetic dataset is a hard task, given
the multitude of facets of data privacy.

We present Anonymeter, a statistical framework to jointly quantify
different types of privacy risks in synthetic tabular datasets. We
equip this framework with attack-based evaluations for the sin-
gling out, linkability, and inference risks, which are the three key
indicators of factual anonymization according to data protection
regulations, such as the European General Data Protection Regu-
lation (GDPR). To the best of our knowledge, we are the first to
introduce a coherent and legally aligned evaluation of these three
privacy risks for synthetic data, as well as to design privacy attacks
which model directly the singling out and linkability risks.

We demonstrate the effectiveness of our methods by conducting
an extensive set of experiments that measure the privacy risks
of data with deliberately inserted privacy leakages, and of syn-
thetic data generated with and without differential privacy. Our
results highlight that the three privacy risks reported by our frame-
work scale linearly with the amount of privacy leakage in the data.
Furthermore, we observe that synthetic data exhibits the lowest
vulnerability against linkability, indicating one-to-one relationships
between real and synthetic data records are not preserved. Finally,
with a quantitative comparison we demonstrate that Anonymeter
outperforms existing synthetic data privacy evaluation frameworks
both in terms of detecting privacy leaks, as well as computation
speed. To contribute to a privacy-conscious usage of synthetic data,
we publish Anonymeter as an open-source library.!
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1 INTRODUCTION

Societies in the digital era are faced with the challenge of striking a
balance between the benefits that can be obtained by freely sharing
and analyzing personal data, and the dangers that this practice poses
to the privacy of the individuals whose data is concerned. Replacing
original and potentially sensitive data with some synthetic data,
i.e., data that is artificially generated rather than coming directly
from real individuals, is one of the approaches that attempt to
resolve this tension [8, 46, 51]. Synthetic data captures population-
wide patterns of the underlying potentially sensitive data while
“hiding” the characteristics of the individuals. Popular approaches
for synthetic data generation rely on deep generative models such
as Generative Adversarial Networks (GAN) [23] and Variational
Autoencoders (VAE) [27]. These generative models are trained on
the original and potentially sensitive data to produce a synthetic
dataset that preserves the utility of the original data.

Intuitively, if the generative models are able to generalize well,
the synthetic data should not reflect the particular properties of
any individual original record. This intuition underpins the use of
synthetic data as a privacy-enhancing technology. Unfortunately,
assuming that synthetic data simply carry no privacy risks—despite
being tempting—is too simplistic. Generative models with enough
capacity to express complex data patterns are often found to match
the original data too closely [10, 55, 69]. As a consequence, the
synthetic data will likely present some residual privacy risk. Re-
liably quantifying the privacy risk of synthetic data is therefore
an important, yet still not settled, problem—even though such an
assessment is not just desirable, but often represents a requirement
imposed by legal frameworks, such as the European General Data
Protection Regulation (GDPR [61]), the Canadian Personal Infor-
mation Protection and Electronic Documents Act (PIPEDA [41]),
an California’s Consumer Privacy Act (CCPA [57]).

Differential Privacy (DP) [16] provides a theoretical framework
for upper-bounding privacy leakage. However, a gap exists between
the worst-case privacy guarantee of DP and what can be empirically
measured for practical attacks [38]. Moreover, due to the stochastic
training and inference of generative models, the magnitude of the
effective privacy risks exposed by the generated synthetic data
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cannot be quantified in advance [56]. Instead, the residual privacy
risks need to be measured a posteriori in an empirical fashion
from the generated data. However, since there exist various notions
of practical privacy (e.g., membership privacy, attribute privacy
[63]), there is no unified metric for such a measurement. Instead,
different metrics have been proposed to measure privacy risks for
anonymized data [63]. Yet, interpreting and combining them in a
meaningful way is still a topic subject to research.

In this work, we set out to close this gap by proposing Anonyme-
ter, an empirical and statistical framework that measures privacy
risks in anonymized tabular datasets. Anonymeter implements a
general three-step procedure for risk assessment based on (1) per-
forming privacy attacks against the dataset under evaluation, (2)
measuring the success of such attacks, and (3) quantifying the ex-
posed privacy risk in a well-calibrated and coherent manner. Each
of the three steps is connected to the others via common interfaces
to keep the framework modular and to allow the same risk quan-
tification method to be shared by different privacy risks. For each
privacy attack, the final risk is obtained by comparing the results
of the privacy attack against two baselines; the first resulting from
performing the same attack on a control dataset from the same
distribution as the dataset under evaluation, and the second result-
ing from performing a random attack against the dataset under
evaluation. While the latter provides insights into the strength of
the main attack, the former makes it possible to measure how much
of the attacker’s success is simply due to the utility of the synthetic
data, and how much is instead an indication of privacy violations.
Within this framework, we propose three attacks to quantify the
risks of singling out, linkability, and inference, respectively—the
three privacy metrics defined by the Article 29 Data Protection
Working Party [44], making our framework legally aligned.

We provide an experimental validation of our framework by
testing its ability to detect different amounts of privacy leaks. Our
results demonstrate that the framework is able to detect these leaks,
that the reported risks scale linearly with the amount of privacy
leaks present in the dataset, and that risk-computation is efficient
even on large datasets. We also show (Section 6.4) that Anonymeter
outperforms existing evaluation frameworks for synthetic data [56]
in both computational performance and quality of privacy assess-
ment. Furthermore, in our experiments (Section 6.3), synthetic data
exhibits the highest risks to inference and singling out attacks,
whereas the risk to linkability is comparably low over all datasets
evaluated. This provides empirical evidence for the common intu-
ition that generating synthetic data breaks the one-to-one links
between data records (see, e.g., [11, 20]). As expected, introducing
DP into the training of the generative models [1] causes a general
decrease in the privacy risks reported by Anonymeter; besides, a
higher utility of the generated data corresponds to a higher reported
risk, i.e., the more the synthetic data is close to the original data
the higher the risk reported by Anonymeter.

In this work, we propose implementations of singling out, linka-
bility, and inference privacy attacks. Yet, Anonymeter’s modularity
allows for a simple and consistent integration of additional attack-
based privacy metrics. Anonymeter is designed to be widely usable
and to provide interpretable results, requiring minimal manual con-
figuration and no expert knowledge besides basic data analysis
skills. It is also applicable to a wide range of datasets and to both
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numerical and categorical data types. Anonymeter is sensitive and
able to identify and report even small amounts of privacy leaks.
Although developed for the specific case of synthetic data, our
tool does not make any assumption on how the data is created,
except for requiring consistency of attributes and data types, and
can also be applied to assess other forms of anonymization and
pseudonymization.

The software implementing our privacy evaluations is released
as an open-source library.?

In summary, we make the following contributions:

e We propose Anonymeter, a statistical framework to derive
well-calibrated privacy risks against different types of pri-
vacy attacks in a coherent way.

o To the best of our knowledge, we are the first to introduce

a practical tool for jointly evaluating all the three privacy

risks (singling out, linkability, and inference) defined by the

main privacy regulations [44].

For each risk, we provide a concrete attack algorithm, its

implementation, and thorough experimental evaluation. Our

framework compares favourably to previous work on privacy

evaluation of synthetic datasets (see Section 6.4).

We are the first to propose a practical implementation for

the risk of singling out, and a linkability attack directly mod-

eling the possibility of linking records belonging to specific
individuals, rather than relying on related concepts, such as

membership inference [56].

e We provide our framework, including the attack implementa-
tions, as an open-source library to support practical privacy-
enhanced synthetic data usage.

2 NOTATION AND BACKGROUND

The following notation is used in the rest of the paper: a tabular
dataset X is a collection of N records x = (x1, ..., xg), each with d at-
tributes, drawn from a distribution . We use the subscripts ori and
syn to denote original datasets, i.e., collections of data records sam-
pled from D, and synthetically created datasets, respectively. More

in detail, we denote an original dataset by X = {xclm, - xg g

and a synthetic dataset by Xgyn = {xéyn, - xé‘}/fn}. We make use
of matrix notation to indicate columns in the datasets: X[:, i] is
a vector of size N containing the ith attribute of all the records,
and x[i] = x; is the value of the i! attribute of record x. Finally,
G denotes the generative model from which the synthetic dataset
Xsyn is produced.

2.1 Synthetic Data Generation

In general, synthetic data is produced by a generative model G
that is supposed to learn the distribution 9. However, since this
distribution is usually unknown, the model G is instead trained on
Xori sampled from D. Once trained, the model G(Xyyi) can be un-
derstood as a stochastic function that, without any input, generates
synthetic data records Xsyn [56]. By querying G multiple times, a
full synthetic dataset Xsyn can be sampled. Ideally, the generated
synthetic data should reflect most of the statistical properties of the
distribution D. Yet, since G only has access to Xy, and only learns

Zhttps://github.com/statice/anonymeter
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a partial representation of the data distribution, the generated data
can only approximate D.

Several methods exist to generate synthetic data. A possibility is
to use statistical models, such as Bayesian networks [68] or Hidden
Markov models [15, 40]. Such models generate explicit parametric
representations of 9 and the features to be extracted from X,
are determined beforehand. In contrast, deep learning models for
synthetic data generation, such as GANs [23] and VAEs [27], learn
which attributes to extract during a stochastic training process.

2.2 Privacy-Preserving Synthetic Data

One main reason to generate synthetic data is for the purpose
of privacy-preserving data releases and data sharing: synthetic
datasets are supposed to reproduce the properties of an original
dataset X,y from D without containing personal data from X,y [2,
56]. Yet, recent studies indicate that through high-utility synthetic
data it is still possible for an attacker to extract sensitive information
about the original data [56].

In this work, we use CTGAN [66] to generate the synthetic data
for our experiments. CTGAN is a GAN that uses a conditional
generator to enable the generation of synthetic tabular data with
both discrete and continuous-valued columns. The approach uses a
mode-specific normalization as an improvement for non-Gaussian
and multimodal data distributions [66]. Privacy guarantees can be
integrated into CTGAN using DP [16]. In this case, the generative
model is trained with a DP optimizer [1]. As a result of the post-
processing robustness of DP, the synthetic data generated from
such DP models also enjoy the same level of privacy guarantee as
the trained generative model [2, 26, 45, 70].

2.3 Privacy Metrics and Attacks in Synthetic
Data

Privacy is a multi-faceted concept, which is reflected in the avail-
ability of dozens of different privacy metrics—see, e.g., [63] for an
overview. In the concrete case of measuring the privacy leakage
of synthetic data, many studies rely on similarity tests [67], on
distance metrics calculating the mean absolute error between origi-
nal and generated data records [33], or on measuring the number
of identical records between original and synthetic datasets [30].
When the synthetic data is generated with DP guarantees, the DP
privacy budget, usually denoted by ¢, can also be used to report
on the privacy of a synthetic dataset. However, for most of these
metrics, it is unclear how they translate into privacy implications
in practice and what concrete privacy risks exist for individual data
records [38]. Therefore, using the success rate of concrete privacy
attacks is becoming a common approach to quantifying the privacy
of synthetic data, e.g. [56]. In this work, we integrate into Anonyme-
ter the evaluation of the three privacy attacks that anonymization
techniques must protect from, according to the GDPR [44]: singling
out, linkability, and inference. We close the gap of prior evaluation
frameworks e.g., [56] that only jointly consider a subset of these
legally essential risks. The importance to consider these three risks
against anonymization results from their implication on individu-
als’ privacy: singling out can be seen as a way to indirectly identify
a person in a dataset. At the same time, it can serve as a stepping
stone towards linkage attacks [12], which have been shown to yield
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complete de-anonymization of datasets in the past [36, 58]. Infer-
ence attacks, in turn, can disclose highly sensitive information on
individuals, such as their genomics [7].

Singling Out happens whenever it is possible to deduce that
within the original dataset there is a single data record with a unique
combination of one or more given attributes [44]. For example, an
attacker might conclude that in a given dataset X, there is exactly
one individual with the attributes gender: male, age: 65, ZIP-code:
30305, number of heart attacks: 4. It is important to note that singling
out does not imply re-identification. Yet the ability to isolate an
individual is often enough to exert control on that individual, or to
mount other privacy attacks [9].

Linkability is the possibility of linking together two or more
records (either in the same dataset or in different ones) belonging
to the same individual or group of individuals [44]. This can be
used for de-anonymization, as proven in the past [37, 59]. Due to
statistical similarities between the generated data and the original
data, linkability risks may still exist in synthetic datasets.

Inference happens when an attacker can confidently guess (in-
fer) the value of an unknown attribute of the original data record [44].
An example of successful inference would consist in the attacker
being able to confidently deduce that a record in the original dataset
Xori» With attributes “gender”: male, “age”: 65, “ZIP-code™: 30305
holds the secret attribute “number of heart attacks™: 4.

When measuring privacy risks, an important distinction has
to be made between what an attacker can learn at a population
level (generic information) and on an individual level (specific in-
formation). Generic information is what provides utility to the
anonymized data; specific information enables the attacker to breach
the privacy of some individuals [17]. Anonymeter distinguishes
what the attacker learns from the anonymized dataset as generic
information from specific inference, thus quantifying the privacy
risk (see Section 4.2).

3 RELATED WORK

In this section, we present related work on privacy attacks and
privacy evaluation of (synthetic) datasets.

Privacy Attacks: An extensive theoretical analysis and formal-
ization of singling out has been carried out in [13]. Such analysis
relies on the knowledge of the population distribution O, which re-
quires complex and careful modeling, e.g. [49]. That would make the
evaluation harder to use and to interpret. We will instead approxi-
mate the baseline probability by carefully comparing the success
of the attack on different samples from the data. To the best of our
knowledge, we are the first to propose a singling out attack algo-
rithm for tabular synthetic data, and to implement it in a practical
and usable framework.

The concepts of linkability and inference attacks have extensively
been studied both on synthetically generated datasets [56] and
datasets that were anonymized with other approaches [25, 37, 59].
While many practical inference attacks exist, e.g. [37, 56], our work
is the first one to devise a methodology to measure directly the
linkability risk posed by the release of tabular "anonymized" data,
and to implement it in a practical and efficient algorithm. In addition
to empirical demonstration of the power of those attacks, theoretical
analyses have been introduced, which formalize those concepts and
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show that the success rate of an attack can be improved when
an attacker holds auxiliary information about rare attributes [34].
Finally, background knowledge attacks have been proposed, in which
an attacker holds knowledge about target individuals and uses it
to reconstruct their information [42] and to perform membership
inference [29], i.e., deduce the presence or absence of a particular
individual in the original dataset.

Privacy Evaluation Frameworks: Similar to Anonymeter, other
frameworks exist that rely on using privacy metrics and attacks to
evaluate the privacy of synthetic datasets. Yet, to the best of our
knowledge, we are the first in this line of work to leverage a control
dataset for estimating specific privacy risk in contrast to generic
population-wide risk. [30] uses similarity metrics between original
and generated data records to quantify the risk of re-identification
for data generated with GANSs. [28] calculates a per-data record
privacy by measuring a memorization coefficient based on distance
measures between original and synthetic data records in a latent
space. [3] introduces the framework of differential testing, simi-
lar to the notion of DP, which deems a dataset anonymized when
the inference accuracy from the synthetic data is about the same
whether the user’s record is included in the original dataset or
not. In the medical domain, [43] and [18, 33] evaluate privacy vs.
utility of generative models and synthetic datasets, respectively.
The first two works rely on the notion of membership inference to
quantify the privacy risks, the last one on equivalence classes and
intra-record distances. Finally, attack-based approaches have been
used to quantify the strength of database query anonymization
mechanisms [4].

The framework for privacy evaluation in synthetic data that is
most closely related to ours is [56]. It operates in the same scenario
as we do by treating the data generation mechanism as a black box
and by evaluating the privacy leakage directly on the generated
synthetic data. The privacy leakage is measured in terms of a privacy
gain (PG), which is defined as the difference between the advantage
of an adversary trying to guess secrets about a target data record
given the original data compared to an adversary with access only
to the synthetic data. The attack is formalized as an adversarial
game. For a given target, such games are repeated many times, each
time requiring training of a new generative model and sampling
several synthetic datasets. As a consequence, the computational
cost of the attack is very high which severely limits its usability.
As detailed in Section 6.4, even without taking the training of the
generative models into account, [56]’s methodology is ten times
slower than Anonymeter.

Additionally, our privacy risk metric has several advantages
over the Privacy Gain defined in [56]. First, it is closer to the legal
terminology and therefore easier to understand and explain than
PG. Second, contrary to our work, in [56] there is no separation
between how much of the attacker’s advantage is due to actual
privacy violations and how much of it is instead due to the utility
of the synthetic data. Third, PG is measured from the evaluation of
a few records, typically hand-picked outliers. It is not clear how a
characterization of the privacy of a restricted sample of records can
be extrapolated to a whole dataset. The privacy risk computed by
Anonymeter is instead obtained by attacking thousands of different
targets, making it a more robust metric compared to PG. Anonyme-
ter also naively provides an estimate of the statistical uncertainties
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on the reported risk. Moreover, as we will see in Section 4.2, Ano-
nymeter incorporates sanity checks ensuring that the risk estimate
is based on attack models that are actually effective.

Finally, [56] does not include any evaluation of the singling out
risk. Also, in [56] the linkability PG is not measured directly, but
instead is indirectly derived from a membership inference game.>

4 ANONYMETER FRAMEWORK

We propose a framework which provides a coherent assessment of
diverse privacy risks based on dedicated privacy attacks.

4.1 Threat Model and Assumptions

To provide a conservative privacy risk assessment, we consider the
strongest threat model in which the attacker is in full possession
of the synthetic dataset. Moreover, the attacker holds additional
partial but correct knowledge, called auxiliary information, about a
subset of the original records (the target records). This accounts for
practical scenarios where overlapping data sources are common.
Depending on the amount and quality of the auxiliary information,
more or less powerful attacks can be modeled. We rely on simple
yet effective heuristics to choose the auxiliary knowledge for our
respective attacks (see Section 5 for details). The targeted original
records are chosen at random from the original dataset X,;. That
is, we make no assumption on how the attacker would choose the
targets, resulting in a more robust evaluation of the overall privacy
offered by the synthetic data. If needed, however, the framework
can easily be adapted to attack specific records, for example to
measure privacy risks for some specific sub-population in the data,
or particular individuals.

We treat the data generation mechanism as a black box that
cannot be accessed or queried by the attacker who only receives
the synthetic dataset. Concerning the original dataset X, we
assume that it consists of N records drawn independently from the
population D, and that each record refers to a different individual.
The full original dataset is split into two disjoint sets Xiyain and
Xecontrol- That is, Xori = Xirain U Xcontrol and Xirain N Xcontrol = 0.
The synthetic dataset Xsyy is sampled from a generative model
trained on Xipain exclusively: Xsyn ~ G(Xirain)- In Appendix A we
show that, in the scope of Anonymeter where X ;0] consists of
at least a few thousand data records, training the generative model
on Xirain instead of on the full X, does not affect the utility of the
resulting synthetic data. To evaluate privacy, Anonymeter requires
all three datasets, Xirain, Xsyn, and Xcontrol. All the datasets have
the same number of attributes d, but the number of records might
differ.

4.2 Framework Architecture

Privacy risks in our framework are estimated following a common
procedure, see Figure 1. In this modular design, the analysis is
made up of three sequential steps: (i) the attack phase in which the
privacy attacks are carried out, (ii) the evaluation phase in which
the success of the attacks is measured, and (iii) the statistical risk

3However, linkability cannot be fully measured through membership inference. This
is because linkability is a stronger privacy breach. In fact, establishing a successful
linkage between a target ¢ and some records in a dataset X implies membership of ¢
in X. Yet, the opposite is not true, i.e., even if membership of ¢ in X is established, the
attacker still does not know which records of X are directly linked to the target.



Proceedings on Privacy Enhancing Technologies 2023(2)

// Attackx\\\ ﬂvaluation
| Aux. Info |I
Privacy .
i /ﬁs—/ Evaluation

-Main \

Control

> -Naive
o -Control Risk Success & Stat.
Y Uncertainty
N i kRisk Estimation /

Figure 1: Schematic overview of our framework. The at-
tacker is given access to the entire generated synthetic
dataset and some auxiliary information. (1) In the at-
tack phase, the framework performs three different attacks
(main, naive, and control) each of which outputs guesses on
the original private data. (2) The correctness of these guesses
is then evaluated in the evaluation phase against the origi-
nal training data (main and naive attack) or the control data
(control attack). (3) Based on the evaluation, a final statisti-
cal risk quantification is output in the risk estimation phase.

estimation phase quantifying the privacy leakage for the attack.
How the concrete attacks and evaluation phases are carried out
differs for each evaluated privacy risk, but the way the risks are
derived from the results of the evaluation phase is common to all
cases. This consistent view improves the interpretability of the
different attack results and makes Anonymeter more modular.
Attack Phase: the attack phase consists of executing three dif-
ferent attacks. First, the “main” privacy attack in which the attacker
uses the synthetic dataset Xsyn to deduce private information of
records in the training set Xi,in. Second, a “naive” attack is car-
ried out based on random guessing, to provide a baseline against
which the strength of the “main” attack can be compared. Finally,
to distinguish the concrete privacy risks of the original data records
(i.e., specific information) from general risks intrinsic to the whole
population (i.e., generic information), a third “control” attack is
conducted on a set of control records from X,optyo1. For all the risks,
each of the three attacks is formulated as the task of making a set
of guesses: g = {g1,...,gn, } on N4 original target records. As an
example, a singling out guess could state that “there is just one
person in the original dataset who is male, 65 years old and lives
in area 30305”. The naive attack draws its guesses at random, us-
ing the synthetic dataset only to know the domain of the dataset
attributes. The main and the control attacks generate the guesses
trying to actively leverage the synthetic dataset (and the auxiliary
information, when available) to gain information. They both share
the same attack algorithm, but in the main privacy attack such
guesses are evaluated against Xiain, whereas in the control attack
the guesses are evaluated against X qntro1. Note that Xcontrol 1S com-
pletely independent of the synthetic data generated from Xipain (see
Section 4.1). Hence, if the attacker is successful in guessing infor-
mation about records in X gntrol, this must only be due to patterns
and correlations that are common to the whole population X,
rather than being specific to some training record. Therefore, the
difference between the success rate of the two attacks can provide
a measure of privacy leakage that occurred by training G on Xirain:
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Anonymeter reports a privacy leakage when the attacker is more
successful at targeting Xiain than Xcontrol-

Evaluation Phase: In the evaluation phase, the guesses from
the attack phase are compared against the truth in the original data
to estimate the privacy risk. The outcome of the evaluation phase
is a vector of bits o = {01, ...,0n, }, Where 0; = 1 if the jth guess g;
is correct, otherwise o; = 0. Each attack defines the criteria for a
guess to be considered correct. In the singling out example from
above, the guess would be considered correct if there indeed exists
exactly one such individual in the original data.

Risk Quantification Phase: In the risk quantification phase
success rates of the “main” privacy attack are derived from the
evaluation together with a measure of the statistical uncertainties
due to the finite number of targets. Under the assumption that the
outcome o; of each attack is independent from the others, o can
be modeled as Bernoulli trials. We define the true privacy risk 7 as
the probability of success of the attacker in these trials. The best
estimate r of the true attacker success rate 7 and the accompanying
confidence interval 7 € r + §, for confidence level a are estimated
via the Wilson Score Interval [65]:

_ N5+Zi/2

- Ny + 2%

_ Ns(NA—Ns)Jré
Na + 2% Na

Za

or

5

with Ng = Zfi"i o0; being the total number of correct guesses, and
Zq the probit, i.e., the inverse of the cumulative distribution function
of the normal distribution, corresponding to the confidence level a.
Using Equation (1) and the number of successful guesses for each
attack, we evaluate the success rates for the “main”, “naive”, and
“control” attacks as (7train * Strain)s (Tnaive % Snaive)> and (Feontrol *
Scontrol ) respectively.

The success rate of the naive attack provides a baseline to mea-
sure the strength s of the attack which can be defined as the differ-
ence between the success rate of the main attack against training
records and the success rate of the naive attack:

()

with the error on s obtained via error propagation as ds =

\' 53 + 5r21ai ve’

If the attack is weaker than the naive baseline, i.e., rpaive = 1, the
attack is said to have failed. This can happen in case of incorrect
modeling, for instance when the attacker is given too little auxiliary
information or auxiliary information that is uncorrelated with the
guess’s objective, or when the synthetic dataset has little utility and
it is actually misleading for the attack. In such cases, Anonymeter
warns the user that the results are considered void of meaning and
must be excluded from the analysis. See Table 2 in Section 6.3 for
details on the fractions of generated valid attacks for our three
concrete instantiations of singling out, linkability and inference
risks. Note that these fractions depend on the concrete attacks
and their respective instantiations. Excluding invalid attacks is
important in practice, because it avoids the situation in which “no
risk” is reported due to the incorrect modeling of the attacks.

$ = T'train — 'naive
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For the “control” attack, the attack’s success rate is evaluated
on control records (rcontrol) using Equation (1). Intuitively, if the
synthetic dataset contains more information on the training records
than on those in the control set, this implies 7train = 7control- From
these two success rates the specific privacy risk R is derived as as:

R= T'train —~ Tcontrol ) 3)
1 = Teontrol

The numerator in the above expression corresponds to the excess
of attacker success when targeting records from Xi,in versus the
success when the targets come from X optrol. The denominator
represents the maximum improvement over the control attack that
a perfect attacker (r = 1) can obtain, and helps contextualizing the
difference at the numerator by acting as a normalization factor. For
example, suppose that out of 100 guesses the attacks against the
training and control sets are correct 90 and 80 times, respectively:
Ttrain = 0.9 and reontrol = 0.8. Of the 90 correct guesses of the main
privacy attack, 80 could be explained as being due the utility of the
dataset, leaving the remaining 10 correct guesses to indicate privacy
violations. This 0.1 excess in the success rate ri,i, translates in
a R = 0.5 risk, since the best possible attack can only score 100
out of 100 guesses, i.e., its rate can only be 0.2 higher than r nro]-
Similar ways of normalizing the risk are proposed in [4, 32], with
the difference that in our work the normalizing baseline (rcontrol)
is derived from attacking a control set of records, rather than from
the success of the naive attack.

If both success rates are identical, access to the synthetic data
does not give the attacker any benefit to gain information about
the training data: the success of the attack can be explained by
the general utility of the synthetic data, i.e., it is a consequence
of general inference. If, however, the success rate on training data
exceeds the one on control data, this shows that information has
been leaked from the synthetic data.

Properties of our Privacy Risk: There are no unified require-
ments on properties that privacy metrics should possess [63]. Our
privacy risks align best with the three main requirements of the
privacy metrics formulated by [53]. First, we evaluate the correct-
ness of the guesses generated by the attacker; second, we report the
uncertainty of the risks through confidence intervals; and third, as
demonstrated empirically in Sections 6.1 and 6.4, our proposed met-
ric is accurate as it is able to measure the actual percentage of data
leaked from the synthetic dataset. The experiments of Sections 6.1
and 6.4 also show that our metric is meaningful in the sense that
R ~ 0if (and only if) the evaluated dataset is independent of the
original data (noninterference), and that the reported risk increases
proportionally with the amount of privacy leaks [54]. Finally, our
privacy risks are based on probabilities, namely the probabilities
of making correct guesses on the sensitive data, as suggested for
privacy metrics by [5].

4.3 Practical Privacy Evaluation Bounds

In general, an attack-based privacy analysis provides a lower bound
for the privacy risk (in contrast to theoretical frameworks, such
as DP [16] that provide upper bounds, i.e., worst-case guarantees).
Therefore, the computed privacy risks are just as representative
as the employed attacks are. Yet, in practice, using attack-based
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approaches to quantify privacy leakage has become state-of-the-art
in several domains, such as machine learning, e.g. [35, 39].

To overcome potential limitations of an attack-based approach,
we model powerful and knowledgeable attackers: we always assume
the attacker holds knowledge of the entire synthetic dataset—the
worst case scenario in which the synthetic data is released to the
public. Note that in many practical applications, the value of the
datasets which are processed, see e.g. [14, 21, 22, 62, 64], discour-
ages such scenarios. In addition, for the linkability and inference
estimation, partial but correct auxiliary knowledge of some original
records is also available to the attacker. Finally, we evaluate the
attack strength by comparing to a baseline attack based on the
uninformed guesses from the naive attack. This adds the context
needed to interpret the results correctly. In particular, the results
are only valid if the “main” attack is able to outperform the baseline
scenario.

5 OUR FRAMEWORK’S PRIVACY ATTACKS

This section proposes concrete instantiations of three privacy at-
tacks to assess the fundamental risks of singling out, linkability, and
inference within our framework. We chose to implement attacks
measuring these specific three risks due to their importance in the
legislation: according to the GDPR [44], any successful anonymiza-
tion technique must provide protection against such risks. For each
privacy risk, we present the design and implementation of both the
attack and the evaluation phases. The risk quantification phase is
common to all attacks.

5.1 Singling Out
The singling out attack is given the task to create N4 many predi-
cates based on the synthetic data that might single out individual
data records in the training dataset. As stated above, it produces
guesses like: “there is just one person in the original dataset who is
male, 65 years old and lives at area 30305”. The intuition behind this
approach is that attributes (or combinations thereof) that are rare
or unique in the synthetic data might also be rare or unique in the
original data. Therefore, access to the synthetic data would allow for
generating more meaningful predicates than uninformed guessing.
Attack Phase: For the attack phase, we introduce two algo-
rithms, namely the univariate PredicateFromAttribute and the
multivariate MultivariatePredicate, that can be used to gener-
ate the N4 many singling-out predicates (guesses). While the uni-
variate algorithm creates predicates using single attributes, the mul-
tivariate algorithm relies on the combination of several attributes.
Algorithm 1 samples all unique attribute values in the synthetic
dataset as predicates. For categorical attributes or in case of miss-
ing values, such unique values are values that appear only once in
the dataset. For numerical continuous attributes, we use the max-
imum and minimum value of the respective attribute and create
the predicate based on being smaller than the minimum or larger
than the maximum value. The intuition behind this approach is to
exploit outlier values in all the one-way marginals. Such univariate
predicates are specially designed to exploit privacy leaks in pre-
and post-processing, e.g., when numerical values sampled from the
generative models are scaled to ranges derived from the original
dataset, or when high-cardinality categories such as identifiers or
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Algorithm 1: Creating a univariate singling out predicates
for attribute a.

1 def PredicateFromAttribute(X, a):

2 predicates « [];

3 if Sum (Xsyn[:, @] == NaN) == 1 then

4 ‘ predicates + = "a Is NaN";

5 end

6 if IsContinuous (a) then

7 predicates + = "a < min(Xsyn[:, a])";
8 predicates + = "a > max(Xsyn[:, a])";
9 end

10 for v In Set (Xsyn[:, a]) do

11 if Sum (Xsyn[:, a] == v) == 1 then
12 ‘ predicates + = "a == v";

13 end

14 end

15 return predicates;

addresses are preserved. By running Algorithm 1 for all attributes
in a dataset, we obtain a large collection of univariate singling-out
predicates. The attacker picks N4 of them at random to use them
as guesses.

Algorithm 2: Create a multivariate predicate from the at-
tributes of record x.

1 def MultivariatePredicate(X, attributes, x):

2 predicates « [];

3 for a In attributes do

4 pe""

5 if (x[a] == NaN) then

6 ‘ p < "a Is NaN";

7 end

8 if IsContinuous (a) then

9 if x[a] > median (X[:, a]) then
10 ‘ p < "a = x[al]"

11 else

12 ‘ p < "a < x[a]";

13 end

14 else

15 ‘ p < "a==x[a]";

16 end

17 predicates += p;

18 end

19 predicate « LogicalAnd (predicates);
20 return predicate

Algorithm 2 creates predicates as the logical combinations of
univariate predicates created from randomly selected synthetic data
records. It starts by drawing a random record X from the synthetic
dataset and considering a random set of attributes {as, ...,ag}. A
multivariate predicate is then formulated as the logical AND of the
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univariate expressions derived from the values of .* If attribute a;
is categorical or not a number, the expression sets a; to be equal to
x[a;]. If a; is numerical, the expression sets for values of a; either
greater or equal or smaller or equal than X[a;]. The sign of the
inequality depends on whether X[a;] is above or below the median
of Xsyn[ai], respectively. This latter condition helps creating predi-
cates with a higher chance of singling out. The attacker evaluates
each of these predicates on the synthetic dataset and adds them to
the set of guesses only if they are satisfied by a single record in Xsyy.
The fraction of generated predicates by the multivariate algorithm
that passes this selection depends on the dataset and the number
of attributes used to generate the guesses. For the experiments and
datasets presented in Section 6.3 this fraction is globally ~ 24%, i.e.,
to obtain N4 singling-out predicates, roughly 4N4 predicates must
be generated.

We note that starting from randomly selected synthetic records
and attributes ensures that the attack predicates explore the whole
parameter space while not overfitting to the synthetic dataset.

To quantify the strength of the attack, we implement an algo-
rithm that generates random predicates in order to measure the
probability of creating predicates that single out an individual by
chance. Such predicates are created as the joined logical AND of
univariate predicates of the form: a IT v where a is a randomly
chosen attribute, IT a comparison operator5 selected at random, and
v is a value sampled uniformly from the support of Xsyn[:, al.

The randomly generated predicates from this algorithm are not
evaluated on the synthetic dataset, and reach the evaluation phase
of the analysis without undergoing the selection phase. An experi-
mental evaluation of our attack strength as a function of the number
of attributes is presented in Figure 7 in the Appendix. It illustrates
the effect of the random predicates on the reported risk.

Evaluation Phase: For the univariate and multivariate algo-
rithms, as well as for the naive attack, the results are sets of N4
predicates. These singling out guesses are evaluated on the original
dataset to check whether they represent singling-out predicates in
the original data as well.

Risk Quantification Phase: As for each of the three privacy
attacks, the output of the evaluation is used for risk quantification.
To derive a unique singling out risk estimate, both the univariate
and multivariate attack algorithms are run, and the one with the best
performance (highest risk) is chosen to provide a more conservative
privacy assessment.

In contrast to the other privacy attacks, in the case of the singling
out attack, care must be taken when comparing the results of the
attack against the training set riy,i, and the control set regpirol- The
ability of the attack to single out a record is strongly dependent
on the size of the dataset. If, as it is often the case in practice,
the control dataset is smaller than the training set, the number of
predicates that successfully single out in the control dataset is lower
by construction than in the case of singling out in the training set.
To be able to measure the true privacy risk with Equation (3) we
need to know how many predicates would have singled out in a
population of size Niy,in, given the number of predicates that single

4For example, a multivariate singling-out predicate using five attributes and gener-
ated from the Adults dataset looks like this: “race=‘Asian-Pac-Islander’ & relation-
ship="Husband’ & education="Bachelors’ & capitalloss >1902 & country="Philippines’”.
5_

=#>,<,2, <.
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Synthetic data

Gender Age ZIP Code Heart Attacks
External dataset A External dataset B
Gender  ZIP Code Age Heart Attacks

Table 1: Setting of the linkability risk evaluation. The orig-
inal external datasets A and B (bottom, left and right tables,
respectively) share some attributes with the synthetic data
(top) which can then be used to establish a link between
datasets A and B.

out in a population of size N gnirol (Where Neontrol < Nirain)- We
do this by developing a model based on the Bernoulli distribution
which is then fitted to the data to derive the scaling factor needed
to compare ripain and reontrol accounting for the different sample
sizes. This model is presented in Appendix B.

5.2 Linkability

The linkability attack tries to solve the following task: "Given two
disjoint sets of original attributes, use the synthetic dataset to deter-
mine whether or not they belong to the same individual". We assume
that there exist two (or more) external datasets A and B containing
some of the attributes of a set of original data records and that these
attributes are also present in the synthetic data. An example of such
a scenario is depicted in Table 1.

Attack Phase: In the linkability attack, the target records of the
attack are a collection T of N4 original records randomly drawn
from X,,;. We assume that the attacker has some knowledge on the
targets, ie., the values of the attributes in datasets A and B: T[:, A]
and T[:, B]. The goal of the attack is then to correctly match records
of T[:, B] to each record in T[:, A], or vice versa.

To do so, for every record in T[:, A] the attacker finds the k
closest synthetic records in Xy [:, A]. The resulting indices are 4 =
(l?, e lﬁA), where each l‘i‘1 is the set of indexes of the k synthetic

records that are nearest neighbours of the ith target in the subspace
of feature set A. The same procedure is repeated on the feature
set B, resulting in the indexes 1B of Xsyn[:, B]. To solve the nearest
neighbour problem, we use a simple brute force approach using the
Gower coefficient [24] to measure the distance between records.
We choose this distance since it naturally supports inputs with both
categorical and numerical attributes. For categorical attributes, this
distance is 1 in the case of a match (or if the two values are both
NaNs®), and 0 otherwise. For numerical attributes the distance
is equivalent to the L; distance, with the values scaled so that
[xi — xj] < 1Vxj, x5 €.

The attack procedure is then repeated using the synthetic dataset
to establish links between N4 target records drawn from the control
o and 1B Finally,

set. This results in the two sets of indexes 14 .
co control

ntr

SOf the three possible ways in which NaNs can be compared (“NaNs are equal to
anything”, “NaNs are equal to nothing”, and “NaN is equal to NaN”) considering
only “NaNs equals to NaNs” gives a broader distribution of distances, which helps
identifying close-by records, and gives more effective comparisons in the presence of

to suppressed/missing values.
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a naive attack is implemented to provide a measure probability of
finding the correct link by chance. For this lfaive and lfaive are
obtained by drawing indexes uniformly at random from the range
[0, nsyn — 1] where ngyn is the size of the synthetic dataset.

Evaluation Phase: For each of the N4 targets, we check whether
both identified nearest neighbor sets share the same synthetic data
record. If they do, the synthetic record allows an attacker to link to-
gether previously unconnected pieces of information about a target
individual in the original dataset. The attacker scores a success for
every correctly established link. The outcome o of this evaluation
is:

4)

1°71 .
0 otherwise.

1 ifInIB£0
oi(1f 15>={ RN
This evaluation is performed on the outputs of the three attacks:

(14,18) for the attack on training records, (14 » 18 l) for the
N ]B control’ “contro

attack against the control set, and (I}, 1" . ) for the naive attack.
By default, the linkability attack is performed with k = 1, that is, it
considers only the first nearest neighbor. Extending the search to
larger values of k helps relax the definition of successful linkage
by tolerating a certain degree of ambiguity. This strengthens the
attack and is helpful for evaluating synthetic data where no direct
one-to-one link between data records might exist.

5.3 Inference

For the inference attack, we assume that the attacker knows the
values of a set of attributes (the auxiliary information) for some tar-
get original records. The task of the attacker is to use the synthetic
dataset to make correct inferences about some secret attributes of
the targets.

Attack Phase: The core of the inference attack is a nearest
neighbor search, similar to what is done in [37]: for each target
record, the attacker looks for the closest synthetic record on the
subspace defined by the attributes in the auxiliary information.
The nearest neighbour algorithm is the same as that discussed
in Section 5.2. The values for the secret attribute of the closest
synthetic record constitutes the guess of the attacker which can then
be evaluated for correctness. The attack is then repeated against
the targets from the control set. Finally, the probability of making a
correct inference by chance is measured by implementing a naive
inference attack where the attacker’s guesses are drawn randomly
from the possible values of the secret attribute.

Evaluation Phase: For evaluation, we say that the attacker
has made a successful inference if, for a given secret attribute, the
attacker’s guess is correct. Comparing the guesses with the true
values of the secret in the original data, we count how many times
the attacker has made the correct inference. If the secret s; is a
categorical variable, a correct inference requires recovering the
exact value. For numerical secrets, the inference is correct if the
guess is within a configurable tolerance § from the true value:

@ < 6 if i numerical continuous
0i(si,9i,0) = 1
0 if 51 # g; and i categorical.

®)

if s1 = g; and i categorical
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Note that since the same § is applied to the main and the control
attack, the choice of the particular value of § has little impact on
the results of the inference analysis.

6 EXPERIMENTAL EVALUATION

For practical evaluation, we use three tabular datasets, namely
"Adults" [48], 1940 US Census [52] ("US Census" in the following),
Texas Hospital Discharge Data Public Use Data [60] ("Texas" in
the following). The Adults dataset contains records with 15 mixed-
type columns, the Census dataset has 97 mixed-type columns, and
the Texas Hospital dataset holds data records with 193 mixed-type
columns. The records in the Adults dataset are assigned at random
to the training and control dataset with an 80%-20% split (39074
training records and 9768 in the control set). The other two datasets
are much larger than Adults, and we selected a subset of 50000
records chosen at random for the training dataset, and an equal
number of records for the control set. To facilitate synthetic data
generation and produce synthetic data with high utility, we consider
subsets of 37 and 28 columns for the US Census and the Texas dataset,
respectively. They are listed in Appendix C. The choice of which
columns are included in this analysis has been based on criteria
such as cardinality, number of empty rows, and the presence of
other columns which are almost exact duplicates.

6.1 Linearity of Risk Estimates

This set of experiments demonstrates the ability of our Anonymeter
to detect and measure various amounts of privacy leaks.

To assess our privacy risk estimates based on some "ground
truth”, we first evaluate them without relying on synthetic data
since no synthetic data (or anonymization mechanism) can be as-
sumed free of privacy risks. Instead, we split the original dataset
in three non-overlapping populations: a training, a control, and a
release set of records. The latter one plays the role of the synthetic
dataset in these experiments. Since the three sets are independent,
no information specific to training or control data can be found in

the release set. Based on the training and the release set, we create a

“leaky synthesiser”. The leaky synthesizer outputs a dataset Xsl;g ky

of size m composed by a fraction f; € [0, 1] of the training data
while the remaining records are taken from the release set. The frac-
tion of leaks f; is the main parameter of this analysis: it represents
how many training records (mf;) are directly disclosed. If f; = 0
the leaky synthesizer will exclusively output data records from the
release set, thus offering maximum privacy to the training records
(noninterference). When f; = 1 the leaky synthesizer outputs solely
training records, so that privacy is maximally violated.

For these experiments, we set the number of generated predicates
N4 to 2000. Ny is one of the free parameters of the analysis and
its main influence is to control the statistical uncertainties on the
risk estimates. Increasing N4 makes the risk estimate more robust,
such that in a practical setting, N4 should be set to yield acceptably
small confidence intervals.

The other main parameter of the analysis is the amount of at-
tributes that are used to mount the attacks. This corresponds to the
auxiliary information for the linkability and inference attacks, and
to the number of attributes in the singling-out predicates in the
multivariate singling out case. For brevity, in the following we refer
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Figure 2: Estimated privacy risks as a function of the at-
tacker’s auxiliary knowledge for different amounts of artifi-
cial privacy leakage. The results from different datasets are
arranged vertically: Adults dataset (top), US Census (middle),
and Texas (bottom). The horizontal panels show the differ-
ent privacy risks. From left to right, singling out, linkability,
and inference. The shaded areas correspond to the 95% confi-
dence interval, as measured with the methods presented in
Section 4.2.

to this parameter simply as auxiliary information for all cases. In-
creasing auxiliary information results in stronger attacks. We vary
the auxiliary information from the minimum value of one attribute
(two in the case of linkability) to all the available attributes (minus
one, the secret, for the inference attack), thus modeling increasingly
more powerful attacks.

Figure 2 presents the main results of our experiments. First of all,
we observe that by increasing the fraction of artificial privacy leaks—
i.e., by replacing a certain amount of data records in the release
set by training data records—the privacy risk increases accordingly.
Second, the results highlight that for all three datasets, the measured
privacy risks increase linearly with an increased amount of auxiliary
attributes known to the attacker. As depicted in Figure 2, as soon as
the auxiliary information covers 10 to 20 attributes, the attack is able
to fully exploit the whole fraction of the implanted privacy leaks,
and the reported risks saturate to match the fraction of artificially
introduced leaks. The linear behaviour of the risk estimates is of
great importance when it comes to communicating and interpreting
the results of Anonymeter: the framework matches the intuition
that the reported privacy leakage grows linearly with the privacy
leakage encountered in the data.

When comparing the risk estimates of the different attacks over
the three datasets, we observe that the privacy risks in the Texas
dataset are higher than in the other two datasets. This is likely due
to the many columns with a large number of unique values: 12 (resp.,
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8) of the 28 columns in the dataset have more than 100 (resp., 1000)
unique values. These quasi-identifiers make attacking this dataset
particularly easy. We note that the linearity between the reported
risk and the amount of privacy leaks is not fully preserved for the
linkability attack in the Adults and the US Census dataset (see the
second column, second and third row in Figure 2). Especially for
the Adults dataset, the reported linkability risks is low, < 20%, even
for high fractions of privacy leaks. This result is probably due to
the intrinsic properties of the dataset, namely the relatively small
number of columns and a prevalence of low cardinality categorical
attributes. These factors result in many ambiguous links that the
attacker cannot leverage.

Equally important, the reported risks are roughly zero when no
privacy leaks occur. This "zero-point” of the risk measure derives di-
rectly from the fact that the reported risk corresponds to the excess
of success by an attacker in comparison to the control baseline—see
Equation (3). This property is of great help in practical settings,
since it eliminates any possible ambiguity in the interpretation of
the measured risks. Any non-zero risk reported by Anonymeter
has to be seriously inspected. In particular, since the framework
provides a per-column estimate of the privacy risks, it helps iden-
tify which attributes, alone or in combinations, exhibit the largest
risks (and thereby expose a lot of information on the original data).
As an example, Figure 8 in the Appendix provides an overview
on how the inference risk varies depending on which secret at-
tribute the attacker tries to infer. This information provided by the
framework can support the decision-making around synthetic data
release: based on the setup, high-risk columns could be removed or
perturbed to decrease the privacy risk before releasing the data.

6.2 Synthetic Data Generation

This section describes how we generate the synthetic data for pri-
vacy evaluation using CTGAN [66]. We rely on the original imple-
mentation of the algorithm’, as well as a DP version of the model.?

6.2.1 Synthetization Setup. For the synthetization with CTGAN,
we use the default hyperparameters as specified in the documen-
tation.” Training DPCTGAN requires more tuning, as we experi-
mentally verified that no usable synthetic data is obtained when
running with default parameters. Through a hyperparameter search,
we identified the best learning rates for the generator and discrimi-
nator to be 107> and 1073, respectively. For each generator update,
the discriminator is updated five times, as proposed in [6]. More-
over, as for CTGAN, we use the log frequency for the categorical
levels in conditional sampling (log_frequency is True). Finally,
for all datasets, we use a batch size of 64.

DP Hyperparameters: Since DPCTGAN cannot be applied to
continuous data, the data must be pre-processed before training
the model. For details on the pre-processing and its impact on
the DP guarantees, see Appendix D. We set the noise multiplier
in the DPCTGAN training to 0.5 and the clip norm to 10. With
these hyperparameters, we run DPCTGAN for different numbers
of epochs (10, 20, 50, 100, 200, respectively) and select the synthetic

"https://github.com/sdv-dev/SDV
8https://github.com/opendp/smartnoise-sdk/tree/main/synth
“https://sdv.dev/SDV/user_guides/single_table/ctgan html#how-to-modify-the-
ctgan-hyperparameters
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dataset with the highest utility (see Section 6.2.2 for an overview on
how the utility is computed). For Adults and US Census the highest
utility data results from 100 training epochs, while for Texas 10
epochs yield the best utility. The rightmost column in Table 3 and
Figure 9 in the Appendix provide an overview on the utility of each
generated dataset. The achieved privacy levels depend on the batch
size, on the noise multiplier and on the number of training epochs,
and are ¢ = 32 for Adults, ¢ = 28 for US Census and ¢ = 11 for
the Texas dataset. Note that, even though from a theoretical point
of view such large values for the privacy budgets might not yield
meaningful privacy guarantees, it has been shown that the use of
DP, even in the large ¢ regime, still results in increased privacy
protection in practice [38].

6.2.2 Measuring Utility. A utility score between 0 and 100 is at-
tributed to each synthetic dataset as a measure of its data quality.
Such score measures three different aspects of the data: marginal
distribution similarity, pairwise dependency similarity, and similar-
ity in terms of query counts. Each aspect is quantified separately
and the utility score is obtained by averaging them. The marginal
distribution similarity is measured using the Jensen-Shannon di-
vergence [19] between original and synthetic data if the variable
is categorical, or the Kolmogorov-Smirnov statistic [31] for con-
tinuous variables. If the data consists of multiple variables, the
marginal score is an average over the single variable scores. The
pairwise scores measure how similar correlation, correlation ratio,
or mutual information are for a pair of variables in the original
and synthetic data. The score is computed based on the absolute
error between the original and synthetic statistics. If more than
one pair of variables is examined, the pairwise score is averaged
over all pairs. For the query counts similarity, we create a number
of random queries and measure how many rows in the original
and synthetic data match each query. We then compute the score
as the correlation coefficient between the original and synthetic
query response sizes. Figure 9 in Appendix E summarizes the utility
scores obtained for each dataset and synthetization algorithm. Note
how the DP version of the same algorithm gives lower utility.

6.3 Evaluating Privacy Risks of Synthetic Data

In this set of experiments, we apply Anonymeter to the evaluation
of the three privacy risks on the generated synthetic data.

6.3.1 Evaluation Setup. For a comprehensive evaluation of the
privacy risks of the synthetic data we explore a variety of settings
for the attacks algorithms, similar to the experiments of Section 6.1.
In particular, different amount of auxiliary information is evaluated.
For each setting, we use N4 = 2000, repeat the analysis twice and
then average the results over both runs.

For the singling out evaluation we execute both the univariate
and multivariate algorithm. For the latter, we repeat the attack with
a number of attributes varying between 3 and 12. The final privacy
risk is derived from the most successful attack. For linkability dif-
ferent amounts of auxiliary information are considered, ranging
from two columns to the maximum number of columns d in the
datasets. For each of the setups, the privacy risks are computed by
considering the k nearest neighbors within the synthetic dataset
with k € {1,2,...,10}. Considering k > 1 neighbours makes it
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Dataset Method Singling out  Linkability Inference
Adults CTGAN 100% 68% 86%
DPCTGAN 90% 52% 77%
Texas CTGAN 84% 79% 86%
DPCTGAN 24% 41% 60%
US Census CTGAN 90% 82% 88%
DPCTGAN 88% 73% 85%

Table 2: Fraction of risk estimates which resulted in a valid
attack, i.e., for which the success rate of the main privacy at-
tack is above that of the random baseline algorithm. Percent-
ages are given over the 120, 480, and 3460 computed privacy
estimates for singling out, likability, and inference, respec-
tively.

possible to compensate for the fact that synthetic data might not
keep one-to-one links between data records, as described in Sec-
tion 5.2. To evaluate inference we mount a set of attacks against
each column in the dataset using between 1 and d — 1 other columns
as auxiliary information.

In total, the above settings result in 120, 480, and 3460 computed
privacy estimates for the singling out, linkability, and inference
risks, respectively, each corresponding to a different combination
of attack settings, dataset, and generative model.

6.3.2  Quality Cuts. In the following, we present the results only
for those settings for which the main privacy attack is stronger than
the random baseline (see Section 4.2, valid attacks). The fraction of
such settings is presented in Table 2 for the synthetic datasets gen-
erated by CTGAN and DPCTGAN. Furthermore, we exclude attack
runs from the results where the success rate r. in the control attack
is greater than 0.9, i.e., attacks where the population-level privacy
leakage is very high. In such cases, any additional privacy risk
induced through the synthetic dataset that appears when r; > r,
must be relatively small. Accurately measuring such small effects
often requires larger values of N4 than those used in our analy-
sis due to the underlying statistical randomness. Applying these
criteria led to excluding approximately 7% and 22% of the results
on the inference analysis for the Texas and US census datasets,
respectively. Results of the singling out and linkability attacks, and
any results for the Adults dataset are not affected by this cut.

6.3.3  Evaluation Results. We evaluate the privacy risks for all three
attacks on the synthetic datasets generated by CTGAN and DPCT-
GAN. Figure 3 shows that, for the Adults and the US Census datasets,
the synthetic data generated with DP guarantees exhibit smaller
privacy risks than their non-DP counterpart. When considering the
ratios of different privacy risk scores between the non-DP and DP
synthetic data for Adults and US Census, we observe that the ratio
for inference (Adults: 1.52, US Census 2.18) and linkability (Adults:
1.82, US Census: 4.53) are higher than for singling out (Adults: 1.24,
US Census 1.25). This suggests that DP mitigates the former two
privacy risks to a higher extent than the singling out risk. We at-
tribute the cause of such difference to the fact that, regardless of
how the generative model is trained, the values of the categorical
attributes in the synthetic dataset are sampled from those present in
the original dataset (see [50] and the discussion in Appendix D for
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details). Of the three privacy attacks, singling out is the one which
puts the greater emphasis on the exact values of these attributes.

However, for the Texas dataset, despite having a smaller DP level
¢, the mitigation of the privacy risk offered by DP is not as effective.
We suspect that this is either a result of the DP guarantees not being
protective enough, or of the pre-processing described in Appen-
dix D which preserves too detailed information on the respective
categorical diagnostic codes in the dataset, or of a combination of
both effects together with the intrinsic properties of that particular
dataset (number of attributes, their distributions and their ranges).

Furthermore, we see that risks reported for linkability are low
over all three datasets. This supports the common intuition that
synthetic data indeed does not preserve one-to-one links between
data records.

We also display the privacy risks as a function of the auxiliary
information available to the attacker. For linkability and inference
risk, the amount of auxiliary information is given by the number of
auxiliary columns, whereas for singling out, the amount of auxiliary
information corresponds to the number of attributes used to create
the predicates. Figure 11 in Appendix E shows the respective risks
for each attack.

Figure 10 in Appendix E depicts the linkability risk not only
as a function of the number of auxiliary columns, but also as a
function of the number k of nearest neighbors used to determine
the linkage for both CTGAN and DPCTGAN. Although a clear trend
can be observed, showing an increase in the reported linkability
risk as the number of auxiliary information columns grows, the
effect of including a higher number of neighbors in the nearest
neighbor search is less consistent. This further supports the thesis
that synthetic data indeed helps thwart linkability attacks.

As seen in Section 6.2.2, synthetic data generated with CTGAN
has more utility than those from DPCTGAN. Table 3 compares the
changes in the measured privacy risks among data generated with
the respective generator models. In both the Adults and US Census
datasets, we observe that the data generated with DP guarantees ex-
hibit lower privacy risks. This might also be explained by synthetic
data with higher utility more closely matching the original data,
thereby exposing an increased risk to the various privacy attacks.
In the Texas dataset, however, the privacy risks are similar for both
CTGAN and DPCTGAN and they remain low even if CTGAN offers
better utility.

6.4 Quantitative Comparison with Previous
Work

In this experiment, we compare our methods with [56] which we
refer to as Synthetic Data Release (SDR [47]).

To evaluate privacy risks, we rely on the "leaky synthesizer"
methodology presented in Section 6.1. We instantiate six different
leaky synthesizers, each one corresponding to a different f; between
0 and 1 and use SDR to evaluate their linkability and inference
privacy risks, leaving all the analysis settings unchanged from those
presented in [56]. The analysis uses the Texas dataset included in
the SDR code release [47], which contains a smaller set of columns
than those used in the rest of this paper (18 instead of 28). The
leaky datasets created for evaluating SDR are saved to disk, and
are then evaluated using Anonymeter. For this evaluation, we vary
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Figure 3: Overview of the privacy risks scores for different datasets and synthetization methods. For the sake of visualization,

the linkability risk score has been increased by a factor ten.

us_census  texas

adults  us_census

texas

Dataset Method Singling out Linkability Inference Utility
Adults CTGAN 0.0548 + 0.0134  0.0012 + 0.0003 0.0161 + 0.0031 88
DPCTGAN  0.0441 + 0.0084 0.0007 + 0.0002 0.0106 + 0.0021 79
Texas CTGAN 0.0028 £+ 0.0020 0.0009 + 0.0002 0.0098 + 0.0030 88
DPCTGAN  0.0049 + 0.0037 0.0007 + 0.0002  0.0095 £ 0.0019 71
US Census CTGAN 0.0042 £+ 0.0032  0.0029 + 0.0006 0.0286 + 0.0057 74
DPCTGAN  0.0033 + 0.0022  0.0006 + 0.0002 0.0131 + 0.0023 63

Table 3: Measured risks and utility scores for the different attack types, datasets, and generative models. The reported risks are
obtained by averaging over all the attack settings (see Section 6.3.1) and the reported uncertainties shows the 95% confidence

interval computed via bootstrapping.

the number of auxiliary information used to mount the attack
between 10 and the maximum number of available attributes. For
the linkability attack, we consider linkability at the level of the
closest neighbour only (see Section 4.2), as done for the experiments
presented in Section 6.1.

As described in Section 2, the metric used in SDR is the Privacy
Gain (PG). In our work, we instead use the privacy risk (R). These
two quantities are defined differently and therefore care must be
taken when comparing them: in particular, one should not assume
that PG = x has the same meaning as 1 — R = x. However, both
serve the same purpose and one should expect that a decreasing
1 — R would be matched by a reduced PG—and vice versa, so that
a high level comparison is indeed possible. Figure 4 presents the
results of such a comparison between SDR and Anonymeter for
different values of f;.

For the linkability attack (top row), the success of SDR is strongly
influenced by the selection of the target records. For randomly
selected targets, the PG is always high and shows only a mild
dependency on f;. When the evaluation targets selected outlier
points (the same as in [56]) we see a step-like variation of PG with
the f;: PG ~ 1 for f; < 0.5 and PG ~ 0 for f; 2 0.5. For the
inference attack, the performance of SDR varies greatly depending
on whether the secret that is being guessed is categorical (RACE,
middle row) or continuous (LENGTH_OF _STAY, bottom row). In the
former case, PG goes from ~ 0.4 to < 0 across the range of privacy
leaks, again showing a sharp drop at f; ~ 0.5. When the secret is
continuous however, PG remains ~ 1 for all values of fj, even if the
synthesizer leaks the entire training data.

In contrast, the results of Anonymeter, for both inference and
linkability, vary linearly with f; between 1 — R = 1 for f; = 0
and 1 — R = 0 for f; = 1, as expected. This result aligns with the
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experiments presented in Section 6.1 and confirms that Anonymeter
outputs “well behaved” privacy metrics.

The results support our claim that Anonymeter is a robust way to
capture various degrees of privacy leaks. Perhaps more importantly,
Anonymeter never fails to report R > 0 when privacy leaks are
present. Anonymeter also offers better scalability to large datasets
than SDR. This is because SDR requires training dozens of models
and generating thousands of synthetic datasets, which restricts the
practical usability of the method to datasets with a maximum of tens
of thousands of data records. For example, for each of the 6 leaky
synthesizers, SDR created 2550 and 1250 synthetic datasets to ana-
lyze inference and linkability, respectively. In contrast, Anonymeter
only requires one realization of the synthetic dataset and can eval-
uate the privacy of large synthetic datasets with millions of rows
within less than one day of computing time using rather inexpen-
sive general-purpose virtual machines with 64 virtual CPUs. For
the analysis just described, SDR was 10 times slower than Ano-
nymeter in wall clock time. Such performance difference would
have been even more pronounced for a “real” synthesizer using
time-consuming training algorithms.

7 DISCUSSION AND FUTURE DIRECTION

The evaluation of Anonymeter on singling out, linkability, and
inference risks highlights the effectiveness of our framework to
provide a coherent assessment of legally meaningful privacy met-
rics. Not only does Anonymeter allow us to analyze general privacy
leakage as a function of the attacker’s power, but at the same time it
helps identify concrete privacy violations in the synthetic datasets.
In particular, Anonymeter significantly outperforms existing frame-
works for privacy evaluation of synthetic data in both the detection
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Figure 4: Privacy gain PG (blue) and 1 — R (orange) as a func-
tion of the amount of privacy leaks. The plots on the left
side are obtained from the analysis of hand-selected target
records (the same as those chosen in [56]), those on the right
uses 10 randomly chosen targets. The blue points report the
PG of each target. The orange squares present the privacy
risk estimated for various amounts of auxiliary information.
Although the two metrics are reported on the same axis, care
must be taken when comparing their values. See text for de-
tails.

of privacy leakage and computational complexity. This is a cru-
cial step on the way towards leveraging the full potential of using
synthetic data while keeping track of the privacy implications.

Moreover, the modular nature of Anonymeter facilitates the
future integration of new and potentially stronger attacks for evalu-
ating the three privacy risks analyzed in this work. Privacy attacks
that evaluate other aspects of privacy, such as membership infer-
ence, can also be integrated. This flexibility allows the framework
to adapt to and to meet future requirements from emerging and
changing privacy regulations.

Another advantage of Anonymeter is that it separates the evalu-
ation of the success rate of the privacy attacks from the calculation
of the reported privacy risks. Due to the statistical nature of Anony-
meter’s risk quantification phase (where each attack simply yields
a boolean array), the privacy risk is deduced from the main attack
and the baselines, which provide the necessary context for turning
attack success into expressive privacy risks.

Since Anonymeter treats the synthetic data generation mecha-
nism as a black box and solely utilizes the generated dataset, the
framework can be used on datasets anonymized with other methods.
Anonymeter can even be applied to an original dataset to identify
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individual data records with high privacy risks. This assessment
can, among others, serve as a pre-filtering mechanism to identify—
and, for example, remove—high-risk data records before training
a generative model on the original data. This can lead to reduced
privacy risks for the generated synthetic dataset.

In this work, we apply Anonymeter solely to perform privacy
assessments of entire datasets. However, the framework can be
directly applied to quantify the privacy risks associated with a
particular individual (or subgroup of individuals) in the dataset.
Therefore, the generation of guesses in the attack phase just has
to specify the respective individual(s) instead of using random
targets. To provide a more fine-grained risk assessment over the
entire dataset, the target selection in our framework could also
rely on identifying targets with high privacy risks and selecting
these for generating the guesses. This would help approximate the
upper bound on privacy leakage in the dataset more closely than
an assessment over randomly chosen targets.

Future work could also look into the extension of Anonyme-
ter for assessing additional trustworthiness aspects in synthetic
datasets, such as their fairness, or existing biases towards certain
subgroups of individuals, thereby supporting a joint assessment of
these different aspects together with utility and privacy of the data.

8 CONCLUSION

Synthetic data has the potential to mitigate existing tensions be-
tween the need to share and utilize sensitive datasets and the pri-
vacy concerns of the individuals whose data is included in these
datasets. The fact that the actual privacy leakage in such datasets is
hard to quantify, hinders leveraging the high potential of the data.
To close this gap, we propose Anonymeter, a statistical framework
for jointly quantifying different privacy risks in synthetic datasets.
Within this framework, we implement concrete attacks to measure
the privacy risks of singling out, linkability, and inference—the
three risks that anonymization methods must mitigate to be legally
compliant with existing privacy legislation. Our work is the first
to propose practical attacks directly measuring the singling out
and linkability risks posed by the release of a synthetic dataset.
The experiments we conduct highlight that Anonymeter is able to
report privacy risks in a coherent and fine-grained manner, making
the framework a valuable resource for identifying privacy leakage
and quantifying the corresponding risks. We also demonstrate that
Anonymeter significantly outperforms prior work both in finding
privacy leaks as well as in usability. By making Anonymeter avail-
able as an easy to use open source library, we hope to contribute
to a more mature and privacy-aware usage of synthetic data. In
particular, we want to help avoid dangerous situations in which,
due to the lack of usable privacy analysis, synthetic data is simply
“trusted” to be private.
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A UTILITY OF SYNTHETIC DATA AND SIZE
OF CONTROL DATASET

Anonymeter requires the user to set aside a small portion of the
original data for the control dataset. We perform an ablation study
to determine how the reduced size of the training set impacts utility.
In this experiment, we synthesize the three datasets using CTGAN
and the same setup as described in Section 6.2.1. For each of the
three datasets, the training set is made of a varying fraction (from
10% to 99%) of original records. A synthetic dataset with the same
number of samples as the original data is then created starting from
the different sized training sets, and its utility is evaluated using
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the method proposed in Section 6.2.2, comparing it to the entire
original dataset. The entire process is repeated three times and the
results aggregated to account for the randomness involved in both
training and sampling a generative model.

The results are presented in Figure 5. As expected, there is a
degradation in utility with decreasing size of the training data.
However, this effect is mild, especially if one considers that the
control dataset needs to contain just as many records as the number
of attacks (Ny;s4cks) that will be performed during the evaluation.
A few thousands records in the control set is generally enough
to have small statistical uncertainties on the measured risks. The
Nattacks = 2000 as used in this work corresponds to a relative size
of the control set of 4%, that is, 96% records can be used for training.
As visible in Figure 5, there is no measurable difference in utility
for such small control size fractions.

To conclude, our ablation study shows that, if the control dataset
is relatively small (i.e., less than 20% of the total), utility is hardly
affected. The requirements of Anonymeter to have a control dataset
does not represent a limitation to its practical use. The situation
might be different in case of very small datasets or if the focus is
on rare records (for example, in the case of anomaly detection). For
both these cases, however, the use of synthetic data can be very
problematic.

95 +
90 4
@
S 85 -
[}
E dataset
E] ® adults
%" 80 1 us_census
g ® texas
75
70 A

0 20 40 60
Size of control data [%]

80

Figure 5: Measured utility as a function of the size of the con-
trol dataset for the Adults (blue), US Census (orange), and
Texas (green) dataset.

B MODELING SINGLING OUT SUCCESS FOR
DIFFERENT POPULATION SIZES

The success of a singling out attempt depends on the size of the
target population. A birth date will likely single out an individual in
a sample of 365 people, but not when considering all the inhabitants
of a big city. In this section we present a model that allows us to
compare the singling out success rates riin and reontrol in the
general case in which the training set is larger than the control set.
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Quantifying Privacy Risk in Synthetic Data

More formally, let Nirain and Neontrol be the number of records
in the training and control set, respectively (generally N.ontrol <
Nirain)- The attacker builds N predicates generated from the syn-
thetic dataset: myp,in of these isolate a record in the train dataset,
and Mmcontro] 1solate a record in the control dataset. We want to
derive M¢ontrol, the number of predicates that would isolate records
in the control set, if the control set had Niy,iy many records.

The probability that a predicate isolates a record in a population
depends on the weight w of the predicate, i.e., the probability that
it is satisfied by exactly one record sampled from the data gener-
ating distribution D. In particular, for a population of size n, this
probability is given by [13]:

P(w,n) = nw(1 — w)" L.

(©)

As w depends on the distribution D, which is unknown, Equa-
tion 6 cannot be used directly to compensate for the different size
of the control set. However, the predicates we evaluate are fixed
(generated by the attack) and so are their weights, since they are
fully defined by the query and statistic of the population of inter-
est. Moreover, these predicates single out in the synthetic dataset
(which has size Nipain), so their weights should be small, and of the
order of 1/Nsyn. To focus on this low-weight regime we integrate
P(n, w) in the range [0, weg]. Our model then becomes:

Weff
S(n) = A/ P(w, n)dw. 7)
0

The parameter wes can be interpreted as the "effective weight" of
the set of attack predicates, while A is a normalization constant to
convert the probability into counts. To determine these parameters
for the specific dataset and attack predicates, Anonymeter evalu-
ates the attack predicates on a set of samples of control records of
different sizes, in order to measure how the number of successful
singling out predicates changes with the dataset size n. The eval-
uator automatically samples 10 different values for n from range
[1000, Neontrol]s and for each it repeats the measurement on five
different samples of control records, selected at random without
replacement from the control set. This gives enough data points
(five for each of the ten values of n) to fit our simple two parameter
model with confidence. Once the parameters of S(n) have been
fitted, we can derive M¢gntro] as:

w = S(Ntrain) m )
contro. S(Ncontrol) control-

In Figure 6 we present the results of a set of experiments done
to evaluate the quality of our statistical model of the singling out
success (Equation 7) which underpins our correction factor (Equa-
tion 8). The datasets used for the evaluation are formally introduced
in Section 6. In all cases, the original dataset is split into two disjoint
sets, called A and B. From set A, N4 singling out predicates are
derived using the methods presented above. The attack predicates
are then evaluated on different subsets of B. By varying the sizes of
these subsets, we can measure how the the number of successful
singling out predicates varies with the size of the target population.
Figure 6 shows that the fitted statistical model S(n) (Equation 7)
provides very good agreement with the measured data points.

®)
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Figure 6: Number of successful singling out predicates as a
function of the dataset size together with best fit model S(n).
The three panels refers to the different datasets: Adults (left),
US census (middle), Texas (right).

C COLUMN SUBSETS INCLUDED IN THE
ANALYSIS

For the Texas and US Census datasets, the following columns have
been used throughout all experiments presented in this work:

Texas dataset: ADMIT_WEEKDAY, APR_DRG, APR_MDC, CERT_STATUS,
COUNTY, ETHNICITY, FIRST_PAYMENT_SRC, ILLNESS_SEVERITY,
LENGTH_OF _STAY, PAT_AGE, PAT_COUNTRY, PAT_STATE, PAT_STATUS,
PAT_ZIP,PRINC_DIAG_CODE, PROVIDER_NAME, PUBLIC_HEALTH_REGION,
RACE, RISK_MORTALITY, SEX_CODE, SOURCE_OF _ADMISSION,
TOTAL_CHARGES, TOTAL _CHARGES_ACCOMM, TOTAL _CHARGES_ANCIL,
TOTAL_NON_COV_CHARGES, TOTAL_NON_COV_CHARGES_ACCOMM,
TOTAL_NON_COV_CHARGES_ANCIL, TYPE_OF _ADMISSION

US Census dataset: AGE, AGEMARR, AGEMONTH, BPL, CHBORN, CITIZEN,
EDUC, ELDCH, EMPSTAT, FAMSIZE, HIGRADE, HLSPAN, HRSWORK 1, INCWAGE,
IND1950,MARST, MBPL, MOMRULE_HIST, MTONGUE, NATIVITY, NCHILD,
NSIBS, 0CC1950, POPLOC, POPRULE_HIST, RACE, RELATE, RELATED,
SEX, SPLOC, SPRULE_HIST, STEPMOM, STEPPOP, SUBFAM, UOCC, WKSWORK1,
YNGCH

D DIFFERENTIAL PRIVACY AND DATA
PRE-PROCESSING

Since DPCTGAN cannot be applied to continuous data, we encode
the continuous columns of all datasets by binning them into 50
equally spaced bins, respectively. After synthetization, continuous
values are obtained from each synthetic bin label by drawing ran-
dom numbers from a uniform distribution spanning the interval
defined by the corresponding bin edges. Note that even though
the data synthetization with DP-CTGAN incorporates DP guaran-
tees, the pre-processing itself does not. This is due to the ranges
from which the bins are derived being obtained from the private
data itself. This problem is common to many open source data
synthesizers [56].

We note, however, that the problem is not limited to the contin-
uous domain and affects also categories. Categorical data is also
sampled from distributions whose support is derived from the input
dataset itself. This leads to a violation of the DP guarantee which
follows from the bad bins theorem [50]: “There does not exist a dif-
ferentially private mechanism that only returns elements from the
active domain.”. This means that one cannot obtain DP for synthetic
data if the synthesizer can only generate values that are actually
present in the original data instead of also allowing for the presence
of values which are possible but not present in the original dataset.
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Figure 10: Measured linkability risk in the Adult datasetas a
function of the amount of auxiliary columns used to mount
the attack and and the number k of nearest neighbors consid-
ered in the evaluation phase. The two plots refer to synthetic
data generated with CTGAN (left) and DPCTGAN (right).
For more details, see Section 5.2.

Figure 11: Singling out (left), linkability (middle), and infer-
ence (right) risks as a function of the amount of auxiliary in-
formation (in the case of linkability and inference) or num-
ber of attributes used in the predicates (for singling out) for
the Adults dataset. See Section 6.3.1 for details.

Fixing all these issues is an interesting research topic, but out of
the scope of this paper. The reader should however keep in mind
that DP is not complete (and hence devoid of theoretical meaning).
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E ADDITIONAL EXPERIMENTAL RESULTS

This section collects additional experimental results supporting the
discussions presented in Sections 5.1, 6.1, 6.3, and 6.4.
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Figure 7: Strength of the multivariate singling out attack as
a function of the number of attributes used to create the
predicates. The singling out attack is stronger when it uses
fewer attributes. As the number of attributes used to create
the predicates increases, the likelihood of singling out by
chance also improves, making the baseline attack more and
more effective. This results in a decreasing strength of the
multivariate singling out attack for a higher number of at-
tributes.
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Figure 8: Inference risk for different attributes in the Adults
dataset. The synthetic data has been generated with CTGAN
from Section 6.2, and each column is attacked by using all
the other columns as auxiliary information.
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