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ABSTRACT
Named entity recognition models (NER), are widely used for identi-

fying named entities (e.g., individuals, locations, and other informa-

tion) in text documents. Machine learning based NER models are

increasingly being applied in privacy-sensitive applications that

need automatic and scalable identification of sensitive information

to redact text for data sharing. In this paper, we study the setting

when NER models are available as a black-box service for identify-

ing sensitive information in user documents and show that these

models are vulnerable to membership inference on their training

datasets.With updated pre-trainedNERmodels from spaCy [27], we

demonstrate two distinct membership attacks on these models. Our

first attack capitalizes on unintended memorization in the NER’s

underlying neural network, a phenomenon NNs are known to be

vulnerable to. Our second attack leverages a timing side-channel

to target NER models that maintain vocabularies constructed from

the training data. We show that different functional paths of words

within the training dataset in contrast to words not previously seen

have measurable differences in execution time. Revealing mem-

bership status of training samples has clear privacy implications.

For example, in text redaction, sensitive words or phrases to be

found and removed, are at risk of being detected in the training

dataset. Our experimental evaluation includes the redaction of both

password and health data, presenting both security risks and a

privacy/regulatory issues. This is exacerbated by results that indi-

cate memorization after only a single phrase. We achieved a 70%

AUC in our first attack on a text redaction use-case. We also show

overwhelming success in the second timing attack with an 99.23%

AUC. Finally we discuss potential mitigation approaches to realize

the safe use of NER models in light of the presented privacy and

security implications of membership inference attacks.
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1 INTRODUCTION
Language models (LMs) are statistical models that assign proba-

bilities to words to perform different natural language processing

tasks [2, 8, 26, 36]. LMs are trained on large datasets, and over the

years, their model architecture has become substantial with 350

million [33] to over 100 billion parameters [6, 48], which increases

the model’s ability to learn the language and fluently generate text.

At the same time, it has been shown that LMs are susceptible to

membership inference [7, 8, 56, 64], whereby it is possible to tell if

a given text was used in the, potentially sensitive, training dataset.

Membership inference is a general attack on machine learning

models and was first introduced by Shokri et al [54].

Membership inference attacks in LMs have predominantly been

demonstrated on the task of text prediction [7, 8], e.g., predicting

the most probable word given a sequence of words. In this paper,

we instead study membership inference attacks on the language

problem of text classification [36], where the model classifies tokens

in a given text sequence into classes or labels. More specifically, we

target named entity recognition (NER), which is a task in informa-

tion retrieval used to identify and label chunks of data appearing

in unstructured text into predefined categories or labels [43]. Our

focus on NERmodels is motivated by its increasing potential for use

in applications involving sensitive data. NERmodels have been used

to categorise medical entities (e.g., drugs) in unstructured medical

data [20, 24]. Similarly, NER models have been proposed to auto-

matically identify sensitive information to prevent data leaks [22],

and in a similar application of automatically redacting sensitive in-

formation from documents before sharing [32], which is otherwise

a highly manual and laborious task requiring domain expertise [23].

NER models have also been proposed to automatically de-identify

patient notes in electronic health records [16]. In a contemporary

use case, these models have been proposed to de-identify sensitive

information from COVID-19 data before sharing and publication

for research purposes [9]. The underlying data in these uses of NER

models is highly sensitive. If this data is used to (re-)train an NER

model, then one would hope that the model is not susceptible to

membership inference.

More elaborately, our scenario is when a service provider builds

on top of an off-the-shelf NER model, pre-trained on a large public

corpus, by updating the model using its own, potentially sensitive,

private dataset in order to expand the set of named entities (labels)

for specialized tasks. This scenario reflects real-world use of NER
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models, as often they are pre-trained on a large corpus, and hence

both the pre-trained model and the corpus is public information.

However, the re-training of the generic model maybe for more

specific applications, such as redaction of sensitive information, in

which case the private dataset may be sensitive. These specific appli-

cations may include examples listed above, e.g., identifying medical

entities and redaction of sensitive information. The resulting model

is then made available as an online service for customers to query

in a black-box manner. A query is the customer’s document which

she would like to process. For example, a document for automatic

redaction of sensitive text. The output is the processed document

in the form of identified labels for each token and their probability

scores.
1
We investigate the susceptibility of this private dataset to

inference attacks.

We choose spaCy [27] as a representative of NER models, which

is an open-source natural language processing library based on

neural architecture [36]. Two components of spaCy are common

across a wide range of NER models [62]: a tokenizer, that accesses

an internal vocabulary, and the neural network (NN) based NER

component, which takes input from the tokenizer and outputs labels.

See Figure 11. When the spaCy NER model is updated with new

training data, both the vocabulary and the NN model are updated.

The updated vocabulary contains any new words contained in

the training data. In this paper, we demonstrate two membership

inference attacks on NER models with the spaCy NER model as a

use-case.

The first attack exploits the NN model, and demonstrates that

membership of sensitive words, such as passwords and credit card

numbers, can be inferred even when they occur in the training

model only once [18]. This phenomenon is related to unintended

memorization in NNs. While unintended memorization has been

demonstrated in NNs in general including text prediction mod-

els [7, 8], our results show that the spaCy NER model is particularly

vulnerable to this attack. We first demonstrate membership infer-

ence using a password use-case, where the NER model is updated

with a single phrase containing a secret word, i.e., password (cf.

Section 3). We use an existing membership inference algorithm

from Salem et al. [50]. The novelty is the first demonstration of this

attack on NER models. Our results show that an attacker with a

dictionary of passwords, one of which is the target password, can

successfully infer the target password even when the phrase is only

included once (to update the NER model), clearly demonstrating

memorization of the NN model. Within Section 3, we also mea-

sure how different parameters have a direct impact on the degree

of memorization, including the strength (entropy) of the memo-

rized password, and number of insertions of the same password

into the training data. Additionally, we demonstrate this memo-

rization generalizes beyond passwords to phone numbers, credit

cards and IP addresses. We also demonstrate that it is possible to

infer words close to the secret words, which helps an attacker find

the target password even when it is not in her initial dictionary

of possible passwords. This is known as attribute inference in the

literature [63, 66]. Next we demonstrate our attack on a practical

use-case of document redaction, whereby the NERmodel is updated

on a publicly available medical dataset, which we assume to be a

1
See Section 3 for the precise definition of the input and output.

private dataset. We show that an attacker with access to the NER

model can successfully infer membership (cf. Section 4).

The second attack is a timing-based side-channel attack which

exploits the difference in execution paths when the NER model is

queried on a text containing a member word (in the training data)

versus a non-member word. This attack exploits the tokenizer, and

is specific to NER models which use a vocabulary. This feature

differentiates NER models from other machine learning models

where, from a black-box point-of-view, there is little difference in

execution paths between a member and a non-member sample.

Finally, by exploiting the difference in execution paths of the NER

models when processing member secrets in the training data and

non-member text, our timing attack can infer the member secrets

used to update the NER model (cf. Section 5) with an AUC of 0.99.

Next, we introduce preliminaries and define our threat model in

Section 2. In Section 3, we demonstrate the unintended memoriza-

tion of the NER model and show our first membership inference

attack against the NER models by exploiting its memorization. We

then present the experimental results of our membership inference

attack on NER models for document redaction use-case in Section 4.

In Section 5, we present our NER model membership inference

attack exploiting a timing side-channel and then discuss its experi-

mental results. We propose potential defences for both attacks in

Section 6. We review related work in Section 7.

2 BACKGROUND AND THREAT MODEL
We first introduce background on neural networks and neural net-

work based NER models before providing detailed implementation

by spaCy’s NER [57]. We then define our threat model and motivate

our study.

2.1 Neural Networks
A Neural Network (NN) model seeks to learn a function fθ through

training data, where θ represents the parameters of the model [3].

During training, data is passed over the model multiple times to

learn theta for high prediction accuracy. These iterations are rel-

evant in the context of information leakage and memorization as

some examples may be seen by the model multiple times despite

only appearing once in the training set. This is a potential factor

in the model memorizing data points as we shall demonstrate in

Section 3.

2.2 Neural Network Based Named Entity
Recognition

Named Entity Recognition (NER) is a natural language process-

ing task that can automatically identify named entities in a text

and classify them into predefined categories [43]. The identified

entities can then be used in downstream applications such as infor-

mation retrieval, relation extraction, and de-identification [16, 62].

Recently, neural network based NER systems have become popular

and have achieved state-of-the-art performance [36, 40, 62]. Various

neural network architectures for NER have been proposed includ-

ing feed-forward NN, Long-Short Term Memory (LSTM) network,

bi-directional LSTM network [11], Convolutional Neural Network

(CNN) or combination of these [11, 20].
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Word embeddings are used in NN based NER models to trans-

form a raw textual representation of the input space into a low-

dimensional vector representation. Specifically, word embeddings

are look-up tables that map each word from a vocabulary to a vec-

tor [55]. Popular word embedding models include Word2Vec [5],

GloVe [47] and FastText [41]. In addition, character-level embed-

ding is also used to represent a word [11, 20]. Particularly, each

character in a word is first assigned a character embedding of a

fixed dimension. Embeddings of all characters in the words are

given to a neural network such as a CNN which can learn the

contextual representation of each character and output a character-

level embedding of the given word. The character-level embedding

is usually concatenated with the word-level embedding to form a

word representation to be fed into the neural network.

Example 1. Consider the sentence “John Doe lives in the United

States,” given as input to a trained NER model. An example (simpli-

fied) output of the model looks like:

“John Doe [PERSON, score] lives [O, score] in [O,

score] the [O, score] United States [LOCATION, score].”

Here PERSON, LOCATION and O are pre-defined labels, where O

stands for “OUT,” i.e., a label not in the set L of pre-defined labels.

The label assigned is the one with the highest probability score, a

real number between 0 and 1 indicated above as “score.” The name

John Doe is a multi-token entity, i.e., John is the first word in the

entity indicated by the prefix “B” while Doe is the last, indicated by

the prefix “L” (these prefixes are not shown in the above example).

NER systems use tagging schemes such as the BILOU (Begin Inside

Last Outside Unigram). For a document redaction application, we

might then want to remove all instances of the entity PERSON.

2.3 SpaCy’s NER Model
spaCy

2
builds a transition-based parser which can apply to both

NER and dependency parsing tasks. The transition-based parsing is

an approach to structured prediction where the task of predicting

the structure is mapped to a series of state transitions [35, 36].

The underlying neural network state prediction model consists of

either two or three subnetworks: tok2vec, lower and upper (optional).
The tok2vec subnet uses hash embedding with sub-word features

and a CNN with layer-normalized maxout to map each word into a

vector representation. The lower subnet constructs a feature-specific
vector for each (token, feature) pair. The state representation is

constructed by summing the component features and applying the

non-linearity. The upper subnet is an optional feed-forward network
that predicts the action scores from the state representation. If it

is not present, the output from the lower subnet is used as action

scores directly [58].

Four important features of the word are used to form its repre-

sentation, which we call sub-word features: norm, prefix, suffix and

shape. The norm feature defines a normalised form of the word, i.e.,

normalising words with different spellings to one common spelling.

At the very least, the norm contains a subsequence of the lower case

form of the word. The prefix feature is defined as the first n charac-

ters of the word where default value of n is 1. The suffix feature is

defined as the lastm characters of the word with default value ofm

2
Unless otherwise specified we refer to spaCy Version 3.0.3

being 3. Both prefix and suffix are case-sensitive. The ‘shape’ forms

the orthographic feature of the word where lower-case, upper-case

alphabetic characters and numeric characters are replaced by ‘x’,

‘X’ and ‘d’ respectively, and special symbols are kept intact. It is

noted that sequences of the same character shape (X, x or d) are

truncated after length 4. Therefore, two words with different length

may end up with the same shape. For example, two words Threats
and Embed have the same shape of ‘Xxxxx’. The interested reader

can refer to Appendix B, to see when two words having the same

set of features may in fact be different.

Figure 1 illustrates the architecture of the NER model in spaCy

in detail. As visualized in the shaded green area in Figure 1, the

tok2vec subnet first separately embeds the norm, prefix, suffix,

and shape features of each word using hash embeddings. Each

feature is assigned a unique vector. Then, vector representations

of all features are concatenated together to get a word vector,

ei = [e
prefix

i |esuffix

i |enormi |e
shape

i ]. If pre-trained vector table includ-

ing pre-trained word embeddings is available, a static vector of the

given word is also concatenated to the word vector. The concate-

nated word vector is then passed to a max-out layer to capture a

context independent representation of each word. If there are n
words (tokens) in the input text as (w1,w2, . . . ,wn ), then they are

converted into n embeddings as (e1, e2, . . . , en ). In the next step

in the tok2vec, as illustrated in the shaded blue area in Figure 1,

the context independent vector representation ei of each wordwi
is passed to the encoding layer which consists of a CNN model,

that takes a window size as a hyperparameter. Through the window

size, which by default is 1, spaCy captures the context around the

given word. For instance, a window size of 1 captures the context

of one word in each direction (i.e., ei−1, ei+1). Depending on the

depth of the CNN (the number of convolutional layers), which is

by default 3, the layer assigns a context dependent vector to each

token in the text as (c1, c2, c3, . . . , cn ). The receptive field of the

CNN is defined as depth × (window-size × 2 + 1). With depth = 3,

and window-size = 1, the network would be sensitive to 9 words

at a time.

For assigning labels to tokens, the NER model is based on a

transition based parser which was inspired by the arc-standard

parser [45]. As in NER tasks neighboring labels have some sort of

relation with each other, a transition based approach takes into con-

sideration the learned embedding of the label type from previously

identified labels and uses that for the next prediction. With this

approach the word that was assigned a label even far back in the

document would also be considered when making a prediction for

the current word [36].

The training data given to (re-)train the spaCy NER model is a

collection of documents. Each document is annotated as a sequence

of words x = (w1,w2, . . . ,wn ), together with one or more tuples

of the form (i, j, l), where 1 ≤ i ≤ j ≤ n are indexes and l is a label
(named entity) from a pre-defined set of labels L. The tuple (i, j, l)
indicates that the subsequence of words (wi , . . . ,w j ) defines the

entity l . The pre-trained NER model in spaCy includes 18 labels for

pre-defined named entities and uses BILOU tagging system. A list

of transition names are defined based on the pre-defined named

entities and the tagging system, i.e. number of transition moves in

spaCy NER is 18 × 4 + 1 = 73.
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Figure 1: SpaCy’s NER Model. An input sentence is broken
up into words which are individually processed into an em-
bedding (shaded green). This embedding is then converted
into a contextual Encoding, by combining the current word
embedding with the embeddings of surrounding sentence
words (shaded blue), before being processed by the Multi-
Layer Perceptron.

2.4 Threat Model
An NER model can be updated with new samples to identify new

named entities (labels). For example, one can update the NER model

to enable it to recognise a new named entity ‘SECRET’ by training

the model with a private dataset which includes sensitive informa-

tion such as passwords, emails, phone numbers, and social security

numbers. The updating process adds new labels to the initial NER

model. We call this the updated NER model in the rest of the paper,

and the dataset used to obtain the updated NER model as the private
dataset. The adversary aims to infer information about this private

dataset.

Following the real-world use of NLP models, which often come

pre-trained on a large but public corpus, we assume that the pre-

trained NER model and its underlying training dataset is public.

This also naturally fits our spaCy use case since it is available for

download as a pre-trained NER model, which can then be further

updated for other applications such as labeling sensitive informa-

tion. We remark that this assumption is simply to make our setting

more natural, as our attacks do not rely on the adversary knowing

the public training dataset, and could be applied even if the model

was trained from scratch.

We consider an adversary with the following capabilities and

knowledge:

A1: The adversary has black-box access to the updated NER

model.

A2: Samples of the (annotated) sensitive information are only

introduced in the private dataset (model update).

A3: The adversary knows the sentences surrounding sensitive

words in the private dataset (However, see explanation be-

low).

Justification of Assumptions. Assumption A1 is the usual black-

box setting for membership inference attacks. The adversary can

send queries and obtains output from the updated NER model.

A query is simply some text to be labelled, and the output is a

probability score for each named entity in the input text.

Under Assumption A2, we assume that the private dataset used

in the updated NER model contains at least one example of the

new sensitive named entity. This example consists of the sensitive

information together with the surrounding sentence. For instance,
the private dataset could be the solitary phrase: “Alice’s secret

is quertyui.” Here the password “quertyui” is an example of the

new named entity SECRET. The rest of the phrase constitutes the

surrounding sentence. See Section 3.1 for further details. We further

assume that such examples do not exist in the public training dataset.

Indeed, the service provider’s goal is to update the NER model for

new exclusive services.

Assumption A3 states that the attacker additionally knows the

surrounding sentence, but not the actual secret, which the attacker

would like to infer. This assumption is needed for membership

inference. For our main use case of redacting information, the

surrounding sentence is not considered sensitive, and thus it can

be safely assumed that the attacker would know such text through

previously released documents of similar nature. Furthermore, in

the same use case, often the surrounding sentence is in a standard

format which is easily guessable. For instance, automatic emails

with password resets would include some standard text such as

“Your new password is . . ..” We remark that this assumption is used

for the membership inference attack on the NN model, and not the

timing-based attack. Nevertheless, we also specifically examine the

impact of updating the NER model with different phrases (variants

of the surrounding sentence) containing the new named entity in

Section 4.3. Note that unknown surrounding sentence variant of

the attack makes it more of an attribute inference attack [63, 66]

rather than a membership inference attack.

Figure 11 of Appendix A shows the end to end pipeline for

querying the updated NER model with a given text in spaCy.

2.5 Motivation
The volume of intellectual property generated by small, medium

and large enterprises is increasing at a growing rate, as reflected

by sustained growth in the document management services in-

dustry [30]. Particularly in industries like finance [51] and Health

sector [1], where regulations dictate records be held for a minimum

amount of time. Coupled with a sense of cyber-awareness, compa-

nies may seek to sanitize their documents, removing any sensitive

information that may incur regulatory retaliation, or disruption to

business in the event of a breach. However, with such volume of

data, it increasingly drains human resources to sort and redact sen-

sitive information. This is where automated text redaction services

are appealing, with the opportunity to process sensitive documents

at scale. We have begun to observe innovation in the space of text

redaction from the traditional rule based systems [29, 46] to the

use of AI-based systems [13, 42, 52], particularly NER, in pursuit

for higher accuracy and robustness to multiple manifestations of

sensitive information. The appeal of NER is allowing companies to

personalize the model for their own use case.
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This personalization, on the flip side, has the potential for un-

intended memorization of the training examples as previously re-

ported for neural networks in general [54]. This memorization is

particularly true when dealing with data that is not considered

“standard” personal identifiable information (PII), like passwords.

Passwords may be communicated and/or recorded in technical doc-

umentation. Due to their sensitive nature, there is a desire to redact

this information.

Consider the scenario whereby a document management com-

pany adds an additional entity for recognition and redaction using

labelled data they have on hand, including these passwords. The

company would have had obtained and labeled documents, to up-

date a base model provided as a pre-trained model in an offline or

online setting to ensure compatibility with their system.

This updated NER model may then be provided as a service to

complement their core business of document management. This

can be done by providing API access to the NER model for their

customers to perform text redaction query by query, or to interface

directly with their customer systems. An attacker with access to

the same API may be able to infer the passwords used to train the

updated NER model (for the updated entities), via a membership

inference attack [50, 54, 63, 66]. The attacker with possession of

a dictionary of candidate passwords may be able to infer which

passwords were used to update the NER model if it is susceptible

to membership inference attacks.

3 MEMBERSHIP INFERENCE VIA
MEMORIZATION

Our first attack, which is the subject of this section, targets the

updated NN model (see Figure 11). More specifically, we demon-

strate that the updated NN model memorizes information from the

private dataset which could be inferred by querying the updated

NER model. We essentially use the observation from previous mem-

bership inference attacks such as [7, 50, 54] that machine learning

models are more confident in predicting inputs used in training

versus unseen inputs. Translated to the NER case, this means text

used in training (i.e., from the target dataset) is likely to be given

higher scores than text never seen by the NER model. In the follow-

ing, we first demonstrate the feasibility of this attack using simple

phrases containing different secrets, e.g., passwords and credit card

numbers, within the training dataset to update the NER model.

Section 4 broadens the attack to cover sensitive information in

the more practical scenario of document redaction. We emphasize

the exploratory nature of this section as we delve into the extent

of, and reasons behind, memorization in NER models; hence the

use of simple phrases. Section 4 considers more realistic scenarios

where the target secret within one of the phrases is interspersed

with other phrases in a large private dataset. Thus, the instances of

memorization in this section are not just due to the small size of

the private dataset.

3.1 Methodology
We first update the NER model with a single phrase containing

some secret information, e.g., “Alice’s secret is qwertyui.” Specifi-

cally, with formalization from [7] demonstrating memorization in

text generative models, we construct sentences of the form: s[r ] =

“Alice’s secret is r”. Here r is a variable representing members from

the secret space R. For example, R can be a dictionary of passwords,

with an example phrase s[“quertyui”] = “Alice’s secret is quertyui”.

The remaining text in s[r ], i.e., minus r , is what we term the sur-
rounding sentence. The updated NER model is then made available

as a black-box service to customers to identifying and redacting

secrets in their own documents. For instance, given an input “Bob’s

secret is 123456” the NER will label “Bob” as a PERSON and “123456”

as the SECRET. The user can then choose to redact all SECRET label

words, resulting in the redacted text “Bob’s secret is ■.” We assume

the attacker can query the updated NER model with secret r and
phrases s[r ] chosen from a secret space R, and any surrounding

sentence. We also permit the surrounding sentence to be empty,

whereby the attacker queries directly with r . We call the secret the

attacker attempts to extract from the private dataset used to train

the updated NER model, the target secret. The security issue here

is the attacker is able to associate a (redacted) password to a user,

even though the password is already in the attacker’s dictionary.

3.2 Evaluation Metrics

Rank. To evaluate the success of the attack, we rank the scores

returned by the NER model for each phrase s[r ]. Note that the

surrounding sentence of the phrase remains fixed, and only change

r . With lower target secret ranks, the attack is more successful.

Specifically, let Pr(s[r ]) denote the probability score assigned to

secret r ∈ R by the NER model when queried with text s[r ]. Then,
the (normalized) rank of the secret r , is:

rank(r ) = |{r ′ ∈ R : Pr(s[r ′]) ≥ Pr(s[r ])}|/|R|,

where r ′ are the other possible secrets in the search space R. The

rank lies in the range [0, 1], where 0 means no other secret in R

has higher (probability) score, and 1 means the probability score is

lowest among all r ∈ R.

Password Strength (Entropy). In addition, for the specific case

when the secret is passwords, we also use the zxcvbn password

strength estimator [61], as a proxy for entropy of passwords to

evaluate attack success as a function of password strength. zxcvbn
estimates password entropy by matching password sub-parts with

known patterns, e.g., words, sequences, and dates, scoring the

matched patterns and using the entropy to further estimate the

number of guesses an attacker would need to crack the password.

zxcvbn defines password strength on a five level scale [0 − 4] in-

creasing from 0 to 4, to define categories for the number of guesses

required to crack the password in orders of magnitude. Specifically,

strength scores 0, 1, 2, 3 are assigned to passwords that require

less than 10
3
, 10

6
, 10

8
, 10

10
guesses respectively, whereas strength

score 4 is assigned to those that require at least 10
10

guesses.

Levenshtein Distance.When evaluating similar secrets (words)

with potentially similar ranks, we use the Levenshtein distance L
as a distance metric. We define L for each of the four word features:

L
prefix

, L
suffix

, L
shape

and Lnorm, and define the feature distance

(f-distance), as the sum of the the aforementioned L. Thus, the
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Figure 2: The extent of model memorization for out-of-
distribution words in spaCy (V3.0.3). “Insertions” refer to
the number of times the same phrase is repeated in the train-
ing set, “Epochs” is the number of training iterations the
model undergoes during the update process.

feature distance of two secrets r , r ′ ∈ R is defined as

f-distance(r , r ′) = L
prefix

(r , r ′) + L
suffix

(r , r ′)

+ L
shape

(r , r ′) + Lnorm(r , r
′) (1)

3.3 Experimental Results
To obtain an accurate measure of the rank, we construct N different

phrases s[r ] each containing a different random target secret r ∈ R

(but the same surrounding sentence), and update the NER model

with only the phrase s[r ]. The results are averaged over 48 runs for

each secret.

3.3.1 Effect of Repeated Insertions. We use N = 10 different target

passwords chosen randomly from a space of |R | = 2000 passwords,

which in turn are picked randomly from a public password dictio-

nary with one million passwords [14]. We then measure the rank of

each target password averaged over 48 runs. We vary the number of

insertions of the phrase s[r ] from 1 to 4. The average (normalized)

ranks of the target passwords as a function of the number of epochs

used to update the NN model are shown in Figure 2. After less than

10 epochs even with a single insertion, the model memorizes the

target password (rank of 0). However, we note that there is a minor

increase in the memorization when the password is inserted more

frequently, but there are diminishing returns. Additional insertions

can be achieved with increased batch size as the likelihood that

training samples with a password (sensitive information) is sam-

pled and propagated through the network for training increases,

resulting in more memorization.

3.3.2 Effect of Password Strength. It is interesting to assess whether
memorization is dependent on the strength of the passwords, i.e.,

high entropy passwords due to being more peculiar than the rest of

the words in the corpus might make them more likely to be memo-

rised by the NN model. Indeed, it has previously been shown that

words that are out of distribution tend to be memorized more than

generic words in the case of NN models for text generation [7]. To

check this, we used the zxcvbn password strength estimator [61]

as described in Section 3.2. We randomly choose N = 10 pass-

words for each zxcvbn strength level (0 to 4 inclusive), and insert

Figure 3: It is observed that a higher password strength (as
measured by zxcvbn) will take more training epochs before
memorization by the NER model as indicated by the near
zero normalized rank of candidate passwords.

a single phrase s[r ] inside the Georgetown University Multilayer

(GUM) corpus [65] (See Section 3.3.3) for each of the passwords.

These passwords are once again chosen from a list of 2000 ran-

domly chosen passwords R, which itself is a random sample from

a public password dictionary with one million passwords. For each

zxcvbn strength level, we average the results and investigate the

memorization of the model based on the average rank. Based on

the results shown in Figure 3 we observe that complex passwords

with a zxcvbn level 4 take more time to memorize as compared to

passwords with lesser zxcvbn level, i.e., 0 to 3. There is not much

difference, in terms of the rate of memorization, between the first

four password strength levels. Moreover, even the strongest pass-

words (level 4) are eventually ranked 0 by the NN after about 40

epochs. We hypothesize that the passwords contained in strength

level 4 are longer, with more internal variation which is not already

captured by tokenization. Specifically, the tokenizer may capture

general password structures, initially decreasing the rank to 0.1, but

is unable to distinguish between passwords with similar complex

structures, thereby requiring additional epochs to memorize the

specific digits of the target password.

3.3.3 Effect of Private Dataset Size and Secret Types. While the

above serves as an illustration of the feasibility of the attack, the

update process, i.e., using only a single phrase to update the NER

model, is arguably not realistic. Furthermore, we would like to

assess the results for secrets other than passwords. To make the

training process more realistic, we update the NER model with

the Georgetown University Multilayer (GUM) NER corpus which

contains around 2,500 annotated documents [65]. We include a

single secret phrase s[r ] into one of these documents. We once

again use N = 10, and |R | = 2000. We experiment with four

different types of secrets: passwords, credit card numbers, phone

numbers and IP addresses.

We generate credit card numbers using Luhn’s Mod10 algo-

rithm [37] and include a single phrase s[r ] in the GUM corpus,

which now includes a random credit number as the secret. We

calculate the rank the same way as with the passwords by com-

paring it with 2000 other randomly generated credit card numbers.

IP addresses are generated by first generating 4 random integers
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Figure 4:With just a single phrase in a training set of 2500 ex-
amples, we demonstrate the phrase is still memorized over a
short number of training epochs.We see a similar behaviour
for different types of secret. Note that the loss line in the
graph is overlapping for each of the secret type.

including and between 0 and 255, these numbers are then concate-

nated togetherwith a “.” separating each number (e.g. “1.10.100.200”).

Next, for phone numbers, we randomly generate sequences that

follow the following format, “ddd-ddd-dddd” whereby each “d” is a

digit. Special phone numbers as described by the North American

Numbering Plan [44] were excluded during the generation process.

The use of a larger private dataset (GUM corpus), gives us the

measure of performance of the NER model, with a training loss,

and accuracy via micro-averaged F1 score (over all ground truth

labelled entity word spans and predicted entity spans and entity

type labels). The higher the F1-score, the less likely the model is

to be overfit to the training dataset. The results in Figure 4 for

all four secret types, show that after a few training epochs, the

phrase is memorized regardless of the secret type(in terms of ranks).

Comparing Figure 4with Figure 2 (single password phrase insertion)

we see the influence of the larger private dataset, as the speed

at which the model generalizes beyond the specific password is

delayed due to additional documents for training. This indicates

that the model needs to minimize loss on more documents than

just the single phrase of Figure 2. Note that the F1 score on GUM

test data (Figure 4) increases steadily, indicating that the model is

not overfitting. The model would typically be trained till a test F1

score around 0.6 [21, 28]. Note that a random model would have F1

approximately zero as almost all spans would be incorrect.

3.3.4 Effect of Similar Secrets. The analysis in the preceding sec-

tions illustrates that if the target secret is within the set of secrets

R available to the attacker, then it is possible to infer the secret via

membership inference, i.e., the target secret being of rank 0. In a

more realistic scenario, however, the target secret might not be in

the set R. In this case, what does the highest rank secret in R tell

us about the target secret? If the highest rank secret is close to the

target secret, then the attacker has at least come close to the target

secret. The attacker could then be able to infer the target secret by

making small modifications to the candidate with the highest rank

in order to “hill climb” to the target secret, as we shall see in the

next section.

Figure 5: The correlation between the ranks of the words
with the f-distance they are away from the target word.

Taking the password experiment as an example case, we analyzed

the model’s behaviour for secrets that look similar to the target

secret. We first chose 300, 000 initial passwords drawn randomly

from the public set of 1M passwords. We then chose N = 10 pass-

words randomly from this initial set. For each of the N passwords,

we constructed 70, 000 additional passwords based on three of the

four sub-word features (Section 2.3) excluding the norm feature

(lower case form of the password) as follows: we generate 10, 000

passwords each with (1) the same prefix only, (2) same suffix only,

(3) same shape only, (4) same prefix and suffix, (5) same prefix and

shape, (6) same suffix and shape, and finally, (7) same prefix, suffix

and shape. For (1) (2) and (4) we assume we know the length of

the password and add random alphanumeric characters for the rest

of the password. For (3) (5) (6) and (7) we use the shape and fill

in missing characters using random alphanumeric characters de-

pending on the characters defined the shape of the target password.

These 7 different combinations of sub-word features result in 70, 000

passwords for each of the N = 10 passwords, resulting in a total

of 700,000 additional passwords. Note that while generating these

passwords, we assume that the length of the target password is

known. We call these the feature passwords, and denote the set by S .
In total, including the 300,000 initial passwords, we have 1,000,000

passwords in our secret space R. To calculate distance between

passwords, we use the f-distance metric as defined in Eq. 1. The

reason for generating feature passwords is to have more passwords

closer to the target password in terms of f-distance.
We then construct a phrase s[r ] for each of the N passwords,

update the NER model with this phrase only, and then query the

updated NER model with all passwords in R, and record the rank.

We update the NERmodel over 75 epochs, and repeat this procedure

48 times to get an average rank for all passwords.We then normalize

the rank between 0 and 1 and sort the results according to the f-
distance from the target password. An f-distance of 0 means that

it is the target password. As we can see in Figure 5, the average

rank increases as we increase f-distance. This means that secrets

(passwords) that are closer to the target secret (password) are ranked

highest (closer to 0.0), and secrets further away from the target

secret are ranked lower (closer to 1.0).
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4 THE DOCUMENT REDACTION USE-CASE
We now turn to demonstrating our attack on a more practical use-

case. We assume a service provider that builds on top of spaCy’s

NER model to provide an online document redaction service. The

service provider uses a medical dataset containing sensitive in-

formation such as patient IDs, contact information and place of

residence. The NER model is updated by training on this dataset to

learn new labels specific to the application of medical data redac-

tion. We call this the updating dataset. These labels include ID,

CONTACT and LOCATION. The updated NER model can then be

queried via an API which customers can use to redact information

within their documents. We assume an attacker who has access to

the same API, and wishes to infer sensitive information (related to

the labels) contained in the updating dataset.

4.1 The i2b2/UTHealth Corpus
Weupdate the pre-trained spaCyNERmodel with the i2b2/UTHealth

challenge dataset [59]which contains patientmedical reports. These

documents contain sensitive identifiers like names, IDs, contact,

and location. We identify three sensitive labels (entities): ID, CON-

TACT and LOCATION for our experiments. We define a sample for
a label l as any subsequence of words with the true label l within
these reports together with the surrounding sentence. We use the

original training set (785 documents) and test set (511 documents)

split from [59]. Samples from the training set are considered as

members whereas those from the test set are non-members. Once

again, we assume the attacker knows the surrounding sentences.

Section 4.3 considers the case when the surrounding sentences may

not be known by the attacker.

Attack Setup. We use the membership inference attack proposed

by Salem et al. [50], which uses the confidence score (probability

score) returned by the model to infer membership. As mentioned

before, the underlying assumption of this attack is that machine

learning models may return a higher confidence score for training

data points versus points seen by the model for the first time. In

our case, the probability score is the score returned by spaCy when

querying the model with a sample (of the three labels) from either

the training or test dataset. We first train the model for 75 epochs

with a batch size of 50 and evaluate the model’s NER Test F1, and

ROC Area Under the Curve (AUC) for membership inference after

each epoch during training. Notice that since we have full training

and test datasets, we can use the traditional AUC metric instead

of the rank metric used in the previous section where we assessed

membership inference of a single phrase.

Results. Figure 6 reports the AUC of the MI attack. Observe that

there is a delay in the rise of the attack AUC for a few initial epochs

due to the initial learning from the high number of samples for each

entity in the training set. It is not until the test F1 score begins to

plateau (training loss was also levelling off near 0) that we observe

a sharp rise in the attack AUC above a random guess of 0.5. We

also observe that the MI attack AUC for the “LOCATION” entity

is higher than “ID” and “CONTACT”. We hypothesize this is due

to “LOCATION” words being linguistically common (and so the

language model will contain knowledge of their semantics). This

is also true, to a lesser extent of names in CONTACT entities. IDs,

Figure 6: MI AUC reported over training time for different
entities in the i2b2 dataset.

on the other hand is a string of numbers. Word embeddings are

unlikely to include long numbers and thus unlikely to encode deeper

semantics of numbers. However we note that the pre-trained NER

model contains an existing “LOCATION” entity type. Contrary to

our observation, one would expect a previously defined class in a

pre-trained language model to already be sufficiently generalized

to dissuade memorization. The highest attack AUC is between 0.7

to 0.8, and even the lowest attack AUC is 0.6 (for the ID entity), well

above the random guess mark of 0.5. Therefore, we observe that

MI succeeds in all cases. The relationship of MI accuracy between

these entity classes is beyond the scope of this work.

Above we observed that “ID” and “CONTACT” had less docu-

ments and MI AUC. But to ensure a lower number of documents

representing these entities in the training set is not responsible for

the decreased MI AUC, we withheld documents containing “CON-

TACT” samples. Curiously, we observed the opposite effect for the

same complexity. Specifically we performed an attempt by taking

only documents where the “CONTACT” word was longer than 5

characters (yielding 94 samples), we refer to this as “CONTACT-

5”. By further restricting this set to 50, 30 and 10 documents, we

also obtain configurations of “CONTACT-5-50”, “CONTACT-5-30”,

“CONTACT-5-10” respectively. We observe with a decreasing num-

ber of available samples representing an entity, the attack AUC

increases. Therefore, the less documents for an entity, the more the

model will memorize the entity. Note that the F1-score approaching

one indicates that in all cases the model is not prone to overfitting

after around 10 epochs. We note that the F1 curves for all datasets

is approximately the same, and thus have been averaged in Fig-

ure 6. The individual F1-scores of each experiment together with

the detailed standard deviation bands are included in Figure 13 of

Appendix D.

4.2 Secret Redaction: Known Surrounding
Sentences

In Section 3.3.3, we observed that secrets such as passwords can

still be inferred even if there are other labels in the private dataset

with the example of the GUM corpus. To give more credence to this
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observation, we augment the i2b2/UTHealth dataset with phrases

containing passwords. This mimics the scenario where the updated

NER model is also responsible for redacting credentials for con-

trolling access to medical records. As before, we assume that the

attacker is able to use the exact surrounding sentence on what

may be a secret (password) to perform membership inference on a

dictionary of candidate secrets.

To test this scenario, we sample two sets of 150 passwords to

serve as our member and non-member set. We then craft a sin-

gle phrase “The secret phrase is ****” to precede all passwords.

The phrases with member passwords are then inserted into the

i2b2/UTHealth training data to update the spaCy NER model. With

both the member and non-member set, the AUC of MI is computed.

This experiment was repeated reducing the passwords within the

training set (150 to 100, 50 and 30). All experiments were repeated

10 times for an average result. We also report the testing F1-score

to evaluate the performance of the trained model (and note that no

overfitting has been observed).

Results. From Figure 7a, we observe that the MI attacker can suc-

cessfully infer membership of passwords. Furthermore, the ability

to infer passwords increases with smaller number of examples in

the training dataset (SECRET-30 vs SECRET-150), which is consis-

tent with the observation around the CONTACT label in Figure 6.

We also observe that the F1-score for the whole model (on the med-

ical dataset) as well as on the SECRET label is high (close to 1.0).

This is in contrast with the GUM corpus (Section 3.3.3, Figure 4)

where a high F1-score was illusive. This shows that memorization is

occurring even when the model is not overfitted. The individualized

MI AUC, NER training loss and individual F1-score with standard

deviation bands of the different entities in Figure 7a are shown in

Figure 14 in Appendix D.

4.3 Password Redaction: Unknown
Surrounding Sentences

Until now we have assumed that the attacker knows the surround-

ing sentences of the target secrets. We consider the setting where

the attacker does not know the exact surrounding sentences used

in the private dataset. Note that this is no longer membership in-

ference, but rather an attribute inference attack. We achieve this

by repeating the experiment from Section 4.2, but instead of a sin-

gle phrase preceding the secret, we craft four distinct phrases for

passwords in the member set: (“My secret is ****”, “The password

to my account is ****”, “Here is the password: ****”, “Log in using

the password: ****”). Each password in the training dataset is ran-

domly assigned to one of the four phrases. On the other hand, the

non-member passwords have a different phrase “The secret phrase

is ****”. We also assume that the attacker uses this phrase as the

surrounding sentence.

Results. From Figure 7b, we observe that the performance of MI on

unseen surrounding sentences is close to a random guess (0.5 AUC).

This observation is not significantly influenced by the number of

samples present in training the secret class in contrast to prior

results. However, we note that the F1 score of redacting secrets

has degraded to 0.65, with the use of different surrounding sen-

tences in the test set to those in the training dataset (c.f. Figure 7a),

irrespective of which secrets were used.

The performance of the NER model is decreased if it has not

previously seen a surrounding sentence during training. Thus, the

training process should contain sufficiently many representations

of expected surrounding sentences for better accuracy. On the con-

trary, the attack is more successful if the attacker can craft surround-

ing sentences that are similar to the ones used in the private dataset.

For instance, an attacker may employ a strategy to recover a suffi-

ciently similar surrounding sentence (by checking if the redaction

accuracy of the updated NER model increases on a generic secret),

prior to performing the membership inference attack on the target

secret. For instance, for the case of phone numbers, the attacker

could craft a phone number distributed similar to the original data

(e.g., a US mobile phone number). The attacker can then query

multiple manually crafted sentences with this phone number, e.g.,

“Please call me on ..., My phone number is ..., ... is where you can

reach me.” With each subsequent query, the surrounding sentence

with the highest probability can be further perturbed by replacing

words that increase the confidence of the whole sentence. The idea

being that the manually crafted surrounding sentence closest to

the actual surrounding sentence would give the highest confidence

by virtue of being in the training dataset. Figure 7a shows the plau-

sibility of this approach. However, we defer detailed investigation

of the impact of similar surrounding sentences as future work.

5 MEMBERSHIP INFERENCE VIA TIMING
ATTACK

In this section, we propose a timing side-channel attack on NER

models from observations that models process traning dataset

words faster. The attack in prior sections was specific to mem-

orization in the NN model, this attack targets the tokenizer which

internally accesses a vocabulary maintained by the NER pipeline.

Like that of Section 2.4, the updated NER model is available to the

attacker via black-box access, with an attacker objective to infer

membership of sensitive training data used to update the model.

An important distinction of this MI attack, is that surrounding

sentences are inessential, and thus knowledge of the surrounding

sentence is not assumed.

5.1 Timing Attack Methodology
5.1.1 Vocabulary. A pretrained NER pipeline contains many com-

ponents (We specifically evaluate spaCy’s pre-trained

“en_core_web_lg” and “en_core_web_trf” pipeline [27], the key dif-

ference being the tokenizer, of which “tok2vec” and a “ROBERTA

based transformer” is used respectively), each component can be

treated as a separate model to be updated with user data. In these

pipelines, there exists a vocabulary containing word associated

strings (prefix, suffix, shape and norm) of the pre-training dataset.

We call this the original vocabulary. When one updates the pipeline

with their private dataset, the vocabulary of the pipeline is up-

dated with strings (prefix, suffix, shape and norm/lowercase for

tok2vec, and byte-level byte pair encodings for the ROBERTA-base

transformer) from the updating dataset (The updated vocabulary),
becoming a superset of the original vocabulary. Words within a

vocabulary are in-vocab words, and those not are out-vocab words.
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(a) Same surrounding sentence as training. (b) Different surrounding sentences than training.

Figure 7: MI AUC for each training epoch with differing numbers of training secrets inserted into the i2b2 dataset. Potential
secrets are queried with surrounding sentences. The overall F1 score was computed on testing data.

5.1.2 Intuition Behind the Attack. The exploit occurs when the

model takes additional time processing out-vocab words. Specifi-

cally, when a word passes through the pipeline, the tokenizer first

extracts the tokens of the word which are checked in the vocabu-

lary. If present, nothing changes, if not present, they are added to

the vocabulary. Thus, vocabulary updates on new out-vocab words

are likely to take longer. Member words from the training/update

set are already present in the vocabulary, in contrast to unseen

non-member words. This, presents an opportunity for an attacker

to infer membership based on the inference time.

For this attack, position ourselves as a black box attacker, lever-

aging only the execution time from the time of query to the time

the output is returned. The assigned label and confidence of the

word is ignored (Though there remains a potential to fuse these fea-

tures). We demonstrate this attack with a password use-case, with

an updated NER model is specifically trained to label passwords in

documents. Again, the adversary’s goal is to infer membership of

passwords used in the updating (private) dataset.

5.1.3 Attack on the Original NER Model. We first evaluate the

timing side-channel attack on two public spaCy NER models. By

accessing the pretrained vocabulary strings, we can establish the

ground truth for members, or in-vocab set. We remark that in prac-

tice, a black box attacker would not have simple access to the model

vocabulary. Next, we generate a set of out-vocab words such that at

minimum their ‘suffix’ and ‘shape’ are not in the original vocabu-

lary’s string table (the same set is used to evaluate the transformer

pipeline). We note that we exclude the prefix feature when gener-

ating out-vocab words due to unavoidable overlaps with in-vocab

words (by default, the first character of the word). Specifically, we

generate a list of 5000 random passwords where each password

has minimum length of 6 characters including at least 1 of each:

uppercase, lowercase character, digit and special symbol. We refer

to these generated passwords as the out-vocab set.

Experimental Setup. We randomly sample 2000 words from the

in-vocab set and 2000 password from the out-vocab set. Then, we

sequentially query the original NER model interleaving between

in-vocab and out-vocab words. We alternate to ensure consistent

delay across both sets as a result of other spurious processes on the

system. Each query is simply a single word with no surrounding

text, with a measurement of the time taken to process the query.

From the execution time, the attacker can choose a threshold to

classify the queried word as a member or non-member. For our

evaluation we present the ROC curve and the AUC as a general

measure of classification performance.

5.1.4 Attack on an Updated NER Model. We also evaluate an up-

dated version of the NER model. Starting with the clean pretrained

NER models, we update them with a subset of our generated pass-

words. To update the NER model, we generate 5000 passwords

like Section 5.1.3, reserving the first 2000 passwords (updating
dataset Du ) to update the NER model. The NER model update

includes teaching the NER to identify sensitive words with the

new SECRET label. Specifically, training examples are in the form

s[r ] = “Alice’s secret is r .”, where r is a password from Du , anno-

tated as:

“Alice’s secret is r .”, {‘entities’: [(0, 5, ‘PERSON’), (18,
18 + length(r ), ‘SECRET’)]}

Experimental Setup.We sample 2000 passwords from the remain-

ing 3000 generated passwords. Then, we query the updated NER

model with 2000 r ∈ Du (in-vocab) and 2000 r < Du (out-vocab),

in an alternating manner. The execution time to output return for

each query is measured. Again, the attacker can choose a threshold

to classify the queried word as a member or non-member, though

we present the ROC curve and the AUC as a general measure of

performance.

5.2 Timing Attack Results

Timing Attack. Figure 8 shows the receiver operating character-
istic (ROC) curve and the AUC values of our attack on the original

NER and the updated NER models. We observe significant ease in
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Figure 8: Timing side-channel attack ROC curve to clas-
sify membership of word inputs for the original pre-trained
and updated NER model, on both tok2vec and transformer
pipelines. Note that the x-axis does not span to 1.

inferring membership of words in both the original the updated

NER pipelines. The lowest AUC is 0.9923, and is consistent across

both the “tok2vec” and the ROBERTA based transformer pipelines.

In both pipelines, the updated NER is marginally more susceptible

to MI. It is clear that timing attacks against these pipelines are

effective

We provide an expanded view of the in-vocab and out-vocab

times in Figure 16 of Appendix E. From those figures, it can be

observed in every setting, the NERmodel takes more time to process

words that are outside the pre-trained vocabulary (in the original

NER model) and outside of the updating dataset (in case of the

updated NER model).

Querying Non-Members Multiple Times. Following the attack
we observe that the features of even non-member words will be

added to the vocabulary of the model. Noting the fact that spaCy’s

NER pipeline will add features of any new word into the vocabulary,

we continue our attack on both versions of the NERmodel where an

adversary queries the model with the same word (in-vocab and out-

vocab) two more times. Surprisingly, we still obtain AUCs of greater

than 0.8195 for both models and pipelines with the execution time

of the model to process words on its second or third query (In full,

0.820, 0.994, 0.994, 1.00, for 2nd run, and 0.995, 0.995, 0.993, 0.999 on

the 3rd run for Original LG, Updated LG, Original TRF, and Updated

TRF respectively). The persistence of timing vulnerability despite

the vocabulary update means that there are additional components

within the processing pipeline that are not updated, resulting in

sufficient timing differences for successful membership inference.

Regardless, we can conclude that NER models take more time to

process words they are not trained on.

6 POSSIBLE DEFENCES

Neural Memorization. Memorizing training data poses serious

privacy risk in machine learning. It is crucial to measure how much

memorization occurs and propose solutions to mitigate this issue or

at least to train the model with less memorization. Several possible

approaches to mitigate unintended memorization of NNs in text

generation were discussed in [7]. Among them, using differential

privacy is demonstrated to be effective as it could fully eliminate

unintended memorization in text predictive models [7, Sec 9.3]. An

emergent relationship between the number of unique documents in

an entity class and the success of the membership inference attack

was observed in Section 4.1. From this relationship, a simple means

to reducing (but not eliminating) the success of a membership in-

ference attack is to either eliminate the entity, likely an infeasible

option as the capability to redact these infrequent entities is de-

stroyed. Or alternatively, to generate, or source additional similar

entities to train the model, to populate and reduce the risk posed

by the under-represented entity class. An approach to mitigate the

proposed attack exploiting model’s memorization demonstrated in

Section 4.1 is to restrict the NERmodel to return only the label of the

queried text instead of without the confidence scores. Though we

note that Label-only MI attacks have since been developed [12, 38],

we leave the evaluation of these label-only attacks as future work.

Timing Attack. A possible defence to this vulnerability is to dis-

able the updating vocabulary step during model training (or updat-

ing) so that sensitive words included in the private dataset are not

added to the vocabulary. It is also noted that adding every unseen

word’s features to the vocabulary might make the model hosted in a

cloud to be vulnerable to attacks which query the model with drivel,

i.e., inundating the vocabulary with bogus words which could lead

to space issues.

Masking timing characteristics has been proposed to prevent

against timing attacks in cryptosystems [34]. It is possible to apply

this idea to prevent timing side-channel in NERmodels. For instance,

one approach to mitigate the timing side-channel attack is to delay

returning the result until a pre-defined time has elapsed. This would

remove any timing difference, but impacts overall system speed.

Another approach specific to our scenario is to add a constant delay

to the time of the member words. For instance, on the updated LG

NER model (cf. Section 5.1.4), the average execution time taken by

the model to process the member words and non-member words are

tm = 2.08ms and tnm = 2.44ms, respectively. Assuming both time

distributions to be normally distributed with means tm and tnm, and
the same variance, adding a time of tnm − tm to the time of member

words will make the two distributions identical, and hence thwart

the timing attack. In practice system delays, or contested resources

may result in a few outliers, in which case a trimmed mean can

be employed. We note that the success of this defense can only be

empirically determined as it relies on the accuracy of estimated

mean times of member and non-member words, how accurately the

distribution of times can be approximated as normally distributed,

and the threshold to determine outliers.

Experiments: In order to test the constant delay defense, we

added the constant time of tnm − tm to member queries in the

experiments of Section 5.1.4. To remove outliers, the we calculated a

10% trimmed mean. For instance, a tnm−tm = 36ms delay is applied

to the updated LG NER model. From Figure 9, it is immediately

evident that the timing attack can be thwarted with the addition of

constant time. In all experimental settings, the MI AUC is close to

0.5, or a random guess. The slight deviation from 0.5 is due to the

fact that the timing distribution is not exactly standard normal (see

Figure 16 in Appendix E). Compare this to Figure 8, which depicts

the MI ROC with no defense, where AUCs are close to 1.0.
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Figure 9: Constant time delay added to member words to de-
fend against the timing side-channel attack. ROC curve clas-
sifies membership of word inputs.

Using Synthetic Data. A potential defense to thwart MI attempts

on either attack is replacing sensitive information in the private

dataset with dummy information. However, this is not straightfor-

ward, as the owner will need to ensure that the dummy information

at least preserves the semantics of the original information without

degrading the accuracy of the NER model, e.g., length of ZIP codes,

format of locations, and IP addresses, albeit in some cases, e.g., pass-

words, this may be possible. Moreover, this can be a tedious task for

a large dataset, and some sensitive information may inadvertently

be missed. Our attacks highlight the dangers of using sensitive

datasets for training NER models without necessary protections.

Experiments: To test this mitigation measure we perform ad-

ditional experiments with the i2b2 dataset. The i2b2 dataset is

prepared by creating sets of members and non-members as in Sec-

tion 4.2. However, as an additional step, we replace instances of the

sensitive label with dummy information from all training members.

In particular, we choose the sensitive labels of Location and Contact,

and replace all addresses and phone numbers with publicly avail-

able randomly generated synthetic ones.
3
The model is then trained

with this dummy training set. Note that the surrounding sentences

remain the same. To test MIA accuracy we use the non-member

set records from the same distribution as the original i2b2 dataset.

We perform this experiment for two of the potentially vulnerable

entities, i.e., Location and Contact.

The results illustrated in Figure 10a and 10b show that the perfor-

mance of the MI attack has now dropped to an AUC comparable to

a random guess, demonstrating that a model trained with dummy

data is less susceptible to membership inference attacks. This how-

ever, does result in a significant degradation of the model’s ability

to identify the correct entities due to the difference in the distribu-

tion of the dummy and original dataset. To resolve this trade-off,

the task is to generate synthetic data such that the dummy data

matches the original dataset’s distribution, without compromising

the privacy of the sensitive field. This means carefully crafting syn-

thetic examples that capture sub-categories of the entities, e.g., the

LOCATION category may contain different granularity of address

information: from city, to zip code, to street address. This cannot be

captured by simple data generation techniques such as the one used

by us. We however leave this consideration for future work, given

3
www.randomlists.com

(a) Original vs DUMMY LOCATION MI AUC

(b) Original vs DUMMY CONTACT MI AUC

Figure 10: MI AUC comparison between Original dataset en-
tity from Figure 6 vs DUMMY data for CONTACT and LO-
CATION.

the setting and domain specificity of each sensitive entity. Figure 15

in Appendix D, shows the overall F1-score for all entities together

with the standard deviation bands for these two experiments.

7 RELATEDWORK
Attacks against Text ClassificationModels.Recentworks have demon-

strated a vulnerability of text classification models to adversarial

sample attacks, reducing model accuracy or forcing the output of

a target label [19, 31, 39]. Garg et al. [19] propose BERT-based ad-

versarial examples with contextual perturbations from the BERT

masked language model, to reduce classifier accuracy by more than

80%. In contrast, we focus on analyzing the vulnerability of text clas-

sification models to membership inference and timing side-channel

attacks.

Membership Inference (MI) Attacks.With access to a ML model an

attacker can determine if a data sample was in the training dataset,

or infer its membership, Shokri et al. [54] first achieved this by

training shadow models to mimic the behavior of the target model.

Salem et al. [50] proposed a low cost attack on ML models without

the need of shadowmodels, in addition to a relaxed attack that sets a

340

www.randomlists.com


Unintended Memorization and Timing Attacks in Named Entity Recognition Models Proceedings on Privacy Enhancing Technologies 2023(2)

threshold for prediction confidence to identify membership. On text

generation models, Song et al. [56] present a user-level MI attack by

training an auditing model that checks the membership of any user

sample even if not explicitly used in training the model. Salem et

al. [49] infers labels of updating data samples and reconstructs the

updating data based on output differences between two versions of

models. Moreover, this work targets image classification where as

our focus is text classification.

MI Attacks against NER. To the best of our knowledge the only

work analyzing MI attacks on Named Entity Recognition is [53].

Specifically, Seyedi et al. perform [54]’s Shadow MI attack on a

NER model (NeuroNER [15]) used to de-identify medical records.

However, Seyedi et al. concludes an inability to distinguish be-

tween members and non-members of the medical training data.

However, as previously seen in Section 4.1, contrary to Seyedi et

al.’s conclusion, we find there exists a realistic MI threat against

the i2b2 medical dataset [59] and when applying MI on sensitive

information like passwords. Furthermore, the NeuroNER model

contains a tokenizer, opening potential vulnerabilities to our timing

side-channel attack.

Memorization in Language Models. Carlini et al. [7] demonstrate

generative text models memorize out-of-distribution secret phrases

in the training data and present methods to extract these secrets. [8]

has recently shown that large language models like GPT-2, trained

on text from the internet including sensitive information from bil-

lions of users can be attacked to extract personally identifiable

information (PII), in extremely large parameter models. Despite

these large models demonstrating no memorization through gener-

ality tests, they still are capable of leaking information. Helali et

al. [25] demonstrates the unintended memorization of NER models

specific to labels that share linguistic materials with at least one

other label. In this work, we demonstrate that text classification

models, specifically Named Entity Recognition models also unin-

tentionally memorize their training data with proposed attacks that

exploit said memorization to infer the membership of sensitive in-

formation. Zanella et al. [64] uses differential scores and ranks from

two model versions to analyze information leakage of an update

set for text prediction tasks.

Timing Side-Channel Attacks. A timing side-channel is defined as

a side-channel that leaks information due to faulty or vulnerable op-

erations of a system [4]. In literature, numerous timing side-channel

attacks have been proposed to attack cryptographic systems. For

instance, attacks may exploit delays in memory access of a program

due to other programs accessing the same shared memory. Wang et

al. [60] proposed an attack to compromise the private key of RSA

decryption by monitoring memory accesses. Wang et al.’s attacker

continuously issues memory requests to memory shared by the RSA

decryption program, measuring the end-to-end delay for request

completion. With the delay, the attacker can estimate the number

of ‘1’ bits in the RSA’s private key. Timing side-channel may also

be based on execution time. Chen et al. [10] proposed a timing

side-channel attack against the RSA-CRT algorithm that executes a

chosen ciphertext attack to collect time measurements on the over-

all decryption process. In neural networks, few works consider the

timing side-channel. For instance, Duddu et al.[17] proposed a tim-

ing side-channel attack to reverse the neural network architecture.

Specifically, the attacker queries the target model and measures

the execution time which is then used to infer the model’s depth.

To the best of our knowledge, our work is the first that exploits

the vulnerability of NER models to a timing side-channel for MI

attacks.

Contextualizing Differences from Previous Work. In this work we

have shown that NER models are susceptible to membership and

attribute inference attacks by exploiting neural memorization and

timing side channels. As indicated above, neural memorization has

already been demonstrated in the literature [7, 8], however their

setting is text generation instead of text classification. In the text

generation setting, the model returns a ranking of possible word

tokens given a sequence of words, which it has learned through its

training. Thus, given a sequence such as “The secret phrase is ...,”

the model returns possible tokens that would complete the sentence.

If the model is susceptible to neural memorization, the sensitive

word (password in this case) would be higher ranked in the output.

From this, a membership inference attack can be launched in a

straightforward way. Our text classification setting is different, as

the model never suggests tokens, and we need to modify the attack

to try different possibilities (e.g., password dictionaries) to guess

the missing word (e.g., password).

We also remark that membership and attribute inference attacks

in general need not be related to neural memorization. For instance,

membership inference attacks have been demonstrated on machine

learning models other than neural networks [54]. Furthermore,

membership inference attacks may use a different exploit other

than neural memorization. One such example is overfitting due to

over training which is different from neural memorization [7]. In

this paper we have also shown how membership inference attacks

can be launched via exploiting side channels, specifically, timing

side channels. Note that timing side channels have previously only

been demonstrated on stealing machine learning models (model

parameters), and not on membership inference on natural language

processing models [17]. We have shown how this can be done by

exploiting the built-in dictionary ofmemberwords in NER systems.

8 CONCLUSION
Many emerging applications of Named Entity Recognition (NER)

models show their potential to be monetized as a service, includ-

ing identification of medical and other personal information in

documents to minimise impacts of data breaches, and redaction of

sensitive information for document sharing. With the spaCy NER

model as a use case, we have shown that the current crop of neural

network based NER models are vulnerable to privacy attacks on

their underlying training data, and thus in their current form they

are not suitable to be hosted as an online service for labeling sensi-

tive information. We have demonstrated two main attacks on NER

models, one based on neural network memorisation, and the other

based on timing differences when queried with text appearing in

the training dataset versus text outside the training dataset. Both

attacks can be somewhat mitigated by using techniques such as

differential privacy and timing delays, with obvious accuracy and

efficiency tradeoffs. We hope our work motivates the pursuit for

more privacy-preserving NER models.
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A END-TO-END PIPELINE OF SPACY
The text is first segmented into tokens by a Tokenizer which ap-

plies rules specific to each language. When processing a token, the

Tokenizer accesses the Strings table in the vocabulary (Vocab) and
checks whether four features of the token including prefix, suffix,

shape and norm (lower form) are in the Strings. If any feature is

not in, it is added to the Strings. The output of the Tokenizer is a
Doc object which is a sequence of tokens. The updated NER model

then processes the Doc object and returns the named entities in

the input text with probability scores. Note that the updated NER

model will take into account the pre-trained word embeddings in

the Pre-trained Vectors when processing the Doc if it is available in
the Vocab.

B EQUIVALENCE OF WORDS IN SPACY
We define the Hamming difference between two wordsw1 andw2

of equal length as the number of positions where they differ. That

is, all positions j such thatw1(j) , w2(j). Note that we consider the

Vocab

Updated NER

Strings Pretrained
Vectors

TokenizerText Doc
(Tokens)

Text with
labelled named

entities

nlp

Figure 11: The end to end pipeline of an updated NERmodel
in spaCy. Under a black-box setting, the attacker can query
the model by passing text to the nlp object, getting labels
with their confidence scores.

lower and upper case characters as two different characters. Two

wordsw1 andw2 are considered the same, denotedw1 = w2, if and

only if they are of the same length and their Hamming difference is

zero. Otherwise they are considered different. We assume the prefix

to be the first character and the suffix to be the last 3 characters;

the default setting in spaCy as mentioned in Section 2.3. We say

two words are equal in spaCy if they have the same prefix, suffix,

norm and shape, otherwise they are different in spaCy. Our first

observation is that two different words may be equal in spaCy. This

is easy to seewith thewords: “ABCDEfghij” and “ABCDefghij”. Both

words have the same prefix, suffix, norm and shape (i.e., XXXXxxxx,

since same character sequences are truncated after a length of 4).

Thus, this separates the two notions of equality of words. We are

interested in knowing the conditions under which the two notions

differ.

For any wordw , we let shape(w) denote its shape under spaCy

(which is also a string). We define the middle of the wordw as the

substring obtained after removing its prefix and suffix. We denote

it by mid(w).

Proposition 1. Letw1 andw2 be two words equal in spaCy. Then
their prefixes, suffixes and length are the same.

Proof. The fact that the prefixes and suffixes are the same fol-

lows from the fact that they are case-sensitive in spaCy. If |w1 | ,
|w2 | then the two case-insensitive norms of the two words will be

different, contradicting the assumption. □

Proposition 2. Let w1 and w2 be two words equal in spaCy.
And let w1 , w2. Then for all j such that w1(j) , w2(j), either
shape(w1(j)) = X and shape(w2(j)) = x, or shape(w1(j)) = x and
shape(w2(j)) = X. Furthermore, any such j satisfies: 4 < j < |w1 | −

3 = |w2 | − 3.

Proof. First note that if eitherw1(j) orw2(j) is a digit or a special
character, the norms of the two will be different, contradicting the

assumption. This only leaves the possibility that w1(j) has either
shape X or x. In either case w2(j) should have the case-inverted

shape, sincew1(j) , w2(j). From Proposition 1, since the prefixes

and suffixes of the two words are the same, such a j can only be part

of the middle of the two words. This leaves j ∈ {2, 3, 4}. Consider

one such j. Since the length of the prefix is 1,w1(j) andw2(j) will
not be truncated in the shape. Hence the shapes of the two words
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will have a different shape at the jth character, contradicting the

assumption that they are equal in spaCy. □

Proposition 3. Letw1 andw2 be two words equal in spaCy. And
letw1 , w2. Then |mid(w1)| = |mid(w2)| ≥ 5.

Proof. From Proposition 1, the two words are of equal length.

Hence the length of the middle of the two words is also equal. Let

us assume that |mid(w1)| < 5. This meansw1 andw2 have at most

4 characters in their middle, and a total length of ≤ 8 including the

prefix and suffix. The case that mid(w1) is empty is not possible,

since then the word only consists of the prefix and suffix, which

are the same for the two words. Thus, 0 < |mid(w1)| < 5. From

Proposition 2, any j satisfyingw1(j) , w2(j) must be from the set

{5, 6, 7}. Consider j = 5, and wlog assume the shape of w1(5) to

be X and that of w2(5) to be x. The shape of the two words up to

the 4th character is the same. Denote this shape by s . If the four
characters of s are not of the form xxxx, or XXXX, then the 5th

character of shape(w1) will be X and that of shape(w2) will be x,

contradicting the assumption that the two shapes are the same.

Thus, wlog assume the four characters of s are XXXX. Then there

is a shape change to x at character 5 in shape(w2), butw1(5) does

not change the shape (due to truncation). Since j = 5, there are 3

characters left. This means the shape ofw1 will have at least one

character less than the shape ofw2, since there can be no truncation.

This shows that the shape of the two words upto the 5th character is

the same. This leaves j = 6 and 7. A similar argument above applied

to j = 6 and j = 7, in turn, leads to the same contradiction. □

Combining the three propositions, this means that if two words

are equal in spaCy then they have the same length. And the only

way two words equal in spaCy can be different is if they differ

in case, and all the differences are from character 5 onwards. The

following is an immediate corollary.

Corollary 1. If two wordsw1 andw2 are the same in spaCy and
|w1 | ≤ 8, thenw1 = w2.

Thus, the minimum length of words for which the two notions

differ is 9. We have already given an example of such a pair.

C MEMORIZATION DIFFERENCES BETWEEN
SPACY 2 AND SPACY 3

An additional experiment was performed on two different versions

of spaCy: version 3 (which is the current version at the time of

writing) and the older, version 2. We use N = 10 different target

passwords chosen randomly from a space of |R | = 2000 passwords,

which in turn are picked randomly from a public password dictio-

nary with one million passwords [14].

We then measure the rank of each target password averaged

over 48 runs. We vary the number of insertions of the phrase s[r ]
from 1 to 4. The average (normalized) ranks of the target passwords

for spaCy 2 and 3, as a function of the number of epochs used to

update the NNmodel are shown in Figures 12a and 12b, respectively.

After a certain number of epochs, both versions of spaCy memorize

the target password (rank of 0). However, the newer release of

spaCy shows faster memorization: less than 10 epochs even with

a single insertion. Thus the newer version fairs worse in terms

of unintended memorization. Having no substantial architectural

(a) spaCy 2.3.2

(b) spaCy 3.0.3

Figure 12: The extent of model memorization for out-of-
distribution words in two different versions of spaCy. “In-
sertions” refer to the number of times the same phrase is re-
peated in the training set, “Epochs” is the number of train-
ing iterations the model undergoes during the update pro-
cess.

differences between models of the two versions, it’s interesting

to observe a major difference in model memorization on a single

phrase. Determining the exact cause for the faster memorization

would requite a thorough inspection of the source code.

D COMPLETE TRAINING LOSS PLOTS FOR
THE DOCUMENT REDACTION USE-CASE

Wepresent individualizedMI AUC, NER training loss and individual

entity f1-score for each of the entity configurations investigated

in Section 4.1 in Figure 13. In Figure 14, we present individualized

MI AUC, NER training loss and individual f1-score for each of

the SECRET configurations investigated in Section 4.2. Similarly,

in Figure 15, from our defense investigation in replacing training

entities with dummy data in Section 6. For each of these figures the

standard deviation of the target entity’s F1 score is displayed in the

shaded red region of the figure.

E TIMING ATTACK COMPARISON
In this appendix, we provide a visual representation of the differing

timings between member and non-member words when processed

by spaCy. Recall that Figure 16a & 16b shows the execution time

distribution of the original pre-trained NER model to process in-

vocab and out-vocab words. Next, Figure 16c & 16d displays the
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(a) LOCATION (b) ID

(c) CONTACT (d) CONTACT-5

(e) CONTACT-5-50 (f) CONTACT-5-30

(g) CONTACT-5-10

Figure 13: Individualized MI AUC, NER Loss and F1-score for each of the entity configurations investigated in Section 4.1. MI
AUC and F1-score share the same y-axis scale on the left.

time distribution of the updated NER model to process passwords

inside and outside the updating dataset.
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(a) SECRET-150 (b) SECRET-100

(c) SECRET-50 (d) SECRET-30

Figure 14: Individualized MI AUC, NER Loss and F1-score for the SECRET class with controlled training and test sample
configurations investigated in Section 4.2. MI AUC and F1-score share the same y-axis scale on the left.

(a) DUMMY CONTACT (b) DUMMY LOCATION

Figure 15: Individualized MI AUC, NER Loss and F1-score for the defense method investigated in Section 6. MI AUC and F1-
score share the same y-axis scale on the left.

(a) LG pipeline, original model (b) TRF pipeline, original model (c) LG pipeline, updated model (d) TRF pipeline, updated model

Figure 16: Execution time distribution of original and updated NER models for processing words inside (member) and out-
side (non-member) the updating dataset. Results for both a tok2vec (LG) and ROBERTA based transformer (TRF) pipeline is
presented.
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