
PubSub-ML: A Model Streaming Alternative to Federated
Learning

Lovedeep Gondara
School of Computing Science

Simon Fraser University
Canada

lgondara@sfu.ca

Ke Wang
School of Computing Science

Simon Fraser University
Canada

wangk@cs.sfu.ca

ABSTRACT
Federated learning is a decentralized learning framework where
participating sites are engaged in a tight collaboration, forcing them
into symmetric sharing and the agreement in terms of data samples,
feature spaces, model types and architectures, privacy settings, and
training processes. We propose PubSub-ML, Publish-Subscribe for
Machine Learning, as a solution in a loose collaboration setting
where each site maintains local autonomy on these decisions. In
PubSub-ML, each site is either a publisher or a subscriber or both.
The publishers publish differentially private machine learning mod-
els and the subscribers subscribe to published models in order to
construct customized models for local use, essentially benefiting
from other sites’ data by distilling knowledge from publishers’
models while respecting data privacy. The term “model stream-
ing" comes from the extension of PubSub-ML to decentralized data
streams with concept drift. Our extensive empirical evaluation
shows that PubSub-ML outperforms federated learning methods
by a significant margin.

KEYWORDS
decentralized learning, differential privacy, federated learning

1 INTRODUCTION
The ability to share information between institutions while re-
specting data privacy of individuals would lead to more robust
and accurate models. Two well-known examples aiding remark-
able achievements via access to large data are ImageNet [4] in
computer vision and SQuAD [35] in natural language processing.
However, the progress is limited in highly regulated domains such
as healthcare and finance as regulations and privacy concerns make
it impossible for institutions to pool and disseminate their data. The
most studied approach in this context is federated learning (FL) [29],
a decentralized learning framework that trains a machine learning
model on data distributed among multiple sites by training on local
data and exchanging parameters between sites at some frequency
to generate a global model.

The general FL framework is not well-suited to the multi-institut
-ional collaboration due to tight collaboration of the sites involved,
where the sites are forced into symmetric sharing and shared de-
cision making in terms of shared feature space (i.e., horizontal FL

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(2), 464–479
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0063

[49]) or sample space (i.e., vertical FL [49]), uniform model types
and architectures, and training iteration synchronization. These
issues are exacerbated for differentially private (DP) FL where all
the sites have to agree on a common privacy budget.

For example, consider the healthcare setting, where in FL, all par-
ticipating hospitals have to contribute their data to receive the final
model as the benefit of participation. However, in the real world, the
forms of contribution and benefit are diverse. Where, it is possible
that some hospitals may pay for the final model instead of con-
tributing their data, whereas other hospitals may contribute their
data and receive benefits through monetary rewards or collabora-
tion. Therefore, each site can be a contributor of data, a recipient of
final models, or both. Furthermore, collaboration should not cause
changes to sites’ existing data analysis practices, including features
and samples collected, model types and architectures used, how
and when to train local models, and how to set site-specific privacy
budgets.

1.1 Our Proposal
With the above inmind, we consider a decentralized learning setting
under loose collaboration with the following core requirements:

Autonomy: Each site should be able to make its local decisions
on data samples, feature space, and training processes, as if it were
the only site in the decentralized learning setting.

Asymmetric sharing: Each site should be allowed to decide inde-
pendently whether its participation is through contributing data
(i.e., contributor), or receiving the final model (i.e., beneficiary), or
both.

Personalized privacy: Each site should be able to set its own
privacy budget to preserve local data privacy because a common,
one-size-fits-all privacy budget leads to degraded utility and/or
privacy.

Model-agnostic: The decentralized learning framework should
be independent of the model types used by individual sites. That is,
each site should be able to independently select their model types
and architectures (for example, one site can use neural network
and another site can use random forest, etc.).

We propose PubSub-ML, Publish-Subscribe for Machine Learn-
ing, to achieve the above requirements of loose collaboration for
decentralized machine learning. PubSub-ML takes the inspiration
from publish/subscribe messaging1, an asynchronous communica-
tionmethod inwhichmessages are exchanged between applications
without knowing the identity of the sender or recipient, selected
specifically to enable asymmetric sharing between sites. In PubSub-
ML, each site is either a publisher or a subscriber or both. Instead
1https://bit.ly/3gr3jOu

464

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0063
https://bit.ly/3gr3jOu

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

ABPub

Pub

Sub

[AB]

Sub

[CF]

Models
Input

Features

.

.

.

.

BC

AB

Pub DE

BC

BC

A V B

C V F

Channels

Publishers Subscribers

Figure 1: PubSub-ML: Three publishers (Pub) and two sub-
scribers (Sub). A,B,C,D, E, F are individual features. Sub-
scriber 1with the feature spaceAB specifies the channelA∨B,
which subscribes all published models trained on the input
feature space containing eitherA or B, and Subscriber 2 with
the feature space CF specifies the channel C ∨ F , which sub-
scribes all published models trained on the input feature
space containing either C or F .

of publishing and subscribing messages, each publisher publishes
locally trained differentially private machine learning models and
each subscriber subscribes to the published models through a chan-
nel that specifies a requirement on the feature space of subscribed
models. The models satisfying the requirement are streamed to the
subscriber. The subscriber uses the streamed models plus its own
model and data to construct the customized model for local use. An
example of the subscription for PubSub-ML is shown in Figure 1.

Subscribing other sites’ models for customizing the local model is
related to teacher-student based knowledge distillation [14], where
the subscribedmodels serve as the teachers for the subscriber to con-
struct the customized model for local use. The model customization
offers several advantages in facilitating the subscriber’s learning
compared to FL.

First, model customization in PubSub-ML takes advantage of dis-
tilling knowledge frommultiple diverse models, that is, the DPmod-
els from the publishers and the non-private, local model from the
subscriber. From an ensemble point of view, the individual models
trained on limited data act as weak learners, the model customiza-
tion combines them to create a significantly strong learner using
subscriber’s local data. In contrast, DP-FL builds a single, global
model, using noisy aggregates. This unique property of PubSub-ML
leads to superior empirical performance compared to DP-FL, as
shown in our evaluation in Section 8. Second, in the case where
each site has a different data distribution (non-IID data), e.g. a dif-
ferent sub-population, model customization allows the subscriber
to bias towards the sites that have a data distribution similar to
its local data. In contrast, FL forces the equal use of all sites’ data.
In this sense, model customization can ignore bad models from
publishers that have poor quality data. Third, when useful features
are distributed across sites, model customization can incorporate
all useful features, benefiting from all sites’ data. Fourth, model
customization is not constrained to specific learning scenarios such
as classification or regression, instead, it is applicable to all learning

problems that can be formulated as an optimization problem with
an objective defined by a loss function.

In the real world, decentralized data often comes in the form of
continuous data streams originating at multiple related sites (elec-
tronic health records frommultiple hospitals, credit card transaction
flows from multiple banks, etc.), and the properties and patterns
of data are subject to change over time, a phenomenon known
as concept drift. To be practically useful in such applications, we
extend PubSub-ML to decentralized streaming data to allow model
publishing and subscribing on a continuous basis. Importantly, our
extension ensures a constant privacy budget for unlimited model
updates for never-ending data streams, which is not possible for
existing DP-FL methods where incremental updates to the model
deteriorate utility as each update depletes the privacy budget (due
to the composition of the privacy loss [9]).

1.2 Contributions
The technical contributions of PubSub-ML are as follows:
• We motivate a decentralized learning setting under loose
collaboration and introduce Autonomy, Asymmetric shar-
ing, Personalized privacy, and Model-agnostic property to
capture the essential requirements in this setting. This set-
ting requires minimal changes to a site’s current practice for
participation.
• We propose a publishing/subscribing inspired decentralized
machine learning scheme, PubSub-ML, where each site pub-
lishes and/or subscribes models. The core component is the
customization scheme for a subscriber to construct a cus-
tomized model utilizing the subscribed models. PubSub-ML
satisfies Autonomy, Asymmetric sharing, Personalized pri-
vacy, and is Model-agnostic.
• We extend PubSub-ML to time-evolving data streams and
show that the same DP guarantee holds after any number of
model updates.
• We empirically show that our proposed method significantly
outperforms competitors on six real-world and synthetic
datasets, for classification and for regression. We make our
source code publicly available2.

Rest of the paper is organized as follows. Section 2 reviews
related works. Section 3 gives an overview of PubSub-ML. Section
4 presents the customization algorithm that integrates published
models for a subscriber. Section 5 presents the detailed PubSub-ML
framework. Section 6 extends the PubSub-ML framework to data
streams with concept drift. Section 7 presents our evaluation setup
and Section 8 presents evaluation results. Finally, we conclude the
paper in Section 9.

2 RELATEDWORK
This section reviews the related work in the decentralized learning
setting and highlights our differences from existing work.

Model and data heterogeneity. [24, 27, 53] address model au-
tonomy in the decentralized setting using knowledge distillation
[14], where they require access to a public dataset with similar
distribution as the sites’ private data. Assisted learning [48] allows

2https://github.com/lgondara/PubSub-ML

465

https://github.com/lgondara/PubSub-ML

Proceedings on Privacy Enhancing Technologies 2023(2) Gondara et al.

different sites to have different features but requires the alignment
of samples across sites. Personalized FL [11][50] produces a per-
sonalized model at each site by fine-tuning the global model using
local data. Other methods in FL have been proposed to support non-
IID data across clients and to improve convergence (FedProx [25]
and FedAdam [37]). ProxyFL [20] and HeteroFL [5] allow different
model architectures, where Proxy FL works via sharing a DP proxy
model, and HeteroFL works by constructing clients using a subset
of global model parameters. All the above works apart from [20] do
not provide any privacy guarantee, do not support full autonomy,
and are not model-agnostic as they require the same model type
across sites, the alignment of either features or samples across sites,
same privacy budget for all sites, and synchronized training.

Meta learning and model fusion. Meta learning and model
fusion, e.g., [15] [23] [51], aim to adapt pre-trainedmodels of related
tasks to a new task where synchronized training is not possible. [23]
applies knowledge transfer from black-box models to new tasks
by learning to capture the correspondence between latent repre-
sentation that represent the embeddings of different models. [51]
develops a framework that learns shared global latent structures by
identifying correspondences among local model parameterizations.
All of the above works do not provide privacy guarantees and do
not support full autonomy.

Clustered andmulti-task learning. Clustered FL [12, 38] par-
titions the clients into several clusters, where each cluster has
similar clients, with the client similarity learned during the fed-
erated learning process. Clients in each cluster share the same
optimal model, which can be different from the optimal models of
other clusters. Multi-task learning [28, 41, 45, 52] allows for more
nuanced relations among participating sites, where each site can
be considered addressing a specific task, allowing the ability to
model heterogeneous data distributions across clients. However,
all the works above do not guarantee privacy, do not support full
autonomy, and are not model-agnostic.

Privacy.Most of the works in FL do not explicitly incorporate
privacy guarantees assuming that keeping data locally at the re-
spective sites protects user privacy. We can broadly classify the
works that consider formal privacy/security guarantees into two
categories. First, the works that use differential privacy as the mech-
anism to provide privacy guarantees, such as the FL approaches
combined with DP [6, 20, 30]. These works only consider uniform
privacy guarantees, lacking personalized privacy where sites can
independently select their privacy budgets. Second, there is an
ongoing effort to leverage security/cryptography based protocols,
such as secure multiparty computation [3, 43] or homomorphic
encryption [47]. Use of such methods in FL is still in early stages
where the progress is hindered by their extensive communication
and computational overhead [19]. Please see [18] for a detailed
discussion. To our knowledge, no existing work has provided dif-
ferential privacy for machine learning in the decentralized data
streaming setting.

3 OVERVIEW
3.1 Differential Privacy
Two data sets D and D ′ are neighboring if they differ in the addition
or removal of one user’s data.

Definition 1 (Differential Privacy (DP) [9]). A randomized
mechanismM : Dn → Rd is (ε, δ)-DP if for any pair of neighbouring
data sets D,D ′ ∈ Dn , and for all sets O of possible outputs:

Pr[M(D) ∈ O] ≤ eεPr[M(D ′) ∈ O] + δ (1)

The inequality ensures that changing the data of any single user
will have a small impact, defined by the multiplicative factor eε and
the additive factor δ on the output of a mechanismM satisfying
DP.

Theorem 1 (Parallel Composition [31]). LetMi each provide
(εi , δi)-DP. Let Di be arbitrary disjoint subsets of D. The sequence of
Mi (Di) provides (maxiεi ,maxiδi)-DP.

Theorem 2 (Post Processing [9]). Let M : Dn → Rd be a
randomized mechanism that is (ε, δ)-DP. Let f : Rd → Rt be a
deterministic function. Then f ◦M : Dn → Rt is (ε, δ)-DP.

3.2 Overview of PubSub-ML
In PubSub-ML, participating sites preserve their existing data anal-
ysis practices with some minor changes. Before beginning, all sites
(publishers and subscribers) resolve any ambiguity of feature seman-
tics (i.e., different feature names representing the same semantic
and same feature name used to represent different semantics) and
feature encodings (i.e., the same values are represented differently
at different sites) arising from the distributed nature of sites. For
example, all sites agree to label their attribute recording “Age at
disease diagnosis" as “Age" and to store the values as number of
years. These ambiguities are resolved at the metadata level, while
keeping their raw, sensitive data locally.

In PubSub-ML, as in most works on privacy, we assume that
the sites are semi-honest, that is, the sites follow the PubSub-ML
protocol even if they may try to compute additional information
about other sites [7]. We also make the following assumption about
local dataset Di owned by each participating site i .

Assumption 1. For each site i , the data Di has its own feature
space and is generated independently of other sites.

In other words, sites are not required to have the same feature
space (see Figure 1 and Example 1), and we assume that the data
at each site is generated independently. In particular, we do not
require the alignment of features or samples across all sites as in
[30, 48].

In PubSub-ML, each site is either a publisher or a subscriber or
both. Each publisher p (i.e., the pth publisher) trains and publishes
differentially private local model(s) denoted byMp , where a model,
defined by a learning objective and a loss function, generates output
for a given input. For example, a model outputs a probability distri-
bution of class labels for classification or the estimated target value
for regression. Each subscriber s (i.e., the sth subscriber) subscribes
to a channel specified in the form F1 ∨ · · · ∨ Fk , where Fi is a subset
of the features from the subscriber s’s feature space. This channel
will stream to s all published models that contain all the features in
at least one Fi . We denote s’s subscribed models by Λs . With the
models in Λs as well as the subscriber’s own local model(s) denoted
byMs , the subscriber s constructs a customized model for the task
at the site s , denoted by Cs . This construction is performed by a
customization algorithm, detailed in Section 4.

466

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

Note that a site i can be both a publisherp and a subscriber s , that
is, the pth publisher and the sth subscriber. In this case,Mp denotes
the model published by p as the publisher andMs denotes s’s local
model used to construct the customized model by the subscriber.
As we shall see in Section 4,Mp andMs may be different.

The overview of PubSub-ML is given in Algorithm 1. (εp , δp)
denotes the personalized privacy budget for each publisher p. There
are two phases. In the publishing phase, all publishers p train and
publish DP models Mp . This can be done by having all publish-
ers running the DP version of their machine learning algorithms.
Examples are DP neural networks [1], DP random forest [36], DP
Naive Bayes [44], etc. In the customizing phase, all subscribers s
construct customized models Cs using subscribed models Λs plus
local modelsMs .

Algorithm 1 Overview of PubSub-ML

Require: Data sets Di for all sites i; privacy budgets (εp , δp) for
publishers p.

1: for all publishers p in parallel do
2: p trains and publishes (εp , δp)-DP local modelsMp ;
3: end for
4: for all subscribers s in parallel do
5: s constructs the customized model Cs using the subscribed

models Λs and its own local model(s)Ms ;
6: end for

Example 1. Let A represent features related to intensive care
(such as length of stay in ICU, patient vitals, etc.),B represent patient
demographics (such as age, ethnicity, etc.), C represent features
from the lab system (such as WBC count, hemoglobin, etc.), and D
represent features from the pharmacy (such as drugs used, dosage,
etc.). Suppose that hospitals 1, 2, and 3 are publishers and have the
featuresAB,BC,BD, respectively, and hospital 4 is a subscriber with
features ABC with the task of mortality prediction. We assume that
features A and C are most important for this. To benefit from the
data on either A orC of the other hospitals, hospital 4 subscribes to
the channelA∨C , which streams the models published by hospitals
1 and 2. Note that we make no assumption on the alignment of
samples across sites, thus, these hospitals can have different sets of
patients.

Discussion. PubSub-ML has many desirable properties. First,
since publishers’ models are protected by DP, and are used by
the subscriber to create a customized model, no trusted server is
needed, and the DP guarantees provide protection against model
inversion and reconstruction attacks [32, 42]. Second, publishers
can train their models in parallel and subscribers can run their cus-
tomization algorithms in parallel; the only synchronization is that
the training of the models is performed before the customization.
Therefore, PubSub-ML can scale up to a large number of publish-
ers/subscribers. Compared to the synchronized training of FL, our
customization of (published) pre-trained models suits particularly
well with resource-constrained IoT devices and bandwidth-limited
communications. Third, related to the last property, the communi-
cation cost in PubSub-ML is minimum. There is no communication
cost on model training (which occurs locally at all sites) and there
is one communication round between subscribers and publishers

to pass model parameters at end of training, compared to multiple
training rounds in FL. Roughly, our communication cost is similar
to that of the fully decentralized FL where each site exchanges
information with its neighbours in each training round, but we
only need one round of communication. Finally, the publishers and
subscribers can join and leave the system as desired because the
model customization only depends on the models published, not
the identity of the publishers.

3.3 Issues
We need to address several issues. First, most model fusion schemes
assume that sites share the same feature space. In PubSub-ML, each
site can have its own set of features, so we need a new way of
constructing the customized model from published models. Second,
the number of models in Λs can be potentially large and not all
models contribute equally. In such cases, it can be resource inten-
sive for the subscriber to use all models in Λs , the subscriber needs
a way to select few good models. We begin with presenting the
customization algorithm in the next section (i.e., line 5 of Algo-
rithm 1), followed by refined PubSub-ML in Section 5. We present
PubSub-ML’s extension for data streams in Section 6, and empirical
evaluation in Sections 7 and 8.

4 CUSTOMIZATION ALGORITHM
The subscriber s uses the subscribed models Λs and the subscriber
s’s own model(s) Ms to construct the customized model Cs for
performing the task at s . Note thatMs is never published because it
is only used for customization by the subscriber s itself. Traditional
ensemble and weighting methods such as [46] do not work because
the sites in PubSub-ML are not required to have the same feature
space. In addition, traditional methods learn only a linear weighting
scheme. Below, we present a general solution.

One question is what data will be used to trainMs and to train
the customized model Cs . One option is using the subscriber’s
whole data, i.e., Ds , to train bothMs and Cs . This would make the
customization bias towards Ms trained by the same data, which
reduces the benefit of the subscribed models. To avoid this, we split
Ds into the training subset and the customization subset, denoted
by Tra(Ds) and Cus(Ds), respectively, and use the former to train
Ms and use the latter for customization. In some cases such as sites
that are IoT devices or smartphones, the number of publishers, thus,
the number of subscribed models in Λs , can be very large and it
is resource intensive to use all such models for customization. In
this case, a small number of models can be selected fromMs ∪ Λs
for customization. Let Sel denote the selected models. For example,
Sel could be the set of top-m models based on the performance on
Cus(Ds).

With the above in mind, we present our customization algorithm,
run by the subscriber s , as CUSTOMIZE(s, loss) in Algorithm 2. The
algorithm has five steps described below.

Step 1: generate local model(s) Ms to be used for customization.
This model is trained by s on the data Tra(Ds).

Step 2: select models fromMs ∪ Λs for customization. Sel denotes
the selected models.

Step 3: construct the training data for customization. The cus-
tomization will fuse the selected models Sel to perform the task

467

Proceedings on Privacy Enhancing Technologies 2023(2) Gondara et al.

at the subscriber s , similar to knowledge distillation [14] where a
model’s output acts as a proxy for the knowledge learned by the
model. The challenge is that the subscriber s does not necessarily
have the same feature space as publishers, hence, the customization
data Cus(Ds) may have different features from the input features
of subscribed models. This step unifies their feature spaces by ex-
tending the samples x in Cus(Ds) and the inputs of the subscribed
modelsMi in Sel to the union of their feature spaces, denoted by
all(s, Sel). For example, suppose that s has the feature space ABC
and one model in Sel has the feature space BD and another has
the feature space CF , where each single letter is a feature, then
all(s, Sel) = ABCDF . The detail is explained below.

For a sample x in Cus(Ds) and a modelMi in Sel , let x ′ andM ′i
denote their extensions to all the features in all(s, Sel), respectively.
Let M ′i (x

′) denote the output vector of M ′i on the input x ′. We
define

m(x) = {M ′i (x
′), · · · ,M ′R (x

′)} (2)
whereMi ’s are the models in Sel . Intuitively,m(x) is the concate-
nation of the output vectorsM ′i (x

′) for all selected modelsMi .
Note that we have not specified a specific learning objective

for Mi . Mi can be any model such as those for supervised, semi-
supervised, or unsupervised learning setting, as long as the Mi s
are defined with an optimization objective and a loss function, and
generate output when presented with appropriate inputs. Examples
ofMi are generative adversarial networks, autoencoders, convolu-
tional neural networks, logistic regression, random forest, etc. We
have, |m(x)| = #out × R where #out is the number of outputs per
Mi . For classification, we have #out = #class where #class is the
number of classes, and for regression we have #out = 1.

Our training data for customization is defined by the output
vectorsm(x) as follows:

Os = {(m(x),y) | (x,y) ∈ Cus(Ds)} (3)

Algorithm 2 CUSTOMIZE(s, loss)

Step 1: generate local model(s)Ms

Step 2: Sel ← select top models fromMs ∪ Λs based on perfor-
mance on Cus(Ds)

Step 3: compute Os by Eqn (3)
Step 4: train fc using Os and loss
Step 5: return fc ◦m

Step 4: model fusion. With Os as training data, this step learns
an appropriate model, fc , to integrate the models from Sel with
respect to a loss function loss determined by the learning task
at the subscriber s . For instance, fc can be a fully connected NN
that minimizes loss , for classification, fc has #class output units,
o1, · · · ,o#class , and an appropriate loss such as the categorical
cross-entropy, and for regression, fc has a single output unit o
and loss such as the mean squared error. Note that, with Os as the
training data, the training of fc does not need to access or modify
the internal structure of models in Sel , making the customization
algorithm model agnostic.

Step 5: return the customized model Cs . The customized model is
given by the composition fc ◦m, wherem is defined by Eqn (2).

ABM1 BCM2 ACM3

CACus(Ds)

Final output

Step 3: Constructing training

data for customization

Step 4: Model fusion

Cs

fc

BA Cx'

y

m(x)

Os

x y

Figure 2: Example for CUSTOMIZE: Subscriber uses its own
model M3(AC) and publishers’ models M1(AB), M2(BC) to
construct the customized model Cs using subscriber’s cus-
tomization subset Cus(Ds). Step 3 (Constructing training
data for customization) takes as input (x,y) ∈ Cus(Ds) and ex-
tends x to x ′ (the feature universe ABC) by adding B (shown
in pink), not in subscribers customization subset, which is
then used to create the training data for customization (Os)
as defined by Eqn (3).

Example 2. Figure 2 shows the data flow in Step 3 and Step 4
for publisher modelsM1(AB) andM2(BC) and the subscriber model
M3(AC), with binary classes for the classification problem. Step 3
extends all models and subscriber’s samples x to the feature uni-
verse ABC . After the extension, each extended sample x ′ is a valid
input to the extended models M ′1,M

′
2,M

′
3 because all are on the

same feature space ABC . In particular, x ′ extends x by adding B
(highlighted in pink) and M ′1 extends M1 by adding a never used
input for C . M ′1 is equivalent to M1 receiving its valid inputs us-
ing x ′ but ignoring the added input C . Similarly M ′2,M

′
3 extend

M2,M3. The outputs of M ′1,M
′
2,M

′
3 create the new training data

Os = {(m(x),y)} defined by the samples (x,y) in the customization
subset Cus(Ds). Step 4 trains a fully connected NN fc with Os as
the training data to learn the class distribution for x . Note that
M1,M2,M3 are not part of the fully connected network fc ; they are
only used to create the training data Os .

Discussion.We use this space to discuss the extension of x to
x ′ by adding B. The subscriber has several options depending on
the type of B. One method is to set B = 0 if B is categorical and we
are using one-hot encoding. This will lead to B being ignored by
the models having B in their feature set (i.e., modelsM1 andM2 in
the example above). A second, more general approach is treating B
as missing data and borrowing from the missing data literature [2].

468

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

For example, the subscriber can set the value for B to the dominant
value for categorical B and to the average value for continuous B.
Note that we consider such dominant values and average values to
be publicly available and not shared by any individual site.

The creation of the training data Os for model customization
captures the knowledge of all models in Sel and depends only on the
input-output mappings of the models, not their internal workings.
This setup allows our customization approach to accommodate any
type of underlying models (i.e.,M1,M2,M3 can be NNs, SVM, etc.)
in the model fusion process, making PubSub-ML model-agnostic.

5 PUBSUB-ML
We are now ready to present the full PubSub-ML and its properties.
Algorithm 3 refines Algorithm 1 with CUSTOMIZE(s,L) being the
customization algorithm defined in Algorithm 2.

Algorithm 3 PubSub-ML

Require: Data sets Di for all sites i; privacy budgets (εp , δp) for
all publishers p; appropriate loss function L (such as the cat-
egorical cross-entropy for classification or the mean square
error for regression).

1: for all publishers p in parallel do
2: train (εp , δp)-DP modelsMp using DP models of their choice

and publish the models;
3: end for
4: for all subscribers s in parallel do
5: Cs ← CUSTOMIZE(s,L);
6: end for

Theorem 3. Algorithm 3 is (εp , δp)-DP for all publishers p and
(0, 0)-DP for all subscribers s . For a site that is both a publisher and a
subscriber, the DP guarantee for the publisher takes precedence.

Proof. The publishers release models guaranteeing (εp , δp)-DP
on their data. In addition, since the data for different publishers
is generated independently (see Assumption 1), the access to one
publisher’s models has no effect on the privacy loss of other pub-
lishers’ models, thus, the (εp , δp)-DP guarantee remains unchanged
by accessing all published models. From Theorem 2, this privacy
guarantee is unaffected by subsequent processing.

As for the subscribers s , the local data Ds , the local models
Ms , and the customized model Cs are only used by the subscriber
itself throughout Algorithm 3 and never made public. Therefore,
no information about the subscriber is disclosed. □

Discussion. We emphasize the significance of Theorem 3 using
an example. Let’s consider five sites with individual privacy budgets,
ε1 = 0.1, ε2 = 0.2, ε3 = 0.3, ε4 = 0.4, and ε5 = 0.5, ignoring δs for
simplicity. PubSub-ML provides site-level privacy guarantees, that
is, 0.1 for site 1, 0.2 for site 2, 0.3 for site 3, 0.4 for site 4, and 0.5
for site 5. The existing DP-FL based methods, on the other hand,
can only provide a uniform privacy guarantee ε across all sites,
which has to be set according to the tightest privacy specification
among all sites, that is, min{0.1, 0.2, 0.3, 0.4, 0.5}; otherwise, the
privacy of the site having the tightest privacy requirement will
not be preserved. This leads to reduced utility. Note that while

we provide site-level privacy guarantees, the notion of differential
privacy is record-level as the standard one, instead of site-level.

Theorem 4. PubSub-ML in Algorithm 3 meets Autonomy, Asym-
metric sharing, Personalized privacy, and Model-agnostic require-
ments proposed in Section 1.

Proof. Autonomy holds because we make no assumption about
the local decisions on feature space, samples, and training process,
which are made independently by each site. Asymmetric sharing
holds because each site has the freedom to participate as a publisher
(contributor only), as a subscriber (beneficiaries only), or both. Per-
sonalized privacy holds because each publisher p can set its own
privacy budget (εp , δp). Model-agnostic holds because all models
Mi in Sel are treated as black-boxes by the customization algorithm
as defined by the mapping functionm(x) that depends only on the
output M ′i (x

′) for models Mi . That is, sites have the freedom to
choose any model type and architecture for their local models. □

6 HANDLING DATA STREAMS
So far, we assume that at each site i the whole data Di is avail-
able. In the real world, data often arrives in the form of a continu-
ous data stream, such as real-time streaming of electronic health
records (EHR) from multiple hospitals, credit card transactional
data flows from multiple financial institutions, social media con-
tent, etc. For data streams, underlying classification patterns are
subject to change with time, a phenomenon known as the concept
drift. In this section, we extend PubSub-ML to data streams in the
decentralized learning setting where each site i generates a data
stream Di with disjoint data chunks, Di

1, · · · ,D
i
τ , up to the current

time point τ , where each data chunk Di
u is a collection of samples

generated during a short time duration represented by the time
index u. For data streams, in addition to Assumption 1, we further
assume

Assumption 2. Di
1, · · · ,D

i
τ are pairwise disjoint and each Di

u is
generated independently of other data chunks Di

v .

The assumption on independent records is a standard assumption
made in differential privacy [8]. In case of correlated observations,
such as multiple records from the same user, group differential
privacy [8, 10] could be used instead of the standard differential
privacy. For the rest of this work, Assumption 2 is in place.

To ensure that models’ performance stays up-to-date, at each
time point, each publisher needs to update published models in-
corporating the new data becoming available, and each subscriber
needs to re-customize its models whenever the subscribed models
are updated. At one extreme, a publisher can publish a single model
at each time point τ using the union of all data chunks Di

1, · · · ,D
i
τ .

This approach however does not work as first, the older, irrele-
vant data can deteriorate a model’s performance in the presence of
concept drift and second, with differential privacy, retraining and
re-releasing the model leads to depletion of privacy budget due to
the composition of privacy loss. At the other extreme, a publisher
can publish a single model at each time point τ using the most
recent data chunk Di

τ . This approach suffers from the “small data
size" of a single data chunk that is collected during a short time
period.

469

Proceedings on Privacy Enhancing Technologies 2023(2) Gondara et al.

To address the above issues, we use the proven dynamic ensemble
approach [13, 46] consisting of an ensemble of k models, each being
trained on one of recent data chunks from Di , Di

τ−k+1, · · · ,D
i
τ . As

the next data chunk Di
τ+1 becomes available, one model in the

ensemble is replaced with the model trained on the new chunk. k is
called the ensemble size and acts as a trade-off between leveraging
recent data and phasing out obsolete data. This approach must
address three issues: i) how to generate the initial DP ensemble, ii)
as the time progresses from τ to τ + 1, how to update the current
ensemble and ensure that the DP guarantee holds after the update,
and iii) how to update the customized model. i) is accomplished
by line 2 of Algorithm 3 with each of the k local DP models in
the ensemble being trained using one local data chunk. There is a
cold-start period where the initial ensemble is generated only at
time point k when the first k chunks Di

1, · · · ,D
i
k are available. iii)

is accomplished by line 5 of Algorithm 3 but now k models from
each publisher will participate in the model selection and model
fusion. Below, we focus on ii).

6.1 Updating the Current Ensemble
[13] presents a DP mechanism for releasing an ensemble Eτ =
{Mτ (1), · · · ,Mτ (k),wτ (1), · · · ,wτ (k)} at time τ . τ (i) denotes the (ab-
solute) time point corresponding to the (relative) position i within
Eτ , Mτ (i) is the noisy model trained on the data chunk at time
τ (i), and wτ (i) is the noisy weight for Mτ (i). The privacy budget
(ε, δ) is split into ε1 for training modelsMτ (i) and ε2 for computing
weightswτ (i) when both models and weights are released, where
ε = ε1 + ε2. In the context of PubSub-ML, a publisher p publishes
only the models Mp

τ (i) ∈ E
p
τ , not the ensemble weights wτ (i), be-

cause a subscriber s will use its own data chunk Ds
τ to construct the

customized model (line 5, Algorithm 3). Therefore, the whole pri-
vacy budget (εp , δp) for p is allocated for training the modelMp

τ (i),

i.e., ε1 = εp and ε2 = 0. Also, as the new data chunk D
p
τ+1becomes

available, we train a new DP model Mp
τ+1 to replace the oldest

model in Epτ to get Epτ+1. In this case, Epτ = {M
p
τ−k+1, · · · ,M

p
τ }.

See the detail of update in Algorithm 4.

Algorithm 4 UpdateEnsemble(τ , Epτ ,D
p
τ+1)

Require: Publisher p; the time τ ; the ensemble Epτ =

{M
p
τ−k+1, · · · ,M

p
τ }; the data chunk D

p
τ+1 at time τ + 1; the

privacy budget (εp , δp).
1: Train (εp , δp)-DP modelMp

τ+1 using the chunk D
p
τ+1

2: E
p
τ+1 ← {M

p
τ−k+2, · · · ,M

p
τ+1}

3: return Epτ+1

6.2 DP Guarantees
For a publisher p, to prove the DP-guarantee of the ensemble Epτ ,
we first extend DP in Definition 1 to an output that is an ensemble
(instead of a single model). Consider Xp

τ =< D
p
τ−k+1, · · · ,D

p
τ >

and X ′pτ =< D
′p
τ−k+1, · · · ,D

′p
τ >, where D

p
i and D ′pi are chunks at

time i . We say that Xp
τ and X ′pτ are neighboring if ∪iD

p
i and ∪iD

′p
i

(duplicates preserved) are neighboring in the sense of Definition 1.

Definition 2 (DP for a Single Ensemble [13]). A mechanism
M from the domain of Xp

τ to the range of Epτ is (ε, δ)-DP if for all
neighbouring pairs (Xp

τ ,X
′p
τ) and for all sets O of possible outputs:

Pr[M(Xp
τ) ∈ O] ≤ eε Pr[M(X ′pτ) ∈ O] + δ (4)

Theorem 5. If each modelMp
i in Epτ is produced by a (εp , δp)-DP

mechanism, the mechanism that produces Epτ = {M
p
τ−k+1, · · · ,M

p
τ }

is (εp , δp)-DP.

Proof. We note that each model in Epτ is trained on a disjoint
data chunk and each data chunk is generated independently (See
Assumption 2). Then theorem follows from the parallel composition
in Theorem 1. □

As the ensemble is updated repeatedly with the arrival of new
data chunks, the adversary observes all the released ensembles
Hp =< E

p
1 , · · · , E

p
τ > up to time τ . To ensure DP on the released

ensemble histories, we further extend DP to the global training data
Xp =< X

p
1 , · · · ,X

p
τ > where each X

p
t is the training data for the

ensemble Ept , 1 ≤ t ≤ τ . We say that Xp and X′p are neighboring
if exactly one pair (Xp

t ,X
′p
t) is neighboring, and for all other j , t ,

X
p
j = X

′p
j .

Definition 3 (DP for a History [13]). A mechanismM from
the domain of Xp to the range of Hp is (ε, δ)-DP with respect to
history if for any neighbouring pair (Xp ,X′p) and for all sets O of
history outputsHp :

Pr[M(Xp) ∈ O] ≤ eε Pr[M(X′p) ∈ O] + δ (5)

Theorem 6 ([13]). Assume that the initial Ep1 is produced by a
(εp , δp)-DP mechanism, all subsequent ensemble updates are (εp , δp)-
DP with respect to history.

The reason for Theorem 6 is the same as Theorem 5. Each model
is trained on a disjoint data chunk generated independently. The dif-
ference is that each model is published in k consecutive ensembles,
but this does not affect applying Theorem 1 (parallel composition).
From Theorem 6, even if the adversary has access to all released
ensembles, the privacy loss does not accumulate over time. This
property is vital because the number of ensemble updates is poten-
tially unbounded for data streams.

Discussion. One method to deploy PubSub-ML in real-world
applications is where all sites register as publishers or subscribers
via an API, and register their feature spaces, subscription channels,
and feature metadata. This information is used to stream trained
models directly from publishers to subscribers, and to assist par-
ticipating sites to resolve feature semantic and feature encoding
ambiguities. The API can be managed by either one of the sites or
an external entity. Importantly, such registration information is at
the metadata level and involves no information about models and
raw data. For this reason, the trust level of the managing site of
the API is not as high as that of the server for aggregating gradient
updates in the FL framework. PubSub-ML is indispensable for insti-
tutional collaboration where DP-FL does not work due to the forced
tight collaboration. We are collaborating with multiple healthcare
organizations to implement PubSub-ML for breast cancer detection
in a decentralized learning setting.

470

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

As discussed in Section 1.1 and Section 4, PubSub-ML is appli-
cable in all scenarios where the problem can be formulated as an
optimization problem with an objective defined by a loss function.
For evaluation purpose, we focus on classification and regression,
where we evaluate PubSub-ML against eight baselines on six real-
world and synthetic datasets. In Section 7 we explain our evaluation
setup followed by evaluation results in Section 8.

7 EVALUATION SETUP
Our evaluation is carried out using an Intel Xeon CPU (2.20GHz)
with 32 GB RAM and an NVIDIA Tesla P100 GPU. We begin this
section by describing our data setup in detail, where to evaluate the
utility of PubSub-ML and the other baselines, we need to simulate
multi-site scenarios with varying data and feature distributions
where each site holds their own data.

7.1 Datasets
NELA-GT-2018.NELA-GT-2018 [16] (NELA) is a publicly available
dataset for the study of misinformation and consists of articles from
multiple news sources collected between 03/2018-11/2018. Using
weak labelling, the articles are labelled as reliable or unreliable
based on the originating source. The goal is to classify articles into
reliable/unreliable categories. We use the same data and feature
extraction as in [16]3. We combine reliable/unreliable sources to
create four distinct sites (Table 1). Similar writing styles within a
site and varying writing styles across sites allows us to evaluate
PubSub-ML under the IID (Scenario 1, Section 8.1.1) and non-IID
(Scenario 2, Section 8.1.2) data distribution settings. Further details
on the creation of scenario-specific publishers and subscribers are
described in Sections 8.1.1 and 8.1.2.

Site Rel. Unrel. |D | (% Rel.)
1 Reuters True Pundit 27063 (35%)NPR Natural News
2 USA Today Infowars 18829 (74%)CNN Veterans Today
3 The NY Times Activist Post 14290 (76%)CBS News Mint Press News
4 BBC News Wars 26078 (71%)Chicago Sun Prison Planet

Table 1: NELA-GT-2018 data. Each site is defined as the col-
lection of articles from two reliable sources and two unreli-
able sources. |D | shows the data size for each site and % Rel.
is the average percent of reliable samples within the site.

MIMIC-IV. MIMIC-IV (v1.0) [17] is a publicly available4 data-
base of de-identified hospital admissions of 382,278 patients in
critical care units of the Beth Israel Deaconess Medical Center from
2008-2019. The admission level data are stored in multiple tables,
linkable by Admission ID, where each hospital admission is a sam-
ple. We consider the problem of in-hospital mortality prediction
for patients with Sepsis using the Sepsis-3 criteria [40]5, leading to
a total of 34,789 admissions with a mortality rate of 16%. We create
3https://pypi.org/project/nela-features/
4Access request required, link https://bit.ly/3bR690s
5https://github.com/MIT-LCP/mimic-iv/tree/master/concepts

three tables A,B,C using original MIMIC-IV tables so that each
of A,B,C contains a different type of patient information (Table
2). Table A contains the dynamic patient information stored in an
ICU/hospital setting (length of stay, comorbidities, etc.), table B con-
tains patient demographics (age, admission year group, etc.), and
table C contains dynamic information from the Lab system (WBC
count, hemoglobin, etc.). This allows us to evaluate PubSub-ML
under the scenarios when different sites hold different feature sets
(Scenario 3, Section 8.1.3 and Scenario 4, Section 8.1.4), where we
use A,B,C to create the data for scenario-specific publishers and
subscribers.

A B C

ICUStay_Detail Admissions BG (Blood Gas)
EMAR Patients Blood_Differential
Diagnoses_ICD
Procedures_ICD
Sofa; Oasis; Charlson
Services

Table 2: MIMIC-IV data. We create three tables A, B, and C
by joining the original MIMIC-IV tables shown in columns
A,B,C, where the join is via Admission ID. Note that Sofa,
Oasis, and Charlson are separate tables. The class label mor-
tality is extracted from the ICUStay_Detail table.

Digit-Five. Digit-Five6 is a collection of five image datasets.
MNIST (Train N = 55000; Test N = 10000), MNIST-M (Train N =
55000; Test N = 9001), Synthetic Digits (Train N = 25000; Test N =
9000), SVHN (Train N = 73257; Test N = 26032), and USPS (Train N
= 7438; Test N = 1860), where all five datasets are of different size
and are from different domains with a common goal of classifying
digits. The dataset has been used in prior studies to study federated
learning in the non-IID setting [34]. We use this dataset collection
to evaluate PubSub-ML under the non-IID setting (Section 8.3.1)
involving complex, convolutional neural network based models.
Further details around the publishers/subscribers setup is presented
in Section 8.3.1.

Amazon Reviews. Amazon reviews dataset7 consists of Ama-
zon customer reviews (input text) and star ratings (output labels)
for various products. We use the dataset for sentiment prediction
where the ratings of 1 and 2 stars are considered negative and the
ratings of 4 and 5 star considered positive. 3 star ratings are consid-
ered neutral and excluded from the dataset. For the evaluation, we
consider reviews shorter or equal to 25 words in length, leading to
a total of 63720 reviews. We use this dataset in addition to Digit-
Five to evaluate PubSub-ML under complex modelling scenarios
(Bidirectional LSTM in this case, Section 8.3.1). We create multiple
sites by splitting the dataset into 10 equal, non-overlapping parti-
tions, simulating the IID data scenario where sites want to benefit
from the text data of other sites. Further details on publishers and
subscribers are provided in Section 8.3.1.

Housing Market. Housing market [39] dataset contains the
property information, with the goal of predicting the continuous

6Available for download at https://bit.ly/3OMoZno
7Available for download at https://bit.ly/3dcHxQ3

471

https://pypi.org/project/nela-features/
https://bit.ly/3bR690s
https://github.com/MIT-LCP/mimic-iv/tree/master/concepts
https://bit.ly/3OMoZno
https://bit.ly/3dcHxQ3

Proceedings on Privacy Enhancing Technologies 2023(2) Gondara et al.

property price. The dataset has 30,473 observations and 292 at-
tributes. This dataset is used to evaluate PubSub-ML for regression
problems (Section 8.3.2). To create multiple sites, we divide the
dataset into equal, non-overlapping 30 partitions, where we con-
sider each partition to be a separate site, resulting in an average
sample size of 1016 observations per site. This simulates the IID
data scenario where each site is a separate financial/real-estate insti-
tution holding it’s own data for a subset of customers. We provide
details on the creation of publishers/subscribers using the sites in
Section 8.3.2.

Hyperplane. Hyperplane is a synthetic data used extensively
in prior studies [13, 46] with the goal to classify points separated
by a hyperplane. We generate the dataset using the Hyperplane-
Generator() function8 with the hyperparameters shown in Table
3. The dataset provides us the flexibility to generate large number
of sites with varying data distribution to evaluate PubSub-ML’s
model selection capabilities and runtime (Section 8.2.3), and the
impact of noisy sites (Section 8.2.5). More details on the dataset
usage including the creation of publishers/subscribers are provided
in Sections 8.2.3 and 8.2.5.

p1 p2 p3 p4 p5
100 2 N (0,0.4) N (0,0.2) 0.0

Table 3: The parameters of the point generating function
HyperplaneGenerator(). p1 is the number of features in the
data, p2 is the number of dynamic features, p3 is the noise
percent, p4 is the magnitude of change on hyperplane rota-
tion, and p5 is the probability that the direction of change is
reversed. As p3 and p4 can only be positive, we sample abso-
lute values.

7.2 Models
We standardize continuous features using StandardScaler from
scikit-learn [33] and use one-hot encoding for categorical features.
For model training involving datasets NELA, MIMIC-IV, Hyper-
plane, and Housing Market (for both publishers and subscribers),
we consider the fully connected neural network. For the dataset
Digit-Five, we use a CNN with six hidden layers, the same architec-
ture as used in publicly available repositories9, and for the dataset
Amazon reviews, we use bidirectional LSTMswith two bidirectional
LSTM layers and two dense layers (similar to publicly available
architecture10) and we follow the standard NLP data preprocessing
practices using the publicly available code11.

The architecture and training details for the models are provided
in Table 4. For the customization (model fusion) network, we con-
sider the input layer defined by the mappingm(x) fully connected
to a new output layer. All models for all datasets, for publishers,
subscribers, and customization are trained for 30 epochs with a
minibatch size of 100.

8https://bit.ly/3o0nPJI
9https://bit.ly/3I4Wyiq
10https://bit.ly/3JLQKv2
11https://bit.ly/3SCOcU3

Data HL HLact OL OLact
NELA (80,40) TanH 2 Softmax
MIMIC-IV (120,60) TanH 2 Softmax
Digit-Five (NA) ReLU 10 Softmax
Amazon Reviews (NA) TanH 2 Softmax
Housing Market (416,220,60) TanH 1 Linear
Hyperplane (100,50) TanH 2 Softmax

Table 4: Architecture details for the models used. HL andOL
specify the number of units in the hidden layers and the
output layer with act being the activation function. As Digit-
Five and Amazon reviews use CNN and bidirectional LSTM
based models (with architecture publicly available), the sim-
plerHL size specification is "NA". All sites for all datasets use
Adam [22] as the optimizer with the commonmodel param-
eters as shown, selected via hyperparameter search for fully
connected NN models.

7.3 Competitor Methods
We evaluate PubSub-ML against the following eight baselines.
PubSub-ML*: The non-private version of PubSub-ML where pub-
lishers publish models without privacy constraints. This provides
us with the upper-bound on achievable utility for PubSub-ML. All
other baselines that follow are privacy-preserving. Own: The sub-
scriber’s own model trained on local data without the help of sub-
scribed models and without noise addition as it is never published.
This helps us study the added utility of using publishers’ models.
FedAvg(V): The vanilla DP-FL based on FedAvg [30] where clients
share their parameters without privacy-preservation, and the server
adds noise to guarantee DP 12. FedAvg(F): This is the personalized
DP-FL where a site further finetunes the global model produced
by FedAvg(V) using the sites’ own data in a non-private fashion
[11, 50]. FedProx(V): DP version of FedProx [26], which has been
shown to work well with heterogeneous client datasets (non-IID set-
ting) compared to vanilla FL in the non-private setting. FedProx(F):
Personalized version of FedProx(V). FedAdam(V): DP version of
Federated Adam [37], an adaptive optimizer based approach for
FL, proven to have better convergence rates for FL and shown to
outperform other FL methods such as SCAFFOLD [21] in the non-
private setting. FedAdam(F): Personalized version of FedAdam(V).
For FedAvg, FedProx, and FedAdam, we use the hyperparameters
as suggested by their respective authors.

Note that the network architecture and other parameters of all
baselines are identical to those used for training local models in
PubSub-ML with all clients sampled per-round for FL due to the
small number of sites unless specified otherwise.We do not consider
other variants of FL such as Assisted learning [48] as they require
the alignment (or partial alignment) of samples across sites, but
our scenarios studied below do not have this restriction. We do not
consider the model fusion approach such as [23] because if training
synchronization is not an issue, personalized FL (such as FedAvg(F))
outperforms the approach in [23]13.

12https://github.com/tensorflow/federated
13Confirmed via private communication with the authors of [23]

472

https://bit.ly/3o0nPJI
https://bit.ly/3I4Wyiq
https://bit.ly/3JLQKv2
https://bit.ly/3SCOcU3
https://github.com/tensorflow/federated

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

8 RESULTS
We evaluate models on the scenario-specifically created subscriber’s
test set, using the F1-score of the minority class for imbalanced
datasets (NELA and MIMIC-IV), the classification accuracy for Hy-
perplane, Digit-Five, and Amazon reviews, and 1 - Mean Squared
Error (1 - MSE) for Housing market (to ensure a common com-
parison, i.e. higher the better). For all evaluation, we consider that
a subscriber subscribes to all available models from all publish-
ers. In most of our evaluation, we evaluate PubSub-ML on static
datasets (using the data setup as described in Section 7.1), with
PubSub-ML on data streams evaluated in Section 8.3.3, and we use
all available models for customization, with the impact of model
selection studied in Section 8.2.3. We report average results with
standard errors using the 5-fold cross-validation. More specifically,
for a publisher 80% data is used for training the published models,
and for a subscriber 60% data is used for training the local models
(i.e., the training subset) and 20% data is used for customization
(i.e. the customization subset), and 20% for testing (i.e., collecting
the F1-score, classification accuracy, MSE). Note that unless speci-
fied, the privacy budget is fixed at (ε = 1, δ = 0.0001) with the DP
guaranteed using DPSGD [1].

Our results are organized as follows. We begin with evaluating
PubSub-ML against the baselines for varying data and feature dis-
tribution scenarios in Section 8.1. In Section 8.2, we demonstrate
the robust nature of PubSub-ML by studying its behavior in detail
with respect to the impact of privacy budget, model heterogeneity
among publishers, the number of models used by the subscriber out
of all available models and runtime, and noisy sites. This is followed
by further evaluation of PubSub-ML in Section 8.3 in the case of
complex models (CNNs and bidirectional LSTMs), regression, data
streams, and in the non-private setting.

8.1 Main Comparison
We begin with evaluating the effectiveness of PubSub-ML claimed
in Section 1.1 under several scenarios of data (IID, non-IID) and
feature distribution.

8.1.1 Scenario 1 (IID Data). All sites have the same data distribution
but small data size.
Setup. Using one site of NELA in Table 1 at a time, we create sites
with similar data distribution as follows. For a site e under consider-
ation, we divide the dataset within the site into ten non-overlapping
partitions. By treating each partition as coming from an individual
site, we have ten sites with datasets of similar distribution within
each site e . Each of the ten sites takes turn being the subscriber s
while the remaining nine sites act as publishers. Let F1e ,s denote
the F1 score for the subscriber s when the datasets are created using
the site e as above. We report the average of F1e ,s over all e, s pairs.

Results. Figure 3a shows the results. PubSub-ML outperforms
all privacy-preserving baselines by a significant margin, that is,
on average 40% and 38% over the different flavors of FL (vanilla
and finetuned, shown in Figure 3a as different tints of red), and
6% over the subscriber only, non-noisy model (Own), with the
performance of PubSub-ML being close to the non-private PubSub-
ML* (a difference of 4%). Consistent with [50], we find that the
DP-FL models perform much worse compared to the Own models

trained by individual sites. One of the main reasons for PubSub-
ML’s superior performance is the ability of PubSub-ML to leverage
multiple weak learners including the non-private model and data
from the subscriber to create a strong learner that outperforms all
individual and DP-FL based models, as discussed in Section 1.1.
Summary. PubSub-ML allows the subscriber to integrate multiple
weak learners to produce a strong learner.

8.1.2 Scenario 2 (Non-IID Data). Each publisher has a different data
distribution.

Setup. For this scenario, we consider each site of NELA in Table
1 as a publisher with a different distribution due to different writing
styles and news content across sites (we observed average F1-score
drop of 19% when applying the model trained on one site’s data to
the content from other sites). The subscriber is created by each site
donating 10% of their data, and using the remaining 90% as their
full dataset, so the subscriber has a sample of each publisher’s data.

Results. Figure 3b shows the results. Similar to Scenario 1,
PubSub-ML significantly outperforms Own and all FL models, sup-
porting our claim that PubSub-ML can effectively integrate sub-
distributional models for inference on the combined distribution of
the subscriber.
Summary. PubSub-ML allows the subscriber to successfully integrate
models trained on non-IID data.

Scenarios 1 and 2 assume that all sites have the same feature
space. In Scenarios 3 and 4, we evaluate PubSub-ML when the sites
have different feature spaces with same or different populations.

8.1.3 Scenario 3 (Distributed Features, Same Population). The sub-
scriber’s features are distributed among several publishers with same
population.

Setup. Using MIMIC-IV for this scenario (Table 2), where A and
C are most relevant for sepsis related mortality classification and
B is least relevant14, we create three sites, where site 1 contains
the data by joining A and B, site 2 contains the data by joining B
andC , and site 3 contains the data by joining A andC (All joins are
via Admission ID). Site 1 and site 2 are publishers and site 3 is the
subscriber. Intuitively, the subscriber’s useful features contained
in A and C are distributed among site 1 and site 2, and all sites
share the admission ids (same population). Further, to simulate the
scenario where subscriber has a small number of observations on
useful features from A and C , we reduce the data for the subscriber
by randomly sampling 10% of the available data for the subscriber.

Results. Figure 3c shows the results. We observe that PubSub-
ML performs the best among privacy-preserving methods, with
performance closer to the non-private counterpart, despite the
severe class-imbalance in the dataset. FL performs worse in the
scenario where sites have different sets of features (compared to
Scenarios 1 and 2). For FL baselines that require the same feature
space across sites, we keep the data setup same as PubSub-ML
where each site maintains a conceptual set of all features and sets
the missing features in its own data to zero on the input layer.
Summary. Model customization in PubSub-ML helps the subscriber
to successfully integrate publishers’ models trained on different feature
sets.

14removal of B has only 2% impact on the model performance

473

Proceedings on Privacy Enhancing Technologies 2023(2) Gondara et al.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 3: PubSub-ML significantly outperforms all privacy-preserving baselines: Own , FedAvg(V) , FedAvg(F) , Fed-
Prox(V) , FedProx(F) , FedAdam(V) , and FedAdam(F) for Scenario 1 (IID data), Scenario 2 (non-IID data), Scenario 3
(distributed features, same population), and Scenario 4 (distributed features, different population). PubSub-ML provides util-
ity closer to the non-private PubSub-ML* .

8.1.4 Scenario 4 (Distributed Features, Different Populations). The
data setup is similar to scenario 3, but the subscriber and the publishers
have different populations.

Setup. We use MIMIC-IV for this scenario, with similar setup
as in scenario 3. However, the subscriber now keeps the data for
patients aged ≤ 40 whereas the publishers keep only the data for
patients aged > 40. This leads to the subscriber having a younger/d-
ifferent population with a total of 2,694 admissions and a mortality
rate of 10% compared to 17% for publishers.

Results.We observe from Figure 3d that PubSub-ML provides
excellent inference for the subscriber’s younger patient population
by benefiting from the models trained on the publishers’ data for
different feature sets and populations. With the difference in pop-
ulation compared to scenario 3, the performance is decreased for
all methods, but PubSub-ML still performs significantly better than
all privacy-preserving baselines by combining the features from all
publishers’ models and optimizing the utility on the subscriber’s
data.
Summary. The subscriber in PubSub-ML equally benefits from the
publishers in case of distributed features for same and different popu-
lations.

8.2 Further Analysis
The studies in Section 8.1 show that PubSub-ML significantly out-
performs all privacy-preserving competitors under varying condi-
tions of data and feature distribution. Before we evaluate PubSub-
ML on additional scenarios involving complex models, regression,
data streams with concept drift, and in the non-private setting, we
use this section to focus on PubSub-ML to demonstrate its robust
nature by showing that a subscriber can expect good results under a
variety of possible scenarios, such as with respect to the publishers’
choice of privacy budget and the choice of model types, with respect
to the subscriber selecting a few good models out of all available
models, minimizing runtime, with respect to varying number of
available publishers, and in the presence of noisy sites. Due to the
space constraints, we focus on the dataset NELA for studying the
impact of privacy budget and model heterogeneity among publish-
ers with the data setup same as in Scenario 2 (Section 8.1.2), and we
use the dataset Hyperplane to study model selection, runtime, the
impact of number of publishers and subscribers, and the impact of
noisy sites with details around the data setup provided in Sections
8.2.3, 8.2.4, and 8.2.5. We begin with exploring the impact of privacy
budget.

8.2.1 Impact of Privacy Budget.
Setup. We have seen that PubSub-ML performs well with the tight
privacy budget of (ε = 1, δ = 0.0001). Next, we investigate PubSub-
ML’s behavior when we vary the privacy budget. Keeping other
parameters fixed, we investigate two scenarios. First, where all
publishers use a uniform privacy budget. Second, to demonstrate
the personalized privacy property of PubSub-ML, all publishers use
heterogeneous privacy budgets. For the first scenario, we only focus
on PubSub-ML’s performance where we vary ε from 1 to 0.25 while
keeping the δ fixed at 0.0001. For the second scenario, keeping δ
fixed at 0.0001, for each publisher, we uniformly randomly sample
ε from the interval of [0.25,1.0]. Lets denote the sampled ε values
by {ε1, ε2, ε3, ε4}. The competitors, to ensure the same level of DP,
use ε = min{ε1, ε2, ε3, ε4}. We repeat the procedure 10 times and
report the average results with standard error.

Results. Table 5, first row shows the results of first scenario,
where as the privacy budget (ε) decreases, the performance de-
creases. However, even at the tightest privacy setting (ε = 0.25), the
performance of our proposed model fusion decays by only 4%, still
outperforming FL baselines trained with ε = 1 (Scenario 8.1.2). For
space constraints, the results of second scenario are provided in the
Appendix (Section A, Figure 7). Where similar to the first scenario,
we observe superior performance of PubSub-ML. This is because
our proposed model fusion creates a robust model by leveraging
the diversity of multiple models with varying utilities, learning to
assign higher importance to high-utility models.
Summary. PubSub-ML maintains good utility with decreasing pri-
vacy budget.

8.2.2 Impact of Model Heterogeneity.
Setup. The model-agnostic PubSub-ML allows models of different
types to be integrated. In this experiment, keeping all parame-
ters fixed, i.e., privacy budget=(ε = 1, δ = 0.0001), we change the
model types. Initially, all four publishers use neural network mod-
els, so model heterogeneity is 1. Then we replace publisher 1 with
a DP-Logistic Regression, publisher 2 with a DP-Gaussian Naive
Bayes, and publisher 3 with a DP-XGBoost, leading to the model
heterogeneity of 4. Our implementation of DP-Logistic Regression,
DP-Gaussian Naive Bayes, and DP-XGBoost is based on the publicly
available source code15.

Results. Table 5, second row shows the results. There is a slight
performance degradation as model heterogeneity increases, likely
15https://github.com/IBM/differential-privacy-library
https://github.com/sarus-tech/dp-xgboost

474

https://github.com/IBM/differential-privacy-library
https://github.com/sarus-tech/dp-xgboost

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

because non-neural network based DP models suffer from worse
utility.
Summary. Model customization in PubSub-ML successfully inte-
grates heterogeneous models from different publishers.

Privacy Budget ε = 1 ε = 0.5 ε = 0.25
F1 Score 0.79±0.02 0.77±0.02 0.75±0.02

Model heter. 1 4
F1 Score 0.79±0.02 0.76±0.03

Table 5: The impact of uniform privacy budget (top) and
model heterogeneity (bottom). PubSub-ML’s performance is
robust to the choice of privacy budget and model type.

8.2.3 Impact of Model Selection and Runtime.
Setup. Using the synthetic data hyperplane, we generate 1000 pub-
lishers, each with 500 points, using the parameters specified in Table
3 and we consider 1000 subscribers using the same p4 as publish-
ers but their p3 = 0 (Table 3), creating an IID data setup and we
consider one subscriber at a time. All 1000 publishers release a
model, hence the subscriber has 1000 subscribed models plus its
own model for integration. We report the average performance
(with standard errors) over 1000 subscribers. Further, due to the
abundance of participants, FL based approaches take advantage
of sampling randomly 10% of the clients for participation at each
round.

Figure 4: Model Selection - Accuracy when fusing All, Top-
100, Top-50, and Top-10 models from PubSub-ML compared
to accuracy using just ownmodel and different flavors of FL.

Results. Combining the results from Figure 4 and Table 6, we
conclude that PubSub-ML significantly outperforms all FL based
methods for utility and runtime (FL(V) and FL(F) capture the aver-
age runtime of all FL methods), even when FL enjoys reduced noise
due to smaller client sampling ratio. We can further significantly
reduce the runtime of the subscriber using top-few models at a
marginal loss on accuracy, where top-100 models provide similar
accuracy as using all 1001 models. Such model selection would be
a preferred choice when the subscriber has limited computational
resources.
Summary. PubSub-ML provides excellent utility using top-few mod-
els, with faster runtimes compared to FL based methods.

Time (s) All T-100 T-50 T-10 FL(V) FL(F)
Load 108 108 108 108 NA NA
Select 0 6 6 6 NA NA
Fuse 77 29 24 21 NA NA

Total 185
± 5

143
± 5

138
± 5

135
± 5

683
± 8

689
± 8

Table 6: Runtime (seconds). T-100 is Top-100, T-50 is Top-
50, etc. For PubSub-ML, the time is divided into model load
(Load), model evaluation and selection (Select), and model
fusion (Fuse). Model training time at publishers is not eval-
uated because the training can be done in parallel. NA is not
applicable for a given cell. The time for Load and Select is
same for all number of models selected as the subscriber
first needs to load and Select from all available models, un-
less using All, where the Select is not required.

8.2.4 Impact of Number of Publishers and Subscribers.
Setup. Using the same settings as Section 8.2.3 to create publishers
and subscribers, we investigate the impact of number of publishers
and subscribers in PubSub-ML. Specifically, there are n publishers
and n subscribers, and we vary n from 5 to 5000. For each of n pub-
lishers, we report the average performance over all n subscribers.

Results. For space constraints, detailed results are presented in
the appendix (Section B). In summary, initial increase in the number
of publishers leads to better performance for the subscribers.

8.2.5 Impact of Noisy Sites.
Setup. In the real world, not all participating sites have good quality
data. Some sites might have noisy data that can be detrimental to
the subscriber’s performance. To evaluate the impact of noisy sites
in PubSub-ML, we use the dataset Hyperplane as follows. We create
a total of 20 sites, with 10 sites acting as publishers, out of which 5
are created using the same parameters as specified in Section 8.2.3,
while the other 5 set p3 = 1 (Table 3), generating pure noise. The 10
subscribers are generated using the same parameters as specified
for subscribers in Section 8.2.3, and we report results as an average
over the 10 subscribers.

Results. Due to space constraints, detailed results are presented
in the appendix (Section C). In summary, results show that PubSub-
ML can successfully ignore bad quality data/models, providing
excellent utility, whereas FL based models suffer from degraded
utility.

8.3 More Applications
So far, in Sections 8.1 and 8.2, using simple fully connected NNs,
we saw that PubSub-ML significantly outperforms all competitors
for varying data distribution and feature distribution scenarios for
classification on static datasets. In this section, we provide addi-
tional evidence of PubSub-ML’s utility for problems related to the
use of complex models (CNNs and bidirectional LSTMs, Section
8.3.1), regression (Section 8.3.2), data streams with concept drift
(Section 8.3.3), and in the non-private setting (Section 8.3.4).

8.3.1 Complex Models.
Setup. For computer vision, we use CNN based models and the
Digit-Five dataset under the non-IID setting, where we consider
each of the five datasets belonging to a separate site. We create the

475

Proceedings on Privacy Enhancing Technologies 2023(2) Gondara et al.

(a) Digit-Five (b) Amazon Reviews

Figure 5: Complex models. In the complex model setting in-
volving image and NLP datasets, PubSub-ML outperforms
FL based competitors by an average of > 40%.

subscriber by each site donating 1000 randomly chosen observa-
tions from their test set, leading to the subscriber containing 5000
observations of mixed distribution from all publishers. For NLP,
we use bidirectional LSTM based model and the Amazon reviews
dataset under the IID setting, where each site takes turn being the
subscriber while the other nine sites act as publishers.

Results. Figure 5 shows the results, where from Figure 5a and
5b, we observe that PubSub-ML significantly outperforms all FL
based approaches with an average accuracy improvement of > 40%,
similar to the fully connected NN scenarios in the main comparison
(Section 8.1). In the scenario involving CNN models on non-IID
data, we observe that the FL based privacy-preserving approaches
perform worse compared to the earlier scenarios that use simple,
fully connected NNs, likely due to the convergence issues faced by
DP-FL for complex models under the non-IID setting.
Summary. PubSub-ML performs equally well on image and text
datasets using complex models (CNNs and bidirectional LSTMs).

8.3.2 Regression.
Setup. For regression, we use the housing market dataset under the
IID setting, where each site takes turn being the subscriber while
the other 29 sites act as publishers. We report average results using
1-MSE over all such subscribers.

Results. For space constraints, detailed results are presented
in the Appendix (Section D). In summary, PubSub-ML performs
similarly well for regression as for classification.

8.3.3 PubSub-ML for Data Streams.
Setup. To evaluate the PubSub-ML’s extension for data streams
with concept drift (Section 6), we create data streams using the
datasets with a temporal component (NELA, MIMIC-IV, and Hy-
perplane) in the following way. For the dataset NELA, the data
chunks are defined as the news collected bi-weekly, leading to a
total of 22 data chunks, with an average chunk size of 1006 obser-
vations, with the same data setup for publishers and subscribers as
Scenario 2. For the dataset MIMIC-IV, the data chunks are created
by splitting each three-year admission interval (only available date
in the database) into three disjoint adjacent chunks of equal size
based on sorted Admission ID within the interval, resulting in an
average of 2742 observations per-chunk for a total of 12 chunks,
with the same data setup for publishers and subscribers as Scenario
3. For the dataset Hyperplane, we consider ten sites, with each site
producing 10 data chunks of equal size (n=500) from their data
stream using the next_sample function, and each site takes turn
being the subscriber while the other nine sites act as publishers.

We increase the number of most recent models in the ensemble
from 1 (similar to the static PubSub-ML setting considered previ-
ously) to 8, keeping the other parameters same as in Section 8.1. As
a new data chunk becomes available, the ensemble is updated by
adding the model trained on the new data chunk and removing the
oldest model in the ensemble. Following the standard data stream
evaluation practices [13], we collect the performance metrics on
the test partition of the subscriber’s most recent data chunk (Ds

τ),
and report average results over all time points. As DP-FL based
models are not designed to work with time-evolving data streams,
we only present the results on PubSub-ML.

(a) NELA (b) MIMIC-IV (c) Hyperplane

Figure 6: PubSub-ML for data streams. Performance of
PubSub-ML increases as we increase the number of models
released by each publisher as a part of their ensemble.

Results. Figure 6 shows that the initial increase in the ensemble
size improves the utility of PubSub-ML for data streams, which sub-
sequently plateaus after the ensemble size of 5. On one hand, having
more models in an ensemble leads to increased model diversity for
the model fusion of the subscriber, on the other hand, because of
concept drift in the data streams, increasing the ensemble size has
the risk of using obsolete models.
Summary. PubSub-ML’s extension for data streams provides good
utility, further boosted by publishers releasing larger ensembles.

8.3.4 Non-private Scenario.
Setup.As a large body of work in FL focuses on the non-private set-
ting, in this section we compare non-private PubSub-ML (PubSub-
ML*) with the non-private FL baselines.

Results. Due to space constraints, detailed results are presented
in the Appendix (Section E). In summary, we observe that PubSub-
ML* outperforms FL based method in the non-private setting.

9 CONCLUSION
We presented PubSub-ML as a general solution to decentralized
machine learning under loose collaboration. In PubSub-ML, sites
benefit from other sites’ data through a model publishing/subscrib-
ing mechanism that allows a subscriber to construct a customized
model by transferring the learning outcomes from publishers while
respecting publishers’ data privacy. We address several important
requirements of this mechanism, including Autonomy, Asymmetric
sharing, Personalized privacy, and Model-agnostic, and we extend
PubSub-ML to handle data streams with concept drift. PubSub-ML
is applicable in all scenarios where the problem can be formulated
as an optimization problem with an objective defined by a loss
function. To our knowledge, this is the first work to achieve these
goals for decentralized machine learning.

476

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

ACKNOWLEDGMENTS
This research is in part supported by an Natural Sciences and En-
gineering Research Council of Canada (NSERC) CGS-D doctoral
scholarship for Lovedeep Gondara and an NSERC discovery grant
for Ke Wang.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, et al. 2016. Deep learning with differ-

ential privacy. In ACM CCS.
[2] Stef Buuren and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate imputation

by chained equations in R. Journal of statistical software 45, 3 (2011).
[3] David Byrd and Antigoni Polychroniadou. 2020. Differentially Private Secure

Multi-Party Computation for Federated Learning in Financial Applications. Pro-
ceedings of the First ACM International Conference on AI in Finance (2020).

[4] Jia Deng, Wei Dong, Richard Socher, et al. 2009. ImageNet: A large-scale hierar-
chical image database. In IEEE CVPR.

[5] Enmao Diao, Jie Ding, and Vahid Tarokh. 2021. HeteroFL: Computation and
Communication Efficient Federated Learning for Heterogeneous Clients. In ICLR.

[6] Fang Dong, Xinghua Ge, Qinya Li, Jinghui Zhang, Dian Shen, Siqi Liu, Xiao
Liu, Gang Li, Fan Wu, and Junzhou Luo. 2022. PADP-FedMeta: A personalized
and adaptive differentially private federated meta learning mechanism for AIoT.
Journal of Systems Architecture (2022), 102754.

[7] Yitao Duan, John Canny, and Justin Zhan. 2010. P4P: Practical Large-Scale
Privacy-Preserving Distributed Computation Robust against Malicious Users. In
19th USENIX Security Symposium (USENIX Security 10).

[8] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, et al. 2006. Our data,
ourselves: privacy via distributed noise generation. EUROCRYPT (2006).

[9] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Science (2014).

[10] Cynthia Dwork and Guy N Rothblum. 2016. Concentrated differential privacy.
arXiv preprint arXiv:1603.01887 (2016).

[11] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized feder-
ated learning: A meta-learning approach. arXiv preprint arXiv:2002.07948 (2020).

[12] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An
efficient framework for clustered federated learning. Advances in Neural Infor-
mation Processing Systems 33 (2020), 19586–19597.

[13] Lovedeep Gondara, Ke Wang, and Ricardo Silva Carvalho. 2021. Differentially
Private Ensemble Classifiers for Data Streams. arXiv preprint arXiv:2112.04640
(2021).

[14] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. ArXiv abs/1503.02531 (2015).

[15] Minh Hoang, Nghia Hoang, Bryan Kian Hsiang Low, et al. 2019. Collective Model
Fusion for Multiple Black-Box Experts. In ICML.

[16] Benjamin D Horne, Jeppe Nørregaard, and Sibel Adali. 2019. Robust Fake News
Detection Over Time and Attack. ACM Transactions on Intelligent Systems and
Technology (TIST) (2019).

[17] Alistair EW Johnson, Tom J Pollard, Lu Shen, et al. 2016. MIMIC-III, a freely
accessible critical care database. Scientific data (2016).

[18] Peter Kairouz, H Brendan McMahan, Brendan Avent, et al. 2019. Advances and
open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019).

[19] Georgios A Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer F Braren.
2020. Secure, privacy-preserving and federated machine learning in medical
imaging. Nature Machine Intelligence 2, 6 (2020), 305–311.

[20] Shivam Kalra, JunfengWen, Jesse C Cresswell, et al. 2021. ProxyFL: Decentralized
Federated Learning through ProxyModel Sharing. arXiv preprint arXiv:2111.11343
(2021).

[21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In ICML.

[22] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[23] Thanh Chi Lam, Nghia Hoang, Bryan Kian Hsiang Low, et al. 2021. Model Fusion
for Personalized Learning. In ICML.

[24] Daliang Li and Junpu Wang. 2019. Fedmd: Heterogenous federated learning via
model distillation. arXiv preprint arXiv:1910.03581 (2019).

[25] Tian Li, Anit Kumar Sahu, Manzil Zaheer, et al. 2018. Federated optimization in
heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018).

[26] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems 2 (2020).

[27] Jiaxin Ma, Ryo Yonetani, and Zahid Iqbal. 2020. Adaptive distillation for decen-
tralized learning from heterogeneous clients. In ICPR.

[28] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard
Vidal. 2021. Federated multi-task learning under a mixture of distributions.
Advances in Neural Information Processing Systems 34 (2021), 15434–15447.

[29] H. B. McMahan, Eider Moore, Daniel Ramage, et al. 2017. Communication-
efficient learning of deep networks from decentralized data.. In AISTATS.

[30] H Brendan McMahan, Daniel Ramage, Kunal Talwar, et al. 2018. Learning
differentially private recurrent language models. In ICLR.

[31] Frank McSherry. 2009. Privacy integrated queries: an extensible platform for
privacy-preserving data analysis. In SIGMOD. ACM.

[32] Cheolhee Park, DowonHong, and Changho Seo. 2019. An attack-based evaluation
method for differentially private learning against model inversion attack. IEEE
Access 7 (2019), 124988–124999.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research (2011).

[34] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. 2019. Federated
adversarial domain adaptation. arXiv preprint arXiv:1911.02054 (2019).

[35] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, et al. 2016. SQuAD: 100,000+
Questions for Machine Comprehension of Text. In EMNLP.

[36] Santu Rana, Sunil Kumar Gupta, and Svetha Venkatesh. 2015. Differentially
private random forest with high utility. In IEEE ICDM.

[37] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. 2020. Adaptive feder-
ated optimization. arXiv preprint arXiv:2003.00295 (2020).

[38] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. 2020. Clustered feder-
ated learning: Model-agnostic distributed multitask optimization under privacy
constraints. IEEE transactions on neural networks and learning systems 32, 8 (2020),
3710–3722.

[39] Sberbank. 2017. Sberbank Russian Housing Market Dataset. https://www.kaggle.
com/c/sberbank-russian-housing-market/data

[40] Mervyn Singer, Clifford S Deutschman, Christopher Warren Seymour, et al. 2016.
The third international consensus definitions for sepsis and septic shock (Sepsis-
3). JAMA (2016).

[41] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.
Federated multi-task learning. Advances in neural information processing systems
30 (2017).

[42] Pierre Stock, Igor Shilov, Ilya Mironov, and Alexandre Sablayrolles. 2022. De-
fending against Reconstruction Attacks with R\’enyi Differential Privacy. arXiv
preprint arXiv:2202.07623 (2022).

[43] Stacey Truex, Nathalie Baracaldo, Ali Anwar, et al. 2019. A hybrid approach to
privacy-preserving federated learning. In ACMWorkshop on Artificial Intelligence
and Security.

[44] Jaideep Vaidya, Basit Shafiq, Anirban Basu, et al. 2013. Differentially private
naive bayes classification. In 2013 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[45] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. 2017. Decentral-
ized collaborative learning of personalized models over networks. In Artificial
Intelligence and Statistics. PMLR, 509–517.

[46] Haixun Wang, Wei Fan, Philip S Yu, et al. 2003. Mining concept-drifting data
streams using ensemble classifiers. In ACM SIGKDD.

[47] Febrianti Wibawa, Ferhat Ozgur Catak, Murat Kuzlu, Salih Sarp, and Umit
Cali. 2022. Homomorphic Encryption and Federated Learning based Privacy-
Preserving CNN Training: COVID-19 Detection Use-Case. In Proceedings of the
2022 European Interdisciplinary Cybersecurity Conference. 85–90.

[48] Xun Xian, Xinran Wang, Jie Ding, et al. 2020. Assisted Learning: A Framework
for Multi-Organization Learning. In NeurIPS.

[49] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine
learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[50] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. 2020. Salvaging federated
learning by local adaptation. arXiv preprint arXiv:2002.04758 (2020).

[51] Mikhail Yurochkin, Mayank Agarwal, Soumya Shubhra Ghosh, et al. 2019. Sta-
tistical Model Aggregation via Parameter Matching. In NeurIPS.

[52] Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. 2020. Fully de-
centralized joint learning of personalized models and collaboration graphs. In
International Conference on Artificial Intelligence and Statistics. PMLR, 864–874.

[53] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. 2021. Data-Free Knowledge
Distillation for Heterogeneous Federated Learning. ICML (2021).

477

https://www.kaggle.com/c/sberbank-russian-housing-market/data
https://www.kaggle.com/c/sberbank-russian-housing-market/data

Proceedings on Privacy Enhancing Technologies 2023(2) Gondara et al.

A IMPACT OF PRIVACY BUDGET

Figure 7: Impact of heterogeneous privacy budget. PubSub-
ML outperforms all privacy-preserving baselines by a signif-
icant margin.

B IMPACT OF NUMBER OF PUBLISHERS AND
SUBSCRIBERS

Setup. Using the same settings as Section 8.2.3 to create publishers
and subscribers, we investigate the impact of number of publishers
and subscribers in PubSub-ML. Specifically, there are n publishers
and n subscribers, and we vary n from 5 to 5000. For each of n pub-
lishers, we report the average performance over all n subscribers.

Figure 8: Impact of number of publishers and subscribers (n).
Performance initially improves with increasing n.

Results. Figure 8 shows the results. We observe that initial in-
crease in the number of publishers leads to improved performance
for subscribers which subsequently plateaus. This is because an
initial increase in the number of publishers increases the training
data dimensionality (Os) and the model diversity, leading to a per-
formance boost, which reaches its maximum after a certain number
of publishers.
Summary. Using more publishers can lead to better performance for
the subscriber.

C IMPACT OF NOISY SITES
Setup. To evaluate the impact of noisy sites in PubSub-ML, we use
the dataset Hyperplane as follows. We create a total of 20 sites,
with 10 sites acting as publishers, out of which 5 are created using

the same parameters as specified in Section 8.2.3, while the other 5
set p3 = 1 (Table 3), generating pure noise. The 10 subscribers are
generated using the same parameters as specified for subscribers
in Section 8.2.3, and we report results as an average over the 10
subscribers.

Figure 9: Impact of Noisy Sites. We observe that PubSub-ML
provides excellent utility ignoring the noisy sites, whereas
FL based methods suffer from degraded utility.

Results. Figure 9 shows the results. Where we observe that
PubSub-ML provides excellent utility because our model fusion pro-
cess can ignore the bad quality models, whereas FL based models
suffer from worse degradation (compared to Section 8.2.3) because
FL has no mechanism of ignoring bad quality data.
Summary. PubSub-ML can successfully ignore bad quality data/-
models whereas FL based models suffer from degraded utility.

D REGRESSION.
Setup. For regression, we use the housing market dataset under the
IID setting, where each site takes turn being the subscriber while
the other 29 sites act as publishers. We report average results using
1-MSE over all such subscribers.

Figure 10: Regression. Similar to the other scenarios,
PubSub-ML outperforms all privacy-preserving baselines by
a significant margin.

Results. Figure 10 shows the results. We observe that PubSub-
ML significantly outperforms all privacy-preserving baselines for
regression, where the difference between the non-private PubSub-
ML* and PubSub-ML is small (MSE of 0.07 for PubSub-ML vs MSE
of 0.04 for PubSub-ML*). This provides evidence for our earlier
claim that our model fusion process works well for regression.
Summary. Model fusion in PubSub-ML works well for regression.

478

PubSub-ML: A Model Streaming Alternative to Federated Learning Proceedings on Privacy Enhancing Technologies 2023(2)

E NON-PRIVATE SCENARIO
Setup.As a large body of work in FL focuses on the non-private set-
ting, in this section, we compare non-private PubSub-ML (PubSub-
ML*) with the non-private FL baselines.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Digit five (f) Amazon reviews

(g) Housing Market (h) Hyperplane

Figure 11: Non-private comparison of PubSub-ML (PubSub-
ML*) with FL (FedAvg(V)* , FedAvg(F)* , FedProx(V)*
, FedProx(F)* , FedAdam(V)* , and FedAdam(F)*).

PubSub-ML outperforms FL in the non-private setting.
Results. Figure 11 shows the results for the non-private compar-

ison for scenarios 1-4, for the digit-five (CV) and Amazon reviews
(NLP) datasets, for regression (Housing Market), and for the dataset
hyperplane. We observe that PubSub-ML outperforms FL based
methods in the non-private scenario as well where there is no
privacy constraint enforced. This provides evidence that PubSub-
ML is equally useful in the scenarios where we require privacy-
preservation and where privacy is not a concern, for example, a
scenario where all sites trust each other.
Summary. PubSub-ML is a viable alternative to FL based approaches
when privacy is not a concern.

479

	Abstract
	1 Introduction
	1.1 Our Proposal
	1.2 Contributions

	2 Related Work
	3 Overview
	3.1 Differential Privacy
	3.2 Overview of PubSub-ML
	3.3 Issues

	4 Customization Algorithm
	5 PubSub-ML
	6 Handling Data Streams
	6.1 Updating the Current Ensemble
	6.2 DP Guarantees

	7 Evaluation Setup
	7.1 Datasets
	7.2 Models
	7.3 Competitor Methods

	8 Results
	8.1 Main Comparison
	8.2 Further Analysis
	8.3 More Applications

	9 Conclusion
	Acknowledgments
	References
	A Impact of Privacy Budget
	B Impact of Number of Publishers and Subscribers
	C Impact of Noisy Sites
	D Regression.
	E Non-private Scenario

