
Story Beyond the Eye: Glyph Positions Break PDF Text Redaction
Maxwell Bland

University of Illinois,
Urbana-Champaign
mb28@illinois.edu

Anushya Iyer
University of Illinois,
Urbana-Champaign

anushya2@illinois.edu

Kirill Levchenko
University of Illinois,
Urbana-Champaign

klevchen@illinois.edu

ABSTRACT
In this work we find that many current redactions of PDF text are
insecure due to non-redacted character positioning information.
In particular, subpixel-sized horizontal shifts in redacted and non-
redacted characters can be recovered and used to effectively deredact
first and last names. Unfortunately these findings affect redactions
where the text underneath the black box is removed from the PDF.

We demonstrate these findings by performing a comprehensive
vulnerability assessment of common PDF redaction types. We ex-
amine 11 popular PDF redaction tools, including Adobe Acrobat,
and find that they leak information about redacted text. We also ef-
fectively deredact hundreds of real-world PDF redactions, including
those found in OIG investigation reports and FOIA responses.

To correct the problem, we have released open source algorithms
to fix vulnerable redactions and reduce the amount of information
leaked by nonexcising redactions (where the text underneath the
redaction is copy-pastable). We have also notified the developers of
the studied redaction tools. We have notified the Office of Inspector
General, the Free Law Project, PACER, Adobe, Microsoft, and the
US Department of Justice. We are working with several of these
groups to prevent our discoveries from being used for malicious
purposes.

KEYWORDS
Redaction, PDF, Information Leak, Privacy, Security, Text Render-
ing, Glyph Positioning

1 INTRODUCTION
Redaction is a centuries-old process of removing or obscuring parts
of a document to prevent its disclosure. In the past this was per-
formed by black marker or by physically cutting parts of the docu-
ment out with scissors. However, with the move to digital, paperless
representations of documents, the process of redaction is typically
performed by software tools. The process of removing informa-
tion from digital documents is error-prone, as demonstrated by
several high-profile examples [22]. However, no existing work has
considered the role the PDF file representation plays in redaction
security.

In this work, we identify problems in PDF file text redaction. It
is well known that the width of the characters in a proportional-
width font can leak information about redacted text. However,
we find PDF files include sub-pixel-sized character position shifts,
which can leak more information about redacted text than width

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(3), 43–61
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0069

alone. Failing to understand these shifts exist leads to incorrect or
imprecise deredaction. We are the first to identify this problem.

This led us to measure the severity of information leaks in PDF
text redactions. We discovered methods for breaking redactions
occurring on documents processed by optical character recognition
(OCR) software and find that rasterizing a document (converting
the PDF to an image) increases the security of redactions but does
not remove information leaks. We also find a typical PDF document
authored inMicrosoftWord leaks about 13 bits of information about
a redacted surname. This is enough for an attacker to identify a
single individual from 8,000 candidates (say, employees at a com-
pany or potential confidential informants in a gang), or reduce the
3.9 million possible first initial, surname pairs from US census and
Social Security Administration data to a set of only 200 potential
matches for a redacted name.

We also consider nonexcising redactions which do not remove
any text from the document. The text of these redactions can be
copied and pasted from the source document. Our study and tech-
niques located thousands of nonexcising redactions in US court
documents. We notified both the US court system and the Free Law
Project about these redactions.

We trace the source of the insecure redactions by examining 11
popular PDF redaction tools and find that two do not work at all.
These two tools leave the text underneath the selection marked
for redaction in the PDF document. The remaining tools, including
those from Adobe Systems, remove the redacted text and replace it
with a black rectangle. Without additional defenses, this practice
leaks significant information about the redacted text.

We built a tool, Edact-Ray, which we use to identify, break, and
fix redaction information leaks across millions of PDF files. During
the deredaction stage, Edact-Ray allows an attacker to test which
strings from a dictionary of candidates create the same PDF output
as the original redacted PDF file. We applied Edact-Ray to study
the impact of our findings on three publicly-available corpora of
PDF documents.

The resulting impacts on privacy are significant. Formost, we find
short redactions of one to two words, including names, are not se-
cure, presenting a clear invasion of privacy for people whose names
have been redacted. This attack may also be used to circumvent
redactions used in censorship. Thus, we have notified organiza-
tions whose redacted documents we study and affected vendors
of redaction tools and are working with several of these groups to
remediate the problem. To address the discovered vulnerabilities,
we release tools for identifying and securing poorly redacted PDF
text at https://github.com/maxwell-bland/deredaction.

The contributions of this work are:
❙ A survey of 11 popular PDF redaction tools. We find two tools
have redaction features which do not actually remove text

43

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0069
https://github.com/maxwell-bland/deredaction

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

marked for redaction, making the redacted document vulnera-
ble to copy-paste attacks. The remaining tools preserve glyph
positioning information which can be used for glyph displace-
ment attacks.

❙ The discovery of redacted information leaks due to sub-pixel
sized glyph position shifts. We provide a precise analysis of the
role and impact of these shifts on the process of deredaction.

❙ An information-theoretic measurement of PDF redaction se-
curity. A redaction of a first name and surname from a voter
registration database in a PDF produced by Microsoft Word’s
“Save as PDF” feature can leak up to 15.9 bits of information
out of 19.6, meaning an adversary can correctly break such a
redaction 38% of the time.

❙ Novel advisories regarding the security of PDF redactions and
correct redaction methods. PDF redactions where the set of
candidates may be reasonably constrained, e.g. a redaction of
a politician’s name, are not secure. Redactions of individuals’
names or redactions of one or two words are not secure.

❙ A survey of millions of publicly-available redacted documents.
We find many of the documents provided by the US Courts,
the Office of Inspector General (OIG), and Freedom of Informa-
tion Act Requests (FOIA) are vulnerable. We found over 6,000
vulnerable nonexcising redactions of names. We were able to
automatically perform deredaction on over 300 vulnerable ex-
cising redactions of names and locate thousands of potentially
vulnerable excising redactions.

❙ An extensive notification of affected parties and the release of
several software tools for the development of advanced redac-
tion defenses. We have collaborated with the US government
and third-party software providers to correct and prevent the
occurrence of discovered redaction vulnerabilities.

The rest of this paper is organized as follows. Section 2 gives
background on how PDF text redactions leak information. Section 3
surveys PDF redaction tools’ preservation of redacted information.
Section 4 describes Edact-Ray’s implementation. Section 5 mea-
sures mutual information shared by redacted and non-redacted
PDF text. Section 6 measures the number and diversity of redaction
information leaks in public PDF documents. Section 7 discusses
defenses and future work. Section 8 addresses related work and
Section 9 concludes.

2 PDF REDACTION SECURITY
The security of PDF text redaction depends on the specification
of the PDF document. We consider two types of PDF documents.
One is a of the original document. The other PDF
document type contains text data for both the font and the layout
of each character (glyph) on the page.

We focus our discussion on non-raster PDF documents, however,
the concepts presented apply to raster PDF documents. We consider
the effect rasterization has on redaction information leaks when
discussing it as a defense in Section 7.1 and include a discussion of
different document scanners in Appendix H.1.

PDF documents can render text in innumerable ways (e.g. by
embedding an image in the document), though the most common
is through use of a text showing operator, one of which (TJ) is
depicted in Figure 1. The TJ operator takes as arguments a string

 [...(Exh)-2(ibit A.)] TJ
Positional Adjustment

Figure 1: The TJ text showing operator, which specifies the glyphs to
render and, by reference to a font object (not shown), their widths,
along with any associated positional adjustments, given in text space
units.

of text and a vector of positional adjustments which displace the
character with respect to a default position. This default position is
usually a fixed offset from the previous character equivalent to the
advance width of the previous character defined elsewhere in the
PDF document.

For this paper, we converted the complex set of PDF text render-
ing operations into a uniform intermediate representation, consisting
of a minimal set of metrics (e.g. font size) and a series of TJ operators.
The intermediate representation presents PDF text as, effectively, a
set of advance widths and glyph shifts which are the sum of all the
individual positioning operations applied to a glyph. This conver-
sion was necessary to account the large number of ways in which
text can be rendered in PDF documents.1

The positional adjustment in Figure 1 is −2 text space units be-
tween the h and i glyphs. Text space units express glyph shifts,
where 1,000 units almost always2 equals the point size of the font
times 1/72 of an inch. For a 12-point font, 1 unit equals 1/6,000 of
an inch (0.0042 mm).

Glyph advance widths and glyph shifts create a security concern.
Section 3 finds that most PDF redaction tools replace text selected
for redaction with a single large shift of the same width as the
redacted text showing operator, creating the two significant security
risks:

• The precise width of the redaction can be used to eliminate
potential redacted texts (Sec. 2.1.1).

• Any non-redacted glyph shifts conditioned on redacted glyphs
can be used to eliminate potential redacted texts (Sec. 2.1.3).

We do not include strings of numbers in our analysis as digits’
glyph advance widths and effect on glyph shifts is almost always
identical, making them effectively monospace, even if typeset in a
variable-width font. Some uncommon fonts may have non-identical
digit glyph advance widths.

Where appropriate in future sections, we also address concerns
related to nonexcising redactions. These redactions are cases where
the text underneath the redaction can be selected and copied to the
system clipboard from the PDF document.

2.1 Glyph Shifts
The width of a PDF redaction depends on glyph shifts. Without
accounting for glyph shifts, redacted text guesses are imprecise and
must account for error, reducing the potential of finding a unique
match for redacted content. See the discussion of rasterization error
in Section 7.1 for a precise measurement of how much shift error
affects leaked redaction information.

1For example, in the case of a TJ operator, the actual glyph shift includes any offset
due to a positional adjustment as part of the calculation of its value.
2PDF offers the ability to redefine the text space. Edact-Ray accounts for this.

44

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

Table 1: Glyph width equivalence classes for the specific default
version of Times New Roman used by Microsoft Word. Each number
is the width in given to the glyph by the font file and each set of
letters has equivalent widths.

569 ijlt 1251 ELTZ
683 Ifr 1366 BCR
797 Js 1479 ADGHKNOQUVXYw
909 acez 1593 m
1024 bdghknopquvxy 1821 M
1139 FPS 1933 W

The glyph shifts present in a PDF document are dependent on
the specific workflow used to produce the PDF document. This
includes an originating software, called the PDF producer by the
ISO 32000 PDF standard [19], and any software that may modify
the PDF file contents thereafter, including, for example, a redaction
tool. A given workflow creates a specific pattern of glyph shifts,
determining, in part, the security of any redacted text. We identify
two types of glyph shifting schemes:

• Independent: the glyph shifts for a given character are not
dependent on any other character in the document in any
way.

• Dependent: the glyph shifts for a given character are depen-
dent on some other character in the document in some way.

We call independent schemes unadjusted when there are no shifts
on any character. Google Docs’ Export to PDF option produces an
unadjusted scheme.

The frequency of documents with a given shift scheme varies
by corpus (Sec. 6). For example, in our Freedom of Information Act
(FOIA) corpus about 6% of redacted text fragments are unadjusted,
in contrast to 5.3% across all corpora.

2.1.1 Equivalence Classes. Before discussing these schemes further,
we introduce the idea of width and shift equivalence classes. A shift
equivalence class is a set of lists of glyphs of the same length with
identical shift values. A width equivalence class is a set of glyphs
and associated shifts with the same width.

Table 1 gives an example of the width equivalence classes for
glyphs in a Times New Roman font3 without shifts, next to their
widths as specified by the font file. The glyphs I, f, and r are exactly
half the width of the glyphs of B, C, and R. When typeset using
Times New Roman, the words martian, templar, and mineral all
have the same width, as do the anagrams of those words tamarin,
trample, and railmen.

The PDF specification does not include any specific signifiers
for redacted text. However, residual specification information after
redaction, such as glyph positions, can be used to reasonably rule
out large numbers of candidate width and shift equivalence classes
for redacted text. None of the prior words in this paragraph are in
the width equivalence class of the word cat.

2.1.2 Independent Schemes. In an independent glyph shifting scheme,
the security of a redaction may be considered dependent on the size
of the width equivalence class indicated by the PDF document’s

3Different versions of a font can exist. We use the default versions available from
Microsoft throughout this paper.

residual glyph positioning information. That is, the positions of
glyphs prior to and succeeding the redaction may leak the width of
redacted text. The scheme’s specific glyph shifts can make a given
width equivalence class leak more or less redacted information by
making width of individual glyphs more or less unique.

As an example, consider redacting a single letter l as opposed
to m in the Times New Roman (TNR) scheme from Table 1. m is
the only glyph in its width equivalence class, so it may be possible
to determine the letter m was redacted uniquely. Whereas if l is
redacted, then the residual information indicates the redacted letter
could be any one of i, j, l, or t. However, if l were always accompa-
nied by a glyph shift distinguishing it from these other three letters,
then the scheme would leak more information.

We acknowledge that there is no guaranteed correlation between
glyph positions before and after redaction. Redaction may reposi-
tion glyphs in such a way as to destroy accurate width information.
However, in Section 3 we find this is almost never the case for
commonly accessible redaction tools. We have also been informed
that in some contexts there are (legal) restrictions on changing the
glyphs or glyph positioning of a redacted document.

Scanned Documents.Many documents with independent shifting
schemes are the result of an optical character recognition (OCR)
process.4 This process embeds a non-raster representation of the
document’s text in the resulting PDF document. This often allows
the document’s text to be searched and copied from by software
tools.

Non-raster deredaction attacks work on documents that are
scanned, OCRed and then redacted, not on documents that are
redacted, scanned, and then OCRed. We note that attacking the
OCR overlay is not always as straightforward as attacking a PDF
produced without OCR. For example, attacking a redaction per-
formed on the output of Adobe Acrobat Pro’s OCR workflow re-
quires using two side channels embedded in the PDF specification
of the redacted document, detailed in Appendix F. Using these side-
channels, we find documents processed with OCR using Acrobat
Pro and then subsequently redacted are vulnerable to the attacks
presented in this paper.
2.1.3 Dependent Schemes. A dependent scheme is more dangerous
to the security of redacted text than an independent scheme. In
these schemes non-redacted glyph shifts can be dependent upon
redacted glyph information, because the non-redacted glyph shifts
can be determined before redaction (Sec. 3).

Microsoft Word “Save as PDF”. In this work, we focus on a class
of dependent schemes defined by the Microsoft Word software’s
Save As PDF command.5 We reverse-engineered the glyph shifting
scheme produced by this command in Microsoft Word for Windows
desktop versions 2007 to 2019. This process took around several
months. Word 2007 to 2016 use one scheme, and Word 2019 to
present versions use another. These two schemes affect thousands
of real world document redactions (Sec. 6).

The studied dependent schemes accumulate a What You See
Is What You Get (WYSIWYG) error measurement for each glyph
from left to right across each line of text. If redacted content is not
removed from a Word document before running “Save as PDF”,

4We discuss physical document scanners in Appendix H.1.
5Shifting schemes generated by other workflows are detailed in Appendix Table 8.

45

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

1 for (int j = i + 1; j < vs->size(); j++) {
2 t = ttfScaledWidths[j] / 1000;
3 d = internalMSWordWidths[j] / internalMSWordFontSize;
4 ttf += t;
5 msWord += d;
6 disp = ttf - msWord;
7 if (
8 ((disp > 0.003) || (disp < -0.003)) &&
9 i != vs->size() - 1
10) {
11 int adj = disp * 1000 + 0.5;
12 vs->setShift(j, adj);
13 ttf = msWord = 0;
14 } else {
15 vs->setShift(j, 0);
16 }
17 }

Figure 2: Snippet of reverse engineered code representing how Mi-
crosoftWord leaks redacted character information into non-redacted
characters in a PDF document.

redacted glyph positioning information affects the accumulated
error value. Thus information about the content of a redaction is
leaked into the shifts applied to non-redacted characters.6

Figure 2 depicts this behavior. Word’s internal representation
of the layout of characters for display purposes does not exactly
match that of the TrueType Font (TTF) embedded in the PDF docu-
ment. Word corrects for this small error between the two formats
through use of glyph shifts. Surprisingly, these modifications are
done independent of the user’s screen resolution.

We note the internal widths used on line 3 of Figure 2 are de-
termined by a loop with no overflow reset and the redacted in-
formation held by the accumulator is not zero after a single shift
is written. We refer the interested reader to Appendix Figure 5:
the “pixelWidths” variable in this figure is scaled by a constant to
produce the “internalMSWordWidths” in Figure 2.

Word’s shifting scheme depends on the document’s edit history.
Changing a character inside of a Microsoft Word document splits
the internal representation of the text fragment containing the
character into two fragments. This fragmentation resets the accu-
mulation of glyph width error and affects the shifts emitted for a
line of text. Edact-Ray accounts for this by considering all potential
edits to redacted text.7

We validated our Word model on hundreds of lines of Wikipedia
text rendered to PDF by Word, several manually-crafted test cases,
and text fragments from redacted documents found in the wild. We
detail the Microsoft Word shifting scheme algorithms further in
Appendix G.

We have submitted a bug report reporting these findings to
Microsoft and have received a response indicating they are aware
of the problem.

3 REDACTION TOOLS
We surveyed redaction tools to determine how much redacted text
information they leak. Our results are in Table 2. To find these tools,
6Different text justifications can leak more information. For an extended discussion
see Appendix G.
7We found edits have no significant impact on the efficacy of deredaction. The in-
formation leaked is at least as much as an independent glyph shifting scheme. See
Appendix G for the editing algorithm.

Table 2: Type of information leaked by redaction tools. Many tools
leak redacted text width and glyph shift information. We include a
star next to Adobe’s tool. After discussion with Adobe, they claimed
they do not use a raster approach. We found empirically this was
not the case.

Redaction tool (flow) Version Leaked information

PDFzorro N/A Full Text
PDFzorro (lock) N/A Raster Width
PDFescape Online N/A Full Text
PdfElement (all) 8.3.10 Width and Shifts
Qoppa PDF Studio 2021.0.3 Width and Shifts
FoxIt PDF Pro (all) 11.0.1 Width and Shifts
Nitro PDF 13.58.0 Width and Shifts
Opentext Brava (all) 16.6.4.55 Width
Rapid Redact 2.3 Raster Width
redactpdf.com N/A Raster Width
Adobe (all) 21.5 Raster Width
Adobe (postpone save) 21.5 Width and Shifts
IText PDFSweep 7.1.6 Width

we searched Google for the terms “PDF redaction tool,” “redaction
tool,” and “document redaction tool”. We then downloaded all redac-
tion tools listed in the first five result pages. These tools represent
what the typical user may encounter when searching for and using
redaction software.

We find the redaction security vulnerabilities detailed by this
paper are affected by redaction tools in one of four ways:

Full Text. The first family of tools draws a black box over text
selected for redaction. The original PDF text object is still present
and users can select and copy the text behind the black box. Two
tools that fall into this category are listed as leaking full text in
Table 2. We consider this to be a severe vulnerability and reported
this to their developers (see Sec. 7).

Width and Shifts. The second family of redaction tools, referred
to as shift preserving, attempts to perform redaction while main-
taining the document’s vector format. When applied to text objects,
these tools replace the redacted text with a shift of equivalent width
so that text outside the redaction remains at the same position as
in the original document. We note the default behavior of all these
tools is to draw a black box over the redacted area.8 Table 2 lists
these as leaking width and shifts.

Width. The third family, Opentext Brava and IText PDFSweep,
are listed as only leaking width:

Opentext Brava changes the underlying PDF font and shifts for
non-redacted glyphs, however, the width of the original redaction is
maintained to a close approximation and the number of characters
in the redacted word leaks because every redacted character is
replaced with a space character and an associated glyph shift.

IText PDFSweep considers the glyph shifts applied to each word,
removes them, and applies their sum to the last glyph in the word
before the redaction. This has the effect of maintaining the exact

8This is typically user configurable. However, there are also often legal and organiza-
tional requirements on the style of redactions.

46

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

width of redacted text but removing information relating to how a
specific glyph in a given word was originally shifted.

Raster Width. The last family of tools, referred to as rasterizing
tools, starts by converting every document page into a raster image
and then blacks out those pixels of the image that fall inside the
area selected for redaction. Because pixels outside the redaction
area are untouched, it is possible to recover the approximate width
of redacted text from the spacing between glyphs on either side
of the redaction box (Sec. 7.1). These tools are listed in Table 2 as
leaking the raster width of the redacted text.

4 THE EDACT-RAY TOOL SUITE
Following our analysis of redaction tools, it was necessary to de-
velop the Edact-Ray tool suite in order to better understand and
fix the problem of deredaction. Edact-Ray automates the location,
analysis, and protection of vulnerable redactions.

Locating Redactions. Edact-Ray adopts different approaches
for identifying nonexcising and excising redactions.

For nonexcising redactions, Edact-Ray first detects filled boxes
drawn over text. This algorithm has a large number of false positives
as it does not consider whether the rectangles are actually covering
text in a meaningful way. A benefit of this approach is that it is
fast: we use it as a first pass for identifying vulnerable nonexcising
redactions in Section 6.

To avoid false positives, Edact-Ray then checks whether the
pixels in the bounding box of each PDF glyph are all the same color.
This does not handle complex cases (e.g. using an image to redact
text), but we did not find cases of these more complex styles of
redaction in practice.

We manually validated our nonexcising redaction location algo-
rithm on PDF documents from RECAP, a website hosting US court
documents, and discovered a false positive rate of 4%. An additional
7% of these documents properly changed the underlying text (e.g. to
REDACTED) or contained unintended redactions (e.g. a black box
covering non-sensitive text). This resulted in 710 documents with
nonexcising redactions, many of which included entire paragraphs
of text.9 The algorithm encounters false negatives when it cannot
identify rectangular draw commands. We did not encounter false
negatives: redaction draw commands are rarely ambiguous enough
to prevent detection.

For excising redactions, Edact-Ray first identifies spaces larger
than a single space character between each pair of words in a
document. It then analyzes the pixel color values between the words
to identify a drawn rectangle.10

We evaluated our excising redaction location algorithm’s accu-
racy on a random sample of 1,000 corpora pages from Section 6.
We compared against Lee’s [26] prior work on redaction location
and against manual identification. Lee’s method flags every black
rectangle drawn as a redaction and has a high false positive rate for
some classes of documents (around 30% for FOIA and nearly 100%
for RECAP). With respect to false positives and false negatives, our
algorithm is equivalent to manual analysis when locating what we
deem to be vulnerable redactions.

9We provided a list of these PDFs and associated case names to the US Courts, who
notified affected parties.
10We did not attempt to locate redactions without some visually signifying feature.

The above approaches present a novel contribution of the present
work. We collaborated with the Free Law Project on their tool X-
ray [13], for identifying redactions. When we began collaboration,
they communicated to us that there was no efficient tool with low
false positives for identifying excising and nonexcising redactions.
We have created such a tool, however, we note the purpose of this
paper was not to solve the problem of redaction location.

Analyzing Redactions. Edact-Ray analyzes the security of a
given redaction by developing an information fingerprint (i.e. a
hash of the width and shift equivalence classes) of all leaked glyph
positioning information. For each attempted guess at the redacted
content, Edact-Ray matches the expected information fingerprint
for this guess to the fingerprint recovered from the source docu-
ment.

If the guess information fingerprint does not match, that guess
is ruled out as a potential redacted content. Edact-Ray’s results are
only as good as the dictionary. If the redacted text is not in the dic-
tionary, Edact-Ray may return incorrect or no results. Deredaction
does not discover the redacted text.

To minimize the chances of not including the correct redacted
content in our guess dictionary, in the following sections we use
dictionaries consisting of multiple variations of possible redacted
terms. We also performed extensive validation of our results wher-
ever possible.

As a proof-of-concept tool, Edact-Ray relies on a human user to
select the proper dictionary. While this process could be automated
using machine learning, we chose to do this step manually in order
to exclude a potential source of error.

Running on an eight-core consumer laptop (a ThinkPad T420),
Edact-Ray performs 80,000 guesses per second.

Protecting Redactions. Edact-Ray protects vulnerable PDF
redactions by first locating the nonexcising redactions and remov-
ing their underlying text from the PDF. We then adopt a user-
configurable level of information excisement by allowing users to
optionally remove all non-redacted glyph shifts11 and optionally
convert the font to a monospaced one, scaling the size to preserve
readability. To protect excising redactions, Edact-Ray can round
up the size of all spaces between two words to some width, 𝑛 ×𝑤 ,
where 𝑛 is some number of characters and𝑤 is the width of a single
character in the monospace font. Edact-Ray can also remove any
rectangular draw commands from the PDF so that the width of
the redaction cannot be recovered by examining the width of any
graphical box drawn to represent the redaction.

While these changes may be unacceptable for many users, they
guarantee the redactions’ security in the general case. Monospaced
redactions leak less than five bits of information (Sec. 5). We discuss
further defenses and recommendations in Section 7. We have made
code for implementing the above protections open source.

5 MEASURING LEAKED INFORMATION
We next demonstrate exactly how dangerous glyph shift aware
redaction attacks are. We evaluate three types of glyph shifting
schemes (Sec. 2): a monospaced scheme, a scheme with independent

11Recall even if the redaction width is changed these shifts can leak information.

47

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

(unadjusted) shifts,12 and two schemes with dependent glyph shifts
(MS Word schemes).

We can quantify the amount of information leaked by glyph
positioning in information-theoretic terms, as the mutual informa-
tion of the redacted text and the glyph positioning, measured in
bits [21]. Mutual information measures the reduction in uncertainty
about the redacted text from knowledge of glyph positions of the
surrounding text (the fingerprint or hash of leaked information).

5.1 Experiment Setup
Text corpus. We estimate the amount of leaked information by

redacting PDFs and performing deredaction in a simulated set-
ting. For this we used text from the New York Times Annotated
Corpus [35]. The corpus contains articles written and published
by the New York Times between January 1, 1987 and June 19,
2007. The NYT corpus contains 1,855,658 documents in total, with
1,027,427,021 total tokens, 1,505,676 of which are unique.

We considered each word and string of punctuation to be a
separate token, excluding contractions. For example, a period and
quotation mark (.”) ending a quotation would be a token. J. Doe is
tokenized to “J”, “.”, and “Doe”. Contractions such as “we’re” are not
tokenized to we, ’, and re.

Dictionaries. The amount of information leaked also depends on
prior information about the redacted text. For example, if we know
the redacted text is one of 151,671 American surnames, then this
redaction leaks at most log2 151, 671 ≈ 17.2 bits. In our experiment,
we model this prior information as a dictionary, a set of strings
from which we assume the redacted text is drawn.

Based on an examination of real redactions in Section 6, we
constructed 10 dictionaries. We list the sources of these dictionaries
in Appendix B.

• Str. All strings of 3–16 characters in length starting with a
uppercase or lowercase letter followed by lowercase letters.

• Acrn. All strings of 2–5 uppercase characters.
• Word. English words including some proper nouns.
• Ctry. Official and common names of countries.
• Rgn. Names of regions, a superset of Ctry.
• Natl. Nationalities, demonyms, and adjectives of regions and
nationalities, sourced from lists on Wikipedia.

• FN. American given (first) names.
• LN. American surnames (last names).
• FI×LN. All combinations of a name initial followed by sur-
name (LN).

• FN×LN. All combinations of a given name (FN) followed by
a surname (LN).

• FNLN and FILN. FN×LN and FI×LN filtered to only include
combinations of name and surname that appear in the voter
registration databases of the three US states. North Car-
olina [15], Ohio [16], and Washington [18] were chosen
based upon the availability of publicly accessible data.

Table 3 lists the dictionaries and their statistics. We use the voter
registration database frequency for individuals’ names to avoid bias
present when using the NYT corpus to estimate the frequency of a
given name. For example, “Al Gore” is more frequent in the NYT
corpus than the population. Using the NYT for names would skew

12We use an unadjusted scheme for simplicity: each font evaluated in this section can
be considered its own independent scheme (Sec. 2).

Table 3: Dictionaries containing candidate texts used for evaluating
deredaction. Stop words are excluded. NYT Occ. gives the number of
occurrences of words from the given dictionary in the NYT corpus.
𝐻𝑢 (𝑋) is the uniformly distributed information-theoretic entropy
of the dictionary, given by log2 Size. For individuals’ names, 𝐻𝑒 (𝑋)
is the entropy of the empirical distribution of dictionary words in
the voter registration databases, and for all others it is according to
the NYT corpus.

Dict. Size 𝐻𝑢 (𝑋) NYT Occ. 𝐻𝑒 (𝑋)

Str 9×1022 76.3 791,209,093 11.8
Acrn 1.2×107 23.6 4,674,379 10.0
Word 63,054 15.9 432,896,070 12.3
Ctry 566 9.1 3,905,371 5.9
Natl 509 9.0 4,081,019 5.4
Rgn 2.8×106 21.4 33,636,150 10.6
FN 100,364 16.6 71,031,188 10.3
LN 151,671 17.2 97,551,697 13.1
FILN 1.6×106 20.6 1,265,265 17.0
FI×LN 3.9×106 21.9 2,139,713 17.0
FNLN 8.9×106 23.1 3,650,063 19.6
FN×LN 1.5×1010 33.8 14,440,238 19.6

the results in our favor.We opted to provide a general representation
of deredaction’s efficacy where nothing is known about the name
in question beyond population statistics.

The voter registration databases contained 1.7×107 names total.
Note that if this measure was used instead of NYT Occ., FN, LN,
FILN, and FNLN would be identical to the population size.

Columns 𝐻𝑢 (𝑋) and 𝐻𝑒 (𝑋) are an upper bound on the amount
of information a document can leak about a redacted element of
that dictionary. If the amount of information leaked is equivalent to
these numbers, then every word in the dictionary can be uniquely
identified by leaked information when redacted.

Compared to the brute force approach of using all possible name
combinations, using voter registration databases makes deredaction
highly precise. However, we do not use FNLN and FILN in the
evaluation of Section 6 because we do not want to bias our results
by assuming what state the person (whose name was redacted)
votes in or whether they are registered to vote.

Workflow. We simulate redaction in a PDF created with three
shifting schemes from Section 2 (Unadjusted, Word 2007 and Word
2019 “Save as PDF”), in 10 point Times New Roman, Calibri, and Ar-
ial, the three most common fonts in our document corpus (Sec. 6.1).
These fonts account for 71.6% of lines in the 40,000 documents in Ta-
ble 5. We include Courier as an example of a monospaced font. The
simulated PDF, formatted for US Letter size paper, is left-justified
with 1-inch margins, giving a 468 point line width.

We use a 10 point font size for our experiments as an upper
bound on the amount of leaked information. We report results for
a 12 point font size in Appendix C. Because each 12 point line has
fewer characters, the larger font size leaks a little less information
overall.

48

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

5.2 Experiment Procedure
We parameterize each redaction with experimental parameters of
shifting scheme, font size, font, and dictionary. We then perform
the following steps:

(1) Choose some word from the corpus that occurs in the given
dictionary.

(2) Format a PDF document containing the chosen word and
surrounding text from the corpus using the parameterized
font and shifting scheme.

(3) Replace the chosen word at the point with each word in the
parameterized dictionary (either uniformly or according to
the frequency distribution).

(4) Redact the dictionary word by replacing it with a glyph shift
equal to its width.

(5) Record the leaked information fingerprint for this dictionary
word.

In summary, we simulated the redaction of all possible dictio-
nary words at a sample of occurrences of dictionary words in the
NYT corpus. We then computed the amount of mutual information
leaked by the redacted document 𝑌 about the redacted word 𝑋 (See
Appendix A).

In addition to mutual information, we calculated the probability
that the leaked information can be used to correctly guess the
redacted word. In the uniform distribution this is a random guess
from the (typically quite small) set of matching candidate words,
and in the frequency distribution we select the candidate with the
highest frequency in either the NYT corpus (for Str, Acrn, Word,
Ctry,Natl, and Rgn) or in the three state voter registration databases
(for FN, LN, FN×LN, FI×LN, FNLN, and FILN).

5.3 Results
Table 4 reports on the vulnerability of excising redactions. The
top half of the table shows the case where dictionary elements are
drawn uniformly at random in step 3 above and the bottom half
shows the case where dictionary elements are drawn according to
their frequency of occurrence in the NYT corpus or, in the case of
names, in the three states’ voter registration databases. We have
omitted rows for the FN×LN and FI×LN dictionaries from the bot-
tom half because they are identical to the FNLN and FILN results,
respectively.13

The left side of the table shows the mutual information of the
dictionary and the resulting document. This is the number of bits
of information leaked by the document about the redacted word.
These should be compared to the total entropy of the corresponding
dictionary given in Table 3.

The right side of the table gives the probability correctly guessing
the redacted text using only the information available after redac-
tion. This corresponds to success probability of a game in which a
player knows the dictionary and tries to guess the redacted word
based information in the redacted document. In the non-uniform

13We considered using the empirical distribution generated by the independent dis-
tributions of first and last names in the voter registration databases. However, the
distribution of first names is not independent of the distribution of surnames due to
cultural naming conventions.

case, the optimal strategy is to guess the most likely (the high-
est occurrence frequency) word or phrase that produces the same
redacted document.

The table gives statistics for four fonts: Courier, Times New
Roman, Arial, and Calibri. For each font, we show the amount
of information leaked by an unadjusted shifting scheme (Un), text
produced usingWord 2007–2016 (W07), andWord 2019–2021 (W19)
dependent glyph shifting schemes. For Courier, we omit the W07
and W19 columns as monospaced fonts behave identically in the
unadjusted and Word cases.

Table 4 does not show results for the Str dictionary under the
uniform distribution usingWord schemes because simulating redac-
tion of all 9×1022 strings is prohibitively expensive. Results for the
unadjusted positioning scheme were obtained without simulating
redaction by exploiting the regular structure of the dictionary.

We compare redaction vulnerabilities across three categories,
using the example of redacting a surname set in 10 point Times
New Roman font to guide the reader:

Monospace (Mo). For monospaced font redactions, the residual
information in the document after redaction reveals the number of
characters in the redacted word. The Courier column in Table 4 thus
tells us how much information is revealed by knowing the number
of letters in the word. (For monospace fonts, which are always
unadjusted, this is just the entropy of the distribution of word
lengths.) For example, knowing only the number of characters in a
surname leaks 2.9 bits of information (out of 17.2) when guessing
uniformly at random from the candidate redacted texts. This has
a < 1% probability of success—redactions of monospace fonts are
relatively secure.

Unadjusted (Un). For independent shifting scheme redactions,
e.g. a PDF produced by Google Docs, the residual width of the
redaction leaks more information than the number of characters
redacted. The width of a redaction of a surname (the Un row) with
no glyph shifts provides 8.2 bits of information about the surname
if it is chosen uniformly at random and 7.8 bits (out of 13.1) if it is
chosen according to an empirical distribution. While the uniform
distribution still has a < 1% probability of success, the empirical
distribution has a 28% probability of success.

Dependent (W07/W19). For dependent shifting scheme redac-
tions, the residual information after redaction leaks both width and
shift equivalence classes (Sec. 2.1.1) and therefore more information.
If we redact a surname from a PDF produced by Word 2007–2016,
the resulting document leaks 12.4 bits of information about a name
chosen uniformly at random and 10.8 bits when chosen according
to the empirical distribution given by voter registration databases.
With the inclusion of these information leaks, the probability of a
correct guess under the uniform distribution is 11% and the proba-
bility under an empirical distribution is greater than 50%.

We found leaks of up to 15 bits of information about redacted
text in dependent (Microsoft Word “Save as PDF”) glyph shifting
schemes. These schemes present a significant security concern for
excising redactions. Even without considering the frequency of
names in the population, single word redactions have a greater
than 5% chance of being broken. When an adversary can use statis-
tical likelihoods of names, two word redactions of first names and
surnames face a 1 in 5 chance of being broken, and an adversary’s
chances are only better for other fonts.

49

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

Table 4: Number of bits leaked (left) and probability of a correct guess (right) for different shifting schemes in simulated redactions of the NYT
corpus set in 10pt font. Refer to Table 3 for the total number of bits of information present in the candidate dictionary. “Probability correct
guess” refers to the likelihood of randomly selecting the redacted word given the (typically small) set of matching candidate texts.

Leaked information (bits) Probability correct guess

Distr Courier Times Arial Calibri Times Arial Calibri
Dict Mo Un W07 W19 Un W07 W19 Un W07 W19 Un W07 W19 Un W07 W19 Un W07 W19

Uniformly distributed
Str 0.2 8.2 — — 8.8 — — 12.1 — — <1% — — <1% — — <1% — —
Acrn 0.2 6.5 11.0 9.2 6.4 10.9 9.7 11.4 13.9 13.7 <1% <1% <1% <1% <1% <1% <1% <1% <1%
Word 3.3 8.7 12.6 12.3 8.7 12.5 11.8 12.8 14.3 14.3 2% 22% 19% 2% 23% 16% 16% 48% 47%
Ctry 5.0 8.6 9.0 9.0 8.6 8.9 8.9 9.1 9.1 9.1 77% 94% 93% 75% 90% 89% 97% 98% 97%
Rgn 4.1 10.7 15.0 14.6 10.2 14.3 13.6 14.1 16.8 16.7 2% 10% 8% 1% 9% 7% 3% 15% 14%
Natl 3.8 8.2 8.8 8.8 8.0 8.8 8.7 8.9 8.9 8.9 66% 90% 91% 61% 90% 88% 97% 98% 98%
FN 2.6 7.8 11.6 11.1 7.9 11.0 10.4 12.3 14.1 13.8 <1% 11% 7% <1% 10% 6% 8% 32% 28%
LN 2.9 8.2 12.4 11.7 8.3 12.2 11.4 12.7 14.8 14.6 <1% 11% 8% <1% 12% 7% 6% 33% 30%
FILN 2.9 8.6 13.3 12.6 8.7 13.0 12.2 13.0 15.6 15.5 <1% 4% 2% <1% 4% 2% 2% 11% 11%
FI×LN 2.9 8.5 13.1 13.1 8.6 13.2 13.2 12.8 15.4 15.3 <1% 1% 1% <1% 2% 2% <1% 5% 5%
FNLN 3.2 9.4 14.5 14.1 10.0 14.9 14.0 13.5 16.7 16.5 <1% 3% 2% <1% 4% 3% 3% 8% 7%
FN×LN 3.4 8.8 13.7 13.3 9.2 13.8 12.9 12.8 15.9 15.3 <1% <1% <1% <1% <1% <1% <1% <1% <1%

Text frequency distr.
Str 3.0 7.6 — — 7.5 — — 10.5 — — 37% — — 35% — — 74% — —
Acrn 2.0 6.5 8.7 7.7 6.4 8.1 7.8 9.1 9.5 9.5 44% 75% 59% 43% 67% 61% 81% 91% 90%
Word 3.2 8.1 10.9 10.6 7.9 10.6 10.2 11.2 11.8 11.7 29% 69% 63% 27% 64% 57% 74% 88% 87%
Ctry 3.0 5.6 5.8 5.7 5.6 5.7 5.7 5.8 5.8 5.8 92% 99% 96% 93% 97% 96% 97% 98% 98%
Rgn 3.1 7.4 9.3 8.9 7.3 8.9 8.6 9.6 9.9 9.9 53% 81% 75% 51% 75% 71% 88% 94% 93%
Natl 2.5 5.2 5.4 5.4 5.1 5.3 5.3 5.4 5.4 5.4 95% 99% 99% 90% 99% 98% 100% 100% 100%
FN 2.5 7.1 9.3 9.0 7.2 8.8 8.6 9.7 10.0 9.9 45% 79% 74% 46% 71% 68% 87% 93% 92%
LN 2.7 7.8 10.8 10.4 7.9 10.7 10.1 11.4 12.2 12.1 28% 59% 53% 28% 58% 51% 66% 81% 79%
FILN 2.7 8.4 12.4 11.9 8.5 12.2 11.5 12.6 14.4 14.3 8% 30% 22% 8% 25% 21% 34% 53% 52%
FNLN 3.1 9.2 13.8 13.6 9.8 14.3 13.5 13.2 15.9 15.8 4% 20% 19% 6% 24% 19% 16% 38% 37%

Calibri, the default font in Microsoft Office since 2007, leaks
the most information because the font has a greater variety of
character widths than Times New Roman or Arial. Recall that the
empirical entropy of the surname dictionary is 13.1 bits (Table 3),
so a redacted surname set in 10-point Calibri using a Word 2007
shifting scheme leaks almost all the information available and can
be correctly deredacted in roughly 81% of cases.

In summary, short (1 to 2 word) excising redactions are NOT
secure. Note these synthetic attacks and the attacks in Sec. 6 are
performed in a vacuum, using a full dictionary of US names. In
practice, an attacker can use a smaller dictionary (e.g. company
employees).

6 REDACTION IN THEWILD
We next consider the question of whether these findings are applica-
ble to real documents. This is not immediately clear because glyph
shifts may be modified by a variety of software workflows.14 It is
also unclear whether there exist a significant number of vulnerable
redactions in real documents.

We consider both nonexcising and excising redactions in this
section. As mentioned in Section 1, nonexcising redactions retain
redacted text in the PDF and only visually obscure the text. Excising
redactions, on the other hand, remove the text from the PDF file.

14For example, by opening the PDF produced by word and then modifying it using
Adobe Acrobat. We perform an analysis of a few different workflows in Appendix E.

We chose to study redactions of names (e.g. first names, sur-
names, and country names) in this section because they are the
most common, discussed further below, and because their release
presents a privacy concern. We do not release any of these names
and have taken steps to notify affected parties in order to ensure
no individual will be adversely affected by the present analysis
(Section 7.3).

6.1 Experiment Setup
Corpora. We use the following document corpora:

(1) FOIA. Documents obtained via the US Freedom of Informa-
tion Act (FOIA) on governmentattic.org [12]. This corpus
provides us with independently selected documents with
some public interest.

(2) OIG. Office of the Inspector General (OIG) reports hosted by
oversight.gov [4]. The OIG is a US Government oversight
branch tasked with preventing unlawful operation of other
government branches. This corpus allowed us to measure
the impact deredaction may have on documents from a high-
profile and large organization.

(3) DNSA. Digital National Security Archive (DNSA) documents
produced after 2010 [7]. The DNSA is a set of historical
US government documents curated by scholars. That is, we
found redaction information leaks affect significant historical
documents.

50

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

(4) RECAP. CourtListener’s RECAP court document archive. RE-
CAP mirrors PACER, the US Federal Courts’ docketing sys-
tem [11], and contains over 10 million documents. We use
RECAP to measure the impact of nonexcising redactions
(discussed below).

(5) rRECAP the subset of RECAP documents returned for the
search string “redacted”. We chose to include rRECAP be-
cause running the excising redaction location algorithmmen-
tioned in Section 4 on the entire RECAP corpus would be
both computationally and financially prohibitive.

Only the RECAP corpus contained nonexcising redactions and
our results for this corpus are reported with respect to nonexcis-
ing redactions. Our results for all other corpora are reported with
respect to excising redactions.

These corpora provide a sample of vulnerable documents and are
not intended to be comprehensive analyses of any single affected
party, e.g. government agency.

Dictionaries. We chose to restrict our evaluation to first name
and last name redactions. In a sample of 100 redactions from our
corpora, 52 were personal names (determined manually based on
the surrounding text), 26 were multi-word phrases too long to
attack, 17 were numbers (not vulnerable to attack), 3 were pronouns
(trivial to attack), and 2 did not have identifiable semantics. We
composed a dictionary by taking the union of the first name and
last name sets introduced in Section 5.

We also include titles, (Mr., Mrs., Ms., and Dr.), initials, such as
“J.” and “S.”, and possessive forms, such as “’s”, in our dictionary.
However, our results for matches remove these modifications, so
“Ms. Doe”, “J. Doe”, and “Doe” count as a single match.

Our final dictionary contained 7,066,800 entries. We do not in-
clude FN×LN as testing this dictionary takes 6 hours on an Intel
Xeon Silver 4208, 2.10 GHz, 32-core server and the result sets are
typically large.

We exclude the DNSA from this dictionary restriction. The
redactions matching the Microsoft Word dependent glyph shifting
scheme in the DNSA were of an acronym, demonyms, and coun-
tries. We used these dictionaries when performing deredaction on
the DNSA (see Appdx. B).

Workflow. In this section we evaluate a redaction if either:
(1) The redacted text is present in the PDF (vulnerable to copy-

paste attack); or
(2) The redacted text is not present, but the document retains

glyph shifting scheme information where:
• The schemematches aWord “Save as PDF” shifting scheme,
• The redaction appears to be a name, e.g. “Jane”, and
• The redaction is the first from left to right on the line of
text.

These criteria provide a uniform and accurate proof-of-concept
evaluation of the impact of the discovered redaction vulnerabilities.

Limitations. We chose to restrict our attacks to the Microsoft
Word schemes because these leak the most information, and are
thus of the greatest concern. Other shifting schemes exist and
evaluating these schemes’ security will require further reverse
engineering. Cases matching the Microsoft Word “Save as PDF”
workflow represented 8.8% of redaction instances across all four
corpora.

Section 2 noted Microsoft Word’s glyph shifting scheme leaks
redacted information from left to right. We therefore considered
only the first redaction on a line to remove any dependence on prior
correct guesses, which would be necessary to attack the second
redaction on a line.

From the analysis of Section 5, we note all redactions of 1 or 2
words in the Redactions row of Table 5 should be considered vulner-
able. However, deredaction requires modeling the glyph positioning
scheme of the PDF document and identifying a dictionary of possi-
ble redacted texts. At the time of writing this is a manual process.
Therefore, we report the conservative Evaluated row, which are
redactions for which we were able to perform an automated attack
given our modeled Microsoft Word positioning scheme.

6.2 Experiment Procedure
We take three steps to ensure the results of our experiments are
accurate:

(1) We require all potential deredactions to exactly match all
present PDF glyph positioning information.

(2) For excising redactions, it is necessary to identify the shift-
ing scheme used by the PDF document. This process avoids
incorrect matching and filters out regions of documents with
idiosyncratic formatting. For example, Microsoft Word doc-
uments may have alternative layouts for text, e.g. text boxes,
tables, and line numbers.
In the present analysis, we consider a PDF page to match
a scheme if we identify greater than 100 glyphs with shift
values matching the scheme on the page. We only count
entire lines: all of a line’s glyph positioning information
must match the scheme exactly to count toward the 100
glyph threshold.

(3) We manually classified each excising redaction as being a
redacted name based upon the content of the surrounding
text. We were conservative with our classification and only
attack redactions we are certain are of names.

(4) Where possible, we validated our findings using public in-
formation.

We also identified redactions in documents using unadjusted
and Adobe OCR glyph shifting schemes, though did not attempt to
deredact these cases. In Section 5, we found these schemes leak 2–3
bits less information than documents produced by Microsoft Word.

To make sure we were not missing any PDF documents originat-
ing from Microsoft Word, we also counted redactions within a 10
text space unit 𝐿1 distance from our Microsoft Word model. These
PDFs were the result of a non-standard workflow, e.g. creation us-
ing Word 365, the web interface for Microsoft Word. In our results,
we label these redactions as Near Word.

6.3 Results
The evaluation was able to find redacted information of significant
public and historical relevance (not included).

Nonexcising Redactions. We begin by briefly discussing the non-
excising redactions we located. We ran Edact-Ray’s location algo-
rithm for nonexcising redactions on all of RECAP (≈ 107 documents)
and found 6,541 nonexcised redacted names in 710 US court docu-
ments. The number of total nonexcised redacted words was larger

51

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

Table 5: Potentially vulnerable redactions and glyph shifting
schemes identified in redacted corpora pages. The “Evaluated” row
is filtered for the length of the redaction (approx. 1 to 2 words), se-
mantic context (being a name), and scheme (Word).

Metric FOIA OIG DNSA rRECAP

Documents 3,145 1.9×104 678 2.5×104
Pages 4.9×105 5.2×105 1.2×104 3.4×105
Redacted PDFs 236 1255 7 67
Redactions 4.5×104 1.3×104 235 1,221
Unadjusted 2,844 314 7 7
Adobe OCR 3,406 1,814 0 224
Near Word 175 114 3 33
Unrec. 1.3×104 1×104 214 838
Exact Word 4,694 455 14 119
Evaluated 711 58 9 0

(≈1.4×105). Of the redacted names, 327 had a independent glyph
positioning scheme, 445 used Adobe OCR, 20 were close to Word in
𝐿1 distance, 5,691 were not positioned using a scheme we modeled,
and 58 exactly matched the Word positioning scheme.

Due to the computational cost of locating excising redactions in
the whole of recap, we did not attempt to evaluate excising redac-
tions for all US Court documents, though we confirmed some his-
torically important court documents are affected. We also found no
nonexcising redactions in our other corpora (expected, as we were
informed they have significantly more robust redaction workflows).

Excising Redactions. Table 5 reports our findings on the security
of excising redactions. The Evaluated row reports the result of our
redaction classificationmethodology.We identified 711 immediately
vulnerable excising redactions in the FOIA corpus, 58 in the OIG
corpus, 9 in the DNSA corpus, and none in rRECAP (mentioned
above).

We deredacted the FOIA and OIG cases using the full cross prod-
uct dictionary FN×LN, 1.5×1010 entries. For FOIA, we had three
cases of a single, unique name being returned as the redacted text,
2,435 possibilities returned on average (a 3,000-fold reduction), and
494 on the median. For OIG, we had no cases of a single, unique
name being returned as the redacted text, but 4,260 possibilities
returned on average, and 1,081 on the median. After, we also vali-
dated many of these cases by looking up document details using
google, and found an empirical distribution of name probabilities
returned the correct deredacted name in several cases. The DNSA
redactions were all of demonyms, and used the 509 entry dictionary.
This resulted in 5 cases of a single, unique name being returned as
the redacted text, with 393 possibilities returned on average, and 1
match on the median.

We find unmatched cases are common (382 cases in FOIA, 39
in OIG, and 1 in the DNSA). Manual analysis of nonexcising RE-
CAP redactions found 28.2% of names were of a form occurring
in our dictionaries, leaving 71.7% in other forms (e.g. first name,
last name).15 Our own unmatched case rate (54.7%) was lower than
expected, and indicating matches were reported but the name was
not in the dictionary in approximately 17% of cases.
15We chose to evaluate the simplest formatting ruleset possible for simplicity.

6.4 Validation
Given the danger of false positives, deredaction should be under-
stood as ruling out possible candidate texts rather than determin-
ing the content of a redaction. We manually validated our results
for excising redactions (where possible on 8 PDF documents) by
performing web searches for further information on the redacted
document. For example, in the case of an OIG investigation, we
would perform a search related to the offense committed and orga-
nizations affiliated. In this process, we found several cases where
Edact-Ray’s returned matching name set included the ground-truth
name. We did not find any cases where a matching set was reported
and Edact-Ray did not return the correct name as one of the results,
though these cases likely exist.

Nonexcising redactions provide ground truth, and we also used
these redactions to validate our techniques. For every nonexcised
redacted name in RECAP present in our dictionary, we excised the
name, i.e. we removed the redacted text but preserved non-redacted
glyph shift information. In all cases, as the set of candidate texts
returned by Edact-Ray included the ground truth redacted word.

Two of these nonexcising redactions were of a name only (no
other words on the line were redacted). We report results for these
redactions as Edact-Ray’s penultimate evaluation:

Mr. Hamilton. The first redacted name had the formMr. Hamilton
(actual name different). The result set contained 24 names. Mr.
Hamilton’s was not the empirically most common. No matched
name had the title Ms..

Ms. Schuyler.The second redacted name had the formMs. Schuyler
(actual name different). The result set contained 210 names and
Ms. Schuyler’s was not the empirically most common. No matched
name had the title Mr..

7 DISCUSSION
In the prior sections, we demonstrated sub-pixel-sized glyph posi-
tion shifts, imperceptible to the human eye, can break text redac-
tions. We found no non-rasterizing redaction tools address these
leaks and two of the tools, PDFescape Online and PDFzorro, do not
even excise redacted glyphs. There are at least 778 vulnerable ex-
cising redactions in FOIA, OIG, and DNSA PDF corpora and more
than 700 publicly accessible court documents with nonexcising
redactions.

We have provided a list of the nonexcising redactions and asso-
ciated case numbers to RECAP and the US Court system. We also
notified other affected parties of the leaks and provided them with
the tools to fix them. In particular, our results show redacting a
name from a PDF is not secure and new redaction practices should
be adopted (Sec. 7.2).

7.1 Defenses
Excising redactionsmay be safeguarded. The official NSA guidelines
for redaction of Microsoft Word generated PDFs are to change
the content of the original Word document so that information
regarding the sensitive name is destroyed (i.e. by changing the
name to the letter “x”) [2]. This is likely the only perfectly secure
manner by which to protect a redaction from information leaks.

52

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

Below, we describe five alternative defenses against excising
redaction vulnerabilities. However, each of these (excluding adver-
sarial redactions) may only delay the issue of solving redaction
vulnerabilities. In each case, toolkits could be developed to try and
circumvent the defenses, but each defense does make an attack
more difficult.

Glyph Shift Discretization. Shifting scheme noise may be added
to a line without affecting visual fidelity.16 Alternatively, each shift
could be rounded to a discrete interval, e.g. 0.1 mm. If this noise is
indistinguishable from legitimate glyph shift information, account-
ing for it would require an adversary to increase the set of accepted
redacted text guesses. Removing shifting scheme information alto-
gether can also lower information leaks, though this is less visually
appealing.

Document Layout and Redaction Obfuscation. Modifying the PDF
commands used to render the box of the redaction complicates the
process of automated redaction location. For example, our excising
redaction location algorithm relies on identifying a black box be-
tween two US English words in order to avoid large numbers of
false positives.

Increasing Redaction Width. Redacting additional adjacent words
can make deredaction more difficult, although this practice may
not always compatible with legal mandates. This defense increases
the number of words the attacker must guess. If the adjacent words
are easy to infer, e.g., by a machine learning model, this is not a
sufficient defense.

Adversarial Redactions. One defense against deredaction is to
change the document’s text before it is redacted, for example, by
replacing a sensitive name with the letter “X”. It is also possible to
lie to deredaction by changing the redacted content to something
seemingly valid, potentially misinforming an adversary.

Rasterization. Rasterization appears to be an effective defense
against deredaction. In many cases this defense is infeasible be-
cause it removes searchable text data from the document, however,
performing OCR on the document post-redaction can act as a stop-
gap for this issue. Rasterization algorithms may also modify or
ignore certain glyph shifts,17 requiring the analyst to perform more
reverse engineering to identify the specific rasterization tool used.

We performed an experiment to estimate the effects of rasteriza-
tion on redaction security. We chose ten name occurrences from
court documents using the Word shifting scheme in 12 point Times
New Roman. For each selected text line, we substituted the name
with each entry in our 235,560 name dictionary from Section 6,
redacted the entry, and calculated the redaction’s width. This re-
sulted in 2,017 unique redaction widths, ≈11 bits of information
leaked, on average. Quantization to 300 DPI (20 text space units)
resulted in 252 widths on average (≈8 bits) and quantization to 600
DPI performed slightly worse with a result of 377 widths (≈8.6 bits).

Unfortunately, this estimation is a lower bound. In general, when
a character is rasterized, the vector representation is converted to a
“mosaic” of pixel values. Whether a given pixel value is black, white,
or in the case of anti-aliasing [34], some shade of gray, is dependent
16Recall each text space unit is 1/6,000 in (0.0042 mm) (Sec. 2).
17We analyzed several rasterization tools, finding several had imperfect precision.

on how the graphical rendering specification is converted to a
matrix of pixel values. We leave an analysis of this precision loss
due to particular rendering algorithms to future work.

We are releasing parts of the Edact-Ray tool suite that can be used
to identify non-excising redactions, and tools to repair such redac-
tions by discretizing glyph shifts and converting fonts tomonospace.
This code includes bulk identification scripts valuable for flagging
vulnerable redactions in large PDF databases.

7.2 Recommended Practices
Redaction practices must account for concerns about document
integrity. All the above measures modify the redacted document
beyond simply removing text. In some contexts, particularly due to
legal or regulatory reasons, this may not be acceptable. One of the
main reasons for releasing redacted documents is to demonstrate
transparency while still protecting sensitive information. Altering
parts of the document outside the redaction alters this promise of
authenticity.

It is technically possible to fix a non-excising redaction by re-
moving the redacted text. The effect would be the same as if the
document were redacted by an excising redaction tool. However,
this also raises the issue of authenticity if done by a third-party
(e.g. document repository operator), because this necessarily means
modifying the original document without the author’s involvement.

In cases where integrity requirements may be relaxed, the NSA-
recommended practice of altering the original document to replace
the redacted text with meaningless text, e.g. REDACTED, provides
the highest level of security.

In cases where the underlying text may not be changed, note
that redacting a name or one to two words from a PDF is not
secure. If a name occurs on a line of text, the entire line should be
redacted, if possible, or care should be taken to ensure that enough
of the surrounding words are redacted to make deredaction unlikely
even in the presence of machine learning based text prediction.

7.3 Ethics
We carefully considered the balance between the benefits of public
awareness and potential risks of misuse present in this research. To
the best of our abilities we are attempting to maximize the benefits
to society and minimize the harm to individuals in the publication
of this work. In this spirit we have released open-source toolkits
for protecting vulnerable redactions (Sec. 4).

All the documents studied are in the public domain. So long as
copies of these PDFs exist, they pose a risk to individuals’ privacy.
During our evaluation, we ensured all deredaction was performed
on an isolated and hardened server and that no identifying informa-
tion exited this server. We deleted the documents from our server
and associated data after evaluation and notifying affected parties.

We have notified Microsoft and Adobe of our discoveries: they
have acknowledged the attacks are possible, but to our knowledge
have not yet made changes to their tools that could significantly
help protect future PDF redactions. Our discussions with govern-
ment officials indicate remediations will require both redaction
process and software changes. We have also reached out to the
PDF Association regarding the provision of guidance for redaction
application implementers.

53

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

We reached out to the two redaction toolkits with full text redac-
tion leaks and have been assigned CVE-2022-30350 and CVE-2022-
30351. Both toolkits have now fixed the broken functionality. We
have also performed an extensive notification of the US Courts, the
Free Law Project, the US Department of Justice, and 22 agencies
affected by our study of documents from the Office of Inspector
General. The US Courts, US Census, and CIGIE have been active in
both understanding and remediating the problem. Notification has
been given to sub-courts affected by nonexcising redaction vulnera-
bilities. Our discussions with these groups are ongoing and include
technical support, code, and free consulting regarding remedation
and prevention efforts.

Careful deliberation has led us to determine that the present
publication will motivate further remediation efforts rather than
encourage attacks on redacted documents.

International Effects. The discovered redaction vulnerabilities
are not limited to US documents and affect any PDF document
positioned using non-uniform fontmetrics (whether these areWord-
internal metrics, TTF metrics, or otherwise). Due to the limitations
on the author’s knowledge of different languages, we were not able
to effectively evaluate the security of documents internationally.
We have indicated to US government officials that notification of
the international community is advisable.

8 RELATEDWORK
Our work is the first to consider the role the PDF glyph positioning
information plays in redaction security. We are also the first to
present an algorithmic attack on redactions where the underlying
text is removed and replaced with a black box.

Digital Redaction. However, we are not the first work to dis-
cuss digital redaction. Forrester and Irwin [23] discuss nonexcising
redactions and unscrubbed metadata such as the Producer field
of PDF documents but do not mention glyph positioning based
deredaction. Hill et al., used hidden Markov models to recover
text obscured either by mosaic pixelization or a related tactic, e.g.
Gaussian Blur [25]. While Müller et al. [30] do not explicitly tackle
redaction, they discuss hidden information present in PDF docu-
ments, specifically PDF document revision information and author
name metadata. Beyond PDF document redaction, other file formats
may also be deredacted: Murdoch and Dornseif [31] discuss how
cropped JPEGs can preserve uncropped image information.

Text Redaction Attacks. The primary predecessor to our work
is Lopresti and Spitz [28], which presents a manual technique for
matching glyphs to a redaction’s width in a raster image of text.
This attack is prone to human error, especially in light of the fact
some glyph shifts are sub-pixel sized. The authors attempted to use
natural language processing to predict redacted words, something
our work found imprecise given current models. The Lopresti and
Spitz work also conflates document glyph position specifications
with TTF glyph widths and assumes both are equivalent to a raster
document’s character widths. This presents two problems:

First, a rasterization workflow may change a document’s glyph
positioning and physical printing may not be a pixel-perfect repro-
duction of the digital document. While the accurate representation
of documents is the whole point of PDF, a few of our tests found

glyph positioning operations were not always honored. Behavior
and information from any singular tool may or may or may not
comply with the PDF standard, either because of software bugs or
due to a lack of support for a specific glyph positioning operation.

Second, TTF glyph widths do not necessarily equate with PDF
document or raster glyph widths. TTF is only one of five types of
fonts supported by PDF. The Lopresti and Spitz techniques also
rely on (potentially inaccurate) human determination of glyph po-
sitions. Recall the present work provides a fully automatic deredac-
tion method, a precise analysis of leaked information, and a clear
measurement of this problem’s prevalence in real documents.

Whelan and Naccache [36] also performed the first case study
of width-based techniques for deredacting documents. They placed
images of unredacted glyphs from a printed document into the
space of a redacted country name in an Iraq War memo. While of
historical importance, Whelan and Naccache’s technique is manual
and error-prone for large dictionaries. As shown by Table 5, the
width of a glyph is most often not independent of its location on
the page.

Gusain and Leith [?] performed a preliminary analysis of ma-
chine learning attacks on redactions with some positive results,
particularly for non-identifying words, e.g. articles like “the”. Large
language models like GPT-4 [33] may significantly increase the
efficacy of deredaction attacks, particularly in the case of wider
redacted text sections composed of multiple words.

Government Efforts. Some government agencies have publicly
studied redaction vulnerabilities. The Australian Cyber Security
Center [3] analyzed Adobe Acrobat 2017’s redaction security and
considered several features including encryption, CMap leaks, redac-
tions of text metadata, images, revision metadata, and form meta-
data. However, this work does not address glyph positioning infor-
mation leaks and incorrectly determines that Adobe Acrobat leaks
no redacted information. The National Security Agency’s redaction
guide [2] does not mention glyph positioning information but notes
any underlying redacted text should be removed from the docu-
ment before producing a PDF. Changing the underlying text before
redaction is a great defense against deredaction attacks, however,
we found redactors do not always follow this advisory.

High Profile Broken Redactions. There have been many other
cases of poorly redacted, high-profile documents. Trivial redac-
tions have been found in classified US Military documents [37],
Manafort case documents [20], and documents relating to Larry
Page’s house [29]. The AstraZeneca Contract with the EU disclosed
funding information in the PDF’s bookmarks [32]. One Ghislaine
Maxwell interview leaked redacted information on President Clin-
ton in the document’s index [27].

9 CONCLUSION
In the course of this work, we developed Edact-Ray, a tool capable
of locating and breaking redactions in thousands of PDF docu-
ments. We found, for example, that redacting a surname from a
PDF generated by Microsoft Word set using 10-point Calibri leaves
enough residual information to correctly identify the name in 14%
of all cases. We surveyed the behavior of 11 different PDF redaction
software tool-kits and found the majority do not defend against
our attacks. We discovered over 6,000 nonexcising redactions in

54

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

US court documents and performed deredaction on 348 excising
redactions in Office of Inspector General reports and Freedom of
Information Act requests. This paper’s findings are a lower bound
on the extent of vulnerable redactions.

ACKNOWLEDGMENTS
Thank you to the numerous individuals from US Government agen-
cies, including the US Courts, OIG divisions, and beyond, for your
dedication and willingness to not only work with us to understand
the problems raised but also to make significant steps towards fix-
ing them. Thank you to the PETS reviewers for their precise and
deep reading of the paper and choosing to make this paper avail-
able to a larger audience—a choice which even before publication
has contributed significantly to the defense against and awareness
of the presented redaction vulnerabilities. Thank you to the Free
Law Project, particularly Mike Lissner, for insights into redaction
location, providing access to RECAP, and continued dedication to
providing open access to the court system. Thank you as well to
everyone else who played a role in bringing this paper to fruition
over the past four years.

This research received no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors.

REFERENCES
[1] 2000. Surnames Occuring 100 or More Times. https://www.census.gov/topics/

population/genealogy/data/2000_surnames.html.
[2] 2005. Redacting with Confidence: How to Safely Publish Sanitized Reports

Converted From Word to PDF. (2005).
[3] 2017. An Examination of the Redaction Functionality of Adobe Acrobat

Pro DC 2017. https://www.cyber.gov.au/acsc/view-all-content/publications/
examination-redaction-functionality-adobe-acrobat-pro-dc-2017.

[4] 2021. All Inspector General Reports in one Place.
[5] 2021. Beyond the Top 1,000 Names. https://www.ssa.gov/oact/babynames/

limits.html.
[6] 2021. Demonym. https://en.wikipedia.org/wiki/Demonym.
[7] 2021. Digital National Security Archive. https://nsarchive.gwu.edu/digital-

national-security-archive.
[8] 2021. List of Adjectival and Demonymic Forms for Countries and Na-

tions. https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_
for_countries_and_nations.

[9] 2021. List of Alternative Country Names. https://en.wikipedia.org/wiki/List_of_
alternative_country_names.

[10] 2021. NGA GEOnet Names Server (GNS). https://geonames.nga.mil/gns/html/.
[11] 2021. Public Access to Court Electronic Records. https://pacer.uscourts.gov/.
[12] 2021. The Government Attic.
[13] 2021. X-Ray Bad Redaction Detector. https://free.law/projects/x-ray.
[14] 2022. LibreOffice Github. https://github.com/LibreOffice.
[15] 2022. North Carolina Voter Data. https://www.ncsbe.gov/results-data/voter-

registration-data.
[16] 2022. Ohio Voter Data Download. https://www6.ohiosos.gov/ords/f?p=

VOTERFTP:STWD:::#stwdVtrFiles.
[17] 2022. The TeX Live SVN. =https://www.tug.org/texlive/svn/.
[18] 2022. Washington Voter Registration Database Extract. https://www.sos.wa.gov/

elections/vrdb/extract-requests.aspx.
[19] PDF Association. 2017. ISO 32000-2.
[20] Natasha Bertrand. 2019. Manafort’s Own Lawyers May Have Hastened His

Downfall. https://www.theatlantic.com/politics/archive/2019/01/paul-manafort-
lawyers-failed-to-redact-documents/579910/.

[21] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (2
ed.).

[22] Herbert Dixon. May 2019. Embarrassing Redaction Failures. https:
//www.americanbar.org/groups/judicial/publications/judges_journal/2019/
spring/embarrassing-redaction-failures/.

[23] Jock Forrester and Barry Irwin. 2005. An Investigation into Unintentional In-
formation Leakage through Electronic Publication. Information Security South
Africa (2005).

[24]]gusaintowards Vaibhav Gusain and Douglas Leith. [n. d.]. Towards Quantifying
The Privacy Of Redacted Text. ([n. d.]).

[25] Steven Hill, Zhimin Zhou, Lawrence Saul, and Hovav Shacham. 2016. On the
(In) Effectiveness of Mosaicing and Blurring as Tools for Document Redaction.
Proceedings on Privacy Enhancing Technologies 2016, 4 (2016), 403–417.

[26] Timothy Lee. 2011. What Gets Redacted in Pacer? https://freedom-to-tinker.com/
2011/06/16/what-gets-redacted-pacer/.

[27] Josh Levin, Aaron Mak, and Jonathan Fischer. 2020. We Cracked the Redactions
in the Ghislaine Maxwell Deposition. https://slate.com/news-and-politics/2020/
10/ghislaine-maxwell-deposition-redactions-epstein-how-to-crack.html.

[28] Daniel Lopresti and A Lawrence Spitz. 2004. Quantifying Information Leakage
in Document Redaction. In Proceedings of the 1st ACM workshop on Hardcopy
document processing. 63–69.

[29] Cade Metz. 2008. Privacy Watchdog Hoists Google by Its Own Petard. https:
//www.theregister.com/2008/08/01/nlpc_outs_larry_page/.

[30] Jens Müller, Dominik Noss, Christian Mainka, Vladislav Mladenov, and Jörg
Schwenk. 2021. Processing Dangerous Paths. NDSS.

[31] Steven Murdoch and Maximillian Dornseif. 2004. Far More Than You
Ever Wanted To Tell: Hidden Data in Internet Published Documents.
http://irc.smurfnet.ch/events/CCC/congress/21c3/papers/271%20Hidden%
20Data%20in%20Internet%20Published%20Documents.pdf.

[32] Nikolaj Nielsen. 2021. EU Admits Redaction Error in AstraZeneca Contract.
https://euobserver.com/coronavirus/150799.

[33] OpenAI. 2023. GPT-4: Technical Report. (2023).
[34] Olexander N Romanyuk, Sergii V Pavlov, Olexander V Melnyk, Sergii O Ro-

manyuk, Andrzej Smolarz, and Madina Bazarova. 2015. Method of Anti-Aliasing
with the Use of the New Pixel Model. In Optical Fibers and Their Applications
2015, Vol. 9816. SPIE, 274–278.

[35] Evan Sandhaus. 2008. The New York Times Annotated Corpus. https://
catalog.ldc.upenn.edu/LDC2008T19.

[36] Claire Whelan and David Naccache. 2004. US Intelligence Exposed as Student
Decodes Iraq Memo. Nature 429, 6988 (2004), 116–116.

[37] David Willey. 2005. Italy Media Reveals Iraq Details. http://news.bbc.co.uk/1/hi/
world/europe/4504589.stm.

A MUTUAL INFORMATION CALCULATION.
The amount of information leaked by the redacted document 𝑌
about the redacted word 𝑋 is given by the mutual information
𝐼 (𝑋,𝑌). Let 𝐿 be a random variable representing the location of the
occurrence of the dictionary word chosen in our first evaluation
step, and 𝐻 denote entropy. Note that 𝐻 (𝑌 |𝐿,𝑋) = 0 (there is no
uncertainty about 𝑌 given 𝐿 and𝑋), since the formatting and redac-
tion in steps 3 and 4 are deterministic, and𝐻 (𝐿 |𝑋,𝑌) = 𝐻 (𝐿 |𝑌) = 0
(there is no uncertainty about the location of the redaction given
the document after redaction). Using these two facts,

𝐼 (𝑋 ;𝑌) =
= 𝐻 (𝑋) −𝐻 (𝑋 |𝑌)
= 𝐻 (𝑋) −𝐻 (𝑋,𝑌) +𝐻 (𝑌)
= 𝐻 (𝑋) −𝐻 (𝐿,𝑋,𝑌) +𝐻 (𝐿 |𝑋,𝑌) +𝐻 (𝐿,𝑌) −𝐻 (𝐿 |𝑌)
= 𝐻 (𝑋) −𝐻 (𝑌 |𝐿,𝑋) −𝐻 (𝐿,𝑋) + 0 +𝐻 (𝐿,𝑌) − 0
= 𝐻 (𝑋) − 0 −𝐻 (𝐿) −𝐻 (𝑋) +𝐻 (𝑌 |𝐿) +𝐻 (𝐿)
= 𝐻 (𝑌 |𝐿)

=
∑︁
ℓ

𝑃𝑟 [𝐿 = ℓ] ·𝐻 (𝑌 |𝐿 = ℓ) .

Thus, 𝐼 (𝑋 ;𝑌) is the average, taken over redaction locations, of
the entropy of 𝑌 , that is, the entropy of the distribution of possible
documents after redaction. For a large corpus and large dictionaries,
calculating this quantity exactly is expensive. Instead of calculating
the exact value, we sample 𝐻 (𝑌 |𝐿 = ℓ) for several initial word
choices.

B DICTIONARY CONSTRUCTION
This paper used several dictionaries. In order to ensure the quality
of the guessed text, we manually sourced and refined the following:

55

https://www.census.gov/topics/population/genealogy/data/2000_surnames.html
https://www.census.gov/topics/population/genealogy/data/2000_surnames.html
https://www.cyber.gov.au/acsc/view-all-content/publications/examination-redaction-functionality-adobe-acrobat-pro-dc-2017
https://www.cyber.gov.au/acsc/view-all-content/publications/examination-redaction-functionality-adobe-acrobat-pro-dc-2017
https://www.ssa.gov/oact/babynames/limits.html
https://www.ssa.gov/oact/babynames/limits.html
https://en.wikipedia.org/wiki/Demonym
https://nsarchive.gwu.edu/digital-national-security-archive
https://nsarchive.gwu.edu/digital-national-security-archive
https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
https://en.wikipedia.org/wiki/List_of_adjectival_and_demonymic_forms_for_countries_and_nations
https://en.wikipedia.org/wiki/List_of_alternative_country_names
https://en.wikipedia.org/wiki/List_of_alternative_country_names
https://geonames.nga.mil/gns/html/
https://pacer.uscourts.gov/
https://free.law/projects/x-ray
https://github.com/LibreOffice
https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
https://www6.ohiosos.gov/ords/f?p=VOTERFTP:STWD:::#stwdVtrFiles
https://www6.ohiosos.gov/ords/f?p=VOTERFTP:STWD:::#stwdVtrFiles
=
https://www.sos.wa.gov/elections/vrdb/extract-requests.aspx
https://www.sos.wa.gov/elections/vrdb/extract-requests.aspx
https://www.theatlantic.com/politics/archive/2019/01/paul-manafort-lawyers-failed-to-redact-documents/579910/
https://www.theatlantic.com/politics/archive/2019/01/paul-manafort-lawyers-failed-to-redact-documents/579910/
https://www.americanbar.org/groups/judicial/publications/judges_journal/2019/spring/embarrassing-redaction-failures/
https://www.americanbar.org/groups/judicial/publications/judges_journal/2019/spring/embarrassing-redaction-failures/
https://www.americanbar.org/groups/judicial/publications/judges_journal/2019/spring/embarrassing-redaction-failures/
https://freedom-to-tinker.com/2011/06/16/what-gets-redacted-pacer/
https://freedom-to-tinker.com/2011/06/16/what-gets-redacted-pacer/
https://slate.com/news-and-politics/2020/10/ghislaine-maxwell-deposition-redactions-epstein-how-to-crack.html
https://slate.com/news-and-politics/2020/10/ghislaine-maxwell-deposition-redactions-epstein-how-to-crack.html
https://www.theregister.com/2008/08/01/nlpc_outs_larry_page/
https://www.theregister.com/2008/08/01/nlpc_outs_larry_page/
http://irc.smurfnet.ch/events/CCC/congress/21c3/papers/271%20Hidden%20Data%20in%20Internet%20Published%20Documents.pdf
http://irc.smurfnet.ch/events/CCC/congress/21c3/papers/271%20Hidden%20Data%20in%20Internet%20Published%20Documents.pdf
https://euobserver.com/coronavirus/150799
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2008T19
http://news.bbc.co.uk/1/hi/world/europe/4504589.stm
http://news.bbc.co.uk/1/hi/world/europe/4504589.stm

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

(1) Word was sourced from the linux spellchecker: /usr/share/
dict/american-english filtered for pronouns (first letter up-
per case), stop words sans pronouns, and words containing
punctuation and digits. Single quotes were made to be curly
possessive and straight to match the document under study.

(2) FN were sourced from from the US social security agency [5]
starting from 1880. For both this and the last name dictionary
names like “McCarthy” were made to be correctly capitalized.

(3) LN were sourced from the year 2000 US Census [1].
(4) Ctry was sourced from wikipedia lists of countries and alter-

native country names [8, 9], then refined by hand to ensure
completeness with repect to potential forms, e.g. United
States vs. The United States. For fun we added intialisms.

(5) Rgn is from the NGA GEOnet Names Server (GNS) [10]. We
filter for full name and BGN-approved local official name.
We restrict our results to A, P,and L feature categories.

(6) Natl is sourced from wikipedia lists of demonyms [6, 8].

C LEAKED INFORMATION FOR 12 POINT
FONTS

Overall, we found 12 point font sizes leak only slightly less infor-
mation in dependent schemes than 10 point font sizes. However,
the difference is not significant: we report our results in Table 6.
For Calibri, the larger font size leaked more information, because
the larger font size emphasizes the small errors accounted for by
Word’s glyph shifting scheme.

Note that we do not reproduce the independent scheme results
for this table since they are identical to Table 4.

D REDACTION LOCATION
In Table 7 we report the comparison between our algorithm for
locating excising redactions and the one provided by Timothy B.
Lee [26]. We give an outline of this algorithm in Figure 3. This
algorithm, we note, is optimized to find boxes with respect to other
non-redacted words on the page, whereas Lee’s method looks for
rectangle draw commands. Lee’s method is therefore better at de-
tecting redactions with no surrounding text, but these redactions
are less useful for the deredaction attacks on excising redactions
presented in this paper. We also added a second step to the X-ray
algorithm [13] for locating nonexcising redactions which removed
a large number of false positives from the results (algorithm in
Figure 4).

These bash scripts call into C, python, and ruby for various
subroutines. We do not use open source tools other than Poppler for
this work, because in general we found most tools were inaccurate.
We performed extensive validation (mentioned throughout this
paper) to ensure our recovery of PDF glyph positioning information
was precise and correct.

The “pts” command is our own, and handles lifting a PDF spec-
ification into an intermediate representation consisting of glyph
coordinates at the scale of text space units, mentioned briefly in
Section 2. find_redaction_box.py and trivial_redaction_loc.py work
as described earlier in this paper. The former checks every suffi-
ciently large space between two words for a redaction rectangle
and the latter compares the pixels of the two rasterized images at
glyph coordinates piped in by get_word_coords.rb.

tf=$(mktemp -u)
Removes images from PDF
cpdf -draft "$1" -o "$tf".pdf -0
$SRC/painting/remove -tjs.sh "$tf".pdf -0 "$tf".pdf
convert -background 'rgb (255 ,255 ,255)' \

-colorspace gray -normalize \
-density 300 -quality 100 -depth 8 \
"$tf".pdf "$tf".ppm 2>/dev/null

parses out all the PDF text state and
walks redaction boxes
$SRC/c-src/pts "$1" 1 |

$SRC/location/find_redaction_box.py "$tf".ppm

Figure 3: Nontrivial redaction location algorithm

convert all text to black
"$DIR"/lib/camlpdf -blacktext "$1" -o "$1"-a
remove all text from one pdf
gs -q -o "$1"-b \

-sDEVICE=pdfwrite -dFILTERTEXT "$1"-a
create two ppms
pdftoppm -singlefile -r 300 "$1"-a "$1"-a
pdftoppm -singlefile -r 300 "$1"-b "$1"-b
get coordinates of each word and compare pixels for

differences
"$DIR"/get_word_coords.rb "$1"-a |

"$DIR"/trivial_redaction_loc.py \
"$1"-a.ppm "$1"-b.ppm

Figure 4: Two-pass algorithm for locating trivial redactions

E PDF WORKFLOWS
We performed an analysis of several PDF document production
workflows across a variety of operating systems and software. Our
results are reported in Table 8. This table demonstrates the wide
variety of glyph shifting schemes in different software sets. Each
row grouping represents a different general environment and soft-
ware creator for the production of the PDF document, and each row
represents a specific workflow—mostly which buttons are pressed
during the PDF’s creation.

F THE ACROBAT PRO GLYPH SHIFTING
SCHEME

We can divide the effects of Acrobat Pro on PDF glyph shifts along
into two functionalities: document editing and document OCR.
Clicking on the text of an existing PDF in Acrobat does not change
any positioning information. However, when a user edits a text
object (typically one line of text) Acrobat sets all the object’s glyph
shifts to 0, making the scheme unadjusted. During OCR, Acrobat (1)
creates text objects and (2) adds glyph shifts to otherwise unadjusted
text. Acrobat’s OCR algorithm creates glyph shift values by adding
character and word spacing operators to each word, starting at
the first letter of each word. The former, Tc, adds a small shift to
each character in the word. The latter, Td, adjusts the word’s x,y
coordinates relative to the end of the prior word.

Redaction tools may remove these text positioning operators,
making it impossible to infer the precise width of the redacted word.
This is because the redacted text’s width (as given by unredacted
glyphs) may not necessarily be equivalent to the total glyph shift

56

/usr/share/dict/american-english
/usr/share/dict/american-english
find_redaction_box.py
trivial_redaction_loc.py
get_word_coords.rb

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

Table 6: Leaked 12 point font information. 12 point font results for unadjusted and monospaced schemes are the same as Table 4.

Leaked information (bits) Probability correct match

Distr Times Arial Calibri Times Arial Calibri
Dict W07 W19 W07 W19 W07 W19 W07 W19 W07 W19 W07 W19

Uniformly distributed
Acrn 10.5 9.4 10.5 9.5 14.2 14.1 <1% <1% <1% <1% <1% <1%
Word 11.9 11.1 12.2 11.3 14.7 14.6 6% 3% 9% 5% 38% 37%
Ctry 9.0 9.0 8.9 8.9 9.1 9.1 88% 84% 83% 79% 95% 95%
Rgn 14.4 13.6 14.1 13.3 17.1 17.0 5% 3% 4% 3% 10% 9%
Natl 8.5 8.4 8.5 8.4 8.7 8.7 79% 74% 78% 72% 96% 96%
FN 11.0 10.1 10.9 10.2 14.2 14.2 3% 1% 3% 2% 18% 17%
LN 11.6 10.8 11.9 11.1 15.0 14.9 2% 1% 3% 2% 19% 18%

FILN 12.5 11.6 12.7 11.9 16.1 16.0 2% 1% 3% 2% 15% 14%
FI×LN 12.6 11.7 12.9 12.1 16.3 16.2 <1% <1% <1% <1% 4% 3%
FNLN 14.1 13.1 14.4 13.6 17.1 17.1 3% 2% 3% 2% 10% 10%

FN×LN 12.7 11.8 12.8 12.1 16.9 16.9 <1% <1% <1% <1% <1% <1%
Text frequency distr.

Acrn 8.2 7.8 8.1 7.7 9.6 9.6 3% 3% 3% 2% 9% 9%
Word 10.3 9.8 10.5 9.8 11.9 11.9 4% 1% 5% 2% 38% 36%
Ctry 5.8 5.7 5.8 5.7 5.8 5.8 83% 79% 82% 73% 91% 92%
Rgn 9.3 9.0 9.1 8.9 10.0 9.9 1% <1% 1% <1% 5% 5%
Natl 5.3 5.3 5.3 5.3 5.4 5.4 78% 75% 78% 71% 97% 98%
FN 9.0 8.6 8.8 8.5 10.0 10.0 74% 67% 71% 66% 93% 93%
LN 10.4 9.8 10.5 9.9 12.3 12.3 54% 47% 55% 48% 83% 83%

FILN 11.9 11.1 11.9 11.2 14.7 14.7 25% 18% 23% 19% 58% 57%
FNLN 13.6 12.7 13.8 13.1 16.2 16.2 20% 15% 20% 17% 41% 41%

Table 7: Accuracy of locating excising redactions using a box-walk
routine vs. Timothy B. Lee’s method, which records graphics state
draw commands and looks for rectangles. Here we seperate redac-
tions into “easy” and “hard” categories, where “hard” redactions are,
for example, boxes drawn in the document with no surrounding
text, or redactions that extend across and entire line and thus are
too long to attack.

DNSA FOIA Govt. rRECAP

Box
Easy Identified 9 84 61 0
False Negative Easy 0 3 0 0
Hard Identified 9 34 71 1
False Positives 0 0 0 0

Lee
Easy Identified 1 2 25 0
False Negative Easy 0 0 0 0
Hard Identified 10 53 33 1
False Positives 0 6 26 57

used to represent the redaction. However, we found these operators’
parameters can be inferred via two sidechannels:

(1) Tc: This operator also applies to the successor space char-
acter of the word. Since this space is rarely redacted, the
applied Tc command remains in the PDF after redaction.

This allows us to infer the precise spacing applied to the
redacted text’s characters, and therefore precisely infer the
width of redacted text when used in combination with the
Td operator sidechannel (discussed next). We validated this
for all redaction tools in Section 3.

(2) Td: All of Section 3’s redaction tools draw a box after remov-
ing the glyphs for the redacted text. This black or white box’s
coordinates match those of the first glyph in the redacted
word after the Td adjustment, revealing the redaction’s exact
width. If redaction removes the word’s predecessor space
character, this sidechannel is removed. There may not exist
a space character before the redacted information, however,
in this case other information such as the left justification
margin may be inferred from other text on the page and used
instead.

As a result, if a document is run through Acrobat’s OCR before
redaction and these sidechannels are not removed. Redactions of
documents produced by Acrobat’s OCR are therefore not much
more secure than PDFs with an unadjusted shifting scheme.

G MICROSOFT WORD SHIFTING SCHEME
While other shifting schemes leak proportional width informa-
tion, any accumulation of information conditioned on redacted
glyphs potentially leaks information. Additional redacted infor-
mation leaks occur because Microsoft Word’s Save As PDF tool
converts between two glyph coordinate representations. When

57

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

Table 8: Several possible PDF workflows. Each entry in the column on the left should be read from left to right, indicating the stages used to
produce the document. For example, “Edge/Firefox, Print/PDFViewer, Save” can be interpreted as “using the edge or firefox browsers’ PDF
viewer or print dialog, hit save” and results in the right column’s displacements.

Software Stack, Workflow Description of Positioning Scheme

Word 365, Windows 10
Edge/Firefox, Save [(E)7(xhi)7(bi)7(t)7(A)-6(.)]
Edge/Firefox, Edited, Save [(E)7(xhi)7(bi)7(t)7()-1.75(A.)]
Edge/Firefox, Print/PDFViewer, Save [(E)-13(xhi)28(bi)28(t)-34(A)-27(.)]
Edge/Firefox, Edited, Print/PDFViewer, Save [(E)-13(xhi)28(bi)28(t)-34()-3.17(A.)]
Edge, Edited, Print/PDFViewer, Print Stream of Vector Graphics Commands
Firefox, Print, Save Stream of Vector Graphics Commands
Firefox, Print, Print [(Exhi)7(bi)7(t)7(A)-8(.)-20()]
Chrome Subset of Edge Outputs
Desktop, Save (all flows, including loaded again in Adobe) [(Exhibi)-2(t A.)]
Desktop, Edited Save (all flows) [(Exhibi)-2(t)-2.67(A.)-2()]
Desktop, Edited/Unedited Print [(E)-0.8398(xhi)-0.8320(bi)-0.8320(t)-0.8320()-10(A)-0.1680(.)10()]

Word 365, Mac OS
Safari, Chrome, Firefox, Edge Subset of Windows 10, Edge
Desktop, Save (all flows) [(E)0.2(xhi)0.2(bi)0.2(t)0.2(A)-0.2(.)-0.104()]
Desktop, Edited Save (all flows) [(E)0.2(xhi)0.2(bi)0.2(t)0.2()-0.136(A.)0.232()]

Word 2016, Windows 10
Save [(Ex)-8(hibi)6(t A.)]
Save, Edited [(Ex)-8(hibi)6(t)-2.67(A.)-2()]
Print [(E)-0.8398(x)-10(hi)-0.8320(bi)7(t)-0.8320()-10(A)-0.1680(.)10()]

Google Docs, Windows 10
Save (All flows) [(Exhibit A.)]
Save, Adobe, Save [(Exhibit)55.838(A.)], [(AAA)128.417(VVV)]
Chrome/Edge, Print, Adobe PDF Save [(0123435ÿÿÿ78ÿÿÿ)] (Actual embedded text is clobbered.)
Edge, Print, Print Stream of Vector Graphics Commands
Firefox, Download/Print, Firefox Viewer, Print, Save File rasterized
Firefox, Download/Print, Firefox Viewer, Print, Print Stream of Vector Graphics Commands
Firefox, Download/Print, Firefox Viewer, Print, AdobeStream of Vector Graphics Commands (Adobe specific)

Google Docs, Ubuntu 21.04
Firefox/Chrome, Save (all flows) [(Exhibit A.)]
Firefox, Download, Firefox Viewer, Print File rasterized
Chrome, Print/System Print [(Exhibit A.)] (Spaces tripled)

Google Docs, Mac OS
Chrome/Firefox/Safari, Download/Print, Save [(Exhibit A.)]
Chrome, Print, Save as Adobe PDF Same as Ubuntu, Chrome, System Print
Chrome, Print, Preview/Sysdiag Print, Export [(E)0.2(hi)0.2(bi)0.2(A.)], (Spaces Tripled)
Firefox, Print, Preview, Export [(E)0.2(hi)0.2(bi)0.2(A.)]
Firefox, Download, Firefox Viewer, Print File rasterized

Quartz PDFContext (Apple Pages), Mac OS
Export/Print/Preview, Save [(E)0.2(xhi)0.2(bi)0.2(t)0.2()55.2(A)-0.2(.)], [(AAA)129.0(VVV)]
Print, Save-as-Adobe-PDF [(Exhibit A.)], [(AAA)128.8(VVV)]

Word 2012, Windows 10 Same as Word 2016, Windows 10

All Word Versions, Windows 8.1 and Older Subset of Windows 10

No Disp. 600 DPI, Adobe OCR
OCR Only, Save [(E)-2.3(x)-2.3(h)-2.3(i)-2.3(b)-2.3(i)-2.3(t)-2.3()[79.75 Td - 2.3 Tc](A)3.3(.)3.3()3.3()]
Edit or OCR then Edit, Save [(E)-0.12(x)-0.12(h)-0.12(i)-0.12(b)-0.12(i)-0.12(t)-0.12()[71.6 Td - 0.12 Tc](A.)]

58

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

int i = 0;
int trackingAdj = 0;
do {

int accumulatedDiff = 0;
int lastNewAdj = 0;
int totalWidth = 0;
int amountAdjustedSoFar = 0;
totalWidth += fontScaledWidths[i];
int newAdjustment = PIXEL_W(totalWidth);
accumulatedDiff = pixelWidths[i] - newAdjustment;
pixelWidths[i] = amountAdjustedSoFar = lastNewAdj =

newAdjustment;
uncorrectedPixelWidths[i] = newAdjustment;
i++;
if (i == numChars)

break;
do {

totalWidth += fontScaledWidths[i];
if (totalWidth > WIDTH_BRKPOINT)

break;
int origAdjustment = pixelWidths[i];
int newAdj = PIXEL_W(totalWidth);
newAdj -= amountAdjustedSoFar;
int adjustmentDifference = origAdjustment - newAdj;
trackingAdj = adjustmentDifference - accumulatedDiff;
if (adjustmentDifference != accumulatedDiff) {

int v28 = trackingAdj & 1;
int v50 = trackingAdj & 1;
if (trackingAdj <= 0) {

trackingAdj >>= 1;
if (adjustmentDifference < -accumulatedDiff)

trackingAdj += v50;
if (-newAdj >= trackingAdj)

trackingAdj = -newAdj;
} else {

trackingAdj >>= 1;
if (accumulatedDiff < -adjustmentDifference)

trackingAdj += v28;
if (lastNewAdj < trackingAdj)

trackingAdj = lastNewAdj;
}

}
pixelWidths[i - 1] -= trackingAdj;
int newTrackAdj = newAdj + trackingAdj;
amountAdjustedSoFar = amountAdjustedSoFar + newAdj;
accumulatedDiff = origAdjustment - (newTrackAdj);
pixelWidths[i] = newTrackAdj;
uncorrectedPixelWidths[i] = newTrackAdj;
lastNewAdj = newAdj;
i++;

} while (i < numChars);
} while (i < numChars);

Figure 5: Word WYSIWYG width adjustment method.

users edit or create a Word document, they operate on a virtual
document representation, internal to Word. This representation
determines how Word displays the document in the graphical user
interface (GUI). Note, however, we found the resolution of the user’s
screen and other environmental factors do not affect this virtual
representation insofar as the virtual representation is used for PDF
generation. Included in the virtual document’s representation are a
set of internal widths used to represent glyphs’ sizes.

When Word writes a PDF file, it translates the coordinates for
glyphs in this virtual representation into their respective coor-
dinates in the resultant PDF document. The PDF file contains a
separate glyph width mapping, typically matching the embedded
TrueType font file. A small amount of error exists between the two
representations’ rendering width specifications for glyphs.

if (msword_year <= 2016) {
int leadingSpace = 1;
float dev = 0;
float ttf = 0;
for (int j = i + 1; j < vs->size(); j++) {

if (vs->getChar(j) == ' ' && leadingSpace) {
continue;

} else if (leadingSpace) {
leadingSpace = 0;

}

float t = textSpaceWidths2007[j] / 1000;
double d = deviceWidths[j] / msFSize2007;

ttf += t;
dev += d;
double disp = ttf - dev;
if ((disp > 0.003 || disp < -0.003) && i != vs->size

() - 1) {
int adj = disp * 1000 + 0.5;
vs->setShift(j, adj);
ttf = dev = 0;

} else {
vs->setShift(j, 0);

}
}

} else {
int leadingSpace = 1;
float dev = 0;
float ttf = 0;
float t = 0;
float d = 0;
double disp = 0;
for (int j = i + 1; j < vs->size(); j++) {

if (vs->getChar(j) == ' ' && leadingSpace) {
continue;

} else if (leadingSpace) {
leadingSpace = 0;

}

t = textSpaceWidths2019[j] / 1000;
d = deviceWidths[j] / msFSize2019;

ttf += t;
dev += d;
disp = ttf - dev;

if (((disp > 0.003) || (disp < -0.003)) && i != vs->
size() - 1) {

int adj = disp * 1000 + 0.5;
vs->setShift(j, adj);
ttf = dev = 0;

} else {
vs->setShift(j, 0);

}
}

}

Figure 6: Adjustment routine for Word’s displacment scheme

A glyph’s virtual width representation can be smaller or larger
than that same glyph’s PDF width specification. To account for
this error, Word’s PDF document writer accumulates each glyph’s
width error from left to right across each line of text twice. The
first pass modifies the internal representation of each character’s
width according to the difference between the current internal
width and the TTF width18 of the line’s prefix up to the current

18This choice of TTF is Microsoft’s choice. It here refers to the TTF file embedded in
the PDF after the “Save As PDF” command.

59

Proceedings on Privacy Enhancing Technologies 2023(3) Bland et al.

std::vector <double > Office :: computeEditAdjustments(
VectorString *vs) {
std::vector <double > editAdjustments;
int totalDots = 0;
double totalDevWidth = 0;
for (int i = 0; i < numChars; i++) {

totalDots += (i == numChars - 1) ?
uncorrectedPixelWidths[i] : pixelWidths[i
];

totalDevWidth += (textSpaceWidths2019[i] - vs
->getShift(i)) * (msFSize2019 / 1000);

double realWidth , editedWidth , adj;
realWidth = totalDevWidth + dotsToPdfUnits2019

(600);
editedWidth = roundToDigits(dotsToPdfUnits2019

(totalDots + 600), 5);
adj = (realWidth - editedWidth) / (msFSize2019

/ 1000);
editAdjustments.push_back(adj);

}
return editAdjustments;

}
std::vector <double > Office ::edit(VectorString *vs, std

::vector <double > eAdjs , int i) {
double disp;
disp = roundf(eAdjs[i] * (msFSize2019 / 1000) *

1000) / 1000 / (msFSize2019 / 1000);
vs ->addShift(i, disp);
adjust(vs, i);
return computeEditAdjustments(vs);

}
void Office :: editSuffix(std::vector <double > savedEAdjs

, VectorString savedVs , VectorString *suf) {
double guessShift;
double checkShift;
double adjShift;
bool matches = true;
for (int i = 0;i < suf ->size() -1;i++){

int ind = savedVs.size() - suf ->size() + i;
guessShift = roundf (10 * savedVs.getShift(ind)

);
checkShift = roundf (10 * suf ->getShift(i));
if (ind == savedVs.size() - 1) {

savedVs.setShift(ind , suf ->getShift(i));
break;

}
adjShift = roundf (10* savedEAdjs[ind]);
if (guessShift + adjShift == checkShift) {

savedEAdjs = edit(&savedVs , savedEAdjs ,
ind);

} }
for (int i = 0;i < savedVs.size() -1;i++){

if (savedVs.getChar(i) == L'-') {
savedEAdjs = edit(&savedVs , savedEAdjs , i

- 1);
savedEAdjs = edit(&savedVs , savedEAdjs , i)

;
} } }

Figure 7: Microsoft Word edit history shifting scheme algorithm.

position, at around a 600 DPI resolution. Note this is not to Print
to PDF workflow, so no part of this operation is dependent on the
operating system’s printer driver.

In the second pass, a second left-to-right accumulation occurs,
accounting for error between the widths output by the first pass ad
the TTF line width, converted to text space units (typicaly 1/1000th
of the font size at 72 DPI). When the accumulated error hits a three
text space unit threshold, Word writes a shift to the PDF and resets
the accumulator. In summary, the font metrics of the line to the left
of any given threshold value effect the accumulated error, leaking

for (int i = 0; i < numChars; i++) {
fontScaledWidth = widths[i] * fontSize * 2;
fontScaledWidths.push_back(fontScaledWidth);
if (msword_year == 2007) {

float textSpaceW =
roundf(roundf (((float) widths[i]) /

UNIT_TEXT_SPACE_2007 * 10000) / 10);
textSpaceWidths2007.push_back(textSpaceW);

} else {
double textSpaceW = roundf (((double) widths[i]) /

UNIT_TEXT_SPACE_2019 * 1000.0);
textSpaceWidths2019.push_back(textSpaceW);

}
uncorrectedPixelWidths.push_back (0);

}
if (justif) {

justify ();
}
computeWYSIWYG ();

Figure 8: Word initialization of widths.

redacted information via the redaction’s width and non-redacted
glyph shifts.19 For example, a redacted glyph with a 10 text space
unit error will overflow the accumulator and the glyph’s effective
PDF width will be its original advance width plus a shift between 7
and 13 units depending on the accumulator’s state before overflow.

We note the line’s specific character ordering affects the accumu-
lator state as different orderings will lead to different accumulator
overflow positions. For example, the accumulated error could fluctu-
ate between postive and negative three text space units for several
characters and then overflow. Both the point of overflow and the
magnitude are conditioned on prior glyphs’ modification of the
accumulated error value. For example, in Times New Roman, the
digits 0 through 9 have no error and do not contribute to the accu-
mulator. However a lack of a shift value can also leak information
about the redacted content. Additionally, due in part to the algo-
rithm’s first pass, smaller fonts leak more information as they have
more characters per line and more threshold opportunities.

We validated Edact-Ray’s models for Word versions between
2007 and 2019 using several fonts on hundreds of lines of text
from Wikipedia, hundreds of manual tests, and thousands of real-
world cases in Section 6. Section 6 describes Edact-Ray’s process
for correctly identifying Word shifting schemes. We also note that
Microsoft Word’s shifting scheme metadata depends on the Word
document’s edit history. Appendix Figure 7 gives code for edit
history modeling.

G.0.1 Word Glyph Positioning Algorithms. The first routine (Fig-
ure 8) intializes a set of widths from two files, widths corresponds
to TTF widths, and pixelWs are Word’s internal widths for each
character. It then initializes the WYSIWYG sizes. The next rou-
tine (Figure 5) handles calculating the WYSIWYG widths for each
character by accumulating errors between the two width repre-
sentations, consisting of a tested loop that checks sets of runs of
characters: Then (Figure 6), once an actual line of text needs to
be adjusted, the deviceWidths initialized during the WYSIWYG
modification are checked for overflow. The types of floating point
variables, e.g. float vs. double, are precisely chosen and must be
identical to the original algorithm or the result will be incorrect.
19Monospace fonts do not contain conversion width errors.

60

Story Beyond the Eye: Glyph Positions Break PDF Text Redaction Proceedings on Privacy Enhancing Technologies 2023(3)

H LATEX, LIBREOFFICE, OTHER PDF
PRODUCERS

LibreOffice LibreOffice [14] includes a PDF writer as part of its
Visual Class Library (VCL), and, at the time of writing, embeds shifts
in the drawHorizontalGlyphs method of the PDFWriterImpl class.
This method appears to be similar to Microsoft Word in function:
shifts are applied whenever the native advance width of the PDF
glyph does not match the Pixel x,y coordinates that LibreOffice
uses internally, derived from the SalLayout (layout engine) class.
However, LibreOffice does not use a second width map for the
characters in a given font, and therefore likely leaks less redacted
information than Microsoft Office’s shifting scheme.

LATEX (TeX Live) The determination of shifts inside LATEX is
dependent upon the particular flow that is used [17]. For the pdf-
TeX flow, interglyph shifts are decided by the pdf_begin_string
procedure. The LATEX glyph placement algorithm is quite complex,
however, our analysis did find one section of the code for deter-
mining shifts appears to round the difference between the current
horizontal glyph render position and the start of the current text
object. Depending on the precision of the rounding, this could leak
additional information about the order of glyphs used. Other flows,
such as XeLaTeX, can optionally include more complex calculations
that determine how to shrink and expand glyphs to fit a certain
amount of space and may leak large amounts of redacted informa-
tion. However, LATEX redactions are uncommon.

Other Producers We found other producers, such as iText,
where the default is unadjusted text objects, are accounted for by
the schemes presented in the main body of this paper (Section 2).

H.1 Document Scanners
Many document scanners also come with OCR features. We exam-
ined the output of three different document scanners: a Canon MP
Navigator EX, Xerox AltaLink C8145, and HP MFP M227fdn. Of the
three, the Canon and Xerox machines provided built-in software for
document OCR. We examined the Canon’s glyph shifting scheme
first, and found redactions on PDFs produced by this workflow to
be equally as vulnerable to deredaction as unadjusted schemes. The
Xerox machine was not as simple: the Xerox machine’s OCR text
objects are positioned stochastically without space characters in
between them. After testing several redaction tools on the Xerox
document, we found it was as vulnerable as a document with an un-
adjusted scheme as long as redaction was performed by removing
glyphs rather than entire text objects.

H.2 Font Frequency
In Table 9 we report the frequency of the top 20 fonts across the
corpora we evaluated for excising redaction vulnerabilities in Sec. 6.
Calibri, Arial, and variations of Times New Roman are among the
most common families used.

Table 9: Number of occurences of font variations with respect to
cases of potentially vulnerable redactions in the FOIA, OIG, DNSA,
and rRECAP corpora.

Font Redaction Occurences

Calibri 8237
Cambria 2788
SymbolMT 1732
Arial 1626
TimesNewRomanPSMT 1308
Gotham 1235
ArialMT 1183
TimesNewRomanPS 894
BookmanOldStyle 853
TimesNewRoman 851
PalatinoLinotype 580
Verdana 279
Courier 221
Wingdings 218
Tahoma 191
SegoeUI 190
CourierNewPSMT 173
Tahoma,Bold 172
CenturySchoolbook 158
TimesNewRoman,Bold 157

61

	Abstract
	1 Introduction
	2 PDF Redaction Security
	2.1 Glyph Shifts

	3 Redaction Tools
	4 The Edact-Ray Tool Suite
	5 Measuring Leaked Information
	5.1 Experiment Setup
	5.2 Experiment Procedure
	5.3 Results

	6 Redaction in the Wild
	6.1 Experiment Setup
	6.2 Experiment Procedure
	6.3 Results
	6.4 Validation

	7 Discussion
	7.1 Defenses
	7.2 Recommended Practices
	7.3 Ethics

	8 Related Work
	9 Conclusion
	References
	A Mutual Information Calculation.
	B Dictionary Construction
	C Leaked Information for 12 Point Fonts
	D Redaction Location
	E PDF Workflows
	F The Acrobat Pro Glyph Shifting Scheme
	G Microsoft Word Shifting Scheme
	H Latex, LibreOffice, Other PDF Producers
	H.1 Document Scanners
	H.2 Font Frequency

