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ABSTRACT
In this work we propose time-deniable signatures (TDS), a new

primitive that facilitates deniable authentication in protocols such

as DKIM-signed email. As with traditional signatures, TDS pro-

vide strong authenticity for message content, at least for a sender-
chosen period of time. Once this time period has elapsed, however,

time-deniable signatures can be forged by any party who obtains

a signature. This forgery property ensures that signatures serve

a useful authentication purpose for a bounded time period, while

also allowing signers to plausibly disavow the creation of older

signed content. Most critically, and unlike many past proposals

for deniable authentication, TDS do not require interaction with

the receiver or the deployment of any persistent cryptographic

infrastructure or services beyond the signing process (e.g., APIs to
publish secrets or author timestamp certificates.)

We first investigate the security definitions for time-deniability,

demonstrating that past definition attempts are insufficient (and

indeed, allow for broken signature schemes.) We then propose an

efficient construction of TDS based on well-studied assumptions.
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1 INTRODUCTION
Many communication systems use cryptographic signatures to ver-

ify the authenticity of data sent from one party to another over

untrusted networks. While cryptographic authentication is stan-

dard in end-to-end encrypted messaging systems, it is also increas-

ingly being deployed within traditionally non-encrypted protocols

such as SMTP email. Specifically, in the email setting, protocols

such as DKIM, DMARC and ARC [12] are routinely used to add

non-repudiable digital signatures to email in transit between Mail

Transfer Agents (MTAs): these signatures allow recipient spam fil-

tering software to verify that it originates from the claimed sender.

While cryptographic authenticity is valuable for preventing

spam and spoofing of email traffic, DKIM signatures have been

re-purposed for goals that may not have been anticipated by the
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designers of these protocols.
1
For example, news organizations rou-

tinely verify the authenticity of leaked or stolen email collections

using DKIM signatures [31, 38, 41]: this is possible because DKIM

signing keys are long-lived, and the protocol’s non-repudiable sig-

natures can be verified long after an email has been received and

processed. Organizations such as the Associated Press and Wik-

ileaks even publish detailed instructions and tools for verifying the

authenticity of DKIM signatures in leaked and stolen email corpora

to facilitate such verification. Since email signing is implemented by

commercial mail providers rather than end-users, users of popular

services cannot opt-out. These developments have ignited a techni-

cal debate around the desirability of long-term non-repudiability

guarantees in widely-used protocols such as email [23], and raised

questions around the value of adding cryptographic deniability to

these systems.

The need for deniability. Cryptographic deniability is a property

that allows communication participants to disavow authorship of

messages, e.g., in the event that they have been leaked or stolen. This
feature has frequently been incorporated in interactive messaging

protocols [1, 8, 42], which historically realize deniability through

the use of interactive key exchange protocols and symmetric au-

thentication primitives such as MACs. Achieving deniable authen-

tication in email authentication protocols such as SMTP/DKIM is

more challenging since these protocols support non-interactive and

asynchronous delivery via multiple intermediate recipients. Thus

interactive protocols are ruled out, and even designated-verifier

solutions can be more challenging due to the presence of interme-

diaries.

Despite these challenges, the problem of incorporating denia-

bility for the email setting has recently received some attention.

For example, in Usenix Security 2021, Specter et al. proposed two

technical replacements for DKIM signing that are designed to facil-

itate deniability. Both protocols ensure that messages are digitally

signed to enable sender-authenticity verification but feature a pro-

cess wherein senders, recipients, and even third parties can create

deliberate forgeries after the necessary anti-spam and spoofing

checks have been completed. The two protocols employ different

techniques: the first relies on the sender to author forgeries on re-

quest and/or publish expired secret keys, while the second employs

a trusted time server that publishes cryptographic timestamp cer-

tificates that allow forgery of signatures after some period of time

1
Indeed, many early deployments of DKIM used weak signing keys, and some DKIM

standards authors proposed using e.g., 600-bit keys to balance the risks and benefits of

DKIM [12].
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has elapsed. Others have made even simpler proposals wherein

DKIM providers simply rotate and publish existing DKIM signing

keys on a periodic basis [11, 23]. Each proposal seeks to build signa-

tures that are unforgeable for a period of time necessary to support

short-term transport checks, but become forgeable after this period.

The major limitation of the proposals above is that forgery re-

quires the active cooperation of signers, or else depends on the

continuous operation of new trusted infrastructure such as “time

servers” that publish keys or timestamp certificates on a periodic

basis [40]. The challenge in email systems is that the end-users

affected by non-repudiable authentication (e.g., Gmail customers)

rely on third-party providers to deploy these infrastructure services

and make them available for the often-controversial purpose of

forging past email. If this infrastructure is not deployed, then even

the Internet-wide adoption of a deniable signature standard will

not provide deniability in practice. What is needed is a signature

scheme that can be used in place of a normal signature scheme

within protocols; provides strong authenticity for a period of time;

and then subsequently becomes plausibly forgeable by any party
who simply obtains such a signature, with only the requirement that

parties have an (approximately) shared view of time. We refer to

such signatures as time-deniable signatures.
Properties of time-deniable signatures. Time-deniable signa-

tures operate much like a normal signature scheme, but with some

important differences. Like standard digital signatures, time-deniable

signatures are designed to be secure and non-repudiable for at least

some time period following signing. The duration of this time pe-

riod is strictly limited, however: any party who obtains a signature

on some message𝑀 can use it as input to a new forging algorithm

called AltSign that, after enforcing some approximate time delay,

will output a forgery on a new chosen message𝑀 ′. A key require-

ment of these schemes is that neither signing nor forging should

require the cooperation of any other party or infrastructure. This

time delay is therefore enforced using a specific computational

assumption: the AltSign algorithm requires the forger to perform

a pre-specified number of sequential operations 𝛿 , where the min-

imum time required for this calculation is roughly as long as the

desired length of the unforgeable phase.

Of course, the ability to forge signatures has no bearing on de-

niability if the resulting forgeries are easily distinguishable from

authentic signatures. To achieve plausible deniability, we therefore

require that forgeries are indistinguishable from signatures pro-

duced using the ordinary signing algorithm, and in fact that even

linking forgeries to the specific signatures that were used to create

them should be challenging. This indistinguishability property is a

fundamentally novel property of this work, that is not present in

previous attempts to solve this problem [3, 24]. It also has impor-

tant follow-on implications: since forgeries are indistinguishable

from true signatures, this implies that any forgery must be useful

to create still further forgeries.

Finally, we wish time-deniable signatures to be useful in practice.

Given the description above, time-deniable signatures would be

of limited usefulness: the revelation of a single signature would

allow for an unlimited number of forgeries, rendering the signing

key useless for authenticating further messages. To remove this

limitation, we slightly relax our forgery and unlinkability require-

ments. Our constructions allow for renewability via an additional

timestamp 𝑡 field that is specified in the signing algorithm and car-

ried with the signature. Forgers can produce a new signature on a

message𝑀 ′ provided the new signature carries a timestamp 𝑡 ′ ≤ 𝑡 .
For example, in a practical deployment, the timestamp 𝑡 can be

set to correspond to some real-world time counter, and recipients

can choose to accept as authentic any signature with a timestamp

greater than 𝑡 − 𝑡𝛿 where 𝑡𝛿 is the minimal expected time needed

to compute a forgery.
2
This approach requires only that honest

senders and receivers possess loosely synchronized clocks.

Our contributions. In this work we investigate the problem of

building time-deniable signatures. We first develop formal defini-

tions for this new primitive, then present a construction based on

several efficient components. Finally, we implement our approach

and show that it is practical enough to deploy today. Concretely,

we provide the following contributions:

Defining time-deniable signatures (TDS). We propose new def-

initions for the concept of time-deniable signatures, and

propose strong security definitions for this new primitive.

Defining security for time-deniable signatures is surpris-

ingly difficult: while developing our definitions, we found

that previous efforts to formalize the security of deniable

authentication schemes fall short. For example, we show

that the security definitions for some related primitives [24]

contain subtle weaknesses that admit practically-insecure

constructions. To provide evidence for the robustness of our

definitions, we prove that our definitions are strictly stronger

than these earlier definitions.

Efficient constructions. To demonstrate that the TDS primitive

is practical, we propose an efficient construction of time-

deniable signatures based on well-studied cryptographic as-

sumptions. Our constructions improve on previouswork [24]

in that they do not require any a priori bound on the num-

ber of time epochs that the scheme can handle. We also

show that TDS can be realized using standard assumptions

in pairing-based cryptography and sequential puzzles based

on repeated-squaring assumption [36], without the need for

zkSNARKs or other heavy-weight constructions.

Implementation and performance experiments. To further motivate

the usefulness of TDS in systems applications, we implement

our TDS constructions and show that the scheme has practi-

cal runtime and bandwidth performance for the applications

we consider. In particular, we show that our scheme has a

fast key setup time, which is particularly important for a

scheme with an unbounded number of time epochs.

2 TECHNICAL OVERVIEW
We now give an overview of the main contributions in this work,

starting with formalizing the notion, before moving on to the con-

structions.

2
This naturally relaxes the unlinkability requirement: given a pair of signatures𝜎𝑡

1
, 𝜎𝑡

2

with timestamps 𝑡1 < 𝑡2 it cannot be the case that 𝜎𝑡
1
is the original signature and 𝜎𝑡

2

is the forgery. However, given a sufficiently large collection of signatures containing

forgeries and original signatures, this approach still provides a degree of uncertainty

for all but the most recent signature.
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2.1 Defining Time-Deniable Signatures
We study signature schemes where signatures remain valid for a

short period of time after creation. Specifically, we consider the

notion of an unforgeability period that starts when a signer gen-

erates a signature for a message using its signing key sk, and the

signing algorithm Sign. But once the unforgeability period elapses,

any participant in the system can compute a “fake signature” (aka

forgery). To allow computation of forgeries, we consider an alter-

nate signing algorithm AltSign, that does not require the signing
key sk to generate signatures. Intuitively, as long as the signatures

generated by Sign and AltSign appear indistinguishable, such a

notion provides deniability after the unforgeability period since

a signer can claim that a signature attributed to them could have

been generated by anyone.

Key Challenges in the Definition. There are several key con-

siderations for formalizing the above intuition and defining time-

deniable signatures.

Challenge I: Preventing pre-computation of forgeries. Recall that any
party can compute a forgery (via the algorithm AltSign) after the
unforgeability period expires. But how do we ensure that a party

cannot execute AltSign in advance, thereby having the ability to

sign any message within the unforgeability period?

One natural approach is to bind signatures to some unpredictable

cryptographic beacon, perhaps generated at regular intervals by a

centralized server or a blockchain [17, 34]. For example, when

signing a message𝑚 (via Sign or AltSign) one might actually sign

the pair (𝑚,𝑏) where 𝑏 is a beacon released at a time known by

the receiver. This value 𝑏 can then be used as the “seed” to allow

forgery using AltSign, and verifiers can use the known publication

time of 𝑏 to determine whether the signature is still within the

unforgeability period. Such models have been considered in prior

works, including the TimeForge scheme of Specter et al. [40] and a

recent proposal by Bonneau et al. [3].
In this work, we seek to avoid the use of unpredictable times-

tamps or centralized servers. In our notion, the Sign and AltSign
algorithms do indeed take as input a timestamp 𝑡 . Assuming that

receivers possess loosely synchronized clocks, these timestamps

can be used to verify that a received signature was authored within

the unforgeability period. However, crucially, these timestamps are

simply the output of a predictable clock operated by the signer,

which means that we do not require any security properties of this in-
put, nor do we require unpredictable beacons or new infrastructure

to produce them. To prevent pre-computation, we instead model

AltSign such that it requires a valid signature on some pair (𝑚, 𝑡) as
input. This ensures that forgers do not have the necessary input(s)

to pre-compute forgeries until they obtain a signature.
3

Challenge II: Selecting forged timestamps. In the proposal above,

AltSign requires a valid signature on some time 𝑡 (and any message)

in order to compute a forgery. Naturally, the resulting forgery will

also need to contain its own timestamp 𝑡 ′. The selection of 𝑡 ′ is
crucial, however: if this forged timestamp can be chosen arbitrarily

by the forger, then an attacker may be able to forge new signatures

that appear (to an honest receiver) to be within the unforgeability

3
Indeed, we show that the need for AltSign to use an existing signature (or portion

thereof) to produce a forgery is seemingly inherent if we do not want to use secure

infrastructure. We elaborate on this point in Appendix J.

window, even when the original signature was not. One obvious

solution to this problem is to restrict the forged timestamp to 𝑡 ′ = 𝑡 .
Unfortunately, this restriction weakens the deniability properties of

the signature scheme: a signer can deny having signed a particular

message at time 𝑡 , but it cannot deny having signed some message

at time 𝑡 . To achieve stronger deniability where a signer can also

deny having signed any message at time 𝑡 , we further strengthen

the AltSign algorithm. Namely, we require that on input a signature

on timestamp 𝑡 , AltSign can compute forgeries for any message𝑚

and any time stamp 𝑡 ′ ≤ 𝑡 .
Challenge III: Avoiding strong clock synchronization. The closely re-

lated prior work of epochal signatures by Hülsing and Weber [24]

considers a security notion that crucially relies on various partici-

pants having synchronized clocks. Roughly, in an epochal signature

scheme, (real) time is divided into discrete epochs where a new key

is generated at the start of every epoch. Signatures are associated

with the epoch they were generated in, where unforgeability re-

quirements state that no adversary can forge signatures for an

epoch during the epoch. As we show in §3, the security definitions

for epochal signatures are fragile: there exist epochal signature

schemes that are secure under the given definitions and yet be-

come completely insecure when clocks are even slightly out of sync.
This problem stems from the fact that the unforgeability notion

proposed for the primitive puts strict time limits on the adversary

while it queries a signing oracle. We show that if enforcement of

these query restrictions is violated (even slightly) by a real-world

signing oracle at epoch 𝑒 , an epochal signature scheme can become

catastrophically insecure for all future epochs.
Unfortunately, avoiding such outcomes is not easy, and in this

work, we seek to strengthen our security definitions to avoid such

issues. We do this in two ways: unlike [24], our definitions model

the unforgeability period computationally – through the widely-

adopted technique of bounding the number of sequential compu-

tation steps the adversary may compute [6, 16, 35, 36, 43]. While

this still requires conversion when used in the real world, it does

not embed the conversion into the security definition. Much more

importantly, our definition allows the adversary to participate in

a “pre-processing” phase to ensure the robustness of our notion in

scenarios where there may be clock synchronization issues. During

this phase, the adversary is given free rein (within only a polyno-

mial time-bound) to query the signing oracle and forge signatures.

This phase significantly loosens the restrictions on the adversary,

allowing them to query for signatures and run the AltSign algo-

rithm (or any other process) as many times as they wish. Once the

pre-processing phase is complete, the adversary then enters a sec-

ond forgery phase in which their runtime is more strictly bounded.

Our sole restriction is that the forgery produced in the second

phase must be computed on a timestamp 𝑡∗ that is greater than any

timestamp queried during the pre-processing phase.

Our Definition. We are now ready to provide an (informal) defini-

tion of time-deniable signatures. We refer the reader to the technical

sections for more details.

The protocol is parameterized by Δ, the duration of the un-
forgeability period, and described by the algorithms KeyGen, Sign,
AltSign and Verify. The KeyGen and Verify algorithms are the same
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as standard signature schemes while the Sign algorithm, also simi-

lar to the standard notion, takes in as input a message𝑚 and time

stamp 𝑡 to generate a signature on (𝑚, 𝑡). The main new component

is the algorithm AltSign which takes as input a message𝑚′, time

stamp 𝑡 ′, signature 𝜎 (𝑚,𝑡 ) such that 𝑡 ′ ≤ 𝑡 , and uses the verifica-

tion key to generate a signature 𝜎 (𝑚′,𝑡 ′) . For the correctness of the
scheme, we require that AltSign generates a verifying signature

as long as it’s given as input the output of the Sign algorithm, or

(repeated applications) of the AltSign algorithm. We now provide

an overview of the two key security properties required by our

notion.

Unforgeability. This property captures the notion that no adversary

capable of computing fewer than Δ sequential steps can generate

a forgery. Specifically, we allow an initial pre-processing stage for
the adversary where it is not bounded by the number of sequential

steps, gathering as much information as it can. At the end of this

stage, say at timestamp 𝑡∗, it passes along any information onto the

next stage where the adversary that runs in at most Δ sequential

steps needs to produce a signature for a message with a time stamp

> 𝑡∗.

Deniability. This property asks an adversary to distinguish between

a “fresh” signature generated using Sign, and a signature gener-

ated using AltSign. We formalize this by defining two experiments,

where the adversary is allowed to specify a tuple (𝑚1, 𝑡1, 𝜎1 =

Sign(𝑚1, 𝑡1),𝑚2, 𝑡2) with 𝑡2 ≤ 𝑡1. In the first world, the output is

simply the signature 𝜎2 = Sign(𝑚2, 𝑡2, sk), whereas in the second

world, the output is 𝜎2 = AltSign(𝑚2, 𝑡2, 𝜎1, vk). We say a TDS is

deniable if no computationally bounded adversary can distinguish

the two with a significant probability.

We refer to the above description of deniability to be “1-hop-

deniable”, i.e. a signature generated via Sign is indistinguishable

from one generated via AltSign. In the technical section, we extend

this notion to “𝑘-hop-deniability”, which intuitively corresponds

to the indistinguishability between a signature generated via Sign
and one generated via 𝑘 applications of AltSign.

2.2 Construction
Time-Deniable Signatures from Delegatable Functional Sig-
natures. Our construction centers around the following natural

idea: with each signature produced by the signer, we leak a re-
stricted signing oracle that can be used to forge later signatures. A

signing oracle, as the name suggests, allows a party with access to

the aforementioned oracle to sign any message of its choice. For

instance, the signing key can be viewed as an oracle since it allows

one to sign any message of their choice. A restricted signing oracle

limits the messages that can be signed. Thus, continuing with our

analogy of signing keys corresponding to an oracle, a restricted

signing oracle corresponds to a signing key that is restricted in a

fine-grained manner.

When the Sign algorithm generates a signature on message𝑚

and time stamp 𝑡 , it also reveals a restricted signing key sk𝑡 that
can be used to sign any message𝑚′ with time stamp 𝑡 ′ ≤ 𝑡 . Such a

key can then be used by the AltSign algorithm to create forgeries.

Revealing the restricted key with the signature, however, allows

anyone in possession of the signature to create forgeries during the

unforgeability period. To prevent this, we need to hide this restricted
signing key until after the unforgeability period, and we do so using

time-lock puzzles [36]. Intuitively, a time-lock puzzle allows one

to “lock” a secret 𝑠 for a predetermined amount of time (i.e., time

parameter). Thus, the output of the Sign algorithm will consist

of the signature 𝜎𝑚 | |𝑡 along with the time-lock puzzle containing

the secret sk𝑡 , computed with time parameter Δ. We note that a

similar approach has been considered in constructing notions such

as epochal signatures [24], and we refer the reader to Section 3 for

a more detailed comparison.

To implement restricted signing keys, we turn to the notion

of functional signatures (FS) [4, 5, 9]. Functional signatures are
equipped with functional keys sk𝑓 (instead of “regular” signing

keys) such that it allows one to sign 𝑓 (𝑚) for any message𝑚. We

consider the following specific function for our application:

𝑓𝑇 (𝑡,𝑚) =
{
𝑡 | |𝑚 𝑡 ≤ 𝑇
⊥ otherwise

}
(1)

We call such functions prefix functions (the function prepends the

time stamp to the message). It is evident from the above description

that with a functional key sk𝑓𝑇 one can generate a signature for

any message𝑚 and time stamp 𝑡 as long as 𝑡 ≤ 𝑇 .4
For our TDS construction, we leverage specific properties of

the functional signature scheme. We provide a more general (and

detailed) definition in the technical sections, but for the purposes

of the overview, we shall discuss the relevant properties of func-

tional signatures for the specific function 𝑓𝑇 described above: (i)

delegatability: given a key sk𝑓𝑇 for function 𝑓𝑇 , using only public

parameters, one can derive a key sk𝑓𝑇 ′ for a function 𝑓𝑇 ′ if 𝑇
′ ≤ 𝑇 ;

(ii) key indistinguishability: it should be computationally infeasible

to differentiate between a fresh key sk𝑓𝑇 and a key derived; and (iii)

unforgeability: it should be computationally infeasible to generate

signatures 𝜎𝑚 | |𝑡 unless one has a key sk𝑓𝑇 where 𝑇 ≥ 𝑡 . While

delegatability has previously been studied for functional signatures,

the notion of key indistinguishability is new to our work. The latter

is crucial to achieving deniability.

Putting things together, we have:

Sign On input message 𝑚 and time stamp 𝑡 , the Sign algorithm

generates the key sk𝑓𝑡 (using the master secret key, see tech-
nical section for details), and uses it to compute the signature

𝜎𝑡 | |𝑚 . It then encrypts the key sk𝑓𝑡 within a time-lock puzzle

with time parameter Δ.
AltSign On input message𝑚′, time stamp 𝑡 ′, and signature

𝜎𝑡 | |𝑚 | |TimeLock(sk𝑓𝑡 ), the AltSign algorithm first solves the

time-lock puzzle to obtain sk𝑓𝑡 . It next uses the delegation
functionality to derive a key sk𝑓𝑡′ from sk𝑓𝑡 and then follows

the description of the Sign algorithm.

A potentially useful property of the above approach is that the

sequential part of the computation performed by AltSign, namely,

solving the time-lock puzzle, can be reused for computing many
forgeries in parallel. This is because once the restricted signing key

is obtained – a one-time work, it can be used to compute signatures

in parallel.

4
Note that while we have thus far described signatures on messages of the form𝑚 | |𝑡 ,
the above description of 𝑓𝑇 flips it to be 𝑡 | |𝑚. Looking ahead, the change is due to our

construction of functional signatures.
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Intuitively, we prove unforgeability by leveraging the unforge-

ability of the functional signature scheme and the security of time-

lock puzzles, while deniability follows from the key indistinguisha-

bility property of the functional signature scheme.

Prefix Function FS from Hierarchical Identity Based Encryp-
tion. We construct functional signatures for prefix functions from

Hierarchical Identity Based Encryption (HIBE). At a high level,

HIBE is an encryption scheme that allows one to encrypt to iden-

tities, (treated as bit strings in this work) such that only someone

in possession of the secret key corresponding to the identity can

decrypt messages. The hierarchical nature of the scheme allows

for the delegation of keys, i.e. if one is in possession of a key for

an identity I which is a prefix of an identity I ′, one can derive

the key for I ′ from the key for I. The identities in our setting

will correspond to the nodes of a binary tree with nodes labeled by

binary strings corresponding to their path from the root (left is 0,

right is 1).

HIBE schemes can be used generically to construct a signature

scheme [7] - to sign a message𝑚, use theHIBE scheme to generate a

key for the “identity”𝑚 with the key corresponding to the signature.

The verification of the signature is performed by encrypting a

random message to the message (treated as the identity) and using

the signature as a key to check whether the decryption is correct.

In our setting, the identities will be the bit strings corresponding

to 𝑡 | |𝑚. Structuring as above has the following benefit - if one

were in possession of a HIBE key for a time stamp 𝑡 , then one

can derive keys for 𝑡 | |𝑚 for any message𝑚 since 𝑡 | |𝑚 is “lower”

in the hierarchy from 𝑡 . Therefore to sign a message 𝑚 at time

stamp exactly 𝑡 it suffices to possess the key for 𝑡 , which serves as

the signing key. But recall from the description of 𝑓𝑡 in the prior

section, the signing key corresponding to 𝑓𝑡 should allow one to

sign messages for any time stamp smaller than 𝑡 . A naive way

would be to generate the signing key for 𝑓𝑡 would be to concatenate

the HIBE keys for all 𝑡 ′ ≤ 𝑡 , but this is approach is clearly infeasible

since the signing key would grow linearly with the total number of

possible time stamps.

To overcome this efficiency barrier, we leverage the tree structure

of the HIBE scheme with the following insight - it suffices to have

a small number of keys as long as we are able to derive keys for

any 𝑡 ′ ≤ 𝑡 . At a high level, the signing key sk𝑓𝑡 will consist of keys
for all identities that are the left siblings of the nodes along the path
from 𝑡 + 1 to the root

5
, resulting in at most log(𝑡) many keys. A

detailed description is provided in the technical sections, but here

we provide an illustrative example.

In the HIBE identity tree of Figure 1, the key corresponding to

𝑓10 is both 𝑠𝑘0 and 𝑠𝑘10. To derive a key for 𝑓00, one executes the

HIBE’s delegate algorithm using 𝑠𝑘0 to create the key 𝑠𝑘00. In fact,

to derive a key for sk𝑓𝑡′ from sk𝑓𝑡 for any 𝑡
′ ≤ 𝑡 one can simply

use the HIBE delegation algorithm, i.e. there is no need to run the

key generation algorithm afresh.

Looking ahead, we want to allow the adversary to choose the

message it wants to compute a forgery on after it has seen other

signatures, we require the HIBE scheme to be adaptively secure (i.e.
the adversary can choose the identity of the HIBE scheme it wants

5
One can also view it as the nodes in the stack during the depth-first traversal of the

(identity) binary tree when node 𝑡 + 1 is visited.

sk∅

sk
0

sk
1

sk
00

sk
01

sk
10

sk
11

Figure 1: Each node in the tree represents a HIBE secret
key skid for the identity id. Trace(𝑟𝑜𝑜𝑡 = ∅, 10) constitutes
the nodes which represent the secret key for 𝑓10, i.e. sk𝑓10

=

(sk
0
, sk

10
). Using this set, all messages with prefixes in the

green nodes can be signed.

to break after seeing keys for other identities). HIBE schemes satis-

fying the necessary requirements can be instantiated e.g., assuming

the Decisional Linear (DLIN) assumption on Bilinear groups of

prime order [26].

3 RELATEDWORK

Concurrent work. A concurrent and independent work of Arun

et al. [3] also studies a notion similar to time-deniable signatures.

Similar to our work, they make use of sequentially-ordered compu-

tation as a means to enforce time delay during which signatures are

unforgeable, but become forgeable afterward. However, their work

considers a different model than ours. Specifically, their system

relies on the use of unpredictable beacons that are presumably re-

leased periodically by some trusted outside source. In contrast, we

do not do rely on any randomness beacons or time servers. Unlike

our work, they also explore time-based deniability in proof systems.

Our work also has many similarities to that of [40]. Particularly our

construction is similar to one of theirs in its usage of a HIBE for

creating signatures. However, their setting is more limited: they as-

sume that a central server provides key material for forgery so that

if the server is knocked offline, deniability does not necessarily hold.

For us, the ability to forge solely depends on seeing the signature

itself. This change in the model comes with new subtle challenges

in the indistinguishability of forgeries and signatures and in formu-

lating security definitions that account for an adversary who has

access to a polynomial time forgery algorithm.

Epochal Signatures. Our work is closely related to the prior work

on epochal signatures [24]. At a very high level, epochal signatures

aim to achieve deniability in a manner similar to ours - by leaking a

constrained key. In epochal signatures, (real) time is partitioned into

discrete epochs with a key update mechanism at the start of every

epoch. Any signature generated during epoch 𝑖 additionally include

the keys for prior epochs, allowing for forgery of signatures of any

epoch < 𝑖 (but not epoch 𝑖).6 The constructed epochal signature

in [24] leaks only a single key with the property that from a key

of epoch 𝑖 , 𝑘𝑖 , one can retrieve the key of epoch 𝑖 − 𝑗 , 𝑘𝑖−𝑗 with 𝑗

6
In their work, they consider an additional deniability parameter𝑉 such that signatures

for epoch 𝑖 include keys for epochs 𝑖 −𝑉 and earlier allowing for𝑉 epochs where the

signature is valid. But for the purposes of this discussion we describe it in the above

simplified manner.
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applications of a “key retrieval” function, but security requires that

it is impossible to retrieve keys for epochs > 𝑖 from 𝑘𝑖 .

In the following, we describe some key differences between the

two works.

Bounded vs Unbounded Use. Unlike ourwork, the system proposed

in [24] is limited to be bounded use. The term bounded here means

polynomially-bounded. To be specific, the number of epochs that

their system can support is bounded ahead of time by some polyno-

mial in the security parameter. This is an outcome of the run-time

of their system setup, which is linear in the number of epochs.

In practice, the granularity of each epoch and the number of

epochs must be fixed before the system is initialized, and once the

total number of epochs is surpassed, the entire system needs to be

reset from scratch. If a system must be reset too often, and resetting

is costly (i.e. involves running an expensive key generation algo-

rithm), it may limit the usability of the system. The broad question

of bounded vs unbounded use is not new and has been studied in

various contexts in cryptography such as bounded vs unbounded

query chosen-ciphertext secure encryption [14], depth-bounded vs

depth-unbounded hierarchical identity-based encryption [27] and

homomorphic encryption [19], bounded-collusion vs unbounded

collusion in functional encryption [22, 37], and more. In all of these

cases, there are significant challenges and overheads (in terms of

assumptions, efficiency, etc) in going from bounded system to an

unbounded one. As such, we view our construction to have a sig-

nificant asymptotic improvement over [24] that may translate to

concrete practical costs for some large parameter sets.

Need for Clock Synchronization. As discussed earlier, the unforge-

ability notion in [24] requires the participants to have perfectly

synchronized clocks. We now demonstrate that if such a require-

ment is not met, then the consequences can be catastrophic and

result in a compromise of security for all future epochs. Specifi-

cally, we construct a secure epochal signature scheme where the

unforgeability property can be broken when the clocks are slightly

out of sync. We also show that the same scheme – translated to

the setting of time-deniable signatures – is not secure as per our
definition, thus demonstrating that the latter is a strictly stronger

notion. In the following, we give an over-simplified presentation of

our counter-example to convey the general idea. The full counter-

example is more involved (due to technical reasons) and is presented

in Appendix K.1.

Intuitively, we exploit the restricted signing oracle in the un-

forgeability definition of epochal signatures which prevents an

adversary from receiving signatures in any epoch 𝑒 outside of a

fixed real time window of size Δ𝑡 . Our epochal signature scheme

makes use of a special trigger message𝑚∗𝑒 which differs per epoch.

If the adversary queries for a signature on message𝑚∗𝑒 in epoch

𝑒 , then they receive some “secret information” from the signing

oracle which can be used to recover the signing key. If the message

space is large enough and𝑚∗𝑒 is chosen uniformly at random, this

modification would not make our scheme insecure, as an adversary

would only have a negligible chance of guessing𝑚∗𝑒 . We therefore

modify the signing oracle so that, in addition to handing out sig-

natures on messages𝑚 for epoch 𝑒 , it time-lock puzzle encrypts

𝑚∗𝑒 with difficulty parameter Δ′𝑡 where Δ𝑡 < Δ𝑡 ′ < Δ𝑡 + 𝜀. The
difficulty parameter of the time-lock puzzle ensures that the puzzle

cannot be decrypted within the epoch that it is generated, but can

be decrypted just after the epoch concludes. Thus, if there is a clock

synchronization issue where the challenger’s (the entity generat-

ing the signatures) clock is slightly slower, then an adversary can

decrypt to obtain𝑚∗𝑒 and query the signing oracle on𝑚∗𝑒 to obtain

the “secret information”. In our actual counter-example, this secret

information cannot directly be equal to the secret key because the

ES scheme must be perfectly deniable even to someone that holds

the original signing key. To deal with this, we instead encrypt the

signing key with a one time pad that is 2 out of 2 additively secret

shared. Querying on different trigger messages reveals different

shares of the key. Further details can be found in Appendix K.1.

To argue that this scheme is a secure epochal signature scheme

when the clocks are synchronized, we note that in an epochal

signature scheme, at the start of an epoch 𝑒 + 1 two things happen:

(i) key evolution procedure is applied to the secret signing key

to generate the signing key for the next epoch; and (ii) public

information pinfo𝑒 is broadcast. Here, pinfo𝑒 allows anyone to

produce signatures for epochs ≤ 𝑒 without the signing key such

that they are indistinguishable from signatures produced by the

real signing key (akin to our definition of deniability). In the above

scheme, while secret key material is used to key the signing key,

this is not revealed as a part of pinfo𝑒 and does not need to be to

create indistinguishable signatures (every field of the signature will

be simulatable). Thus, simply having pinfo𝑒 will not allow recovery

of sk.
We now argue that the above scheme is not a secure time-

deniable scheme. Briefly, this is due to the pre-processing phase

we allow during the unforeability definition. In this phase, the

adversary can query the same time stamp multiple times (here

roughly the time-stamps correspond to an epoch), and therefore

can perform the attack described above by decrypting the time-lock

puzzles, making the relevant queries, and using the results to obtain

the signing key. The key is then passed on to the “online adversary”

who uses it to produce a forged signature. We remark that, again,

the above description is oversimplified and the full counter-example

is presented in K.1.

We briefly summarize some of the different properties of pro-

posed constructions for expiring signature schemes in Table 1.

4 PRELIMINARIES
We consider the depth depth(𝐶) of a circuit 𝐶 to be defined as the

longest path in the circuit from input wires to output wire. The size

of a circuit size(𝐶) corresponds to the number of gates.

Sequential time. In this work sequential time refers to the non-

parallelizable time it would take any circuit to compute a particular

function. A function 𝑓 has sequential time 𝑑 or takes 𝑑 sequen-

tial steps if for all circuits 𝐶 that correctly compute 𝑓 the smallest

circuits 𝐶 have depth(𝐶) = 𝑑 . This notion attempts to capture in-

herent limitations in computing a function that cannot be overcome

by access to more cores or processors.

Time-lock Puzzles. The concept of a time lock puzzle or time lock

encryption was first introduced by Rivest, Shamir, and Wagner [36].

We now briefly give a formal description of a time lock puzzle.

Definition 4.1. Apuzzle TimeLock is a tuple of algorithmsGen, Sol
where the signature of the algorithms is defined as below.
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ES [24] Short-Lived Sigs [3] KeyForge B [40] Us

Forging Assumptions None RB Publish Keys None

Max number epochs Bounded Unbounded Unbounded Unbounded

Forgers all derive same key Yes Yes Yes No

Building Blocks OWF + TLP tVDF + RB* BDH BDH + TLP

Table 1: Comparison of a subset of existing constructions that provide a notion of deniability for signatures. tVDF stands for a
trapdoor VDF, while RB is a randomness beacon.

Gen(1𝜆,Δ, 𝑠) → 𝑍 : On input a time/difficulty parameter Δ and a

solution 𝑠 ∈ {0, 1}𝜆 , output a puzzle 𝑍
Sol(Δ, 𝑍 ) → 𝑠 : This is a deterministic algorithm that when given a

puzzle 𝑍 and the difficulty parameter Δ produces a solution

𝑠 .

Correctness. Correctness requires that for all solutions 𝑠 ∈ {0, 1}𝜆
and difficulty parameters Δ the following holds:

Pr

[
𝑍 ← Gen(1𝜆,Δ, 𝑠) : 𝑠 ← Sol(Δ, 𝑍 )

]
= 1

Efficiency. ∃ a polynomial 𝑝 s.t. ∀Δ, 𝜆 ∈ N, Sol(Δ, ·) runs in time

Δ · 𝑝 (𝜆)

Security. We consider a time lock puzzle to be 𝛼-gap secure if ∀
functions 𝑇 (𝜆) ≥ 𝛼 (𝜆) and distinguishers A = {A𝜆}𝜆∈N of size

size(A𝜆) ∈ poly(𝜆) and depth depth(A𝜆) ≤
𝑇 (𝜆)
𝛼 (𝜆) , ∃ a negligible

function 𝜇 s.t.∀𝜆 ∈ N, ∀𝑠0, 𝑠1 ∈ {0, 1}𝜆 ,

| Pr

[
𝑍 ← Gen(1𝜆,𝑇 (𝜆), 𝑠0) : A𝜆 (𝑍 ) = 1

]
− Pr

[
𝑍 ← Gen(1𝜆,𝑇 (𝜆), 𝑠1) : A𝜆 (𝑍 ) = 1

]
| ≤ 𝜇 (𝜆)

This is a variation of the time lock puzzle definition of [15],

where we define security to hold for adversaries of polynomial size

instead of super polynomial.

4.1 Hierarchical Identity Based Encryption
We recall the notion of Hierarchical Identity Based Encryption

(HIBE). A HIBE scheme has the following five algorithms:

Setup(1𝜆) → (𝑚𝑠𝑘, 𝑝𝑘): The setup algorithm generates themaster

secret key and public parameters.

KeyGen(𝑚𝑠𝑘, 𝐼 ) → 𝑠𝑘𝐼 Generates a key for the identity 𝐼 using

the master secret key𝑚𝑠𝑘 .

Delegate(𝑝𝑘, 𝑠𝑘𝐼 , 𝐼 ′) → 𝑠𝑘𝐼 | |𝐼 ′ : Takes a secret key of some iden-

tity 𝐼 and generates a secret key for the identity 𝐼 | |𝐼 ′.
Encrypt(𝑝𝑘,𝑚, 𝐼 ) → 𝑐𝑡 The encryption algorithm takes the public

key, a message, and an identity 𝐼 and outputs the correspond-

ing ciphertext.

Decrypt(𝑠𝑘𝐼 ′, 𝑐𝑡) →𝑚/⊥: The decryption algorithm takes a secret

key and a message and outputs the message if the secret key

hierarchy level allows decryption of the ciphertext.

Remark.Throughout this paper, wewill make use ofHIBE schemes

where Delegate can take in a child identity 𝐼 ′ that is the empty

string. In such schemes, 𝑠𝑘 ′
𝐼
← Delegate(𝑝𝑘, 𝑠𝑘𝐼 , 𝑛𝑖𝑙) is a

re-randomization of the key 𝑠𝑘𝐼 for identity 𝐼 . We note that many

HIBE schemes can be modified to have this property [20, 26, 27].

4.1.1 Security. The notion of security we consider for HIBE is the

adaptive variant defined in works by Lewko and Waters [27, 29].

For a full description of the security game see Appendix A.

4.1.2 Key-indistinguishability. We additionally require that all

polynomial-time adversaries have at most a negligible advantage in

distinguishing between keys generated via the KeyGen algorithm

and keys generated via the Delegate algorithm even when given

access to the master secret key𝑚𝑠𝑘 . We define this property using

the following HIBE key-indistinguishability game ExpINDHIBE.

The Setup phase is similar to the HIBE security game, except the

adversary also gets the master secret key𝑚𝑠𝑘 . Similarly, the

set S of keys queried and the corresponding query identifier

is set to be empty. A bit 𝛽
$←− {0, 1} is sampled uniformly.

Query phase. In this phase the adversary is allowed to adaptively

query a key oracle QK(·) and a challenge oracle O
Ch
(·, ·, ·)

QK(·) takes as input an identity 𝐼 , computes

𝑠𝑘𝐼 ← KeyGen(𝑚𝑠𝑘, 𝐼 ), selects an identifier id and adds

(𝑖𝑑, 𝐼 , 𝑠𝑘𝐼 ) to the set S and responds with (id, 𝑠𝑘𝐼 ).
O
Ch
(·, ·, ·) takes as input a challenge identifier id, and a

pair of identities (𝐼0, 𝐼1) such that 𝐼0 is a parent identity of

𝐼1. Where parent identity implies that on the hierarchical

identity tree (Figure 1) where the root is 𝑚𝑠𝑘 , 𝐼0 is an

intermediate node on the shortest path from 𝐼1 to the root.

It checks for id in set S and checks that id corresponds

to a key query on 𝐼0. If no such id is found, the output is

⊥. Otherwise, compute 𝑠𝑘0 ← KeyGen(𝑚𝑠𝑘, 𝐼1), 𝑠𝑘1 ←
Delegate(𝑝𝑘, 𝑠𝑘𝐼0 , 𝐼1) and respond with 𝑠𝑘𝛽 .

Guess. The adversary outputs its guess 𝛽 ′ for 𝛽 and wins if 𝛽 ′ = 𝛽 .

The advantage of the adversary A is defined as AdvA (1𝜆) =

Pr[𝛽 ′ = 𝛽] − 1

2
.

Definition 4.2 (Key-Indistinguishability for HIBE). AHIBE scheme

is delegated key indistinguishable if ∀ poly size adversaries A =

{A𝜆}𝜆∈N their advantage AdvA (1𝜆) in the ExpINDHIBE game is neg-

ligible.

The key indistinguishability property can be easily satisfied by

many existing HIBE schemes, provided the sub-key components

from earlier levels of the HIBE can be re-randomized. Randomiza-

tion techniques like these have been used to construct anonymous

HIBEs in the past [39]. In Appendix G, we show that the prime

order variant of the Lewko-Waters HIBE scheme [26] satisfies this

property.
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5 TIME-DENIABLE SIGNATURES: DEFINITION
A time-deniable signature scheme

DS = (KeyGen, Sign,Verify,AltSign) is a tuple of possibly proba-

bilistic polynomial-time algorithms:

KeyGen(1𝜆,𝑇 = 𝑇 (𝜆)) → (𝑣𝑘, 𝑠𝑘): On input the security param-

eter 1
𝜆
and a difficulty parameter for AltSign called 𝑇 , this

randomized algorithm outputs the verification key 𝑣𝑘 and

the signing key 𝑠𝑘 .

Sign(𝑠𝑘,𝑚, 𝑡) → 𝜎 : On input a message𝑚 and the signing key 𝑠𝑘 ,

this randomized algorithm outputs a signature 𝜎 on𝑚 for

timestamp 𝑡 .

Verify(𝑣𝑘, 𝜎,𝑚, 𝑡) → {0, 1}: On input a signature 𝜎 , a message

𝑚, verification key 𝑣𝑘 and timestamp 𝑡 , this deterministic

algorithm outputs a bit.

AltSign (𝑣𝑘, (𝑚∗, 𝑡∗, 𝜎∗),𝑚, 𝑡) → 𝜎 : On input a valid message and

signature pair (𝑚∗, 𝜎∗) for timestamp 𝑡∗, this randomized

algorithm outputs a signature 𝜎 on message𝑚 for timestamp

𝑡 .

Definition 5.1 (Efficiency). The algorithms KeyGen, Sign,Verify
must run in time poly in the size of the input. For AltSign it is

required that there exist a positive polynomial 𝑞 such that ∀𝑇 =

𝑇 (𝜆),∀𝜆 ∈ N, AltSign is computable in time 𝑞(𝜆) ·𝑇 where𝑇 is the

difficulty parameter provided to KeyGen.

Definition 5.2 (Correctness). A time-deniable signature scheme

for a message spaceM satisfies the correctness property if it satis-

fies the following two conditions:

(1) ∀𝑚 ∈ M, (𝑣𝑘, 𝑠𝑘) ← KeyGen(1𝜆), 𝜎 ← Sign(𝑠𝑘,𝑚, 𝑡), it
holds that Verify(𝑣𝑘, 𝜎,𝑚, 𝑡) = 1.

(2) Let AltSign𝑘 (𝑣𝑘, (𝑚0, 𝑡0, 𝜎0), {(𝑚 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[𝑘 ] ) be shorthand
for the following recursively defined function:

AltSign𝑖 (𝑣𝑘, (𝑚0, 𝑡0, 𝜎0), {(𝑚 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[𝑖 ] ) =
AltSign(𝑣𝑘, (𝑚𝑖−1, 𝑡𝑖−1,AltSign𝑖−1 (𝑣𝑘, (𝑚0, 𝑡0, 𝜎0),

{(𝑚 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[𝑖−1] ),𝑚𝑖 , 𝑡𝑖 )

where AltSign0 (𝑣𝑘, (𝑚0, 𝑡0, 𝜎0), {}) = 𝜎0. In words, AltSign𝑘

is a signature obtained by applying AltSign 𝑘 times to a

provided signature 𝜎0 on the message𝑚0, 𝑡0. Then we have

the following additional correctness property:

∀𝑘 ∈ N, for all sets of ordered tuples {(𝑚 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[𝑘 ] , and
∀𝑚0, 𝑡0 that satisfy 𝑡 𝑗−1 ≥ 𝑡 𝑗 where 𝑗 ∈ [𝑘]:

Pr


(𝑣𝑘, 𝑠𝑘) ← KeyGen(1𝜆,𝑇 );
𝜎0 ← Sign(𝑠𝑘,𝑚0, 𝑡0);
𝜎 ← AltSign𝑘 (𝑣𝑘, (𝑚0, 𝑡0, 𝜎0),
{(𝑚 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[𝑘 ] ) :

Verify(𝑣𝑘, 𝜎,𝑚𝑘 , 𝑡𝑘 ) = 1


= 1 (2)

Remark. Property 2 assumes that signatures and “forged” signa-

tures used as input to the AltSign algorithm are computed honestly.

One can also consider a stronger notion of correctness, where the

correctness of AltSign holds even on input signatures (and “forged”

signatures) that may not be honestly computed, but nevertheless

can be validated by the Verify algorithm. We refer to this as robust
correctness.

In this work, we focus on the simpler notion and leave the dis-

covery of schemes that satisfy robust correctness to future work.

5.1 Security Property: (𝜖,𝑇 )-Unforgeability
Our unforgeability notion requires that signatures should remain

unforgeable within a restricted time window. We capture this via a

security game below:

Setup. The challenger generates (𝑣𝑘, 𝑠𝑘) ← KeyGen(1𝜆,𝑇 ) and
gives the verification key 𝑣𝑘 to the adversary.

Phase 1. The adversary is a tuple of two algorithms, A0 and A1.

In this phase, A0 is allowed to adaptively query a signing

oracle OSign which is defined as follows. On input a message

𝑚 and a timestamp 𝑡 , the signing oracle OSign (𝑠𝑘, ·, ·) returns
the signature 𝜎 ← Sign(𝑠𝑘,𝑚, 𝑡).

Transfer. The adversaryA0 gives an advice string 𝑧 to adversary

A1.

Phase 2. The adversaryA1 has to respond to the challenger with

a forgery while also being allowed to adaptively query the

oracle OSign.
Forgery. The adversary A = (A0,A1) wins if in the end A1

can produce a valid forgery (𝑚∗, 𝑡∗, 𝜎∗) under the following
constraints:

(1) ∀𝑖, 𝑡∗ > 𝑡𝑖 for queries (𝑚𝑖 , 𝑡𝑖 ) made by A0

(2) ∀𝑖, (𝑚𝑖 , 𝑡𝑖 ) ≠ (𝑚∗, 𝑡∗) where (𝑚𝑖 , 𝑡𝑖 ) are queries made to

OSign by A1

An adversary A = (A0,A1) is considered an 𝜖-admissible
adversary if it satisfies the above conditions and∃𝑇 (𝜆) where
∀𝜆 ∈ N, 𝜖 (𝜆) ≤ 𝑇 (𝜆), depth(A1) ≤ 𝑇 (𝜆)

𝜖 (𝜆) , and size(A) ∈
poly(𝜆). Note that the depth of A0 is allowed to be polyno-

mial in the security parameter whereas the depth of A1 is

more strictly bounded.

Definition 5.3 ((𝜖,𝑇 )-Unforgeability). A time-deniable signature

scheme satisfies the 𝜖-Unforgeability property if ∀ 𝜖-admissible
polysize adversaries A = {A𝜆}𝜆∈N
= {(A𝜆,0,A𝜆,1)}𝜆∈N, ∀𝑇 (𝜆) satisfying the 𝜖-admissability require-

ment for A, there exist a negligible function 𝜇 (·) such that for all

𝜆 ∈ N:

Pr


(𝑣𝑘, 𝑠𝑘) ← KeyGen(1𝜆,𝑇 (𝜆)),
(𝑧) ← A𝜆,0

OSign (𝑠𝑘, ·, ·) (𝑣𝑘),
(𝑚∗, 𝑡∗, 𝜎∗) ← A𝜆,1

OSign (𝑠𝑘, ·, ·) (𝑧) :

Verify(𝑣𝑘,𝑚∗, 𝑡∗, 𝜎∗) = 1

 ≤ 𝜇 (𝜆) (3)

5.2 Deniability
Deniability in our scheme comes from the fact that after 𝑇 sequen-

tial time steps, anyone can forge a valid signature under the veri-

fication key of the original signer. Consequently, a time-deniable

signature scheme should ensure the indistinguishability of signa-

tures generated via the Sign and the AltSign algorithms. Otherwise,

the original signer could not deny that it signed a message at a

particular time. We present below a security game to capture this

idea. Our notion would be meaningful even if the adversary did not

have access to the signing key, but we give them it as well in order

to capture more powerful attackers.

We now define the security game ExpINDDS :

Setup. The challenger generates (𝑣𝑘, 𝑠𝑘) ← KeyGen(1𝜆,𝑇 ) and
gives both the verification key 𝑣𝑘 and the signing key 𝑠𝑘 to
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the adversary A. They also initialize an empty table T and

sample 𝛽
$←− {0, 1}.

Query Phase. In this phase, the adversary is allowed to adaptively
query a signing oracle OSign (𝑠𝑘, ·, ·) and a challenge oracle

O
Ch
(·, ·, ·).

OSign (𝑠𝑘, ·, ·) takes as input a message𝑚 and a timestamp

𝑡 to produce 𝜎 ← Sign(𝑠𝑘,𝑚, 𝑡). It randomly chooses a

new identifier id (not equal to any previously defined

identifiers), records (id,𝑚, 𝑡, 𝜎) in T , and returns (id, 𝜎)
O
Ch
(·, ·, ·) takes as input a tuple of identifier, challenge mes-

sage, and time-stamp (id,𝑚, 𝑡). It checksT for id. If it is not
present the output is ⊥. Let𝑚′, 𝑡 ′, 𝜎 ′ be the values associ-
ated with id. If 𝑡 > 𝑡 ′ the output is also ⊥. Compute 𝜎0 ←
Sign(𝑠𝑘,𝑚, 𝑡) and 𝜎1 ← AltSign(𝑣𝑘, (𝑚′, 𝑡 ′, 𝜎 ′),𝑚, 𝑡). Fi-
nally, it responds with 𝜎𝛽 .

Guess. The adversary outputs its guess 𝛽 ′ for 𝛽 . The advantage of
the adversary A is defined as AdvA (1𝜆) = Pr[𝛽 ′ = 𝛽] − 1

2
.

The adversary A wins if 𝛽 ′ = 𝛽 .

Definition 5.4 (Deniability). A signature scheme is considered

to possess the deniability property if ∀ poly size adversaries A =

{A𝜆}𝜆∈N their advantage AdvA (1𝜆) in the ExpINDDS game is negli-

gible.

𝑘-hop Deniability: We refer to the definition defined above as

1-hop deniability. It is reasonable to ask if indistinguishability still

holds when comparing the output of Signwith applying the AltSign
algorithm 𝑘 times instead of just once. Intuitively, this notion could

be stronger and offer more deniability via a larger pool of indistin-

guishable forgeries.

A formal definition of the𝑘-hop indistinguishability gameExpkhopDS
is given below:

Setup. This is the same as the (1-hop) key-indistinguishability

game ExpINDDS .

Query Phase. The adversary A has access to two oracles

OSign (sk, ·, ·) and OCh (·, ·, ·, ·). OSign is the same oracle as

given in ExpINDDS .

O
Ch
(·, ·, ·, ·) takes as input a challenge identifier id, one

ordered set of messages and time-stamp tuples

{(𝑚𝑖 , 𝑡𝑖 )}𝑖∈[𝑘−1] , and a message, time-stamp pair𝑚∗, 𝑡∗.
It checks that there exists a row in T with (id, ·, ·, ·). Let
𝑚0, 𝑡0, 𝜎0 be the values associated with that row. It ensures

that ∀𝑖 ∈ [𝑘 − 1], 𝑡𝑖−1 ≥ 𝑡𝑖 , and 𝑡𝑘−1
≥ 𝑡∗. If any of these

does not hold, the output is ⊥. Compute:

𝜎0 ← Sign(𝑠𝑘,𝑚∗, 𝑡∗)
𝜎1 ← AltSign𝑘 (𝑣𝑘, (𝑚0, 𝑡0, 𝜎0), {(𝑚1, 𝑡1), . . . ,
(𝑚𝑘−1

, 𝑡𝑘−1
), (𝑚∗, 𝑡∗)}) 𝜎𝛽 is returned as the output.

Guess. This is again the same as the ExpINDDS game.

Definition 5.5 (𝑘-hop Deniability). A signature scheme achieves

𝑘-hop deniability property if ∀ poly size adversariesA = {A𝜆}𝜆∈N
their advantage in the ExpkhopDS game is negligible.

Theorem 5.6. Any time-deniable signature scheme satisfying the
deniability property as defined in definition 5.4, also satisfies the 𝑘-hop
deniability property as defined in definition 5.5.

For a proof of Theorem 5.6 see Appendix F.1.

6 DELEGATABLE FUNCTIONAL SIGNATURES
In this section, we define and construct delegatable functional sig-

natures and define an additional key indistinguishability property

for this primitive.

Functional Signatures. We start by recalling the notion of Func-

tional Signatures as defined by Boyle, Goldwasser, and Ivan[10].

Definition 6.1. A functional signature scheme FS = (Setup,
KeyGen, Sign,Verify) is a tuple of potentially probabilistic, polyno-

mial time algorithms of the following form:

Setup(1𝜆) → 𝑚𝑣𝑘,𝑚𝑠𝑘 : On input the security parameter, this

algorithm returns the master verification key𝑚𝑣𝑘 and the

master signing key𝑚𝑠𝑘 .

KeyGen(𝑚𝑠𝑘, 𝑓 ) → 𝑠𝑘 𝑓 : On input the master signing key 𝑚𝑠𝑘

and a function 𝑓 , this algorithm outputs a function-specific

signing key 𝑠𝑘𝑓 .

Sign(𝑠𝑘 𝑓 , 𝑓 ,𝑚) → (𝑓 (𝑚), 𝜎): On input a function-specific signing

key, a function 𝑓 and a message𝑚, this algorithm outputs

𝑓 (𝑚) and a signature 𝜎 .

Verify(𝑚𝑣𝑘, 𝑓 (𝑚), 𝜎) → {0, 1}: On input a master verification key

𝑚𝑣𝑘 , a function 𝑓 () evaluated on message𝑚 and a signature,

it outputs a bit.

Correctness and Security. Security for a functional signature

scheme is the traditional notion of unforgeability where the adver-

sary is given access to the verification key 𝑣𝑘 . For completeness,

correctness and the full security definition is included in Appendix

B

6.1 Key Delegation
In order to create signing keys even without the master signing

key, we define an additional PPT algorithm called Delegate. This
algorithm takes as input a function 𝑓 , a corresponding secret key

𝑠𝑘𝑓 , and a restriction of 𝑓 , 𝑓 ′. The output is a secret key 𝑠𝑘𝑓 ′ or ⊥.
We say that a function 𝑓 ′ is a restriction of another function 𝑓 if

the following is true: let 𝑓 : X → Y ∪ {⊥}, then 𝑓 ′ has the same

domain and codomain as 𝑓 and ∀𝑥 ∈ X either 𝑓 ′(𝑥) = 𝑓 (𝑥) or
𝑓 ′(𝑥) = ⊥. This captures the ability to create a signing key that can
sign some subset of the same messages as the original key.

FS.Delegate(𝑚𝑣𝑘, 𝑓 , 𝑠𝑘𝑓 , 𝑓 ′) → 𝑠𝑘𝑓 ′,⊥: given the verification key

𝑚𝑣𝑘 , a function 𝑓 , a signing key 𝑠𝑘𝑓 , and another function

𝑓 ′ output 𝑠𝑘𝑓 ′ if 𝑓
′
is a restriction of 𝑓 else ⊥.

For a delegatable functional signature scheme, the following

additional correctness property must hold for all functions 𝑓 :

X → Y ∪ {⊥} supported by FS, for all restrictions 𝑓 ′ of 𝑓 , and
∀𝑚 ∈ X where 𝑓 ′(𝑚) ≠ ⊥:

Pr


(𝑚𝑣𝑘,𝑚𝑠𝑘) ← FS.Setup(1𝜆);
𝑠𝑘𝑓 ← FS.KeyGen(𝑚𝑠𝑘, 𝑓 );
𝑠𝑘𝑓 ′ ← FS.Delegate(𝑚𝑣𝑘, 𝑓 , 𝑠𝑘𝑓 , 𝑓 ′);
𝜎 ← FS.Sign(𝑠𝑘𝑓 ′, 𝑓 ′,𝑚) :

FS.Verify(𝑚𝑣𝑘, 𝑓 ′(𝑚), 𝜎) = 1


= 1 (4)

The relevance of the delegation property will be demonstrated

in our construction. Furthermore, our construction will require yet

another property of these delegatable functional signatures.
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Key Indistinguishability. We would like it to be the case that

keys generated via KeyGen and Delegate appear the same to any

adversary, even if they have access to the master signing key𝑚𝑠𝑘

and can make adaptive queries. To capture this notion we define the

key-indistinguishability game ExpINDFS for delegatable functional

signatures.

Setup The challenger runs (𝑚𝑣𝑘,𝑚𝑠𝑘) ← Setup(1𝜆) and gives

both the master verification key𝑚𝑣𝑘 and the master signing

key𝑚𝑠𝑘 to the adversary. Let T be a table kept by the chal-

lenger, initialized to be empty. The challenger also samples

𝛽
$←− {0, 1} and keeps this value to itself.

Query Phase In this phase, the adversary gets to query two dif-

ferent oracles.

(1) Key creation oracleOKey (·), which can be queried on some

specific function 𝑓 . On input a function 𝑓 , the key creation

oracle checks T for keys on function 𝑓 . Let 𝑖 be the largest

value associated with a row containing 𝑓 . Run 𝑠𝑘𝑓 ←
FS.KeyGen(𝑚𝑠𝑘, 𝑓 ) and record (𝑖 +1, 𝑓 , 𝑠𝑘𝑓 ) in T . Output
(𝑖 + 1, 𝑠𝑘𝑓 ).

(2) Challenge oracle O
Ch
(·, ·, ·) where the first input is an

identifier 𝑖 and the subsequent inputs are functions 𝑓0 ,𝑓1
and 𝑓1 is a restriction of 𝑓0. The challenger checks T for a

row (𝑖, 𝑓0, ·) that has secret key 𝑠𝑘𝑓0 . If no such key exists,

the output is ⊥. Otherwise, the oracle computes 𝑠𝑘0 =

FS.Delegate(𝑚𝑣𝑘, 𝑓0, 𝑠𝑘𝑓0 , 𝑓1), 𝑠𝑘1 = FS.KeyGen(𝑚𝑠𝑘, 𝑓1)
and returns 𝑠𝑘𝛽 .

Guess The adversary outputs its guess 𝛽 ′ for 𝛽 and wins if 𝛽 ′ = 𝛽 .
The advantage of the adversary A is defined as AdvA (1𝜆)��
Pr

[
[𝛽 ′ = 𝛽] − 1

2

] ��
.

Definition 6.2 (Key-Indistinguishability for Delegatable FS). A del-

egatable functional signatures scheme is considered

key-indistinguishable if∀ poly size adversariesA = {A𝜆}𝜆∈N their

advantage AdvA (1𝜆) in the ExpINDFS game is negligible.

6.2 Construction for Prefix Functions
We now describe how to create delegatable functional signatures

for prefixing functions from hierarchical identity-based encryption.

We will be concerned with signatures on functions of the form

𝑓𝑇 : {0, 1}ℓ ×{0, 1}𝑚 → {0, 1}ℓ+𝑚 that concatenate their arguments.

More formally, we consider functions

𝑓𝑇 (𝑡,𝑚) =
{
𝑡 | |𝑚 𝑡 ≤ 𝑇
⊥ otherwise

(5)

For the sake of readability, in the following construction we abuse

notation andwrite𝑇 in place of 𝑓𝑇 i.e. FS.Delegate(𝑚𝑣𝑘, 𝑓𝑦, 𝑠𝑘𝑓𝑦 , 𝑓𝑦′)
is replaced with FS.Delegate(𝑚𝑣𝑘,𝑦, 𝑠𝑘𝑦, 𝑦′). We also define the no-

tion of stack trace which will be useful in the formal description of

the protocol.

Definition 6.3. The stack trace of 𝑇 , Trace(𝑟,𝑇 ) is defined as the

set of nodes on the stack when executing a depth-first search to

find the leaf node 𝑇 + 1 in a binary tree with some root 𝑟 .

The stack trace can be found efficiently, and as described in the

technical overview gives us the set of the ≤ ℓ identity key nodes

required to derive all keys corresponding to timestamps up to 𝑇 .

We now give a description of how to build the delegatable FS

for the function 𝑓𝑇 described previously. Given a HIBE scheme, we

consider identities 𝐼 of the form {0, 1}𝑚 for𝑚 ≤ 𝑙 . These identities
can be described by a binary tree of depth 𝑙 that has 2

𝑙
leaves where

every HIBE identity is either an interior node or a leaf. The identity

corresponding to a given node 𝑛 is defined by the path 𝑝𝑎𝑡ℎ𝑛 from

the root to 𝑛: i.e. let 𝑝0 . . . 𝑝𝑚−1, 𝑝𝑚 = 𝑛 be the nodes along the

path to 𝑛 (including 𝑛) then the identity is 𝑏1 . . . 𝑏𝑚 where 𝑏𝑖 is 0

if 𝑝𝑖 is the left child of 𝑝𝑖−1 and 1 otherwise. Signing a message𝑚

for time 𝑡 will correspond to extracting a key for the identity 𝑡 ∥𝑚
from the leaf node 𝑡 . To generate a prefix key for 𝑓𝑇 where 𝑇 < 2

𝑙
,

for every node 𝑝𝑡 in 𝑝𝑎𝑡ℎ𝑇 besides 𝑇 itself, we extract a signing

key for the left child of 𝑝𝑡 . These keys, along with an extracted

key for 𝑇 itself, make up the functional key. For correctness, we

note that to sign for any time𝑀 < 𝑇 we can derive the leaf node

𝑀 if we have a key for an ancestor of𝑀 in the tree, and for every

𝑀 < 𝑇 it has an ancestor that is a left child of some node 𝑝𝑡 along

𝑝𝑎𝑡ℎ𝑇 . Delegation works for a similar reason. We note that for the

purposes of key indistinguishability if the intersection of 𝑝𝑎𝑡ℎ𝑇
and 𝑝𝑎𝑡ℎ𝑀 contains some node 𝑛, the key associated with 𝑛’s left

child from 𝑝𝑎𝑡ℎ𝑇 must be re-randomized in 𝑓𝑀 . Verification of a

message𝑚 simply checks the included HIBE key for the identity

𝑡 | |𝑚 by attempting to encrypt and decrypt a random message, as is

suggested in [7].

The construction is presented in pseudocode in Figure 2.

Theorem 6.4. If HIBE is adaptively secure then the functional
signature scheme for prefix functions constructed in Figure 2 is un-
forgeable.

For a proof of Theorem 6.4 see Appendix E.

Theorem 6.5. If HIBE is key-indistinguishable then the scheme
in Figure 2 satisfies the functional signatures key-indistinguishability
property.

For a proof of Theorem 6.5 see Appendix E.2.

7 CONSTRUCTION OF TIME-DENIABLE
SIGNATURES

This section describes our construction of time-deniable signa-

tures from key indistinguishable, delegatable FS for prefix func-

tions and time lock encryption. To sign a message at timestamp

𝑡 , we first use the master signing key to construct a signing key

for the function 𝑓𝑡 . This key is then used to sign the message and

is time-lock encrypted to produce a ciphertext that is sent along

with the signature. The alternate signing algorithm decrypts the

ciphertext, uses the delegate algorithm to produce an appropriate

signing key for 𝑓𝑡 ′ with 𝑡
′ ≤ 𝑡 , and then signs the message and

time-lock encrypts the signing key. For the security of the scheme

to hold, the parameter for the time-lock puzzle Δ cannot be pre-

cisely the same as 𝑇 . The intuitive reason behind the difference

is that forging involves not just breaking the time lock but also

executing other algorithms. Let |A.B| denote the depth of the cir-

cuit that computes algorithm B of cryptographic primitive A and

𝑧 (𝜆) = |FS.Verify|+2+1+|FS.Sign|+ |FS.KeyGen|+ |TimeLock.Gen|.
Our construction is described in Figure 3 and uses 𝑧 (𝜆) to define Δ.

For proofs of unforgeability and deniability see Appendix D.
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Setup(1𝜆) :

(𝑚𝑠𝑘′, 𝑝𝑘) ← HIBE.Setup(1𝜆)
return 𝑝𝑘, (𝑝𝑘,𝑚𝑠𝑘′)

KeyGen(𝑚𝑠𝑘 = (𝑝𝑘,𝑚𝑠𝑘′),𝑇 ) :

list𝑠𝑘𝑇
:= []

𝑡𝑟𝑎𝑐𝑒 ← Trace(𝑚𝑠𝑘,𝑇 )
for 𝑛𝑜𝑑𝑒 ∈ 𝑡𝑟𝑎𝑐𝑒 :

𝑠𝑘𝑛𝑜𝑑𝑒 ← HIBE.KeyGen(𝑚𝑠𝑘′, 𝑛𝑜𝑑𝑒)
add(list𝑠𝑘𝑇 , 𝑠𝑘𝑛𝑜𝑑𝑒 )

return 𝑝𝑘, list𝑠𝑘𝑇

Sign(𝑠𝑘𝑇 ,𝑇 , (𝑡,𝑚)) :

if 𝑡 > 𝑇 :
return ⊥

𝑡1 . . . 𝑡ℓ ← parse(𝑡 )
𝑝𝑘, 𝑙𝑖𝑠𝑡𝑠𝑘𝑇 ← parse(𝑠𝑘𝑇 )
𝑠𝑘𝑡′ , 𝑗 ← findPrefix(𝑙𝑖𝑠𝑡𝑠𝑘𝑇 , 𝑡 )
𝑠𝑘𝑡 | |𝑚 ← HIBE.Delegate(𝑝𝑘, 𝑠𝑘𝑡′ , 𝑡 𝑗+1 . . . 𝑡ℓ | |𝑚)
return 𝑡 | |𝑚,𝑠𝑘𝑡 | |𝑚

Delegate(𝑚𝑣𝑘 = 𝑝𝑘,𝑇 , 𝑠𝑘𝑇 = (𝑝𝑘′, list𝑠𝑘𝑇 ),𝑇
′) :

if𝑇 ′ > 𝑇 :

return ⊥
𝑇 ′

1
. . .𝑇 ′ℓ ← parse(𝑇 ′)

𝑠𝑘, 𝑗 ← findPrefix(list𝑠𝑘𝑇 ,𝑇
′)

list𝑠𝑘𝑇 ′ := []
for 𝑖 ∈ 0, . . . , 𝑗 − 1 :

𝑠𝑘𝑖 ← HIBE.Delegate(𝑝𝑘, list𝑠𝑘𝑇 [𝑖 ], 𝑛𝑖𝑙)
add(list𝑠𝑘′

𝑇
, 𝑠𝑘𝑖 )

𝑡𝑟𝑎𝑐𝑒 ← Trace(𝑇 ′
1
. . .𝑇 ′

𝑗
,𝑇 ′

𝑙
)

for 𝑛𝑜𝑑𝑒 ∈ 𝑡𝑟𝑎𝑐𝑒 :

𝑠𝑘𝑛𝑜𝑑𝑒 ← HIBE.Delegate(𝑝𝑘, 𝑠𝑘,𝑛𝑜𝑑𝑒)
add(list𝑠𝑘𝑇 ′ , 𝑠𝑘𝑛𝑜𝑑𝑒 )

return 𝑝𝑘, list𝑠𝑘𝑇 ′

Verify(𝑚𝑣𝑘 = 𝑝𝑘,𝑚∗, 𝜎 = 𝑠𝑘𝑡 | |𝑚) :

𝑚𝑠𝑔← {0, 1}𝑛
𝑐 ← HIBE.Encrypt(𝑝𝑘,𝑚𝑠𝑔, 𝑠𝑘𝑡 | |𝑚)
return HIBE.Decrypt(𝑠𝑘𝑡 | |𝑚, 𝑐) =𝑚𝑠𝑔 and 𝑡 | |𝑚 =𝑚∗

Figure 2: The function 𝑓𝑇 for each input message𝑚 is defined as 𝑓𝑇 (𝑡,𝑚) = parse(𝑡)∥𝑚 if 𝑡 ≤ 𝑇 or ⊥.findPrefix(𝑙𝑖𝑠𝑡, 𝑖𝑑) takes in a
list of HIBE secret keys called 𝑙𝑖𝑠𝑡 and an identity string 𝑖𝑑 . It returns a secret key 𝑠𝑘 and an index 𝑗 so that 𝑠𝑘 is a secret key
for a length 𝑗 prefix of 𝑖𝑑 . Any bit string beginning with 𝑡 𝑗+1 where 𝑗 = ℓ is the empty string. The function Trace(𝑟𝑜𝑜𝑡, 𝑙𝑒𝑎𝑓 ) is
specified in definition 6.3.

KeyGen(1𝜆,𝑇 ) :

(𝑚𝑣𝑘,𝑚𝑠𝑘) ← FS.Setup(1𝜆)
return ( (𝑚𝑣𝑘,𝑇 , 𝜆), (𝑚𝑠𝑘,𝑇 , 𝜆))

Sign(𝑠𝑘 = (𝑚𝑠𝑘,𝑇 , 𝜆),𝑚, 𝑡 ) :

𝑠𝑘𝑡 ← FS.KeyGen(𝑚𝑠𝑘, 𝑓𝑡 )
𝑣, 𝑠 ← FS.Sign(𝑠𝑘𝑡 , 𝑓𝑡 , (𝑡,𝑚))
𝑐 ← TimeLock.Gen(1𝜆,
𝑇 · 𝑧 (𝜆), 𝑠𝑘𝑡 )
return (𝑐, 𝑠)

AltSign(𝑣𝑘, (𝑚∗, 𝑡∗, 𝜎∗),𝑚, 𝑡 ) :

𝑚𝑣𝑘,𝑇 , 𝜆 = 𝑝𝑎𝑟𝑠𝑒 (𝑣𝑘)
𝑐∗, 𝑠∗ = parse(𝜎∗)
𝑠𝑘𝑡∗ = TimeLock.Sol(𝑐∗)
𝑠𝑘𝑡 ← FS.Delegate(𝑚𝑣𝑘, 𝑓 ∗𝑡 , 𝑠𝑘

∗
𝑡 , 𝑓𝑡 )

𝑣, 𝑠 ← FS.Sign(𝑠𝑘𝑡 , 𝑓𝑡 , (𝑡,𝑚))
𝑐 ← TimeLock.Gen(1𝜆,𝑇 · 𝑧 (𝜆), 𝑠𝑘𝑡 )
return (𝑐, 𝑠)

Verify(𝑣𝑘, 𝜎,𝑚, 𝑡 ) :

𝑐, 𝑠 = parse(𝜎)
return FS.Verify(𝑣𝑘, 𝑡 | |𝑚,𝑠)

Figure 3: A construction for a time-deniable signature schemeDS from a key-indistinguishable, delegatable, functional signature
scheme FS and a time lock puzzle TimeLock. The function 𝑓𝑡 for each inputmessage𝑚 and time 𝑡 is defined as 𝑓𝑡 (𝑡,𝑚) = parse(𝑡)∥𝑚
if 𝑡 ≤ 𝑡 , else ⊥. The polynomial 𝑧 (𝜆) is a multiplicative factor for the difficulty parameter of the time lock puzzle and is described
in the text.

8 SYSTEM INTEGRATION
We now give a high-level description of a system that could utilize

time-deniable signatures: electronic mail. We first define the two

main actors in any signature scheme.

Signer: The signer is a party that publishes messages that can

later be authenticated. In the setting of email, this is usually

a domain owner that sets up a DKIM record to sign outgoing

mail e.g. Google. Instead of using a regular signature scheme,

they would run the TDS.Sign algorithm using the mail as the

message the timestamp they are signing the message at, and

a signing key 𝑠𝑘 produced by the TDS.KeyGen algorithm.

Verifier: The verifier is a party receiving the message and looking

to verify its authenticity. In our setting, this would be a mail

server accepting inbound mail and attempting to verify that

the message is from the claimed domain. Using DNS, the

mail server pulls the relevant key for verification. In this

case, the key is a TDS verification key, and this key is used to

run the TDS.Verify algorithm. The server would also check

when the message was signed and the time parameter Δ to

determine if the message is too stale to check for authenticity.
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Based on this they would decide whether to forward mail to

users or not.

Note that the algorithm TDS.AltSign never needs to be run by

any party. Just the existence of the algorithm itself is enough to cast

doubt on any message sent longer ago than 𝑛𝑜𝑤 () − Δ.
We now consider two different adversaries which are common

in such a setting.

Forger: The forger is a party who sees multiple messages and

attempts to construct one that verifies without having access

to a signing key. In our setting, a forger gets to see old keys

which would allow them to sign messages "from the past",

but these messages have already expired authenticity and

cannot be verified. Therefore, we consider forgers who are

trying to sign messages for the current signing window or

into the future. In the email setting, this could be a small-

scale adversary such as a random hacker spear-phishing

someone, or a more well-equipped adversary like a nation-

state-funded attacker.

Detective: The detective is a party tries to discover whether or

not some message from the past was sent by the signer or

a different party. The message is guaranteed to have been

sufficiently far in the past that Δ has already passed. In the

email scenario, this is equivalent to a reporter who discovers

emails - perhaps through a leak - and tries to verify whether

they came from the claimed domain. The detective is not a

one-shot adversary and may get access to multiple signed

messages over time.

We now make some remarks on the forger and detective. Both

detective and forger may induce the signer to sign messages of

their choosing. The forger may do some pre-computation work

before attempting to attack a scheme, but once the forger decides

to attack they must find a validating signature before the time

window expires. The detective is a long-lived adversary who may

even recover the entire signing key in the future. Even in this

scenario, it should not be possible for the detective to distinguish a

true signature from a forged one. Our one requirement is that they

cannot see the message before its time period has expired, or gain

access to a proof that the message existed starting at some time

period. This problem appears to be inherent for all schemes aiming

to achieve similar properties to time-deniability.

9 IMPLEMENTATION AND EVALUATION
Implementation. To demonstrate the efficiency of our scheme, we

implemented it in python. For our time lock puzzle, we modified an

existing, open-source implementation of an RSW time-lock puzzle

[25]. Our timestamp supports 2
16

different values which is approxi-

mately equivalent to what is supported by [40]. This is reasonable

given at least some motivating applications (i.e. email), where fre-

quent key rotation is done for domains and coarse granularity may

be acceptable.

Construction of FS.To instantiate our functional signature scheme,

we need a HIBE that is both key-indistinguishable and adaptively

secure. We consider two different HIBE schemes: one a variant of

the Unbounded HIBE from Lewko and Waters [28] due to Lewko

[26, 28], the other a HIBE from Chen et al. [13]. Both schemes

are adaptively secure and have tight reductions. We prove they

satisfy the key-indistinguishability property of Section 4.1.2 in Ap-

pendix G.1. For Lewko’s scheme, we tweaked an existing python

implementation [33] and instantiated using the curve SS512. For

the scheme of Chen et al, we modify an existing IBE implementa-

tion from the same paper in the Charm library [2] and instantiate

with BN254. Different curves are necessary since Lewko’s construc-

tion only works with symmetric pairings whereas Chen et al use

asymmetric ones. We hereafter call these constructions L−SS512
and CLLWW−BN254. The curve SS512 natively offers ≈ 80 bits of

security while BN254 offers ≈ 110 bits.

Setting Parameters. There are two main concerns that come with

implementing time-based crypto assumptions: one is capturing the

speed-up offered by parallelism, the other is accurately estimat-

ing the fastest real-world time to do the computational task the

assumption is based on. On the first point, to the best of our knowl-

edge, there are no known improvements from bounded parallelism

against the RSW assumption. For the second, recent results [32, 44]

suggest that an FPGA implementation can achieve ≈ 2
24

squarings

per second and an ASIC ≈ 2
28

squares per second. For our imple-

mentation below, we benchmarked the cost of computing squares

modulo a 2048-bit composite on our machine. This corresponded

to roughly 5,883,206 squares per second which is a factor of 4 less

than the FPGA cost reported above.

Experimental Evaluation. Experiments were done on an Intel

Xeon E5 with 500GB of memory, running Ubuntu. Our implemen-

tation uses neither multi-threading or multiprocessing. Estimates

were obtained by running each algorithm 500 times and taking the

median. For the rest of this section, let 𝑁 denote the arity of the

tree and 𝑑 be the depth. The timestamp value in our experiments

is chosen uniformly at random per each run, as signing time and

signature size differ significantly depending on the value of 𝑡 .

We begin the analysis by examining the effect of varying 𝑁 . It

is an important parameter for our scheme because 𝑁 and 𝑑 must

satisfy 𝑁𝑑 > 2
16

and together determine the efficiency of signing

and verifying. To be explicit, signing consists of extracting at most

𝑑 · (𝑁 − 1) keys from the HIBE tree where each key is 𝑂 (𝑑) group
elements long and requires 𝑂 (𝑑) work to generate. Thus 𝑂 (𝑁𝑑2)
work must be done in signing where 𝑑 = ⌈log𝑁 (216)⌉. This quan-
tity is minimized when 𝑁 is close to 7 meaning that signing time

and signature size are optimal when 𝑁 = 7 as can be seen in Figure

4 and Appendix H respectively. Although we do not depict it, larger

values of 𝑁 always result in a decrease in verification time since

verification depends only on𝑑 . Our microbenchmarks are presented

in Table 2 for 𝑁 = 7. The superiority of the signing algorithm in

CLLWW−BN254 to L−SS512 can be attributed to the use of asym-

metric over symmetric pairings and because in L−SS512 each level

of the HIBE adds ten group elements to the HIBE key whereas in

CLLWW−BN254 it only adds four. Because signing mostly consists

of creating these keys, it heavily impacts performance and the size

of the signature itself.

10 CONCLUSION
In this work we introduced a new notion of deniable signatures that

provides strong unforgeability and deniability guarantees without

requiring the signer to periodically publish secret key material.

We show how to realize our primitive using time lock puzzles
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Scheme KeyGen(ms) Verify(ms)

L−SS512 360 200

CLLWW−BN254 433 619

Scheme Sign(ms) Sig. Size (B)

L−SS512 2695 417090

CLLWW−BN254 542 77424

Table 2: Microbenchmarks for the scheme of Figure 3 with
𝑁 = 7, 𝑑 = 6 and using L−SS512 and CLLWW−BN254.

Figure 4: The signing time for a TDS using L−SS512 and
CLLWW−BN254, varying values of 𝑁

and a HIBE scheme that satisfies a special key-indistinguishability

property. Important directions for future work include construct-

ing time-deniable signatures from a different set of assumptions

(non-HIBE based) and building constructions that satisfy robust

correctness.
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A HIBE SECURITY
We consider HIBE security similarly to the work of Lewko and

Waters[27, 29] using the following security game played by a chal-

lenger and an adversary.

– Setup The challenger runs (𝑝𝑘,𝑚𝑠𝑘) ← Setup(1𝜆) and
gives the public parameters 𝑝𝑘 to the adversary. Let set S
be the set of private keys that the challenger creates. At the

beginning, S = ∅.
– Phase 1 In this phase, the adversary gets to make three types

of queries.

(1) Create queries QC(𝐼 ), which are made on some specific

identity 𝐼 . The challenger adds the keys for this identity to

the set S. Note that the adversary does not get these keys.

(2) Delegate queries QD(𝐼 ), which are made on some identity

𝐼 such that the corresponding keys are in the set S. The
challenger adds the keys corresponding to the delegated

identity 𝐼 ′ and adds them to the set S.

(3) Reveal queries QR(𝐼 ), which are also made on some iden-

tity 𝐼 such that the corresponding keys are in the set S. In
response, the challenger gives the corresponding keys to

the adversary and removes them from the set S.
– Challenge The adversary gives the challenger messages𝑚0

and𝑚1 and a challenge identity 𝐼∗. The challenger responds
with a random 𝛽 ∈ {0, 1} and encrypts 𝑚𝛽 under 𝐼∗ and
sends the ciphertext to the adversary.

– Phase 2 The adversary gets to query the challenger similar

to Phase 1.

– Guess The adversary outputs its guess 𝛽 ′ for 𝛽 and wins if

the following conditions are satisfied:

(1) 𝛽 ′ = 𝛽 .
(2) The challenge identity 𝐼∗ should satisfy the property that

no revealed keys, in either of the query phases, belong

to an identity that was a parent of 𝐼∗ and the 𝐼∗’s keys
shouldn’t have been revealed.

The advantage of the adversary A is defined as AdvA (1𝜆) =

Pr[𝛽 ′ = 𝛽] − 1

2
.

Definition A.1 (Adaptive security for HIBE). A HIBE scheme is

adaptively-secure if ∀ poly size adversaries A = {A𝜆}𝜆∈N their

advantage AdvA (1𝜆) in the HIBE security game defined above is

negligible.

B FUNCTIONAL SIGNATURES
Correctness. Correctness requires that any signature output from

the Sign algorithm on a valid functional key and a message veri-

fies correctly. More formally, for all supported functions 𝑓 , for all

messages𝑚,

Pr


𝑚𝑣𝑘,𝑚𝑠𝑘 ← Setup(1𝜆);
𝑠𝑘 𝑓 ← KeyGen(𝑚𝑠𝑘, 𝑓 );
𝑚∗, 𝜎 ← Sign(𝑠𝑘 𝑓 , 𝑓 ,𝑚)

: Verify(𝑚𝑣𝑘,𝑚∗, 𝜎) = 1

 = 1

Security. For completeness, the unforgeability security game

ExpUNFFS between a challenger and adversary A for functional sig-

natures is provided below.

Setup. The challenger generates (𝑚𝑣𝑘,𝑚𝑠𝑘) ← Setup(1𝜆). They
also initialize an empty table T .𝑚𝑣𝑘 is given to adversary

A.

Query Phase. In this phase A gets access to a key oracle
¯OKey

and a signing oracle
¯OSign.

(1)
¯OKey (𝑚𝑠𝑘, ·, ·) takes as input function description 𝑓 and

an identifier 𝑖 . The challenger checks if there is a row in T
corresponding to (𝑖, 𝑓 , ·). If such a row exists then return

the corresponding secret key sk𝑖
𝑓
. Otherwise generate

𝑠𝑘𝑓 ← KeyGen(𝑚𝑠𝑘, 𝑓 ), record (𝑖, 𝑓 , 𝑠𝑘𝑓 ) in T and return

𝑠𝑘𝑓 .

(2)
¯OSign (𝑚𝑠𝑘, ·, ·, ·) takes as input a function description 𝑓 ,

an identifier 𝑖 , and a message 𝑚. If a row in T corre-

sponds to (𝑖, 𝑓 , ·) then use the secret key 𝑠𝑘𝑓 specified

in that row. Otherwise, generate 𝑠𝑘𝑓 ← KeyGen(𝑚𝑠𝑘, 𝑓 )
and record (𝑖, 𝑓 , 𝑠𝑘𝑓 ) in T . Let 𝑓 (𝑚), 𝜎 be the output of

Sign(𝑠𝑘𝑓 , 𝑓 ,𝑚). Return 𝜎 to A.
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Challenge Phase. The adversary A must return𝑚∗, 𝜎∗ to the

challenger. An adversary is considered to be admissable if
that the following conditions are satisfied:

(1) ∀ values (𝑚𝑖 , 𝜎𝑖 ) returned by
¯OSign,𝑚𝑖 ≠𝑚

∗

(2) there is no key 𝑠𝑘𝑓 queried from
¯OKey such that ∃𝑚 where

𝑓 (𝑚) =𝑚∗
A functional signature scheme is said to be secure if for all

admissable poly-size adversaries A = {A𝜆}𝜆∈N there exists

a negligible function 𝜇 (𝜆) such that

Pr


𝑚𝑣𝑘,𝑚𝑠𝑘 ← KeyGen(1𝜆);
𝑚∗, 𝜎∗ ← A

¯OKey (𝑚𝑠𝑘, ·, ·), ¯OSign (𝑚𝑠𝑘, ·, ·, ·)
𝜆

(𝑚𝑣𝑘);
: Verify(𝑚𝑣𝑘,𝑚∗, 𝜎∗) = 1

 ≤ 𝜇 (𝜆)
C ON THE NECESSITY OF TIME-LOCK

PUZZLES
Our construction of time-deniable signatures makes uses of time-

lock puzzles to achieve short-term unforgeability. We show that the

use of such a primitive is to an extent inherent. Namely, assuming

extractable witness encryption [18, 21], we show that time-deniable

signatures imply time-lock puzzles.

We demonstrate this implication in Appendix I. We remark that

while extractable witness encryption is a strong tool, it alone is not

known to imply time-lock puzzles.
7

D PROOFS FOR TIME DENIABLE SIGNATURES
Theorem D.1. The time-deniable signature scheme presented in

figure 3 is unforgeable.

In the discussion that follows, let the output of a hybrid game

H be the output of the challenger. We prove the theorem state-

ment using a hybrid argument whereH0 represents the original

(𝜖,𝑇 )-unforgeability game. Where details are omitted in the hybrid

description ofH𝑖 , it is assumed they are the same as inH𝑖−1.

H1 = Let 𝑞(𝜆) = size(A𝜆,1). Challenger samples 𝑟
$←− [𝑞(𝜆)] ∪

{0}. If the number of queries made to OSign byA𝜆,1 is not 𝑟 , output

⊥.
Claim 1. AdvH1

A (𝜆) =
1

𝑞 (𝜆)+1Adv
H0

A (𝜆)

Note that the win condition is checked whenever the challenger

“correctly guesses" howmany queries will be made by the adversary

in the second phase. Let𝑚 be the number of queries made byA𝜆,1,

where 0 ≤ 𝑚 ≤ 𝑞(𝜆). This must hold since the adversary cannot

make more queries than its size dictates. Therefore,

AdvH1

A (𝜆) = Pr(𝑟 =𝑚 |𝑟 $←− {0, . . . , 𝑞(𝜆)})AdvH0

A (𝜆)

It should be clear the first quantity is
1

𝑞 (𝜆)+1 and the claim is thus

true.

Consider the following sequence of hybrids where 2 ≤ 𝑖 ≤ 𝑚 + 1

H𝑖 =On the (𝑖−1)𝑡ℎ query to OSign byA𝜆,1, challenger replaces

𝑐 = TimeLock.Gen(𝑇, 𝑠𝑘𝑡 ) with TimeLock.Gen(𝑇, 0) .
Claim 2. ∃B, a 𝜖 − TimeLock adversary, such that |AdvH𝑖

A (𝜆) −
AdvH𝑖−1

A (𝜆) | ≤ Adv𝜖−TimeLock
B (𝜆)

7
When supplemented with a computational reference clock, it is known to imply time

lock puzzles [30].

WLOG, assume AdvH𝑖

A > AdvH𝑖−1

A . First consider the following

distinguisher D betweenH𝑖−1 andH𝑖 , where output of D being 0

denotesH𝑖−1 and 1 denotesH𝑖 .

Description of D on input 𝑏 fromH𝑖−1 orH𝑖 :

• If 𝑏 = 1 output 𝑏 ′ = 1

• If 𝑏 = 0, output 𝑏 ′ = 0.

Notice that D’s advantage in distinguishing is dependent on

AdvH𝑖

A (𝜆) −Adv
H𝑖−1

A (𝜆) and that the depth of D is 2. We will now

use D and A𝜆 to construct an adversary B′.
Description of 𝜖 − TimeLock adversary B′:
• Honestly run the FS.Setup algorithm and answer all queries

from A𝜆,0 honestly

• For the 𝑗𝑡ℎ query from A𝜆,1:

– if 𝑗 < 𝑖 − 1, 𝑐 ← TimeLock.Gen(1𝜆,𝑇 , 0)
– if 𝑗 > 𝑖 − 1, 𝑐 ← TimeLock.Gen(1𝜆,𝑇 , 𝑠𝑘𝑡 𝑗 )
– if 𝑗 = 𝑖−1, compute 𝑠𝑘𝑡𝑖−1

← FS.KeyGen(𝑚𝑠𝑘, 𝑓𝑡𝑖−1
), send

the challenger (𝑠𝑘𝑡𝑖−1
, 0), and receive 𝑧. Set 𝑐 = 𝑧.

• FromA𝜆 get output𝑏 and give𝑏 toD. Get𝑏 ′ fromD. Output

𝑏 ′ to the challenger.

Define (B1,B2) = B′ where B1 represents B′ up until query

𝑖 − 1 is made and B2 is all that follows. Let the output of B1 be 𝑧

and hard-code it into B2 to get B.
Analysis of adversary B:
Let |A.B| denote the depth bound on the algorithmB for primitive

A. The depth bound for B is represented below

depth(B) ≤ depth(A1) +𝑚 ·
(
|FS.KeyGen|+ |TimeLock.Gen| +

|FS.Sign|
)
+ |FS.Verify| + 2 ≤ 𝑡 (𝜆)

𝜖 (𝜆)

+𝑚 ·
(
|FS.KeyGen| + |TimeLock.Gen| + |FS.Sign|

)
+ |FS.Verify| +2

≤ 𝜖 (𝜆) ( |FS.Verify |+2)
𝜖 (𝜆) + 𝑡 (𝜆) [1+|FS.KeyGen |+ |TimeLock.Gen |+ |FS.Sign | ]

𝜖 (𝜆) ≤
𝑡 (𝜆)𝑧 (𝜆)
𝜖 (𝜆)
Assuming the 𝜖-gap security of the TimeLock and because Δ =

𝑡 ′(𝜆) = 𝑡 (𝜆) · 𝑧 (𝜆) in our construction, B is appropriately bounded.

Pr(B succeeds) = 1

2
Pr(B succeeds | 𝛽 = 0)+ 1

2
Pr(B succeeds |

𝛽 = 1) = 1

2
Pr(D outputs 0 when givenH𝑖−1)+

1

2
Pr(D outputs 1 when givenH𝑖 )

= Pr(D correctly distinguishesH𝑖−1 andH𝑖 )
B’s probability of success entirely depends on D’s and thus B’s

advantage is the same as D’s. The claim thus follows.

Claim 3. ∃C, an adversary against the unforgeability of the FS
scheme, s.t. AdvH𝑚+1

A (𝜆) ≤ AdvFS
𝐶
(𝜆)

We now argue that the advantage of any adversary inH𝑚+1 can

be translated into equivalent advantage against the unforgeability

scheme.

Description of C:
• Receive𝑚𝑣𝑘 from the FS challenger.

• On queries𝑚, 𝑡 to OSign (·)
– if phase one, query

¯OKey (𝑓𝑡 , 𝑖) and receive 𝑠𝑘𝑓𝑡 where 𝑖 ∈
N is next available counter. Compute 𝜎 ←
FS.Sign(𝑠𝑘𝑓𝑡 , 𝑓𝑡 , (𝑡,𝑚)), 𝑐 ← TimeLock.Gen(1𝜆,𝑇 , 𝑠𝑘𝑓𝑡 ).
Return (𝑐, 𝜎) to A𝜆,0
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– if phase two, query
¯OSign (𝑓𝑡 , 𝑖, (𝑡,𝑚)) with 𝑖 ∈ N be-

ing the next highest counter to get𝑚∗, 𝜎 . Compute 𝑐 ←
TimeLock.Gen(1𝜆,𝑇 , 0) and return (𝑐, 𝜎) to A𝜆,1

• If A𝜆 returns forgery𝑚, 𝑡, 𝜎 = (𝑐, 𝑠) return (𝑡 | |𝑚, 𝑠) to the

FS challenger.

Analysis. We now show that if A is successful, then C must be

as well. Say A returns a forgery𝑚∗, 𝑡∗, 𝜎∗ = (𝑐, 𝑠). In order for A
to be admissable, it must be true that A never received a signature

with 𝑡 ≥ 𝑡∗ during the first phase and during the second phase there
was never a query for (𝑚∗, 𝑡∗) specifically. The first point implies

C never queries for a secret key for a function 𝑓𝑡 where 𝑡 ≥ 𝑡∗

so 𝑠 is a valid signature to give back to the functional challenger.

The second point means that A is not giving C a signature that C
asked for from the FS challenger with some mauled 𝑐 ′ where 𝑐 ′ is
an incorrectly structured puzzle or does not hide the right secret

key. Therefore if A returns a valid forgery, then C returns a valid

forgery and the claim follows.

Theorem D.2. If the underlying delegatable functional signature
scheme is key-indistinguishable then the constructed time-deniable
signatures scheme satisfies the deniability property.

We prove this by showing how to use an adversary A who

wins the time-deniable signatures ExpINDDS game to construct an

adversary B which wins the delegatable functional signatures key-

indistinguishability game ExpINDFS .

• B receives the master verification key and master signing

key (𝑚𝑣𝑘,𝑚𝑠𝑘) from its challenger and forwards it as is to

A.

• In the query phase, whenever A makes an OSign (𝑠𝑘, ·, ·)
query on message𝑚 and timestamp 𝑡 , B performs the fol-

lowing operations:

– Query the FS key oracle
¯OKey (𝑚𝑠𝑘, ·, ·) on 𝑡 to get back

(id, 𝑠𝑘𝑡 ). Add the response to its internal table of responses.
Otherwise, return ⊥.

– Use the received key to create 𝑣, 𝜎FS ←
FS.Sign(𝑓𝑡 , 𝑠𝑘𝑡 , 𝑡,𝑚) and 𝑐 ← TimeLock.Gen(Δ, 𝑠𝑘𝑡 ).

– Let 𝜎DS = (𝑐, 𝜎FS). Send (id, 𝜎DS) toA. This simulates the

functionality of OSign (𝑠𝑘, 𝑡,𝑚) which outputs an identifier

and 𝜎 ← DS.Sign(𝑠𝑘,𝑚, 𝑡).
• In the query phase, whenever A makes a query to the DS
challenge oracle O

Ch
(·, ·, ·) on some tuple (id′,𝑚′, 𝑡 ′), B per-

forms the following operations:

– Query the FS challenge oracle on (𝑖𝑑 ′, 𝑡, 𝑡 ′) if 𝑖𝑑 ′ corre-
sponds to a query on time 𝑡 in its table and 𝑡 ′ < 𝑡 .

– Using the received key 𝑠𝑘𝑡 ′ , compute 𝑣 ′, 𝜎 ′FS ←
FS.Sign(𝑓𝑡 ′, 𝑠𝑘𝑡 ′, 𝑡,𝑚) and 𝑐 ′ ← TimeLock.Gen(Δ, 𝑠𝑘𝑡 ′).

– Send 𝜎 ′DS = (𝑐 ′, 𝜎 ′FS) to A. This simulates the DS.Sign()
algorithm when the challenger’s sampled bit 𝛽 is 0 as the

key used for FS.Sign() is a freshly generated key. When

𝛽 = 1, the key used for FS.Sign() is a delegated key, which
simulates the DS.AltSign() algorithm.

• At the end, A outputs its guess 𝛽 ′ for 𝛽 , B forwards this

without change to its challenger. The advantage of B in

winning the ExpINDFS game is same as the advantage of A in

winning the ExpINDDS game as all the responses toA’s queries

are simulated correctly by B.

E PROOFS FOR DELEGATABLE FUNCTIONAL
SIGNATURES

Theorem E.1. If HIBE is adaptively secure then the functional
signature scheme for prefix functions constructed in Figure 2 is un-
forgeable.

We prove this by showing how to use an adversary A who

succeeds with non-negligible advantage in ExpUNFFS to construct an

adversary B which succeeds with non-negligible advantage in the

HIBE unforgeability game.

Description of B

• In the setup phase, initialize empty table T and receive 𝑝𝑘

from HIBE challenger and forward it to A.

• When A queries (𝑓𝑡 , 𝑖) to ¯OKey check if row with 𝑖 in T .
– If it exists, return the list of keys 𝑠𝑘𝑡 to A.

– Otherwise, use the algorithm FS.KeyGen algorithm in Fig-

ure 2 replacing HIBE.KeyGen(𝑚𝑠𝑘, 𝑛𝑜𝑑𝑒id) with QC(id)
andQR(id). Let 𝑙𝑖𝑠𝑡𝑠𝑘𝑡 be the resulting list of keys. Record
(𝑖, 𝑡, 𝑙𝑖𝑠𝑡𝑠𝑘𝑡 ) in T . Send 𝑝𝑘, list𝑠𝑘 to A.

• When A queries (𝑓𝑡 , 𝑖,𝑚) to ¯OSign first parse𝑚 as 𝑡 | |�̄�. If

𝑡 > 𝑡 output ⊥. Check if there is row in T with identifier 𝑖

– If there is, let 𝑙𝑖𝑠𝑡𝑠𝑘𝑡 be the list of keys associated with

that row. Let 𝑠𝑘𝑡 ′ be the key in 𝑙𝑖𝑠𝑡𝑠𝑘𝑡 associated with

an identity that is the prefix of 𝑡 . Compute 𝑠𝑘𝑡 ∥�̄� ←
HIBE.Delegate(𝑝𝑘, 𝑠𝑘𝑡 ′, suffix(𝑡 ′, 𝑡 ∥�̄�) where suffix omits

the prefix 𝑡 ′ from 𝑡 ∥�̄�. Return 𝑠𝑘𝑡 ∥�̄�
– Otherwise, use the algorithm FS.KeyGen in Figure 2 re-

placing HIBE.KeyGen(𝑚𝑠𝑘, 𝑛𝑜𝑑𝑒id) with QC(id). Finally
queryQD(𝑡 ∥�̄�) and do a subsequent reveal queryQR(𝑡 ∥�̄�)
to get 𝑠𝑘𝑡 ∥�̄� . Return 𝑠𝑘𝑡 ∥�̄� to A.

• When A outputs its forgery (𝑚∗, 𝜎∗) parses𝑚∗ as 𝑡 ∥𝑚 and

𝜎∗ as 𝑠𝑘∗.
– Sample a message𝑚𝑠𝑔 and check that

Decrypt(𝑠𝑘∗,HIBE.Encrypt(𝑝𝑘, 𝑡 ∥𝑚,𝑚𝑠𝑔)) = 𝑚𝑠𝑔. If this
does not hold or if ∃ a row (𝑖 ′, 𝑡 ′, 𝑙𝑖𝑠𝑡 ′

𝑠𝑘𝑡
) in T where 𝑡 ≤ 𝑡 ′

output 𝛽 ′
$←− {0, 1}

– Otherwise randomly sample messages 𝑚0 and 𝑚1. Let

𝐼∗ = 𝑡 ∥𝑚. Send to challenger (𝑚0,𝑚1, 𝐼
∗) and receive 𝑐𝑡 .

Compute𝑚′ ← HIBE.Decrypt(𝑠𝑘𝐼 ∗ , 𝑐𝑡). If𝑚 =𝑚0, output

0. If𝑚 = 𝑚1, output 1. If the response is neither, output

𝛽 ′
$←− {0, 1}.

Analysis

In order to be an admissable adversary,Amust return a signature

𝜎∗ and an𝑚∗ that verify where they do not hold a functional key

that has𝑚∗ in its range. The keys that have𝑚∗ in their range are

of the form 𝑓𝑇 where 𝑇 ≥ 𝑡 . In other words, these functional keys

are those that contain some HIBE secret keys that are prefixes of

the identity 𝑡 and no other functional key has such prefix HIBE
keys by the design of the construction. Therefore ifA is admissible,

𝑚∗ = 𝑡 ∥𝑚 will be a valid identity to challenge on.

If A is successful, then 𝜎∗ passed verification meaning for a

random message it acted as a secret key for the identity 𝑡 ∥𝑚. This

implies with high confidence that it is in fact the secret key for

this identity. Decrypting with the secret key for identity 𝑡 ∥𝑚 the
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ciphertext 𝑐𝑡 will be successful with overwhelming probability and

therefore most of the time when A succeeds B succeeds as well.

In any other circumstance, when A is either not admissible or

does not return a valid forgery, B catches this and responds with a

uniform bit. Thus the theorem statement follows.

Theorem E.2. If HIBE is key-indistinguishable then the scheme
in Figure 2 satisfies the functional signatures key-indistinguishability
property.

We prove this by showing how to use an adversary A who

wins the delegatable functional signatures key-indistinguishability

game ExpINDFS to construct an adversary B which wins the HIBE

key-indistinguishability game ExpINDHIBE.

• B receives the keys (𝑝𝑘,𝑚𝑠𝑘) from its challenger and for-

wards it as is to A.

• After this, in the query phase, when A makes a
¯OKey (·)

query for time 𝑡 , adversary B computes 𝑡𝑟𝑎𝑐𝑒 ←
Trace(𝑟𝑜𝑜𝑡, 𝑡) where 𝑟𝑜𝑜𝑡 is the position of𝑚𝑠𝑘 in the HIBE

hierarchy tree. This gives B the list of nodes on which it

queries the key oracle QK(·). Each of the QK(·) query re-

sponse has an identifier id along with the key for a node

𝑠𝑘𝑛𝑜𝑑𝑒 . B maintains a table with entries of the form

(𝑡, id′, {(id, 𝑠𝑘𝑛𝑜𝑑𝑒 )}𝑛𝑜𝑑𝑒∈𝑡𝑟𝑎𝑐𝑒 ) where id′ represents the
counter value corresponding to this particular query from

A. B sends

(id′, 𝑠𝑘𝑡 = {𝑠𝑘𝑛𝑜𝑑𝑒 }𝑛𝑜𝑑𝑒∈𝑡𝑟𝑎𝑐𝑒 )
to A. This is the response A expects as B simulates the

FS.KeyGen(𝑚𝑠𝑘, 𝑡) algorithm with its queries to the HIBE

key oracle.

• When A makes a FS challenge oracle O
Ch
(·, ·, ·) query with

a tuple of the form (𝑖, 𝑡0, 𝑡1), B performs the following oper-

ations:

– Check that 𝑡0 > 𝑡1 and there is a row starting with (𝑖, 𝑡0)
in its table, otherwise return ⊥. This guarantees that on
the shortest paths from the leaf node 𝑡1 to the root in the

HIBE hierarchy tree (Figure 1), there exists an element 𝑗

such that its corresponding HIBE key is present in the set

𝑠𝑘𝑡0
representing the FS key for 𝑡0.

– Compute 𝑠𝑘, 𝑗 ← findPrefix(𝑠𝑘𝑡 , 𝑡1) and
𝑡𝑟𝑎𝑐𝑒 ′ ← Trace(𝑡 𝑗

0
, 𝑡1) which is the trace of leaf node 𝑡1 in

a tree where the root is 𝑡
𝑗

0
, the first 𝑗 bits of 𝑡0. Rerandomize

the key 𝑠𝑘 by computing 𝑠𝑘 ′ ← HIBE.Delegate(𝑝𝑘,
𝑠𝑘, 𝑛𝑖𝑙), similarly rerandomize all the keys in set 𝑠𝑘𝑡0

upto

the 𝑗 ’th position.

– Query the HIBE challenge oracle O
Ch
(·, ·, ·) on tuples

(id𝑗 , 𝑡 𝑗
0
, 𝑛𝑜𝑑𝑒) for all 𝑛𝑜𝑑𝑒 ∈ 𝑡𝑟𝑎𝑐𝑒 ′ where id𝑗 corresponds

to the QK(·) response on 𝑡 𝑗
0
. B finds id𝑗 in its table, in

the row corresponding to 𝑡0.

– Compile all the rerandomized keys and the keys received

from the key oracle into set 𝑠𝑘𝑡1
. Send 𝑠𝑘𝑡1

to A. This is

the responseA expect as B simulates either FS.KeyGen()
or FS.Delegate() depending on the challenger’s sampled

bit 𝛽 .

• At the end, A outputs its guess 𝛽 ′ for 𝛽 , B forwards this

without change to the challenger. The advantage of B in

winning the ExpINDHIBE game is same as the advantage ofA in

winning the ExpINDFS game as all the responses toA’s queries

are simulated correctly by B.

F PROOF OF K-HOP DENIABILITY
Theorem F.1. Any time-deniable signature scheme satisfying the

deniability property as defined in definition 5.4, also satisfies the 𝑘-hop
deniability property as defined in definition 5.5.

We prove this by a hybrid argument, starting with the security

game where the challenger chooses 𝛽 = 1 and ending with one

where they choose 𝛽 = 0. Because the advantage of A will change

negligibly between hybrids, wewill be able to say that the difference

between the output of the adversary when 𝛽 = 0 and 𝛽 = 1 is negl.

which is equivalent to adversarial advantage being negl. within a

factor of 2. Where details are omitted in a description of hybridH𝑖

it is assumed they are the same asH𝑖−1.

LetH0 be the k-hop security game with 𝛽 = 1 and consider the

sequence of hybridsH1 . . .H𝑘−1
that are defined as follows:

H𝑖 = Set 𝛽 = 1. Generate 𝜎 as

AltSign𝑘−𝑖 (𝑣𝑘, (𝑚𝑖 , 𝑡𝑖 , 𝜎𝑖 ), {(𝑚𝑖+1, 𝑡𝑖+1), . . . , (𝑚∗, 𝑡∗)}) (6)

where 𝜎𝑖 ← Sign(𝑠𝑘,𝑚𝑖 , 𝑡𝑖 ).
In the discussion that follows, let AdvH𝑖

A (𝜆) be the advantage of
A when it plays the modified gameH𝑖 and let AdvH𝑖 ,H𝑖−1

D (𝜆,A)
denote the advantage of a distinguisher D in distinguishing A’s

advantage inH𝑖 andH𝑖−1

Claim 4. ∀𝑖 ∈ [𝑘], |AdvH𝑖−1

A𝜆
(𝜆) − AdvH𝑖

A𝜆
(𝜆) | ≤ negl(𝜆)

Suppose this is not true. Then ∃ a distinguisher D, s.t.

AdvH𝑖 ,H𝑖−1

D (𝜆,A𝜆) = 𝜌 (𝜆) and 𝜌 (𝜆) is non-negligible. We now

use D and the adversary A𝜆 to construct an adversary B that has

non-negligible advantage in ExpINDDS .

Description of B

• B receives 𝑣𝑘 from its challenger and sends it to A𝜆 . It also

initializes an empty table T .
• In the query phase, B responds to the sign queries from A𝜆

using the OSign oracle: it forwards (𝑚, 𝑡) to OSign, receives
(id, 𝜎), and records (id,𝑚, 𝑡, 𝜎) in T . It then returns (id, 𝜎)
to A𝜆 .

• In the query phase, let a challenge query to O
Ch

from A𝜆

be id, {(𝑚 𝑗 , 𝑡 𝑗 )} 𝑗 ∈[𝑘−1] ,𝑚
∗, 𝑡∗.

– Check if T has an identifier id. If not output ⊥.
– If 𝑖 = 1, let id′ = id. Otherwise query OSign on (𝑚𝑖−1, 𝑡𝑖−1)
to get id′, 𝜎 . B makes a query to its challenge oracle with

id′,𝑚𝑖 , 𝑡𝑖 and receives 𝜎𝑖 .

– Compute 𝜎∗ ← AltSign𝑘−𝑖 (𝑣𝑘, (𝑚𝑖 , 𝑡𝑖 , 𝜎𝑖 ),
{(𝑚𝑖+1, 𝑡𝑖+1), . . . (𝑚∗, 𝑡∗)}) and send 𝜎∗ to A𝜆

• Let 𝑏 be the output of A𝜆 . Send the result of the equality

check 𝑏 == 1 to D. If D returns 𝑧 return 𝑧.

Analysis We now analyze B’s success probability. In the discus-

sion that follows, let 𝛽 be the bit chosen by the challenger in the
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ExpINDDS game.

Pr(B outputs 𝛽) = 1

2

Pr(B outputs 𝛽 | 𝛽 = 0)+
1

2

Pr(B outputs 𝛽 | 𝛽 = 1)

=
1

2

Pr(Pr(D outputs 1 inH𝑖 )+
1

2

Pr(D outputs 0 inH𝑖−1)

= Pr(D succeeds )

=
1

2

+ AdvH𝑖 ,H𝑖−1

D (𝜆,A𝜆)

=
1

2

+ 𝜌 (𝜆) =⇒

Adv
ExpINDDS
B = 𝜌 (𝜆)

This advantage is non-negligible because 𝜌 is non-negligible.

However, on the other hand, the advantage must be negligible

because our scheme satisfies one-hop security. Thus no such distin-

guisher can exist and the claim follows.

H𝑘+1 = set 𝛽 = 0

Let 𝑋 0
be the distribution of the output of A inH𝑘 and 𝑋 1

be

the distribution of the output of A inH𝑘+1.

Claim 5. ∀ n.u.p.p.t distinguishers D,
| Pr(𝐷 (𝑥) = 1|𝑥 ← 𝑋 0) − Pr(𝐷 (𝑥) = 1|𝑥 ← 𝑋 1) | ≤ negl(𝜆)

InH𝑘 we have replaced AltSign𝑘 with

AltSign𝑘−𝑘 (𝑣𝑘, (𝑚∗, 𝑡∗, 𝜎), {}) = AltSign0 (𝑣𝑘, (𝑚∗, 𝑡∗, 𝜎), {}) = 𝜎

where 𝜎 ← Sign(𝑠𝑘,𝑚∗, 𝑡∗). Therefore,H𝑘 andH𝑘+1 result in A
seeing the exact same distribution of input. This means the output

of A cannot depend on 𝛽 and 𝑋 0 = 𝑋 1
. Thus the claim is trivially

true.

G LEWKO’S PRIME-ORDER HIBE SCHEME
This is a description of Lewko’s[26] prime order translation for an

unbounded HIBE scheme. This scheme performs some operations

over vectors of 𝑛-dimensional space, similar to Lewko’s work we

describe the scheme for 𝑛 = 10.

Setup(1𝜆) → (𝑝𝑘,𝑚𝑠𝑘): The setup algorithm takes as input the

security parameter 1
𝜆
. A bilinear group 𝐺 of sufficiently

large prime order 𝑝 is selected, where the bilinear map is

denoted by 𝑒 : 𝐺 ×𝐺 → 𝐺𝑇 . The random dual orthonormal

bases required for the scheme are also sampled as part of

this algorithm (D,D∗) 𝑅←− Dual

(
Z𝑛𝑝

)
. Let D = { ®𝑑1, . . . , ®𝑑𝑛}

and D∗ = { ®𝑑∗
1
, . . . , ®𝑑∗𝑛}. It also chooses random exponents

𝛼1, 𝛼2, 𝜃, 𝜎,𝛾, 𝜉 ∈ Z𝑝 . The public parameters, which we de-

scribe as part of the public key are

𝑝𝑘 =

{
𝐺, 𝑝, 𝑒 (𝑔,𝑔)𝛼1

®𝑑1 · ®𝑑∗
1 , 𝑒 (𝑔,𝑔)𝛼2

®𝑑2 · ®𝑑∗
2 , 𝑔
®𝑑1 , . . . , 𝑔

®𝑑6

}
and the master secret key is

𝑚𝑠𝑘 = {𝐺, 𝑝, 𝛼1, 𝛼2, 𝑔
®𝑑∗
1 , 𝑔
®𝑑∗
2 , 𝑔𝛾

−→
𝑑∗

1 , 𝑔𝜉
®𝑑∗
2 , 𝑔𝜃

®𝑑∗
3 , 𝑔𝜃

®𝑑∗
4 , 𝑔𝜎

®𝑑∗
5 , 𝑔𝜎

®𝑑∗
6 }

KeyGen(𝑚𝑠𝑘,
(
𝐼𝐷1, . . . , 𝐼𝐷 𝑗

) )
→ 𝑠𝑘𝐼𝐷 : The key generation algo-

rithm samples random values 𝑟 𝑖
1
, 𝑟 𝑖

2

$←− Z𝑝 for each 𝑖 ∈ [ 𝑗].

It also samples random values 𝑦𝑖
$←− Z𝑝 and 𝑤𝑖

$←− Z𝑝 for

𝑖 ∈ [ 𝑗] under the constraints that 𝑦1 +𝑦2 + · · · +𝑦 𝑗 = 𝛼1 and

𝑤1 +𝑤2 + · · · +𝑤 𝑗 = 𝛼2. For each 𝑖 ∈ [ 𝑗], it computes:

𝐾𝑖 := 𝑔𝑦𝑖
−→
𝑑∗

1
+𝑤𝑖

−→
𝑑∗

2
+𝑟 𝑖

1
𝐼𝐷𝑖𝜃 ®𝑑∗

3
−𝑟 𝑖

1
𝜃 ®𝑑∗

4
+𝑟 𝑖

2
𝐼𝐷𝑖𝜎 ®𝑑∗

5
−𝑟 𝑖

2
𝜎
−→
𝑑∗

6

The secret key is output as:

𝑠𝑘𝐼𝐷 =

{
𝑔𝛾
®𝑑∗
1 , 𝑔𝜉

®𝑑∗
2 , 𝑔𝜃

®𝑑∗
3 , 𝑔𝜃

®𝑑∗
4 , 𝑔𝜎𝑑

∗
5 , 𝑔𝜎

®𝑑∗
6 , 𝐾1, . . . , 𝐾 𝑗

}
Delegate(𝑠𝑘𝐼𝐷 , 𝐼𝐷 𝑗+1) → 𝑠𝑘𝐼𝐷 |𝐼𝐷 𝑗+1 : The delegation algorithm

samples random values 𝜔𝑖
1
, 𝜔𝑖

2

$←− Z𝑝 for each 𝑖 ∈ [ 𝑗 + 1].

It also samples random values 𝑦′
𝑖
,𝑤 ′

𝑖

$←− Z𝑝 for 𝑖 ∈ [ 𝑗 + 1]
subject to the constraint that𝑦′

1
+· · ·𝑦′

𝑗+1 = 0 = 𝑤 ′
1
+· · ·𝑤 ′

𝑗+1.

Let 𝑔𝛾
®𝑑∗
1 , 𝑔𝜉

®𝑑∗
2 , 𝑔𝜃

®𝑑∗
3 , 𝑔𝜃

®𝑑∗
4 , 𝑔𝜎

®𝑑∗
5 , 𝑔𝜎

®𝑑∗
6 ,𝐾1, . . . , 𝐾 𝑗 denote the el-

ements of 𝑠𝑘𝐼𝐷 . The delegated key 𝑠𝑘𝐼𝐷 |𝐼𝐷 𝑗+1 is formed as

follows:

𝑠𝑘𝐼𝐷 |𝐼𝐷 𝑗+1 :=

{
𝑔𝛾
®𝑑∗
1 , 𝑔𝜉

®𝑑∗
2 , 𝑔𝜃

®𝑑∗
3 , 𝑔𝜃

®𝑑∗
4 , 𝑔𝜎

®𝑑∗
5 , 𝑔𝜎

®𝑑∗
6

𝐾1 · 𝑔𝑦
′
1
𝛾 ®𝑑∗

1
+𝑤′

1
𝜉 ®𝑑∗

2
+𝜔1

1
𝐼𝐷1𝜃 ®𝑑∗

3
−𝜔1

1
𝜃 ®𝑑∗

4
+𝜔1

2
𝐼𝐷1𝜎 ®𝑑∗

5
−𝜔1

2
𝜎 ®𝑑∗

6

. . . , 𝐾𝑗 · 𝑔𝑦
′
𝑗𝛾
®𝑑∗
1
+𝑤′𝑗 𝜉 ®𝑑∗2+𝜔

𝑗

1
𝐼𝐷1𝜃 ®𝑑∗

3
−𝜔 𝑗

1
𝜃 ®𝑑∗

4
+𝜔 𝑗

2
𝐼𝐷1𝜎 ®𝑑∗

5
−𝜔 𝑗

2
𝜎
−→
𝑑∗

6

𝑔
𝑦′𝑗+1𝛾

®𝑑∗
1
+𝑤′𝑗+1𝜉 ®𝑑∗2+𝜔

𝑗+1
1

𝐼𝐷 𝑗+1𝜃 ®𝑑∗
3

·𝑔−𝜔
𝑗+1
1

𝜃 ®𝑑∗
4
+𝜔 𝑗+1

2
𝐼𝐷 𝑗+1𝜎 ®𝑑∗

5
−𝜔 𝑗+1

2
𝜎 ®𝑑∗

6

Encrypt(𝑝𝑘,𝑀, 𝐼𝐷) → ct: The encryption algorithm samples ran-

dom values 𝑡𝑖
1
, 𝑡𝑖

2
for each 𝑖 ∈ [ 𝑗], as well as random values

𝑠1, 𝑠2
$←− Z𝑝 . It computes

𝐶0 := 𝑀𝑒 (𝑔,𝑔)𝛼1𝑠1
®𝑑1 · ®𝑑∗

1𝑒 (𝑔,𝑔)𝛼2𝑠2
®𝑑2 ·
−→
𝑑∗

2

and

𝐶𝑖 := 𝑔𝑠1
®𝑑1+𝑠2

®𝑑2+𝑡𝑖
1

®𝑑3+𝐼𝐷𝑖𝑡
𝑖
1

®𝑑4+𝑡𝑖
2

®𝑑5+𝐼𝐷𝑖𝑡
𝑖
2

®𝑑6

for each 𝑖 ∈ [ 𝑗]. The ciphertext is 𝑐𝑡 :=
{
𝐶0,𝐶1, . . . ,𝐶 𝑗

}
Decrypt(𝑐𝑡, 𝑠𝑘𝐼𝐷 ) → 𝑀 : The decryption algorithm computes

𝐵 :=

𝑗∏
𝑖=1

𝑒 (𝐶𝑖 , 𝐾𝑖 )

and computes the message as:

𝑀 = 𝐶0/𝐵

G.1 Proof of Key-Indistinguishability
Theorem G.1. The prime order variant of Lewko’s scheme from

[26] satisfies the key-indistinguishability property.

The delegation algorithm (in Appendix G) in Lewko’s prime

order scheme [26] re-randomizes each exponent in a secret key.

Each group element (the ones which are unique for an identity) in

the key generated by KeyGen(), is of the form:

𝐾𝑖 := 𝑔𝑦𝑖
−→
𝑑∗

1
+𝑤𝑖

−→
𝑑∗

2
+𝑟 𝑖

1
𝐼𝐷𝑖𝜃 ®𝑑∗

3
−𝑟 𝑖

1
𝜃 ®𝑑∗

4
+𝑟 𝑖

2
𝐼𝐷𝑖𝜎 ®𝑑∗

5
−𝑟 𝑖

2
𝜎
−→
𝑑∗

6
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Where the values𝑦𝑖
$←− Z𝑝 and𝑤𝑖

$←− Z𝑝 for 𝑖 ∈ [ 𝑗 +1] are under
the constraints that𝑦1+𝑦2+· · ·+𝑦 𝑗+1 = 𝛼1 and𝑤1+𝑤2+· · ·+𝑤 𝑗+1 =

𝛼2.

Whereas, in the key generated by Delegate(), each group ele-

ment (the ones which are unique for an identity) is of the form:

𝐾 ′
𝑖
= 𝐾∗

𝑖
· 𝑔𝑦′𝑖𝛾 ®𝑑∗1+𝑤′𝑖𝜉 ®𝑑∗2+𝜔𝑖

1
𝐼𝐷1𝜃 ®𝑑∗

3
−𝜔𝑖

1
𝜃 ®𝑑∗

4
+𝜔𝑖

2
𝐼𝐷1𝜎 ®𝑑∗

5
−𝜔𝑖

2
𝜎
−→
𝑑∗

6

Where 𝐾∗
𝑖
is the 𝑖’th group element of the key of the identity,

which was used as an input for Delegate(). The following variables
are sampled uniformly at random, 𝜔𝑖

1
, 𝜔𝑖

2

$←− Z𝑝 for each 𝑖 ∈ [ 𝑗 + 1].

It also samples random values 𝑦′
𝑖
,𝑤 ′

𝑖

$←− Z𝑝 for 𝑖 ∈ [ 𝑗 + 1] subject
to the constraint that 𝑦′

1
+ · · ·𝑦′

𝑗+1 = 0 = 𝑤 ′
1
+ · · ·𝑤 ′

𝑗+1.
The key fact to note is that the exponent of 𝑔 in 𝐾 ′

𝑖
the vari-

ables 𝑦∗
1
+ 𝛾𝑦′

1
, . . . , 𝑦∗

𝑗
+ 𝛾𝑦′

𝑗
, 𝛾𝑦′

𝑗+1 are randomly distributed up to

the constraint that their sum is 𝛼1, and similarly𝑤1 + 𝜉𝑤 ′
1
, . . . ,𝑤 𝑗 +

𝜉𝑤 ′
𝑗
, 𝜉𝑤 ′

𝑗+1 are randomly distributed up to the constraint that their

sum is 𝛼2. Also, 𝑟
𝑖
1
+𝜔𝑖

1
and 𝑟 𝑖

2
+𝜔𝑖

2
are uniformly random for each 𝑖 .

The keys generated via KeyGen() are also sampled from the same

distributions with the exact same constraints. This gives us the fact

that the distribution of a secret key obtained through any sequence

of delegations is the same as the distribution of a secret key for the

same identity generated via KeyGen() making them statistically

indistinguishable. In fact, this is noted by Lewko in the description

of the scheme as well. Moreover, the fact that the adversary has the

master secret key𝑚𝑠𝑘 , doesn’t give it any advantage because the

two keys generated only differ in the randomness used to gener-

ate them, having the𝑚𝑠𝑘 doesn’t give the adversary any way to

distinguish between these two because they are statistically indis-

tinguishable. Therefore, the challenge key pairs (𝑠𝑘𝛽 , 𝑠𝑘1−𝛽 ) for the
HIBE key-indistinguishability game ExpINDHIBE are indistinguishable

to any PPT adversary.

Theorem G.2. The HIBE scheme from [13] satisfies the
key-indistinguishability property.

In a very similar manner to the key delegation algorithm in

Lewko’s prime order scheme, the delegation algorithm in the HIBE

scheme from [13] also performs re-randomization of each exponent

in a secret key.We give a brief description of the relevant algorithms

below, and refer readers to [13] for a detailed description of the

scheme:

• Setup

(
1
𝜆, 𝑑

)
This algorithm takes in the security param-

eter 𝜆, a depth parameter 𝑑 and generates a bilinear pair-

ing G := (𝑞,𝐺1,𝐺2,𝐺𝑇 , 𝑔1, 𝑔2, 𝑒) for sufficiently large prime

order 𝑞. The algorithm samples random dual orthonormal

bases,

{(
D𝑖 ,D

∗
𝑖

)}
𝑖=0,...,𝑑

←R Dual

(
Z3

𝑞,Z
4

𝑞, . . . ,Z
4

𝑞

)
. It out-

puts the public parameters as

PP :={ {G;𝑔𝑇 , 𝑔
d1,0

1
, 𝑔

d3,0

1
,

{
𝑔
d1,𝑖

1
, 𝑔

d2,𝑖

1

}
𝑖=1,...,𝑑

, 𝑔
d∗

1,0

1
,{

𝑔
d∗

1,𝑖

1
, 𝑔

d∗
2,𝑖

1

}
𝑖=1,...,𝑑

} ∈ 𝐺𝑇 ×
(
𝐺3

1

)
2

×
(
𝐺4

1

)
2𝑑 ×𝐺3

2
×

(
𝐺4

2

)
2𝑑

and the master key MK := 𝑔
d∗

3,0

1
∈ 𝐺3

2
.

• KeyGen (PP,MK, (id1, . . . , idℓ )) This algorithm picks

𝑟1, . . . , 𝑟ℓ , 𝑠1, . . . , 𝑠ℓ ←R Z𝑞 and sets 𝑠0 := 𝑠1 + · · · + 𝑠ℓ . The
secret key is computed as SK(id1,...,idℓ ) := {K0 := 𝑔

−𝑠0d∗
1,0+d∗3,0

2
,

{
K𝑖 := 𝑔

𝑠𝑖d∗
1,𝑖+𝑟𝑖

(
id𝑖d∗

1,𝑖−d∗2,𝑖
)

2

}
𝑖=1,...,ℓ

} ∈ 𝐺3

2
×

(
𝐺4

2

)ℓ
• KeyDel

(
PP, SK(id1,...,idℓ ) ,

(
id
′
1
, . . . , id′ℓ

) )
This algorithm picks

𝑟 ′
1
, . . . , 𝑟 ′

ℓ′, 𝑠
′
1
, . . . , 𝑠 ′

ℓ′ ←R Z𝑞 and sets 𝑠 ′
0

:= 𝑠 ′
1
+ · · · + 𝑠 ′

ℓ′ . The

secret key is computed as SK
(
id
′
1
,...,id′

ℓ′
)

:= {K′
0

:= K0 ·𝑔
−𝑠′

0
d∗

1,0

2
,{

K
′
𝑖

:= K𝑖 · 𝑔
𝑠′𝑖d
∗
1,𝑖+𝑟 ′𝑖

(
id
′
𝑖d
∗
1,𝑖−d∗2,𝑖

)
2

}
𝑖=1,...,ℓ′

} ∈ 𝐺3

2
×

(
𝐺4

2

)ℓ′
Therefore, following the same argument as the proof of Theo-

rem G.1, the distribution of the secret key for a particular identity

generated via any sequence of delegations is the same as the distri-

bution of a secret key for the same identity generated via KeyGen().
Therefore, the challenge key pairs (𝑠𝑘𝛽 , 𝑠𝑘1−𝛽 ) for the HIBE key-

indistinguishability game ExpINDHIBE are indistinguishable to any PPT

adversary.

H ANALYSIS OF SIGNATURE SIZE FOR
VARIOUS VALUES OF 𝑁

Figure 5: The signature size - including the encrypted func-
tional key in the time lock puzzle - for a time-deniable sig-
nature scheme using the Lewko HIBE with SS512 and the
CLLWWHIBE with BN254, varying values of 𝑁

I ON THE NECESSITY OF TIME-LOCK
ENCRYPTION

Our construction of time-deniable signatures makes uses of time-

lock puzzles to achieve short-term unforgeability. We show that the

use of such a primitive is to an extent inherent. Namely, assuming

extractable witness encryption [18, 21], we show that time-deniable

signatures imply time-lock puzzles.

We remark that while extractable witness encryption is a strong

tool, it alone is not known to imply time-lock puzzles.
8

8
When supplemented with a computational reference clock, it is known to imply time

lock puzzles [30].
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Time-Lock Encryption from Time-Deniable Signatures. To
construct a time-lock encryption scheme using deniable signa-

tures and extractable witness encryption, consider (𝑣𝑘, 𝑠𝑘) ←
DS.KeyGen(1𝜆,𝑇 (𝜆)) and 𝜎 ← DS.Sign(𝑠𝑘,𝑚, 𝑡). Witness encryp-

tion schemes allow encrypting a message𝑚 to an instance 𝑥 of an

NP language and allows decryption using a valid witness𝑤 such

that (𝑥,𝑤) ∈ 𝑅. For a detailed discussion on witness encryption

and extractable security we refer readers to the work [21] of Gold-

wasser et al. Now consider a witness encryption scheme which

encrypts to statements of the form 𝑥 = (𝑚, 𝑡, 𝜎, 𝑣𝑘) for a relation
𝑅 where for witnesses of the forms 𝑤 = (𝑚∗, 𝑡∗, 𝜎∗), (𝑥,𝑤) ∈ 𝑅 if

DS.Verify(𝑣𝑘, 𝜎∗,𝑚∗, 𝑡∗) = 1. We also provide the intuition behind

why this scheme is secure. The time-lock encryption algorithms

proceed as follows

(1) TL.Encrypt(1𝜆,𝑚, 𝑡 + 𝑇 ): It outputs 𝑐𝑡 ← WE.Encrypt(1𝜆
, 𝑥,𝑚), where 𝑥 = (𝑚, 𝑡, 𝜎, 𝑣𝑘).

(2) TL.Decrypt(𝑐𝑡,𝑤): Since it takes time 𝑇 to create 𝜎∗ from 𝜎 ,

after time𝑇 a valid witness is available to run the decryption

algorithm for WE with witness (𝑚∗, 𝑡∗, 𝜎∗). Output𝑚′ ←
WE.Decrypt(𝑐𝑡,𝑤).

The intuition behind the security argument is essentially that

no admissible adversary should be able to distinguish an encryp-

tion of 𝑚0 from an encryption of 𝑚1 as this adversary is depth

bounded. Otherwise, such an adversary computes 𝑤 ∈ 𝑅, i.e., a
different signature 𝜎∗ on some message, timestamp pair (𝑚∗, 𝑡∗)
by performing significantly less operations than the number of op-

erations required. This adversary is solving the time-lock puzzle in

sequential time less than 𝑇 . Given such a distinguishing adversary

we can leverage the extractor for witness encryption to break the

unforgeability property for deniable signatures.

J ON THE NECESSITY OF SECURE
TIMESTAMPS

Recall that in our definition, the AltSign algorithm takes as input a

previously computed valid signature (or forgery). In particular, our

notion does not rely upon the use of cryptographic timestamps.

An alternative notion discussed in Section 2 is one where AltSign
does not require a previously computed signature as input; instead

it only uses a timestamp issued by an external server to create a

forgery. We argue that in the latter case, the timestamps issued by

the server must be cryptographic (and in particular, unpredictable

or unforgeable, depending on the implementation).

Suppose this is not the case. Then we can devise a simple attack

using the AltSign algorithm to break the unforgeability of the sig-

nature scheme. Consider a (non-uniform) adversaryA = (A0,A1)
that wants to generate a forged signature for any message𝑚∗, and
any time-stamp 𝑡∗. Since we allow for arbitrary polynomial time

pre-processing in the unforegeability game, A0 runs AltSign on

input𝑚∗ and 𝑔(𝑡∗) to compute a forged signature, where 𝑔(·) com-

putes the output of the time server for time 𝑡∗ (this also captures the
scenario that the time stamp is entirely ignored by Sign/AltSign).
Since there is no security property associated with the timestamps

issued by the server, 𝑔(·) is a function that can be computed effi-

ciently, so A0 is polynomial time.

Let 𝜎∗ be the forged signature computed by A0, who passes

it along to A1 to output as its forgery. Since the above strategy

works for any (𝑚∗, 𝑡∗), and A1 needs only a single computational

step (to output the forged signature received from A0), this attack

constitutes a valid forgery of the time-deniable signature scheme.

K EPOCHAL SIGNATURES
We recall the unforgeability game and definitions from the work

[24] by Hülsing and Weber. An epochal signature scheme ES has
the following four algorithms:

ES.KeyGen(1𝜆,Δ𝑡, 𝐸,𝑉 ) → (𝑝𝑘, 𝑠𝑘): Takes as input a security-

parameter 1
𝜆
, an epoch-length Δ𝑡 , the maximum number

of epochs 𝐸 ∈ poly(𝜆) and the number of epochs 𝑉 < 𝐸 for

which the signatures are valid and generates the long-term

key pair (𝑝𝑘, 𝑠𝑘).
ES.Evolve(𝑠𝑘) → (𝑝𝑖𝑛𝑓 𝑜𝑒 , 𝑠𝑘 ′/⊥): Takes as input the long-term

secret key 𝑠𝑘 and returns the public epoch information𝑝𝑖𝑛𝑓 𝑜𝑒
and an updated secret key 𝑠𝑘 ′ or ⊥ if 𝑠𝑘 has already been

evolved 𝐸 times.

ES.Sign(𝑠𝑘𝑒 ,𝑚) → 𝜎 : Takes as input a secret key 𝑠𝑘𝑒 and a mes-

sage 𝑚 and outputs a signature 𝜎 for the corresponding

epoch 𝑒 .

ES.Verify(𝑝𝑘, 𝑒, 𝜎,𝑚) → 𝑏: Takes as input the public key 𝑝𝑘 , an

epoch 𝑒 , a signature 𝜎 and a message𝑚 and returns a bit 𝑏.

The unforgeability definition is defined with respect to the un-

forgeability game ExpUNFES defined as follows:

Setup. The challenger runs (𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆,Δ𝑡, 𝐸,𝑉 ) and
gives the public key 𝑝𝑘 to the adversary A. It sets 𝑡0 to the

current time, sets 𝑒 = 0 and initializes the set of queries

𝑞 = [∅, . . . , ∅], where the 𝑘’th entry in the set corresponds

to the set of queries asked in epoch 𝑘 .

Query Phase. In this phase, the adversary gets to query two

different oracles.

(1) The key evolution oracle OEvolve (·) takes as input some

wall clock time 𝑡 , checks that 𝑡 ≥ 𝑡0 + 𝑒.Δ𝑡 which indi-

cates that the current time is the 𝑒’th epoch. It computes

(𝑝𝑖𝑛𝑓 𝑜𝑒 , 𝑠𝑘𝑒 ) ← Evolve(𝑠𝑘) if 𝑡 satisfies the above prop-
erties. At the end of an OEvolve (𝑠𝑘, ·) query, the adversary
also gets access to the corresponding sign oracle for epoch

𝑒 , OSign (𝑠𝑘𝑒 , ·).
(2) The sign oracle OSign (𝑠𝑘𝑒 , ·, ·) takes as input a secret key

𝑠𝑘𝑒 , wall-clock time 𝑡 and a message𝑚. If 𝑡 < 𝑡0 + 𝑒.Δ𝑡 ,
it outputs a signature 𝜎 ← Sign(𝑠𝑘𝑒 ,𝑚) on the message

and updates the corresponding epoch in the query set

𝑞 [𝑒] ∪ {𝑚}.
Forge. The adversary outputs its forgery (𝜎 ′,𝑚′) and wins (game

outputs 1) if:

(1) For the corresponding epoch 𝑒 ′, there is no query corre-

sponding to this message (𝑚′, 𝑒 ′) ∉ 𝑞 [𝑒 ′].
(2) Verify(𝑝𝑘, 𝑒 ′, 𝜎 ′,𝑚′) outputs 1.

The advantage of the adversary A is defined as

AdvA (1𝜆,Δ𝑡) = Pr

[
ExpUNFES (1

𝜆,Δ𝑡, 𝐸,𝑉 ) = 1

]
.

Remark: To the best of our knowledge the authors do not define

the function now(). We assume that this is the current time value

and hence implies the existence of a wall clock.

Definition K.1 (Unforgeability of Epochal Signatures). An epochal

signature scheme Σ is unforgeable if there is no efficient adversary
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that has a non-negligible chance of winning the unforgeability

game ExpUNFES :

∀A ∈ PPT, 𝜆 ∈ N, 𝐸 ∈ poly(𝜆),𝑉 ∈ {1, . . . , 𝐸 − 1} :

AdvA (1𝜆,Δ𝑡) ≤ negl(𝜆)

K.1 Faulty Epochal Signature Construction
Given a secure epochal signature construction Σ, we use it to con-

struct another secure epochal signature scheme Σ′ which has unde-

sirable properties as discussed in Section 3. However, due to certain

properties implicit in the definition of an epochal signature scheme,

the scheme we present as the counter example is fairly intricate. We

begin with an informal description of the counter example, which

suffices for a relaxed notion of epochal signatures. We build upon

this to present our final scheme Σ′ - we formally argue that Σ′ (i) is
a secure epochal signature scheme; and (ii) is not a time-deniable

signature scheme.

We first consider a counter example that satisfies a weaker but

still reasonable notion of deniability where the judge never gets

access to any secret key material. In this setting, our counter exam-

ple is fairly simple: each epoch 𝑒 has a special trigger message𝑚∗𝑒
associated with it. If a signature ever needs to be made on𝑚∗𝑒 , in
epoch 𝑒 , then the signature contains the master secret key𝑚𝑠𝑘 of

the scheme. Included with every signature is a time lock puzzle that

holds the special trigger message𝑚∗𝑒 , where the difficulty parameter

on the puzzle is slightly more than Δ𝑡 . It is straightforward to see

that this scheme is still secure under the ES unforgeability game:

the epoch 𝑒 will always expire by the time the adversary could

attempt to use𝑚∗𝑒 by solving the time lock puzzle. However, in the

unforgeability game of time-deniable signatures, such a scheme is

trivially defeated by an adversary in the pre-processing phase since

the time lock puzzle can be solved during this phase.

The main problem with this counter-example is that the con-

struction does not satisfy perfect deniability. Perfect deniability
requires that one can simulate a single signature perfectly without

revealing whether or not the signature was a forgery. Specifically

in our counter example, we must ensure that one reply can never

give away𝑚𝑠𝑘 . To accomplish this, we encrypt𝑚𝑠𝑘 under a key

that is (2,2) secret shared. In order to recover the key, the adver-

sary must make two queries which is explicitly disallowed in the

deniability definition of epochal signatures. This ensures that only

one share of the key is ever recovered, and thus we can simulate

this share correctly without knowledge of𝑚𝑠𝑘 . The final construc-

tion is presented in Figure 6. We would like to emphasize that this

counter example is meant to show weaknesses in the unforgeability

definition and that almost all of the complexity is added because of

the deniability definition.

Theorem K.2. The epochal signature construction in figure 6 is
unforgeable under the security game of definition K.1

Proof. We prove this by a standard hybrid argument starting

with the real unforgeability game of H0. For any hybrid H𝑖 , the

output ofH𝑖 is considered to be the challenger’s output bit i.e. the

adversary’s success probability. This is related but not necessarily

equal toAdvH𝑖

A . Therefore, the statementH𝑖 ≈ H𝑖+1 means that the

probability of A succeeding between two different hybrid games

is negligible. For security, we want AdvH0

𝐴
(𝜆) ≤ negl(𝜆) where

negl(𝜆) is a negligible function in the security parameter 𝜆. Where

details are omitted from the description of hybridH𝑖 , it is assumed

that they are the same as inH𝑖−1.

H1 : Guess the challenge epoch 𝑒∗ of A by uniformly choosing

an epoch in {1, . . . , 𝐸} where 𝐸 is the maximum number of epochs.

If the guess is incorrect, the challenger’s output is 0.

Analysis:

AdvH1

A (𝜆) =
1

𝐸
· AdvH0

A (𝜆)
□

Let 𝑟0, 𝑟1, 𝑟2, 𝑟3 be the ephemeral randomness used in an epoch

𝑒 . Consider the following hybrid,

H3: If ∃𝑒 ∈ {1, . . . 𝑒∗} such that A queries the sign oracle on

messages 𝑟0 or 𝑟1, the challenger outputs 0.

Let 𝐹 be the event that on at least one epoch 𝑒 ∈ {1, ...𝑒∗}, A
queries on one or both of 𝑟0 and 𝑟1. If Pr[𝐹 ] ≤ negl(𝜆), thenH1 ≈
H3.

Lemma K.3. Pr[𝐹 ] ≤ negl(𝜆)

Wefirst provide a sequence of hybridsH2

𝑖, 𝑗,𝑘
where 𝑖 ∈ {1, . . . , 𝑒∗},

𝑗 ∈ N, 𝑘 ∈ {0, 1}.
H2

𝑖, 𝑗,𝑘
: Let 𝑟0, 𝑟1, 𝑟2, 𝑟3 be the ephemeral randomness used in

epoch 𝑖 . If 𝑗 is not 0, on the 𝑗𝑡ℎ sign query ofA the time lock puzzle

that normally holds 𝑟𝑘 instead encrypts another random value ˆ𝑟𝑘
where ˆ𝑟𝑘 ≠ 𝑟𝑘 .

Note thatH1 = H2

1,0,𝑘
for any 𝑘 . For a given epoch 𝑖 , we will be

concerned with the possibly infinite sequence of hybrids

(H2

𝑖,0,0
,H2

𝑖,0,1
,H2

𝑖,1,0
,H2

𝑖,1,1
, . . .) If this sequence is actually finite

with the last query of A in 𝑖 being 𝑟 (𝜆), thenH2

𝑖,𝑟 (𝜆),1 = H2

𝑖+1,0,0.

Claim 6. ∀𝑖 ∈ {1, . . . 𝑒∗},∀𝑗 ∈ {1, . . . , },H2

𝑖, 𝑗−1,1
≈ H2

𝑖, 𝑗,0

Suppose this is not true and there exists a distinguisher 𝐷 with

non-negligible advantage that distinguishes between A’s success

probability inH2

𝑖, 𝑗−1,1
andH2

𝑖, 𝑗,0
that outputs 0 when it thinksA’s

success is from H𝑖, 𝑗−1,1 and 1 otherwise. Consider the following

TimeLock adversary B which uses A and 𝐷 to break the security

of the TimeLock.
Description of TimeLock adversary B:

• Execute Σ.KeyGen(1𝜆,Δ𝑡, 𝐸,𝑉 ) to get 𝑝𝑘, 𝑠𝑘 . Give 𝑝𝑘 to A
• On queries in epochs 𝑒 > 𝑖 , respond as normal.

• For the 𝑗𝑡ℎ query in 𝑖 , sample𝑚 uniformly from R subject to

the constraint that𝑚 is not equal to 𝑟0. Send to the TimeLock
challenger (𝑟0,𝑚). Receive 𝑠 . Construct 𝜎, 𝑐 ′𝑡𝑙𝑝 , 𝑐𝑠𝑘 , 𝑟

′
as nor-

mal and send to A the signature 𝜎, 𝑠, 𝑐 ′
𝑡𝑙𝑝
, 𝑐𝑠𝑘 , 𝑟

′
.

• Let 𝑏 ′ be the output of A. Send 𝑏 = 𝑏 ′ to 𝐷 . If 𝐷 outputs
ˆ𝑏

respond with
ˆ𝑏.

Analysis:

The probability that B wins is equivalent to the probability

of 𝐷 distinguishing correctly. Since 𝐷 by assumption has non-

negligible advantage so does B, in contradiction to the security of
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KeyGen(1𝜆,Δ𝑡, 𝐸,𝑉 ) :

𝑝𝑘, 𝑠𝑘 ←
Σ.KeyGen(1𝜆,Δ𝑡, 𝐸,𝑉 )
return (𝑝𝑘, 𝑠𝑘)

Evolve(𝑠𝑘′𝑒 ) :

if 𝑒 == 0:

𝑠𝑘𝑒 ← sk′𝑒
return Σ.Evolve(𝑠𝑘𝑒 )(

𝑠𝑘𝑒 , 𝑟0,

𝑟1, 𝑟2, 𝑟3

)
← parse(𝑠𝑘′𝑒 )(

𝑝𝑖𝑛𝑓 𝑜𝑒+1,

𝑠𝑘𝑒+1

)
← Σ.Evolve(𝑠𝑘𝑒 )

𝑟0, 𝑟1, 𝑟2, 𝑟3 ← R
return 𝑝𝑖𝑛𝑓 𝑜𝑒+1, (𝑠𝑘𝑒+1, 𝑟0, 𝑟1, 𝑟2, 𝑟3)

Verify(𝑝𝑘, 𝑒, 𝜎′,𝑚) :

if 𝑒 == 0:

𝜎 ← 𝜎′

else:

𝜎, _, _, _, _← 𝜎′

return Σ.Verify(𝑝𝑘, 𝑒, 𝜎,𝑚)

Sign(𝑠𝑘′𝑒 ,𝑚) :

if 𝑒 == 0:

𝑠𝑘𝑒 ← parse(𝑠𝑘′𝑒 )
return Σ.Sign(𝑠𝑘𝑒 ,𝑚)(

𝑠𝑘𝑒 , 𝑟0,

𝑟1, 𝑟2, 𝑟3

)
← parse(𝑠𝑘′𝑒 )

𝜎 ← Σ.Sign(𝑠𝑘𝑒 ,𝑚)
𝑐𝑠𝑘 ← 𝑠𝑘𝑒 ⊕ (𝑟2 ⊕ 𝑟3)
𝑐𝑡𝑙𝑝 ← TimeLock.Gen(1𝜆,Δ𝑡 + 𝜖, 𝑟0)
𝑐′
𝑡𝑙𝑝
← TimeLock.Gen(1𝜆,Δ𝑡 + 𝜖, 𝑟1)

if𝑚 == 𝑟0:

𝑟 ′ ← 𝑟2

else if𝑚 == 𝑟1:

𝑟 ′ ← 𝑟3

else:

𝑟 ′ ← R
return 𝜎, 𝑐𝑡𝑙𝑝 , 𝑐

′
𝑡𝑙𝑝

, 𝑐𝑠𝑘 , 𝑟
′

Figure 6: Our counterexample ES construction Σ′ built from another secure epochal signature scheme Σ. The domain of R is
{0, 1}𝜆 and ∀𝑖 ∈ {0, 1, 2, 3}, 𝑟𝑖 ∈ R. 𝜖 can be any value that is not 0, but we are especially interested in small 𝜖.

the TimeLock.

Claim 7. ∀𝑖 ∈ {1, . . . 𝑒∗},∀𝑗 ∈ N,H2

𝑖, 𝑗,0
≈ H2

𝑖, 𝑗,1

Proof sketch. The argument here is equivalent to the previous one,

except instead of B challenging on (𝑟0,𝑚) the challenge is (𝑟1,𝑚).
□

In order to be a successful adversary, A must run in polynomial

time, which means that the number of queries that A can make

in any particular epoch is also bound by some polynomial. There-

fore, ∀𝑖 the sequences (H2

𝑖,0,0
,H2

𝑖,0,1
, . . .) must also be bounded by

poly(𝜆). Since 𝑒∗ ≤ 𝐸 ∈ poly(𝜆) is also polynomially bounded

by the security parameter and the last hybrid in sequence 𝑖 − 1 is

actually the first hybrid in 𝑖 , there is a negligible difference between

H2

1,0,0
and the last hybrid in the sequence beginning withH2

𝑒∗,0,1.

The probability thatA asks for either appropriate trigger in any

of the epochs 𝑒 = 1 . . . 𝑒∗ can now be calculated by multiple union

bounds. For an epoch 𝑖 the probability that A guesses either 𝑟0 or

𝑟1 is
2

|M | whereM is the space of all possible messages that can

be signed. IfM = {0, 1}𝜆 the probability this happens in any epoch

before or at the challenge epoch is upper bounded by
2·𝑒∗
2
𝜆 which

is negligible. Let 𝑒∗ = 𝑟 (𝜆) and 𝑞(𝜆) be the maximum number of

queries A asks for in any epoch. Then we have

Pr[𝐹 ] = 𝑞(𝜆) · 𝑒∗ · AdvExp
IND
TL

B (𝜆) + 2𝑒∗

2
𝜆

= 𝑞(𝜆)𝑟 (𝜆)AdvExp
IND
TL

B (𝜆) + 2𝑟 (𝜆)
2
𝜆

By assumption Adv
ExpINDTL
B (𝜆) is negligible and 1

2
𝜆 is clearly neg-

ligible therefore Pr[𝐹 ] is as well. This completes our proof of the

lemma.

Recall that in H3 we know that A will not ask for a query on

the trigger message 𝑟∗ during the challenge epoch 𝑒∗ or any earlier

epoch. We can now argue security by reducing to the security of

the original epochal signature scheme ES′. Let B be an adversary

for the ES unforgeability game that is constructed from A inH3

as described below.

Description of ES adversary B:
• Receive 𝑝𝑘 from the challenger and pass 𝑝𝑘 on to A
• For any evolve query asked by A before or during 𝑒∗, make

the same query to the challenger. Receive 𝑝𝑖𝑛𝑓 𝑜𝑒 . Re-sample

new randomness 𝑟0, 𝑟1, 𝑟2, 𝑟3. Send 𝑝𝑖𝑛𝑓 𝑜𝑒 to A
• For any sign query𝑚 for epoch 𝑒 ≤ 𝑒∗, make the same query

to the challenger and receive 𝜎 . Forward 𝜎 to A along with

correctly strutured values 𝑐𝑡𝑙𝑝 , 𝑐
′
𝑡𝑙𝑝
, 𝑐𝑠𝑘 , 𝑟

′

• When A gives forgery (𝑚∗, 𝜎∗), parse out the first compo-

nent 𝜎 and give the forgery (𝑚∗, 𝜎) to the challenger

100



Time-Deniable Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

Analysis: It should be clear that in this case if A succeeds B
must as well since A never asks for a query on either 𝑟0 or 𝑟1 in

the relevant epochs before the forgery and B is merely making the

same queries to its challenger that A is. Therefore,

AdvH3

A (𝜆) = Adv
ExpUNFES
B (𝜆) ≤ negl(𝜆) .

Since the advantage ofA inH3 is negligible, the construction is

unforgeable.

Theorem K.4. The epochal signature construction in figure 6 is
deniable according to the definition of [24].

We first give a description of the simulator Sim for the denia-

bility game. It makes use of Σ.Sim which is the simulator for the

deniability of Σ.

Sim(𝑚, 𝑒0, 𝑝𝑖𝑛𝑓 𝑜𝑒0+𝑒1
) :

𝑟 ← R

𝑐𝑡𝑙𝑝 ← TimeLock.Gen(1𝜆,Δ𝑡 + 𝜖, 𝑟 )
𝑐𝑠𝑘 ← R
𝑟 ′ ← R
𝜎 ← Σ.Sim(𝑚, 𝑒0, 𝑝𝑖𝑛𝑓 𝑜𝑒0+𝑒1

)
if 𝑒0 == 0 or 𝑒0 == 1 :

return 𝜎

return 𝜎, 𝑐𝑡𝑙𝑝 , 𝑐𝑠𝑘 , 𝑟
′

In order to prove that our scheme is deniable we need the distribu-

tions of𝜎, 𝑐𝑡𝑙𝑝 , 𝑐𝑠𝑘 , 𝑟
′
to be indistiguishablewhen generated via Sign

or Sim when the distinguisher has access to 𝑝𝑘, 𝑠𝑘𝑒0+𝑒1
, 𝑝𝑖𝑛𝑓 𝑜𝑒0+𝑒1

.

We can safely ignore 𝜎 because 𝜎 is conditionally independent

from the tuple (𝑐𝑡𝑙𝑝 , 𝑐𝑠𝑘 , 𝑟 ′) given 𝑠𝑘 and it does not reveal infor-

mation on what it was derived from because of the deniability of

Σ. We can also restrict our analysis to 𝑒 > 1, since when 𝑒 = 1, 𝜎 is

the only component of the signature.

This can be simplified to us needing the following to hold for

all messages𝑚, for all valid epochs 𝑒0 ≠ 0 and 𝑒0 ≠ 1, for all valid 𝑒1,

∀𝑉 , and all key generation outputs (𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆,Δ𝑡, 𝐸,𝑉 ):



𝑟0, 𝑟1, 𝑟2, 𝑟3 ← R,
(_, 𝑠𝑘𝑒0

) ← Evolve𝑒0 (𝑠𝑘),
(𝑝𝑖𝑒0+𝑒1

, 𝑠𝑘𝑒0+𝑒1
) ← Evolve𝑒1 (𝑠𝑘𝑒0

),

𝑐𝑡𝑙𝑝 ← TimeLock.Gen(1𝜆,Δ𝑡 + 𝜖, 𝑟0),

𝑐 ′
𝑡𝑙𝑝
← TimeLock.Gen(1𝜆,Δ𝑡 + 𝜖, 𝑟1)

𝑐𝑠𝑘 ← (𝑟2 ⊕ 𝑟3) ⊕ 𝑠𝑘𝑒0
, 𝑟 ′ ← R∗∗∗

:

𝑐𝑡𝑙𝑝 , 𝑐
′
𝑡𝑙𝑝
, 𝑐𝑠𝑘 , 𝑟

′,

𝑝𝑘, 𝑠𝑘𝑒0+𝑒1
, 𝑝𝑖𝑒0+𝑒1


≈



𝑟0, 𝑟1 ← R,
(𝑝𝑖𝑒0+𝑒1

, 𝑠𝑘𝑒0+𝑒1
) ← Evolve𝑒0+𝑒1 (𝑠𝑘)

𝑐𝑡𝑙𝑝 ← TimeLock.Gen(1𝜆,Δ𝑡 + 𝜖, 𝑟0),

𝑐 ′
𝑡𝑙𝑝
← TimeLock.Gen(1𝜆,Δ𝑡 + 𝜖, 𝑟1)

𝑐𝑠𝑘 ← R, 𝑟 ′ ← R

:

𝑐𝑡𝑙𝑝 , 𝑐
′
𝑡𝑙𝑝
, 𝑐𝑠𝑘 , 𝑟

′,

𝑝𝑘, 𝑠𝑘𝑒0+𝑒1
, 𝑝𝑖𝑒0+𝑒1


The asterisks on the left distribution for 𝑟 ′ denote that the value

of 𝑟 ′ is mostly random, except when𝑚 = 𝑟0 or𝑚 = 𝑟1. In that case,

𝑟 ′ = 𝑟2 or 𝑟 ′ = 𝑟3 respectively.

Since 𝑉 ≥ 1, the updated key 𝑠𝑘𝑒0+𝑒1
does not contain the ran-

domness used in epoch 𝑒0. However, both “trigger" messages, are

made available to the judge by breaking the time lock puzzles 𝑐𝑡𝑙𝑝
and 𝑐 ′

𝑡𝑙𝑝
. Luckily this, at most, gives the judge access to one of 𝑟2

or 𝑟3: the judge only gets to see the output of one signing query so

if the judge uses the message𝑚 = 𝑟0 or𝑚 = 𝑟1 it receives either 𝑟2
or 𝑟3 as 𝑟 ′. Recall that 𝑐𝑠𝑘 = (𝑟2 ⊕ 𝑟3) ⊕ 𝑠𝑘𝑒0

whenever Sign is used.

Because the judge can only get access to at most one share, 𝑐𝑠𝑘 is

indistinguishable from a random element of R. This also means

that the random pad 𝑟 ′ is independent of 𝑐𝑠𝑘 to the perspective of

the judge, regardless of if it is supposed to be a share of the one

time pad or not. Therefore the joint distribution of (𝑐𝑠𝑘 , 𝑐𝑡𝑙𝑝 , 𝑟 ′)
in the left-hand side of the equation is one where each value is

independent from the others, 𝑐𝑠𝑘 and 𝑟 ′ are uniform, and 𝑐𝑡𝑙𝑝 locks

a uniformly random value. This is precisely what the right hand

side is and thus completes our proof.

K.2 Time-Deniable Signatures as Epochal
Signatures

In this section we show any secure DS scheme can be generically

transformed into a secure ES scheme. At a high level, our con-

struction is a simple transformation where verification and signing

uses the time-deniable signature scheme and the evolve algorithm

keeps track of the current epoch. 𝑝𝑖𝑛𝑓 𝑜𝑒 contains a signature on a

dummy, sentinel message at the timestamp corresponding to epoch

𝑒 . Because of the different models of time considered by the two

primitives, we do a translation between wall-clock time and circuit

depth.We make the following assumption: for any circuit 𝐶 that

terminates in wall-clock time 𝑡 , the depth of𝐶 when it terminates is

𝑑𝐶 · 𝑡 where 𝑑𝐶 is a constant that depends on 𝐶 . Let C be the set of

circuits for which some input 𝑥 causes 𝐶 to terminate before or at

wall-clock time 𝑡 and let 𝑑∗ = max

𝐶∈C
𝑑𝐶 . 𝑑

∗
is needed to correctly set

the time parameter given to the time-deniable signature scheme’s

KeyGen algorithm. The construction appears in Figure 7.

Theorem K.5. The ES scheme presented in Figure 7 is unforgeable
if the time-deniable signature scheme DS is unforgeable.

We prove this by contradiction, supposing there exists an ad-

versary B who succeeds with non-negligible advantage in the ES
unforgeability game and then using that adversary to construct an

adversary A = (A0,A1) for the DS unforgeability game. For the

ES unforgeability definition we assume that before the counter 𝑒 is

given to the Verify algorithm it is appropriately advanced.

Description of A:
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KeyGen(1𝜆,Δ𝑡, 𝐸,𝑉 ) :

𝑣𝑘, 𝑠𝑘 ←
DS.KeyGen(1𝜆, 𝜖 (𝜆) · 𝑉 · Δ𝑡 ·
𝑑∗)
return (𝑣𝑘, (𝑠𝑘, 0))

Evolve(𝑠𝑘′) :

𝑠𝑘, 𝑒 ← parse(𝑠𝑘′)
𝑒 = 𝑒 + 1

𝜎 ← DS.Sign(𝑠𝑘, 0, 𝑒)
return (𝜎, (𝑠𝑘, 𝑒))

Sign(𝑠𝑘𝑒 ,𝑚) :

𝑠𝑘, 𝑒 ← parse(𝑠𝑘𝑒 )
𝜎 ← DS.Sign(𝑠𝑘,𝑚, 𝑒)
return 𝜎

Verify(𝑝𝑘, 𝑒, 𝜎,𝑚) :

return DS.Verify(𝑝𝑘, 𝜎,𝑚, 𝑒)

Figure 7: An ES construction from a time-deniable signature
scheme DS. 𝜖 (𝜆) is the admissibility parameter for the time-
deniable signature scheme. The sentinel message for 𝑝𝑖𝑛𝑓 𝑜
is𝑚 = 0.

• Receive 𝑣𝑘 from the challenger. Give 𝑣𝑘 to B. Initialize a

counter 𝑐𝑡𝑟 = 0 and the wall clock time 𝑡𝑖𝑛𝑖𝑡 = now().
• On queries OEvolve check if 𝑡 ′ ≥ 𝑡𝑖𝑛𝑖𝑡 + (𝑒 + 1)Δ𝑡 where 𝑡 ′
is the current wall clock time. If yes, set 𝑐𝑡𝑟 = 𝑐𝑡𝑟 + 1 and

query OSign on message 0 to receive 𝜎 . Return 𝜎 as 𝑝𝑖𝑛𝑓 𝑜 .

Else do not advance the counter and output ⊥.
• On queries OSign from B with message𝑚, query the chal-

lenger’s OSign oracle with𝑚 and timestamp 𝑐𝑡𝑟 . Return 𝜎 to

B.
• If B returns signature 𝜎∗ in epoch 𝑒∗ on message𝑚∗, then
A returns (𝑚∗, 𝑒∗, 𝜎∗) as its forgery.

First, we argue that A is an admissible adversary in the time-

deniable signature unforgeability game. Let A0 denote the inter-

actions of A with B before epoch 𝑒∗ begins. Because for an ES
scheme, size(B) ∈ poly(𝜆) and sinceA is also doing poly(𝜆) work
while interacting with B, we have that size(A0) ∈ poly(𝜆). If we
let the output of A and B after this interaction be an advice string

𝑧, we can then split off the rest of A and B’s interaction as A1.

For B to be a successful adversary, they must be able to produce

𝑚∗, 𝜎∗ before wall clock time 𝑉Δ𝑡 has past since the start of epoch
𝑒∗. Then we have an upper bound on the circuit depth of B from

the start of 𝑒∗ until termination as 𝑑∗𝑉Δ𝑡 . Since A just forwards

queries between the challenger and B the overhead it adds is mini-

mal (on the order of the number of queries made by B) and can be

ignored for the sake of this proof sketch. depth(A1) is therefore
appropriately bounded as 𝑑∗Δ𝑡 ·𝑉 ≤ 𝑑∗Δ𝑡 ·𝑉 ·𝜖 (𝜆)

𝜖 (𝜆) .

We now argue that if B is successful in its forgery so is A. As

said earlier, in order for B to succeed it must produce a valid pair

(𝑚∗, 𝜎∗) before the wall clock time bound where validity means

that DS.Verify succeeds given the current timestamp is 𝑒∗ and that

B has never asked for a signature on 𝑚∗ at time 𝑒∗. The tuple

(𝑚∗, 𝑒∗, 𝜎∗) is thus a valid forgery for A as well.

Theorem K.6. The ES scheme presented in Figure 7 is deniable if
the time-deniable signature scheme DS is deniable.

Suppose this is not true and there exists a judge J that succeeds

with non-negligible advantage in the ES deniability game. Then we

will construct an adversary A that succeeds with non-negligible

advantage in the DS deniability game.

Description of A:

• Receive 𝑣𝑘, 𝑠𝑘 from the challenger. Forward 𝑠𝑘 to J .

• Uniformly sample a random message𝑚. When J specifies

its challenge (𝑚∗, 𝑒0, 𝑒1), query OSign with (𝑚, 𝑒0 + 𝑒1) and
receive (id, 𝜎).
• Query O

Ch
with id,𝑚∗, 𝑒0 to get 𝜎∗. Send 𝜎∗ to J . If J

responds with 𝑏 send 𝑏 to the challenger.

J expects to see one of two signatures. One creates the signature

by evolving 𝑠𝑘 𝑒0 times while the other evolves the key 𝑒0 + 𝑒1

times and uses 𝑝𝑖𝑛𝑓 𝑜𝑒0+𝑒1
. When the challenger’s bit 𝑏 = 0, A

produces the output of ES.Sign in Figure 7 which is simply DS.Sign.
When 𝑏 = 1, the output is produced by the simulator S in the

ES deniability game which is the equivalent to DS.AltSign in our

construction. Therefore, the distributions J sees are correct and if

J is successful in distinguishing then so is A.
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