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ABSTRACT

Fully homomorphic encryption (FHE) enables arbitrary computa-

tion on encrypted data, allowing users to upload ciphertexts to cloud

servers for computation while mitigating privacy risks. Many cryp-

tographic schemes fall under the umbrella of FHE, and each scheme

has several open-source implementations with its own strengths

and weaknesses. Nevertheless, developers have no straightforward

way to choose which FHE scheme and implementation is best suited

for their application needs, especially considering that each scheme

offers different security, performance, and usability guarantees.

To allow programmers to effectively utilize the power of FHE,

we employ a series of benchmarks called the Terminator 2 Bench-
mark Suite and present new insights gained from running these

algorithms with a variety of FHE back-ends. Contrary to generic

benchmarks that do not take into consideration the inherent chal-

lenges of encrypted computation, our methodology is tailored to

the secure computational primitives of each target FHE implementa-

tion. To ensure fair comparisons, we developed a versatile compiler

(called T2) that converts arbitrary benchmarks written in a domain-

specific language into identical encrypted programs running on

different popular FHE libraries as a backend. Our analysis exposes

for the first time the advantages and disadvantages of each FHE

library as well as the types of applications most suited for each

computational domain (i.e., binary, integer, and floating-point).
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1 INTRODUCTION

Cloud service providers, such as Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud, offer on-demand computing

platforms through a pay-as-you-go model leveraging their vast

computing resources. The minimal capital expenditures and low

yearly costs of this model have compelled companies to shift from

maintaining private data centers and computing hardware to adopt-

ing the cloud computing-as-a-service for their operations [36]. This

paradigm offers far more than simply cloud storage: complex calcu-

lations such as data classification and analytics can be performed

on outsourced data without any involvement from the customer.
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While cloud computing offers great flexibility for many indus-

tries, various concerns are raised regarding the privacy of out-

sourced data. Since the data resides on servers controlled by the

cloud service provider, there is nothing stopping a curious cloud

from observing the data. As the popularity of cloud computing

grows and data from numerous customers reside on shared servers,

cloud hardware and software have become increasingly targeted

by sophisticated attackers. Side-channel attacks [18, 51], cross-VM

attacks [84, 87], speculative execution attacks [11, 57, 79], and hard-

ware Trojans in the supply chain [53, 54, 77] have demonstrated

that it is possible to leak data-in-use from remote servers.

A standard and widely deployed method to protect data confiden-

tiality for data-in-transit and data-at-rest is the use of cryptography

[29, 76]. While standard encryption algorithms such as AES can

effectively mitigate a variety of eavesdropping attacks by prevent-

ing curious cloud providers from accessing plaintext data, such

schemes are mostly limited to data storage and network transmis-

sions [68, 70]. To perform any computation on outsourced data,

clients must download the encrypted data, decrypt it, perform the

intended operation, re-encrypt, and then re-upload the ciphertexts

to the cloud. Obviously, this defeats most benefits of adopting cloud

computing in the first place if sensitive data is involved.

Candidate cryptographic protocols for privacy-preserving com-

putation include homomorphic encryption, multi-party computa-

tion (MPC), and zero-knowledge proofs. MPC allows multiple par-

ties to jointly compute an algorithm over private data [85, 86], but

has a somewhat weaker threat model as colluding servers may be

able to decrypt the users’ data. On the other hand, zero knowledge

proofs allow one party to obliviously prove to another party that

a statement is true, without revealing any additional information

[9, 64, 83]. Finally, fully homomorphic encryption (FHE) enables

oblivious computation on the cloud and protects data-in-use. In more

detail, FHE allows the cloud to apply arbitrary oblivious algorithms

on encrypted data and perform meaningful computations without

ever exposing the plaintext data. However, adopting FHE is easier

said than done; many considerations need to be made in order to

effectively leverage its power for a given application.

There are several major FHE schemes that can be used to com-

pose an arbitrary algorithm as a netlist of arithmetic operations in

the encrypted domain [41], and each scheme has multiple open-

source implementations using state-of-the-art cryptographic li-

braries. Notably, each FHE scheme has unique characteristics, in-

cluding how data is encoded and the types of operations available.

For instance, schemes such as Brakerski-Gentry-Vaikuntanathan

(BGV) [15] and Brakerski/Fan-Vercauteren (BFV) [37] encrypt inte-

gers reduced by a chosen plaintext modulus, while others encrypt

floating-point numbers or even individual bits. Such encoding de-

termines the nature of the operations, since ciphertexts encoding
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floating-point and integer values allow multi-bit addition and mul-

tiplication, while ciphertexts encoding bits support Boolean logic

operations instead. Therefore, expressing an algorithm in the en-

crypted domain requires different techniques depending on the

underlying plaintext data types.

To complicate things further for developers, FHE schemes re-

quire users to track the (unavoidable) noise growth in homomorphic

ciphertexts and runtime decisions are impossible when the control

values are encrypted. For the former, modern FHE schemes offer

one or more mechanisms to manage this noise, with each technique

having different capabilities in terms of noise reduction as well as

computational overhead. For the latter, if a loop termination condi-

tion remains encrypted, a server executing an encrypted program

may not be able to decide if or when the execution ends (i.e., there

exists a “termination problem” [17, 22, 65, 80, 88]).

Our main goal is to provide new insights on choosing the cor-

rect homomorphic scheme for a given application, and analyze the

explicit advantages and disadvantages of different popular open-

source implementations. More specifically, this paper aims to an-

swer the following questions related to FHE applications:

• What scheme is most appropriate for a given algorithm?

• What techniques and methodologies can be utilized to maxi-

mize efficiency in each scheme?

• How do the existing libraries compare to each other in terms

of performance?

At first glance, one could attempt to gather insights about the

various FHE implementations using popular general computation

benchmark suites, such as the SPEC benchmark suite [50]. How-

ever, existing benchmarks like bzip2 and mcf intended solely for

plaintext computation do not consider the existence of FHE con-

structions, and do not address FHE termination problems in the

algorithm design. These benchmarks essentially make control flow

decisions that depend on the value of program data; when imple-

mented in the encrypted domain, it is impossible for the machine

executing the program to make a decision based on values encoded

inside ciphertexts as it does not have access to the decryption key.

As such, a direct translation of these pre-existing benchmarks to

the encrypted domain is not meaningful.

To this end, we introduce a novel benchmark suite, dubbed Ter-
minator 2, which mitigates termination problems and is tailored

for FHE-friendly computation. A key observation in the design

of our benchmarks is that we can speculatively evaluate all alter-

native execution paths before judiciously combining the results

in the encrypted domain. Terminator 2 includes 12 real-life ap-

plications suitable for secure cloud computing, including private

machine learning classification and private information retrieval.

This benchmark suite allows us to explore and expose the differ-

ences and the benefits between various FHE schemes and their

implementations, while enabling us to rigorously test all aspects

of encrypted computation. Notably, we employ benchmarks that

invoke core arithmetic operations between ciphertexts, mixed op-

erations between ciphertexts and constants, relational operations,

as well as essential mechanisms for noise mitigation (like modulus
switching and bootstrapping).

A key consideration in our analysis is the uniformity of bench-
mark implementations to inform fair comparisons across different

Figure 1: Our T2 compiler for five major FHE backends.

libraries. While tailored implementations of encrypted programs

for a certain FHE library can help fine tune runtime performance,

this does not translate among different FHE schemes (often with

incompatible configurations). Further, subjective factors, such as

programmers’ experience on one library can further skew the com-

parisons. Therefore, our methodology relies on automated compila-
tion of each benchmarking algorithm using multiple FHE libraries.

To achieve such uniformity, our Terminator 2 benchmarks are im-

plemented in a domain-specific language (DSL), dubbed T2, which
includes specialized types for encrypted integers, bits, and floating-

point numbers. T2 can compile arbitrary algorithms into their cor-

responding encrypted form using five state-of-the-art FHE libraries

as backends (Fig. 1). Our compiler maps high-level code to func-

tional blocks that implement identical arithmetic/Boolean circuits

for given operations across all backends. We have analyzed all com-

mon FHE operations and developed optimized implementations

using individual features of each scheme, which the T2 compiler

uses to generate encrypted programs. While other works have in-

vestigated theoretical differences between FHE schemes [31], our

work systematically compares the differences among FHE libraries.

Overview: The rest of the paper is organized as follows: Section 2

provides a primer on the homomorphic encryption theory and

practice. Section 3 introduces the T2 compiler for fair comparisons

of HE backends and Section 4 explains the algorithms included in

the T2 benchmarks. Further, Section 5 evaluates all studied backends

for both primitive operations and T2 benchmarks, while Section 6

presents insights gleaned from the experiments. Lastly, Appendices

A, B, and C include discussions on parameter selection, future

directions, and additional T2 benchmarks followed by experimental

comparisons with other state-of-the-art HE compilers.

2 PRELIMINARIES

2.1 Homomorphic Encryption (HE)

HE is a powerful form of encryption that allows for arithmetic

operations over ciphertexts where the result is an encryption of the

expected answer. More formally, the computational capability of HE

and the equivalency between encrypted and plaintext computation

is shown as: 𝑦 = 𝑓 (𝑥) ⇔ 𝑦 = 𝐷𝑒𝑐 (𝑔(𝐸𝑛𝑐 (𝑥))). In this case, 𝑓 (𝑥)
is any arithmetic function in the plaintext domain, 𝐸𝑛𝑐 (·) refers
to an encryption of a plaintext value, and 𝑔(𝐸𝑛𝑐 (𝑥)) parallels 𝑓 (𝑥)
in the encrypted domain. This enables users to encrypt data and

outsource computations like 𝑓 (𝑥) to the cloud without sacrificing

privacy, which in turn will execute 𝑔(𝐸𝑛𝑐 (𝑥)) which is equivalent

to an encryption of 𝑦. Finally, the user can decrypt the result with

her private key. All algorithms can be expressed as an arithmetic

or Boolean circuit (i.e., a series of additions and multiplications or

a netlist of logic gates), which can be readily executed with FHE.

In general, there are three HE types defined by their encrypted

compute capabilities: partial (PHE), leveled (LHE), and fully (FHE).
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In this work, we consider the latter two classes, as PHE is not func-

tionally complete and therefore not suited for general computation.

Ciphertext Encoding: FHE schemes inject noise into ciphertexts

in accordance with the LearningWith Errors (LWE) problem [4, 71]

to make them resilient to cryptanalyses, and the induced noise must

be kept below a threshold to ensure successful decryption. The

hardness of LWE and its variant Ring LWE (RLWE) [62] guarantee

the security of all known FHE schemes. In more detail, the RLWE

problem involves solving for 𝑠 ∈ 𝑅𝑞 in the equation 𝑏 = 𝑎 · 𝑠 + 𝑒

where 𝑏, 𝑎 ∈ 𝑅𝑞 are known and 𝑒 is an error term sampled from

a distribution over 𝑅𝑞 . 𝑅𝑞 is defined as the ring Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩,
where 𝑛 is a power of 2 and 𝑞 is a prime number that satisfies

𝑞 = 1 mod 2𝑛. Both LHE and FHE schemes that are based on the

RLWE problem encrypt data as a tuple of polynomials modulo

an irreducible cyclotomic polynomial, where the 𝑁 𝑡ℎ
cyclotomic

polynomial has roots corresponding to the 𝑁 𝑡ℎ
primitive roots of

unity [6]. In practice, the cyclotomic order (and hence the degree

of ciphertext polynomials) is typically chosen to be between 2
10

to 2
15

with coefficients modulo a product of primes referred to as

𝑞, which can be several hundreds bits in length. Operations over

ciphertexts take the form of polynomial addition and multiplication

as a result of this encoding.

Because ciphertext multiplication is akin to multiplying tuples

of polynomials, the product of ciphertexts becomes a set of three

polynomials modulo the irreducible cyclotomic polynomial. This

means that multiplying two ciphertexts results in ciphertext expan-
sion and causes the total size of the ciphertext to increase each

time a product is computed. Operations on expanded ciphertexts

become significantly more expensive and the memory requirements

skyrocket as computation progresses. Yet another consequence of

this multiplication is that the output product is encrypted under a

different key (essentially the square of the secret key). To mitigate

these problems, LHE and FHE schemes incorporate key switching,
or relinearization, that maps the output ciphertext to an encryption

under the original secret key and at the same time reduces the

dimensionality of the product ciphertext back to a tuple of polyno-

mials [37]. This operation is also noisy and exacerbates the noise

accumulation issue when performing computation with encrypted

data in LHE and FHE schemes.

Noise management is a crucial component of HE schemes as the

noise in ciphertexts dynamically grows with every computation

over the encrypted values. More specifically, encrypted addition

increases the noise linearly and encrypted multiplication causes

exponential noise growth [41]. Therefore, there is only a fixed num-

ber of encrypted operations that can be executed on a ciphertext

without exceeding the “noise budget” while still preserving the

underlying plaintext data. Interestingly, the choice of security pa-

rameters affects noise growth and the total noise budget, but many

realistic applications are not feasible with secure parameters. For

instance, the SHE framework [61] used for LHE encrypted neu-

ral network inference takes approximately one day to classify an

image with AlexNet. To account for that, FHE schemes introduce

crafty mechanisms to reduce the noise in ciphertexts and allow for

more encrypted operations without exceeding the noise budget.

Once the new noise budget has been reached, a noise reduction

operation such as modulus switching [16] or bootstrapping [41]

will reduce it and allow for additional operations. We delve into

modulus switching and bootstrapping in the following paragraphs.

LHE: LHE is the first functionally complete type of HE that is capa-

ble of supporting addition and multiplication on encrypted data. Its

primary mechanism for reducing noise ismodulus switching, which
effectively reduces the ciphertext size while also scaling down the

noise. The coefficients of ciphertext polynomials are represented as

integers modulo the product of primes 𝑞, where each prime is typi-

cally between 30-60 bits in length [72]; modulus switching scales

𝑞 to a smaller value in order to reduce the magnitude of the noise.

More specifically, this procedure removes a prime from 𝑞, effec-

tively lowering the coefficient bit size. However, modulus switching

can only be invoked a limited number of times; eventually one will

run out of primes in 𝑞 and the noise can no longer be mitigated.

As a result, the number of subsequent operations on ciphertexts

is bounded, and encryption parameters must be chosen carefully

to ensure that the application can be evaluated before the noise

becomes unmanageable. The encryption parameters guarantee the

ability to evaluate a certain number of multiplicative levels on any

given ciphertext object before decryption fails [41]. BFV [37], BGV

[15], and CKKS [23] are typically used as LHE schemes.

FHE: FHE is the most powerful form of HE that allows for un-

bounded addition and multiplication on encrypted data. This is

made possible by introducing a bootstrapping mechanism to any

LHE scheme, which is a powerful form of noise reduction. Gentry’s

bootstrapping computes the decryption circuit in the encrypted

domain resulting in a new ciphertext with reduced noise [41]. Unfor-

tunately, bootstrapping is the bottleneck of FHE; onemust minimize

the number of bootstraps in an application to optimize performance.

Luckily, bootstrapping with modulus switching is more computa-

tionally efficient as mod switching can be invoked until no further

primes can be removed from 𝑞; then bootstrapping can be initiated,

which will also regenerate all of the primes in 𝑞, allowing modulus

switching and bootstrapping to be chained ad infinitum.

For algorithms that can be expressed with a shallow depth (i.e.,

few subsequent ciphertext multiplications), LHE is typically more

efficient than FHE. For applications exhibiting a large depth, FHE

is a better option because the LHE parameters required to support

a deep homomorphic circuit at an acceptable level of security are

extremely large and result in poor runtime performance. Since the

ciphertext modulus 𝑞 is typically several hundred bits long, the

underlying arithmetic operations are applied over integers greater

than the word sizes naturally supported by CPUs. Some implemen-

tations use residue number system (RNS) techniques to allow for

operations modulo the smaller prime factors of 𝑞 [47]. Using the

Chinese remainder theorem, it is possible to do operations over

these RNS polynomials (essentially one polynomial for each prime

in 𝑞) and then recombine the results to achieve the final polyno-

mial with coefficients modulo 𝑞. Besides enabling arithmetic over

smaller integers, this technique also enhances parallelism as all

RNS polynomials can be operated on concurrently.

Threat Model: To enable fair comparisons between FHE libraries,

we formalize a security model. As homomorphic encryption is used

for privacy-preserving outsourced storage and computation, our

threat model is twofold. First, we assume an honest-but-curious
cloud service provider that executes the protocol correctly but

has incentives to peek at sensitive user data. Moreover, our model
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assumes that adversaries may compromise the cloud server and

exfiltrate sensitive data that are either in use or at rest. Thus, in our

T2 benchmarks, we explicitly define which data are private and

should remain encrypted during and after the computation.

Notation: We represent the encryption of a variable 𝑥 as 𝑋 , while

we use hat (ˆ) to represent encryptions of numbers, such as 0̂ and

1̂. Similarly, +̂, −̂, ∗̂, and ∼̂ represent homomorphic addition, sub-

traction, multiplication, and negation, respectively. These private

arithmetic operations are inherently supported by all the schemes

except CGGI, for which we use optimized Boolean circuits im-

plementing encrypted arithmetic functional units. Specific circuit

design details and considerations are discussed in Section 3.2. In

binary arithmetic we also support homomorphic XOR between ci-

phertexts (represented as ⊕̂), as well as homomorphic AND.
Finally, we represent private comparisons as follows: =̂ denotes

private equality, <̂ refers to private less than, and ≤̂ represents

private less than or equal. The comparisons return 1̂ (i.e., encryp-

tion of one) if the corresponding plaintext operation is True, or 0̂
otherwise. We discuss the design of private comparison units in

Section 3.3 as most libraries do not support them natively.

2.2 Homomorphic Encryption Schemes

Binary Schemes: These HE schemes encrypt individual bits into

a single ciphertext, which opens up new avenues of encrypted

computation, as it natively supports a broad range of bitwise ma-

nipulations in the encrypted domain, such as shifting and logic

gate evaluations. Instead of building programs as a sequence of as-

sembly instructions, these binary schemes support Boolean circuits

composed of encrypted logic gate constructions. The Torus FHE

(TFHE) [25] library implements a ring variant of GSW [42] called

CGGI and is the most popular in this category, boasting the fastest

bootstrapping speeds of any current FHE library. In fact, TFHE

strictly supports FHE (but not LHE) because the bootstrapping pro-

cedure is instrumental in the correct evaluation of homomorphic

logic gates. This requirement informs the need to bootstrap during

every logic gate evaluation (except for the trivial NOT gate).
The ability to compose algorithms as Boolean circuits is an ad-

vantage for binary schemes as developers can utilize decades of

digital circuit design research to help build optimal implementa-

tions in the encrypted domain. Also, bitwise operations such as

shifting are more efficient compared to the integer domain. For

instance, a right shift by 𝑘 in the binary domain involves removing

𝑘 elements of an array of binary ciphertexts (which has very low

cost). Conversely, integer schemes (discussed next) would require

division, which is not supported directly in FHE: one would need to

compute the modular multiplicative inverse of the divisor and mul-

tiply it with the dividend. The latter is far more expensive since it

results in substantial noise growth compared to the binary scheme

version. Finally, comparisons (i.e., equality, less-than) between two

numbers are significantly cheaper in binary schemes.

Integer Schemes: The two most important HE schemes that en-

crypt integers modulo a user-determined modulus 𝑝 are BGV [15]

and BFV [14, 37]. HE addition and multiplication correspond to

modular addition and multiplication over the plaintext values. Con-

sequently, one needs to choose 𝑝 such that no undesired wrapping

will occur. Unlike CGGI, both BGV and BFV have considerably slow

𝐴 𝐵 . . . 𝐶 . . .

𝑆𝑙𝑜𝑡0 𝑆𝑙𝑜𝑡1 . . . . . . 𝑆𝑙𝑜𝑡𝑠−1

+̂
𝑋 𝑌 . . . 𝑍 . . .

=

𝐴 +̂ 𝑋 𝐵 +̂ 𝑌 . . . 𝐶 +̂ 𝑍 . . .

𝐶𝑇0

𝐶𝑇1

𝑆𝑢𝑚

Figure 2: Batching Overview. Each of the ciphertexts𝐶𝑇0 and

𝐶𝑇1 encrypt multiple integers (i.e., 𝐴, 𝐵, 𝐶, . . . and 𝑋 , 𝑌 , 𝑍 ,

. . . , respectively), while the result ciphertext 𝑆𝑢𝑚 contains

the slot-wise homomorphic addition ( +̂ ) of 𝐶𝑇0 and 𝐶𝑇1.

Homomorphic multiplication is similarly supported.

bootstrapping procedures; depending on parameter choices (such

as the ring dimension), a single bootstrap can take anywhere from

several seconds to several hours [39], which is impractical for any

realistic HE computation. Thus, most implementations of BGV/BFV

do not include bootstrapping and are used exclusively in LHE mode.

It is also possible to emulate Boolean circuits in integer schemes by

setting 𝑝 = 2, which causes addition to behave as an XOR and multi-

plication to behave as an AND gate. The primary difference between

this approach and CGGI is that the additions and multiplications

do not necessarily require a bootstrap after every operation.

The biggest benefit of using integer schemes over binary is the

ability to take advantage of an encoding technique called batching,
which closely resembles Single Instruction, Multiple Data (SIMD)

operations and allows users to encrypt vectors of integers into

single ciphertexts [75]. Each individual integer occupies a cipher-

text slot and the total number of slots available varies depending

on parameter choices. Addition and multiplication on “batched”

ciphertexts occur slot-wise, as depicted in Fig. 2. An important

consideration when using batching is whether or not the individ-

ual slots are completely independent or not. If the slots need to

be mixed at some point (such as the need to sum all of the slots

together), slot-wise rotations must be executed to align the desired

slots, resulting in high memory and execution time overheads.

Floating-Point Schemes: The final class of HE has a plaintext

type of floating-point numbers and the most popular scheme in

this category is CKKS [23]. This is desirable for certain classes of

algorithms, such as machine learning [12, 28]. In practice, the core

operations of floating-point schemes parallel integer schemes, with

only a few differences. Both integer and floating-point schemes

support batching and addition/multiplication operations. Similarly,

the floating-point schemes have slow bootstrapping procedures and

are predominantly used in LHEmode. The key difference is the need

to keep track of the scale factor that is multiplied with plaintext

values during encoding that determines the bit-precision associated

with each ciphertext. The scale doubles when two ciphertexts are

multiplied, which may result in overflow as the scale becomes

exponentially larger. Thus, rescaling must be invoked to preserve

the original scale after multiplications, which is similar to modulus

switching and serves a similar role to reduce ciphertext noise.

2.3 Homomorphic Encryption Libraries

Various open-source HE libraries implement the aforementioned

schemes and expose a high-level APIwith functionalities like Encrypt,
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Table 1: Overview of HE libraries in terms of the supported schemes, domains (i.e., Integer, Binary, and Floating-point),

levels/bootstrapping, and batching operations.

Library Language Domains

Schemes

BGV/BFV CKKS GSW

Leveled/Fully
†

Batching
‡

Leveled/Fully
†

Batching
‡

Leveled/Fully
†

Concrete [26] Rust Bin, FP

FHEW [35] C, C++ Bin

HEAAN [23] C, C++ FP

HElib [48] C, C++ Int, Bin, FP

Lattigo [78] Go Int, FP

PALISADE [69] C, C++ Int, Bin, FP

SEAL [72] C, C++, .NET Int, FP

TFHE [25] C, C++ Bin

†
For Leveled (LHE) and Fully (FHE) we categorize the libraries in four classes: No support for either, Support for LHE only, Support for FHE

only, and Support for both LHE and FHE.

‡
For batching, we classify the libraries as: No support for batching, Restricted modulus (i.e., in order to enable batching, the plaintext modulus 𝑝

must satisfy (𝑝 − 1) | 𝑚, where𝑚 is the degree of the cyclotomic polynomial), and Flexible batching (i.e., no restrictions on 𝑝).

Decrypt, KeyGen, Add, and Multiply. Also, these libraries imple-

ment numerous performance optimizations (such as RNS and NT-

T/FFT for polynomial multiplication [3, 82]) and leverage noise

reduction techniques (e.g., modulus switching and bootstrapping)

that are non-trivial to employ. Further, most libraries require the

user to select encryption parameters for her application. In this

paper, we focus on five widely used libraries, described below.

HElib: The Homomorphic Encryption Library (HElib) was intro-

duced in 2013 [48] by IBM and supports the BGV scheme (with

bootstrapping), as well as CKKS. It is written in C++17 and uses

the NTL mathematical library [74].

Lattigo: The lattice-based multiparty homomorphic encryption li-

brary in Go (Lattigo) was first developed by the Laboratory for Data

Security (LDS) at EPFL and is currently maintained by Tune Insight

[78]. It supports leveled BFV and bootstrapped CKKS with full-RNS

optimizations and their respective multiparty versions. Lattigo en-

ables cross-platform builds and offers comparable performance to

other state-of-the-art libraries.

PALISADE: PALISADE was developed by Duality, NJIT, MIT, and

other organizations [69]. It offers support for leveled BFV, BGV, and

CKKS with RNS optimizations as well as CGGI (with bootstrapping).

SEAL: The Simple Encrypted Arithmetic Library (SEAL) is devel-

oped by Microsoft Research and was first released in 2015 [72].

SEAL supports leveled BFV, BGV, and CKKS.

TFHE: The Fast Fully Homomorphic Encryption Library over the

Torus (TFHE) was released in 2016 by Chillotti et al. [25] and pro-

poses the CGGI cryptosystem. The library exposes homomorphic

Boolean gates such as AND and XOR but does not build complex

functional units (e.g., adders, multipliers, and comparators) and

leaves that to the developer.

Other Libraries: The Concrete [26] library by Zama implements a

variant of TFHE that supports floating-point plaintext encodings

and bootstrapping that allows evaluation of univariate functions.

However, Concrete is not yet mature for general purpose computa-

tion as its bootstrapping mechanism necessitates the use of (lossy)

low-precision arithmetic. For instance, CKKS bootstrapping allows

a precision of up to 40 bits [59], while Concrete is restricted to

less than 12 bits of precision [27] (effectively forcing applications

to use small plaintext moduli). Additionally, the rounding errors

that result from the low-precision will compound over time for

deep applications, as is shown in the accuracy loss reported for

deep neural networks in [27]. FHEW [35], developed by CWI in

Amsterdam, is the predecessor of TFHE; however, its bootstrapping

speed is inferior to TFHE and there is no support for homomorphic

MUX gates. Lastly, HEAAN [23] implements the CKKS cryptosys-

tem, where both the library and the underlying scheme are created

by the Cryptography Lab at Seoul National University. However,

HEAAN has not seen a major update since 2018 and has been suc-

ceeded by other RNS-based implementations of CKKS in libraries

such as SEAL, PALISADE, and Lattigo. The key features of each

library are summarized in Table 1.

2.4 Related Works

The work in [1] compares (mostly obsolete) FHE implementations

and is missing modern state-of-the-art libraries. When comparing

the different schemes, the authors incorporate results from prior

works configured for non-equivalent security levels, parameter

sets, and even benchmarks. Thus, [1] lacks any implementation for

uniform comparisons across the studied FHE libraries.

The SHEEP library [7] allows users to write programs in an

assembly-like language that targets multiple FHE libraries such as

TFHE and HElib. However, this approach requires users to manu-

ally design the FHE circuit, which limits usability and mimics the

approach required to implement programs directly with the FHE

library itself. The T2 compiler, on the other hand, allows users to

program in a subset of C that offers a high degree of programma-

bility and enables rapid development, since users can leverage

techniques familiar to general-purpose programming.

A recent SoK [80] surveys state-of-the-art FHE compilers such

as Cingulata [19], which compiles C++ code to Boolean circuits for

TFHE and a BFV variant, CHET [33] which targets CKKS and is

geared towards private neural network inference for HEAAN and

SEAL, as well as its successor EVA [32] that uses a DSL for vector

arithmetic and targets SEAL and CKKS. Moreover, E
3
[24] targets

SEAL, HElib, FHEW, PALISADE, and TFHE, but has limited batching
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support, does not support relational operations over integers, and

only allows users to select plaintext and poly modulus degrees, but

other important parameters such as ciphertext modulus size remain

hidden from the user, while Marble [81] is a C++ extension that

allows users to write code similar to a plaintext implementation

and currently employs encrypted binary arithmetic in HElib as an

FHE backend. However, [80] does not consider compilers such as

Google’s Transpiler [43] and ROMEO [45] that convert programs

(written in C++ and Verilog, respectively) into optimized netlists

through the use of synthesis tools, and then finally into TFHE (and

PALISADE’s CGGI implementation for the former).

While [80] discusses many different compilers, it only employs

three minimal applications that are limited in scope. Most impor-

tantly, [80] does not perform any comparisons between the underly-

ing FHE libraries themselves and different encoding types were not

explored thoroughly, which is the scope of our work. We emphasize

that the efficiency of any compiled program will be largely dictated

by the efficiency of the crypto backend, so we focus mainly on the

core components (instead of the frontends). The goal of our work

is to use a fair compiler and standardized benchmarks to facilitate

informed comparisons among the studied backends.

Notably, the benchmarks in [80] were manually implemented

independently for each compiler, which results in potentially non-

uniform comparisons. Contrary to earlier works, our T2 compiler

automatically converts each benchmark into its encrypted imple-

mentation for all major FHE libraries and incorporates a broad

range of benchmarks lacking in prior works.

Finally, competitions like iDash [66] pose challengers with a

specific problem and require them to develop efficient solutions for

private computation, including FHE. While competitors sometimes

develop solutions that beat existing implementations solving similar

problems, the techniques employed by participants are application-

dependent and do not scale to other problem domains.

3 T2 UNIVERSAL COMPILER

This section introduces design choices for implementing our T2

universal compiler to map the same high-level code to a variety of

HE backends. Notably, our compiler generates optimized code for

a broad range of FHE operations and is designed for uniform im-

plementations across HE libraries. Towards that end, we introduce:

3.1: judicious encodings that leverage batching capabilities of

the underlying schemes,

3.2: optimized encrypted arithmetic operations for all backends,

3.3: encrypted comparison operations,

3.4: oblivious conditional assignment for encrypted values,

3.5: automatic noise mitigation strategies for FHE,

3.6: our T2dsl high-level language that incorporates all innova-
tions from Sections 3.2–3.6.

While we have integrated backends corresponding to five state-of-

the-art libraries, our T2 compiler is future-proof and new backends

can be added based on the proposed universal encodings.

3.1 EncInt, EncFP, and EncBin Encodings

We identify four potential types of ciphertext encodings that encom-

pass a range of computational models in FHE, depicted in Fig. 3. We

remark that a plethora of other potential encoding strategies exist,

𝑋 − . . . − . . .

𝑆𝑙𝑜𝑡0 𝑆𝑙𝑜𝑡1 . . . . . . 𝑆𝑙𝑜𝑡𝑠−1

(a) Ciphertext of 1 number (EncInt or EncFP).

𝑋 𝑌 . . . 𝑍 . . .

(b) Ciphertext of 𝑠 batched numbers (EncInt or EncFP).

𝑋0 𝑋1
. . . 𝑋𝑤−1 . . .

(c) Ciphertext of 1 integer using horizontal binary packing.

𝑋0 𝑌0 . . . 𝑍0
. . .

𝑋1 𝑌1 . . . 𝑍1
. . .

. . .

𝑋𝑤−1 𝑌𝑤−1 . . . 𝑍𝑤−1 . . .

(d) Ciphertext of 𝑠 integers using vertical binary packing (EncBin).

Figure 3: Encodings Overview. (a) A single number (floating-

point or integer) 𝑥 is encrypted using only one slot. (b) Integer
or floating-point batching: all the slots are being used to

encrypt multiple numbers (floating-point or integers) (e.g.,

𝑥 , 𝑦, 𝑧, etc.). (c) Packing: utilizes multiple slots to encrypt an

integer using a bitwise representation (the number of slots

used is equal to the word size 𝑤 of 𝑥). (d) Vertical binary
packing: utilizes𝑤 ciphertexts to encode multiple integers

(e.g., 𝑥 , 𝑦, 𝑧) by using a slot-wise binary representation.

such as the encoding used by Gazelle’s privacy-preserving machine

learning (PPML) framework [55]. However, these strategies are

typically tuned towards niche applications instead of general com-

putation. For encoding single integers or floating-point numbers,

one can simply encrypt them directly in the first slot of the cipher-

text, as shown in Fig. 3 (a). Encoding a single plaintext element per

ciphertext is inefficient for schemes that support batching; instead,

𝑠 independent inputs can fit inside a single ciphertext as illustrated

in Fig. 3 (b). This allows for higher occupancy of the available

slots to take advantage of SIMD-style computation. Depending on

the underlying data type of the scheme, we refer to encodings (a)

and (b) as EncInt and EncFP. Alternatively, a single value can

be decomposed into 𝑤 binary digits and each digit is encrypted

in a separate slot (Fig. 3 (c)). This row-wise encoding approach is

useful for encrypting integers greater than the plaintext modulus

and representing an integer in binary format. Finally, as shown in

Fig. 3 (d), we can encrypt each digit into a separate ciphertext and

take advantage of the slots of each ciphertext to fit 𝑠 independent

elements (column-wise encoding across multiple ciphertexts). We

refer to the encoding in Fig. 3 (d) as EncBin. Below, we delve into

the benefits and drawbacks of each encoding.

Integer and Floating-point Batching: Depending on the choice

of parameters for HE schemes that support batching, ciphertexts

have a number of available slots, which can range from one to

several thousand. If extra slots are available, they can be occupied

by additional plaintext values instead of resorting to creating new

ciphertexts. This reduces memory consumption and enables SIMD-

style computation; the key benefit in terms of the latter approach

is that HE arithmetic operations take the same amount of time
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regardless of howmany slots are occupied. Therefore, this approach,

also highlighted in Fig. 3 (b), significantly improves throughput

without negatively impacting latency.

To maintain consistency and a universal syntax, we simulate

batching for schemes that do not naturally support it. We allow

the user to supply vectors of plaintext elements to be batched,

regardless of the scheme that the compiler targets. For instance,

using the EncInt encoding to compile a program for SEAL’s BFV

implementation (which supports batching), the T2 compiler utilizes

the library’s capabilities to encode the vector into a single ciphertext.

However, to target the TFHE librarywhich only supports operations

over encrypted bits and does not support batching natively, the

T2 compiler automatically translates the batching syntax into a

two-dimensional array (i.e., one dimension for each integer and

one dimension for each bit of every integer). We note that such

translation can be slower than actual batching due to the increased

number of FHE operations and larger functional units, but rather

reflects the capabilities of the non-batchable schemes and allows

for uniform implementation.

Horizontal & Vertical Binary Packing: The two primary meth-

ods for encoding binary arrays into packed ciphertexts involve

utilizing the slots of one or more ciphertexts, as shown in Fig. 3 (c)

and (d). The row-wise approach introduces a more straightforward

encoding that only uses one ciphertext, however, the downside to

this approach is that the digits are inherently dependent for most

operations. For instance, addition and multiplication can not be

done digit-wise as these operations are sequential and the output

for the current digit depends on the computation from the previous

digit (such as accounting for carries). Therefore, to perform an addi-

tion using this encoding, each slot needs to be isolated and then fed

into an adder circuit, which requires convoluted and expensive slot

rotations. In fact, slot extraction is used in the bootstrapping proce-

dure and is one of the core bottlenecks of this operation [49]. While

this form of batching is the most intuitive and straightforward, we

do not consider this encoding in the design of the T2 benchmarks

as it is inappropriate for most types of computation.

Our EncBin column-wise approach (i.e., Fig. 3 (d)) does not suf-

fer from the same issues as the horizontal binary encoding, yet still

benefits from efficient SIMD computation. The key insight is that

now all slots across a given ciphertext are completely independent

since all digits are separated across𝑤 ciphertexts, where𝑤 is the

plaintext word size. This allows one to directly evaluate binary

arithmetic circuits in FHE, such as adders, multipliers and com-

parators, without having to perform any digit extraction procedures.
As such, all of the advantages provided by the standard integer

batching technique apply to this case as well. A potential trade-off

with this approach is the additional memory overhead of dealing

with𝑤 ciphertexts instead of one.

3.2 Arithmetic Operations for HE Benchmarks

Arithmetic in EncInt and EncFP: All libraries that implement

integer or floating-point schemes naturally support addition and

multiplication by encoding the values in separate slots as shown

in Fig. 3 (b) (i.e., EncInt or EncFP); These libraries also support

negation, which further enables converting an addition operation

into a subtraction. As such, the T2 compiler maps these T2dsl

operations directly to the underlying library calls (e.g., ciphertext

addition/multiplication in SEAL, HElib, etc.).

Arithmetic in EncBin: For binary encoding, these operations are

not naturally supported by most libraries. Instead, we construct

optimized Boolean circuits composed of primitive logic gates to

facilitate these operations for every cryptosystem (with the ex-

ception of floating-point schemes). For CGGI, we minimize the

number of logic gates in the circuit and prioritized the nearly free

NOT gate where possible. This effectively reduces the total number

of bootstraps required to evaluate the circuit. Conversely, for LHE

schemes, we introduce two circuit variants that deviate depending

on the value of the plaintext modulus 𝑝 . In the ideal binary case,

where 𝑝 = 2, addition operations are equivalent to XOR gates while

multiplications are equivalent to AND gates. Since multiplication is

far more expensive in terms of execution time and noise growth, we

utilize circuits with as few subsequent AND operations as possible
and prioritize the nearly free XOR operations in the T2 compiler.

However, it is impossible to achieve a high number of slots with

𝑝 = 2 and for this reason all implementations of BFV and BGV

do not allow batching at all with this setting, with the exception

of HElib. To enable higher degrees of batching with EncBin, we

include a second set of functional units that provides a trade-off

between available slots and more expensive operations. Even under

these circumstances, the user must choose between batching capa-

bilities and more expensive operations when selecting a plaintext

modulus for EncBin. These operations for 𝑝 > 2 are costly because

emulating logic gates is far more complicated than in the 𝑝 = 2 case.

As long as the underlying plaintext values are constrained to [0, 1],
multiplication is still equivalent to AND, while addition is no longer

equivalent to XOR since, for instance, 1 + 1 = 2 (mod 𝑝) instead
of 0 (mod 𝑝). Thus, we compute the XOR operation by performing

(𝑋 −̂ 𝑌 )2, which requires a homomorphic subtraction followed

by a multiplication (squaring). This XOR variant is more expensive

than both the XOR with 𝑝 = 2 and the AND operation. As a result,

the T2 arithmetic functional units for 𝑝 > 2 prioritize AND over XOR,
while the functional units for 𝑝 = 2 prioritize XOR and NOT.

3.3 Comparison Operations for HE Benchmarks

Comparisons in EncInt and EncFP: Comparing two multi-bit

values in the encrypted domain remains an active area of research

and is generally considered to be quite inefficient. For EncInt and

EncFP encodings, we employ Fermat’s Little Theorem to compute

equality, which becomes (𝑋 −̂ 𝑌 )𝑝−1 mod 𝑝 , where 𝑝 is a prime

[52]. The computational bottleneck involves computing the power

𝑝 − 1, which requires approximately log
2
𝑝 multiplications. Nev-

ertheless, in applications that require a large plaintext range (or

require a high degree of batching), this method may be inefficient

as it can consume multiple multiplicative levels.

To accomplish a homomorphic “less-than” in T2, we adopt the

polynomial interpolation over a prime field proposed by Iliashenko

and Zucca [52]. Specifically, we evaluate:

𝑋 <̂𝑌 B
∑−1
𝑎=− 𝑝−1

2

(
1 −̂ (𝑋 −̂ 𝑌 −̂ 𝑎)𝑝−1

)
mod 𝑝, (1)

which outputs 1̂ if 𝑋 <̂𝑌 and 0̂ otherwise. This operation is more

expensive than the FHE equality due to the larger number of addi-

tion/subtraction operations; still, the multiplicative depth remains
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the same. Lastly, by swapping𝑋 and𝑌 in Eq. 1 and then negating the

result, we achieve “less-than-or-equal” [i.e., 𝑋 ≤̂𝑌 ⇔ 1 −̂ (𝑌 <̂𝑋 )]
for approximately the same cost as less-than.

Comparisons in EncBin: Similarly to the arithmetic operations

in EncBin, we construct Boolean circuits to accomplish encrypted

comparison functions. The natural conclusion to solving this prob-

lem is to adapt a full-fledged single-bit FHE comparator circuit that

outputs three signals (one for less-than, equality, and greater-than)

and then cascade them to achieve multi-bit comparisons. However,

we observe that this approach is sub-optimal if only one of the sig-

nals is needed; instead, we compose separate, more optimal circuits

for each functionality. For equality, we perform𝑤 XNOR operations

over each pair of bits of the two ciphertexts and then AND the partial
results together to get a single bit encrypted output. For less-than,

we adopt an optimized bit-level approach designed for use with

homomorphic sorting [21]:

𝑋 <̂𝑌 B
∑𝑤
𝑖=1

(
𝑙𝑡 (𝑋𝑖 , 𝑌𝑖 )

∏
𝑖< 𝑗<𝑤 𝑒𝑞(𝑋 𝑗 , 𝑌𝑗 )

)
mod 2, (2)

where 𝑙𝑡 (𝑥,𝑦) B (NOT 𝑥) AND 𝑦 and 𝑒𝑞(𝑥,𝑦) B NOT (𝑥 XOR 𝑦).
Finally, to achieve less-than-or-equal we employ the same technique

as mentioned earlier, where we swap 𝑋 and 𝑌 in the less-than

function and then invert the result.

3.4 Avoiding Termination Problems with MUX

One of the key concerns in encrypted computation is the inability

to branch on encrypted data. Since the cloud has no knowledge

of the underlying plaintext value of an encrypted condition, it is

impossible to make a runtime decision based on this value. Con-

sequently, all possible branches must be evaluated and the correct

result must be selected using an HE multiplexing operation.

In the T2 EncInt encoding, we achieve this using the following

equation: MUX(𝑆, 𝑋,𝑌 ) B 𝑋 ∗̂ 𝑆 +̂ 𝑌 ∗̂ (1 −̂ 𝑆), where 𝑆 is

the encrypted selection bit and 𝑋 and 𝑌 are the two outcomes

of independent branches. In EncBin, we directly translate these

operations to logic gates, requiring two AND, one XOR, and one NOT
gate. However, in the case of column-wise binary packing, the

procedure needs to be executed𝑤 times to cover all the bits of the

inputs. For the TFHE library we use the built-in multiplexing gate,

which natively supports a MUX gate for the cost of two bootstraps

as opposed to the expected three bootstraps (two for the AND gates

and one for the XOR).

3.5 Automated Noise Maintenance for FHE

Our compiler removes all noise maintenance complexities by judi-

ciously inserting noise checks after multiplications and ensures that

all ciphertexts do not exceed their noise budgets. Users can declare

a bootstrapped context for libraries that support bootstrapping

just by passing a compiler flag – without changing the high-level

code. The T2 compiler uses the underlying backends to estimate

the variance of the noise in the ciphertext to determine when boot-

strapping is necessary and automatically invoke it if needed. The

bootstrapping procedure itself consumes a number of levels before

refreshing, which affects the noise threshold; the multiplicative

depth of the procedure is dependent on the parameters, making

it non-trivial for users to determine. Notably, T2 leverages opti-

mized thresholds for predefined parameter sets and uses existing

HE library features to select appropriate thresholds for custom

parameters where applicable.

3.6 T2dsl Programming Language

In order to support our proposed encodings (depicted in Section

3.1), we introduce the T2dsl language, which is a strongly-typed

C-like language that supports two encrypted data types: EncInt
and EncDouble. Together, these two data types can represent our

three ciphertext types (i.e., EncInt, EncBin, and EncFP). We note

that EncBin shares the same data-type as EncInt, but the compiler

treats the former as ciphertext arrays of encrypted bits and the

latter as individual ciphertexts encrypting modular integers. The

actual encoding can be selected with a flag at compilation time

without requiring any changes to the T2dsl program, making it

very easy for users to experiment with both encodings across the

different libraries.

In terms of operations, the T2dsl supports addition and multipli-

cation for all encodings, multiplexing and comparisons for EncInt

and EncBin, bitwise shifts, as well as standard logic gate operations

(i.e., NOT, XOR, etc.) for EncBin. For plaintext values, all arithmetic

operations supported in C are also supported in T2dsl; additionally,

we supportmixed operations between plaintexts and ciphertexts. This
is achieved by first encoding the plaintext as a “constant encryp-

tion”. Constant (or noiseless) encryptions can be generated without

the user’s private key and operations between constant encryptions

and secure ciphertexts are much faster than ciphertext to cipher-

text operations. These operations allow T2 to efficiently execute

algorithms where some inputs are considered public and do not

need to be securely encrypted, like privacy-preserving machine

learning constructions. When the compiler processes an operation

between encrypted and plaintext operands, it automatically gen-

erates a mixed operation without any guidance required from the

user. Lastly, we remark that certain language constructs such as

referencing/dereferencing are not supported in T2dsl, which is also

the case with other compilers such as E
3
[24] and EVA [32].

We further showcase two T2dsl example benchmarks in Appen-

dix D. The first is a squared Euclidean distance in T2dsl, which is

suitable for all encodings, while the second is the CRC-32 bench-

mark (which can only be compatible with EncBin contexts).

4 ALGORITHMS IN T2 BENCHMARK SUITE

In this section, we introduce our T2 benchmark suite compris-

ing twelve privacy-preserving benchmarks without early termi-

nation conditions and data-dependent branching (such as if/else

statements and loops over encrypted data). As defined in [17], in

encrypted computation the host should remain oblivious to any

termination conditions of the algorithm, introducing the “termina-

tion problem”. Thus, all FHE computations should be made data-

oblivious and any termination condition over encrypted data should

be transformed into its privacy-preserving counterpart that avoids

runtime decisions.

We divide our benchmarks into three distinct categories indicat-

ing the dominant type of homomorphic operation:

Arithmetic benchmarks contain additions and multiplication and

operate in the integer and floating-point domains.
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Bitwise benchmarks are composed primarily of logic gate opera-

tions as well as shifts.

Relational benchmarks are those containing numerous compar-

isons over encrypted data.

We remark that these benchmarks can run in one or more com-
putational domains (i.e., integer, floating-point, and binary) which

indicate the type of operations in the T2 DSL; not to be confused

with the underlying data encodings used by the FHE backends (i.e.,

EncInt, EncFP, and EncBin). More specifically, the EncInt and

EncBin encodings can be used for integer domain benchmarks,

while binary domain benchmarks exclusively use the EncBin en-

coding, and EncFP is only applicable to floating-point benchmarks.

We remark that the binary domain evaluation of certain bench-

marks can be high due to the noise cost of deep Boolean circuits,

so the integer or floating-point domain may be preferable. For

this reason, we only show binary results for all benchmarks using

CGGI unless explicitly indicated. Moreover, while many bench-

marks utilize similar primitive instructions, they differ in both their

complexity and the size of the encrypted operands as well as the

depth required to evaluate them. Lastly, most benchmarks are run

with different encodings which significantly impact the type and

number of operations required to evaluate the algorithm.

4.1 T2 Arithmetic Benchmarks

Chi-Squared: The chi-squared (𝜒2) test is a statistical mechanism

that can be used to deduce whether a set of data aligns with an ex-

pected model; this statistic is useful in a wide-range of applications,

such as genomics [58]. First, the server receives the encrypted geno-

type counts 𝑁0, 𝑁1, 𝑁2, then computes 𝐴 B 4(𝑁0 ∗̂ 𝑁2 −̂ 𝑁 2

1
)2,

𝐵1 B 2(2𝑁0 +̂ 𝑁 2

1
)2, 𝐵2 B (2𝑁0 +̂ 𝑁1) ∗̂ (2𝑁2 +̂ 𝑁1), and

𝐵3 B 2(2𝑁2 +̂ 𝑁1)2 and finally returns the encrypted results to

the client. Like [58], T2 does not implement costly homomorphic

division and leaves this final step as a cheap post-processing proce-

dure done on the client-side. The client decrypts 𝐴, 𝐵1, 𝐵2, 𝐵3 and

acquires 𝛼, 𝛽1, 𝛽2, 𝛽3, respectively, which are then used to compute

𝑋 2 B 𝛼
2𝑁

( 1

𝛽1
+ 1

𝛽2

1

𝛽3
), where 𝑁 B 𝑁0 + 𝑁1 + 𝑁2. We evaluate the

𝜒2 benchmark both using the EncInt and EncFP encodings.

Machine Learning Inference: PPML is an emergent research area

in encrypted computation [27, 38]. The cloud can perform oblivi-

ous neural network inference procedures with its own proprietary

model on sensitive user data for classification, and finally return a

set of encrypted probability scores for each class. In this scenario,

the cloud has no knowledge of client inputs or the final classifica-

tion result. To demonstrate the feasibility of FHE libraries for these

types of applications, we utilize a feedforward neural network with

two fully connected layers and the squaring (𝑋 2
) activation func-

tion. For neural network inference, it is common in the literature to

adopt the square activation function due to its low multiplicative

depth, whereas other non-linear activations, like ReLU, are much

harder to evaluate in the encrypted domain since they require ex-

pensive polynomial approximations [34, 60]. As the weights and

biases for each layer are known to the cloud, they do not have to be

encrypted. Thus, homomorphic multiplications between ciphertext

and plaintext values are performed faster and result in moderate

noise accumulation compared to multiplication between two ci-

phertexts; however, operations between ciphertexts are still needed

(e.g., in the square function). We evaluate this benchmark with a

constant image size for a variety of active neuron sizes to show

scalability for wider networks.

Logistic Regression (LR): This is an important PPML technique

that is similar in construction to a single layer neural network

with a sigmoid activation function. In practice, it is often used to

classify data into one of two classes and is applicable in areas such

as natural language processing (NLP) [40]. In T2, we employ a

Taylor series expansion of the sigmoid function and evaluate the

first three terms (i.e., 𝜎 (𝑋 ) B 1/2 + 𝑋/4 + (𝑋 3 )/48 + . . . ) [56]; using

more terms yields higher accuracy at the expense of more noise

and slower execution times. Since none of the HE libraries supports

homomorphic division, for EncInt we scale the series up by the

largest denominator and evaluate 𝜎 (𝑋 ) B 24 +̂ 12𝑋 +̂ 𝑋 3 + . . . ;

at the end, the client can scale down the final result. For EncFP,

we pre-compute the coefficients (i.e., encryptions of 0.5, 0.25, and

0.02083) and perform homomorphic operations with 𝑋 . For both

PPML benchmarks, we use both EncInt and EncFP.

Matrix Multiplication: Matrix multiplication is a crucial compu-

tation in a wide variety of fields such as machine learning. This

benchmark is multiplication-intensive and poses a good test of the

speed of homomorphic multiplication, relinearization, and modulus

switching procedures. In our matrix multiplication benchmark, we

consider multiplying two square matrices of varying sizes up to

16x16. We run this benchmark in EncInt and EncFP.

Batched Private Information Retrieval (BaPIR): Private infor-

mation retrieval (PIR) allows a client to obliviously download an

element from an encrypted database without revealing the query

(i.e., which element was downloaded) to the server [2, 5]. PIR has

a plethora of applications in private computation, such as ad de-

livery [46], friend discovery [13], and keyword search [67]. For

a single query, the server iterates over all database elements and

obliviously selects the client’s element, if present. We assume a

database of size 𝑛 where the keys are mapped to the index 𝑖𝑑𝑥 of

a desired value and the key-index mapping is public knowledge.

Using this structure, XPIR [2] introduced an optimized PIR that

trades bandwidth for performance as the client sends a size 𝑛 vec-

tor that contains an encryption of 1 at the index of the requested

element 𝑖 and fresh encryptions of 0 elsewhere. More specifically:

𝑄 = (𝑞1, 𝑞2, . . . , 𝑞𝑛), where 𝑞𝑖 = 1̂ for 𝑖 = 𝑖𝑑𝑥 and 𝑞𝑖 = 0̂, otherwise.

The server performs a pair-wise multiplication between 𝑄 and the

database elements 𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) and returns a sum of the

products

∑𝑛
𝑖=1 (𝑄 [𝑖] ∗̂ 𝑉 [𝑖]), which is equivalent to the encryption

of the requested element.

This benchmark can exploit batching to reduce the number of

encrypted operations and communication bandwidth. Instead of

representing 𝑄 and 𝑉 as vectors of ciphertexts, they can be con-

densed into single ciphertexts with at least 𝑛 slots. Now, one mul-

tiplication is required between 𝑄 and 𝑉 and the product can be

returned to the user, which contains the desired value in slot 𝑖𝑑𝑥 .

We evaluate PIR over a database in both EncInt and EncFP.

Squared Euclidean Distance: The squared Euclidean distance is

a mathematical formula used to compute the distance between two

𝑛-dimensional points and is also an important statistical measure

in cluster analysis [20] and facial recognition [63]. In our case, we

consider two 𝑛-dimensional points 𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) and 𝑈 =

(𝑢1, 𝑢2, . . . , 𝑢𝑛) in Euclidean space. The squared Euclidean distance
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is calculated as the sum of the squared differences between the

points as 𝐸2 (𝑉 ,𝑈 ) B ∑𝑛
𝑖=1 (𝑉 [𝑖]−𝑈 [𝑖])2. Notably, this procedure

is more FHE-friendly than the standard Euclidean distance that

requires a square root, which is not possible to directly evaluate

in the encrypted domain. As a result, the user needs to compute

the final square root in the plaintext domain after decrypting the

cloud’s output. For this benchmark we use EncInt and EncFP.

4.2 Bitwise Benchmarks

Cyclic Redundancy Check (CRC): The CRC algorithm is com-

monly used to detect errors in digital data and can also serve as

a non-cryptographic hash. Notably, this algorithm can perform

meaningful work in the encrypted domain as well: for example

one could check whether two encrypted images are identical. CRC

iterates over each input bit and performs bitwise operations with an

accumulate step. Its most expensive operation is this accumulation,

which is an 𝑛-bit addition where 𝑛 can be up to 64 bits, depend-

ing on the CRC variant used. T2 features the CRC-8 and CRC-32

algorithms using EncBin, which represent good tests for bitwise

operations such as XOR, shifting, and binary addition. We remark

that CRC-32 is much deeper as it requires 32-bit additions.

Oblivious Sorting: Sorting algorithms are an interesting and open

problem for encrypted computation; in all cases, one has to deal

with the worst-case complexity. For insertion sort, the worst-case

complexity is O(𝑛2) (where 𝑛 is the size of the array), due to the

termination problem. Ideally, one would use an asymptotically bet-

ter sorting algorithm such as merge sort, but this is data dependent.

However, the Batcher odd-even merge sort [8] is not data depen-

dent and has worst-case complexity O(log2 𝑛). We incorporate

both insertion sort and the Batcher sorting network into our bench-

mark suite. All sorting algorithms make frequent use of <̂ for the

conditional swap, making them intensive comparison benchmarks

that are impractical in EncInt for anything other than restrictively

small values of 𝑝 (as in Eq. 1). We also remark that the FHE Boolean

circuit for EncBin is incredibly deep as each element is updated

continuously with MUX gates (and each one increases the multiplica-

tive depth). As such, we only consider libraries with bootstrapping

in EncBin (namely TFHE and HElib) for this benchmark.

Binary Manhattan Distance: The Manhattan distance is a mea-

sure of the distance between two points 𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) and
𝑈 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) in an 𝑛-dimensional space and is defined as

𝑀 (𝑉 ,𝑈 ) B ∑𝑛
𝑖=1 ( | 𝑉 [𝑖] −̂ 𝑈 [𝑖] |). The key difference between

Manhattan and Euclidean distance is the usage of a taxicab geome-

try as opposed to Euclidean space. This benchmark differs slightly in

EncBin as the absolute value can be modeled as a multiplexing op-

eration for each iteration between𝑉 [𝑖] −̂ 𝑈 [𝑖] and −(𝑉 [𝑖] −̂ 𝑈 [𝑖]),
where the select bit is the encrypted sign bit of the difference.

Binary Private Information Retrieval (BinPIR): Similarly to

BaPIR, we assume a database𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) of size𝑛 where the

keys correspond to the index 𝑖𝑑𝑥 of a desired value. In this binary

version of PIR, the client does not perform any pre-processing and

solely sends an encrypted index𝑄 to the cloud. From an algorithmic

standpoint, the binary approach varies greatly from the EncInt and

EncFP implementations as each encrypted element in the database

is visited and an equality circuit is used to check if the index is equal

to𝑄 . Then, the output of the equality is used as the control input of a

MUXwhich will select between the desired value or an encryption of

zero. Lastly, the results of the MUX from each element in the database

are XOR-ed together to compute the final result, which is returned

to the user for decryption. This benchmark trades efficiency for

bandwidth: while more HE operations are required to complete the

query, the client requests are constant in size and the client does

not need any details about the structure of the key/value storage.

4.3 Relational Benchmarks

Hamming Distance: The Hamming distance between two strings

measures the minimum number of substitutions required to change

one string into the other, and is widely used for error detection in

telecommunications, as well as to determine genetic distance in

biology applications. It has also been used as an FHE application

in prior works [81]. The Hamming distance over two vectors can

be computed as 𝐻 (𝑉 ,𝑈 ) B ∑𝑛
𝑖=1 (𝑉 [𝑖] ≠ 𝑈 [𝑖]) and constitutes a

critical benchmark for FHE since its core operation is a comparison.

This benchmark is executed using both EncInt and EncBin.

Relational Manhattan Distance: Instead of using the sign bit

directly for the MUX input to compute the absolute value of the

difference of 𝑉 [𝑖]−̂𝑈 [𝑖] (as presented in the binary Manhattan

benchmark), this benchmark takes a different approach to deter-

mine the sign, as each individual bit can not be easily extracted in

EncInt. We employ the encrypted “less than” operator <̂ to deter-

mine whether the difference is less than 0̂ and use the output as the

selector of the multiplexer. Here, instead of the MUX and additions

being the core bottleneck, the <̂ is the most expensive operation.

5 EXPERIMENTAL EVALUATIONS

We run the T2 benchmarks using three different encodings, i.e.,

EncInt, EncBin, and EncFP, where applicable. For EncInt and

EncBin, we employ BFV where possible as this is widely used in

the research community [24, 34, 80] and BFV outperforms BGV for

smaller plaintext moduli up to between 32 and 64 bits [30], which

is the range used for the T2 benchmarks. The two exceptions to

this are TFHE (which only implements CGGI) and HElib (where the

only option for integers is BGV). Lastly, we utilize CKKS for EncFP

as it naturally supports computation on encrypted real numbers.

The benchmarks from the Arithmetic and Relational categories

are a better fit for the EncInt and EncFP encodings, whereas the

ones from the Bitwise category can only be run in EncBin because

they require operations (e.g., bitwise right rotation) which are not

possible under most circumstances in the two former encodings. To

investigate the effect that the target domain makes on the latency

of a benchmark, we run selected benchmarks from the Arithmetic

and the Relational categories using the EncBin encoding.

Finally, we carefully choose minimal FHE parameter sets for each

library to achieve at least 128 bits of security (using the “BKZ-beta”

classical cost model provided by the LWE estimator [4]) to success-

fully evaluate each benchmark, and where applicable, we varied the

input length of the benchmark, and the word-size 𝑤 for EncBin.

We only consider the timings of server-side FHE operations, which

consist of all evaluation operations except key generation and en-

cryption/decryption (which are one-time costs for the user). We

have evaluated the T2 translation methodology and found that it is

not only competitive with the state-of-the-art compilers, but it also
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Table 2: Noise growth and latency of core operations for integer, binary, and floating-point encodings. Parameter sets have

been judiciously selected to be as equivalent as possible across libraries.

Encoding Binary Encoding (EncBin) with word size 8
*

Integer Encoding (EncInt)
*

Floating-Point Encoding (EncFP)
*

Operation

Noise

Add.

‡

Mult. Eq. LT. ROT. Ctxt

Size
¶

Add. Mult. Eq. LT.
†

ROT. Ctxt

Size

Add. Mult. ROT. Ctxt

Size

HElib
§

49.4 6.2 9.5

Lattigo 50.3 6.3 9.4

PALIS. 14.7 1.8 5.8

SEAL 14.6 1.8 4.5

TFHE 0.02 - - - - - - - - - -

Fastest TFHE TFHE TFHE TFHE TFHE
#

N/A PALIS. PALIS. PALIS. PALIS.

Lattigo

PALIS.

N/A PALIS. PALIS.

Lattigo

PALIS.

N/A

Slowest PALIS.

PALIS.,

SEAL

HElib,

PALIS.

PALIS.,

SEAL

HElib N/A SEAL HElib

HElib,

SEAL

HElib,

SEAL

HElib N/A Lattigo

HElib,

Lattigo

HElib N/A

*
For integer and floating-point domain operations, we used a cyclotomic polynomial degree of 16k while binary domain operations were conducted with a

degree of 32k (with the exception of TFHE, which uses degree 1024).

†
The execution time scales exponentially with increasing plaintext modulus and is infeasible to compute with large plaintext moduli.

‡
Noise accumulation (or depth) relative to other HE operations, where the patterned bar indicates noise growth. For instance, binary addition results in

significantly higher noise than integer addition (lower is better).

§
The number of bars indicates latency relative to other HE operations on a logarithmic scale starting from 100 ms. For instance, any operation < 100 ms is

awarded one bar, 2 bars are < 1 second, and so on.

#
These rotations are performed on the vectors holding the encrypted bits and are independent of the HE library.

¶
Ciphertext size in MBs using the smallest parameters for each library to encrypt an 8-bit number and achieve depth 10 at 128 bits of security.

outperforms them in certain cases. While optimizing compilers usu-

ally target a single library, T2 offers support for the largest number

of backends, schemes, and encodings. A quantitative evaluation

with other compilers can be found in Appendix C.3.

All experiments were performed on an AWS instance (c5.4xlarge)

running Ubuntu 20.04, equipped with 16 vCPUs and 32 GBs of mem-

ory (however, our benchmarks do not require more than 8GBs).

Where applicable, we measured the runtime performance of our

benchmarks with all encodings. Our T2 compiler targets the lat-

est versions of the FHE backends at the time of writing: HElib

v2.2.1, Lattigo v3.0.2, PALISADE v1.11.6, Microsoft SEAL v4.0, and

TFHE v1.0.1. For TFHE, we used the SPQLIOS-FMA FFT engine. Fi-

nally, PALISADE is configured to exploit multi-threading by default.

Thus, we allow PALISADE to utilize all the available machine cores

since it is not optimized for sequential evaluation. However, for

completeness, we additionally conducted single core experiments

with PALISADE (depicted as PAL. 1C in the figures), which, to

our surprise, had the same execution time in some cases with the

multi-threaded implementation, while in other cases the single core

version was 2-3x slower. For the benchmarks where the single-core

implementation is slower, we overlay the PALISADE bar with a

non-patterned bar, as in Fig. 6. This provides a clear visual of how

multi-threading impacts the performance of PALISADE. Our eval-

uation does not add any custom form of parallelization to HElib,

Lattigo, SEAL, and TFHE as they only utilize one core by default.

In addition to the three categories of benchmarks analyzed in this

section,
1
we also evaluate the timings of FHE primitive operations

across all libraries in all encodings where applicable. Our results are

summarized in Table 2 and show the relative speeds of each library

for different operations as well as the ciphertext sizes generated by

1
The evaluations of matrix multiplication, batched and binary PIR, oblivious sorting,

and the squared Euclidean distance are included in Appendix C.

each library for a fixed depth and security level. We remark that

similar trends shown in this table in terms of ciphertext size also

apply to the benchmarks; while the total size of all ciphertexts will

change, the ratio between the sizes shown in this baseline is also

observed in our benchmarks. We note that TFHE ciphertexts are

approximately three orders of magnitude smaller than the other

FHE libraries, yet they are non-batchable. The larger ciphertexts,

however, may support thousands of batching slots. Some libraries

are unable to run certain benchmarks because there aren’t any al-
lowable parameters to support the required noise depth (i.e., there is

no valid configuration to support the noise budget while maintain-

ing 128 bits of security). We indicate these cases as “Noisy” with a

background color denoting the library (as shown in Fig. 6).

5.1 Selected Arithmetic Benchmarks

Chi-Squared: As this benchmark mainly comprises additions and

multiplications with low-depth, the latency for all the libraries

except TFHE for both EncInt and EncFP is under 0.5 seconds. For

TFHE, we use a word size of 8 bits and the runtime is 44.3 seconds,

which is due to the evaluation of binary adders and multipliers,

which require several addition, multiplication, and bootstrapping

operations for every circuit.

LR Inference: The LR benchmark has competitive timings across

all the libraries for both EncInt and EncFP, save for TFHE, which is

much slower, as shown in Fig. 4. Moreover, taking into consideration

that all the other libraries allowmultiple inferences in parallel using

batching without incurring any execution time penalty, TFHE is not

a good fit for this benchmark. Between the other libraries, HElib is

slightly slower, but as the total execution time is around 1 second

for every configuration, this difference is negligible.

Feedforward NN Inference: Fig. 5 demonstrates the timings for

our neural network benchmark for both EncInt and EncFP for
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(a) Integer domain with EncBin for TFHE and EncInt for other libraries.

(b) Floating-point domain with EncFP.

Figure 4: Measured execution time for the LR benchmark for

integer and floating-point domains for an increasing number

of attributes. TFHE uses EncBin with a word size𝑤 = 16.

Figure 5: Measured latency for the neural network bench-

mark in the integer (EncInt) and floating-point (EncFP) do-

mains with increasing numbers of hidden neurons.

varying numbers of active neurons. This benchmark includes large

numbers of ciphertext additions and multiplications between a ci-

phertext and plaintext value (since we assume that the cloud owns

the network weights and can work with them in the clear). For

EncInt, we observe HElib and SEAL being faster than Lattigo and

PALISADE, whereas in EncFP, HElib outperforms all the libraries

by more than an order of magnitude. This performance difference

in EncFP is attributed to the way HElib always applies the rescale
operation in the low-level instructions, whereas we can finely con-

trol these operations in the T2 operational units using the other

four back-ends. Note that TFHE could not evaluate this benchmark

in less than eight hours and thus is omitted from Fig. 5. These re-

sults are contrary to our expectations and to the trends depicted in

Table 2, which indicate that PALISADE should outperform the other

libraries for EncFP and EncInt. This emphasizes the importance

of considering the performance of actual applications instead of

solely primitive operations.

5.2 Selected Bitwise Benchmarks

CRC: Fig. 6 presents the timings of CRC-8 and CRC-32 evaluations

using EncBin as it is not possible to use the integer or floating-point

encodings due to the bitwise shift and XOR operations. All libraries

were able to run CRC-8 without issues, yet for CRC-32 only the

libraries that support bootstrapping were able to finish, namely

HElib and TFHE, due to the deep multiplicative depth needed to

support large 32-bit addition circuits. These results emphasize how

much more efficient the bootstrapping mechanism is in TFHE ver-

sus HElib, and additionally, the restrictions that all LHE schemes

have for deep algorithms. While the CRC-32 is theoretically ex-

ecutable with LHE, all LHE libraries did not support parameters

large enough to achieve the required depth at 128 bits of security

(i.e., depth is traded for security).

Figure 6: Measured execution time for the CRC-8 and CRC-

32 benchmarks in the binary domain with EncBin for word

sizes of 8 and 32 bits, respectively.

Figure 7: Measured execution time for the Manhattan dis-

tance benchmark for both integer and binary domains for

vectors with four and eight elements. The integer domain

uses EncInt for every library except TFHE which uses

EncBin, while the binary domain uses EncBin for all li-

braries. For the binary domain we used word size 𝑤 = 4

as well as a binary optimization for the computation of the

absolute value.

Figure 8: Measured execution time for the Hamming distance

benchmark for both integer and binary domains for vectors

with four and eight elements. All libraries use EncInt for

the integer domain except for TFHE, which uses EncBin. All

libraries in EncBin use a word size𝑤 = 4.

Binary Manhattan Distance: This benchmark includes a mul-

tiplexing operation to calculate the absolute value as it is more

efficient to evaluate a MUX using the sign bit of the𝑉 [𝑖] −̂ 𝑈 [𝑖] than
it is to employ an <̂ followed by a MUX (as in the integer domain).

Fig. 7 shows the timings for EncInt and EncBin. We note that

TFHE performs better when using the binary-optimized algorithm

while the other libraries perform better using the relational variant.

5.3 Relational Benchmarks

Hamming Distance: For libraries with built-in support for binary

arithmetic (i.e., HElib and TFHE), this benchmark is more efficient

using EncBin. However, for other libraries, EncInt is faster and

has a lower depth. Notably, TFHE drastically outperforms all im-

plementations for both domains, as depicted in Fig. 8.

RelationalManhattanDistance: This differs from the binary case

because sign extraction with encrypted integers is expensive. The

integer multiplexer follows the same equation, however the control

input must be 0̂ or 1̂. As shown in Fig. 7, Lattigo and PALISADE

are unable to evaluate this benchmark using EncInt because they

require 𝑝 − 1 to be a prime that evenly divides the cyclotomic

polynomial degree𝑚. Since the circuit depth of the LT operation
scales linearly with the size of 𝑝 , one needs a small poly degree

to allow for a smaller 𝑝 . However, small poly degrees do not yield
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enough multiplicative depth to evaluate the circuit, which requires

larger parameters and forces the user to employ a larger 𝑝 .

6 DISCUSSION & LESSONS LEARNED

EncBin: From the results presented in Table 2 and the T2 bench-

marks, we can glean several important insights about the perfor-

mance of different FHE libraries and schemes in a variety of situa-

tions. First, it is clear that TFHE is the optimal choice for the binary

encoding as it can evaluate both arithmetic and relational Boolean

circuits faster than any other FHE library and it boasts the smallest

ciphertext size by a wide margin. For deep circuits, such as the

CRC-32 benchmark, TFHE performs far better than HElib, which

has the only other bootstrappable implementation in the binary

encoding under study. This is primarily due to the vastly superior

bootstrapping speeds of TFHE compared to the BGV bootstrapping

in HElib. There is, however, one case that TFHE might not result in

the fastest evaluation: i.e., when the user wants to evaluate multiple

instances of the benchmark in parallel. For this case, HElib is the

best choice as it allows for efficient binary gate evaluations and has

the unique ability to use 𝑝 = 2 in a batching context. Thus, although
TFHE has by far the smallest latency for one instance, when the

core algorithm has to be repeated 𝑛 times, for a relatively small 𝑛,

the latency of TFHE is often larger than the latency of HElib, which

can extend to 𝑛 slots at the same cost as 𝑛 = 1.

EncInt & EncFP: From Table 2, it is clear that PALISADE in its

default, multi-core setting exhibits the fastest overall speeds for

both the integer and the floating-point encodings, but based on

the benchmark results this is not always the case. For algorithms

that include relational operators, PALISADE and Lattigo are poor

choices for EncInt as they require large plaintext moduli. Because

the depth of the comparison circuits scale with the plaintext modu-

lus size, these operations quickly become prohibitively expensive

in terms of noise, such as in the relational Manhattan distance. For

these types of applications, HElib is a better option since it enables

batching with much smaller choices of 𝑝 . In the floating-point do-

main, when rescaling frequently is required, HElib becomes the best

option due to its fast, automatic rescaling procedure as is shown in

the case of the neural network inference benchmark.

Domain selection: We can deduce that EncBin is ill-suited for

arithmetic-heavy benchmarks; for instance, a 16x16 × 16x16 matrix

multiplication took less than a minute for most libraries in EncInt

while TFHE was three orders of magnitude slower using EncBin.

However, algorithms that include right shifts and bitwise rotations

are only possible in EncBin. In general, we found that most libraries

had similar timings for both EncInt and EncFP, with the exception

of the NN inference due to rescaling. Some applications, such as

full-precision neural networks, are better suited for the EncFP as

weights do not need to be quantized.

7 FUTURE DIRECTIONS OF HE LIBRARIES

Based on our findings in this SoK, all libraries should introduce stan-

dardized binary circuits for atomic operations that form the building

blocks of most applications (such as multi-bit arithmetic circuits)

as the performance of binary FHE is dependent on the underlying

Boolean circuits. Currently, only HElib natively supports EncBin

operations, rendering it the most versatile library in this regard.

Unfortunately, although TFHE is meant for EncBin, it does not

include any circuit designs, only two-input logic gates, and relies on

the user to construct such circuits. As EncBin enables benchmarks

not possible in other domains, more libraries should follow HElib’s

footsteps in the future and include Boolean addition, multiplication,

and comparison circuits. Libraries can derive optimal implementa-

tions by leveraging established techniques in hardware design, such

as logic optimization, in order to provide arithmetic functionality

for Boolean ciphertexts. In fact, some compilers such as Romeo and

the Google Transpiler have started exploring these techniques but

they are only limited to certain backends. While these works have

already adopted generic synthesis flows, future work can further

explore how logic optimizations common to electronic design au-

tomation (EDA) could be optimally adopted for FHE. Additionally,

it is crucial to come up with better relational operations for the inte-

ger and floating-point encodings, as currently comparisons in these

domains are not viable for real-world applications. Latest trends

in encrypted computation circumvent this by avoiding relational

operations (such as PPML applications), but faster comparisons will

enable several new HE applications.

Finally, while TFHE exhibits fast bootstrapping for non-batched

binary ciphertexts, batchable schemes such as BFV and CKKS ex-

hibit incredibly slow speeds for bootstrapping. Therefore, a future

research direction in HE should be to improve bootstrapping speeds

while maintaining a high degree of batching, either by proposing

new bootstrapping mechanisms or by using hardware accelera-

tion. While custom hardware for FHE is actively being developed,

current hardware platforms such as GPUs show great promise for

accelerating FHE operations [38, 73]. Going forward, FHE libraries

should continue to incorporate support for these devices as well as

other emergent dedicated hardware units.

8 CONCLUDING REMARKS

Our goal with this systematization of knowledge is to highlight

the weaknesses of HE libraries and draw more researchers to the

problem of making HE practical for general computation through

standardized benchmarks. First, we establish the universal T2 com-

piler and accompanying T2dsl that can map to any arbitrary HE

library and encoding. We show that our compiler is fair across the

board by expounding upon the design of the optimized functional

units that are employed uniformly in all supported backends. Using

the compiler as a platform for meaningful comparisons, we employ

a custom suite of benchmarks that represents real use-cases of HE

and covers a broad range of computational patterns to analyze the

performance of HE libraries. We remark that any runtime differ-

ences between the libraries is due to the underlying cryptographic

implementations themselves and the optimizations they exploit,

rather than the compilation process (which is identical across the

board). Our goal for the T2 compiler and benchmarks is to become

instrumental in evaluating and improving new implementations of

both current and future HE schemes.

RESOURCES

Our T2 compiler and benchmarks are available online as open-

source software [44].
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APPENDIX

A FHE PARAMETER SELECTION

While meticulously minimizing the parameters required in each

library for our T2 benchmarks, we have found that all libraries

are not created equal when it comes to selecting parameter sets.

Table 3 depicts our findings with respect to four important criteria

related to parameter selection. The first consideration involves the

ciphertext modulus 𝑞; some libraries allow users to fine-tune the

sizes of individual primes as well as the total bit size of 𝑞, which can

affect both performance, security, and the number of levels. Next,

automated ciphertext maintenance, referring primarily to modulus

switching/rescaling and bootstrapping, is vital for reducing the dif-

ficulty of developing FHE applications, particularly for non-experts.

For instance HElib, PALISADE, and TFHE can fully automate these

procedures and will invoke them behind the scenes. Conversely,

Lattigo and SEAL will require operations like key-switching and

rescaling to be invoked manually; while this could be useful in

rare cases, it may become easier for a developer to schedule these

operations sub-optimally and incur a significant performance hit.

Configurable security refers to the ability to select parameter sets

at several security levels in order to allow users to balance security

versus efficiency for their specific applications. Lastly, control of the

cyclotomic refers to the ability to directly manipulate the degree of

the ciphertext polynomials; nearly all libraries allow you to specify

the ring-dimension 𝑁 , but we note that this parameter is related,

but distinct from the actual cyclotomic order.

There will always be a trade-off between ease of use and freedom

when it comes to parameterization. From a usability standpoint, we

argue that although Lattigo and SEAL may be beginner-friendly

due to limited parameterization options, HElib and PALISADE offer

the most flexibility. In the case of PALISADE, it has a flexible API for

instantiating FHE parameters with a number of optional parameters

and settings that users can tweak, which benefits both new users

Table 3: Features and ease-of-use of FHE libraries.

Library

Mod Chain

Control

Automated Ctxt

Maintenance

Configurable

Security

Arbitrary

Cyclotomics

HElib

Lattigo

PALISADE

SEAL

TFHE

(a) Integer domain with EncBin for TFHE and EncInt for other libraries.

(b) Floating-point domain with EncFP.

Figure 9: Measured execution time for the Matrix Multipli-

cation benchmark for square matrices ranging from 4 × 4 to

16 × 16. TFHE word size𝑤 = 8.

and experienced developers. The downside is that it is impossible

to directly set the cyclotomic order, and non-power of 2 cyclotomic

orders are not fully supported. For that matter, TFHE is also easy

to configure, but it is not straightforward to use for a non-expert as

it does not include any arithmetic functional units (e.g., multi-bit

adder/multiplier).

B FUTURE OF STANDARDIZED FHE

BENCHMARKS

The T2 benchmark suite comprises a plethora of representative

applications of FHE at the time of writing. FHE is still in its in-

fancy and continues to expand and become more efficient in terms

of memory and computational overhead each year. As new FHE

schemes and accelerators are developed, the use-cases for this pow-

erful technology will inevitably continue to grow and branch into

more industries. As such, we have built the T2 compiler with ex-
tensibility in mind to incorporate new FHE schemes as they arise and
we plan to expand T2 in the future to reflect new trends in FHE.

Our goal with T2 is to provide a benchmark suite that enables easy

comparisons between FHE libraries and we foresee future research

to significantly benefit from our standardized benchmarks and their

easy deployment for a variety of FHE back-ends.

We also aim to draw attention to open problems in FHE us-

ing T2, including automated parameterization for general-purpose

encrypted computation. Finding the smallest parameter set that

works for a given application and results in the fastest execution

time is a time-consuming process that requires a lot of trial and

error to get right. A mechanism to automate this process without

actually running anything in the encrypted domain would go a

long way to streamline the incorporation of new benchmarks and

make comparisons between schemes and libraries more fair.

C EXTENDED EXPERIMENTAL RESULTS

For completeness, we report additional performance results for

arithmetic and bitwise benchmarks.

C.1 Arithmetic Benchmarks

Matrix Multiplication: For this benchmark, we use two square

matrices in EncInt and EncFP. Similarly to the 𝜒2 benchmark, in
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(a) Integer domain with EncBin for TFHE and EncInt for other libraries.

(b) Floating-point domain with EncFP.

Figure 10:Measured execution time for the BaPIR benchmark

for integer and floating-point domains for an increasing

database size. TFHE uses EncBin with a word size of 5 in the

integer domain.

Fig. 9 (a) we observe that all the libraries are at least three orders

of magnitude faster than TFHE since the latter has to evaluate very

expensive binary multiplication circuits to compute the product

of multi-bit operands. Contrary to Fig. 5, Lattigo and PALISADE

are the two fastest frameworks for integers. This showcases that

these libraries have efficient multiplication implementations when

multiplying two ciphertexts, while HElib and SEAL may be faster

at multiplying ciphertexts with constants. Finally, in Fig. 9 (b) we

observe that HElib is significantly slower than all the other libraries,

which contradicts our results in Fig. 5. However, this performance

difference is expected since in the matrix multiplication bench-

mark there is no need to invoke the rescale operation after every

multiplication, yet HElib invokes it automatically and suffers a

performance slowdown.

BaPIR: Fig. 10 shows the execution time for the batched PIR bench-

mark for databases with 64, 128, and 256 entries. Notably, save for

TFHE, all frameworks have approximately constant time for the

different database sizes since they all fit in the slots of one cipher-

text and therefore the number of operations is identical across all

variants. Since TFHE does not support batching, it incurs a signif-

icant performance overhead, shown with the blue bar in Fig. 10

(a). This benchmark highlights the two core advantages of all the

arithmetic schemes compared to CGGI (i.e., the underlying scheme

in TFHE). First, the schemes with batching capability perform only

a single multiplication compared to CGGI, which needs to perform

as many multiplications as the database size. Second, as EncBin

has to perform binary multiplications, it incurs additional overhead

compared to the fast multiplications in EncInt and EncFP for all

the other libraries.

Squared Euclidean Distance: This benchmark comprises one

subtraction, one multiplication, and one addition for every two ele-

ments of the input vectors, rendering it a representative benchmark

for core arithmetic operations. Fig. 11 shows the runtime perfor-

mance for both EncInt and EncFP with vector sizes of 64 and

128 elements. Lattigo, PALISADE, and SEAL are the three fastest

libraries, with HElib having competitive performance and TFHE

being orders of magnitude slower because of the large binary cir-

cuits needed. Additionally, this benchmark can take advantage of

batching and compare multiple sets of vectors, further accelerating

Figure 11: Measured execution time for the Euclidean dis-

tance benchmark for both integer and floating-point do-

mains for vectors with 64, 128, and 256 elements. The in-

teger domain uses EncInt for the backends, except for TFHE

which uses EncBin with word size𝑤 = 8. The floating-point

domain uses EncFP for the relevant backends.

(a) Insertion Sort

(b) Batcher Sorting Network

Figure 12: Measured execution time for the two oblivious sort

benchmarks for different input array sizes with word size

𝑤 = 4 in the binary domain using EncBin for all libraries.

Figure 13: Measured execution time for the BinPIR bench-

mark in the binary domain with EncBin and word size𝑤 = 5

for an increasing database size.

the amortized performance of the baseline algorithm for all libraries

except TFHE, which will incur a linear overhead that scales with

the total number of elements.

C.2 Bitwise Benchmarks

Oblivious Sorting:Oblivious sortingmethods are very deep bench-

marks in terms of multiplicative depth. In the case of insertion sort,
the first elements in the array require a large depth as the algorithm

iterates through each element and performs multiplexing proce-

dures with all prior elements during each iteration. Recall from

Section 3.4 that a multiplexing operation has depth marginally over

one, (since two depth-1 ciphertexts are added together, resulting

in slightly more noise accumulation). Thus, as shown in Fig. 12 (a),

only HElib and TFHE were able to finish this benchmark as they

are the only two libraries supporting bootstrapping for EncBin.

TFHE is significantly faster than HElib due to its fast bootstrapping

speeds and the much smaller ciphertext polynomial degrees. Al-

though this benchmark incurs high overheads even for an array of
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Figure 14: Comparisons between T2, E
3
, EVA, and TenSEAL

for the matrix multiplication benchmark with 16 × 16 square

matrices. The compilers target SEAL BFV and CKKS, as well

as PALISADE BFV and CKKS for EncInt and EncFp, respec-

tively.

Figure 15: Comparisons between T2, E
3
, EVA, and TenSEAL

for the Euclidean distance benchmark with input vectors

of 128 elements. The compilers target SEAL BFV and CKKS,

as well as PALISADE BFV and CKKS for EncInt and EncFp,

respectively.

16 elements, we emphasize the need of faster bootstrapping and

enhanced comparison units for all the libraries.

Similarly to the insertion sort, the Batcher sorting network re-

quires a high number of multiplications, and thus, Lattigo, PAL-

ISADE, and SEAL were not able to decrypt successfully due to

significant noise accumulation. However, in Fig. 12 (b) we observe

that both HElib and TFHE are almost one order of magnitude faster

for Batcher sorting compared to insertion sort. We remark that the

insertion sort performance corresponds to its O(𝑛2) worst-case
complexity during data-oblivious execution, whereas the Batcher

sorting network has a better worst-case complexity of O(log2 𝑛).
BinPIR: The binary PIR benchmark incurs a significant overhead

compared to the batched version (BaPIR), as shown in Fig. 13. More

specifically, we observe that Lattigo, PALISADE, and SEAL can only

run with a database of 8 elements due to significant noise growth,

which is unrealistic. HElib and TFHE scale linearly to the number

of elements, with the latter being one order of magnitude faster

than the former. This experiment demonstrates the superiority of

the BaPIR benchmark for the libraries that support batching.

C.3 Comparisons with Optimizing Compilers

To demonstrate how the T2 compiler performs relative to other

state-of-the-art works, we perform experiments with four T2 bench-

marks across several compiler/backend combinations. Our goal with

these comparisons is to show that T2 still performs similarly to

state-of-the-art HE compilers even though it is not an optimizing

compiler like EVA [32], TenSEAL [10], and Cingulata [19]. To that

end, we selected a subset of T2 benchmarks, implemented each

algorithm across many popular compilers (EVA, TenSEAL, Cingu-

lata, E
3
[24], Google Transpiler [43], and Romeo [45]), and allowed

the compilers to leverage all supported optimizations. The current
compilers can be divided into two classes: those that operate in

Figure 16: Comparisons between T2, Cingulata, E
3
, Google

Transpiler, and Romeo for the 𝜒2 and the CRC-32 bench-

marks targeting TFHE for EncBin.

the arithmetic domain (which is synonymous with our EncInt

and EncFP) and those that operate in the Boolean circuit domain

(i.e., EncBin). E
3
is the only other framework besides T2 that has

support for both computational domains. For fair comparisons,

we configured the backends and parameters to be constant across

frameworks (at 128 bits of security) and ran all experiments using

a single CPU thread.

Figs. 14 and 15 illustrate comparisons with compilers support-

ing CKKS and BFV using our matrix multiplication and Euclidean

distance benchmarks, respectively. For the former, we use square

matrices of size 16 while for the latter we use two vectors of 128

elements each. Overall, T2 performs on-par with the state-of-the-

art and even outperforms E
3
for PALISADE BFV. TenSEAL and

EVA yield the best performance for most of the backends/schemes,

which can be attributed to the fact that these compilers were de-

signed specifically with encrypted tensors in mind and each will

automatically determine the best batching strategy for these tensor

operations to minimize latency. The only exception is TenSEAL for

BFV in Fig. 15 which performed slower than T2 and E
3
, because

it needed a bigger parameter set to avoid noisy results. In general,

we see a similar scaling between the two benchmarks (Figs. 14 and

15), which verifies that T2 is competitive with state-of-the-art opti-

mizing compilers. We note that the T2 compiler is the only one of

these works that has functional support for both HElib and Lattigo

and is the only compiler that has support for SEAL BFV, as well

as CKKS and PALISADE BFV (note: lack of support is indicated in

Fig. 14 as “N/S” for not supported).
Fig. 16 depicts comparisons with multiple compilers that sup-

port the TFHE library as a cryptographic backend for both our

chi-squared benchmark with an 8-bit word size and CRC-32 with a

32-bit word size. T2 is faster than both E
3
and Romeo across both

benchmarks and is only outperformed by the optimizing compiler

Cingulata by a small margin. While Romeo uses advanced logic

optimizations to minimize the FHE boolean circuits, it does not

support mixed operations with constants and therefore it needs

to encrypt all values used in a program, even those that are con-

sidered public. Because both the chi-squared and CRC-32 algo-

rithms incorporate numerous public values, it performs poorly

as ciphertext-ciphertext operations are significantly slower than

ciphertext-plaintext counterparts. Interestingly, the Google Tran-

spiler outperforms all other compilers for the CRC-32 application,

but exhibits poor performance for chi-squared; this suggests that

the Transpiler optimizes FHE circuits for applications that exhibit

primarily bitwise operations like CRC-32, but produces suboptimal

circuits for arithmetic-heavy programs like chi-squared.
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Summary: Our analysis indicates that T2 generates code with

performance analogous to state-of-the-art optimizing compilers.

Therefore, enabling comparisons between different libraries with

a general-purpose compiler like T2 is of significant importance as

the runtime differences between different backends indicate the

strength and weaknesses of each underlying library and rather than

differences in the T2 compilation for different target libraries. This is

also one of the foundations on which the T2 compiler has been built

on: using the same functional units and encoding methodologies

across all supported libraries. For all alternative encodings, the

comparisons with other works demonstrate that the T2 compiler

indeed offers competitive performance, and outputs programs of

similar caliber to what can be generated by alternative state-of-the-

art compilers.

D PROGRAMMING IN T2DSL

Our custom C-like language supports syntax familiar to developers

that program in high-level languages. Figures 17 and 18 show the

T2dsl used to generate the homomorphic programs for all sup-

ported backends for the squared euclidean distance and CRC-32

benchmarks respectively. In both cases, the depicted code is intu-

itive and mimics the way that programmers would implement these

applications on plaintext data.

1 int main(void) {

2 EncInt dist , d;

3 EncInt [] v, u;

4 int i;

5 v = { 10, 15, 3, 9 };

6 u = { 11, 13, 3, 10 };

7 dist = 0;

8 // dist = Sum( (v_i - u_i)^2 )

9 tstart (); // Start timer

10 for (i = 0; i < (v.size); i++) {

11 d = (v[i]) - (u[i]);

12 dist += (d * d);

13 }

14 tstop(); // Print execution time

15 print(dist); // Decrypt and print

16 return 0;

17 }

Figure 17: Squared Euclidean distance in T2DSL.

1 int main(void) {

2 EncInt crc , data , temp;

3 int i, j;

4 crc = 4294967295; // 0xFFFFFFFF

5 data = 1717921090;

6 tstart (); // Start timer

7 for (i = 3; i >= 0; i--) {

8 temp = (data << (i*8));

9 temp >>>= 24;

10 crc = crc ^ temp;

11 print(crc);

12 for (j = 0; j < 8; j++) {

13 temp = crc >>> 1;

14 crc = (crc) ? (temp ^ 3988292384) : temp;

15 }

16 print(crc);

17 }

18 crc = ~ crc;

19 tstop(); // Print execution time

20 print(crc); // Decrypt and print

21 return 0;

22 }

Figure 18: CRC-32 program in T2DSL.
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