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ABSTRACT
Membership Inference Attacks (MIAs) can be conducted based on
specific settings/assumptions and experience different limitations.
In this paper, first, we provide a systematization of knowledge for all
representative MIAs found in the literature. Second, we empirically
evaluate and compare the MIA success rates achieved on Machine
Learning (ML) models trained with some of the most common
generalization techniques. Third, we examine the contribution of
potential data leaks to successful MIAs. Fourth, we examine if the
depth of Artificial Neural Networks (ANNs) affects MIA success
rate and to what extent. For the experimental analysis, we focus
solely on well-generalizable target models (various architectures
trained on multiple datasets), having only black-box access to them.

Our results suggest the following: (a) MIAs on well-generalizable
targets suffer from significant limitations which undermine their
practicality, (b) common generalization techniques result in ML
models which are comparably robust against MIAs, (c) data leaks,
although effective for overfitted models, do not facilitate MIAs in
case of well-generalizable targets, (d) deep ANN architectures are
not more vulnerable to MIAs compared to shallower ones or the
opposite, and (e) well-generalizable models can be robust against
MIAs even when not achieving state-of-the-art performance.
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1 INTRODUCTION
Membership Inference Attacks (MIAs), where an adversary given
a trained Machine Learning (ML) model and a target data record
determines whether this data record was used as part of the model’s
training set [64], have severe consequences affecting directly users’
privacy [44]. Learning that a record was used to train a particu-
lar ML model is an indication of information leakage through that
model. Take for example an ML model trained to classify a patient’s
information to a specific disease class. If an adversary knows that a
patient’s data was included in the model’s training set they can con-
clude about the patient’s health status [60]. Similarly, inferring that
statistics collected over a sensitive timeframe or sensitive locations
include a particular user harms the individual’s privacy [55]. Finally,
MIAs can damage the ML model provider’s intellectual property
of the training dataset since collecting and labeling data instances
may require lots of expensive (often human) resources [28].

From a different perspective, membership inference can be use-
ful for: (a) supporting the suspicion that a model was trained on
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personal data without an adequate legal basis, or for a purpose not
compatible with the data collection, (b) enforcing individual rights,
such as the “right to be forgotten”, and (c) detecting violations of
data-protection regulations, such as the GDPR [16, 47]. For exam-
ple, Song et al. [68] refer to their MIA as an auditing technique that
helps users check if their data was used to train a natural-language
text generation model without them knowing. In a similar fashion,
Carlini et al. [6] propose a MIA-based methodology that can benefit
privacy by allowing ML practitioners to quantitatively assess the
risk that rare or unique training-data sequences are unintention-
ally memorized by generative models. Thus, membership inference
can be useful not only to malicious entities, but also to legitimate
entities who wish to examine if specific records have been included
in an ML model’s dataset without the corresponding permission.

Systematizing Prior Works. MIAs can be conducted based
on specific settings/assumptions and experience different limita-
tions (see Table 4, Appx. A.1, for an overview). Surprisingly, the
set of settings/assumptions is quite diverse. For example, MIAs
are well known to work on overfitted models [25, 43, 60, 79], fail-
ing, however, when the target model is well-generalizable. Such
models classify previously unseen (testing) input samples with
high success rates. In addition, MIAs achieving high success rates
on well-generalizable targets might impose significant limitations,
which undermine their practicality. In general, a systematic clas-
sification of MIAs found in the literature, as well as an in-depth
analysis of the assumptions/limitations affecting either their gener-
ality/applicability or their performance, is currently lacking.

Evaluating ML Generalization Techniques. Training an ML
model involves the use of certain optimization and regularization
techniques for increasing the model’s generalization. However,
the extent to which different ML generalization techniques affect
the MIA success rates currently remains unclear. In other words,
specific generalization techniques may result in ML models that are
more vulnerable to MIAs compared to other models trained using
different generalization techniques.

For example, the use of a particular optimizer may result in a
local optima (set of weights’ values) that makes the model more vul-
nerable to MIAs than other models trained using different optimiz-
ers. Furthermore, the use of specific regularization techniques may
increase, rather than decrease, the vulnerability to MIAs [31, 72].
This is because, while regularization may indeed help, it does not
guarantee no-overfitting. Thus, applying specific regularizers may
result in models that are well-generalizable yet leave particular
groups of instances exposed to MIAs (e.g., due to increased distribu-
tional overfitting [35], where some records are more vulnerable to
MIAs than others). In general, a detailed comparison between the
MIA success rates achieved on ML models trained with different
optimizers and regularizers, is currently absent from the literature.
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Data Leakage Implications. The adversary’s knowledge of the
target model’s training set is another important factor affecting
MIA success rates, at least on overfitted models. For example, Hui
et al. [25] showed that MIAs’ performance on overfitted models
is analogous to the number of labeled instances available to the
adversary. Labeled instances include the ground-truth membership
status, that is, whether or not each instance was included in the tar-
get model’s training set. However, it is currently unknown whether
Hui et al.’s observation holds for well-generalizable targets as well.
Assuming that an adversary has access to the ground-truth mem-
bership information of the target model’s training set is a realistic
scenario as real-world incidents, e.g., data breaches, have actually
occurred several times in the past [15, 19, 30] 1. Exploring the con-
sequences of potential data leaks and examining their contribution
to black-box MIAs (a best-case scenario for black-box adversaries
with partial access to ground-truth membership status) is a case
that, to the best of our knowledge, has been largely overlooked.

Depth Factor. Deep Artificial Neural Networks (ANNs) demon-
strate excellent performance on a wide-range of real-life problems.
Generally speaking, the more layers an ANN has, the higher its ac-
curacy [3]. Nonetheless, deep ANNs tend to memorize the training
data because they have the capacity to do so [50, 71, 82]. Thus, al-
though not overfitted, deep ANNsmay be more vulnerable to MIAs
compared to shallow ones –still remains unclear. In general, an
experimental investigation regarding whether or not, and to what
extent, the depth of ANNs facilitates the successful deployment of
black-box MIAs is currently absent from the literature.

Contributions. Our analysis is not only literature-based, but
mostly experimentally based. In fact, we carry out several MIAs
in order to explore the key adversarial settings that contribute the
most in the effectiveness of the attacks. Our literature-based and ex-
perimental exploration provides several new results. The key results
are the contributions of this paper, which we summarize here.

• We provide a systematization of knowledge for all represen-
tative MIAs found in the literature. Our analysis shows that
the majority of MIAs report high attack success rates only
on overfitted models; papers achieving high MIA success
rates on well-generalizable models either rely on adversary’s
knowledge about the target model’s internals and/or its data
distribution, or impose significant limitations, which under-
mine their practicality (Sec. 3).

• We evaluate and compare the MIA success rates achieved
on ML models trained with some of the most common ML
generalization techniques. Our results suggest that all tested
optimizers and regularizers lead to ML models which are
comparably robust against black-box adversaries with strong
background knowledge. In fact, we show that one can train
well-generalizable models, which are robust against MIAs,
without using any regularization technique. Thus, we con-
clude that MIA success rate is more closely related to the
target model’s generalization rather than to a particular reg-
ularization technique used. Furthermore, we observe that
MIA success rate is not directly related to the model’s perfor-
mance rather than its generalization gap 2. In other words, a

1Note that a detailed analysis on how an adversary can gain access to such information
is out of scope for this paper.
2That is, the gap between the training and testing accuracies [5, 67].

well-generalizable model can be robust against MIAs even if
not achieving state-of-the-art performance (Sec. 4).

• We examine if Hui et al.’s observation (i.e., MIA success rate
is analogous to the number of labeled instances available to
the adversary) holds for well-generalizable targets as well,
apart from overfitted ones. We do this by simulating the
case where a large portion of the target dataset has been
leaked by hackers or insiders, and by conducting black-box
MIAs against some of the most popular deep ANNs. Our
results suggest that Hui et al.’s observation does not apply
to well-generalizable targets (Sec. 5).

• Deep ANNs, although not overfitted, might memorize the
training data, and thus bemore vulnerable toMIAs compared
to shallower ones. We, for the first time, experimentally
investigate whether or not the depth of ANNs facilitates
black-box MIAs and to what extent. Our results suggest that
deep ANN architectures are not more vulnerable to black-box
MIAs compared to shallower ones or the opposite (Sec. 5).

• To foster further research on this topic and ease reproducibil-
ity, we release the code for our analysis 3.

2 PRELIMINARIES
2.1 The Membership Inference Problem
MIAs infer whether a particular data record has been included in a
target model’s training set, 𝐷 , or not. Formally, given a trained ML
model,𝑀𝑡𝑎𝑟 , a target data record, 𝑥𝑡𝑎𝑟 , and any available external
knowledge of an adversary,𝐾𝑎𝑑𝑣 , a MIA model,𝐴, can be defined as
𝐴 : 𝑥𝑡𝑎𝑟 , 𝑀𝑡𝑎𝑟 , 𝐾𝑎𝑑𝑣 → {0, 1}, where 0 means that 𝑥𝑡𝑎𝑟 is member
in 𝐷 and 1 means the opposite. Depending on their goal, MIAs can
be further divided into two groups: sample-level and user-level. The
goal of user-level MIAs is to determine whether a user’s data was
used to train an ML model, whereas the goal of sample-level MIAs
is to determine the membership status of individual data records.

In the context of MIAs value can be characterized by the attack
success rate as an evaluation of what level of leakage is present
in 𝑀𝑡𝑎𝑟 or what amount of knowledge an attacker can expect to
gain [74]. The success rate of an attack, however, can be described
using various metrics. For example, we can use precision, which
indicates the fraction of instances inferred as members and are
actually members in 𝐷 –True Positives (TP), divided by the sum of
TP and falsely predictedmembers –False Positives (FP). Considering
only precision for concluding about 𝐴’s performance is not enough
since the model can gain 100% success rate by just making a handful
of positive predictions (i.e., members in 𝐷) for which it is highly
confident in regards to those records membership status.

Another approach is to consider recall, which indicates the frac-
tion of instances inferred as members and are actually members in
𝐷 (TP), divided by the total number of instances in 𝐷 . Considering
solely recall, however, for concluding about 𝐴’s performance is
not enough since the model can gain 100% success rate by always
predicting a record as a member in 𝐷 .

Reporting both precision and recall, and maybe their harmonic
mean –F1 score, for each class would be necessary in case of: (a)
imbalanced datasets, where the samples’ distribution across the
classes is not uniform [58], and (b) different costs of FP and False

3https://bitbucket.org/srecgrp/sok-membership-inference-public/
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Negatives (FN). Nonetheless, in all of our experiments, the utilized
datasets are balanced, having 50% members and 50% non-members,
and the cost of FP equals to the cost of FN. That is, the cost of
considering a record as a member when in fact it is not, is the same
as considering a record as non-member when in fact it is. Thus,
similarly to [16, 49, 50, 59, 60, 64, 74], we can solely rely on accuracy,
which indicates the fraction of predictions our model got right, for
reporting the attacker’s performance on conducting MIAs.

2.2 Overfitted vs. Well-Generalizable Targets
Overfitted models do not generalize well on unseen, during the
training phase, data records. They essentially memorize the training
records and demonstrate low performance on testing records.

On the one hand, facing overfitted models is a possible scenario
since: (a) some real-world datasets are very tiny and not at all rep-
resentative of the overall distribution, (b) regularization techniques
may indeed help, but they do not guarantee no-overfitting, and (c)
distributional overfitting may exist, where some records are more
vulnerable to MIAs than others.

On the other hand, one can argue that assuming overfitted tar-
gets is simply a malpractice, and ask why would this be done in
the first place. This is an intuitive question since overfitted mod-
els have no practical use, because they yield low performance on
unseen (testing) data, and the results on such models should not
be generalized to well-generalizable models [58]. Furthermore, in
many cases, privacy-sensitive ML models are carefully trained to
be well-generalizable since this is a requirement. Finally, the dif-
ferent Machine Learning as a Service (MLaaS) platforms operate
increasingly well in the sense that they either offer high-performing
pre-trained models for various tasks or manage to achieve high
accuracy results on custom datasets uploaded by the users.

For the aforementioned reasons, in this paper, we either train/test
each target model for ensuring that it is not overfitted on the train-
ing data and reached an adequate level of generalization or use
popular pre-trained architectures that achieve excellent perfor-
mance. As Carlini et al. [5] suggest, this makes our analysis much
more realistic than prior work, which often uses models with higher
error rates than our models. Besides, as Long et al. [44] explain, in
an overfitted model, almost all of its records are vulnerable to MIAs.

Note that while different models might experience different lev-
els of generalization, we are not considering this in our analysis.
Specifically, we are only interested in increasing the generaliza-
tion of each model as much as we can. This is because Salem et
al. [60] have already demonstrated that MIA success rate is anal-
ogous to the overfitting level of the target model. In other words,
the larger the generalization gap (overfitting), the higher the MIA
performance. In addition, Yeom et al. [79] provide both experimen-
tal and theoretical evidence showing that ML models become more
vulnerable to MIAs as they overfit more.

2.3 White-box vs. Black-box Adversaries
White-box adversaries have access to the internals of the target
model,𝑀𝑡𝑎𝑟 , such as its architecture, weights, hidden layers’ acti-
vations, and loss function.

Black-box adversaries can only query𝑀𝑡𝑎𝑟 with an arbitrary in-
put, 𝑥 , and receive the confidence score for each class as a response,

without knowing any additional information. In other words, con-
trary to white-box adversaries, the parameters of𝑀𝑡𝑎𝑟 as well as
the intermediate steps of the computation are not accessible.

Fully black-box adversaries are further limited in capabilities, in
the sense that they can only access𝑀𝑡𝑎𝑟 ’s predicted (discrete) class
without, however, the confidence score for each class.

Although in Sec. 3 we provide a systematization of knowledge
for MIAs operating in any setting, later, in Sec. 4 & 5, we conduct
our experimental analysis using black-box adversaries only. The
motivation behind this decision is three-fold. First, it was shown
that white-box adversaries have limited advantages compared to
black-box adversaries [59, 63, 69]. Second, we want to examine the
possibility of conducting practical MIAs under minimal adversarial
assumptions. Third, this is the setting that most MLaaS platforms
operate in [50, 64]. Thus, for performing our analysis, we utilize
the target model’s confidence scores when querying it with mem-
ber or non-member data records. More specifically, we utilize the
confidence scores derived from the last (output) layer as Nasr et al.
[50] revealed that it leaks the most membership information.

2.4 Dataset Complexity
The dataset’s complexity largely affects the performance of MIAs.
For example, tasks with higher-dimensional outputs (many classes)
are more vulnerable to MIAs than those with lower-dimensional
outputs [56, 60, 62, 74]. Moreover, the distribution of the training
data, and the uniformity within each class, significantly impact
adversaries’ ability to conduct MIAs [64, 74, 79].

In this paper, we mainly utilize image datasets, namely CIFAR-
10/100 [34] and SVHN [51], for conducting our analysis. The intu-
ition behind this decision is two-fold. First, image datasets have
higher complexity compared to non-image ones [69]. Second, we
avoid using classic record-based datasets, such as Purchase, Loca-
tions, and Texas (see [64] for details), since they are not meaningful
benchmarks for privacy because of their simplicity [5]. Instead, we
select image datasets that contain rich information since doing so
represents a much more challenging task for the attacker compared
to simple datasets, such as MNIST, where the samples from each
class have very similar features [16]. Nonetheless, for supporting
the generalizability of our results, we present experiments on three
additional datasets that are not image related. In particular, we
utilize two tabular datasets, namely Adult [11] and Surgical [61],
and one text dataset, namely IMDB [46]. Note, however, that a
detailed analysis for the effects of the dataset’s complexity on the
MIA success rates achieved is beyond the scope of this paper.

For the image datasets (CIFAR-10/100 and SVHN), we use Con-
volutional Neural Network (CNN) based architectures to build the
target models, whereas for the other datasets (Adult, Surgical and
IMDB), we use Multilayer Perceptron (MLP).

3 SYSTEMATIZATION OF KNOWLEDGE
In this section, we provide an in-depth systematization of the related
literature, highlighting the papers that achieve well-above baseline
MIA success rates on well-generalizable targets, as well as their
assumptions and limitations (Sec. 3.1). This helps us in identifying
specific research questions that still remain unanswered (Sec. 3.2).
We then answer those research questions in Sec. 4 & 5.
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3.1 Analysis of Representative MIAs
MIAs operate under specific settings and assumptions, and thus
experience different limitations (see Table 4, Appx. A.1, for an
overview of the most common assumptions). Table 1 shows a de-
tailed classification of the characteristics of different types of ad-
versaries found in the literature. As shown, numerous MIAs have
been proposed, each of them targeting different ML models (either
discriminative or generative) or aggregate statistics in both stan-
dalone and collaborative environments. In this paper, we focus on
MIAs targeting ML models due to their increased popularity and
performance on solving various tasks.

As shown in Table 1, the majority of MIAs report high success
rates only on overfitted models; papers that achieve moderate or
high MIA success rates on well-generalizable models (see high-
lighted rows) either rely on the adversary’s knowledge about the
target model’s internals, such as its structure/parameters, training
algorithm, data distribution, or impose significant limitations.

Below, we first outline the most representative MIAs on over-
fitted targets. Later, we analyse MIAs on well-generalizable tar-
gets. For the reasons mentioned in Sec. 2.2, we give greater focus
on MIAs targeting well-generalizable models. For each work, we
provide a summary of its operation and then outline the down-
sides/limitations that affect either its practicality or effectiveness.

3.1.1 MIAs on Overfitted Targets. Shokri et al. [64] were the first
to propose MIAs on (trained) discriminative ML models having
only black-box access to them. Shokri et al. achieve 93.5% inference
accuracy when the target model is overfitted on the training data
having testing accuracy of 65%. However, their inference accuracy
drops to 51.7% (baseline is 50%) when the target model is well-
generalizable having testing accuracy over 90%.

Later, Salem et al. [60] further analyse the connections between
overfitting and MIA success rates. However, the authors observe
the same results with Shokri et al. In particular, when they target
a well-generalizable model trained on Adult dataset, they achieve
relatively weak performance. On the other hand, when they attack
an overfitted model that demonstrates significant gap between the
training and testing accuracies (more than 78%), the MIA success
rate rises to 95%. Furthermore, Salem et al.’s black-box MIAs relax
two rather strong assumptions made by Shokri et al. First, the
utilized shadow models, which mimic the target model’s behaviour,
do not need to share the same structure as the target model. Second,
the dataset used to train those shadow models does not need to
come from the same distribution as the target model’s training set.

Recently, Hui et al. [25] propose MIAs that probe the target
model and extract membership semantics using a novel approach,
called differential comparison. Hui et al.’s MIAs do not require the
use of shadow models and instead infer membership directly from
the probing results obtained from the target model. Nonetheless,
similar to Shokri et al. [64] and Salem et al. [60], Hui et al. mainly
focus on targeting overfitted rather than well-generalizable models.

3.1.2 MIAs on Well-generalizable Targets. Yeom et al. [79] conduct
a formal and empirical analysis of the impact that overfitting has
on an attacker’s ability to carry out MIAs. The authors express
the advantage of an attacker as a function of the extent of over-
fitting, thereby showing that a model’s generalization is a strong

predictor for its vulnerability to MIAs. However, Yeom et al. show
that overfitting, although sufficient, is not a necessary condition
for enabling MIAs, and thus motivate the study of other factors
that may affect such attacks. Both Yeom et al. and Sablayrolles et
al. [59] conduct successful MIAs on well-generalizable targets by
exploiting the model’s loss function. In fact, Sablayrolles et al. show
(theoretically) that the optimal MIA depends solely on the loss func-
tion. Nonetheless, for specific privacy-sensitive ML models, such
as those deployed in the healthcare field, the loss function may not
be accessible to the end users. Thus, in the (common) case where
an adversary can only query the target model and receive, as a
response, the confidence score for each class, both Yeom et al.’s and
Sablayrolles et al.’s MIAs cannot be applied.

Nasr et al. [50] propose MIAs in both standalone and collab-
orative environments. The authors show that well-generalizable
models, despite achieving state-of-the-art performance on CIFAR-
100, are still susceptible to white-box MIAs. In collaborative setting,
they consider both passive and active participants showing that
repeatedly updating the models’ parameters over different epochs,
on the same underlying training set, is a key factor in boosting the
MIA accuracy. However, for conducting their attacks, Nasr et al.
make two rather strong assumptions. First, they assume white-box
access to the target model; yet, most ML models, and especially the
privacy-sensitive ones, are commonly accessible through APIs in a
black-box manner. Second, they assume adversaries with access to a
dataset, 𝐷 ′, which partially overlaps with the target training set, 𝐷 ,
without knowing, however, which data points are in 𝐷 ′∩𝐷 . Finally,
their MIA’s performance drops as the number of participants in the
collaborative learning system increases. For example, the accuracy
of their passive attacker drops from 89.0% to 67.2% when going
from 2 to 5 participants on CIFAR-100. As discussed in Sec. 2.4,
tasks with many classes are more vulnerable to MIAs than tasks
with fewer classes. Thus, this drop in performance might be even
worse for datasets with fewer classes (e.g., CIFAR-10 & SVHN).

Leino et al. [36] propose white-box MIAs that operate without
access to any of the target model’s training data, thus relaxing Nasr
et al.’s second assumption. Their work uncovers a more intimate
understanding of how overfitting takes place in a model, which
is not necessarily manifested in the model’s output behaviour. In
other words, the model is considered well-generalizable by the con-
ventional overfitting detection methods (see Sec. A.1.1). In general,
Leino et al. show that even if the target model is well-generalizable,
a white-box adversary can infer the membership status of specific
data records that the model has memorized, because this memoriza-
tion is likely to show up in the way that the model uses features.
Nonetheless, Leino et al.’s MIAs impose the following limitations.
First, similar to Nasr et al. [50], they assume adversaries who can
access the target model’s internals, including its architecture and
training algorithm. Second, their MIAs outperform previous white-
box attacks (e.g., Nasr et al.) only by a very small margin.

Long et al.’s [44] black-box MIAs are inspired from Leino et
al.’s statement that if the adversary confidently identifies even one
training point, then it is reasonable to say that a privacy violation
occurred [36]. Following this direction, Long et al. show that even
if a discriminative ML model is well-generalizable and achieves
state-of-the-art performance, it may still contain vulnerable data
records (outliers) that can be exploited with partial knowledge of
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Table 1: A summary of the MIA papers found in the literature sorted in ascending chronological order. “-” means not specified
or does not apply. “✔” (and “✗”) symbol means that the respective adversary meets (or does not meet) each column’s point. The
highlighted rows represent MIAs that demonstratemoderate or high performance on well-generalizable targets. In addition,
we use the following notation: white-box (WB), black-box (BB), fully black-box (FBB), sample-level (SL), user-level (UL). For
more details on the inference levels as well as the attack settings see Sec. 2.1 and 2.3, respectively.

Paper
Attack
Setting

Target Environment No. of
shadow
models

Agnostic regarding the target Level of
inference

Performance (low, moderate, high) on Targeted
instances

Utilized dataset(s)

Standalone Collaborative Model’s
internals

Data dis-
tribution

Sample’s
true class

Overfitted
model

Well-gener-
alizable model

Statistics or
embeddings

Tabular & text
dataset(s)

Image dataset(s)

20
08 Homer et al. [22] BB Aggregate statistics

(genomic data)
- - - ✗ - UL - - High All WTCCC, HapMap -

20
09 Wang et al. [76] BB Aggregate statistics

(genomic data)
- - - ✗ - UL - - High All HapMap -

20
15 Dwork et al. [13] BB Aggregate statistics

(distorted genomic data)
- - - ✗ - UL - - High All - (Theoretical analysis only)

20
16 Backes et al. [1] BB Aggregate statistics

(microRNA expression data)
- - - ✗ - UL - - Moderate All GEO database:

reference GSE61741
-

20
17

Buscher et al. [4] BB
Aggregate statistics

(energy consumption data)
- - - ✗ ✗ UL - -

2 users: High,
>2 users: Low

All
Dataport, Redd,

AMPds, ECO, UCI,
GOVAU, UMASS

-

Shokri et al. [64] BB Discriminative (MLP, CNN,
MLaaS)

- Multiple ✗ ✗ ✔ SL High Low - All Purchases, Locations,
Texas, Adult

MNIST, CIFAR-10/100

WB ✗ ✔ ✔ - High -Song et al. [67] FBB
Discriminative (SVM, LR,

ResNet, CNN)
- 0

✗ ✔ ✗
SL - High - Subsets of the

training data
News, IMDB CIFAR-10, LFW,

FaceScrub

20
18

Pyrgelis et al. [55] BB Aggregate statistics
(location time-series)

- - - ✗ ✗ UL - - High All TFL, SFC -

WB 1 ✗ ✗ ✗Yeom et al. [79] FBB
Discriminative (RR, DT,

CNN)
- 0 ✗ ✗ ✗

SL High Moderate - All Eyedata, IWPC, Netflix MNIST, CIFAR-10/100

Hayes et al. [16]
WB Generative (DCGAN,

DCGAN+VAE, BEGAN)
-

1 ✗ ✗ ✗

SL
High

- - All -
LFW, CIFAR-10,

Diabetic
Retinopathy

BB 1 ✔ ✔ ✔ Low
BB 0 ✔ ✗ ✗ Moderate

20
19

Melis et al. [47] WB -
Discriminative
(VGG, RNN,

CNN)
0 ✗ ✔ ✔ SL - Low - All

Yelp-health,
Yelp-author, CSI,

FourSquare

-

Sablayrolles et al.
[59]

BB Discriminative (ResNet,
VGG)

- 0 ✗ ✗ ✗ SL High Moderate - All - CIFAR-10, Imagenet

WB Multiple ✗ ✗ ✗ High ModerateNasr et al. [50] WB
Discriminative
(LR, CNN)

Discriminative
(LR, CNN) 0 ✔ ✗ ✗

SL High Moderate - All Purchase-100,
Texas-100

CIFAR-100

Salem et al. [60]
BB Discriminative (LR, RF,

MLP, CNN, MLaaS)
-

1 ✔ ✗ ✔

SL
High Low

- All
Locations, Purchases,

Adult, News
MNIST, CIFAR-10/100,

Face
BB 1 ✔ ✔ ✔ Moderate Low
BB 0 ✔ ✔ ✔ Moderate Low

Hilprecht et al. [20] BB Generative (Any) - 1 ✔ ✗ ✗ SL Moderate Low - All - MNIST, Fashion-MNIST,
CIFAR-10WB Generative (VAE) 0 ✗ ✗ ✗ High Low

Song et al. [68] FBB Generative (LSTM, Seq2Seq) - Multiple ✗ ✔ ✗ UL - High - Text with rare
words

Reddit, SATED,
Dialogs, Wikitext-103

-

20
20

Jayaraman et al. [27] WB Discriminative (MLP) - Multiple ✗ ✗ ✗ SL High - - All Purchase-100,
Texas-100, RCV1X

CIFAR-100

He et al. [18] WB Discriminative (PSPNet,
UperNet, Deeplab-v3+,

DPC)
- 1 ✗ ✗ ✗ SL High - - All -

Cityscapes, BDD100K,
Mapillary VistasBB ✔ ✔ ✔

Song et al. [66] WB
Discriminative (LSTM,
Transformer, BERT,

ALBERT)
- - ✗ ✗ ✗ UL - - - All

Wikipedia articles,
BookCorpus

-

Chen et al. [7]
WB Generative (PGGAN,

WGANGP, DCGAN,
MEDGAN, VAEGAN)

- 0
✗ ✗ ✔

SL High Low - All
MIMIC-III, Instagram

New-York,
CelebABB ✔ ✗ ✔

FBB ✔ ✗ ✔

Leino et al. [36] WB Discriminative (MLP, CNN) - 1 ✗ ✔ ✗ SL High Moderate - All
Adult, Diabetes,
Cancer, Hepatitis,
German Credit

MNIST, CIFAR-10/100,
LFW

Long et al. [44] BB Discriminative (MLP, CNN) - Multiple ✗ ✗ ✗ SL - High - Outliers Adult, Cancer MNIST

Shadi et al. [56] FBB Discriminative (MLP, CNN) - 1 ✗ ✗ ✗ SL High Low - All
Purchase-100,

Texas-100, Locations

MNIST,
Fashion-MNIST,
CH-MNIST,
CIFAR-10/100

20
21

Liu et al. [39]

BB
Image encoder (ResNet,

VGG, CLIP)
- 1

✗ ✗ ✗

SL

Moderate -

- All -
CIFAR-10, STL-10,
Tiny-ImageNet

BB ✗ ✔ ✗ High -
BB ✔ ✗ ✗ High -
BB ✔ ✔ ✗ High -

Hui et al. [25]

BB

Discriminative (MLP, CNN) - 0

✔ ✔ ✔

SL High - - All
Adult, Locations,
Purchase-50, Texas

EyePACS,
CH-MNIST,
CIFAR-100,
Birds-200

BB ✔ ✗ ✗

WB ✗ ✔ ✔

WB ✗ ✗ ✗

Song et al. [69] BB Discriminative (MLP, CNN) - Multiple ✔ ✗ ✗ SL Low - - All Purchase-100,
Texas-100, Location-30

CIFAR-100, CH-MNIST,
Car196

Shafran et al. [62] BB

Image translation/semantic
segmentation (NVAE,
Pix2PixHD, UperNet,

HRNetV2)

- 0 ✔ ✗ ✗ SL High Low - All -
CelebA, Maps2sat,
Cityscapes, CMP
Facades, ADE20K

Li et al. [38] FBB Discriminative (CNN) - 1 ✗ ✗ ✔ SL Moderate - - All - CIFAR-10/100, Face,
GTSRBFBB 0 ✔ ✔ ✔

Choquette-Choo
et al. [8]

FBB
Discriminative (MLP, CNN,

ResNet)
- 1 ✗ ✗ ✗ SL High - - All

Texas-100,
Purchase-100,

Locations, Adult
MNIST, CIFAR-10/100

Zhang et al. [83] FBB Discriminative (Item, LFM,
NCF)

- 1 ✗ ✗ ✗ UL - - - All ADM, Lf-2k, Ml-1m -

20
22

BB - Multiple ✗ ✗ ✗ High Moderate
Carlini et al. [5]

BB

Discriminative (WRN, VGG,
ResNet, DenseNet,

Inception-v3, MobileNet-v2),
Generative (GPT-2) - 0 ✗ ✗ ✗

SL
Moderate Low

- All WikiText-103
CIFAR-10/100,
ImageNet

Ye et al. [78] BB Discriminative (AlexNet,
VGG, WRN, CNN, MLP)

- Multiple ✗ ✗ ✗ SL High - - All Purchase-100 MNIST, CIFAR-10/100

Liu et al. [42]

BB Discriminative (VGG,
ResNet, WRN,
MobileNet-v2)

- Multiple

✗ ✗ ✗

SL

High

- - All
News, Purchase-100,

Location-30
CIFAR-10/100, GTSRB,

CINIC-10
BB ✗ ✔ ✗ Moderate
BB ✔ ✗ ✗ Moderate
FBB ✗ ✗ ✗ Moderate
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specific instances from the target model’s training set. In that sense,
the authors argue that instead of proposing adversaries who in-
discriminately attack all the records without regard to the cost of
false positives or negatives, a more pragmatic approach would be
to conduct MIAs on carefully selected vulnerable records. As a con-
sequence of this vulnerable to MIAs record selection, the adversary
minimizes false positives and boosts its precision. Note, however,
that several techniques for reliably detecting and excluding vulner-
able instances (i.e., outliers) have been proposed [2, 77, 80]. Thus, in
case the target model’s dataset is preprocessed, Long et al.’s MIAs
fall short. Even if the target dataset is not preprocessed, the adver-
sary can only identify a very small set of vulnerable instances. For
example, Long et al. detect only 1 and 7 vulnerable records from
the entire MNIST and Adult datasets, respectively.

For conducting their black-box MIAs, Carlini et al. [5] first train
𝑁 shadow models on samples from the data distribution 𝐷 , so
that half of these models are trained on the target point (𝑥 , 𝑦),
and half are not (they call these respectively IN and OUT models).
Then, they fit two Gaussians to the confidences of IN and OUT
models on (𝑥 , 𝑦), query the confidence of the target model on (𝑥 ,
𝑦), and output a parametric likelihood-ratio test. However, when
evaluating their attacks, Carlini et al. assume that the training sets
of individual shadow models and the target model partially overlap
–same as Nasr et al. Moreover, although black-box in nature, Carlini
et al.’s MIAs require the knowledge of the target model’s internals
for constructing/training similar shadow models and achieving
moderate success rates onwell-generalizable targets. Finally, Carlini
et al.’s MIAs are computationally expensive since, for each target
record, they must train 𝑁 different IN and OUT shadow models.

Song et al. [67] examine the case where a malicious ML provider
supplies model-training code to the data holder (victim), without
observing the training phase, and then obtains white- or fully black-
box access to the trained model. The malicious code, when exe-
cuted on the victim’s sensitive data, produces models that are well-
generalizable, yet, leak information about their training instances.
In particular, it augments the training set with synthetic inputs
whose labels encode information about the original training set.
When the model is trained on the augmented dataset it becomes
overfitted to the synthetic inputs. As a result, when the adversary
submits one of these synthetic inputs, the model outputs the label
that was associated with this input during training, thus leaking
membership information. Song et al. show that using third-party
code to train ML models on sensitive data is risky even if the code
provider does not monitor the actual training phase. However, it is
realistic to assume that highly sensitive datasets will be treated by
experts in ML who will carefully inspect the model-training code
before using it. Moreover, Song et al. can only infer the membership
status of a small subset of the training set that the model memo-
rized during training; if an adversary tries to memorize the whole
training set, then this might impact the model’s performance on
the main task, and thus reveal that the model is overfitted.

Song et al. [68] propose black-box MIAs on ML models that gen-
erate natural-language text, such as word prediction and dialogue
generation. Such models are at the core of popular online services
and are often trained on personal data, such as users’ messages,
searches, chats, and comments. Inspired from their previous work
[67], Song et al. analyse how text-generation models memorize

word sequences since this can make them susceptible to MIAs. They
find that such models overfit (memorize) text sequences containing
rare words, thus, making those sequences vulnerable. Similar to
their previous work, they show that the overfitting on these se-
quences does not appear in the model’s testing accuracy, meaning
that their target models are well-generalizable, rather than on the
ranking of the candidate words that it generates. Nonetheless, Song
et al.’s MIAs suffer from the following limitations: (a) they assume
adversaries that have access to a subset of the victim’s actual texts,
(b) their MIAs can only succeed on text sequences containing rare
words, and thus cannot target any user, and (c) their MIAs can be
eliminated using Differential Privacy (DP) techniques for training
the target model; DP guarantees that the influence of rare words is
the same as all the other words in the training set.

Finally, the following general observations stem from our sys-
tematic analysis of the related literature:

• Observation 1: MIAs are easier on overfitted models rather
than well-generalizable ones.

• Observation 2: All black-box MIAs achieving moderate or
high success rates on well-generalizable targets require the
knowledge of the target samples’ true class.

• Observation 3:MIAs onwell-generalizablemodels, although
not effective on all target instances, performwell-above base-
line on records which are highly influential to the model’s
parameters, such as outliers or out-of-distribution points.

3.2 Questions Remaining Unanswered
In this section, we identify a series of aspects that are yet to be
explored. Below, we elaborate on these aspects and raise specific
Research Questions (RQs) that we answer in the following sections.

First, the generalization of an ML model is directly related to its
vulnerability against MIAs (the higher its generalization, the higher
its robustness). In addition, the generalization of an ML model heav-
ily depends on the utilized optimizer and regularization method(s).
Nonetheless, it is currently unclear whether specific generalization
techniques result in models which are more vulnerable to MIAs than
other models trained with different generalization techniques (RQ-1).

Second, as shown in Table 1, most prior works are not agnostic
regarding the target model’s data distribution and the samples’ true
class. For example, some of them generate instances coming from
the same distribution as the target model’s dataset for which they
know their membership status, for training shadow models [60, 64],
and others assume access to a small subset of the actual target
model’s dataset, for demonstrating that even well-generalizable
models may contain vulnerable records that can be exploited [44,
68]. Nonetheless, the increasing number of data breach incidents
begs the question of what is the actual benefit provided to potential
adversaries in case they have access to a large portion of the target
model’s instances for which they know, not their true class, but their
ground-truth membership status (RQ-2). Besides, as Salem et al. [60]
suggest, obtaining the instances’ true class could be hard in certain
cases (e.g., in biomedical settings).

Third, the structure and type of an ML model also contribute
to its vulnerability against MIAs [64]. For example, Srivastava et
al. [71] explain that deep ANNs’ complexity (depth) increases the
chances of overfitting, and thus potentially increasing their vulnera-
bility to MIAs, since their capacity for memorizing training records
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Figure 1: The black-box MIA cases as reported in [59]. Our
paper focuses on the third case where the adversary feeds
the target model with the target record and receives the con-
fidence score vector as a response. Next, the adversary feeds
the confidence score vector to the attacker model to infer
whether the target record was included in the target model’s
training dataset (responds 0) or not (responds 1).

increases. However, an experimental exploration of the aforemen-
tioned aspect (i.e., whether or not the number of layers facilitate MIAs
and to what extent) is currently absent from the literature (RQ-3).

In this paper, we answer the RQs raised above following an exper-
imental approach. For the reasons mentioned in Sec. 2.3, we conduct
our entire experimental analysis using black-box adversaries only.

4 EVALUATING COMMON ML
GENERALIZATION TECHNIQUES

In this section, we investigate which learning settings may con-
tribute to membership inference and to what extent. For exploring
this problem we utilize ResNet-18 as the target model. Then, we
vary each learning setting described below and observe its contri-
bution to the MIA success rates. For each setting that we vary, we
train a model for 100 epochs. Then, for ensuring that our models are
well-generalizable, we measure the overfitting gap as the difference
between the training and testing accuracies. As shown in Table 2,
our target classifiers achieve high training/testing accuracies on
CIFAR-10, while also being well-generalizable.

Similar to Long et al. [44], we take a numerical analysis approach
and estimate the MIA success rate using the Monte Carlo method.
In particular, for each experiment we randomly select the instances
for composing the attacker model’s training/testing subsets, and
thus avoid any bias towards selecting a specific training/testing
subset. We repeat this random (uniform) selection process 10 times
and report the average attack success rate 4. Finally, we utilize an
MLP as the attacker model (see Fig. 8, Appx. A.1).

All the experiments reported in this section are conducted in
the optimal black-box attack setting. That is, we utilize the black-
box attack pipeline shown in Fig. 1 assuming adversaries that: (a)
have access to all of the target model’s train/test instances along
with their ground-truth membership status, and (b) can query the
target model arbitrary times for obtaining its confidence scores on
each of those records. By doing so, we will expose any differences,
in terms of privacy vulnerabilities, that the tested optimizers and
regularization methods may have, against black-box adversaries
with strong background knowledge. Note that there are many weaker
black-box adversaries in the literature which are omitted since they
do not change our conclusions.

Finally, in this section, we do not aim to demonstrate that in-
creasing a model’s generalization (e.g., by using regularization tech-
niques) leads to lower MIA success rates than those achieved on an

4For more details on the data splits see Sec. 5.

Table 2: ResNet-18 training/testing accuracies on CIFAR-10
for each optimization and regularization method used.

Selection Training Acc. Testing Acc.

O
pt
im

iz
er

SGD [32] 94.23% 93.07%
RMSprop [73] 89.72% 88.84%
Adam [33] 90.78% 90.34%

Adamax [33] 88.63% 88.49%
Adadelta [81] 75.87% 74.78%
Adagrad [12] 84.11% 83.03%
AdamW [45] 90.23% 89.12%

𝑙1
R
at
e

0 90.78% 90.34%
1e-9 90.23% 88.96%
1e-7 91.18% 88.07%
1e-5 93.72% 90.74%
1e-3 80.56% 77.47%
1e-1 38.54% 35.23%

𝑙2
R
at
e

0 90.78% 90.34%
1e-9 90.67% 88.25%
1e-7 92.43% 89.29%
1e-5 93.76% 90.57%
1e-3 88.23% 86.32%
1e-1 53.89% 49.97%

D
ro
po

ut
R
at
e

0 90.78% 90.34%
1e-1 94.25% 90.89%
1.5e-1 90.23% 88.68%
2e-1 93.42% 90.40%
3.5e-1 90.21% 87.55%
5e-1 85.39% 83.85%
7e-1 75.94% 71.19%

overfitted target –this is a well-known fact [60, 79]. Instead, we aim
to compare the MIA success rates achieved on well-generalizable
ML models trained with common optimizers and regularizers.

AssessingOptimizationAlgorithms.A large number of ANNs’
optimizers exist; each optimizer may converge to a different local
optima, and thus a different set of weights’ values. Optimization
functions aim to minimize a specific notion of prediction error/loss
(e.g., Mean Squared Error (MSE), 𝑙1 loss, or 𝑙2 loss –Eq. (3), Appx.
A.1), for finding the global optima (i.e., the weights’ values that
result in the least possible prediction error). A robust optimizer
should consider the facts that many local optima exist (i.e., higher
prediction error points that our classifier may stuck in), and the pre-
diction error surface has a complex morphology and thus the hyper-
parameters of the optimizer (e.g., learning rate & decay factor), are
of utmost importance. In this section, we conduct MIAs against
ML models trained using the most popular optimizers, namely: (a)
Stochastic Gradient Descent (SGD) [32], (b) RMSprop [73], (c) Ada-
grad [12], (d) Adadelta [81], (e) Adam [33], (f) Adamax [33], and (g)
AdamW [45]. In particular, we deploy each of the aforementioned
optimizers to train ResNet-18 on CIFAR-10. Next, we perform MIAs
against each (trained) target ML model for concluding about the
information leakage level of each optimization algorithm.

Figure 2(a) shows the MIA success rates achieved on ResNet-
18 when trained with each particular optimizer. As shown, no
significant difference, in terms of inference accuracy achieved for
each optimizer, exists. In other words, all tested optimizers perform
comparably well in terms of resisting against MIAs in the optimal
black-box attack setting, while also delivering high-performing
models (see Table 2). Thus, based on our experimental evidence, we
conclude that the choice of the optimizer has little impact on the
privacy robustness of well-generalizable models against black-box
adversaries with strong background information.
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(a) Optimizer (b) L1 Rate

(c) L2 Rate (d) Dropout

Figure 2: MIA success rates on ResNet-18 trained on CIFAR-
10 using various optimization and regularization methods.

Assessing Regularization Methods. 𝑙1 and 𝑙2 regularization
methods add a penalty parameter to the cost function that we essen-
tially need to reduce. The key difference between 𝑙1 and 𝑙2 is the
calculation of the penalty term. 𝑙1 adds the absolute value of mag-
nitude of coefficient as the penalty term with a parameter 𝜆 to the
cost function, whereas 𝑙2 adds the squared magnitude of coefficient
as the penalty term with a parameter 𝜆 to the cost function. In both
cases, 𝜆 is a hyper-parameter whose value is decided by the user. If
𝜆 is high it might prevent the model from learning (underfitting);
if 𝜆 is close to 0 it may minimize the effect on the penalty term
causing no regularization. Having the MSE as the cost function,
𝑙1 and 𝑙2 regularization terms are highlighted in equations (4) and
(5) (Appx. A.1), respectively 5. The target model’s training/testing
accuracies achieved for different 𝑙1 and 𝑙2 rates are shown in Table
2. Note that we utilize SGD for training the target models shown
in Table 2 with different 𝑙1, 𝑙2 and dropout rates.

Figure 2(b) shows the average MIA success rates achieved for
different 𝑙1 rates. As shown, no significant difference, in terms of
MIA success rates, exists for each 𝑙1 rate; all average MIA success
rates remain close to the random guessing baseline. In particular,
even if 𝑙1 rate is 0, the average MIA success rate is 50%. In other
words, a well-generalizable model causes our black-box MIAs to
fail even if 𝑙1 is disabled. However, as seen in Table 2, selecting 𝑙1
rate ≥ 1e−3 largely affects the target model’s performance. Thus,
selecting 𝑙1 rate ≤ 1e−5, is considered enough for increasing both
the target model’s generalization and its robustness against MIAs.

The inference accuracies achieved for different 𝑙2 rates are shown
in Figure 2(c). Again, no significant difference, in terms of MIA suc-
cess rates, exists for each 𝑙2 rate; all average MIA success rates
remain close to the random guessing baseline. Similar to 𝑙1 rate,

5We just use MSE for showing 𝑙1 and 𝑙2 regularization terms since it is one of the
most popular loss functions. However, in our experiments, we utilize Cross-Entropy
(CE) loss since it is a more natural choice when dealing with classification problems.

even if 𝑙2 is 0, the average MIA success rate is 50%. In other words,
a well-generalizable model causes our black-box MIAs to fail even
if 𝑙2 is disabled. In addition, as shown in Table 2, selecting 𝑙2 rate
≥ 1e−3 largely affects the target model’s performance. Thus, se-
lecting 𝑙2 rate ≤ 1e−5, is adequate for increasing the target model’s
generalization as well as its robustness against MIAs.

Dropout causes the target ANN to randomly drop out units (neu-
rons) by zeroing its weights’ values [71]. This technique prevents
the ANN from converging into a suboptimal solution, which is
specialized only on a subset of the training set, due to the affec-
tion of the connections between the neighbouring neurons. Ran-
domly dropping neurons will minimize each neuron’s effect on its
neighbours. Thus, dropout prevents overfitting by causing random
neurons to detect the complex patterns hidden in the training data
without being highly affected by their neighbours.

Figure 2(d) shows the average MIA success rates for different
dropout rates. As shown, the MIA success rates remain close to
the random guessing baseline, the highest being ≈ 54.5%, for each
dropout rate. In fact, even if dropout is 0 (disabled), the average MIA
success rate is ≈ 54%. Nonetheless, as shown in Table 2, selecting
dropout ≥ 5e−1 significantly affects the performance of the target
model. As a result, selecting a lower dropout rate (i.e., ≤ 3.5e−1) is
considered enough for increasing both the target model’s general-
ization and its robustness against MIAs.

ML Generalization Mechanisms vs. MIAs. Our findings sug-
gest that the choice of the optimizer to be used for approximating
the optimal solution as well as the regularization technique to be
used for penalizing the model’s weights has no discernible influ-
ence on the target model’s robustness against MIAs. One can simply
deploy an optimizer of their choice and set a relatively common
value for the selected regularization technique. In particular, even if
the selected regularization method is disabled, a well-generalizable
(due to the optimizer) ML model causes black-box adversaries with
strong background knowledge to fail on distinguishing the member
from non-member instances. This demonstrates that not using any
regularization technique does not necessarily lead to high MIA suc-
cess rates. Furthermore, since we can train (well-generalizable) ML
models which are robust against black-box MIAs with or without
using a regularizer, we conclude thatMIA success rate is more closely
related to the target model’s generalization rather than to a particular
regularization technique used.

Another interesting observation stemming from our experimen-
tal evidence is the following. Even in the case where large regu-
larization values lead to low performance ML models (that do not
achieve state-of-the-art testing accuracies), which, however, have
small generalization gap (<15%), the MIA success rates achieved
from adversaries in the optimal black-box attack setting still remain
close to the random guessing baseline. This fact demonstrates that
MIA success rates are not directly related to the performance of the
target model rather than its generalization gap.

We validate our conclusions by performing the same experi-
ments using different image (CIFAR-100, SVHN), tabular (Adult,
Surgical), and text datasets (IMDB), and observing similar results.
However, due to space constraints, we placed those results in the
appendix (see Figs. 9-13, Appx. A.2). Finally, note that exploring ad-
ditional generalization techniques (e.g., batch/layer normalization,
data augmentation), is an interesting direction for future research.
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5 DATA LEAKAGE IMPLICATIONS
As Hui et al. [25] suggest, a powerful black-box MIA requires
enough labeled output probability distributions of instances, in-
cluded or not in the target model’s training set, for learning the deci-
sion boundary of complex hyper-dimensional spaces.While this has
been shown for overfitted models, it is currently unknown whether
the same fact holds for well-generalizable ones. The ground-truth
membership status of data records is commonly unavailable given
only black-box access to the target model. Nonetheless, such infor-
mation may be revealed in case of potential data breaches. In case
of such incidents, one could explore if Hui et al.’s observation holds
for well-generalizable target models as well.

Data breaches have been largely experienced even from high-
profile web services, undermining their users’ security and privacy
[75]. Thus, it is realistic to assume that in case of such incidents a
portion of MLaaS platforms’ datasets may fall in attackers’ hands.
For each leaked data record its membership status may be included
or not. For the time being, despite the several cases of data breach
incidents, their contribution to MIAs remains unexplored. In this
section, we shed light on this question by simulating the case where
a portion of a sensitive dataset (in our case CIFAR-10) has been
leaked by hackers or insiders. In such case, an attacker may deploy
black-box MIAs and explore whether partial knowledge of the
ground-truth membership information can facilitate MIAs, and
likely reduce the resilience of well-generalizable models.

Threat Model. We consider both black-box attack scenarios
defined by Hui et al., one which is strict and practical (black-box
blind) and one which makes a strong assumption regarding the
adversary’s knowledge about the target model’s dataset (black-box).

• Black-box blind (most practical scenario): The adversary can
only query the target model and receive its confidence score
vector as a response. However, the adversary does not have
access to the target model’s architecture, weights, or hyper-
parameters, neither on the true class or the ground-truth
membership status, of the queried instances.

• Black-box (optimal black-box scenario): This scenario is simi-
lar to the previous one, but assumes adversaries that have ac-
cess to a portion of instances coming from the target model’s
dataset for which they know the members and non-members.

We define two adversaries (one for each scenario) that utilize
off-the-shelf, and thus popular choices for potential attackers, ML
models, namely MLP and 𝑘-means, for concluding about whether or
not unlabeled (black-box blind) or labeled (black-box) data instances
facilitate the successful deployment of MIAs. For both adversaries
we train the attacker model having only black-box access to the
target model (see Fig. 1). However, for the first adversary we assume
that the input samples are unlabeled (i.e., they are not accompanied
by the ground-truth membership status), whereas for the second
adversary we assume that they are labeled. In any case, we avoid
the need for shadow modelling since we assume adversaries that
can query the actual target model unlimited times and receive, as a
response, the confidence score vector for each leaked instance.

Experimental Setup. We split CIFAR-10 into a train and a vali-
dation subset containing 15,000 and 5,000 records, respectively. Both
subsets are a split of 50%-50% member and non-member instances.
Then, for examining the MIA success rates as the volume of leaked

Table 3: The target models’ training/testing accuracies on
CIFAR-10.

Architecture Layers No. Training Acc. Testing Acc.

VGG [65]

11 100% 92.39%
13 100% 94.14%
16 99.61% 93.91%
19 99.61% 93.79%

ResNet [17]
18 99.61% 93.03%
34 99.61% 93.21%
50 99.62% 93.64%

DenseNet [24]
121 99.22% 93.97%
161 99.61% 94.07%
169 99.62% 94.05%

(a) top-3 (b) top-5

(c) top-7 (d) top-10

Figure 3: Adversary 1’sMIA success rates achieved onVGG-11
trained onCIFAR-10 using top-𝑘 confidence scores projection
function (𝑘 = 3, 5, 7, 10). The inference accuracy is reported
on the validation subset.

instances, 𝑙 , increases, we randomly select 𝑙 instances from the
train subset. We repeat the random (uniform) selection process of
the train subset’s instances 10 times and report the average attack
success rate. Finally, the inference accuracy results are reported
on the validation subset. This evaluation methodology gives us
a relatively accurate estimation of the success probability of our
MIAs and complies with the state-of-the-art approaches found in
the related literature [44, 60, 64].

We target some of the most popular ANN architectures, namely
VGG, ResNet, DenseNet and MLP, with various depths. These mod-
els have been trained on image, tabular and text datasets achieving
state-of-the-art performance. In addition, we utilize early-stopping
mechanism for avoiding overfitting. For brevity, in this section, we
focus on VGG-11 trained on CIFAR-10 (see Table 3 for the train-
ing/testing accuracies) since the collected results are similar when
using all other architecture-dataset combinations and due to space
constraints. However, for the interested reader, we still provide
those results in the appendix (see Appx. A.3).

Hui et al.’s black-box adversaries relax the assumptions that: (a)
the target and attacker models have to share the same structure,
and (b) the adversary knows about the target model’s internals
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(e.g., its architecture, gradients, loss function and hidden layers’
activations), which are rather strong (especially when targeting
privacy-sensitive models). In particular, we attack a CNN-based
image recognition model using a statistical-based model, i.e., 𝑘-
means (adversary 1), and a fully-connected MLP (adversary 2). Both
MLP and 𝑘-means have been utilized in similar research achieving
well-above baseline MIA success rates on overfitted targets [25, 60,
64]. Finally, for conducting our attacks, we utilize the probability
score projection functions defined by Hui et al. The idea behind
projection functions is that the ranking of values in different classes,
rather than the actual label of the class, determines the membership.
The projection functions used are: (a) top-𝑘 confidence scores for
𝑘 = 3, 5, 7, 10 (adversary 1) and (b) top-𝑘 confidence scores + ground-
truth membership status for 𝑘 = 3, 5, 7, 10 (adversary 2).

Black-box Blind Scenario – Adversary 1. Operation. For the
first adversary, we assume no leakage of the ground-truth member-
ship status of each instance. Instead, the attacker tries to distinguish
betweenmember and non-member records by just considering their
respective confidence score vector derived from the target model.
As a result, this adversary maps directly to the black-box blind
setting which, according to [25], is the most strict and practical as it
does not rely on any private information which might not be avail-
able to a potential attacker. Conducting MIAs in such an agnostic
setting allows us to explore the security and privacy vulnerability
boundaries of well-generalizable models.

The attacker model, namely 𝑘-means 6, clusters the confidence
score vectors, derived from the last (output) layer of the target
model, into two different groups, namely member and non-member
records. In other words, this adversary receives as input the target
model’s confidence scores and decides about whether the input
sample that yielded those confidence scores was included in the
target model’s training set or not. 𝑘-means exploits the knowledge
hidden in the score vectors’ feature-space by calculating a notion of
similarity (i.e., Euclidean distance) and classifies each given input
sample to one of the two predefined clusters with a certain level of
confidence. Initially, we deploy 𝑘-means for use without training it
at all; the training happens on the fly as the adversary feeds it with
confidence score vectors derived from the target model.

Results.We examine this adversary’s performance with respect
to the number of unlabeled instances for estimating the minimum
amount of input samples required for achieving high-enough MIA
success rates. The attack success rates for different volumes of in-
put samples are depicted in Figure 3. As shown, the achieved MIA
success rates remain close to the random guessing baseline (50%) in
all cases. In addition, the average MIA success rates remain approxi-
mately the same as we keep increasing the volume of input samples.
Overall, adversary 1 achieves 53.6% MIA success rate on average,
the highest being 54.3%, when targeting VGG-11. We validate our
conclusions by conducting the same experiments on different (and
deeper) architectures (ResNet, DenseNet, MLP) trained on datasets
from various domains (CIFAR-100, SVHN, Adult, Surgical, IMDB),
and observing similar results. However, due to space constraints,
we placed those results in the appendix (see Appx. A.3).

In contrast, Hui et al. achieve well-above baseline MIA success
rates using the same clustering algorithm (𝑘-means), but attacking,

6For the implementation of 𝑘-means we utilize Scikit-learn (version 0.21.2) [53].

(a) top-3 (b) top-5

(c) top-7 (d) top-10

Figure 4: Adversary 2’sMIA success rates achieved onVGG-11
trained on CIFAR-10 using top-𝑘 confidence scores + ground-
truth projection function (𝑘 = 3, 5, 7, 10). The inference accu-
racy is reported on the validation subset.

however, overfitted models. Thus, based on our experimental evi-
dence, we conclude that well-generalizable models are significantly
more robust than overfitted models, against adversaries that only
exploit the target instances’ confidence score vectors.

Black-box Scenario – Adversary 2. Operation. For the second
adversary, we assume that the ground-truth membership status
for each instance included in the target dataset has been leaked.
Thus, in this case, the adversary has an extra bit of information,
which is whether or not the confidence score vector was yielded
by a member or a non-member instance. Having such strong auxil-
iary knowledge, a potential adversary can now utilize supervised
learning algorithms for constructing an approximation function
𝐹 : 𝑋 → 𝑌 that maps each given input 𝑥 ∈ 𝑋 (i.e., the confidence
score vector), to each target output class 𝑦 ∈ 𝑌 (i.e., member or
non-member). This adversary maps directly to the black-box attack
setting described by Hui et al.

The operation of this adversary is identical to the previous one,
the only difference being that the confidence score vectors, derived
from the last (output) layer of the target model, are now accom-
panied by their ground-truth membership status. Essentially, this
adversary exploits a valuable piece of (sensitive) extra information
which: (a) might be used to unveil any correlations between the
confidence score vector and the target record’s membership status
that may exist in the latent space, and (b) is directly related to the
adversary’s goal, that is, to infer the membership status of each
target record. For doing so, the adversary has to deploy a more
sensible for the problem ML model, which in our case is the MLP
shown in Fig. 8 (Appx. A.1).

Results.We examine this adversary’s performance with respect
to the number of labeled instances. The attack success rates for
different volumes of labeled input samples are depicted in Fig. 4.
Surprisingly, even in the case where adversaries have access to the
ground-truth membership status of a large portion of the target
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model’s instances, they cannot achieve more than 55.43% MIA suc-
cess rate on average, the highest MIA success rate being 58%, when
targeting VGG-11. Again, the average MIA success rates remain
approximately the same as we keep increasing the volume of train-
ing instances-labels (ground-truth membership status) pairs. The
collected results suggest that even if black-box adversaries possess
such a valuable piece of information, they still cannot achieve well-
above baseline MIA success rates when targeting well-generalizable
models. We validate our conclusions by conducting the same exper-
iments on different (and deeper) architectures (ResNet, DenseNet,
MLP) trained on datasets from various domains (CIFAR-100, SVHN,
Adult, Surgical, IMDB), and observing similar results. However, due
to space constraints, we placed those results in the appendix (see
Figs. 14-19, Appx. A.3).

In contrast, some existing MIAs on overfitted targets achieve
well-above baseline MIA success rates, using the same classifica-
tion model (MLP), if such auxiliary knowledge is available to the
attacker [60]. Thus, based on our experimental evidence, we con-
clude the following: (a) well-generalizable models are significantly
more robust than overfitted models, even against adversaries that
possess partial ground-truth membership information, (b) Hui et
al.’s [25] observation (i.e., black-box MIA performance is analogous
to the number of labeled instances available to the adversary) does
not apply to well-generalizable targets.

Exploring ANNs’ Depth Factor. An important factor concern-
ing the performance of state-of-the-art ANNs is the number of
layers. In general, traversing to deep ANNs, with a large number of
layers, increases their prediction/classification accuracy compared
to shallower ones [3]. However, increasing an ANN’s complexity
increases its memorization capabilities as well (necessary evil) [71].
As shown in Sec. 3.1.2, the memorization capabilities of (even well-
generalizable) models may increase the vulnerability of certain
instances, commonly the highly influential points, to MIAs. Thus,
since increasing an ANN’s layers increases, at the same time, its
memorization capabilities, it might be the case that deep ANNs are
more vulnerable to MIAs than shallower ones. In this section, we
explore whether deep ANNs’ memorization capabilities make them
more vulnerable to black-box MIAs compared to shallower ones (or
the opposite). For doing so, we deploy MIAs, in both black-box and
black-box blind scenarios, on VGG models with various depths.

Figures 5 & 6 show the attack success rates achieved from adver-
sary 1 (black-box blind) and 2 (black-box), respectively, using top-𝑘
confidence scores (adversary 1) + ground-truth membership status
(adversary 2) projection functions with 𝑘 = 10. As shown, the MIA
success rates remain close to the random guessing baseline for all
tested depths and for both attack scenarios. Thus, based on our
experimental evidence, we conclude that deep ANN architectures
are not more vulnerable to our black-box MIAs compared to shal-
lower ones or the opposite. We validate our conclusions by also
targeting DenseNet, ResNet and MLP architectures (with various
depths) trained on datasets from different domains, and observing
similar results. However, due to space constraints, we placed those
results in the appendix (see Figs. 14-19, Appx. A.3).

6 DISCUSSION
Why MIAs on Overfitted Targets Succeed? As shown in Table
1, the majority of prior research succeeds only on overfitted targets.

(a) VGG-11 top-10 (b) VGG-13 top-10

(c) VGG-16 top-10 (d) VGG-19 top-10

Figure 5: Adversary 1’s MIA success rates achieved on VGG
(with different number of layers) trained on CIFAR-10.

(a) VGG-11 top-10 (b) VGG-13 top-10

(c) VGG-16 top-10 (d) VGG-19 top-10

Figure 6: Adversary 2’s MIA success rates achieved on VGG
(with different number of layers) trained on CIFAR-10.

For acquiring such models the authors intentionally train their
models for a large fixed number of epochs until a significant gap
between the training and testing accuracies is presented. As Shokri
et al. [64] explain, MIAs exploit the fact that ML models often
behave differently on the data that they were trained on versus the
data that they “see” for the first time. Overfitting the target model
contributes to the aforementioned aspect (i.e., differentiating the
decision behaviour for member and non-member samples), thus
enabling MIAs [39]. However, even a naive MIA, which predicts a
point is a member if and only if it was classified correctly [79], is
highly effective on models that overfit to a large degree [36].

In contrast, well-generalizable models behave similarly on mem-
ber and non-member samples, thus causing the majority of previous
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MIAs to fail. As Rezaei et al. [58] suggest, for well-generalizable
models, the only considerable difference appears between correctly
classified samples and misclassified samples, not between members
and non-members. However, as shown in our experimental analysis
in Sec. 5, if the adversary does not have access to the true class of
each training instance, even low performing ML models, but with a
small gap between training and testing accuracies (< 15%), are ro-
bust against black-box adversaries with access to the ground-truth
membership status of a large volume of leaked instances.

Note that we do not suggest, in any case, that training well-
generalizable models is enough to mitigate any black-box MIA. In
fact, black-box (or even fully black-box) MIAs achieving well-above
baseline success rates on well-generalizable targets do exist (Sec. 3).
Contrary, as the title suggests, we aim to demonstrate thatMIAs are
harder than we previously thought under reasonable assumptions.

Limitations and Future Work. Relevant works showed that
overfitting, although sufficient, is not a necessary condition for
enabling MIAs [50, 60, 64]. Below, we discuss other factors affecting
MIAs and provide directions for future research.

Outliers, Highly Influential Points. Feldman and Zhang [14] show
that not all training samples are equal; some samples (outliers) have
an outsized effect on an ML model’s parameters when inserted
into its training set, compared to other (inlier) samples. As shown
in our systematic analysis in Sec. 3.1, well-generalizable models
can memorize (overfit) such highly influential points, thus making
them vulnerable to MIAs (low-hanging fruits) [7, 8, 20, 44, 67, 68].
However, as Carlini et al. [6] explain, the unintended memorization
of such instances is a persistent, hard-to-avoid issue that can have
serious consequences. This aspect is further demonstrated in our
experimental analysis in Sec. 5, where small deviations from the
baseline exist, designating that specific instances are more vulnera-
ble to MIAs than others. We attribute these deviations to specific
high risk/vulnerable records as suggested by Long et al. [44] & Car-
lini et al. [5]. Note that one can utilize approaches to measure the
risk of individual samples to verify this hypothesis [40]. However,
since in this paper our main focus is assessing the MIA risk with
respect to an adversary who indiscriminately attacks all the records
in the target dataset, presenting such a detailed analysis in regards
to specific vulnerable to MIA records, although indeed interesting,
is considered as future work.

Kulynych et al. [35] demonstrate the phenomenon of disparate
vulnerability against MIAs, that is, the unequal success rate of MIAs
against different population subgroups. The authors explain that
the vulnerability to MIAs arises when the distribution of a model’s
property (e.g., its loss, or outputs/logits) is different for member
and non-member samples. In addition, they argue that preventing
disparate vulnerability requires either: (a) increasing the complexity
of the learning problem to ensure distributional generalization,
or (b) using a differentially private training algorithm with the
associated drop in performance. Much like the work of Kulynych et
al., additional effort is required towards detecting (and defending)
subgroups of the population which are vulnerable to MIAs.

Target Model’s Type. The structure and type of the target ML
model also contribute to its vulnerability against MIAs [64]. For
example, as Truex et al. [74] show, a Naive Bayes model is much
more resilient to MIAs than a decision tree and therefore may be
the preferred model type for a particular ML service. Generally

speaking, a target model whose decision boundary is unlikely to be
drastically impacted by a particular instance will be more resilient
to MIAs [74]. Nonetheless, a systematic analysis in regards to the
resistance of different types of ML models and algorithms against
state-of-the-art MIAs is currently absent from the literature.

In this paper, we focus our experimental analysis on ML models
used for classification. Although demonstrating that the same ob-
servations apply to ML models trained on different tasks other than
classification (e.g., generative models for text generation/image syn-
thesis or embedding models) is beyond the scope of this paper, we
consider this angle as an interesting direction for future research.

Attributing the Robustness of Well-generalizable Models to Spe-
cific Parameters/Settings. Despite that significant effort has been
given on analysing the connections between overfitting and MIA
success rate, there is a lack of deeper understanding of why well-
generalizable models are much more resilient to black-box MIAs
compared to overfitted ones, and how this knowledge can be poten-
tially exploited to carry out successful MIAs against such models.
In this paper, we follow an experimental approach, but further theo-
retical work is needed for having complete understanding of MIAs
in the context of well-generalizable targets.

Providing theoretical evidence that well-generalizable models’
robustness against MIAs is related to specific parameters/settings
is one of the major directions for future work in this field. Having
such knowledge, the scientific community could then introduce
novel MIAs that achieve well-above baseline success rates on any
record included in a well-generalizable model’s dataset. In addition,
the vulnerabilities of well-generalizable models (e.g., the case of
outliers/highly influential points) could be further explored.

7 DEFENSES
Exploring a sizable portion of the attack space and defining the
parameters/settings that impact MIAs’ success rates is crucial for
developing generally applicable defenses. In that sense, in this
paper, we performed a systematic analysis of several parameters
that may affect MIAs on well-generalizable targets. For the time
being, none of the proposed defense strategies offers acceptable
guarantees without sacrificing the target model’s performance or
the usefulness (utility) of the information provided.

Despite showing that well-generalizable models cause black-box
MIAs with strong background information to fail (Sec. 5), below, we
discuss defense strategies that will further enhance their resistance
against superior adversaries that may follow a dramatically differ-
ent attacking strategy. However, evaluating those defenses is out of
scope, since our main goal in this paper is to systematically explore
the different parameters that may make MIAs more effective with-
out touching on the various choices a defender has access to per
attack case. Thus, we provide this short review of possible defenses
only for completeness and it is not by any means a thorough look
at how these defenses work in each setting.

Differential Privacy. On the one hand, DP guarantees the low
influence of each training instance, but on the other hand, it signifi-
cantly reduces the performance of anMLmodel [29]. In fact, current
DP mechanisms rarely offer acceptable utility-privacy trade-offs for
complex learning tasks [27, 28]. Moreover, it was shown that even
differentially private models are susceptible to sophisticated MIAs
[55, 57]. In general, further research is necessary to understand
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which DP mechanisms and under what settings are able to provide
viable protection to MIAs without forfeiting the model’s utility [74].

Adversarial Regularization.Nasr et al. [49] introduced amech-
anism, namely adversarial regularization, to train models withmem-
bership privacy, which ensures indistinguishability between the
predictions of a model on member and non-member samples. How-
ever, recent approaches managed to circumvent adversarial regular-
ization and successfully deliver their attacks [8, 25, 69]. In addition,
adversarial regularization is no better than early-stopping, which
is a much simpler and computationally inexpensive strategy [69].

Li et al. [37] observe that a model’s vulnerability against MIAs is
tightly related to its generalization gap. Thus, similarly to Nasr et al.
[49], they introduce a new regularizer to the training loss function
in order to shrink this gap. In particular, the authors’ regularizer
penalizes the situation where member instances have significantly
different output distributions from non-member ones.

Noise Adding. Adding random noise on the target model’s
confidence scores affects MIAs’ performance [28]. Recently, Jia et
al. [28] proposed a technique with formal utility-loss guarantees
against black-box MIAs, namely MemGuard. Despite that Mem-
Guard can be applied on any target model, the authors evaluate
their defense’s performance only on overfitted targets rather than
well-generalizable ones. Moreover, MIAs that bypass the security
provided by MemGuard were proposed [8, 25]. As Song et al. [69]
suggest, MemGuard is not as effective as previously reported and
lacks important evaluation against well-generalizable targets. Fi-
nally, the addition of random noise on the target model’s confidence
scores may undermine the utility of the results provided. More im-
portantly, this alteration may have serious consequences, especially
for models utilized in the healthcare field.

Restrict theOutputVector to Top-kClasses.Themost straight-
forward defense strategy is to restrict the target model to only re-
turn the top-𝑘 confidence scores rather than the full vector with
all classes [64]. Selecting only the top-k classes significantly limits
the exploitable by adversaries information, and thus their overall
performance. Generally speaking, the smaller the k is, the less in-
formation the model leaks [64]. Ideally, the model has to return
only the index of the most likely class without even reporting its
probability. Nonetheless, this defense strategy suffers from the fol-
lowing limitations: (a) similar to DP, it degrades the usefulness of
the information provided by the model, and (b) it cannot protect
against recent fully black-box MIAs that need access only to the
target model’s predicted (discrete) class [8, 38, 83].

8 RELATEDWORK
Liu et al. [41] present an analysis of the risks caused by different
inference attacks (e.g., various scenarios they can be applied to,
common factors that influence their performance, or any relation-
ship among them) and the effectiveness of defense techniques. They
focus on four attacks, namely membership inference, model inver-
sion [10], attribute inference, and model stealing, and establish
a threat model taxonomy. Their experimental evaluation shows
that: (a) the complexity of the training dataset largely affects the
attacks’ performance, and (b) the effectiveness of model stealing
and membership inference are negatively correlated.

Papernot et al. [52] introduce a unifying threat model to allow
structured reasoning about the security and privacy of systems that

incorporate ML. In contrast to this paper, their threat model consid-
ers the entire data pipeline, of which ML is a component, instead of
ML models in isolation. The authors provide an analysis regarding
adversarial sample generation attacks [9] in various settings (e.g.,
white-box and black-box) and report the recent progress towards
training robust, private, and accountable ML models.

Song et al. [69] perform an investigation in regards towhy certain
samples are more vulnerable to MIAs compared to other samples,
including correlations with model properties, such as model sensi-
tivity, generalization error, and feature embeddings. The authors
stress the importance of a systematic evaluation of privacy risks of
ML models, which is an angle that our work attempts to explore.

Song et al. [70] introduce MIAs that exploit structural proper-
ties of robust models on adversarially perturbed data. In particular,
the authors show that compared to the natural training (unde-
fended) approach, adversarial defense methods can increase the
target model’s risk against MIAs. Thus, in this paper, we focus our
analysis solely on naturally trained ML models.

Hu et al. [23] present a comprehensive survey on MIAs and
defenses, while also discussing their pros and cons. Based on the
limitations identified, they provide promising future research di-
rections. Contrary to Hu et al.’s work, our paper: (a) presents a
systematization of knowledge that evaluates, systematizes, and con-
textualizes existing knowledge on MIAs, and thus provides useful
insights that could not be obtained by simply reading each of the
individual papers (or a survey paper that outlines such works), and
(b) follows an experimental-based approach for examining specific
parameters/settings that may affect black-box MIA success rates
on well-generalizable targets.

Hyeong et al. [26] present an empirical analysis of MIAs in the
context of tabular data synthesis models. According to the authors,
themajority of prior research onMIAs that target generativemodels
has concentrated in the image domain. Thus, the risk of tabular data
synthesis models against MIAs is largely unexplored. Tabular data,
however, are among the most widely used data types and frequently
include sensitive or private information. The authors use Chen et
al.’s [7] MIAs to show how tabular data synthesis models can be
seriously jeopardized.

9 CONCLUSION
In this paper, we presented a systematization of knowledge forMIAs
found in the literature. Based on our analysis, we raised specific
questions that still remain unanswered. Next, we answered those
questions in the following order. First, we compared the MIA suc-
cess rates achieved on ML models trained with popular ML general-
ization techniques. Our results suggest that all tested generalization
techniques demonstrate comparable robustness against adversaries
in the optimal black-box attack setting. Second, we explored the
contribution of potential data leaks to successful black-box MIAs.
The collected results suggest that even if black-box adversaries pos-
sess partial ground-truth membership information, they still cannot
achieve well-above baseline MIA success rates when targeting well-
generalizable models. Third, we examined whether or not, and to
what extent, the depth of ANNs facilitates black-box MIAs. In our
experimental analysis we showed that this is not the case. Observ-
ing all the results reported in this paper, we conclude that MIAs are
harder than we previously thought under reasonable assumptions.
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Figure 7: The training-testing loss vs. epoch graph for an
overfitted model. For ensuring the maximum generalization
of this model we had to stop the training process at the opti-
mal training point. Beyond that point, the model becomes
less generalizable and begins to memorize the labels of the
training data at the expense of its ability to generalize.

A APPENDIX
The appendix is composed of three sections. First, in Sec. A.1, we
provide supplementary material that is mentioned in this paper’s
main body. Second, in Sec. A.2, we provide additional results using
different architecture-dataset combinations than those utilized in
Sec. 4. Third, in Sec. A.3, we present the MIA success rates achieved
from adversary 2 on different datasets and ANNs with various
depths. Note that the information provided in each section is not
meant to be read in a row.

A.1 Supplementary Material
A.1.1 Detecting and Tackling Overfitting. In supervised learning,
there are two ways for detecting overfitting: (a) observing the differ-
ence between the training and testing accuracies, and (b) plotting
the training-testing loss vs. epoch graph. Using the former, one can
detect overfitting if the training and testing accuracies differ signif-
icantly, usually more than 10–15%, the testing accuracy being the
lower one. Using the latter, one can detect overfitting by comparing
the training-testing loss vs. epoch graph with the typical overfitted
model’s graph morphology shown in Fig. 7. As shown, if the testing
loss starts to rise at a certain point while the training loss keeps
decreasing then this is a clear evidence that the model started to
overfit on the training data.

As a response, the scientific community came up with a number
of techniques and mechanisms for preventing models from becom-
ing overfitted to their training data, such as the early stopping [54]
and regularization methods (e.g., 𝑙1, 𝑙2, and dropout) [21].

A.1.2 Attacker Model. Figure 8 shows adversary 2’s MLP. The at-
tacker model receives as input the confidence score vector derived
from the target model when queried with a target record and re-
sponds 0 or 1 depending on whether or not the target record was
included in the target model’s training dataset. All layers utilize
ReLU activation function (Eq. 1) except from the output layer that
utilizes Softmax (Eq. 2).

A.1.3 Equations.

𝑅𝑒𝐿𝑈 : 𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) (1)

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑧𝑖 ) =
𝑒𝑥𝑝 (𝑧𝑖 )∑𝑘−1

𝑖=0 (𝑒𝑥𝑝 (𝑧𝑖 ))
𝑓 𝑜𝑟 𝑖 = 1, ..., 𝐾 𝑎𝑛𝑑 𝑧 = (𝑧1, ..., 𝑧𝑘 ) ∈ R𝑘

(2)
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Table 4: An overview of the assumptions/limitations of MIAs found in the related literature.

Assumption/Limitation Reference papers

MIAs in white-box setting only [36, 48, 50]
MIAs reporting high success rates only on overfitted target ML models [16, 25, 42, 43, 60, 64, 78, 79]
MIAs requiring certain (often private) information which might not be available to a potential attacker [44, 48, 50, 59, 60, 64]
MIAs exploiting only a small number of vulnerable data records in the target model’s training dataset [35, 44, 67, 68]
MIAs having significantly high overhead on querying the target model for synthesizing training data records [16, 64]
MIAs having significantly high overhead on querying the target model for conducting the attack [8, 38]
MIAs requiring the use of shadow models that mimic the target model’s behaviour [5, 42–44, 60, 64, 78]
MIAs reporting high attack success rates only on low-complexity target ML models and datasets [44, 64]

Figure 8: The adversary 2’s fully-connected MLP. All the hid-
den layers utilize ReLU (Eq. (1)) as their activation function
whereas the output layer uses Softmax (Eq. (2)). Finally, we
use the SGD optimizer, a batch size of 64 samples, and the
binary cross-entropy as the loss function.

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) = 1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦′𝑖 )
2

𝐿1𝐿𝑜𝑠𝑠 =

𝑛∑︁
𝑖=1

(
��𝑦𝑖 − 𝑦′𝑖 ��)

𝐿2𝐿𝑜𝑠𝑠 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦′𝑖 )
2

(3)

where 𝑦𝑖 is the predicted output and 𝑦′
𝑖
is the target output of

neuron 𝑖 .

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦′𝑖 )
2 + 𝜆

𝑘∑︁
𝑗=1

��𝑤 𝑗

�� (4)

𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦′𝑖 )
2 + 𝜆

𝑘∑︁
𝑗=1

𝑤2
𝑗 (5)

A.2 ML Generalization Mechanisms Evaluation
Figures 9 & 10 show the MIA success rates achieved on ResNet-
34 trained on CIFAR-100 and SVHN, respectively, using different
optimization and regularization mechanisms. In addition, Figures
11-13 show the MIA success rates achieved on MLP-1 trained on
Adult, Surgical and IMDB, respectively, using different optimization
and regularization mechanisms. As shown, the averageMIA success
rates remain close to the random guessing baseline (50%) for each
tested setting. The target model’s training/testing accuracies, when
using each generalization technique, are shown in Tables 5-9 for
CIFAR-100, SVHN, Adult, Surgical and IMDB, respectively.

(a) Optimizer (b) L1 Rate

(c) L2 Rate (d) Dropout

Figure 9: MIA success rates on ResNet-34 trained on CIFAR-
100 using various optimization and regularization methods.

(a) Optimizer (b) L1 Rate

(c) L2 Rate (d) Dropout

Figure 10: MIA success rates on ResNet-34 trained on SVHN
using various optimization and regularization methods.
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(a) Optimizer (b) L1 Rate

(c) L2 Rate (d) Dropout

Figure 11: MIA success rates onMLP-1 trained on Adult using
various optimization and regularization methods.

(a) Optimizer (b) L1 Rate

(c) L2 Rate (d) Dropout

Figure 12: MIA success rates on MLP-1 trained on Surgical
using various optimization and regularization methods.

A.3 Adversary 2 (Black-box) MIA Success Rates
on Different ANNs and Datasets

This section shows adversary 2’s MIA success rates achieved on dif-
ferent ANNs (with various depths) trained on datasets from various
domains (CIFAR-10/100, SVHN, Adult, Surgical and IMDB), using
top-𝑘 confidence scores + ground-truth membership status projec-
tion function. We omit the respective results for adversary 1 since
they are similar to those observed from the (stronger) adversary 2.

(a) Optimizer (b) L1 Rate

(c) L2 Rate (d) Dropout

Figure 13: MIA success rates onMLP-1 trained on IMDB using
various optimization and regularization methods.

Table 5: ResNet-34 training/testing accuracies on CIFAR-100
for each optimization and regularization method used.

Selection Training Acc. Testing Acc.

O
pt
im

iz
er

SGD [32] 53.13% 51.50%
RMSprop [73] 60.22% 57.23%
Adam [33] 58.15% 57.46%

Adamax [33] 61.92% 59.50%
Adadelta [81] 50.63% 43.26%
Adagrad [12] 54.82% 49.26%
AdamW [45] 59.93% 57.87%

𝑙1
R
at
e

0 55.88% 54.59%
1e-9 69.11% 67.09%
1e-7 69.21% 66.67%
1e-5 70.30% 68.60%
1e-3 38.66% 37.58%
1e-1 14.56% 10.11%

𝑙2
R
at
e

0 58.81% 55.74%
1e-9 57.58% 54.69%
1e-7 62.35% 58.15%
1e-5 66.69% 62.07%
1e-3 63.32% 59.32%
1e-1 17.45% 13.02%

D
ro
po

ut
R
at
e

0 59.99% 58.48%
1e-1 61.25% 60.01%
1.5e-1 58.22% 56.16%
2e-1 59.32% 56.01%
3.5e-1 53.51% 51.81%
5e-1 43.96% 38.24%
7e-1 34.48% 28.76%

As shown in Figures 14-19, all MIA success rates remain close to
the random guessing baseline when targeting well-generalizable
models. The collected results suggest that well-generalizable mod-
els are robust against black-box adversaries with strong background
information (i.e., adversaries with access to the ground-truth mem-
bership status of a large portion of the target model’s training set).
Thus, Hui et al.’s observation (i.e., MIA success rate is analogous to
the number of labeled instances available to the adversary) holds
only for overfitted models and not for well-generalizable ones.
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(a) VGG-13 top-10 (b) VGG-16 top-10 (c) VGG-19 top-10

(d) ResNet-18 top-10 (e) ResNet-34 top-10 (f) ResNet-50 top-10

(g) DenseNet-121 top-10 (h) DenseNet-161 top-10 (i) DenseNet-169 top-10

Figure 14: Adversary 2’s MIA success rates achieved on VGG, ResNet and DenseNet (with various depths) trained on CIFAR-10.
Since the collected results for 𝑘 = 3, 5, 7 are similar to those observed for 𝑘 = 10 we omit including the respective graphs.

Table 6: ResNet-34 training/testing accuracies on SVHN for
each optimization and regularization method used.

Selection Training Acc. Testing Acc.

O
pt
im

iz
er

SGD [32] 96.22% 95.07%
RMSprop [73] 92.87% 90.24%
Adam [33] 93.78% 93.21%

Adamax [33] 95.88% 95.70%
Adadelta [81] 92.45% 90.75%
Adagrad [12] 94.76% 93.98%
AdamW [45] 96.45% 96.32%

𝑙1
R
at
e

0 96.01% 95.75%
1e-9 96.89 % 95.50%
1e-7 97.21% 96.04%
1e-5 96.66% 95.75%
1e-3 93.37% 91.13%
1e-1 23.11% 19.58%

𝑙2
R
at
e

0 96.42% 95.67%
1e-9 96.85% 96.21%
1e-7 96.99% 96.32%
1e-5 96.45% 96.03%
1e-3 95.87% 94.71%
1e-1 80.23% 75.56%

D
ro
po

ut
R
at
e

0 97.88% 96.60%
1e-1 97.33% 96.32%
1.5e-1 97.45% 96.35%
2e-1 97.02% 96.43%
3.5e-1 97.11% 96.33%
5e-1 96.25% 95.21%
7e-1 91.48% 88.72%

Table 7: MLP-1 training/testing accuracies on Adult for each
optimization and regularization method used.

Selection Training Acc. Testing Acc.

O
pt
im

iz
er

SGD [32] 85.34% 85.30%
RMSprop [73] 85.90% 85.47%
Adam [33] 85.99% 84.81%

Adamax [33] 85.74% 84.82%
Adadelta [81] 56.03% 55.60%
Adagrad [12] 80.52% 80.03%
AdamW [45] 85.69% 85.24%

𝑙1
R
at
e

0 85.34% 85.30%
1e-9 85.62% 84.86%
1e-7 86.20% 84.85%
1e-5 86.04% 85.12%
1e-3 85.59% 84.46%
1e-1 75.34% 75.18%

𝑙2
R
at
e

0 85.34% 85.30%
1e-9 85.78% 85.11%
1e-7 85.99% 85.24%
1e-5 85.84% 85.55%
1e-3 85.20% 85.05%
1e-1 75.69% 75.23%

D
ro
po

ut
R
at
e

0 85.34% 85.30%
1e-1 85.32% 85.19%
1.5e-1 85.34% 84.89%
2e-1 85.28% 85.10%
3.5e-1 84.89% 84.58%
5e-1 84.92% 83.54%
7e-1 84.21% 82.60%
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(a) VGG-11 top-10 (b) VGG-13 top-10 (c) VGG-16 top-10 (d) VGG-19 top-10

(e) ResNet-18 top-10 (f) ResNet-34 top-10 (g) ResNet-50 top-10

(h) DenseNet-121 top-10 (i) DenseNet-161 top-10 (j) DenseNet-169 top-10

Figure 15: Adversary 2’s MIA success rates achieved on VGG, ResNet and DenseNet (with various depths) trained on CIFAR-100.
Since the collected results for 𝑘 = 3, 5, 7 are similar to those observed for 𝑘 = 10 we omit including the respective graphs.

Table 8: MLP-1 training/testing accuracies on Surgical for
each optimization and regularization method used.

Selection Training Acc. Testing Acc.

O
pt
im

iz
er

SGD [32] 80.10% 79.63%
RMSprop [73] 80.53% 79.37%
Adam [33] 80.91% 80.56%

Adamax [33] 80.16% 78.94%
Adadelta [81] 67.43% 66.42%
Adagrad [12] 77.11% 76.07%
AdamW [45] 80.73% 79.80%

𝑙1
R
at
e

0 80.10% 79.63%
1e-9 80.26% 79.29%
1e-7 80.73% 79.29%
1e-5 80.87% 79.12%
1e-3 80.17% 80.05%
1e-1 75.70% 74.48%

𝑙2
R
at
e

0 80.10% 79.63%
1e-9 80.79% 78.56%
1e-7 80.61% 79.95%
1e-5 80.18% 80.11%
1e-3 80.91% 80.27%
1e-1 74.70% 74.25%

D
ro
po

ut
R
at
e

0 80.10% 79.63%
1e-1 80.41% 79.80%
1.5e-1 80.06% 79.93%
2e-1 79.92% 79.54%
3.5e-1 80.40% 79.28%
5e-1 80.05% 78.67%
7e-1 79.88% 78.04%

Table 9: MLP-1 training/testing accuracies on IMDB for each
optimization and regularization method used.

Selection Training Acc. Testing Acc.

O
pt
im

iz
er

SGD [32] 92.17% 89.13%
RMSprop [73] 91.07% 87.91%
Adam [33] 92.27% 88.95%

Adamax [33] 91.39% 89.49%
Adadelta [81] 76.34% 75.97%
Adagrad [12] 83.51% 83.35%
AdamW [45] 90.57% 89.49%

𝑙1
R
at
e

0 92.17% 89.13%
1e-9 92.37% 89.16%
1e-7 92.38% 88.87%
1e-5 92.19% 89.20%
1e-3 92.48% 88.98%
1e-1 89.44% 87.84%

𝑙2
R
at
e

0 92.17% 89.13%
1e-9 92.39% 88.91%
1e-7 92.41% 88.81%
1e-5 92.23% 89.02%
1e-3 92.31% 89.34%
1e-1 91.17% 89.96%

D
ro
po

ut
R
at
e

0 92.17% 89.13%
1e-1 92.18% 89.28%
1.5e-1 91.86% 89.74%
2e-1 91.96% 89.38%
3.5e-1 91.47% 89.46%
5e-1 90.09% 89.55%
7e-1 87.02% 85.79%
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(a) VGG-11 top-10 (b) VGG-13 top-10 (c) VGG-16 top-10 (d) VGG-19 top-10

(e) ResNet-18 top-10 (f) ResNet-34 top-10 (g) ResNet-50 top-10

(h) DenseNet-121 top-10 (i) DenseNet-161 top-10 (j) DenseNet-169 top-10

Figure 16: Adversary 2’s MIA success rates achieved on VGG, ResNet and DenseNet (with various depths) trained on SVHN.
Since the collected results for 𝑘 = 3, 5, 7 are similar to those observed for 𝑘 = 10 we omit including the respective graphs.

(a) MLP-1 top-2 (b) MLP-2 top-2 (c) MLP-3 top-2 (d) MLP-10 top-2

Figure 17: Adversary 2’s MIA success rates achieved on MLP (with various depths, each layer having 10 neurons) trained on
Adult. Since this dataset represents a binary classification problem 𝑘 = 2.
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(a) MLP-1 top-2 (b) MLP-2 top-2 (c) MLP-3 top-2 (d) MLP-10 top-2

Figure 18: Adversary 2’s MIA success rates achieved on MLP (with various depths, each layer having 10 neurons) trained on
Surgical. Since this dataset represents a binary classification problem 𝑘 = 2.

(a) MLP-1 top-2 (b) MLP-2 top-2 (c) MLP-3 top-2 (d) MLP-10 top-2

Figure 19: Adversary 2’s MIA success rates achieved on MLP (with various depths, each layer having 10 neurons) trained on
IMDB. Since this dataset represents a binary classification problem 𝑘 = 2.
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