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ABSTRACT
Differentially Private Stochastic Gradient Descent, DP-SGD, is the

canonical approach to training deep neural networks with guar-

antees of Differential Privacy (DP). However, the modifications

DP-SGD introduces to vanilla gradient descent negatively impact

the accuracy of deep neural networks. In this paper, we are the first

to observe that some of this performance can be recovered when

training with a loss tailored to DP-SGD; we challenge cross-entropy

as the de facto loss for deep learning with DP. Specifically, we intro-

duce a loss combining three terms: the summed squared error, the

focal loss, and a regularization penalty. The first term encourages

learning with faster convergence. The second term emphasizes

hard-to-learn examples in the later stages of training. Both are ben-

eficial because the privacy cost of learning increases with every step

of DP-SGD. The third term helps control the sensitivity of learning,

decreasing the bias introduced by gradient clipping in DP-SGD.

Using our loss function, we achieve new state-of-the-art tradeoffs

between privacy and accuracy on MNIST, FashionMNIST, and CI-

FAR10. Most importantly, we improve the accuracy of DP-SGD on

CIFAR10 by 4% for a DP guarantee of 𝜀 = 3.

KEYWORDS
differential privacy, differentially private stochastic gradient de-

scent, loss function

1 INTRODUCTION
Releasing machine learning (ML) models may risk the privacy of

training data as ML models unintentionally leak information about

the training data; this is due to limitations of learning, including

overfitting [22] and data memorisation [5, 10]. The framework of

Differential Privacy (DP) by Dwork et al. [8] is the gold standard

for formalising privacy guarantees. When training ML models, a

DP training algorithm provides guarantees bounding the leakage

of private data that may occur during training. This requires that

one can bound the influence of individual training examples on the

output of the algorithm (e.g. parameters or gradients of the model).

In addition to these strong theoretical guarantees, DP models are

empirically resistant to various attacks – membership inference

attacks [20, 21], training data extraction [5] and data poisoning

attacks [15].

Differentially Private Stochastic Gradient Descent, DP-SGD, trains

a ML model under the framework of DP by (1) clipping per-example
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gradients to a fixed norm to bound their sensitivity and (2) adding

noise to these clipped gradients before they are applied to update

the model parameters [1]. When done separately and at the level of

a minibatch, clipping [16, 29] or noising [9] effectively regularize

learning because they respectively control the dynamics of iterates

and smoothen the loss landscape. However, gradient clipping and

noising are detrimental to model performance in DP-SGD because

they are applied in combination and at the granularity of individual

training examples. In addition to this, the accuracy of DP-SGD is

negatively affected by the limited number of iterations that can be

computed: each iteration of DP-SGD increases the privacy budget

expended by learning.

Recent works have explored bounded activation functions [19],

publicly available feature extractors and data [23], randomised

smoothing [24] and gradient embedding [27] as a means to improve

the tradeoffs between privacy and accuracy of DP-SGD. However,

training networks with strong DP guarantees in DP-SGD still comes

at a significant cost in accuracy for datasets like CIFAR10.

In this paper, we show that one key aspect of formulating the

optimization problem solved in learning is left out of studies seeking

to improve deep learning with DP: the loss function. All existing

implementations of deep learning with DP we are aware of optimise

cross-entropy (which performs well in the non-privacy-preserving

setting with SGD). However, we first observe that optimising cross-

entropy with DP-SGD leads to exploding model weights, layer

pre-activations and logit values. This is true even if the activation

functions themselves are bounded [19]. This phenomenon makes

it difficult to control the sensitivity of the learning algorithm at a

minimal impact to its correctness. Indeed, clipping and noising large

gradients in DP-SGD introduces an information loss and additional

biases. More precisely, the direction of a minibatch’s clipped per-

example gradients in DP-SGD is not necessarily aligned with the

direction of the original gradients in SGD. Furthermore, we also note

that the slow training convergence of cross-entropy [2] negatively

impacts the performance of DP-SGD for which a limited number

of iterations are required to achieve strong privacy guarantees.

In this paper, to tackle these two limitations of the cross-entropy

loss, we propose to tailor the loss function to the specifics of DP-

SGD. We design a novel loss function that takes into account sen-

sitivity, training convergence and the order in which examples

are learned with the overarching goal of improving the tradeoffs

between privacy and accuracy of DP-SGD. We achieve these ob-

jectives with a novel loss function that combines the Sum Squared

Error (SSE) between the model logits and ground-truth labels, the

focal loss [13], and a regularisation penalty on pre-activations.

The first two penalties impose a curriculum structure in the

training to improve privacy-accuracy tradeoffs of DP-SGD by ex-

ploiting the generalisation and fast convergence speed [11, 25] of

curriculum learning [4]. We start training with SSE which has faster

convergence [2] and smaller gradients than cross-entropy. Then, we
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gradually shift toward emphasising hard-to-learn examples using

the focal loss: this down-weights losses assigned to examples that

are already learned correctly to focus more on hard-to-learn and

misclassified examples. Finally, our regularisation penalty prevents

the weights from exploding to further reduce the magnitude of per-

example gradients prior to clipping. Implementation-wise, our new

loss function can be easily integrated within existing implementa-

tions of deep learning with DP; it requires a single line change to

edit the loss function being optimized.

In summary, our main contributions are as follows:

• We are the first to investigate the loss function in the con-

text of deep learning with DP. We analyse the effect of the

loss function on the sensitivity of DP models by providing

extensive analysis of the norm of activations, weights and

gradients in Section 4.

• We propose a novel loss function
1
tailored to deep learning

with DP. In Section 3 and Section 4, we analytically and

experimentally connect the superior performance of our

proposed loss function to the gradient norm and direction,

smoothness of the loss surface, and convergence of DP-SGD.

Our loss function better controls the sensitivity of the learn-

ing algorithm by better preconditioning gradients to being

clipped and noised.

• We show in Section 4 that our proposed loss function is

compatible with other DP-SGD improvement strategies, and

more importantly allows us to establish new state-of-the-

art tradeoffs between privacy and accuracy on several key

benchmarks for deep learning with DP, including CIFAR10.

Finally, we perform an ablation study to analyse the effect

of each component of our proposed loss function on DP

learning.

2 DIFFERENTIAL PRIVACY, DP-SGD AND
STATE-OF-THE-ART APPROACHES

Trained machine learning models memorise and leak information

about their training data [10, 20–22]. Differential privacy [8] is

the established gold standard to reason about the privacy guar-

antees of learning algorithms. An algorithm is differentially pri-

vate if its outputs are statistically indistinguishable on neighbour-

ing datasets. More formally, a randomised learning algorithm 𝐴

is (𝜀, 𝛿)-differentially private if the following holds for any two

neighbouring datasets 𝐷 and 𝐷 ′ that differ only in one record and

all 𝑆 ∈ Range(𝐴):

Pr[𝐴(𝐷) ∈ 𝑆] ≤ 𝑒𝜀Pr[𝐴(𝐷 ′) ∈ 𝑆] + 𝛿. (1)

The privacy budget 𝜀 upper bounds the privacy leakage in the worst

possible case: the smaller the 𝜀, the tighter the upper bound (or

stronger the privacy guarantee). Note that the factor 𝛿 is very small

(generally it is chosen to be in the order of the inverse of the dataset

size).

To train ML models with DP, we can add randomness to the

learning algorithm in three ways: output perturbation [26, 30], ob-

jective perturbation [6, 12] or gradient perturbation [1, 3]. Among

these approaches, differentially private stochastic gradient, DP-SGD

1
Our code which is based on the common Opacus library is available at https://

anonymous.4open.science/r/LosingLess_DP-SGD/.

of Abadi et al. [1], has established itself as the de facto strategy

because of its versatility. DP-SGD perturbs gradients computed at

each step of stochastic gradient descent using the Gaussian mecha-

nism to achieve competitive tradeoffs between privacy and accu-

racy [23, 28]. Next, we describe the process of training a classifier

using DP-SGD.

LetX = {x𝑖 |𝑖 = 1, ..., 𝑁 } be the training set containing 𝑁 private

examples x𝑖 , and Y = {y𝑖 |𝑖 = 1, ..., 𝑁 } be the ground-truth label

set where each y𝑖 is a 𝐷-dimension one-hot encoded vector. We

consider a 𝐷-class classifier containing 𝑀 layers parameterised

with weightsW = {W𝑚 |𝑚 = 1, ..., 𝑀}.
In each DP-SGD iteration, similarly to the non-private SGD one,

the classifier receives each training example x𝑖 from a minibatch

containing 𝐿 data points that are sampled randomly from X. The
activation of each intermediate layer𝑚 of size 𝑑𝑚 , a𝑚

𝑖
= 𝑓 (h𝑚

𝑖
) ∈

R1×𝑑𝑚
, is computed by applying a non-linear function, 𝑓 (·), on

the pre-activation h𝑚
𝑖

= W𝑚a𝑚−1
𝑖

. The pre-activation is a linear

combination of the weight of that layer, W𝑚
, and the activation

of the previous layer, a𝑚−1
𝑖

. The last layer outputs the logit values

associated with each class without any activation function as a𝑀
𝑖

=

h𝑀
𝑖

= W𝑀h𝑀−1
𝑖

∈ R1×𝐷
. The cross-entropy loss, LCE, for each

training example x𝑖 is

LCE = −
𝐷∑︁
𝑑=1

𝑦 (𝑖,𝑑) log(𝑝 (𝑖,𝑑) ) . (2)

The probability that x𝑖 belongs to 𝑑-th class, 𝑝 (𝑖,𝑑) ∈ [0, 1], is com-

puted by applying a Softmax function on the logit value of its

corresponding class 𝑎𝑀(𝑖,𝑑) .
The DP-SGD optimiser computes per-example gradient of LCE

with respect toW, as opposed to per minibatch gradient in the

SGD optimiser, to bound the influence of each individual training

example on the output of the learning algorithm (i.e. weight gradi-

ents). The weight gradients, G𝑚
, for each training example x𝑖 are

computed from the last layer and back-propagated until the first

layer as:

G𝑀
𝑖 = (p𝑖 − y𝑖 )𝑇 a𝑀−1𝑖 ,

G𝑀−1
𝑖 =

(
(p𝑖 − y𝑖 )W𝑀 )𝑇 a𝑀−2𝑖 ,

G𝑀−2
𝑖 = 𝑓 ′

(
(p𝑖 − y𝑖 )W𝑀W𝑀−1)𝑇 a𝑀−3𝑖 .

(3)

One can continue this gradient computation until the first layer.

All the per-example gradients are concatenated as

G𝑖 = [G1

𝑖 ; ...;G
𝑀
𝑖 ], (4)

where ; denotes the concatenation operation. As there is no a priori

bound on G𝑖 , the 𝑙2 norm, ∥ · ∥2, of each

G𝑖 ← G𝑖 ·min(1, 𝐶

∥G𝑖 ∥2
), (5)

are artificially clipped by 𝐶 to bound the influence of each x𝑖 on
the final gradients, G:

G =
1

𝐿

( 𝐿∑︁
𝑖=1

G𝑖 + N(0, 𝜎2𝐶2I)
)
. (6)
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Finally, the classifier weights are updated through the average of

the clipped and noisy (scaled by the noise multiplier 𝜎) per-example

gradients of a minibatch.

The accuracy of classifiers trained with DP-SGD is lower than

that of classifiers trained by non-private SGD. Recently, researchers

investigated the choice of 𝑓 (·) and data representation for improv-

ing the accuracy of the classifier trained by DP-SGD. Papernot et al.

[19] demonstrated that exploiting a bounded family of activation

functions instead of the more commonly employed unbounded

ReLU activation for the choice of 𝑓 (·) can decrease the bias intro-

duced by DP-SGD and improve the tradeoffs between privacy and

accuracy of DP-SGD. Their approach though does not fully bridge

the gap between non-private and private learning for datasets like

CIFAR10. Tramèr and Boneh [23] proposed to train the classifier

on a representation of data outputted by a public ScatterNet fea-

ture extractor as opposed to using the raw pixels x𝑖 . This however
requires access to public data in addition to the private dataset.

3 PROPOSED APPROACH
We propose to design a new loss function tailored to DP-SGD. Our

goal is to converge faster with smaller gradient norms, control

better the sensitivity of the learning algorithm, increase tolerance

to noise, and effectively learn both easy and hard examples. Indeed,

these address several crucial differences between DP-SGD and its

non-private counterpart SGD:

• Due to per-example gradient clipping (recall Equation 6),

information contained in gradients whose magnitude is too

large is discarded (see Figure 1.c). This cannot be compen-

sated by tuning the training algorithm, e.g., by increasing the

model’s learning rate. This is because clipping is done at the

granularity of individual training examples. Together with

the noise injected (recall Equation 6), this biases learning

and implies that DP-SGD takes a different optimisation path

compared to SGD.

• As shown in Equation 3, the model weights
2
contribute to

the computation of all gradients. In practice, this leads to

model weights exploding in DP-SGD. Therefore, one way to

decrease the magnitude of gradients is to prevent the model

weights from exploding, especially the weight of the last

layer which contributes in the gradient of all the layers.

• The number of training iterations are limited in DP-SGD as

each iteration increases the risk of privacy leakage. Hence,

faster convergence is beneficial to DP-SGD as well as ensur-

ing both easy and hard examples are attended to during the

limited training run.

Next, we describe our choice of loss function. We analyse how

our new loss function improves the tradeoffs between privacy and

accuracy of DP-SGD. We uncover two main effects: our loss limits

the information loss of gradient clipping and improves learning’s

tolerance to noise.

3.1 Our loss
We propose to learn the easy examples at the beginning of the

training using the per-example Sum Squared Error (SSE) between

2
When we use bounded activation function, all the terms except those corresponding

to weights are bounded in Equation 3.

the logit values and one-hot vector labels:

LSSE =
1

2

∥h𝑀𝑖 − y𝑖 ∥2 =
1

2

𝐷∑︁
𝑑=1

(ℎ𝑀(𝑖,𝑑) − 𝑦 (𝑖,𝑑) )
2 . (7)

Later in training, we exploit the focal loss L
Focal

to learn hard-to-

learn examples. L
Focal

modifies the cross-entropy loss to reduce

the loss of easy, well-classified examples, letting the model focus

more on hard, misclassified examples. L
Focal

multiplies a factor

(1−𝑝 (𝑖,𝑡 ) )𝛾 based on the probability of the ground-truth class 𝑝 (𝑖,𝑡 )
to the cross-entropy of each training example x𝑖 as:

L
Focal

= −(1 − 𝑝 (𝑖,𝑡 ) )𝛾
𝐷∑︁
𝑑=1

𝑦 (𝑖,𝑑) log(𝑝 (𝑖,𝑑) ), (8)

where the tunable focusing parameter𝛾 adjusts the down-weighting

rate: the higher the 𝛾 , the higher the down-weight rate of easy, well-

classified examples. This factor is multiplied only by the loss, and

it is done prior to gradient clipping so that still the contribution of

each example to the gradient is bounded by 𝐶 . Note that the focal

loss is equivalent to cross-entropy loss, when 𝛾 = 0.

To further decrease the gradient magnitudes and prevent the ex-

plosion of intermediate weights, we impose a regularisation penalty

on the intermediate pre-activations as:

LReg =

𝑀−1∑︁
𝑚=1

1

𝑑𝑚
∥h𝑚𝑖 ∥2 . (9)

Finally, our proposed loss function L combines L
Focal

, LSSE and

LReg as:

L = 𝛼L
Focal
+ (1 − 𝛼)LSSE +

(1 − 𝛼)
𝛽
LReg, (10)

where we set hyper-parameter 𝛼 = Sigmoid(𝑒𝑐 −𝑒𝑡 ) (current epoch,
𝑒𝑐 , and threshold epoch, 𝑒𝑡 ) to enable curriculum learning where

easy examples are learned in the early training iterations using

LSSE which eases learning of hard examples in the later training

iterations using L
Focal

. LReg acts as a regulariser, thus we multiply

its effect by 1/𝛽 in comparison to the other two losses. We perform

a hyper-parameter search to set the best values for 𝛼 , 𝛽 and 𝛾 .

Privacy analysis. Note that we still follow the privacy guarantees

of DP-SGD (Theorem 1 in [1]) as we i) do not modify the data

sampling requirement of DP-SGD; ii) compute gradients on a per-

example basis (∇L) by computing a per-example loss in Equation 10;

iii) bound the contribution of each example to the gradient by

clipping the 𝑙2 norm of these individual per-example gradients (see

Equation 5); and iv) add noise to these gradients (see Equation 6)

that is calibrated such that Theorem 1 in Abadi et al. [1] holds.

3.2 An analysis of our loss

Our loss limits information loss from clipping. Figure 1 shows
that under the supervision of L, we are able to control the sensitiv-
ity of the learning algorithm. In particular,LReg on the intermediate

pre-activations andLSSE on the logit values prevent pre-activations

and logit values and consequently weights from exploding (per-

example logit values and pre-activations are computed based on

the weights), which decreases the magnitude and variance of per-

example gradients. Using the triangle inequality for the gradient of
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Figure 1: (a) 𝑙2 norm of the logit values, (b) 𝑙2 norm of the last layer weights, (c) histogram of per-sample gradient magnitude in
the first epoch, and (d) divergence histogram of optimisation path in aggregated clipped gradients from the optimisation path
in unclipped ones when we train the classifier on CIFAR10 using cross-entropy loss or our proposed loss function. Minimising
cross entropy loss using DP-SGD leads to logit exploding (a) and weight exploding (b). However, our proposed loss function
prevents logit exploding (a) and weight exploding (b). Therefore, per-sample gradient magnitudes (c) obtained based on our
proposed loss function is smaller than per-sample gradient magnitudes obtained based on cross entropy loss. In addition, the
per-sample gradients of our proposed loss function is much more condensed. Finally, direction of the gradients (d) of our
proposed loss function is more aligned with the unclipped gradients.
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Figure 2: Analysing the smoothness of the landscape of our proposed loss function, SSE loss function and cross-entropy on
CIFAR10, FashionMNIST and MNIST. Our loss function obtains smaller 𝜎max (the maximum of the first singular value), making
it more smooth than cross-entropy.

for example layer𝑀 − 1 in Equation 3 we have:

∥G𝑀−1
𝑖 ∥2 ≤ ∥(p𝑖 − y𝑖 )∥2 + ∥W𝑀 ∥2 + ∥a𝑀−2𝑖 ∥2, (11)

where our pre-activation penalty on h𝑀−2
𝑖

and SSE loss on the

logit values a𝑀
𝑖

= W𝑀h𝑀−1
𝑖

decrease ∥a𝑀−2
𝑖
∥2 = ∥ 𝑓 (h𝑀−2𝑖

)∥2 and
∥W𝑀 ∥2, resulting in smaller upper bound for ∥G𝑀−1

𝑖
∥2. Control-

ling W𝑀
can also limit the changes of weights in other layers as

their gradients are a function ofW𝑀
and per layer gradient func-

tion is locally Lipschitz. Therefore, the gradients computed when

optimising our loss function with DP-SGD is smaller in magnitude

and more condensed than for gradients computed when optimising

cross-entropy as shown in Figure 1.c. Smaller and near-symmetric

gradients decrease the negative impact of gradient clipping [7] on

the trajectory of the gradient descent as shown in Figure 1.d.

Our loss improves tolerance to noise.Wang et al. [24] demon-

strated that smoother loss functions favor DP-SGD as injecting

noise to weight gradients near each sharp local minimum can sig-

nificantly increase the loss thus lowering prediction accuracy. Their

theoretical and empirical analysis suggest that making the loss sur-

face more tolerant to noise can improve the generalization bounds

and accuracy of DP learning. The most common smoothness notion

is based on the Lipschitz constant of the gradient of a function.

Definition 1 (Smoothness [17]). A loss function L is 𝛽-smooth
if

∥∇L𝑤 − ∇L𝑤′ ∥2 ≤ 𝛽 ∥𝑤 −𝑤 ′∥2,

where ∇L𝑤 is the gradient of the loss function with respect to

the weights and 𝛽 is the smoothness constant. Smaller 𝛽 indicates

a smoother function.

We now derive a lemma illustrating how our loss also favours

smoothness of the loss being optimised by DP-SGD.

Lemma 1. When singular values are bounded by 𝜎max, we have
for all𝑤 and𝑤 ′ in a simply connected set that ∥∇L𝑤 − ∇L𝑤′ ∥2 ≤
𝜎max∥𝑤 −𝑤 ′∥2.

Proof.

Let 𝐻𝑤 be the hessian of the loss function with respect to the weights
310
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𝑤 .

∥∇L𝑤 − ∇L𝑤′ ∥2 = ∥(
∫

1

0

𝐻𝑤+𝑡 (𝑤−𝑤′) · (𝑤 −𝑤 ′)𝑑𝑡)∥2

≤
∫

1

0

∥𝐻𝑤+𝑡 (𝑤−𝑤′) · (𝑤 −𝑤 ′)∥2𝑑𝑡

≤
∫

1

0

𝜎max∥𝑤 −𝑤 ′∥2𝑑𝑡 ≤ 𝜎max∥𝑤 −𝑤 ′∥2,
(12)

where 𝜎max is the maximum of the first singular value along the line
from𝑤 to𝑤 ′.

Therefore, the existence of local bounds on the singular val-

ues results in local bounds on the smoothness. We empirically

observe in Figure 2 that the singular values of our loss function are

smaller than cross-entropy loss function. This, thus, suggests that

our proposed loss function is smoother and more noise-tolerant

than cross-entropy.

4 VALIDATION
We validate the benefit of deploying our proposed loss function in

improving how DP-SGD tradeoffs privacy and accuracy. To do so,

we show our loss further improves the state-of-the-art results of the

two approaches for deep learning with DP described in Section 2:

(1) CE-T-CNN [19]: using the cross-entropy loss function to-

gether with an end-to-end CNN classifier equipped with

tanh activation functions;

(2) CE-T-PFE_CNN [23]: using the cross-entropy loss function,

this time combining the ScatterNet public feature extractor

(PFE) with a private CNN classifier whose internal activa-

tions are also tanh.

To ensure a fair evaluation, we use the same datasets, MNIST, Fash-

ionMNIST and CIFAR10, and the same classifiers as these two base-

line approaches. Table 1 and Table 2 show the architecture of end-

to-end CNNs for MNIST, FashionMNIST and CIFAR10, suggested

by Papernot et al. [19]. Table 3 and Table 4 show the architecture

of CNNs trained on ScatterNet features for MNIST, FashionMNIST

and CIFAR10, suggested by Tramèr and Boneh [23].

In addition to this, we fix the DP-SGD configuration across all

approaches to the best hyperparameter values reported in the hy-

perparameter search done by Tramèr and Boneh [23] (see Table 5).

Note that our results would only be improved by additional hyper-

parameter search on the DP-SGD configuration. For the hyperpa-

rameters introduced by our own loss function, we use a search on

the values (see Table 5). Note that 𝑒𝑡 = 0 does not mean that the SSE

term is disabled in our loss function; for example in the first epoch

(𝑒𝑐 = 0) the weights of both Focal and SSE losses are the same as

𝛼 = Sigmoid(𝑒𝑐 − 𝑒𝑡 ) (see Equation 10), but the weight of Focal

loss increases as 𝑒𝑐 increases. Note that none of the prior work we

compare against captures the privacy cost of the hyperparameter

search itself when reporting DP guarantees achieved. The cost of

this search should however be moderate, as analysed by Liu and

Talwar [14], Papernot and Steinke [18].

Table 1: The architecture of end-to-end CNNs for Fashion-
/MNIST [19].

Layer Parameters

Conv 16 filters of 8x8, stride 2, padding 2

MP 2x2, stride 1

Conv 32 filters of 4x4, stride 2, padding 0

MP 2x2, stride 1

FC 32 units

FC 10 units

Table 2: The architecture of end-to-end CNNs for CI-
FAR10 [19].

Layer Parameters

Conv x2 32 filters of 3x3, stride 1, padding 1

MP 2x2, stride 2

Conv x2 64 filters of 3x3, stride 1, padding 1

MP 2x2, stride 2

Conv x2 128 filters of 3x3, stride 1, padding 1

MP 2x2, stride 2

FC 128 units

FC 10 units

Table 3: The architecture of CNNs trained on top of public
ScatterNet feature extractor for Fashion-/MNIST [23].

Layer Parameters

Conv 16 filters of 3x3, stride 2, padding 1

MP 2x2, stride 1

Conv 32 filters of 3x3, stride 1, padding 1

MP 2x2, stride 1

FC 32 units

FC 10 units

Table 4: The architecture of CNN trained on top of public
ScatterNet feature extractor for CIFAR10 [23].

Layer Parameters

Conv x2 64 filters of 3x3, stride 1, padding 1

MP 2x2, stride 2

Conv x2 64 filters of 3x3, stride 1, padding 1

MP 2x2, stride 2

FC 10 units

4.1 Improved privacy-accuracy tradeoffs
Figure 3 and 4 compare the privacy-accuracy tradeoffs achieved

by our proposed loss function and prior approaches for DP train-

ing. Coloured regions represent the range of model accuracy with

respect to the privacy budget 𝜀 needed to achieve this accuracy.

Experiments are repeated 5 times; the minimum, median and maxi-

mum of the 5 experiments are each highlighted by a line.

When learning without privacy, end-to-end classifiers achieve

a test accuracy on CIFAR10, FashionMNIST and MNIST of 76.6%,

89.4% and 99.0%, respectively. Instead, when learning with DP-SGD,

the maximum test accuracy (across 5 runs) of our first baseline
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Table 5: Training hyperparameter values obtained through line search [23] and values of the hyperparameters (𝑒𝑡 , 𝛽 and 𝛾)
introduced by our own loss function.

Dataset Learning rate Momentum Batch size Epochs Noise scale Clipping norm 𝛿 𝑒𝑡 𝛽 𝛾

End-to-end CNN

CIFAR10 1 0.9 1024 30 1.54 0.1 10
−5

7 11 5

Fashion-MNIST 4 0.9 2048 40 2.15 0.1 10
−5

0 1 5

MNIST 0.5 0.9 512 40 1.23 0.1 10
−5

0 1 5

CNN trained on ScatterNet features

CIFAR10 4 0.9 8192 60 5.67 0.1 10
−5

2 1 2

Fashion-MNIST 4 0.9 2048 40 2.15 0.1 10
−5

2 51 2

MNIST 1 0.9 1024 25 1.35 0.1 10
−5

2 11 2
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Figure 3: Deployment of our loss function in DP-SGD training of an end-to-end classifier for 5 runs. Comparison between the
test accuracy of CE-T-CNN [19] ( ) and O-T-CNN, ours ( ), as a function of privacy budget 𝜀.
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Figure 4: Deployment of our loss function in DP-SGD training of a public feature extractor followed by a classifier for 5 runs.
Comparison between the test accuracy of CE-T-PFE_CNN [23] ( ) and O-T-PFE_CNN, ours ( ), as a function of privacy budget
𝜀.

CE-T-CNN for 𝜀 < 3 are 59.8%, 86.9%, 98.2% on CIFAR10, Fashion-

MNIST and MNIST, respectively. This illustrates how CIFAR10 is

the most challenging dataset for DP-SGD training among these

datasets: there is about 20% gap in accuracy between the privacy-

preserving and non-privacy-preserving settings. Our proposed loss

function reduces this gap significantly, even more so for CIFAR10

than simpler datasets like FashionMNIST and MNIST. For exam-

ple, training an end-to-end classifier using our loss function on

CIFAR10 achieves 63.2% test accuracy, instead of 59.8% with the

cross-entropy loss. We also conducted statistical tests to corrobo-

rate that our proposed loss function leads to statistically significant

improvements. In particular, we conducted statistical tests on the

final accuracy (i.e., accuracy of the model at the end of the training

using test data) achieved with our loss versus the final accuracy

achieved with CE loss function using 5 different initialization seeds

as follows:

(1) We performed a Shapiro-Wilk test to determine normality

of the distribution of final accuracies across different ini-

tializations with the null hypothesis that data come from
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Figure 5: 𝑙2 norm of model weights in CE-T-CNN ( ) and O-T-CNN ( ) using CIFAR10, FashionMNIST and MNIST.

Normal distribution. We achieved a p-value of 0.24 which

is above significant level (i.e., 0.05), failing to reject the null

hypothesis;

(2) We performed Levene’s test to determine the homogeneity

of variances across different initializations. We achieved a

p-value of 0.86 which is above 0.05, suggesting that the data

follows the assumption of equal variance;

(3) We conducted a t-test with the null hypothesis that our mean

accuracy is similar to CE’s mean accuracy. We achieved

a p-value of 10
−6

which is less than significant level (i.e.,

0.05), rejecting the null hypothesis. Therefore, the average

accuracy of our loss function is statistically different from

the average accuracy of CE.

While our second baseline CE-T-PFE_CNN sees stronger accuracy
than the first baseline CE-T-CNN because the learner additionally
has access to public data, our proposed loss function also improves

its ability to tradeoff privacy and accuracy across the entire 𝜀 regime.

The improvement of our proposed loss function to privacy-

accuracy tradeoffs is strongest in the initial epochs. These epochs

correspond to stronger privacy guarantees (i.e., smaller values of 𝜀)

because the privacy guarantee of each individual step of DP-SGD

needs to be composed across the entire training run; hence each

step further increases the privacy budget expended. For example,

our proposed O-T-CNN trains an end-to-end classifier with 55.4%

test accuracy for 𝜀 < 1.5, compared to 45.9% only with our first

baseline CE-T-CNN. In another example, O-T-PFE_CNN improves the

test accuracy of our second baseline CE-T-PFE_CNN from 64.5% to

66.8% for 𝜀 < 2.

4.2 Analysis of Gradients computed by DP-SGD
We first analyse the impact of the loss function on the model

weights, pre-activations, and logit values. Figure 5 shows the im-

pact our loss function has on model weights. We visualise the

average 𝑙2 norm of model weights at each epoch. Across the three

datasets, optimising CE-T-CNN with DP-SGD leads to model weight

explosion. This is not the case when learning with our proposed

loss. In particular, note how O-T-CNN prevents last layer weights
from exploding, which is important because they contribute to

the gradients for all layers. Next, Figure 6 shows the impact of

our loss function on pre-activation and logit norms. Although
CE-T-CNN uses bounded tanh activation functions to prevent acti-

vations from exploding, the pre-activations and logits still explode

because model weights are unbounded and explode themselves (as

visualized above). Instead, replacing the cross-entropy loss func-

tion with our loss function decreases this phenomenon for both

pre-activations and logits. This is explained by our pre-activation

regulariser but also the fact that the sum-squared-error is defined

over logits.

Reducing the bias of gradient clipping. We provide the his-

togram of per-example gradient 𝑙2 norms in Figure 7. The gradient 𝑙2
norms of O-T-CNN are smaller than their counterpart for CE-T-CNN.
This is a consequence of our observations above: our proposed
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Figure 6: Pre-activation 𝑙2 norm per layer of CE-T-CNN ( ) and O-T-CNN ( ) on CIFAR10, FashionMNIST and MNIST.
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Figure 7: Histogram of 𝑙2 norm of per-example gradient in CE-T-CNN and O-T-CNN on CIFAR10 (top row), FashionMNIST (middle
row) and MNIST (bottom row).
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gradients in first epoch of CE-T-CNN ( ) and O-T-CNN ( ).

loss function prevents several terms including in the gradient com-

putation from exploding. To further demonstrate the importance

of better preconditioning gradients to the clipping performed by

DP-SGD and its negative impact on the trajectory of the gradient

descent, we visualize the divergence between the path taken by

aggregated clipped per-example gradients and aggregated unclipped
per-example gradients in Figure 8. For each minibatch, we compute

the cosine similarity between the average of per-example clipped

gradients and the average of per-example unclipped gradients. The

direction of clipped gradients in O-T-CNN is more aligned with the

direction of their unclipped counterparts than is the case for the

baseline approach. This suggests that our loss function decreases

the information loss and bias introduced by DP-SGD.

Learning hard vs. easy examples. Finally, we visualise the confu-
sionmatrices of per-class training accuracy for non-private learning

with SGD, private learning with the CE-T-CNN baseline, and pri-

vate learning with our approach O-T-CNN in Figure 9. Qualitatively

speaking, the per-class training accuracy of O-T-CNN is closer to

the non-private one than is the case for the baseline CE-T-CNN.
During the initial epochs of learning, O-T-CNN converges faster

especially on easy-to-learn examples thanks to the sum-squared-

error loss function that converges exponentially 𝑂 (𝑒−𝑡 ), where 𝑡
is the steps, to 0 loss, while cross-entropy loss only converges at

𝑂 (1/𝑡) Allen-Zhu et al. [2].
3
For example, the training accuracy

of O-T-CNN for “car" and “truck" are 51% and 48%, while CE-T-CNN
only achieves 34% and 37%, respectively, on these classes. In addi-

tion to this, O-T-CNN deals better with hard-to-learn examples (e.g.

“cat", “dear" or “dog" classes) in later epochs thanks to the focal loss.

For example, the training accuracy of “cat" class is 49% at epoch 20

of O-T-CNN, but is only 35% for CE-T-CNN.

4.3 Ablation study
In this section, we present an ablation study to

• tease out the contribution of each of the three components

of our proposed loss, namely sum-squared-error, focal loss

and regularisation penalty;

3
Appendix A discusses the importance of designing a loss function tailored to DP-SGD

for better convergence rate rather than other choices of the optimizers or learning

rates.

• show the low sensitivity of the performance of our loss func-

tion to its hyperparameter values

when it comes to improving privacy-accuracy tradeoffs in deep

learning with DP.

Contribution of each of our loss’s components.We first con-

sider four combinations of these penalties: only using sum-squared-

error, a combination of sum-squared-error and cross-entropy, a

combination of sum-squared-error and focal loss, and finally our

proposed loss function that combines all three-sum-squared-error,

focal loss and regulariser. We do not consider other combinations

because they are not meaningful. To ensure a fair evaluation, we per-

form a hyperparameter search for the combination of sum-squared-

error and cross-entropy as well as the combination of sum-squared-

error and focal loss, similarly to the search performed for our pro-

posed loss function. The privacy-accuracy tradeoffs of these four

combinations is shown in Figure 10. While the sum-squared-error

improves the privacy-accuracy tradeoff in initial epochs, the focal

loss improves it for later epochs. Finally, imposing a regularisation

penalty on pre-activations further improves these privacy-accuracy

tradeoffs. Our proposed loss thus achieves the best possible perfor-

mance across each of these settings and none of its penalties can

be omitted.

In addition, we compare the privacy-accuracy tradeoffs of CE,

SSE and Focal loss in DP-SGD training. Figure 11 shows that SSE

outperforms CE in terms of test accuracy in initial training itera-

tions, and Focal loss outperforms CE in later iterations. Wemotivate

these findings mainly based on the smaller gradients and faster con-

vergence of SSE and better learning of hard examples by Focal

loss.

Next, we compare privacy-accuracy tradeoffs of using our sum-

squared-error loss and our regualiser with other losses and other

regularisers in DP-SGD training. In particular, we analyse the perfor-

mance of sum-squared-error versus sum-absolute-error and Huber-

Loss followed by pre-activation regulariser versus weight decay

regulariser in DP-SGD training. The SAE is defined as:

LSAE = |h𝑀𝑖 − y𝑖 |, where |h𝑀𝑖 − y𝑖 | =
𝐷∑︁
𝑑=1

| (ℎ𝑀(𝑖,𝑑) − 𝑦 (𝑖,𝑑) ) |.

(13)
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Figure 10: Ablation study of DP-SGD training of an end-to-end classifier (first row) and a public feature extractor followed by a
classifier (second row) for 5 runs. Loss functions under study: CE, SSE, SSE+CE, SSE+Focal and SSE+Focal+Regulariser.

The 𝑑-th element of Huber loss is defined as:

L
Huber

(𝑑) =
{
1

2
(ℎ𝑀(𝑖,𝑑) − 𝑦 (𝑖,𝑑) )

2/𝛽 | (ℎ𝑀(𝑖,𝑑) − 𝑦 (𝑖,𝑑) ) | < 𝛽

| (ℎ𝑀(𝑖,𝑑) − 𝑦 (𝑖,𝑑) ) | −
1

2
𝛽 otherwise

(14)

Figure 12 shows the tradeoffs between the privacy and accuracy

of DP-SGD training using sum-squared-error, sum-absolute-error
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Figure 11: Ablation study of DP-SGD training of an end-to-end classifier for 5 runs. Loss functions under study: CE, SSE and
Focal.
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Figure 12: DP-SGD training of an end-to-end classifier using SSE , SAE andHuber loss (𝛽 = .1 , 𝛽 = .2 , 𝛽 = .3 ,
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Figure 13: DP-SGD training of an end-to-end classifier for 5 runs. Comparison between the test accuracy of SSE+Focal+PreAct_Reg
and SSE+Focal+WD_Reg as a function of privacy budget 𝜀.

and Huber loss. We observe that sum-squared-error achieves the

best tradeoff between accuracy and privacy in all three datasets

among sum-squared-error, sum-absolute-error and Huber loss. The

performance of Huber loss increases as we increase 𝛽 , activating

sum-squared-error part and deactivating sum-absolute-error part

of Huber loss in Equation 14.

Next, we replace our pre-activation regulariserwithweight decay

regulariser, LWD-Reg, defined as:

LWD-Reg =

𝑀∑︁
𝑚=1

1

𝑑 ′𝑚
∥W𝑚

𝑖 ∥
2 . (15)
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Figure 14: Test accuracy of O-T-CNN as a function of hyperparameter values of our loss function.

We use the best coefficients of each of this regulariser to have a

fair comparison. Figure 13 shows the tradeoffs between the privacy

and accuracy of DP-SGD training using SSE+Focal+PreAct_Reg

and SSE+Focal+WD_Reg in our final proposed loss function on

all three datasets. Both pre-activation regulariser (PreAct_Reg, a

regularisation penalty on the intermediate pre-activations as de-

fined in Equation 9) and weight decay regulariser (WD_Reg) help

to improve the tradeoffs between privacy and accuracy of DP-SGD

training. However, the improvement of pre-activation regulariser

in both initial iterations and the maximum accuracy is higher than

the one introduced by the weight decay regulariser.

Sensitivity to the hyperparameter values. We evaluate the

performance of our loss function by varying the value of hyperpa-

rameter values of our loss function on all datasets in Figure 14. We

can observe that the impact of hyperparameter values on the per-

formance of our loss function is negligible. Furthermore, we reused

DP-SGD hyperparameters that had previously been shown to per-

form well with CE. Therefore, the improvement of our loss function

is not only sensitive to the hyperparameter values it introduces but

also compatible with existing hyperparameter tuning for DP-SGD.

5 CONCLUSION
In this paper, we showed that designing a loss function tailored to

the specificities of DP-SGD, namely per-example gradient clipping

and a limited number of iterations, significantly improves tradeoffs

between privacy and accuracy in all datasets used in existing DP-

SGD improvement strategies. We reduced the bias introduced by

gradient clipping using a pre-activation regularisation term. In

addition to this, we improved the convergence speed by imposing

a curriculum structure in learning with the sum-squared-error and

focal loss. As future work, we will evaluate our loss function for

DP-SGD in other domains such as text.
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A EFFECT OF OPTIMISER AND LEARNING
RATE ON DP-SGD CONVERGENCE RATE

Prior work found that the use of adaptive optimizers such as Adam

does not provide benefits for private learning. For instance, SGD

was compared to Adam in Table 3 of Papernot et al. [19] and the

discussion in Section C.5 of Tramèr and Boneh [23]. This result

is due to the fact that adaptive optimisers in DP-SGD carry noise

from one gradient descent step to the next to adapt learning rates,

therefore inadequately slowing down training.

The choice of learning rate can affect the tradeoffs between

privacy and accuracy in DP-SGD training. Therefore, we choose

the best learning rate values reported in the hyperparameter search

done by Papernot et al. [19] and Tramèr and Boneh [23] to also

have a fair comparison. Further tuning the learning rate would

only strengthen and improve our results. Note that even the best

learning rate values cannot compensate for the information that is

discarded from the gradients due to per-example gradient clipping.

This is because clipping is done at the granularity of individual

training examples. Together with the noise injected, this biases

learning and implies that DP-SGD takes a different optimisation

path compared to SGD.

In conclusion, we believe this provides further evidence that de-

signing a loss tailored to DP-SGD is a key overlooked aspect of learn-

ing when it comes to improving the utility of privacy-preserving

learning.

B CONFUSION MATRICES OF PER-CLASS
ACCURACY

Figure 15 visualises the confusion matrices of per-class training

accuracy for non-private learning with SGD, private learning with

the CE-T-CNN baseline, and private learning with our approach

O-T-CNN using CIFAR10, FashionMNIST and MNIST.
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Figure 15: Confusion matrices that show per-class training accuracy of O-T-CNN (first column), CE-T-CNN (second columns) and
non-private SGD approach (last columns) using CIFAR10, FashionMNIST and MNIST.

320


	Abstract
	1 Introduction
	2 Differential privacy, DP-SGD and state-of-the-art approaches
	3 Proposed approach
	3.1 Our loss
	3.2 An analysis of our loss

	4 Validation
	4.1 Improved privacy-accuracy tradeoffs
	4.2 Analysis of Gradients computed by DP-SGD
	4.3 Ablation study

	5 Conclusion
	Acknowledgments
	References
	A Effect of Optimiser and Learning Rate on DP-SGD Convergence Rate
	B Confusion matrices of per-class accuracy

