
Practical Delegatable Anonymous Credentials From Equivalence
Class Signatures

Omid Mir

Johannes Kepler University Linz

LIT Secure and Correct Systems Lab

Linz, Austria

mir@ins.jku.at

Daniel Slamanig

AIT Austrian Institute of Technology

Vienna, Austria

daniel.slamanig@ait.ac.at

Balthazar Bauer

IRIF, Université de Paris Cité

Paris, France

Balthazar.Bauer@ens.fr

René Mayrhofer

Johannes Kepler University Linz

Institute of Networks and Security

Linz, Austria

rm@ins.jku.at

ABSTRACT
Anonymous credentials (ACs) systems are a powerful cryptographic

tool for privacy-preserving applications and provide strong user

privacy guarantees for authentication and access control. ACs al-

low users to prove possession of attributes encoded in a credential

without revealing any information beyond them. A delegatable AC

(DAC) system is an enhanced AC system that allows the owners

of credentials to delegate the obtained credential to other users.

This allows to model hierarchies as usually encountered within

public-key infrastructures (PKIs). DACs also provide stronger pri-

vacy guarantees than traditional AC systems since the identities of

issuers and delegators can also be hidden.

In this paper we present a novel DAC scheme that supports at-

tributes, provides anonymity for delegations, allows the delegators

to restrict further delegations, and also comes with an efficient

construction. Our approach builds on a new primitive that we call

structure-preserving signatures on equivalence classes on updat-

able commitments (SPSEQ-UC). The high-level idea is to use a

special signature scheme that can sign vectors of set commitments,

where signatures can be extended by additional set commitments.

Signatures additionally include a user’s public key, which can be

switched. This allows us to efficiently realize delegation in the DAC.

Similar to conventional SPSEQ, the signatures and messages can

be publicly randomized and thus allow unlinkable delegation and

showings in the DAC system. We present further optimizations

such as cross-set commitment aggregation that, in combination,

enable efficient selective showing of attributes in the DAC with-

out using costly zero-knowledge proofs. We present an efficient

instantiation that is proven to be secure in the generic group model

and finally demonstrate the practical efficiency of our DAC by

presenting performance benchmarks based on an implementation.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(3), 488–513
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0093

KEYWORDS
Delegatable anonymous credentials, equivalence-class signatures,

set commitments

1 INTRODUCTION
Anonymous credentials (ACs) [9, 10, 15, 23, 28, 30, 35, 36] provide a

means to strong authentication with built-in authorization (access

control) and play an essential role in privacy-preserving applica-

tions. In such a system, credentials encode a set of attributes and

are issued by some trusted issuer(s). A credential holder can then

show a credential to a verifier by selectively revealing attributes (or

proving more general relations about hidden attributes) in a way

that multiple showings of the same credential cannot be linked.

This should hold even if issuers and verifiers collude and ideally

even when the issuer is allowed to generate its key material mali-

ciously. Technologies related to ACs found numerous applications

such as PrivacyPass [19] and related concepts [33] being integrated

into the Trust Tokens API
1
as well as standardized within the In-

ternet Engineering Task Force (IETF), or the PrivateStats proposal

by Facebook.
2
A recent large scale real-world application of ACs

are private groups within the popular Signal messenger [14].

When using credentials in our daily lives, we frequently run into

a difficult problem: delegation. We often need to delegate our tasks,

responsibilities, and permissions to someone else, or we simply

want to share our access to resources and services with another

person or among our different electronic devices. Indeed, in prac-

tice, credentials are usually issued in a hierarchical manner. Most

prominently in a public key infrastructure (PKI) there is a chain of

certificates between the user certificate and a trusted root authority.

A simple way to achieve delegation is credential sharing. However,

giving away the full and unlimited power of a credential is often

not desirable. Consider the example of a manager of a company

who wants to delegate a task that requires filling and signing of

documents to their secretary. Providing the secretary with the sign-

ing keys allows the secretary to sign arbitrary documents in the

name of the manager – which is typically not what the manager

intends. Even worse, since the actual signing key was shared, the

1
https://web.dev/trust-tokens/

2
https://research.fb.com/privatestats

488

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0093
https://web.dev/trust-tokens/
https://research.fb.com/privatestats

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

only way to revoke these powers from the secretary is to revoke

and invalidate the whole credential. This problem directly carries

over to the setting of anonymous credentials and thus dedicated

features for delegation are required.

Moreover, when using anonymous credentials, a party verifying

a credential (e.g., a service provider) typically knows all public keys

of credential issuers.
3
Especially when used in a hierarchical setting,

this does not provide strong privacy guarantees [2, 7, 17]. That is,

this chain of issuers (or delegators) may reveal sensitive information

about the issuer’s organizational structure or the credential holder.

A real-world example is the current ISO mobile driving license

(mDL) [29], which can, e.g., be used for age verification without

disclosing other attributes — however, the specific issuer (e.g., a

state DMV, to which a country delegates the capability to issue

mDL credentials) implicitly reveals at least the holder’s rough liv-

ing location. Consequently, in this setting it is desirable to provide

anonymity guarantees even if there is a certain type of collusion of

issuers and/or delegators.

Delegatable anonymous credentials. To address the aforemen-

tioned problems, Chase and Lysyanskaya [13] introduced the no-

tion of delegatable anonymous credentials (DACs). The idea is

best explained by using the notion of levels introduced by Be-

lenkiy et al. [2]. An initial credential is issued for a level 𝐿 = 1

and any level 𝐿 credential can then be used to delegate a level 𝐿 + 1
credential to another party. As with traditional anonymous creden-

tials, users can then show a credential (i.e., prove possession of their

credential) without disclosing their identity and without revealing

anything about non-disclosed attributes to a verifying party. Only

the identity (i.e., public key) of the root issuer, but none of the

intermediate levels is revealed during the verification. DACs have

been meanwhile shown to have various interesting applications,

among them being (physical) access control [34], root of trust [17],

or authorizing transactions in permissioned blockchains [5, 7].

DAC constructions. After its introduction and theoretical treat-

ment in [13], various more practical approaches to construct DACs

have been proposed (see Section 1.4 for a more detailed comparison

of practical schemes). Belenkiy et al. [2] provide the first practical

treatment and in particular a construction based on a commitment

scheme and a signature scheme with randomizable non-interactive

zero-knowledge (NIZK) proofs. This approach can be instantiated

from Groth-Sahai (GS) commitments and GS NIZK proofs [26] re-

sulting in credentials and showings of size linear in the chain length

𝐿. Unfortunately, while theoretically appealing, GS proofs make

this scheme rather inefficient for practical use as it requires to

prove expensive statements, result in poor concrete computational

performance and large credential size. Several other DAC construc-

tions have been proposed afterwards, e.g. [11, 12, 21], which follow

roughly the same techniques as [2], i.e., using malleable proof sys-

tems (based on GS) as the main building block, and thus have similar

performance characteristics.

Camenisch et al. [7] propose a practically efficient approach to-

wards DAC based on a structure-preserving signature (SPS) scheme

by Groth [25]. Here one can prove possession of a credential chain

3
Concealing the credential issuer has recently also been shown to have value in a

setting of anonymous credentials without credential delegation [4, 15].

in a privacy-preserving manner, but one cannot obtain credentials

anonymously. Indeed, credential holders can see all attributes and

public keys on all levels in plain, i.e., not offering an anonymous

delegation phase. This approach has recently been integrated into

Hyperledger Fabric [5]. Later, Blömer and Bobolz (BB) [3] proposed

another practical DAC approach using dynamically malleable sig-

natures (DMS) and NIZK proofs, which conceptually is similar to

the approach in [12]. A DMS can sign messages and “placeholders”,

which can be replaced by concrete messages during delegation and

thus enabling to add attributes during delegation in the DAC.

At this point it should be mentioned that both, [7] as well as [3],

require a trusted setup (and more particular a trapdoor being a de-

cryption key in their parameters), which is an undesirable feature

in privacy-preserving primitives.

DAC using equivalence-class signatures. Crites and Lysyan-

skaya [17] provide probably the most efficient and conceptually

simplest construction of DACs, which does not require an extensive

use of NIZK proofs. The main building block is a new type of signa-

ture scheme, called a mercurial signature, which extends structure-

preserving signatures on equivalence classes (SPSEQ) [23, 27]. We

recall that SPSEQ is a type of SPS for signing group element vec-

tors ®𝑀 . Message ®𝑀 can be viewed as one representative of an

equivalence classes of all scaled message ®𝑀𝜇
. It allows to random-

ize signatures and at the same time provides randomization of

signed messages, i.e., to publicly switch between representatives

®𝑀 and ®𝑀𝜇
for any non-zero 𝜇. The message space is required to

provide an unlinkability property, which makes classes and in par-

ticular messages indistinguishable. Thus, SPSEQ allow to construct

privacy-preserving primitives while in contrast to pure SPS not

requiring NIZK proofs. Therefore, they allow to construct more ef-

ficient schemes. Mercurial signatures extend SPSEQ by additionally

introducing equivalence classes on the keys pace and thus allow

to switch (i.e., randomize) public keys and adapt signature to the

switched keys. This allows to construct conceptually simple DAC

schemes via chains of signed public keys.

Unfortunately, existing DAC schemes based on mercurial sig-

natures [17, 18] have some shortcomings: 𝑖) They do not support

attributes in a meaningful way. The first such DAC in [17] does not

support attributes at all. And while Crites and Lysyanskaya in [18]

show how to support attributes, it is only possible in a way such

that all attributes are always revealed during showings. Thus, no

selective disclosure is supported, which however is an important

feature and thus prevents many privacy-preserving applications. 𝑖𝑖)
Bauer and Fuchsbauer [1] point out a drawback of the weak form

of anonymity provided by their DAC constructions. That is, if Alice

delegates a credential to Bob, she can identify Bob whenever he

shows the credential, which results in a severe degradation of Bob’s

privacy. This lies in the nature of the way how such DACs from

mercurial signatures are constructed, i.e., when Alice delegates a

credential to Bob she uses her secret key to sign Bob’s pseudonym

under her pseudonym (the randomized public key), which becomes

part of Bob’s credential (see [1] for more details). Moreover, 𝑖𝑖𝑖)
similar to [7], the credential size depends on the delegation chain

length 𝐿, and consequently, it grows linearly with 𝐿.

Summarizing, the state-of-the-art in existing DAC schemes is

that the ones that are conceptually simple and practically efficient

489

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

do not provide all the desirable properties of a) supporting se-

lective showing of attributes, b) being compact, and c) providing

sufficiently strong anonymity guarantees at the same time (i.e.,

anonymity during both issuing and showing credentials in the pres-

ence of a corrupted CA without needing a trusted setup). Those

that provide the desired features are unfortunately less efficient

and/or require setup assumptions (i.e., a trusted setup).

1.1 Our Contribution
Our goal in this paper is to construct conceptually simple DACs

that overcome the aforementioned problems. In particular, our con-

tributions can be summarized as follows.

Delegatable Anonymous Credentials. We propose a novel dele-

gatable anonymous credential scheme (DAC). Our scheme provides

the following key characteristics: 𝑖) It represents a simple and prac-
tical construction without requiring zero-knowledge proofs (for

complex statements), which makes it well-suited for real-world

applications. 𝑖𝑖) It is constant-size in two aspects. First, the band-

width required for the credential showing protocol is independent

of the number of attributes, but only depends on the delegation

depth. Second, unlike the schemes in [7, 17] the credential is not

composed of a number of signatures linear in the (delegation) chain.

Though, similar to [3] we need to store the randomness required

to create the commitments (in their case DMS secret keys) which

is linear in the delegation chain. 𝑖𝑖𝑖) Credentials are attribute-based
in a sense that every level in the delegation chain is associated

with a set of attributes that are certified by the respective delegator.

Credential holders can then decide for every level whether and

which attributes should be selectively revealed during a showing

of a credential. Moreover, every delegator can restrict delegation
by deciding many further levels can be delegated and whether at-

tributes associated to previous levels can be shown or not be shown

(latter can be viewed as removing attributes). 𝑖𝑣) It provides strong
anonymity which means that it not only supports an anonymous

showing phase but also provides an anonymous delegation phase.

This holds under a reasonable corruption model. Anonymity even

holds for maliciously generated CA’s keys and it does not require a
trusted setup. Finally, 𝑣) based on an implementation we evaluate

our DAC and demonstrate its practical efficiency.

Novel Building Block. OurDAC scheme is based on a novel cryp-

tographic building block that we call structure-preserving signa-

tures on equivalence classes on updatable commitments (SPSEQ-

UC). This primitive draws inspiration from SPSEQ [23, 27] as well

as a set commitment scheme from [23] which is used in [23] to con-

struct anonymous credentials from SPS-EQ. Loosely speaking their

idea is to use SPSEQ to sign a randomizable set commitment, where

the randomization represents switching between representatives of

a class. To show a credential one randomizes the set commitment

and randomizes as well as adapts the signature to it. The showing

then includes the randomized signature, randomized commitment,

and an opening to the set commitment that reveals the attributes

that should be disclosed.

Now, while in SPSEQ the message space is simply group element

vectors of some bounded size ℓ , in SPSEQ-UC the message space is

viewed as a vector of randomizable set commitments. Henceforth

we will often just call them vectors of commitments. The key novel

feature of SPSEQ-UC is that it allows to extend signed vectors

by additional commitments. More precisely, in SPSEQ-UC signing

of a commitment vector of length 𝑘 also produces an update key

uk𝑘′ corresponding to an integer 𝑘 ′ with 𝑘 ≤ 𝑘 ′ ≤ ℓ . Given the

update key uk𝑘′ one can update a commitment vector ®𝐶 to a vector

®𝐶 ′ (i.e., extending it). Another key feature is that in a SPSEQ-UC
scheme the signing process is tied to a user public key. It allows

a signer to bind a signature to a given user public key such that

this signature can then be adapted into another valid signature for

a new user public key by anyone knowing the corresponding old

user secret key. As with SPS-EQ, SPSEQ-UC needs to be unlinkable,

which means the same commitment–signature pair can be revealed

multiple times without being linkable to each other. However, due

to the added functionality the required privacy properties become

more involved.

We provide a rigorous security model for SPSEQ-UC which

carefully crafts privacy notions similar to SPSEQ [23] in order to

guarantee that adapted (i.e., re-randomized) signatures, signatures

after extending commitment vectors, as well as signatures after

switching user public-keys are distributed identically to new signa-

tures and thus are all unlinkable to fresh signatures. This is impor-

tant for our application in DAC and other potential applications

in privacy-preserving protocols. Moreover, we provide a provably

secure construction of an SPSEQ-UC based on the SPSEQ scheme

in [22], which is proven secure in the generic group model, and the

set commitment scheme in [23]. We chose this path as our main fo-

cus is on efficiency, but we consider constructing SPSEQ-UC from

standard assumptions, i.e., relying on the recent approach in [15]

(building upon and improving the SPSEQ in [31]), as an interesting

avenue for future work.
4
Another direction would also be to adopt

the modified set commitment scheme in [15], which in addition

to selective disclosure also supports non-membership proofs for

disjoint sets, which would directly increase the expressiveness of

the DAC scheme.

1.2 Practical Example Application
While DAC can be beneficial in many applications of ACs, we want

to discuss a particular application ofDAC as a motivation for future

practical deployments. As briefly mentioned above, the recently

published ISO 18013-5 [29] standardizes international mobile driv-

ing licenses (mDLs). We use this as one of the most widely deployed

credential use cases world-wide (as driving licenses are in practice

used for many other purposes) and at the same time one of the

earliest international standards for digital real-world credentials

that take privacy protections into account (as, e.g., currently de-

ployed NFC passports do not have any provisions whatsoever for

privacy-sensitive use). In contrast to the previous paper/plastic

card implementations, digital versions of driving licenses imple-

ment anti-forging measures through signatures by trusted issuing

authorities (IAs). In particular, this “protection against forgery”

relies on signatures over so-called MSOs. These mobile security

objects are sets of hash commitments representing the credential

4
However, there is an inherent issue when relying on the constructions in [15, 31]. To

cope with a malicious issuer in the DAC, something that we consider, they require

a trusted setup, i.e., a common reference string (CRS). Knowledge of the respective

trapdoor could be exploited to break anonymity.

490

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

attributes and referred to as “issuer data authentication” in the stan-

dard, together with “protection against cloning” based on message

authentication codes (MACs) on individual sessions (referred to as

“mdoc authentication”). “Protection against unauthorized access” re-

lies on consent dialogs on the holder device to allow users to select

which attributes to include in a showing in combination with the

provisioning of multiple MSOs
5
to provide unlinkability between

different showings (as long as no identifying attributes are included)

by using unique attribute hash sets and signature values in each

presentation. Briefly, the current mDL standard [29] provides the

following aspects of ACs: 1) selective disclosure of attributes; 2)

unlinkability against verifiers, 3) including of different showings

to the same verifier (under the assumption of availability of a suffi-

cient number of MSOs for single-use showings); 4) unforgeability

under the assumption of unforgeability of the signature scheme;

and 5) being compact in terms of static credential/signature data

and showings sizes as well as being sufficiently efficient for imple-

mentation on current smart cards and phones. However, it currently

neither addresses strong anonymity against issuers themselves nor

delegation of capabilities to issuing authorities
6
.

Delegation is particularly important for global standards and

practical deployments of such real-world credentials: it seems highly

unlikely that a single issuer would be considered trustworthy for

driving licenses world-wide. In many larger countries, this power is

already explicitly delegated further to smaller organizational units

such as US state DMVs, with delegation chains of depth at least

two. However, the current standard assumes that all verifiers have

access to a consolidated list of all issuer public keys and use the

respective public key for verifying presented MSOs and therefore

“issuer data authentication” for disclosed attributes — the implica-

tion is that the respective issuer is explicitly known to the verifier,

even if no credential attribute would otherwise disclose it. This is

problematic for multiple reasons, from revealing the approximate

home location of a holder, potentially their citizenship, or other

aspects of an internal organization of the issuing organization (e.g.,

if separate sub-organizations are used to issue credentials for legal

aliens or asylum seekers or refugees). All of these can be abused

for discrimination or other tracking.

We believe that our solution can be a future improvement for

mDL or similar real-world credentials, as it explicitly supports

stronger anonymity against issuers and verifiers and delegation

with potential restrictions on levels (top-level issuers can decide

how deep their respective organizational hierarchy is). In contrast

to some other proposals, it still supports selective attribute disclo-

sure and is compact and efficient in all messages and processing.

Specifically for widely applicable use cases like age verification, one

of the use-cases of mDLs, preventing this unintended leakage of

personal data through the delegation hierarchy could significantly

improve user privacy and prevent potential discrimination.

5
Note that it is at the discretion of an issuing authority to provide multiple MSOs for

a provisioned mDL. If the IA does not provide them, holders of mDLs remain trivially

linkable between different showings based on the MSO.

6
The current mDL standard also doesn’t address efficient revocation of credentials,

but recommends short-lived MSO signatures as a mitigation. We consider revocation

to be out of scope here and therefore don’t point it out as another shortcoming.

1.3 High Level Idea of Our Approach
On a very high level, our approach to construct DAC takes inspira-

tion from the anonymous credentials in [23] as well as the approach

based on DMS in [3]. Importantly, in contrast to the latter and sim-

ilar to DACs based on mercurial signatures [17, 18], it however

avoids the use of NIZK for complex statements.

The idea in ourDAC, omitting some details for the sake of brevity,

is that in a hierarchy of delegations the root authority issues a

SPSEQ-UC signature on a commitment.
7
The commitment carries

the attributes for the first delegatee and the public key to which

the signature is tied is the one of the delegatee. The delegatee, if

provided with a corresponding update key for this signature by

the delegator, can then perform further delegations. This update

key allows to further extend the commitment vector (and thus add

attributes) and thus delegating a credential for the next level in the

delegation hierarchy. Again the public key of the delegatee, now

playing the role of the delegator, is switched to the one of the next

delegatee. Due to the privacy properties of the SPSEQ-UC, a signa-
ture resulting from extending the vector looks like a fresh signature

(derivation-privacy) and one resulting from switching a user key

also looks like a fresh signatures (conversion-privacy). This ensures

that in the DAC, delegations cannot be tracked and all credentials

in a delegation chain are indistinguishable. This process keeps on

going until the end of the delegation chain is reached (if no further

delegations are allowed, then no update key is provided). One issue

that is worth mentioning is that every delegator can control how

far delegations can go by further restricting the update key and a

delegator can also restrict the possibility to show attributes from a

certain level in the hierarchy (which corresponds to a commitment

in the commitment vector) by not providing the opening of the

commitment to the delegatee.

Now showing a credential simply amounts to adapting the signa-

ture to a re-randomized signature for a re-randomized commitment

vector and providing subset openings of the respective commit-

ments. Due to the origin-hiding property of the SPSEQ-UC this

results in an unlinkable showing. As we show in Section 3.4 we

can realize a cross-commitment aggregation technique to make the

opening of multiple commitments compact.

1.4 Comparison with Previous Work
In Table 1, we provide a comparison of our approach with other

existing efficient DAC schemes in the literature [3, 7, 17, 18]. We

compare our DAC with these schemes in terms of the following

criteria: Attr indicates whether credentials include attributes that
can at least be selectively revealed. We use ≈ to indicate that [18]

supports attributes, but as all attributes always need to be revealed

it does not support selective disclosure. Expr represents the ex-
pressiveness of the supported showing policies, where R stands

for arbitrary computable relations over attributes and S denotes

the selective disclosure of a subset of attributes. We note that by

avoiding NIZK proofs for complex statements, it seems necessary to

be restricted to selective disclosure (S), which is however sufficient

for most practical applications, e.g., ISO 18013-5 [29] discussed

in Section 1.2. Rest indicates whether it is possible to apply a re-

7
Technically to guarantee anonymity we require two commitments, where the first

one is a dummy commitment and not assigned any or simply some fixed attributes.

491

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

Table 1: Comparison of practical DAC schemes (𝐿: Delegation
chain depth; 𝑛: Attributes; 𝑢: Undisclosed attributes).

Scheme Attr Expr Rest SAnon |Cred | |Show |

BB [3] ✓ S/R ≈ G#† 𝑂 (1) 𝑂 (𝑢)
CDD [7] ✓ S/R × G#†,♣ 𝑂 (𝑛𝐿) 𝑂 (𝑢𝐿)
CL [18] ≈ × × G#∗ 𝑂 (𝑛𝐿) 𝑂 (𝑢𝐿)
Ours ✓ S ✓ ‡ 𝑂 (1) 𝑂 (𝐿)
†
Requires a trusted setup and have a trapdoor associated to their parameters.

♣
It does not support an anonymous delegation phase.

‡
We consider a malicious CA key and all delegators keys can be exposed.

∗
It also allows an adversarial CA but no delegators’s keys leak.

striction on the delegator’s power during the delegation. Here, our

scheme allows such restrictions in which a (superior) delegator can

decide i) how many additional levels of delegation can be made,

ii) to make all attributes of selected levels “unshowable” by not

providing the opening of the respective commitments, and, iii) how

many attributes in each level (commitment) can be delegated by de-

termining (potentially removing) key components in uk𝑘′ . Here, we
note that BB [3] provides a type of restriction on the attributes such

that delegators can prevent changing some attributes during dele-

gation. However, one still can use these attributes in showings of a

credential. Also, BB does not have a delegation-level concept and

thus one cannot control and restrict the delegation-level number

(power). (SAnon) refers to strong anonymity guarantees, mean-

ing that no one can trace or learn information about the user’s

identity or anything beyond what they suppose to show during

both the issuing/delegation and showing of credentials. Moreover,

anonymity holds without relying on a trusted setup (and thus a po-

tential trapdoor breaking anonymity) as well as under a malicious

key generation by a (corrupted) root authority, and user’s key can

leak
8
. Here means that the scheme satisfies all conditions, and

G# means that it does not provide one or more of them.

With |Cred| we denote the size of the credential. 𝐿 indicates

the length of the delegation chain. As it turns out, BB [3] (2 group

elements) and our scheme (5 group elements) provide constant-

size credentials. But as already mentioned, our scheme provides a

simpler construction by avoiding potentially costly linear-sized (in
the number of attributes) zero-knowledge proofs. With |Show| we
denote the size of the credential showing. Our showing is efficient

as it needs only a constant number of group elements (5 elements)

and the commitment vector with the size of delegation 𝐿. BB does

not have the concept of levels and needs to send the signature (2

elements) and the elements of proving knowledge of undisclosed

attributes (|ZKPoK| = 𝑢). Note that for practical use-cases, we can
typically assume 𝐿 < 𝑢. For other schemes, this cost is much higher

as their credentials grow linearly in the number of attributes and

𝐿. Note that if there are a large number of attributes to be issued,

they can be split into two sets and embedded in two credentials.

Comparing efficiency with related work. We do not provide

a comparison with CL as it does not support selective showing of

8
We note that CL and our model require a credential cred𝑏 of the anonymity challenge

to be on a delegation path from a (corrupted) root credential where all delegations

have been performed honestly. However, we additionally allow the adversary to access

the user corruption oracle in which we reveal the (delegators) user’s secret keys to the

adversary. CL cannot support this type of corruption as then the anonymity of their

construction breaks down. This makes our model stronger than the one of CL.

attributes (and there is also no implementation available). CDD is

the most efficient scheme and the only one from Table 1 that is

fully specified. We will compare our implementation to the imple-

mentation of CDD [7] that has recently been provided by [5] in

Section 5. Moreover, we provide a more comprehensive theoretical

comparison with CDD, which due to the lack of space is deferred

to Appendix C. For BB [3], unfortunately, only the underlying sig-

nature scheme based on Pointcheval-Sanders signatures [35] is

specified. But the remaining parts of their generic constructions are

not detailed, making concrete performance estimates hard. How-

ever, since their credential showingmust conceal the DMS signature

and prove the verification relation of the DMS (resulting in a size

linear in the number of undisclosed attributes), this imposes a rather

complex NIZK statement.

2 PRELIMINARIES AND NOTATION
For a relation R let [𝑥]R = {𝑦 |R(𝑥,𝑦)}. If R is an equivalence

relation, then [𝑥]R denotes the equivalence class of which 𝑥 is a

representative. We mention that a relation R is parameterized if it is

well-defined as long as some other parameters are well-defined. Let

G1 = ⟨𝑃⟩, G2 = ⟨𝑃⟩, and G𝑇 be groups of prime order 𝑝 . A bilinear

map 𝑒 : G1 ×G2 → G𝑇 is a map, where it holds for all (𝐴, �̂�, 𝑎, 𝑏) ∈
G1 × G2 × Z2𝑝 that 𝑒 (𝐴𝑎, �̂�𝑏) = 𝑒 (𝐴, �̂�)𝑎𝑏 , and 𝑒 (𝑃, 𝑃) = 𝑔𝑇 ≠ 1G𝑇 ,

and 𝑒 is efficiently computable. We will write G∗
𝑖
= G𝑖 \ {1G𝑖 } and

useBG = (𝑝,G1,G2,G𝑇 , 𝑒, 𝑃, 𝑃) ← BGGen(1𝜆) to denote a bilinear
group generator where 𝑝 is a prime of bitlength 𝜆. Given a finite

set 𝑆 , we denote by 𝑥 ← 𝑆 the sampling of an element uniformly at

random in 𝑆 . For an algorithm A, let 𝑦 ← A(𝜆, 𝑥) be the process of
running A on input (𝜆, 𝑥) with access to uniformly random coins

and assigning the result to 𝑦. We usually omit to mention the 𝜆-

input and to make the random coins 𝑟 explicit, we write A(𝑥 ; 𝑟).
With AB

we denote that A has oracle access to B. We use O to

denote oracles defined in games and use 𝜖 to indicate a negligible

function. For a positive integer 𝑁 , we denote the set {1, . . . , 𝑁 } by
[𝑁] and use ®𝑣 = (𝑣1, . . . , 𝑣𝑛) to denote a vector. Given two vectors

®𝑣 and ®𝑤 , we write (®𝑣, ®𝑤) for appending ®𝑤 to ®𝑣 . Whenever we have

vectors ®𝑤 and ®𝑣 of identical dimension whose components are sets,

then by ®𝑣 ⊆ ®𝑤 we mean that the relation is applied componentwise.

2.1 Set Commitments
Fuchsbauer et al. in [23] introduced the notion of a set commitment

SC with subset openings. SC allows committing to a set 𝑆 ⊂ Z𝑝 by

committing to a monic polynomial whose roots are the elements

of 𝑆 and supports openings for sets 𝑇 ⊆ 𝑆 . We defer the abstract

definition to Appendix A.1 and recall their construction below. We

thereby make one property that is satisfied by the set commitment

construction in [23] explicit. Namely, we require that the random-

ness space forms a group and the existence of an algorithm RndmzC
such that set commitments and opening information can be per-

fectly randomized. More formally, we require that for all pp
sc
and

𝑆 as well as randomness 𝜌 and 𝜇 we have that:

SC.RndmzC(SC.Commit(𝑆 ; 𝜌); 𝜇) = SC.Commit(𝑆 ; 𝜌 · 𝜇)

Set Commitment Construction of [23]. To simplify our descrip-

tion, we ignore the case that a set 𝑆 contains the trapdoor 𝛼 . For a

non-empty set 𝑆 , [23] defines the polynomial 𝑓𝑆 (𝑋) :=
∏

𝑠∈𝑆 (𝑋 −
492

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

𝑠) = ∑ |𝑆 |
𝑖=0

𝑓𝑖 · 𝑋 𝑖
. Note that for 𝑃 , since 𝑃 𝑓𝑆 (𝛼) =

∏ |𝑆 |
𝑖=0

𝑃 (𝑓𝑖 ·𝛼
𝑖)
, one

can efficiently compute 𝑃 𝑓𝑆 (𝛼) when given

(
𝑃𝛼

𝑖
) |𝑆 |
𝑖=0

:

SC.Setup(1𝜆, 1𝑡) → pp
sc
: On input a security parameter 𝜆 and a

maximum set cardinality 𝑡 , runBG = (𝑝,G1,G2,G𝑇 , 𝑃, 𝑃, 𝑒) ←
BGGen(1𝜆), pick 𝛼 ← Z𝑝 and output pp

sc
← (BG, (𝑃𝛼𝑖

,

𝑃𝛼
𝑖)𝑖∈[𝑡]), which defines message space 𝑆SC = {𝑆 ⊂ Z𝑝 |0 <

|𝑆 | ≤ 𝑡}. pp
sc
will be an implicit input to all algorithms.

SC.Commit(𝑆) → (𝐶,𝑂): On input a set 𝑆 ∈ 𝑆SC: pick 𝜌 ← Z∗𝑝 ,
compute 𝐶 ← (𝑃 𝑓𝑆 (𝛼))𝜌 ∈ G∗

1
and output (𝐶,𝑂) with 𝑂 ← 𝜌 .

SC.Open(𝐶, 𝑆,𝑂) → 0/1: On input a commitment 𝐶 , a set 𝑆 , and

an opening information𝑂 = 𝜌 : if𝐶 ∉ G∗
1
or 𝜌 ∉ Z∗𝑝 or 𝑆 ∉ 𝑆SC

then return ⊥. Otherwise if 𝑂 = 𝜌 and 𝐶 = (𝑃 𝑓𝑆 (𝛼))𝜌 , return
1; else return 0.

SC.OpenSubset(𝐶, 𝑆,𝑂,𝑇) →𝑊 : On input a commitment𝐶 , a set

𝑆 , an opening information𝑂 and a set𝑇 , if 0← SC.Open(𝐶, 𝑆,𝑂)
or 𝑇 ⊈ 𝑆 or 𝑇 = ∅ then return ⊥. If 𝑂 = 𝜌 , output𝑊 ←
(𝑃 𝑓𝑆\𝑇 (𝛼))𝜌 .

SC.VerifySubset(𝐶,𝑇 ,𝑊) → 0/1: On input a commitment 𝐶 , a

set 𝑇 and a witness𝑊 : if 𝐶 ∉ G∗
1
or 𝑇 ∉ 𝑆SC, return 0. Else if

𝑊 ∈ G∗
1
∧ 𝑒 (𝑊, 𝑃 𝑓𝑇 (𝛼)) = 𝑒 (𝐶, 𝑃), return 1; else 0.

SC.RndmzC(𝐶,𝑂, 𝜇) → (𝐶 ′,𝑂 ′): On input a set commitment 𝐶 ,

an opening information 𝑂 and a randomness 𝜇 ∈ Z𝑝 , output
𝐶 ′ = 𝐶𝜇

and 𝑂 ′ = 𝜇 ·𝑂 .
On computing commitments.With the knowledge of trapdoor

𝛼 , we can compute a commitment when externally provided with

the randomness 𝜌 in the group as 𝑃𝜌 . If required, we will there-

fore modify the commitment computation to SC.Commit(𝑆, 𝛼, 𝑃𝜌),
which then computes 𝐶 ← (𝑃𝜌) 𝑓𝑆 (𝛼) and sets 𝑂 ← ⊥.9

3 SPSEQ ON UPDATABLE COMMITMENTS
As our primary building block, we introduce equivalence-class sig-

natures on updatable commitments called (SPSEQ-UC). It can be

viewed as a variant of SPSEQ with the following modifications: 𝑖)
It considers the message space as vectors of randomizable set com-

mitments, i.e., one can adapt a signature on a commitment vector

to a randomized version of the signed commitments. This means

that equivalence classes are defined on vectors of commitments. 𝑖𝑖)
SPSEQ-UC not only considers signing representatives of classes

of a single projective equivalence relation R, but a family of rela-

tions. This is, as we allow to extend signed vectors by additional

commitments. Thus we consider a family of such relations IR
ℓ
such

that R𝑘 ∈ IRℓ for any 1 ≤ 𝑘 ≤ ℓ . More technically, in SPSEQ-UC
signing of a commitment vector of length 𝑘 also produces an update

key uk𝑘′ corresponding to an integer 𝑘 ′ with 𝑘 ≤ 𝑘 ′ ≤ ℓ . Given the

update key uk𝑘′ , in addition to adapting a signature on a commit-

ment vector ®𝐶 in class [®𝐶]R𝑘 to another representative of the given

class, one also can update a commitment vector ®𝐶 (i.e., extending it)

to a vector ®𝐶 ′ being in a class [®𝐶 ′]R𝑘′ of a new equivalence relation.

Then one can adapt the signature accordingly to the updated com-

mitment vector. Finally, 𝑖𝑖𝑖) in SPSEQ-UC a signature is bound to

a user public key. The signer produces a signature bound to a user

9
Here we assume that 𝜌 is honestly chosen, i.e., the DLOG w.r.t. 𝑃 is known. It can be

enforced by requiring to provide a ZKPoK of the discrete logarithm 𝜌 w.r.t. element 𝑃 .

public key, and this can be adapted into another valid signature for

a new user public key by anyone knowing the old user secret key.

3.1 Formal Definitions
We recall that in an SPSEQ scheme, one can sign vectors of group

elements and it is possible to jointly randomize messages and sig-

natures in public. The messages space consists of representatives

of projective equivalence classes defined on one source group of a

bilinear group, i.e, (G∗
1
)ℓ (for some fixed ℓ > 1), and randomization

of a message represents a change to another representative in the

signed class. In case of SPSEQ-UC the message space consists of

a vector of group elements representing set commitments (a com-

mitment vector) from (G∗
1
)ℓ . As mentioned above since we require

updating, i.e., extending, the commitment vector, in contrast to SPS-

EQ, we consider a family of equivalence relations IR
ℓ
. Thus, for any

𝑘 with 1 < 𝑘 ≤ ℓ , we can define the following equivalence relation

R𝑘 ∈ IR
ℓ
and the equivalence class [®𝐶]R𝑘 of a set commitment

vector ®𝐶 = (𝐶1, . . . ,𝐶𝑘). More concretely, for a fixed bilinear group

BG and (𝑘, ℓ), we define R𝑘 ∈ IRℓ as follows:

R𝑘 =

{
(®𝐶, ®𝐶 ′) ∈ (G∗

1
)𝑘 × (G∗

1
)𝑘 ⇔ ∃𝜇 ∈ Z∗𝑝 : ®𝐶 ′ = ®𝐶𝜇

}
.

Now we are ready to present the definition.

Definition 3.1 (SPSEQ-UC scheme). A SPSEQ-UC scheme for a

set commitment scheme SC and a parameterized family of equiva-

lence relations IR
ℓ
consists of the following PPT algorithms:

PPGen(1𝜆, 1𝑡 , 1ℓ) → (pp): On input the security parameter 𝜆 and

an upper bound 𝑡 for the cardinality of committed sets and a

length parameter ℓ > 1, this probabilistic algorithm outputs

the public parameters pp. The message set space 𝑆SC is well-

defined from pp. pp will be an implicit input to all algorithms.

KeyGen(pp) → (vk, sk): On input the public parameters pp, this
probabilistic algorithm outputs a verification and signing key

pair (vk, sk).
UKeyGen(pp) → (sk𝑢 , pk𝑢): On input the public parameters pp,

this probabilistic algorithm outputs a key pair (sk𝑢 , pk𝑢) for a
user 𝑢.

RndmzC(®𝐶, ®𝑂, 𝜇) → (®𝐶 ′, ®𝑂 ′): This deterministic algorithm takes

as input a commitment vector ®𝐶 of size 1 < 𝑘 ≤ ℓ , corre-

sponding openings ®𝑂 and randomness 𝜇. It runs (𝐶 ′
𝑖
,𝑂 ′

𝑖
) ←

SC.RndmzC(𝐶𝑖 ,𝑂𝑖 , 𝜇) for all 𝑖 ∈ [𝑘] and outputs a new rep-

resentative of the set commitment vector ®𝐶 ′ ∈ [®𝐶]R𝑘 and

corresponding openings ®𝑂 ′.
Sign(sk, ®𝑀,𝑘 ′, pk𝑢 ; ®𝜌) → (𝜎, (®𝐶, ®𝑂), uk𝑘′): This probabilistic al-

gorithm takes as input a signing key sk, a vector of set mes-

sages ®𝑀 = (𝑀1, . . . , 𝑀𝑘), an index 𝑘 ′ with 𝑘 ≤ 𝑘 ′ ≤ ℓ , a

user public key pk𝑢 and a vector of randomness ®𝜌 . It com-

putes (𝐶 𝑗 ,𝑂 𝑗) 𝑗 ∈[𝑘] ← SC.Commit(𝑀𝑗 ; 𝜌 𝑗) for all 𝑗 ∈ [𝑘],
sets ®𝐶 = (𝐶1, . . . ,𝐶𝑘) and ®𝑂 = (𝑂1, . . . ,𝑂𝑘). It outputs a signa-
ture (𝜎, ®𝐶) for pk𝑢 , and also an update key uk𝑘′ in case 𝑘 ′ ≠ ℓ .

Verify(vk, pk𝑢 , ®𝐶, 𝜎, (®𝑇, ®𝑈)) → 0/1: On input a verification key vk,
a user public key pk𝑢 , a commitment vector ®𝐶 = (𝐶1, . . . ,𝐶𝑘),
the purported signature 𝜎 , and a pair (subset/witness form

set commitments) (®𝑇, ®𝑈), it outputs 0 if any of the following

checks fail and 1 otherwise:

493

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

• Check whether 𝜎 is a valid signature for (®𝐶, pk𝑢).
• For all (𝑇𝑖 ,𝑈𝑖) ∈ (®𝑇, ®𝑈): if𝑈𝑖 =𝑊𝑖 check

1 = SC.VerifySubset(𝐶𝑖 ,𝑇𝑖 ,𝑊𝑖). Else if 𝑈𝑖 = 𝑂𝑖 , check 1 =

SC.Open(𝐶𝑖 ,𝑇𝑖 ,𝑂𝑖).
UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) → 0/1 : On input a verification key vk,

an update key uk𝑘′ , an integer 𝑘
′
and a signature 𝜎 , this update

key verification algorithm outputs 0 or 1.

RndmzPK(pk𝑢 ,𝜓, 𝜒) → pk′𝑢 : On input a user public key pk𝑢 and

randomness𝜓, 𝜒 , this public key randomization algorithm out-

puts the randomized public key pk′𝑢 .
ChangeRep(pk𝑢 , uk𝑘′, (®𝐶, ®𝑂), 𝜎, 𝜇,𝜓) → (𝜎 ′, (®𝐶 ′, ®𝑂 ′), (uk′𝑘′ or ⊥
), pk′𝑢 , 𝜒): This algorithm takes as input the user public key

pk𝑢 , a commitment vector ®𝐶 = (𝐶1, . . . ,𝐶𝑘) in equivalence

class [®𝐶]R𝑘 and corresponding openings ®𝑂 , a signature 𝜎 for

®𝐶 , randomness 𝜓, 𝜇 and optionally an update key uk𝑘′ . It re-
turns an updated signature 𝜎 ′ for a new commitment vec-

tor and corresponding openings (®𝐶 ′, ®𝑂 ′) ← RndmzC(®𝐶, ®𝑂, 𝜇)
such that ®𝐶 ′ ∈ [®𝐶]R𝑘 as well as a randomized user public key

pk′𝑢 ← RndmzPK(pk𝑢 ,𝜓, 𝜒) for uniform randomness 𝜒 . In

case that uk𝑘′ ≠⊥, it additionally outputs a randomized update

key uk′
𝑘′ .

ChangeRel(𝑀𝑙 , 𝜎, ®𝐶, uk𝑘′, 𝑘 ′′) → (𝜎 ′, (®𝐶 ′,𝑂𝑙), uk𝑘′′): On input a

message set 𝑀𝑙 ⊂ 𝑆SC for 𝑙 = 𝑘 + 1 ∈ [𝑘 ′], a signature 𝜎

for a vector of commitments representative ®𝐶 = (𝐶1, . . . ,𝐶𝑘)
of equivalence class [®𝐶]R𝑘 , an updatable key uk𝑘′ , and an

index 𝑘 ′′ ≤ 𝑘 ′. This algorithm adapts a signature 𝜎 ′ for a new
commitment vector ®𝐶′ = (®𝐶,𝐶𝑙) of equivalence class [®𝐶 ′]R𝑙 ,
where 𝐶𝑙 is a set commitment for𝑀𝑙 with the related opening

information𝑂𝑙 . Also, for 𝑘
′′ ∈ [𝑙+1, 𝑘 ′], updates the updatable

key for the range [𝑙 + 1, 𝑘 ′′] into uk𝑘′′ .
SendConvertSig(vk, sk𝑢 , 𝜎) → (𝜎orph): It is an algorithm run by a

user who wants to delegate a signature 𝜎 . It takes as input the

public verification key vk, a secret key sk𝑢 and the signature

𝜎 . It outputs an orphan signature 𝜎
orph

.

ReceiveConvertSig(vk, sk𝑢′, 𝜎orph) → 𝜎 ′: It is an algorithm run

by a user who receives a delegatable signature. It takes as input

the verification key vk, a secret key sk𝑢′ , an orphan signature

𝜎
orph

. It outputs a new signature 𝜎 ′ for pk𝑢′ .

For simplicity, when we writeConvertSig(vk, sk𝑢 , sk𝑢′, 𝜎) wemean

[SendConvertSig(vk, sk𝑢 , 𝜎) ↔ ReceiveConvertSig(vk, sk𝑢′)] →
𝜎 ′, where 𝜎 ′ is a valid signature.

We note that UKVerify is an algorithm that checks whether

the update key is formed correctly. This is required in the DAC

construction (cf. Section 4.2) to verify whether a delegation is valid.

Moreover, it helps in the definition of the privacy properties below.

3.2 Security Definitions
Similar to conventional signatures, a SPSEQ-UC scheme needs to

be correct and unforgeable. And similar to SPSEQ, we need addi-

tional properties covering the distribution of adapted signatures.

Correctness.We require that honest signatures verify as expected.

Moreover, algorithmsConvertSig,ChangeRep andChangeRel need
to output valid signatures for the respective parameters. We provide

a formal correctness definition in Appendix D.1.

Unforgeability. Here, we consider an adversary that has access to

signatures formessage set vectors of its choice, controls randomness

of commitments and is allowed to create as well as corrupt user

keys. We require that it cannot come up with a signature on a

commitment vector that opens to non-signed message (sub-)sets.

Here we need to consider that the adversary is allowed to extend

commitment vectors. In addition, the adversary needs to specify

the used user secret and public key (sk∗, pk∗) for the forgery, which
is required to make this concept useful in the application to DACs.

Looking ahead, since the output of ChangeRel and ChangeRep is

distributed identical to Sign, we do not need to provide access to

such oracles as it can be done by the adversary on its own. To detect

that signatures derived with uk𝑘′ are obtained from ChangeRel or
are generated freshly in the Sign oracle, we define the following

relation R𝑘′ . Consequently, signatures that can be legally derived

using ConvertSig and ChangeRep are not considered as forgeries.

Definition 3.2. Let 𝑘, ℓ be integers. For any ℓ ≥ 𝑘 ′ > 𝑘 , we

define the relation R𝑘′ for two vectors ®𝑀 = (𝑀1, . . . , 𝑀𝑘) and
®𝑀∗ =

(
𝑀∗
1
, . . . , 𝑀∗

𝑘′

)
as follows:

(®𝑀, ®𝑀∗) ∈ R𝑘′ ⇐⇒ ∀𝑖 ≤ 𝑘 : 𝑀∗𝑖 ⊆ 𝑀𝑖

Formally for unforgeability we require the following:

Definition 3.3 (Unforgeability). A SPSEQ-UC scheme is unforge-

able if, for all (𝜆, 𝑡) ∈ N, and ℓ > 1, for any PPT adversaryA, there

exists a negligible function 𝜖 (𝜆) such that Pr[ExpUnfSPSEQ-UC,A (
𝜆, ℓ, 𝑡) = 1] ≤ 𝜖 (𝜆), where the experiment ExpUnfSPSEQ-UC,A (𝜆, ℓ, 𝑡)
is defined in Fig 1 and 𝑄 is the set of queries that A has issued to

the signing oracle.

Note that unforgeability allows the adversary to either output

a full opening (𝑈 ∗
𝑖

= 𝑂𝑖) or subset opening (𝑈 ∗
𝑖

= 𝑊𝑖) for each

commitment in the commitment vector. This is also used to make

it useful in the application to DAC.

Privacy notions. Subsequently, we define three privacy properties
that are similar in vein to origin-hiding and signature adaption

from previous works on SPSEQ and mercurial signatures [17, 23].

However, since SPSEQ-UC supports more functionality we need

to introduce additional notions. Firstly we adapt origin-hiding from

[17, 23] to SPSEQ-UC. We want to guarantee that fresh and ran-

domized signatures are indistinguishable, which is important to

guarantee the anonymity of showings in DACs. Secondly, we newly

introduce derivation-privacy, which guarantees that signatures ob-

tained by extending commitment vectors are indistinguishable from

fresh signatures on extended commitment vectors. Thirdly, with in-

troduce conversion-privacy, which guarantees that when switching

a user key in the signature, the resulting signature is indistinguish-

able from a fresh signature on the new user public key. We note that

these properties compose (the outputs are always valid signatures

and update keys) and can thus be applied an arbitrary number of

times and in an arbitrary order. The notions are essential to the

anonymity (of delegation) in the DAC application. Subsequently,

we use ≈ to denote perfect indistinguishability.

Origin-hiding (also called signature adaptation [22, 23]) formal-

izes the fact that signatures for well-formed commitment vectors

and well-formed update keys output by ChangeRep are distributed

identical to fresh signatures on the new representative.

494

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

ExpUnfSPSEQ-UC,A (𝜆, ℓ, 𝑡) :

• 𝑄 := ∅;UL := ∅, pp← PPGen(1𝜆, 1𝑡 , 1ℓ)
• (vk, sk) ← KeyGen(pp)
• ((sk∗𝑢 , pk∗𝑢) (®𝐶∗, ®𝑇 ∗, ®𝑈 ∗), 𝜎∗) ← A<O> (vk, pp)

return: ©­­­«
∀(pk𝑢 , sk𝑢) ∉ UL, ∀(®𝑀,𝑘′, pk𝑢) ∈ 𝑄 :

(®𝑀, ®𝑇 ∗) ∉ R𝑘′ ∧ (sk∗𝑢 , pk∗𝑢) ∈ UKeyGen(pp)

∧ Verify(vk, pk∗𝑢 , ®𝐶∗, 𝜎∗, (®𝑇 ∗, ®𝑈 ∗)) = 1

ª®®®¬
OCreate (𝑖) :

• (pk𝑢 , sk𝑢) ← KeyGen()
• UL ← UL ∪ {(𝑖, pk𝑢 , sk𝑢) }

return pk𝑢

OSign (®𝑀,𝑘′, pk𝑢 , ®𝜌) :
• If ℓ ≥ 𝑘′ ≥ 𝑘 :

• Then (𝜎, (®𝐶, ®𝑂), uk𝑘′) ← Sign(sk, ®𝑀,𝑘′, pk𝑢 ; ®𝜌)
• 𝑄 = 𝑄 ∪ {(®𝑀,𝑘′, pk𝑢) }
• return ((®𝐶, ®𝑂), 𝜎, uk𝑘′)
• Else return ⊥

OCorrupt (𝑖) :
• If ∃𝑖 ∈ UL such that (pk𝑢 , sk𝑢) ∈ UL
• Then delete the item from the list and

return (sk𝑢 , pk𝑢)
• Else return ⊥

Figure 1: Experiment ExpUnfSPSEQ-UC,A (𝜆, ℓ, 𝑡)

Definition 3.4 (Origin-hiding). For all (𝜆, 𝑡, ℓ) and pp ∈ PPGen(1𝜆,
1
𝑡 , 1ℓ), for all vk, pk𝑢 , ®𝐶 , ®𝑀 , ®𝑂 , ®𝑇 , ®𝑈 , uk𝑘′ , 𝑘 ′ and 𝜎 . If pk𝑢 ∈
UKeyGen and SC.Open(pp,𝐶 𝑗 , 𝑀𝑗 ,𝑂 𝑗) 𝑗 ∈𝑘 = 1 ∧ UKVerify(vk,
uk𝑘′, 𝑘

′, 𝜎) = Verify(vk, pk𝑢 , ®𝐶, 𝜎, (®𝑇, ®𝑈)) = 1, then for all 𝜇,𝜓 ,

the algorithm ChangeRep(pk𝑢 , uk𝑘′, (®𝐶, ®𝑂), 𝜎, 𝜇,𝜓) outputs a uni-
formly random ®𝐶 ′ ∈ [®𝐶]R𝑘 and uniformly random pk′𝑢 , and 𝜎

′

(and if uk𝑘′ ≠⊥ update key uk′
𝑘′) in the respective spaces.

Since we support the extension of the signed commitment vector,

with derivation privacy we guarantee that signatures derived on a

commitment vector ®𝐶∗ output by ChangeRel are indistinguishable
from signatures freshly created with sk by running Sign on the

extended vector.

Definition 3.5 (Derivation-privacy). For all (𝜆, 𝑡, ℓ), pp ∈ PPGen(
1
𝜆, 1𝑡 , 1ℓ), all (vk, sk) ∈ KeyGen(pp), pk𝑢 , ®𝑀 , ®𝑂 = ®𝜌 , ®𝑇 , ®𝑈 , uk𝑘′ ,
𝑘 ′, and 𝜎 . If pk𝑢 ∈ UKeyGen and SC.Open(pp,𝐶 𝑗 , 𝑀𝑗 ,𝑂 𝑗) 𝑗 ∈𝑘 =

1 ∧ Verify(vk, pk𝑢 , ®𝐶, 𝜎, (®𝑇, ®𝑈)) = 1 ∧ UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) =
1, then, for all 𝑘 ′′ ∈ [𝑘 + 1, 𝑘 ′], 𝑀𝑙 , we have (𝜎 ′, (®𝐶 ′,𝑂𝑙), uk𝑘′′)
← ChangeRel(𝑀𝑙 , 𝜎, ®𝐶, uk𝑘′, 𝑘 ′′) and the following holds:

(vk, sk, pk𝑢 , uk𝑘′, (𝜎 ′, (®𝐶 ′, ®𝑂 ′), uk𝑘′′)) ≈

(vk, sk, pk𝑢 , uk𝑘′, Sign(sk, ®𝑀 ′, 𝑘 ′′, pk𝑢 ; ®𝜌))

where ®𝑀 ′ = (®𝑀,𝑀𝑙) and ®𝑂 ′ = (®𝑂,𝑂𝑙).

With conversion-privacy we require that a converted signature,

i.e., a signature where the public key has been switched, is identi-

cally distributed to a fresh signature using the new public key.

Definition 3.6 (Conversion-privacy). For all (𝜆, 𝑡, ℓ), pp ∈ PPGen(
1
𝜆, 1𝑡 , 1ℓ), and for all (vk, sk) ∈ KeyGen(pp), (sk𝑢 , pk𝑢) ∈ UKeyGen,
®𝐶, ®𝑇 , ®𝑀 , ®𝑈 , ®𝑂 = ®𝜌 , uk𝑘′ , 𝑘 ′, and 𝜎 . If SC.Open(pp,𝐶 𝑗 , 𝑀𝑗 ,𝑂 𝑗) 𝑗 ∈𝑘 =

1 ∧ Verify(vk, pk𝑢 , ®𝐶, 𝜎, (®𝑇, ®𝑈)) = 1 ∧ UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) = 1,

then for all (pk𝑢′, sk𝑢′) ∈ UKeyGen, the following holds:

(vk, sk, pk𝑢′, (ConvertSig(vk, sk𝑢 , sk𝑢′, 𝜎), (®𝐶, ®𝑂), uk𝑘′)) ≈

(vk, sk, pk𝑢′, Sign(sk, ®𝑀,𝑘 ′, pk𝑢′ ; ®𝜌)).

Remark 1. We can also define a class-hiding notion in the vein
of [17, 23] (cf. Appendix D.2). However, analogous to [22] (Proposition
1), the origin-hiding notion together with the indistinguishability of
the message space (under DDH) implies a stronger notion. We will

use the above properties in combination with the DDH assumption
later directly in the proof of anonymity of the DAC scheme.

3.3 Construction
We now present our SPSEQ-UC construction and start with an

intuition behind our approach. We start from the SPSEQ scheme

in [22]. Inspired by their implicit use of SC in [23] to construct

traditional ACs, we make the message space of the scheme a vector

of set commitments in a way that meets our requirements. Con-

sequently, SPSEQ-UC encodes each message set 𝑀𝑖 ⊂ Z𝑡𝑝 into a

set commitment 𝐶𝑖 and signs a commitment vector (G∗
1
)𝑘 of size

𝑘 ≤ ℓ . The randomization of the commitment vector is identical

to a change of representative in the SPSEQ . More specifically, we

use the algorithm SC.Commit to encode a message set to a set

commitment in Sign and also an algorithm RndmzC to change the

commitment vector representative. Note that as made explicit in the

unforgeability game, we allow the adversary to control the random-

ness (opening information) used in commitments. So we choose

this randomness externally and pass it to Sign which then passes it

to SC.Commit. The most significant change compared to SPSEQ
is the feature of updating a commitment vector by appending new

commitments, and the support to adapt a signature to this updated

commitment vector. Therefore, we can use the elements from the

set commitment parameters {𝑃𝑎𝑖 }0<𝑖<𝑡 and bind them to the sign-

ing key of the respective position of the vector and the randomness

used in the Sign. We do this for all indices from 𝑘 to 𝑘 ′ and finally

use these elements as the update key. Now, one can add a new

commitment (message set) to the signed commitment vector using

algorithm ChangeRel that receives a new message set, a signature

and the update key. It first encodes this set to the a commitment.

Then, it uses the update key to create another set commitment

value for the new message set, which can be easily aggregated into

the signature (element 𝑍) and get the new signature for the updated

commitment vector. For the user’s public key bound to a signature,

instead of signing the user’s public key by including it in the vector,

we define the extra element 𝑇 to tie the signature to this key. This

allows us to update the user’s public keys by only locally updating

the𝑇 element in the signature but still guaranteeing unforgeability.

The RndmzPK then allows to randomize a public key consistently

with the signature and in a way to achieve a new independent user

public key for each call to ChangeRep.
495

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

PPGen(1𝜆, 1𝑡 , 1ℓ) → (pp): Run BG = (𝑝,G1,G2,G𝑇 , 𝑃, 𝑃, 𝑒) ←
BGGen(1𝜆). Pick 𝛼 ← Z∗𝑝 and run ppSC = (𝑃𝛼𝑖

, 𝑃𝛼
𝑖)𝑖∈[𝑡] ←

SC.Setup(1𝜆, 1𝑡 ;𝛼), and define 𝑆SC ← {𝑀 ⊂ Z𝑝 |0 < |𝑀 | ≤ 𝑡}.
Output pp = {BG, ppSC, 𝑆SC, ℓ}.

KeyGen(pp) → (vk, sk): For 0 ≤ 𝑖 ≤ ℓ pick 𝑥𝑖 ← (Z∗𝑝)ℓ , set the
signing key sk = (𝑥0, . . . , 𝑥ℓ). Compute the related verification

key vk = (𝑋0, 𝑋0, . . . , 𝑋ℓ), where 𝑋0 = 𝑃𝑥0 and 𝑋𝑖 = 𝑃𝑥𝑖 for

0 ≤ 𝑖 ≤ ℓ . Output (vk, sk).
UKeyGen(pp) → (sk𝑢 , pk𝑢): Pick𝑤𝑢 ← Z∗𝑝 , set pk𝑢 ← 𝑃𝑤𝑢

and

sk𝑢 = 𝑤𝑢 , and finally return (sk𝑢 , pk𝑢).
RndmzC(®𝐶, ®𝑂, 𝜇) → ®𝐶 ′: On input a set commitment vector ®𝐶 ∈
[®𝐶]R𝑘 corresponding openings ®𝑂 and randomness 𝜇, produces

a new representative of the set commitment vector ®𝐶 ′ = ®𝐶𝜇

and corresponding openings ®𝑂 ′ = 𝜇 ®𝑂 .
Sign(sk, ®𝑀,𝑘 ′, pk𝑢 ; ®𝜌) → (𝜎, (®𝐶, ®𝑂), uk𝑘′): On input the signing

key sk, a vector of message sets ®𝑀 = (𝑀1, . . . , 𝑀𝑘), an index 𝑘 ′,
𝑘 ≤ 𝑘 ′ ≤ ℓ , a user public key pk𝑢 and a vector of randomness ®𝜌 .
For all 𝑗 ∈ [𝑘] run (𝐶 𝑗 ,𝑂 𝑗) 𝑗 ∈[𝑘] ← SC.Commit(𝑀𝑗 ; 𝜌 𝑗), and
get a vector of set commitments ®𝐶 = (𝐶1, . . . ,𝐶𝑘) related to a

vector of sets ®𝑀 and opening ®𝑂 = (𝑂1, . . . ,𝑂𝑘). More precisely,

SC.Commit computes a set commitment for each𝑀𝑗 in
®𝑀 as

follows: define a polynomial 𝑓𝑀𝑗
(𝑋) := ∏

𝑚∈𝑀𝑗
(𝑋 −𝑚) =∑ |𝑀𝑗 |

𝑖=0
𝑓𝑖 · 𝑋 𝑖

and with 𝜌 𝑗 ∈ ®𝜌 , compute:

𝐶 𝑗 =
©­«
|𝑀𝑗 |∏
𝑖=0

(
𝑃𝛼

𝑖
) 𝑓𝑖 ª®¬

𝜌 𝑗

and 𝑂 𝑗 = 𝜌 𝑗 ,

where 𝑃𝛼
𝑖
are elements in pp. Then, compute a signature 𝜎 for

(pk𝑢 , ®𝐶) as follows: Pick a random 𝑦 ← Z∗𝑝 and compute 𝜎 =

©­­«𝑍 ←
©­«

∏
𝑗 ∈[𝑘]

𝐶
𝑥 𝑗

𝑗

ª®¬
1

𝑦

, 𝑌 ← 𝑃𝑦, 𝑌 ← 𝑃𝑦,𝑇 ← 𝑃𝑥1 ·𝑦 · pk𝑥0𝑢
ª®®¬

Also, if 𝑘 ≠ ℓ , compute an update key for a range between 𝑘

and 𝑘 ′ as:

uk𝑘′ =

((
usign𝑗 =

(
(𝑃𝛼

𝑖

)𝑥 𝑗

)𝑦−1)
𝑗 ∈[𝑘+1,𝑘′],𝑖∈[𝑡]

)
.

Output (𝜎, (®𝐶, ®𝑂), uk𝑘′).
Verify(vk, pk𝑢 , ®𝐶, 𝜎, (®𝑇, ®𝑈)) → 0/1: On input a verification key vk,

a user public key pk𝑢 , a commitment vector ®𝐶 = (𝐶1, . . . ,𝐶𝑘),
the purported signature 𝜎 , and a pair (®𝑇, ®𝑈), it outputs 0 if any
of the following checks fail and 1 otherwise:

• Check whether 𝜎 is a valid for (®𝐶, pk𝑢), i.e., output 0 if one
of the following checks fails:

𝑘∏
𝑗=1

𝑒 (𝐶 𝑗 , 𝑋 𝑗+1) = 𝑒 (𝑍,𝑌) ∧ 𝑒 (𝑌, 𝑃) = 𝑒 (𝑃,𝑌)

∧ 𝑒 (𝑇, 𝑃) = 𝑒 (𝑌,𝑋1) · 𝑒 (pk𝑢 , 𝑋0).

• For all (𝑇𝑖 ,𝑈𝑖) ∈ (®𝑇, ®𝑈) if𝑈𝑖 =𝑊𝑖 , then𝑊𝑖 is a witness for𝑇𝑖
being subset of the set committed to𝐶𝑖 : run SC.VerifySubset(𝐶𝑖 ,

𝑇𝑖 ,𝑊𝑖), i.e., output 1 if the following equation holds; else 0:∏
𝑖∈[| ®𝑊 |]

𝑒 (𝑊𝑖 , 𝑃
𝑓𝑇𝑖 (𝛼)) =

∏
𝑖∈[| ®𝑊 |]

𝑒 (𝐶𝑖 , 𝑃)

Else 𝑈𝑖 = 𝑂𝑖 , then 𝑇𝑖 = 𝑀𝑖 is a message set and 𝑂𝑖 is valid

opening of 𝐶𝑖 to 𝑇𝑖 : run SC.Open(𝐶𝑖 ,𝑇𝑖 ,𝑂𝑖), i.e., output 1 if
the following holds; else 0:

∀𝑖 ∈ [𝑘] : 𝑂𝑖 = 𝜌𝑖 ∧𝐶𝑖 = (𝑃 𝑓𝑀𝑖
(𝛼))𝜌𝑖

UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) → 0/1. On input a vk, uk𝑘′ , index 𝑘
′
, a

signature𝜎 = (𝑍,𝑌,𝑌,𝑇), parse uk𝑘′ = (usign𝑗 = ((𝑃𝛼
𝑖)𝑥 𝑗)𝑦−1

) 𝑗 ∈[𝑘+1,𝑘′],𝑖∈[𝑡] output 1 if the following holds; else 0:∧
𝑖∈[𝑡], 𝑗 ∈[𝑘+1,𝑘′]

𝑒 (𝑃𝛼
𝑖

, 𝑋 𝑗) = 𝑒 (((𝑃𝛼
𝑖

)𝑥 𝑗)𝑦
−1
, 𝑌)

RndmzPK(pk𝑢 ,𝜓, 𝜒) → pk′: On input a user public key pk𝑢 and

randomness 𝜓, 𝜒 ∈ Z∗𝑝 , output the randomized public key

pk′𝑢 = (pk𝑢 · 𝑃 𝜒)𝜓 , related to the secret key (𝜒 + sk𝑢)𝜓 .
ChangeRep(pk𝑢 , uk𝑘′, (®𝐶, ®𝑂), 𝜎, 𝜇,𝜓) → (𝜎 ′, (®𝐶 ′, ®𝑂 ′), (uk′𝑘′ or ⊥
), pk′𝑢 , 𝜒): On input a user public key pk𝑢 , optionally an update

key uk𝑘′ , a commitment vector ®𝐶 = (𝐶1, . . . ,𝐶𝑘) in equivalence
class [®𝐶]R𝑘 with corresponding openings ®𝑂 , a valid signature

𝜎 for ®𝐶 and randomness𝜓, 𝜇 ∈ Z∗𝑝 .
Pick 𝜒 ← Z∗𝑝 and compute a new commitment representative

(®𝐶 ′, ®𝑂 ′) ← RndmzC(®𝐶, ®𝑂, 𝜇) as well as a randomized user

public key pk′𝑢 ← RndmzPK(pk𝑢 ,𝜓, 𝜒) and update signature

as 𝜎 ′ = (𝑍
𝜇

𝜓 , 𝑌𝜓 , 𝑌𝜓 , (𝑇 · 𝑋 𝜒

0
)𝜓). Moreover, if uk𝑘′ ≠⊥, check

if UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) = 1, randomize the update key:

uk′
𝑘′ =

(
(usign𝜇 ·𝜓

−1

𝑗
) 𝑗 ∈[𝑘+1,𝑘′]

)
,

and output (𝜎 ′, (𝐶 ′, ®𝑂 ′), (uk′
𝑘′ or ⊥), pk

′
𝑢 , 𝜒).

ChangeRel(𝑀𝑙 , 𝜎, ®𝐶, uk𝑘′, 𝑘 ′′) → (𝜎 ′, (®𝐶 ′,𝑂𝑙), uk𝑘′′): On input a

message set𝑀𝑙 ⊂ 𝑆SC for 𝑙 = 𝑘 + 1 ∈ [𝑘 ′], a valid signature 𝜎

for commitment vector ®𝐶 = (𝐶1, . . . ,𝐶𝑘) in equivalence class

[®𝐶]R𝑘 , a valid update key uk𝑘′ , and an index 𝑘 ′′ ≤ 𝑘 ′. First
it creates a set commitment (𝐶𝑙 ,𝑂𝑙 = 𝜌𝑙) ← SC.Commit(𝑀𝑙).
Then, it performs the following steps to update the signature

for a commitment vector including 𝐶𝑙 :

• First, compute a set commitment 𝜗𝑙 as in SC.Commit, but
using keys of the 𝑙-component of uk𝑘′ as

usign𝑙 =
(
(𝑃𝛼

𝑖

)𝑥𝑙
)𝑦−1

for 𝑖 ∈ [𝑡] :

𝑓𝑀𝑙
(𝑋) =

∑︁
𝑓𝑖𝑋

𝑖 ⇒ 𝜗𝑙 = (
∏
𝑖∈[𝑡]

usign𝑓𝑖
𝑙𝑖
)𝜌𝑙 =

∏
𝑖∈[𝑡]
((𝑃𝛼

𝑖 ·𝑥𝑙 ·𝑦−1︸ ︷︷ ︸
usign𝑙𝑖

) 𝑓𝑖)𝜌𝑙

• Second, update 𝜎 for a commitment vector ®𝐶 ′ = (®𝐶,𝐶𝑙) as:

𝜎 ′ =
(
(𝑍 · 𝜗𝑙) , 𝑌 , 𝑌 ,𝑇

)
.

• Finally for 𝑘 ′′ ∈ [𝑙 + 1, 𝑘 ′], update the update key uk𝑘′ for

𝑗 ∈ [𝑙 + 1, 𝑘 ′′]: uk𝑘′′ =
(
usign𝑗

)
𝑗 ∈[𝑙+1,𝑘′′]

.

Output (𝜎 ′, (®𝐶 ′,𝑂𝑙), uk𝑘′′).
496

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

SendConvertSig(vk, sk𝑢 , 𝜎) → 𝜎
orph

: On input vk = (𝑋0, 𝑋0, . . . ,
𝑋ℓ), a user secret key sk𝑢 for the public key pk𝑢 , and a valid

signature 𝜎 = (𝑍,𝑌,𝑌,𝑇). Output an orphan signature 𝜎
orph

=(
𝑍,𝑌,𝑌,𝑇 ′ = 𝑇 · (𝑋 sk𝑢

0
)−1

)
ReceiveConvertSig(vk, sk𝑢′, 𝜎orph) → 𝜎 ′: On input the verifica-

tion key vk, a secret key sk𝑢′ , an orphan signature 𝜎
orph

=(
𝑍,𝑌,𝑌,𝑇 ′

)
. Output a signature 𝜎 ′ for pk𝑢′ as:

𝜎 ′ =
(
𝑍,𝑌,𝑌,𝑇 ′′ = 𝑇 ′ · 𝑋 sk𝑢′

0
= 𝑃𝑥1 ·𝑦 · pk𝑥0

𝑢′

)
.

The correctness of our SPSEQ-UC construction follows form

inspection. We formally show the following:

Theorem 3.7 (Unforgeability). Our SPSEQ-UC construction
is unforgeable in the generic group model for type-3 bilinear groups.

The proof of Theorem 3.7 is provided in Appendix E.3.

Theorem 3.8 (Privacy). Our SPSEQ-UC construction is origin-
hiding, provides conversion-privacy and derivation privacy as speci-
fied in definitions 3.4, 3.5 and 3.6, respectively.

The proof of Theorem 3.8 is provided in Appendix E.2.

3.4 Cross-Set Commitment Aggregation
Now we introduce an aggregatable set commitment CSCA, that
allows non-interactive aggregation of witnesses across multiple

commitments. We use a technique inspired by [6, 24] to batch

different subset opening witnesses into one and to improve the

efficiency of the verification operation with batching pairing equa-

tions. Functionality-wise, we require that witnesses for multiple

subsets of multiple commitments can be aggregated into a single

value called proof 𝜋 . This allows us to use the CSCA in the DAC
scheme in order to open any subset of attributes in each set com-

mitment efficiently. CSCA adds two additional algorithms in SC to

aggregate witnesses across 𝑘-commitments and verify them. Ad-

ditionally, we add a version of the commit algorithm (used in the

construction in Fig 2) that takes the commitment randomness in a

point (analogously to what we have done in Section 2.1):

CSCA.AggregateAcross({𝐶 𝑗 ,𝑇𝑗 ,𝑊𝑗 } 𝑗 ∈[𝑘]) → 𝜋 . On input a col-

lection {𝐶 𝑗 ,𝑇𝑗 } 𝑗 ∈[𝑘] alongwith the corresponding subset open-
ing witnesses {𝑊𝑗 } 𝑗 ∈[𝑘] (via OpenSubset) and outputs an ag-

gregated proof 𝜋 .

CSCA.VerifyAcross({𝐶 𝑗 ,𝑇𝑗 } 𝑗 ∈[𝑘] , 𝜋) → 𝑏. On input a collection

({𝐶 𝑗 ,𝑇𝑗 } 𝑗 ∈[𝑘]) along with a cross-commitment-aggregated

proof 𝜋 , and checks: for all 𝑗 ∈ [𝑘], 𝐶 𝑗 is a set commitment to

a message set consistent with the subset 𝑇𝑗 .

CSCA.Commit2 (𝑆 𝑗 , 𝛼, 𝑃𝜌 𝑗) → (𝐶 𝑗 ,𝑂 𝑗): On input a set 𝑆 𝑗 ∈ 𝑆SC,
𝛼 , and 𝑃𝜌 𝑗

: compute a commitment 𝐶 𝑗 ∈ G∗
1
and output

(𝐶 𝑗 ,𝑂 𝑗) with 𝑂 𝑗 ←⊥.
Construction. Due to space reasons, we provide our new CSCA
construction including all algorithms in Appendix B. We require

correctness of opening as in Section 2.1, but extend it to cross-

commitment aggregation in a natural way. We note that in the DAC

application when multiple subsets of disclosed attribute sets are

used, cross-commitment aggregation allows us to compress wit-

nesses (𝑊1, . . . ,𝑊𝑘) into a single proof 𝜋 . This can help to reduce

the bandwidth significantly and improves verification efficiency by

saving 𝑘 pairings. Note that without this aggregation, the verifica-

tion has the form:

∏
𝑖∈[𝑘] 𝑒 (𝑊𝑖 , 𝑃

𝑓𝑇𝑖 (𝛼)) = ∏
𝑖∈[𝑘] 𝑒 (𝐶𝑖 , 𝑃).

4 DELEGATABLE ANONYMOUS
CREDENTIALS

We now present our definition of delegatable anonymous creden-

tials. It is similar to [17, 23], but splits up the issuing protocol for

issuing a root credential (CreateCred) and delegating a credential

(IssueCred) and works as follows: A root issuer (called CA) issues a
level-1 (𝐿 = 1) credential (a root credential) to intermediate issuers

using the CreateCred protocol. The credential is assigned for a user

sku (whom it knows with a pseudonym nymu) with an attribute

vector A and the related set commitments ®𝐶 rooted at pkCA.CA also

creates a delegation key dk𝐿′ which determines how the credential

can be delegated further until level 𝐿′. With this key, a user U can

replace an old pseudonym with a new one and also delegate their

credential further to another user, say R, by switching to R’s public
key and possibly adding another set of attributes A′. Showing the
credential consists of the user proving possession of the secret key

sku and providing a randomized signature with required attributes.

Definition 4.1 (Delegatable anonymous credentials). DAC includes

algorithms (Setup,KeyGen,NymGen) and protocols CreateCred/
ReceiveCred, IssueCred/ReceiveCred for issuing a credential and

CredProve/CredVerify for showing of credentials as:

Setup(1𝜆, 1𝑡 , 1ℓ) → (pp, skCA, pkCA): Takes as input the security
parameters 𝜆, an upper bound 𝑡 for the cardinality of commit-

ted sets and a depth (i.e., level) parameter ℓ > 1. It generates

the public parameters pp for the system as well as a signing

key skCA and public key pkCA for all 𝑖 ∈ [ℓ] for CA. Outputs
the pp and CA key pair (pp, skCA, pkCA). pp will be implicitly

input to all algorithms.

KeyGen(pp) → (pk, sk): Generates a key pair (pk, sk), where sk
is referred to the user’s secret key, while pk is a public key (or

an initial pseudonym).

NymGen(pk) → (nym, aux): Takes as input a user’s public key pk,
and outputs a pseudonym nym for this user and the auxiliary

information aux (randomness) needed to use nym.

Issuing a root credential:
[CreateCred(𝐿′,A, skCA) ↔ ReceiveCred(pkCA, sku,A)] → (cred,

(®𝐶, ®𝑂), dk𝐿′): This is an interactive protocol between a user

(issuer) who is known by nymu and CA. The common inputs

are the pp, the CA ’s public key pkCA and the attribute set A.
CA creates a root credential, i.e. the (powerful) delegatable

credential for a set commitment 𝐶 corresponding to the at-

tribute set A and the related opening information 𝑂 as well

as a delegatable key dk𝐿′ regarding the level 𝐿′ for a user
nymu (nymu is sent to the CA), rooted at pkCA.

Issuing/delegating a credential:
[IssueCred(pkCA, dk𝐿′, sku, credu, 𝐴𝑙 , 𝐿′′) ↔ ReceiveCred(pkCA,

skr, 𝐴𝑙)] → (credr, dk′𝐿′′): It is an interactive protocol between

an issuer who is known by nymu and runs the IssueCred al-

gorithm, and a receiver, who is known by nymr and runs the

ReceiveCred side. The common inputs are the pp, CA ’s public

497

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

key pkCA, and attribute set 𝐴𝑙 . Also, the issuer takes as in-

put the issuer’s secret key sku and his own credential credu
(a signature) together with all information associated with it

(e.g. A, the delegatable key dk𝐿′ , the pseudonym nymu and

its associated auxiliary information (randomness) aux𝑢), and
(optionally) a level 𝐿′′ < 𝐿′ (if not set 𝐿′′ := 𝐿′). The receiver
takes as input her own secret key skr, and creates a nymr (and

sends to nymu), and the auxiliary information auxr associated
with her pseudonym nymr. At the end of the protocol, the

receiver side outputs her credential credr that is issued for

A′ = (A, 𝐴𝑙) and dk′
𝐿′′ (if further delegation is allowed) or ⊥.

Showing of a credential:
[CredProve(pkCA, skP, nymP, auxP, credP, 𝐷) ↔ CredVerify(pkCA,

nymP, 𝐷)] → (0, 1): It is an interactive protocol among a

prover, who proves possession of a credential and runs the

CredProve side of the protocol, and a verifier, who runs the

CredVerify side. The common inputs are the pp, the CA ’s pub-

lic key pkCA, and subset attributes that needed to be disclosed

𝐷 . The prover takes as input his user secret skP and his cre-

dential together with all information associated with it (i.e., A,
the prover’s pseudonym nymP and associated auxiliary infor-

mation auxP). The verifier takes common inputs and receives

nymP, output 1 if it accepts the proof of possession a credential

for 𝐷 and 0 otherwise.

Note that the nym’s can be derived from the respective secret key

and algorithms (KeyGen, NymGen), we avoid passing nym’s as an

explicit input whenever possible.

Definition 4.2 (Correctness of DAC). DAC is correct if Setup,
KeyGen, NymGen, CreateCred, and issuing/receiving protocols

are executed correctly on honestly generated inputs, then in an

honest execution of the proving/verifying protocol, the verifier will
accept the credential cred with probability 1.

4.1 Security of DAC
We define our security model based on the game-based framework

in [23], with some modifications to harmonize their definition with

DAC. A has access to oracles that describe the adversary’s power

and the possible ways to interact with the system. Briefly, A can

perform the following actions: corrupt users using OCorrupt, ob-
tain a root credential from CA using ORootIss, corrupt a CA and

issue a root credential using ORootObt, request credentials from a

delegator using OIssue, corrupt a delegator and issue a credential

using OObtain, and interact with provers in showing protocol by

OCredProve. Due to space constraints, we defer a detailed descrip-

tion of the oracles to Appendix D.3.

Anonymity. Anonymity requires that a malicious verifier cannot

distinguish between any two users. The adversary has adaptive

access to an oracle that on the input of two distinct user indexes 𝑖0
and 𝑖1, acts as one of the two credential owners (depending on bit

𝑏) in the verification algorithm.

Unforgeability. Unforgeability requires that no adversary can con-

vince a verifier into accepting a credential for a set of attributes for

which he does not possess credentials for.

We provide a more comprehensive discussion and formally de-

fine the unforgeability and anonymity games in Appendix D.3.

4.2 Construction of DAC
We first give an intuition of our construction. To obtain a root

credential from a CA, a user needs to send one of his pseudonyms

to the CA and use some mechanism to authenticate with the real

identity. Latter is outside of the protocol and omitted here. The

initial nym is viewed as a user public key pk in the SPSEQ-UC
scheme Σ, one can always drive a new nym using NymGen, which
calls RndmzCpk of Σ to randomize the nym, and the respective

signature can be adapted to the randomized nym. CA then creates

a root credential (signature of Σ) on a vector of two commitments

and a delegation key. Regarding these first two commitments in

CreateCred protocol, we can assume the first dummy commitment

for a fixed set𝐴1 (that is used by all credentials and are never shown

in practice) and the second commitment holds the initial attribute

set 𝐴2. We only require this restriction for the root credential.

Via the IssueCred protocol, users U can then delegate their cre-

dentials to another user R using the delegatable key. U needs to

derive a signature on R’s secret key skr without being given the

key directly. This is achieved by removing U’s pseudonym nymu
and switching to R’s pseudonym nymr using ConvertSig of Σ and

adding any additional attribute set 𝐴𝑖 using ChangeRel of Σ. To
show a credential, a user U randomizes the credential 𝜎u and nymu
using ChangeRep of Σ and providing a ZKPoK that demonstrates

that the secret key and randomness sku, aux𝑢 belong to the new

(randomized) nymu along with opening subsets of the attributes 𝐷

using the CSCA scheme.

We provide our DAC construction in Fig 2. It is based on our

SPSEQ-UC signature (denoted by Σ) from Section 3.3 and theCSCA
scheme from Section 3.4. We use the following notation: Assume

attribute universe U = 𝑆SC, A = ®𝑀 , the updatable key as a dele-

gatable key uk𝑘′ = dk𝐿′ and 𝑘 ′ = 𝐿′ + 1 and the root authority’s

public key pkCA = vk. Then each credential is parameterized with

a vector A = (𝐴1, . . . , 𝐴𝑘), where 𝐴𝑖 ⊆ U is an attribute set and

consider the relation in Definition 3.2 for attributes which defines

how a user can use their credentials. For the sake of compactness,

we write ZKPoK(𝑤, 𝑥) or NIZK(𝑤, 𝑥) for a (non)-interactive zero-
knowledge proof of knowledge of witness𝑤 for statement 𝑥 and

ZKPoK(𝑤, 𝑥) = 1 if verifier accepts (cf. Appendix A.2 for a formal

treatment). In Fig 2, we replace SC by CSCA (cf. Section 3.4 and its

construction in Appendix B) to improve the communication band-

width by aggregating witnesses and also verification efficiency due

to batching of pairing equations. It also allows creating a set com-

mitment for openings ®𝜌 in the group as 𝑃 ®𝜌 . We stress that CSCA is

fully compatible with SC and provides identical functionality.

Theorem 4.3. The DAC construction in Fig 2 is correct, unforge-
able, and anonymous.

The proof, which is based on our core SPSEQ-UC using SC,
is presented in Appendix E.1. Unforgeability is essentially based

on the unforgeability of SPSEQ-UC and anonymity essentially

follows from the privacy properties of SPSEQ-UC and the DDH
assumption.

4.3 Discussion of Various Aspects
We also discuss various aspects of our DAC construction when it

comes to implementation and supported features.

498

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

Setup(1𝜆, 1𝑡 , 1ℓ) : Pick 𝛼 ← Z𝑝 and run ppΣ ← Σ.Setup(1𝜆, 1𝑡 , 1(ℓ+1) ;𝛼) . Generate a key pair (skCA, pkCA) for CA as (vk, sk) ← Σ.KeyGen(ppΣ) , and set pkCA = (vk, 𝑃𝛼) ,
and skCA = (sk, 𝛼) , and run 𝜋CA ← NIZK(skCA, pkCA) . Output pp = (ppΣ, pkCA, 𝜋CA) . The attribute space is U = 𝑆ppΣ of ppΣ .

KeyGen(pp) : Pick 𝑤u ← Z∗𝑝 , set pku ← 𝑃𝑤u
and sku = 𝑤u , and return (sku, pku) .

NymGen(pku) : Pick randomness𝜓, 𝜒 ← Z∗𝑝 , compute nymu = pk′u ← Σ.RndmzPK(pku,𝜓, 𝜒) , set auxu = (𝜒,𝜓) , and output (nymu, auxu) .
Issuing a root credential [CreateCred(𝐿′,A, skCA) ↔ ReceiveCred(pkCA, sku,A)] → (cred, (®𝐶, ®𝑂), dk𝐿′) :

U picks 𝜌 𝑗 ← Z∗𝑝 , sends ((𝑃𝜌𝑗) 𝑗∈[2] , nymu,A = (𝐴1, 𝐴2)) , to CA and runs ZKPoK(®𝜌, 𝑃 ®𝜌) with CA.

CA checks if proofs are correct, then runs (𝜎, (®𝐶, ®𝑂), uk𝑘′) ← Σ.Sign(sk,A, 𝐿′, pku; (𝑃
𝜌𝑗) 𝑗∈[2]) , where (®𝐶, ®𝑂) ← CSCA.Commit2 (𝐴𝑖 , 𝛼, 𝑃

𝜌𝑗)𝑖∈[2] and nymu = pku . Sets
dk𝐿′ = uk𝑘′ and outputs (𝜎, dk𝐿′) as well as (®𝐶, ®𝑂) .

U checks if Σ.Verify(pkCA, pku, ®𝐶,𝜎, (®𝑇, ®𝑈)) = 1 ∧ Σ.UKVerify(pkCA, dk𝐿′ , 𝐿′, 𝜎) = 1, where (®𝑇, ®𝑈) = (A, ®𝑂) , sets ®𝑂 = ®𝜌 and runs (𝜎′, (®𝐶′, ®𝑂′), dk′
𝐿′ , nym

′
u, 𝜒) ←

Σ.ChangeRep(nymu, dk𝐿′ , (®𝐶, ®𝑂), 𝜎, 𝜇,𝜓) for 𝜇,𝜓 ← Z∗𝑝 , update auxu with 𝜒,𝜓 and saves a credential credu = 𝜎′, as well as (dk′
𝐿′ ,
®𝐶′, ®𝑂′) .

Issuing/delegating a credential (an issuer U and a receiver R) [IssueCred(pkCA, dk𝐿′ , sku, credu, 𝐴𝑙 , 𝐿
′′) ↔ ReceiveCred(pkCA, skr, 𝐴𝑙)] → (credr, dk′𝐿′′) :

On input (nymr, 𝐴𝑙 , credu = 𝜎, dk𝐿′ , (A, ®𝐶, ®𝑂)) , U prepares a delegated credential for nymr and A
′ = (A, 𝐴𝑙) :

• Run 𝜎′ ← Σ.ConvertSig(vk, sku, sku′ , 𝜎) with R, run (𝜎′′, (®𝐶′,𝑂𝑙), uk𝑘′′) ← Σ.ChangeRel(𝑀𝑙 , 𝜎
′, ®𝐶, uk𝑘′ , 𝐿′′) , where 𝐿′′ is a level, uk𝑘′ = dk𝐿′ , uk𝑘′′ = dk𝐿′′

and𝑀𝑙 = 𝐴𝑙 for
®𝐶′ = (®𝐶,𝐶𝑙) .

• Send (𝜎′′, ®𝐶′, ®𝑂′ = (®𝑂,𝑂𝑙)) and optionally dk𝐿′′ = uk𝑘′′ to R.
R checks Σ.Verify(pkCA, nymr,

®𝐶′, 𝜎′′, (A′, ®𝑂′)) = 1, then for 𝜇,𝜓 ← Z∗𝑝 runs (𝜎′′′, (®𝐶′′, ®𝑂′′), dk′
𝐿′′ , pk

′
u, 𝜒) ← Σ.ChangeRep(nymr, dk𝐿′′ , (®𝐶′, ®𝑂′), 𝜎′′, 𝜇,𝜓) and updates

auxr with 𝜒,𝜓 and stores (credr = 𝜎′′′, (®𝐶′′, ®𝑂′′)) and the delegatable key dk′
𝐿′′ .

Showing of a credential (a prover P and a verifier V) CredProve(pkCA, skP, nymP, auxP, credP, 𝐷) ↔ CredVerify(pkCA, nymP, 𝐷) → (0, 1) :
On input a credential 𝜎 = credr for nymr and 𝐷 = {𝑑 𝑗 } 𝑗∈[𝑘] , P prepares a proof for nymP and {𝐴 𝑗 } 𝑗∈[𝑘] :

• Run (𝜎′, (®𝐶′, ®𝑂′), pk′u, 𝜒) ← Σ.ChangeRep(pku,⊥, (®𝐶, ®𝑂), 𝜎, 𝜇,𝜓) for 𝜇,𝜓 ← Z∗𝑝 , where 𝜎 = credr and pku = nymr . Set 𝜎
′ = credP and pk′u = nymP , and update

auxP with𝜓, 𝜒 .

• Run𝑊𝑗 ← CSCA.OpenSubset(𝐶 𝑗 , 𝐴 𝑗 ,𝑂 𝑗 , 𝑑 𝑗) for 𝑗 ∈ [𝑘]. Aggregate witness 𝜋 ← CSCA.AggregateAcross({𝐶 𝑗 , 𝑑 𝑗 ,𝑊𝑗 } 𝑗∈[𝑘]) .
• Send (credP, ®𝐶′, nymP, 𝜋) to V, and run ZKPoK((skP, auxP), nymP) with V.

V outputs 1, if ZKPoK((skP, auxP), nymP) verifies and Σ.Verify(pkCA, pku, ®𝐶,𝜎, (𝑇, ®𝑈)) = 1, where 𝜎 = credP ,𝑇 = 𝐷 , ®𝑈 = 𝜋 and pku = nymP . Else output 0.

Figure 2: Our DAC scheme (Σ denotes our SPSEQ-UC scheme from Section 3.3).

On compactness of credentials. Credentials are constant-size as
the signature is constant-size. Although a delegation key depends

on parameter 𝑘 , it only applies to intermediate issuers and not to

end-users who do not hold such a key. However, we should consider

the commitment randomness as auxiliary data. Each commitment

randomness represents a scalar that allows recomputing the com-

mitment. So it is sufficient to store the randomness vector that is

the length of 𝑂 (𝐿) for a fixed (and typically very small) 𝐿.

On (non-)interactive zero-knowledge proofs. In Fig 2, we use

a NIZK proof in Setup and interactive ones elsewhere. To ensure

the unforgeability of DAC, we need to extract from every sequen-

tial query to ORootIss. Thus as in [23] we rely on black-box ex-

tractable interactive ZKPoK to avoid potential blow-ups in rewind-

ing. Straight-line extractable NIZK [20, 32] are an alternative op-

tion at the cost of additional computation. While technically not

required, we also use interactive ZKPoK for showing a credential.

Sharing of credentials. As inherent in (D)AC systems, we cannot

prevent users from sharing their credentials with others. In our

case this also covers switching them to other keys (as this is a core

functionality in our approach). It is possible to prevent the switch-

ing of keys by ordinary users in the delegation chain by removing

𝑋0 from the vk (thus pkCA) and only handing 𝑥0 to delegators as a

special delegation key. Preventing this type of sharing is however

possible by using secure elements for secret key operations (cf.

[28]). An interesting open question is whether one can extend the

user public keys to define equivalence classes (as done in [17]) in a

way that one can always compute a canonical representative of the

respective secret key class. This secret could be tied to a valuable

secret outside the system to disincentivize sharing (cf. [8]).

Restricting power of delegation. For a vector of set commitments

and openings (®𝐶, ®𝑂) corresponding to a credential, a delegator can

decide to withhold elements from ®𝑂 . This prevents the delegatee
from being able to open the corresponding commitments and thus

showing the respective attributes.

5 IMPLEMENTATION AND EVALUATION
We now present an evaluation of our our SPSEQ-UC and DAC
schemes implement as a Python library

10
. Our implementation

is based upon the bpliblibrary11 and petlib
12

with OpenSSL bind-
ings

13
. It uses the BN256 curve, providing efficient type 3 pairings

at around 100 bit security. We also want to point to an independent

Rust implementation of our scheme
14
.

We present a benchmark of SPSEQ-UC (including the cross-

commitment aggregation provided by the CSCA scheme) and the

DAC scheme described in Section 4. DAC is based upon Schnorr-

style discrete-logarithm zero-knowledge proofs and usingDamgard’s

technique [16] for obtaining malicious-verifier interactive zero-

knowledge proofs of knowledge during the showing and issu-

ing/delegating of credentials. It also uses NIZK proofs obtained

via the Fiat-Shamir heuristic for proofs of knowledge of pkCA. Our
measurements have been performed on an Intel Core i5-6200U CPU

at 2.30GHz, 16GB RAM running Ubuntu 20.04.3. For our evalua-

tion, we take the execution time of each algorithm for the following

10
https://github.com/mir-omid/DAC-from-EQS

11
https://github.com/gdanezis/bplib

12
https://github.com/gdanezis/petlib

13
https://github.com/dfaranha/OpenPairing

14
https://github.com/docknetwork/crypto/tree/main/delegatable_credentials.

499

https://github.com/mir-omid/DAC-from-EQS
https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing
https://github.com/docknetwork/crypto/tree/main/delegatable_credentials

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

parameters: ℓ represents an upper bound for the length of commit-

ment vector, 𝑡 an upper bound for the cardinality of committed

sets, 𝑛𝑖 < 𝑡 is the number of attributes in each attribute set 𝐴𝑖 in

the respective commitment 𝐶𝑖 of the commitment vector, which

we set to be the same for every level (each commitment) for sim-

plicity. Moreover, 𝑘 represents the length of attribute set vector

A = (𝐴1, . . . , 𝐴𝑘) and thus commitment vector ®𝐶 . The number of

attribute sets which can be delegated is 𝑘 ′. The results are shown

Table 2: Running times for SPSEQ-UC and DAC (ms)

SPSEQ-UC DAC

Se
tu
p

K
ey
G
en

Si
gn

C
ha
ng

eR
ep

/
uk

C
ha
ng

eR
ep

C
ha
ng

eR
el

C
on

ve
rt
Si
g

Ve
ri
fy

C
re
at
eC

re
d

D
el
eg
Is
su
e

C
re
dP

ro
ve

C
re
dV

er
ify

𝜇AV 385 21 73 50 6 15 2 38 82 21 35 195

SD ±3 ±1 ±2 ±1 ±2 ±2 ±1 ±1 ±1 ±2 ±2 ±3

in Table 2, where 𝜇AV is the mean and SD the standard deviation

of 100 executions of each algorithm. Note that in each delegation

one additional attribute set is added. More precisely, in Table 2,

we set the above parameters as 𝑡 = 25, ℓ = 15, 𝑘 = 4, 𝑘 ′ = 7 and

𝑛 = 10 to cover a broad spectrum of applications. ChangeRep/uk
represents the randomization of a signature along with uk𝑘′ and
ChangeRep represents the randomization of signatures only. In the

CredProve andCredVerify protocols, we use 𝑑𝑖 to denote the subset
of each attribute set 𝐴𝑖 that will be disclosed and 𝐷 all 𝑑𝑖 ’s, i.e.,

𝐷 = (𝑑𝑖)𝑖∈[𝑘] . We thereby assume that each subset 𝑑𝑖 contains ap-

proximately half of the attributes in 𝐴𝑖 . Let us provide an example

to clarify our notation: Assume 𝑘 = 2, we have two commitments

𝐶1,𝐶2 (for simplicity we can say each commitment is the output

of one delegation level e.g., 𝐿 = 2 is the delegation level in DAC)
such that each includes 5 attributes. Then 𝐷 = (𝑑1, 𝑑2) means that

each 𝑑1 and 𝑑2 includes two attributes of sets of 𝐶1 and 𝐶2, respec-

tively and |𝐷 | = 4. By that, we say the total number of attributes is

| ®𝑀 | = |A| = 𝑘 · 𝑛. We use this semantics in Fig 3 and 4.

In Fig 3 we show the effect on the computation time of SPSEQ-UC
when increasing the parameters (𝑘, 𝑘 ′, 𝑛). Since the Setup algo-

rithm runs only once, we do not consider the computation time

of Setup. We measure the computation time for a message (or an

attribute) set of size 𝑛 from 5 to 20, 𝑘 from 2 to 10 (so that the total

messages | ®𝑀 | is from 10 to 200), and 𝑘 ′ from 4 to 20. Since the

runtime of the algorithms KeyGen, ChangeRep, and ConvertSig is

independent of the parameters (𝑘, 𝑘 ′, 𝑛) we omit them.

Figure 3: The running times of SPSEQ-UC (ms)

In Fig 4 we show the effect of increasing the parameters (𝑘, 𝑘 ′, 𝑑, 𝑛)

on the computation time of DAC such that 𝑘 = 𝐿 and 𝑘 ′ = 𝐿′ here
mean for levels. We measure the computation time of CredProve
and CredVerify protocols for 𝑛, 𝐿 and 𝑑 (a disclosed attribute sub-

set) varying from 5 to 16, 2 to 6 and 2 to 5, respectively. The total

disclosed attributes length |𝐷 | = 𝑑 ·𝐿 and the total attributes length

|A| = 𝑛 · 𝐿 range from 4 to 30 and 10 to 96, respectively. The

CredProve and CredVerify are independent of 𝐿′. Meanwhile, the

computation time of CreateCred and IssueCred change when 𝐿′

varies from 4 to 16 in addition to being dependent on 𝑛 and 𝐿. These

algorithms are independent of 𝑑 . As can be seen in Fig 4, the pairing

(a) The running times of IssueCred (b) The running times of CredProve

Figure 4: The running times of DAC (ms)

product operations in the verification produce the largest overhead.

Though, in absolute terms verification is still highly efficient. For

example, it is less than a second, in the maximum parameters set-

ting with almost 100 attributes and disclosing 30 attributes. This

efficiency makes our implementation also suitable for time-critical

applications like public transportation or ticketing.

(a) The running times of CredProve (ms) (b) The running times ofCredVerify (ms)

Figure 5: Comparison between our DAC and CDD (n = 4)

Comparison with CDD [5, 7]. In Fig. 5, we present an approx-

imate comparison of running time between our DAC and CDD,

which has recently been implemented
15

by [5]. Their implemen-

tation is in Go and, similar to ours, uses the BN256 curve. In [5]

running times for proving and verifying credentials from bench-

marks on a c2-standard-60 GCE VM running Ubuntu 18.04 (60

vCPUs, Intel Cascade Lake 3.1 GHz, 240 GB RAM) are provided.

To make the approaches comparable, we set parameters as in [5]

as follows: 𝑛 = 4 attributes per level (the maximum in [5]) and 𝐿

for levels from 2 to 10. We note that the machine used to obtain

the benchmarks in [5] is much more powerful than the one used

to benchmark our DAC. But we still significantly outperform CDD.

We note that benchmarking them on the same platform will only

increase the computational advantage of our approach.

15
https://github.com/IBM/dac-lib

500

https://github.com/IBM/dac-lib

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

ACKNOWLEDGMENTS
We are very grateful to the anonymous reviewers for their many

helpful comments and suggestions. We also want to thank Scott

Griffy and Lovesh Harchandani for helpful feedback on the paper

and pointing out a number of typos. This work has in part been

carried out within the scope of Digidow, the Christian Doppler

Laboratory for Private Digital Authentication in the Physical World

and has partially been supported by the LIT Secure and Correct

Systems Lab. We gratefully acknowledge financial support by the

Austrian Federal Ministry for Digital and Economic Affairs, the Na-

tional Foundation for Research, Technology and Development, the

Christian Doppler Research Association, 3 Banken IT GmbH, ekey

biometric systems GmbH, Kepler Universitätsklinikum GmbH, NXP

Semiconductors Austria GmbH and Co KG, Österreichische Staats-

druckerei GmbH, and the State of Upper Austria. Daniel Slamanig

was supported by the European commission through ECSEL Joint

Undertaking (JU) under grant agreement n
◦
826610 (Comp4Drones),

the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement n
◦
861696 (Labyrinth), the Horizon

Europe research programme under grant agreement n
◦
101073821

(Sunrise), and by the Austrian Science Fund (FWF) and netidee

SCIENCE under grant agreement P31621-N38 (Profet). Views and

opinions expressed are however those of the author(s) only and do

not necessarily reflect those of the European Union. Neither the

European Union nor the granting authority can be held responsible

for them.

REFERENCES
[1] Balthazar Bauer and Georg Fuchsbauer. 2020. Efficient Signatures on Random-

izable Ciphertexts. In SCN 20 (LNCS, Vol. 12238), Clemente Galdi and Vladimir

Kolesnikov (Eds.). Springer, Heidelberg, 359–381. https://doi.org/10.1007/978-3-

030-57990-6_18

[2] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-

skaya, and Hovav Shacham. 2009. Randomizable Proofs and Delegatable Anony-

mous Credentials. In CRYPTO 2009 (LNCS, Vol. 5677), Shai Halevi (Ed.). Springer,
Heidelberg, 108–125. https://doi.org/10.1007/978-3-642-03356-8_7

[3] Johannes Blömer and Jan Bobolz. 2018. Delegatable Attribute-Based Anony-

mous Credentials from Dynamically Malleable Signatures. In ACNS 18 (LNCS,
Vol. 10892), Bart Preneel and Frederik Vercauteren (Eds.). Springer, Heidelberg,

221–239. https://doi.org/10.1007/978-3-319-93387-0_12

[4] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin.

2021. Issuer-Hiding Attribute-Based Credentials. In CANS 2021 (LNCS, Vol. 13099),
Mauro Conti, Marc Stevens, and Stephan Krenn (Eds.). Springer, 158–178.

[5] Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann.

2021. Anonymous Transactions with Revocation and Auditing in Hyperledger

Fabric. In Cryptology and Network Security - 20th International Conference, CANS,
Vol. 13099. Springer, 435–459. https://doi.org/10.1007/978-3-030-92548-2_23

[6] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. 2020. Efficient polynomial

commitment schemes for multiple points and polynomials. Cryptology ePrint

Archive, Report 2020/081. https://eprint.iacr.org/2020/081.

[7] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. 2017. Practical

UC-Secure Delegatable Credentials with Attributes and Their Application to

Blockchain. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal

Malkin, and Dongyan Xu (Eds.). ACM Press, 683–699. https://doi.org/10.1145/

3133956.3134025

[8] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-

transferable Anonymous Credentials with Optional Anonymity Revocation. In

EUROCRYPT 2001 (LNCS, Vol. 2045), Birgit Pfitzmann (Ed.). Springer, Heidelberg,

93–118. https://doi.org/10.1007/3-540-44987-6_7

[9] Jan Camenisch and Anna Lysyanskaya. 2003. A Signature Scheme with Efficient

Protocols. In SCN 02 (LNCS, Vol. 2576), Stelvio Cimato, Clemente Galdi, and

Giuseppe Persiano (Eds.). Springer, Heidelberg, 268–289. https://doi.org/10.1007/

3-540-36413-7_20

[10] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In CRYPTO 2004 (LNCS, Vol. 3152), Matthew

Franklin (Ed.). Springer, Heidelberg, 56–72. https://doi.org/10.1007/978-3-540-

28628-8_4

[11] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.

2013. Succinct Malleable NIZKs and an Application to Compact Shuffles. In

TCC 2013 (LNCS, Vol. 7785), Amit Sahai (Ed.). Springer, Heidelberg, 100–119.

https://doi.org/10.1007/978-3-642-36594-2_6

[12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.

2014. Malleable Signatures: New Definitions and Delegatable Anonymous Cre-

dentials. In IEEE 27th Computer Security Foundations Symposium, CSF 2014,
Vienna, Austria, 19-22 July, 2014. IEEE Computer Society, 199–213. https:

//doi.org/10.1109/CSF.2014.22

[13] Melissa Chase and Anna Lysyanskaya. 2006. On Signatures of Knowledge. In

CRYPTO 2006 (LNCS, Vol. 4117), Cynthia Dwork (Ed.). Springer, Heidelberg, 78–96.
https://doi.org/10.1007/11818175_5

[14] Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The Signal Private

Group System and Anonymous Credentials Supporting Efficient Verifiable En-

cryption. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni

Vigna (Eds.). ACM Press, 1445–1459. https://doi.org/10.1145/3372297.3417887

[15] Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. 2022. Improved

Constructions of Anonymous Credentials from Structure-Preserving Signatures

on Equivalence Classes. In PKC 2022 (LNCS, Vol. 13177), Goichiro Hanaoka, Junji

Shikata, and Yohei Watanabe (Eds.). Springer, 409–438.

[16] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. 2000. Efficient Zero-

Knowledge Proofs of KnowledgeWithout Intractability Assumptions. In PKC 2000
(LNCS, Vol. 1751), Hideki Imai and Yuliang Zheng (Eds.). Springer, Heidelberg,

354–372. https://doi.org/10.1007/978-3-540-46588-1_24

[17] Elizabeth C. Crites and Anna Lysyanskaya. 2019. Delegatable Anonymous Cre-

dentials from Mercurial Signatures. In CT-RSA 2019 (LNCS, Vol. 11405), Mitsuru

Matsui (Ed.). Springer, Heidelberg, 535–555. https://doi.org/10.1007/978-3-030-

12612-4_27

[18] Elizabeth C. Crites and Anna Lysyanskaya. 2021. Mercurial Signatures for

Variable-Length Messages. PoPETs 2021, 4 (Oct. 2021), 441–463. https://doi.

org/10.2478/popets-2021-0079

[19] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo

Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.

PoPETs 2018, 3 (2018), 164–180. https://doi.org/10.1515/popets-2018-0026

[20] Marc Fischlin. 2005. Communication-Efficient Non-interactive Proofs of Knowl-

edge with Online Extractors. In CRYPTO 2005 (LNCS, Vol. 3621), Victor Shoup
(Ed.). Springer, Heidelberg, 152–168. https://doi.org/10.1007/11535218_10

[21] Georg Fuchsbauer. 2011. Commuting Signatures and Verifiable Encryption. In EU-
ROCRYPT 2011 (LNCS, Vol. 6632), Kenneth G. Paterson (Ed.). Springer, Heidelberg,

224–245. https://doi.org/10.1007/978-3-642-20465-4_14

[22] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2015. Practical Round-

Optimal Blind Signatures in the Standard Model. In CRYPTO 2015, Part II (LNCS,
Vol. 9216), Rosario Gennaro and Matthew J. B. Robshaw (Eds.). Springer, Heidel-

berg, 233–253. https://doi.org/10.1007/978-3-662-48000-7_12

[23] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-

Preserving Signatures on Equivalence Classes and Constant-Size Anonymous

Credentials. Journal of Cryptology 32, 2 (April 2019), 498–546. https://doi.org/10.

1007/s00145-018-9281-4

[24] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. 2020. Point-

proofs: Aggregating Proofs for Multiple Vector Commitments. In ACM CCS 2020,
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press,

2007–2023. https://doi.org/10.1145/3372297.3417244

[25] Jens Groth. 2015. Efficient Fully Structure-Preserving Signatures for Large Mes-

sages. In ASIACRYPT 2015, Part I (LNCS, Vol. 9452), Tetsu Iwata and Jung Hee

Cheon (Eds.). Springer, Heidelberg, 239–259. https://doi.org/10.1007/978-3-662-

48797-6_11

[26] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for

Bilinear Groups. In EUROCRYPT 2008 (LNCS, Vol. 4965), Nigel P. Smart (Ed.).

Springer, Heidelberg, 415–432. https://doi.org/10.1007/978-3-540-78967-3_24

[27] Christian Hanser and Daniel Slamanig. 2014. Structure-Preserving Signatures

on Equivalence Classes and Their Application to Anonymous Credentials. In

ASIACRYPT 2014, Part I (LNCS, Vol. 8873), Palash Sarkar and Tetsu Iwata (Eds.).

Springer, Heidelberg, 491–511. https://doi.org/10.1007/978-3-662-45611-8_26

[28] Lucjan Hanzlik and Daniel Slamanig. 2021. With a Little Help from My Friends:

Constructing Practical Anonymous Credentials. In CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic
of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and

Elaine Shi (Eds.). ACM, 2004–2023. https://doi.org/10.1145/3460120.3484582

[29] ISO/IEC 18013-5. 2021. Personal identification – ISO-compliant driving licence –

Part 5: Mobile driving licence (mDL) application. International Standard.

[30] Malika Izabachène, Benoît Libert, and Damien Vergnaud. 2011. Block-Wise

P-Signatures and Non-interactive Anonymous Credentials with Efficient At-

tributes. In 13th IMA International Conference on Cryptography and Coding (LNCS,
Vol. 7089), Liqun Chen (Ed.). Springer, Heidelberg, 431–450.

[31] Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian. 2019. Structure-

Preserving Signatures on Equivalence Classes from Standard Assumptions. In

ASIACRYPT 2019, Part III (LNCS, Vol. 11923), Steven D. Galbraith and Shiho Moriai

(Eds.). Springer, Heidelberg, 63–93. https://doi.org/10.1007/978-3-030-34618-8_3

501

https://doi.org/10.1007/978-3-030-57990-6_18
https://doi.org/10.1007/978-3-030-57990-6_18
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-319-93387-0_12
https://doi.org/10.1007/978-3-030-92548-2_23
https://eprint.iacr.org/2020/081
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/11818175_5
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1007/978-3-540-46588-1_24
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.2478/popets-2021-0079
https://doi.org/10.2478/popets-2021-0079
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-642-20465-4_14
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1007/978-3-030-34618-8_3

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

[32] Yashvanth Kondi and abhi shelat. 2022. Improved Straight-Line Extraction in the

Random Oracle Model With Applications to Signature Aggregation. Cryptology

ePrint Archive, Report 2022/393. https://ia.cr/2022/393.

[33] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. 2020. Anony-

mous Tokens with Private Metadata Bit. In CRYPTO 2020, Part I (LNCS, Vol. 12170),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 308–336.

https://doi.org/10.1007/978-3-030-56784-2_11

[34] Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels, and Srdjan Capkun.

2018. DelegaTEE: Brokered Delegation Using Trusted Execution Environments.

In 27th USENIX Security. 1387–1403.
[35] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, 111–126.

https://doi.org/10.1007/978-3-319-29485-8_7

[36] Olivier Sanders. 2020. Efficient Redactable Signature and Application to Anony-

mous Credentials. In PKC 2020, Part II (LNCS, Vol. 12111), Aggelos Kiayias, Markulf

Kohlweiss, Petros Wallden, and Vassilis Zikas (Eds.). Springer, Heidelberg, 628–

656. https://doi.org/10.1007/978-3-030-45388-6_22

[37] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems.

In EUROCRYPT’97 (LNCS, Vol. 1233), Walter Fumy (Ed.). Springer, Heidelberg,

256–266. https://doi.org/10.1007/3-540-69053-0_18

A ADDITIONAL PRELIMINARIES
A.1 Set Commitments

Definition A.1 (Set commitment [23]). A set commitment scheme

SC consists of the following PPT algorithms.

SC.Setup(1𝜆, 1𝑡) → pp
sc
: This probabilistic algorithm takes as

input a security parameter 𝜆 and an upper bound 𝑡 for the car-

dinality of committed sets, both in unary form. It outputs public

parameters pp
sc
(which include a description of an efficiently

samplable message space 𝑆SC containing sets of maximum

cardinality 𝑡). pp
sc
will be an implicit input to all algorithms.

SC.Commit(𝑆) → (𝐶,𝑂): This probabilistic algorithm takes as

input a non-empty set 𝑆 ∈ 𝑆SC. It outputs a commitment 𝐶 to

set 𝑆 and opening information 𝑂 .

SC.Open(𝐶, 𝑆,𝑂) → 0/1: This deterministic algorithm takes as

input a commitment𝐶 , a set 𝑆 and opening information𝑂 . If𝑂

is a valid opening of𝐶 to 𝑆 ∈ 𝑆SC, it outputs 1, and 0 otherwise.
SC.OpenSubset(𝐶, 𝑆,𝑂,𝑇) → 𝑊 : Takes as input a commitment

𝐶 , a set 𝑆 ∈ 𝑆SC, opening information𝑂 and a nonempty set𝑇 .

It returns ⊥ if 𝑇 ⊈ 𝑆 ; else it returns a witness𝑊 for 𝑇 being a

subset of the set 𝑆 committed to in 𝐶 .

SC.VerifySubset(𝐶,𝑇 ,𝑊) → 0/1 : This deterministic algorithm

takes as input a commitment 𝐶 , a non-empty set 𝑇 and a wit-

ness𝑊 . If𝑊 is a witness for 𝑇 being a subset of the set com-

mitted to in 𝐶 , it outputs 1, and 0 otherwise.

We refer the reader to [23] for a formal definition of the correctness,

binding, hiding and subset-soundness notions.

A.2 Zero-Knowledge Proofs of Knowledge
We define zero-knowledge proofs of knowledge (ZKPoK) and dis-

cuss non-interactive versions thereof (NIZK). In our DAC, we re-
quire protocols to prove knowledge of discrete logarithm relations.

This can be efficiently realized by relying on Sigma protocols (i.e.,

three-round public-coin honest-verifier zero-knowledge proofs of

knowledge). Sigma protocols are efficient instantiations of ZKPoK
which can be converted to (malicious-verifier) zero-knowledge

proofs of knowledge, using Damgard’s Technique [16] and made

non-interactive using different techniques (discussed below).

ZKPoK. Let 𝐿R = {𝑥 | ∃𝑤 : (𝑥,𝑤) ∈ R} ⊆ {0, 1}∗ be a formal

language, where R ⊆ {0, 1}∗ × {0, 1}∗ is a binary, polynomial-time

(witness) relation. For such a relation, the membership of 𝑥 ∈ 𝐿R
can be decided in polynomial time (in |𝑥 |) when given a witness𝑤

of length polynomial in |𝑥 | certifying (𝑥,𝑤) ∈ R. We assume an in-

teractive protocol (P,V) between a prover P and a PPT verifierV
and denote the outcome of the protocol as (·, 𝑏) ←

(
P(·, ·),V(·)

)
where 𝑏 = 0 indicates thatV rejects and 𝑏 = 1 that it accepts the

conversation with P. We require the following properties:

Definition A.2 (Completeness). We call an interactive protocol

(P,V) for a relation R complete if for all 𝑥 ∈ 𝐿R and𝑤 such that

(𝑥,𝑤) ∈ 𝑅 we have that (·, 1) ←
(
P(𝑥,𝑤),V(𝑥)

)
with probability

1.

Definition A.3 (Zero knowledge (ZK)). An (P,V) for a language 𝐿
is ZK if for any (malicious) verifierV∗ , there exists a PPT algorithm

S (the simulator) such that:

{S(𝑥)}𝑥 ∈𝐿 ≈ {< (P,V★) (𝑥) >}𝑥 ∈𝐿,

where (P,V∗) (𝑥) shows the transcript of the communication be-

tween P andV★
on the common input 𝑥 .

Definition A.4 (Knowledge soundness). We say that (P,V) is
a proof of knowledge (PoK) relative to an NP relation R if for

any malicious prover P∗ such that (·, 1) ←
(
P∗ (𝑥),V(𝑥)

)
with

probability greater than 𝜖 there exists a PPT knowledge extractor 𝐾

(with rewinding black-box access to P∗) such that 𝐾P
∗ (𝑥) returns

a value𝑤 satisfying (𝑥,𝑤) ∈ R with probability polynomial in 𝜖 .

If all properties hold, then we denote this interactive protocol as

a zero-knowledge proofs of knowledge (ZKPoK).

Non-Interactive Zero-Knowedge Proofs (of Knowledge). One
can use the Fiat-Shamir heuristic to transform any Sigma protocol

into a non-interactive zero-knowledge proof of knowledge (NIZK).
Whenever one requires multiple-extractions in a security proof,

when having sequential executions one can use interactive ZKPoK.
It must also be noted that when one is willing to pay some extra

costs, one could instead use straight-line extractable NIZK, e.g.,
obtained via Fischlin’s transformation [20, 32] or use the “encryp-

tion to the sky paradigm” (with a public key derived via a random

oracle).

B CSCA CONSTRUCTION
Our Cross Set commitment aggregation scheme CSCA is defined

as follows:

CSCA.Setup(1𝜆, 1𝑡) → ppCSCA: On input a security parameter 𝜆

and a maximum set cardinality 𝑡 , run BG = (𝑝,G1,G2,G𝑇 , 𝑃,
𝑃, 𝑒) ← BGGen(1𝜆), choose 𝐻 : {0, 1}∗ → Z𝑝 , pick 𝛼 ← Z𝑝 ,
store 𝛼 as a trapdoor and output ppCSCA ← (BG, 𝐻, (𝑃𝛼𝑖

,

𝑃𝛼
𝑖)𝑖∈[𝑡]), which defines message space 𝑆CSCA = {𝑆 ⊂ Z𝑝 |0 <

|𝑆 | ≤ 𝑡}. ppCSCA will be an implicit input to all algorithms.

CSCA.Commit(𝑆 𝑗) → (𝐶 𝑗 ,𝑂 𝑗): On input a set 𝑆 𝑗 ∈ 𝑆SC: pick
𝜌 𝑗 ← Z𝑝 , compute 𝐶 𝑗 ← (𝑃 𝑓𝑆𝑗 (𝛼))𝜌 𝑗 ∈ G∗

1
and output

(𝐶 𝑗 ,𝑂 𝑗) with 𝑂 𝑗 ← 𝜌 𝑗 .

CSCA.Commit2 (𝑆 𝑗 , 𝛼, 𝑃𝜌 𝑗) → (𝐶 𝑗 ,𝑂 𝑗): On input a set 𝑆 𝑗 ∈ 𝑆SC,
𝛼 , and 𝑃𝜌 𝑗

: compute 𝐶 𝑗 ← (𝑃𝜌 𝑗) 𝑓𝑆𝑗 (𝛼) ∈ G∗
1
and output

(𝐶 𝑗 ,𝑂 𝑗) with 𝑂 𝑗 ←⊥.
502

https://ia.cr/2022/393
https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/3-540-69053-0_18

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

CSCA.Open(𝐶 𝑗 , 𝑆 𝑗 ,𝑂 𝑗) → 0/1: On input a commitment 𝐶 𝑗 , a set

𝑆 𝑗 , and opening 𝑂 𝑗 = 𝜌 𝑗 : if 𝐶 𝑗 ∉ G
∗
1
or 𝜌 𝑗 ∉ Z

∗
𝑝 or 𝑆 𝑗 ∉ 𝑆CSCA

then return ⊥. Otherwise if 𝑂 𝑗 = 𝜌 𝑗 and 𝐶 𝑗 = (𝑃 𝑓𝑆𝑗 (𝛼))𝜌 𝑗
,

return 1; else return 0

CSCA.OpenSubset(𝐶 𝑗 , 𝑆 𝑗 ,𝑂 𝑗 ,𝑇𝑗) →𝑊𝑗 : On input a commitment

𝐶 𝑗 , a set 𝑆 𝑗 , opening 𝑂 𝑗 and a subset 𝑇𝑗 , if CSCA.Open(𝐶 𝑗 ,

𝑆 𝑗 ,𝑂 𝑗) or 𝑇𝑗 ⊈ 𝑆 𝑗 or 𝑇𝑗 = ∅ then return ⊥. If 𝑂 𝑗 = 𝜌 𝑗 , output

𝑊𝑗 ← (𝑃 𝑓𝑆𝑗 \𝑇𝑗 (𝛼))𝜌 𝑗
.

CSCA.VerifySubset(𝐶 𝑗 ,𝑇𝑗 ,𝑊𝑗) → 0/1: On input the commitment

𝐶 𝑗 , the subset 𝑇𝑗 and the witness𝑊𝑗 : if 𝐶 𝑗 ∉ G
∗
1
or 𝑇𝑗 ∉ 𝑆SC,

return 0. Else if𝑊𝑗 ∈ G∗
1
and 𝑒 (𝑊𝑗 , 𝑃

𝑓𝑇𝑗 (𝛼)) = 𝑒 (𝐶 𝑗 , 𝑃), return
1; else 0.

CSCA.AggregateAcross({𝐶 𝑗 ,𝑇𝑗 ,𝑊𝑗 } 𝑗 ∈[𝑘]) → 𝜋 . Takes as input a

collection ({𝐶 𝑗 ,𝑇𝑗 } 𝑗 ∈[𝑘]) along with the corresponding subset
opening witnesses {𝑊𝑗 } 𝑗 ∈[𝑘] and outputs an aggregated proof

𝜋 as follows:

𝜋 :=
∏
𝑗 ∈[𝑘]

𝑊
𝑡 𝑗
𝑗
, where 𝑡 𝑗 = 𝐻 (𝑗, {𝐶 𝑗 ,𝑇𝑗 } 𝑗 ∈[𝑘]) .

CSCA.VerifyAcross({𝐶 𝑗 ,𝑇𝑗 } 𝑗 ∈[𝑘] , 𝜋) → 0/1. Checks that the fol-
lowing equation holds:∏

𝑗 ∈[𝑘]
𝑒 (𝐶 𝑗 , 𝑃

𝑡 𝑗 ·𝑍𝑆\𝑇𝑗 (𝛼)) = 𝑒 (𝜋, 𝑃𝑍𝑆 (𝛼))

where 𝑆 =
⋃

𝑗 𝑇𝑗 , and 𝑍𝑆 (𝛼) =
∏

𝑖∈𝑆 (𝛼 − 𝑖).
Randomization. We can randomize 𝜋 and commitments 𝐶 𝑗 as

(𝜋𝜇 , ®𝐶𝜇) and verification works out.

Security.We can view the set commitment from Section 2.1 used

for the cross-commitment aggregation as an instantiation of [6],

but restricted to monic polynomials. So their analysis carries over.

Note that in AggregateAcross, to be non-interactive, we aggregate

witnesses using 𝑡 𝑗 using a hash function 𝐻 modeled as a random

oracle (as done in [24]), meaning that their analysis carries over.

C THEORETICAL COMPARISON TO CDD
In this section, we compare the asymptotic efficiency of our DAC
with CDD [7].

C.1 Computational Complexity
To analyze the efficiency of our DAC scheme, we consider the

number of (multi)-exponentiations required for the IssueCred (is-

suing or delegating), CredProve (the showing of a credential), and

CredVerify (verifying a credential). We summarize the following

efficiency analysis comparing our DAC and the CDD scheme [7] in

Table 3.We use notations that are used in [7], where𝑑𝑖 and𝑢𝑖 denote

the amount of disclosed and undisclosed attributes at delegation

level 𝑖 , respectively, such that 𝑛𝑖 = 𝑑𝑖 + 𝑢𝑖 ; and 𝑋 {G𝑗

1
}, 𝑋 {G𝑗

2
}, and

𝑋 {G𝑗
𝑡 } denote 𝑋 𝑗-multi-exponentiations in the respective group;

𝑗 = 1 denotes a simple exponentiation. 𝐸𝑘 denote a 𝑘-pairing prod-

uct with 𝑘 = 1 denoting a single pairing. Assume 𝑧 = | [𝑘 + 1, 𝑘 ′] |
and 𝑘 ′′ = 𝑘 ′ (the worst case), where 𝑘 is length of message ®𝑀 and

commitment ®𝐶 vectors and 𝑛 < 𝑡 is size of a message (attributes)

set 𝑀 s.t. 𝑀𝑖 includes 𝑛𝑖 messages. Moreover, we assume that a

𝑛𝑖 number of elements for each 𝑗 ∈ [𝑧] can be delegated and put

into uk𝑘′ = dk𝐿′ . We summarize the efficiency analysis as follows,

where we also count the cost of the ®𝐶 randomization inChangeRep,
but ignore the cost of proving knowledge of the secret key, as a

Schnorr NIZK induces an insignificant cost:

CreateCred: CA creates the first level of the credential. To do this,

CA runs Sign and a user runs ChangeRep/uk𝑘′ :((
𝑘∑︁
𝑖=1

(G𝑛𝑖
1
+ G1)

)
+ G2

1
+ G1 + G𝑘+11

+
𝑧∑︁
𝑖=1

𝑛𝑖G1 + G2

)
+

(
(𝑘 + 3)G1 + G2 + G21 +

𝑧∑︁
𝑖=1

𝑛𝑖G1

)
IssueCred: Delegation of a credential includes running theConvertSig,

ChangeRel, and ChangeRep. We have:(
2G2

1

)
+

(
2(G𝑛

1
+ G1) + G21

)
+

(
(𝑘 + 3)G1 + G2 + G21

)
.

If a further delegation is needed, then the randomization of

uk𝑘′ = adds

∑𝑧
𝑖=1 𝑛𝑖G1.

CredProve: Proving possession of a credential by a user includes

ChangeRep, AggregateAcross, and OpenSubset: Let 𝐷 =

(𝑑𝑖)𝑖∈[𝑘] , we have:(
(𝑘 + 3)G1 + G2 + G21

)
+

(
G
|𝐷 |
1

)
+ ©­«
|𝐷 |∑︁
𝑖=1

(
G𝑢𝑖
1
+ G1

)ª®¬
CredVerify: The credential verification includes SPSEQ-UC.Verify

(using CSCA.VerifyAcross): Let 𝑆 =
⋃

𝑖 𝑑𝑖 , where 𝑖 ∈ [𝑘], we
have(
𝐸𝑘 + 𝐸2 + 4𝐸

)
+ ©­«𝐸 + 𝐸𝑘 + G |𝑆 |2

+
|𝐷 |∑︁
𝑖=1

(
G
|𝑆−𝑑𝑖 |
2

+ G2
)ª®¬

Although we do not have a concept of delegation chain length,

in order to compare our scheme with [7], we assume that each

commitment is the output of one delegation-level, e.g., if k = 2 such

that ®𝐶 = (𝐶1,𝐶2), the 𝐿 = 2 is delegation level. In other words,

at each delegation level, we add one attribute set and the related

commitment. Also, unlike [7] where their underlying signature con-

struction needs switching G1 and G2 of message space throughout,

we do not need it. Note that operations in G1 are faster than G2 and

also the length of elements in G1 is smaller. We only consider the

number of (multi)exponentiations required to show a credential

since this will be the most frequently executed operation. The result

of CDD scheme is taken from Table 1 in [7].

Credential size. The size only counts the cryptographic compo-

nents of the credential; the metadata and attribute values are as-

sumed to be the same for all systems. In particular, the credential

size (𝜎 , sk𝑝 and pseudonym nym𝑝) in SPSEQ-UC is independent of

the delegation chain length and number of attributes. In SPSEQ-UC,
credentials have constant size which is four G1, one G2 and one

Z𝑝 element. Let |G1 | = |Z𝑝 | = 256 and |G2 | = 512 in bit, we have a

size of 1792 bits. While, in CDD the credential size grows linearly

with the number of attributes and delegation levels. Also, the size

of the related uk𝑘′ = dk𝐿′ in our scheme is 𝑧 · 256.
503

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

Table 3: Computational complexity

CDD [7] Ours

CredProve odd:
∑𝐿

𝑖=1,3 1G2 + (𝑛𝑖 + 2)G1 + (1 + 𝑑𝑖)G2𝑡
(
(𝑘 + 3)G1 + G2 + G2

1

)
+

+(1 +𝑢𝑖)G3𝑡 + (2 + 𝑛𝑖)G21
even:

∑𝐿
𝑖=2,4 1G1 + (𝑛𝑖 + 2)G2 + (1 + 𝑑𝑖)G2𝑡

(
G
|𝐷 |
1

)
+

(∑|𝐷 |
𝑖=1

(
G
𝑢𝑖
1
+ G1

))
+(1 +𝑢𝑖)G3𝑡 + (2 + 𝑛𝑖)G22

CredVerify (1 + 𝑑1)𝐸 + (3 +𝑢1 + 𝑑𝐿)𝐸2 +𝑢𝐿𝐸3

(
𝐸𝑘 + 𝐸2 + 4𝐸

)
+

+(4 + 𝑛1 + 𝑑𝐿) {G𝑡 }+∑𝐿
𝑖=1 ((1 + 𝑑𝑖)𝐸2 + (1 +𝑢𝑖)𝐸3 + (1 + 𝑑𝑖) {G𝑡 })

(
𝐸 + 𝐸𝑘 + G|𝑆 |

2
+∑|𝐷 |

𝑖=1

(
G
|𝑆−𝑑𝑖 |
2

+ G2
))

C.2 Communication Complexity
We analyze the communication complexity and the size of each

element exchange involved in DAC. More precisely, the IssueCred
protocol depends on the number of keys in uk𝑘′ (if delegation
is requested), while the CredProveprotocol is independent of the
number of attributes, delegation levels and keys. In the CredProve,
we have: ((𝑘 + 5) |G1 | + |G2 | + Z𝑝), where 𝑘 is the size of ®𝐶 (that is,

the delegation level 𝐿) that we send for verification and 𝑍𝑝 with

one G1 element that belong to the ZKPoK. In the IssueCred, we
have ((𝑘 + 3) |G1 | + |G2 | + 𝑘 |𝑍𝑝 | + 𝑧 |G1 |), where 𝑧 = | [𝑘, 𝑘 ′] | is the
number of keys in this range. In CDD, this communication cost

grows linearly with the number of attributes and delegation levels

(see Table 4.) Here, for the CDD scheme, we take a proof generated

from an even Level-L credential.

Table 4: Communication complexity

Schemes CredProve

Ours ((𝑘 + 5) |G1 | + |G2 | + Z𝑝)

CDD [7] (2𝐿 +∑𝐿−1
𝑖=1,3 (𝑛𝑖 +𝑢𝑖)) |G1 |+

(2𝐿 − 1 +∑𝐿
𝑖=2,4 (𝑛𝑖 +𝑢𝑖)) |G2 | + 2Z𝑝

D ADDITIONAL DEFINITIONS
D.1 Correctness of SPSEQ-UC
Subsequently, we state all the single correctness requirements.

Definition D.1 (Correctness). A SPSEQ-UC scheme for a set com-

mitment scheme SC and a parameterized family of equivalence

relations IR
ℓ
for all ℓ > 1, is correct if it satisfies the following condi-

tions for all 𝑡, 𝜆, 𝑘, 𝑘 ′with 𝑘 ≤ 𝑘 ′ ≤ ℓ , for all pp ∈ PPGen(1𝜆, 1𝑡 , 1ℓ),
(vk, sk) ∈ KeyGen(pp), pk𝑢 ∈ UKeyGen(pp), all ®𝑀 , ®𝜌 , ®𝑇 ⊆ ®𝑀 ,

all (𝜎, (®𝐶, ®𝑂), uk𝑘′) ∈ Sign(sk, ®𝑀,𝑘 ′, pk𝑢 ; ®𝜌), any ®𝑈 with 1 = SC.
VerifySubset(𝐶 𝑗 ,𝑇𝑗 ,𝑈 𝑗) 𝑗 ∈𝑘 (for 𝑈 𝑗 being a subset opening) and

1 = SC.Open(𝐶𝑖 ,𝑇𝑖 ,𝑈𝑖) 𝑗 ∈𝑘 (for𝑈 𝑗 being an opening):

Verification: We have that:

Verify(vk, pk𝑢 , ®𝐶, 𝜎, (®𝑇, ®𝑈)) = UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) = 1.

Change of set commitments representative: For all (𝜇,𝜓), (𝜎 ′,
uk′

𝑘′, 𝜒) ∈ ChangeRep(pk𝑢 , uk𝑘′, (®𝐶, ®𝑂), 𝜎, 𝜇,𝜓), all (®𝐶 ′, ®𝑂 ′) ←

RndmzC(®𝐶, ®𝑂, 𝜇), pk′𝑢 ← RndmzPK(pk,𝜓, 𝜒) and any ®𝑈 ′ s.t. ei-
ther𝑈 ′

𝑗
← SC.OpenSubset(𝐶 ′

𝑗
,𝑂 ′

𝑗
,𝑇𝑗) or𝑈 ′𝑗 = 𝑂

′
𝑗
we have:

Verify(vk, pk′𝑢 , ®𝐶 ′, 𝜎 ′, (®𝑇, ®𝑈 ′)) = 1 and ®𝐶 ′ ∈ [®𝐶]R𝑘 .

Signature conversion: For all (pk𝑢′, sk𝑢′) ∈ UKeyGen(pp), 𝜎 ′ ←
ConvertSig(vk, sk𝑢 , sk𝑢′, 𝜎) it holds that

Verify(vk, pk𝑢′, ®𝐶, 𝜎 ′, (®𝑇, ®𝑈)) = 1.

Change of set commitments relation: For any iterative applica-

tion of pk𝑢𝑙 ∈ UKeyGen(pp), (uk𝑘′′𝑙 , 𝜎
′
𝑙
) ← ChangeRel(𝑀𝑙 , 𝜎𝑙−1, ®𝐶,

uk𝑘′
𝑙−1
, 𝑘 ′′) for any 𝑀𝑙 , with

®𝐶′ = (®𝐶,𝐶𝑙 ∈ SC.Commit(𝑀𝑙)) and
®𝑀 ′ = (®𝑀,𝑀𝑙), any ®𝑈 ′ s.t. 𝑈 ′𝑗 ← SC.OpenSubset(𝐶 ′

𝑗
,𝑂 ′

𝑗
,𝑇𝑗) 𝑗 ∈𝑙 ∨

𝑈 ′
𝑗
= 𝑂 ′

𝑗
with 𝑙 < 𝑘 ′′ ≤ 𝑘 ′ and ®𝑇 ′ ⊆ ®𝑀 ′, we have:

Verify(vk, pk𝑢𝑙 , ®𝐶
′
, 𝜎 ′

𝑙
, (®𝑇 ′, ®𝑈 ′)) = 1

whenever 𝑙 ∈ [𝑘 + 1, 𝑘 ′] and also we have [®𝐶 ′]R𝑙 .

D.2 Class-Hiding
By class-hiding, we mean that, for all 𝑘 , 1 < 𝑘 ≤ ℓ , given two

messages vectors ®𝐶1 and ®𝐶2 of size 𝑘 , it should be hard to tell

whether or not ®𝐶1 ∈ [®𝐶2]R𝑘 .

Definition D.2 (Class-hiding). A SPSEQ-UC scheme for param-

eterized equivalence relations R𝑘 is class-hiding if for all 𝜆 and

polynomial-length ℓ (𝜆) and all probabilistic polynomial-time (PPT)

adversaries A, there exists a negligible function 𝜖 such that:

Pr


pp← PPGen(1𝜆, 1ℓ , 1𝑡); ®𝐶1 ← (G∗1)

𝑘
;

®𝐶0

2
← (G∗

1
)𝑘 ; ®𝐶1

2
← [®𝐶1]R𝑘 ;𝑏 ← {0, 1};

𝑏 ′ ← A(pp, ®𝐶1, ®𝐶𝑏2) : 𝑏
′ = 𝑏

 ≤
1

2

+ 𝜖 (𝜆)

D.3 DAC Oracle Description and Security
Properties

We use ⟨O⟩ to denote the collection of oracles in the games. For the

anonymity gamewe have ⟨O⟩ = (OUser,OCorrupt,OCreateRoot,OObtIss,
OObtain,ORootObt,OCredProve) and for the unforgeability game ⟨O⟩ =
(OUser,OCreateRoot,OCorrupt,OObtIss,ORootIss,OIssue,OCredProve).

Moreover, we define four global lists that are shared among

oracles asHU a list of honest users, CU a list of corrupted users,

L𝑢𝑘 a list of user’s keys, and Lcred a list of user-credential pairs

which includes issued credentials and corresponding attributes and

504

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

to which user they were issued. Moreover, in each issuing query

(OObtIss,OIssue) only one commitment (and an attribute set) is

added in the commitment vector. Also, for simplicity, we assume

that cred𝑖 contains (𝜎, (®𝐶, ®𝑂, pk𝑖 = nym𝑖), aux𝑖).
OUser (𝑖): Takes as input a user identity 𝑖 . If 𝑖 ∈ HU or 𝑖 ∈ CU it

returns⊥, else it creates a fresh entry 𝑖 in listsHU andL𝑢𝑘 by

running (sk𝑖 , pk𝑖) ← KeyGen(pp) and adding 𝑖 and (sk𝑖 , pk𝑖)
to the listHU and L𝑢𝑘 , receptively. It returns pk𝑖 = nym𝑖 .

OCorrupt (𝑖, pk𝑖): Takes as input a user identity 𝑖 and (optionally) a
user public key pk𝑖 . If 𝑖 ∉ HU, a new corrupt user with public

key pk𝑖 (or nym𝑖) is registered and add 𝑖 ∈ CU, else it moves

the entry corresponding to 𝑖 from the list of honest usersHU
and adds it to the list of corrupted users CU. Then, it returns

sk𝑖 and all the associated credentials items (𝑖,A, dk𝐿′, cred𝑖) of
Lcred [𝑖]. Finally, it sets the form (⊥,A, 𝐿′,⊥) ∈ Lcred for all A
and 𝑖 in this case.

OCreateRoot (𝑖, 𝐿′, 𝐴): Takes as input a user identity 𝑖 , a level 𝐿′

and attributes 𝐴. If 𝑖 ∉ HU it returns ⊥, else it creates a root
credential by running[

CreateCred(𝐿′, 𝐴, skCA) ↔
ReceiveCred(pkCA, sk𝑖 ,A)

]
→ (cred𝑖 , dk𝐿′)

with a user 𝑖 for an attribute setA and appends (𝑖, 𝐴, dk𝐿′, cred𝑖)
to Lcred.

ORootIss (𝐿′,A): Takes as input an Level 𝐿′ and attributes A. It
creates a root credential by running the CreateCred protocol

with A: CreateCred(𝐿′,A, skCA) ↔ A for an attribute set

A and appends (⊥,A, 𝐿′,⊥) to Lcred. This oracle allows an

adversary represented by nym𝑖 to play a corrupted user to get

a root credential from a CA.
ORootObt (𝑖, 𝐿′, 𝐴): On input a user identity 𝑖 , a level 𝐿′ and at-

tributes 𝐴. If 𝑖 ∉ HU it returns ⊥, else it creates a root creden-
tial by running the Receive protocol withA who impersonates

a malicious CA to issue a root credential to an honest user

𝑖 by running: A ↔ ReceiveCred(pkCA, sk𝑖 ,A). If cred𝑖 =⊥
the oracle returns ⊥. Else it stores the resulting (𝑖,A, dk𝐿′,
cred𝑖) ∈ Lcred.

OObtIss (𝑖, 𝑗, 𝐴𝑙 , 𝐿′′): Takes as user identities 𝑖 and 𝑗 , a set of at-

tributes𝐴𝑙 , and (optionally) a level 𝐿
′′
. It makes user 𝑖 delegate

a credential to user 𝑗 . If 𝑖, 𝑗 ∉ HU or (𝑖,A, dk𝐿′, cred𝑖) ∉ Lcred
it returns ⊥, else finds entries (sk𝑖 , cred𝑖), sk𝑗 , and runs the

issuing protocols as:[
IssueCred(pkCA, dk𝐿′, sk𝑖 , cred𝑖 , 𝐴𝑙 , 𝐿′′)
↔ ReceiveCred(pkCA, sk𝑗 , 𝐴𝑙)

]
→ (cred𝑗 , dk′𝐿′′)

and adds the entry (𝑗,A′, dk′
𝐿′′, cred𝑗) to Lcred, where A′ =

(A, 𝐴𝑙).
OObtain (𝑗, 𝐴𝑙 , 𝐿′′): On input a user identity 𝑗 ∈ HU and a set

of attributes 𝐴𝑙 , and (optionally) a level 𝐿′′. If 𝑗 ∉ HU it re-

turns ⊥. Else, the oracle runs the Receive protocol with A:

A ↔ ReceiveCred(pkCA, sk𝑗 , 𝐴𝑙). If cred𝑗 =⊥ the oracle re-

turns ⊥. Else it stores the resulting output (cred𝑗 , dk′𝐿′′,A
′)

and it appends (𝑗,A′, dk′
𝐿′′, cred𝑗) to Lcred. This oracle is used

by A, whom it knows by nym𝑖 impersonating an issuer to

issue a credential to an honest user 𝑗 .

OIssue (𝑖, 𝐴𝑙 , 𝐿′′): On input a user identity 𝑖 , a set of attributes 𝐴𝑙 ,

and (optionally) a level 𝐿′′. If 𝑖 ∉ HU it returns ⊥. Also it

checks if �(𝑖,A, dk𝐿′, cred𝑖) ∈ Lcred, returns ⊥. Else, it runs:
IssueCred(pkCA, dk𝐿′, sk𝑖 , cred𝑖 , 𝐴𝑙 , 𝐿′′) ↔ A. The elements

(⊥,A′ = (A, 𝐴𝑙), 𝐿′′,⊥) are then added to Lcred. This oracle

is used by a corrupted user with adversarial nym𝑗 to get a

credential from honest issuer 𝑖 .

OCredProve (𝑗, 𝐷): On input an index of an issuance 𝑗 and subsets

𝐷 . This oracle first parses Lcred [𝑗] as (𝑖,A′, dk′𝐿′′, cred𝑖). Let
cred𝑖 be the credential issued on A′ for a user 𝑖 during the 𝑖-th
query to OObtIss or OObtain (or it can be outputs of OCreateRoot
when directly issued by CA). If 𝑖 ∉ HU returns ⊥. Else, it
retrieves (aux𝑖 , nym𝑖 , sk𝑖) for 𝑖 from lists cred𝑖 and L𝑢𝑘 , and
runs: CredProve(pkCA, sk𝑖 , nym𝑖 , aux𝑖 , cred𝑖 , 𝐷) ↔ A, with

the adversary playing the role of the verifier.

Anonymity. Anonymity requires that a malicious verifier cannot

distinguish between any two users. The adversary has adaptive

access to an oracle that on the input of two distinct user indexes 𝑖0
and 𝑖1, acts as one of the two credential owners (depending on bit

𝑏) in the verification algorithm. Note that 𝐷 (A′) = 1 if attributes in

A′ satisfies the policy subset and 𝐷 (A′) = 0 otherwise. Moreover,

cred𝑏 ← OObtIss requires that credentials cred0 and cred1 are on
a delegation path from a (corrupted) root credential where all del-

egations have been performed honestly, but the respective users

might all be corrupted. We note that this requirement is similar

to the anonymity model of CL in [17], however, we additionally

allow the adversary to access the user corruption oracle in which

we reveal the user’s secret keys to the adversary. CL cannot support

this type of corruption as then the anonymity of their construc-

tion breaks down. This makes our model stronger than the one of

CL. The essence of the game is captured by the oracles OAnon
𝑏

in

Fig 6. To make the game non-trivial, we impose restrictions that

the policy is either satisfied or not by both credentials and they

have commitment vectors of equal length. Note this also implies

unlinkability for delegation anonymity.

Definition D.3 (Anonymity). A DAC is anonymous, if for all (𝜆, ℓ,
𝑡) ∈ N, any PPT adversaryA there exists a negligible function 𝜖 (𝜆)
so that | Pr[ExpAno0DAC,A (𝜆, ℓ, 𝑡) = 1]−Pr[ExpAno1DAC,A (𝜆, ℓ, 𝑡) =
1] | ≤ 1

2
+ 𝜖 (𝜆), experiments are defined in Fig 6, respectively.

Unforgeability. Unforgeability requires that no adversary can

convince a verifier into accepting a credential for a set of attributes

for which he does not possess credentials. Intuitively, an adversary

wins the unforgeability experiment (cf. Fig 6) if he is able to convince

an honest verifier that he satisfies a certain policy while does not

have an appropriate credential.

Definition D.4 (Unforgeability). A DAC is unforgeable if, for all

(𝜆, ℓ, 𝑡) ∈ N, for any PPT adversaryA, there exists a negligible func-

tion 𝜖 (𝜆) such that Pr[ExpUnfDAC,A (𝜆, ℓ, 𝑡) = 1] ≤ 𝜖 (𝜆), where
the experiment ExpUnfDAC,A (𝜆, ℓ, 𝑡) is defined in Fig 6.

505

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

ExpAno𝑏DAC,A (𝜆, ℓ, 𝑡) :

• (pp, pkCA, st) ← A(1𝜆, 1ℓ , 1𝑡)

• 𝑏′ ← A
〈
OAnon
𝑏

,O
〉
(st)

• return(𝑏 = 𝑏′)
OAnon
𝑏
(j0, j1, 𝐷) :
• If j0 or j1 > |Lcred | the oracle returns ⊥.
• Else, it parses Lcred [j0] as (𝑖0,A′0, dk0, cred0)

and Lcred [j1] as (𝑖1,A′1, dk1, cred1) .
• If 𝐷 (A′

0
) ≠ 𝐷 (A′

1
) ∨ | ®𝐶0 | ≠ | ®𝐶1 | ∨ cred𝑏 ↚ OObtIss

, return ⊥.
• Otherwise run:

A ↔ CredProve(pkCA, sk𝑏 , nym𝑏 , aux𝑏 , cred𝑏 , 𝐷)

ExpUnfDAC,A (𝜆, ℓ, 𝑡) :

• (pp, (skCA, pkCA)) ← Setup(1𝜆, 1ℓ , 1𝑡)
• (𝐷∗, nym∗) ← A ⟨O⟩ (pp, pkCA)
• 𝑏 ← (A ↔ CredVerify(pkCA, nym∗, 𝐷∗))
• ∀(⊥,A′, 𝑘′,⊥) ∈ Lcred : If (𝐷∗,A′) ∈ R𝑘′ ,

return 0

• Else return 𝑏

Figure 6: Experiments ExpAnoDAC,A (𝜆, ℓ, 𝑡) and ExpUnfDAC,A (𝜆, ℓ, 𝑡).

E PROOFS
E.1 Security of DAC

Lemma E.1 (Unforgeability). Let ZKPoK be a ZKPoK and let
SPSEQ-UC be unforgeable, then the DAC construction in Fig 2 is
unforgeable.

Proof. We show that an adversary performing an incompatible

showing for a dishonest user can be used to forge an SPSEQ-UC
signature. Assume a PPT adversary A that wins the unforgeabil-

ity game (Definition E.3) with non-negligible probability and let

(®𝐶∗, nym∗
𝑃
,A∗, 𝜎∗) be the message-signature pair it uses and ®𝑊 ∗

be the witness for an attribute set (𝐷∗,A′) ∉ R𝐿′ (this implies

𝐷∗ ⊈ A′), for all 𝑖 = ⊥ where 𝑖,A′, dk𝐿′ ∈ Lcred; moreover,

the ZKPoK(sk∗P, nym
∗
𝑝) verifies. We construct an adversary B that

breaks the unforgeability of SPSEQ-UC. We note that we extract

from ZKPoK and assume this will only fail with negligible probabil-

ity. Then, we are ready to reduce to the unforgeability of SPSEQ-UC:

Reduction. The reduction is straightforward. B interacts with a

challenger C in the unforgeability game for SPSEQ-UC andB simu-

lates theDAC-unforgeability game forA.C runs (pp, skCA, pkCA) ←
Setup(1𝜆, 1𝑡 , 1ℓ) and gives (pkCA, pp) to B. Then, B sets pp =

ppSPSEQ-UC, vk = pkCA and sends them toA. It next simulates the

environment and oracles. All oracles are executed as in the real

game, except for the following oracles, which use the signing oracle

instead of using the signing key skCA:

• When the oracles OCorrupt and OUser are called, B queries

OCorrupt and OCreate of the SPSEQ-UC scheme, respectively.

Note that when B queries OCorrupt of the SPSEQ-UC, it gets
sk𝑖 and finally returns sk𝑖 and all the associated credentials

items to A.

• OCreateRoot (𝑖, 𝐿′,A): On input a user identity 𝑖 , a level 𝐿′,
and an attribute vector A. If 𝑖 ∉ HU it returns ⊥, else it

picks ®𝜌 for an attributes vector. Then it submits (nym𝑖 , 𝑘
′ =

𝐿′,A, ®𝜌) to the signing oracle OSign. Receives a signature

(𝜎 = (𝑍,𝑌,𝑌,𝑇), (®𝐶, ®𝑂), uk𝑘′). It sets 𝜎 = cred𝑖 , uk𝑘′ = dk𝐿′
and appends (𝑖,A, dk𝐿′, cred𝑖) to Lcred.

• ORootIss (𝐿′,A): On input a level 𝐿′ and an attribute vector

A. It extracts ®𝜌 from the proof of knowledge ZKPoK(®𝜌, 𝑃 ®𝜌)
produced by A for an attributes vector. Then it submits

(nym𝑖 , 𝑘
′ = 𝐿′,A, ®𝜌) to the signing oracleOSign, where nym𝑖

is an adversary pseudonym of a corrupted user. Receives a

signature (𝜎 = (𝑍,𝑌,𝑌,𝑇), (®𝐶, ®𝑂), uk𝑘′). It sets (𝜎, ®𝐶, ®𝑂, nym𝑖)
= cred𝑖 , uk𝑘′ = dk𝐿′ and appends (⊥,A, 𝐿′,⊥) to Lcred and

outputs the results.

• The oracles (OIssue,OObtIss): In both OObtIss and OIssue,
all executions of ChangeRel and ConvertSig for credentials

(𝑗, dk′
𝐿′′,A

′, 𝜎 𝑗) ∈ Lcred are replaced by the oracle Sign(skCA,
A′, 𝑘 ′′, pk𝑖 , ®𝜌), where 𝐿′′ = 𝑘 ′′, and pk𝑖 = nym𝑗 .

As it is clear, B can handle any oracle query and never aborts.

So, at the end of the game, B simulates all oracles perfectly for

A who is able, with some probability, to prove possession of a

credential on A∗. To do this, B interacts with A as verifier in a

showing protocol. If A outputs a valid showing proof as (®𝐶∗, 𝜎∗ =
(𝑍 ∗, 𝑌 ∗, 𝑌 ∗,𝑇 ∗), 𝐷∗, nym∗𝑝 , ®𝑊 ∗) and conductingZKPoK(sk∗P, nym

∗
𝑝)

then B extracts from the proof of knowledge contained in the Show

protocol the value sk∗𝑝 related to the nym∗
𝑃
and stores all elements.

Moreover, no credential owned by corrupt users can be valid on

this set of messages 𝐷∗ (as A can win the unforgeability game).

This means that, for any credential on (sk𝑖) with all 𝑖 = ⊥, we have
(𝐷∗,A′) ∉ R𝐿′ . In all cases, this means that (sk∗𝑝 , (®𝐶∗, 𝐷∗, ®𝑊 ∗), 𝜎∗)
is a valid forgery against our signature scheme, B breaks thus

unforgeability of SPSEQ-UC which concludes our proof. □

Lemma E.2 (Anonymity). Let ZKPoK be a ZKPoK, NIZK be
knowledge sound, the DDH assumption holds and the SPSEQ-UC
provides Origin-hiding, Conversion-privacy and Derivation-privacy,
then the DAC construction in Fig 2 is anonymous.

Proof. The proof follows a sequence of games until a game where

answers for the query to OAnon
𝑏

is independent of the bit 𝑏. In

Game1 we use the knowledge soundness of NIZK to extract the

signing key. Then, inGame2 we replace allChangeRep,ChangeRel
and ConvertSig calls with freshly generated signatures. In Game3
we simulate all ZKPoKs and in Game4 we guess a user to be asked

in OAnon
𝑏

. Finally, in Game5 we replace the respective commitment

vectors with random vectors.

Game0: The original game as given in Definition D.3.

Game1: As Game0, except when A outputs the pkCA and corre-

spondingNIZK(skCA, pkCA), the experiment runs the knowl-

edge extractor forNIZK, which extracts awitness ((𝑥𝑖)𝑖∈[0,ℓ] , 𝛼)
sets them as skCA including the SC trapdoor. If the extractor

fails, we abort.

Game0 → Game1: The success probability in Game1 is the
506

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

same as inGame0, unless the extractor fails, i.e., using knowl-
edge soundness we have

| Pr[𝑆0] − Pr[𝑆1] | ≤ 𝜖𝑘𝑠 (𝜆) .

Game2: As Game1, except that the experiment runs OAnon
𝑏

as

follows: Like in Game1, but for 𝜇,𝜓 ∈ Z∗𝑝 , all executions
of ChangeRep(pk𝑢 , dk𝐿′, (®𝐶, ®𝑂), 𝜎, 𝜇,𝜓) for the credential

(𝑖𝑏 , dk′𝐿′′,A
′, 𝜎𝑏) ← Lcred [j𝑏] are replaced by Sign(skCA,A′,

𝑘 ′, pk𝑢 ; ®𝜌). So, oracles are simulated as in Game1 , except
for the following oracles as:

• OObtIss: all executions of ChangeRel and ConvertSig for
credentials (𝑗, dk′

𝐿′′,A
′, 𝜎 𝑗) ∈ Lcred are replaced by Sign(skCA,

A′, 𝑘 ′′, pk𝑗 , ®𝜌), where 𝑘 ′′ = 𝐿′′.
Game2 → Game1: ByOrigin-hiding (ChangeRep), Derivation-
privacy (ChangeRel) and Conversion-privacy (ConvertSig),
replacing signatures obtained from running ChangeRep,
ChangeRel and ConvertSig with ones from Sign are iden-

tically distributed for all (A, ®𝐶). We thus have

Pr[𝑆1] = Pr[𝑆2]

Game3: As Game2, except that the experiment runs OAnon
𝑏

as fol-

lows: All proofs ZKPoK(sk𝑝 , nym𝑝) and ZKPoK(®𝜌, 𝑃 ®𝜌) in
CredProve and CreateCred respectively, are simulated.

Game2 → Game3: By perfect zero-knowledge of ZKPoK,
we have that

Pr[𝑆2] = Pr[𝑆3] ⇒ Pr[𝑆1] = Pr[𝑆2] = Pr[𝑆3]

Game4: Same as Game3, except for the following changes. Let 𝑞𝑢
be (an upper bound on) the number of queries made to OUser.
At the beginning Game4 picks 𝜔 ← [𝑞𝑢] (it guesses that the
user who owns the index j𝑏 credential is registered at the

𝜔-th call to OUser) and runs OUser,OCorrupt and OAnon
𝑏

as

follows:

• OUser (𝑖): As in Game3, except if this is the𝜔-th call to the

oracle then it additionally defines 𝑖∗ ← 𝑖 .

• OCorrupt (𝑖, pk𝑢): If 𝑖 ∈ CU or 𝑖 ∈ OAnon
𝑏

, it returns ⊥
(as in the previous games). If 𝑖 = 𝑖∗ then the experiment

stops and outputs a random bit 𝑏 ′ ← {0, 1}. Otherwise, if
𝑖 ∈ HU, it returns user i’s 𝑠𝑘𝑖 and credentials and moves

𝑖 fromHU to CU; and if 𝑖 ∉ HU ∪ CU, it registers and

adds 𝑖 to CU a new corrupt user with public key pk𝑖 .
• OAnon

𝑏
(j0, j1, 𝐷): As in Game3, except that if 𝑖∗ ≠ 𝑖𝑏 ←

Lcred [j𝑏], the experiment stops and outputting 𝑏 ′ ←
{0, 1}.

Game3 → Game4: By assumption, OAnon
𝑏

is called at least

once with some input (j0, j1, 𝐷) such that 𝑖0 ← Lcred [j0], 𝑖1
← Lcred [j1] ∈ HU. If 𝑖∗ = 𝑖𝑏 then OAnon

𝑏
does not abort

and neither does OCorrupt (it cannot have been called on

𝑖𝑏 before that call to OAnon
𝑏

(otherwise 𝑖𝑏 ∉ HU); if called

afterwards, it returns ⊥, where 𝑖∗ ∈ OAnon
𝑏

). Since 𝑖∗ = [𝑖𝑏]
with probability

1

𝑞𝑢
, the probability thaft the experiment

does not abort is at least
1

𝑞𝑢
, and thus

Pr[𝑆4] ≥ (1 −
1

𝑞𝑢
) 1
2

+ 1

𝑞𝑢
· Pr[𝑆3]

Game5: As Game4, except that for OAnon𝑏
(j0, j1, 𝐷): it picks ®𝐶 ←

(G∗
1
)𝑘 and performs the showing using cred′ ← (®𝐶, Sign(sk,

®𝑀, . . .)), with 𝐷 = (𝑑𝑖)𝑖∈[𝑘] and 𝑊𝑖 ← 𝑓𝑑𝑖 (𝑎)−1 · 𝐶𝑖 for
𝑖 ∈ [𝑘]. Note that the only difference is the choice of ®𝐶;
while ®𝑊 is distributed as in Game4, in particular, they are

unique elements satisfying VerifySubset(𝐶𝑖 , 𝐷𝑖 ,𝑊𝑖)𝑖∈[𝑘] .

Game4 → Game5: Let (BG, 𝑃𝑥 , 𝑃𝑦, 𝑃𝑧) be a DDH instance

(not to be confused with SPSEQ-UC elements) for BG =

BGGen(1𝜆) where 𝑥,𝑦 ← Z𝑝 and 𝑍 is equal to 𝑃𝑥 ·𝑦 or a

random element. The extended version of DDH that we con-

sider here is given by (𝑃, 𝑃𝑥1 , . . . , 𝑃𝑥𝑘 , 𝑃𝑦, 𝑍1, . . . , 𝑍𝑘) where
𝑍𝑖 = 𝑃𝑥𝑖 ·𝑦 or random for all ∈ {1, . . . , 𝑘}. One can easily

show that this extended version of DDH follows from DDH
itself (with some polynomial security loss) as long as 𝑘 is a

polynomial. Oracles are simulated as in Game4, except for
the following oracles as:

• OObtIss (𝑖,A): As in Game4, except for the computation of

the following values if 𝑖 = 𝑖∗. Let this be the i-th call to

this oracle. Since 𝛼 ∉ A, it computes𝐶𝑖 ← 𝑓𝐴𝑖
(𝑎) · 𝑃𝑥𝑖 for

𝐴𝑖 ∈ A (all𝐶𝑖 are thus distributed as in the original game.)

• OCredProve (𝑗, 𝐷): As in Game4, with the difference that

if 𝑖∗ = 𝑖 ← Lcred [𝑗], it computes the witness 𝑊𝑖 ←
𝑓𝐴𝑖/𝑑𝑖 (𝑎)𝜇 · 𝑃𝑥𝑖 . (𝑊𝑖 is thus distributed as in the original

game and 𝐷 = (𝑑𝑖)𝑖∈[𝑘] .)
• OAnon

𝑏
(j0, j1, 𝐷): As in Game4, with the following differ-

ence. Using self-reducibility of DDH, it picks 𝑠, 𝑡 ← Z∗𝑝
and computes 𝑌 ′ ← 𝑃𝑡 ·𝑦 · 𝑃𝑠 = 𝑃𝑦

′
with 𝑦′ ← 𝑡 · 𝑦 + 𝑠 ,

and 𝑍 ′
𝑖
← 𝑃𝑡 ·𝑧𝑖 · 𝑃𝑠 ·𝑥𝑖 = 𝑃 (𝑡 (𝑧𝑖−𝑥𝑖 ·𝑦)+𝑥𝑖 ·𝑦′) . (If 𝑧𝑖 ≠ 𝑥𝑖 · 𝑦

then𝑌 ′ and 𝑍 ′
𝑖
are independently random; otherwise 𝑍 ′

𝑖
=

𝑦′ ·𝑋𝑖) It performs the showing using the following values.

Since 𝑎 ∉ 𝐷 : 𝐶𝑖 ← 𝑓𝐴𝑖
(𝑎) · 𝑍 ′

𝑖
and𝑊𝑖 ← 𝑓𝐴𝑖/𝑑𝑖 (𝑎)−1 ·𝐶𝑖 .

Apart from an error event happening with negligible probability, we

have simulated Game4 if the DDH instance was “real” and Game5
otherwise. If during the simulation of OAnon

𝑏
it occurs that any

𝑌 ′
𝑖
= 1G1

or 𝑍 ′
𝑖
= 1G1

then the distribution of values is not as in

one of the two games. Otherwise, we have implicitly set 𝜌𝑖 ← 𝑥𝑖

and 𝜇 ← 𝑦′ (for a fresh value 𝑦′ at every call of OAnon
𝑏

). In case of

a DDH instance, we have for all 𝐶𝑖 ← (𝑃 𝑓𝐴𝑖
(𝑎))𝜌𝑖 ·𝜇 ; otherwise all

𝐶𝑖 are independently randoms. Let 𝜖DDH (𝜆) denote the advantage
of solving the DDH problem and 𝑞𝑙 the number of queries to the

OAnon
𝑏

, we have

|Pr[𝑆4] − Pr[𝑆5] | ≤ 𝜖DDH (𝜆) + (1 + 2𝑞𝑙) 1𝑝

In Game5 the OAnon
𝑏

oracle returns a fresh signature 𝜎 on ran-

dom elements ®𝐶 ← (G∗
1
)𝑘 and a simulated proof; the bit 𝑏 is thus

information-theoretically hidden from A, so we have Pr[𝑆5] = 1

2
.

From this and the above equations we have

Pr[𝑆4] ≤Pr[𝑆5]+𝜖DDH (𝜆)+(1 + 2𝑞𝑙)
1

𝑝
=
1

2

+𝜖DDH (𝜆) + (1 + 2𝑞𝑙)
1

𝑝
,

Pr[𝑆3] ≤
1

2

+𝑞𝑢 · Pr[𝑆4]−
1

2

· 𝑞𝑢 ≤
1

2

+𝑞𝑢 · (𝜖DDH (𝜆)+(1 + 2𝑞𝑙)
1

𝑝
),

Pr[𝑆0] ≤Pr[𝑆1]+𝑘𝑠 (𝜆) ≤
1

2

+𝑘𝑠 (𝜆)+𝑞𝑢 · (𝜖DDH (𝜆) + (1 + 2𝑞𝑙)
1

𝑝
)

507

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

where Pr[𝑆1] = Pr[𝑆3]; 𝑞𝑢 , 𝑞𝑜 and 𝑞𝑙 are the number of queries to

the Ouser, OObtain and the OAnon
𝑏

oracle, respectively. Assuming

security of ZKPoK, NIZK and DDH, the adversary’s advantage is
thus negligible. □

E.2 Privacy Notions of SPSEQ-UC
We now prove that our SPSEQ-UC construction from Section 3.3

is Origin-hiding (Def. 3.4) and provides Conversion-privacy (Def.

3.5) and Derivation-privacy (Def. 3.6).

Lemma E.3 (Origin-hiding). The construction described in Sec-
tion 3.3 is Origin-hiding.

Proof. Origin-hiding of ChangeRep follows from the perfect adap-

tation of SPSEQ [23]. The onlymain difference here is the additional

element 𝑇 in a signature as well as elements (pk𝑢 , uk𝑘′) which we

show that they are correctly randomized in both algorithms. Let ®𝐶 ∈
(G∗

1
)𝑘 , ®𝑇 ⊆ ®𝑀 , any ®𝑂, ®𝑈 s.t. SC.Open(𝐶 𝑗 , 𝑀𝑗 ,𝑂 𝑗) 𝑗 ∈𝑘 = 1, pk𝑢 ∈ G1,

and (𝑥0, 𝑥1, . . . , 𝑥ℓ) ← (𝑍 ∗𝑝)ℓ be such that vk = ((𝑃𝑥𝑖)𝑖∈[0,ℓ] , 𝑃𝑥0).
For some 𝑦 ∈ Z∗𝑝 , a signature (𝑍,𝑌,𝑌,𝑇) ∈ G1 ×G∗1 ×G

∗
2
×G1 sat-

isfying Verify(vk, pk𝑢 , ®𝐶, (𝑍,𝑌,𝑌,𝑇), (®𝑇, ®𝑈)) = 1 along with uk𝑘′ is
of the form

𝜎 =
©­­«
(

𝑘∏
𝑖=1

𝐶
𝑥𝑖
𝑖

)𝑦−1
, 𝑃𝑦, 𝑃𝑦, 𝑃𝑥1 ·𝑦 · pk𝑥0𝑢

ª®®¬ .
For 𝜇,𝜓 ∈ Z∗𝑝 , ChangeRep(pk𝑢 , uk𝑘′, (®𝐶, ®𝑂), (𝑍,𝑌,𝑌,𝑇), 𝜇,𝜓) out-
puts

𝜎 ′ =
©­­«
(

𝑘∏
𝑖=1

𝐶
𝜇 ·𝑥𝑖
𝑖

)𝑦−1 ·𝜓
, 𝑃𝑦 ·𝜓 , 𝑃𝑦 ·𝜓 , 𝑃𝑥1 ·𝑦 ·𝜓 · 𝑋𝜓 (sk𝑢+𝜒)

0

ª®®¬ ,
which is a uniformly random element 𝜎 ′ in G1 × G∗

1
× G∗

2
× G1.

That is, all elements of the signature 𝜎 ′ are perfectly random-

ized using randomness 𝜇,𝜓, 𝜒 and conditioned on Verify(vk, (pk𝑢 ·
𝑃 𝜒)𝜓 , ®𝐶𝜇 , 𝜎 ′, (®𝑇, ®𝑈)) = 1. Now we show that uk𝑘′ (in the case that

it is requested for further delegation), and pk𝑢 are also random-

ized perfectly using 𝜓, 𝜒 and 𝜇. For all 𝑘 ′, an update key uk𝑘′ ∈
(G∗

1
) [𝑘+1,𝑘′] s.t. UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) = 1 and pk𝑢 ∈ G∗1 are the

from

uk𝑘′ =
(
usign𝑗 =

(
(𝑃𝛼

𝑖

)𝑥 𝑗

)𝑦−1
𝑗 ∈[𝑘+1,𝑘′]∧𝑖∈[𝑡]

)
and pk𝑢 = 𝑃sk𝑢 .

For 𝜇,𝜓 ∈ Z∗𝑝 , ChangeRep outputs the following form, so we have

uk′
𝑘′ =

(
(usign𝑗)𝜓

−1 ·𝜇
)
𝑗 ∈[𝑘+1,𝑘′]

and pk′𝑢 = 𝑃 (sk𝑢+𝜒) ·𝜓 ,

where 𝜒 ← Z∗𝑝 is randomness selected locally for RndmzPK. It is
not difficult to see that all elements of the uk𝑘′ are distributed as

expected and also pk𝑢 is perfectly randomized with𝜓, 𝜒 and rep-

resents a uniform element in G∗
1
. So, ChangeRep clearly produces

signatures with the same distribution as Sign:

(𝜎, ®𝐶, uk𝑘′, pk𝑢) ≈ (𝜎 ′, ®𝐶 ′, uk′𝑘′, pk
′
𝑢)

Lemma E.4 (Conversion-privacy). The construction described
in Section 3.3 provides Conversion-privacy.

First of all, let us assume that ConvertSig(vk, sk𝑢 , sk𝑢′, 𝜎) includes
[SendConvertSig(vk, sk𝑢 , 𝜎) ↔ ReceiveConvertSig(vk, sk𝑢′)] →
𝜎 ′, where 𝜎 ′ is a valid signature.

Proof. For all (vk, sk) ∈ KeyGen(pp), (sk𝑢 , pk𝑢) ∈ UKeyGen, ®𝐶, ®𝑇 ,
®𝑀 , ®𝑈 , ®𝑂 s.t. SC.Open(𝐶 𝑗 , 𝑀𝑗 ,𝑂 𝑗) 𝑗 ∈𝑘 = 1 and 𝜎 . If Verify(vk, pk𝑢 , ®𝐶,
𝜎, (®𝑇, ®𝑈)) = 1. The signature 𝜎 in G1 ×G∗

1
×G∗

2
×G1 is the form of:

𝜎 =
©­­«
(

𝑘∏
𝑖=1

𝐶
𝑥𝑖
𝑖

)𝑦−1
, 𝑃𝑦, 𝑃𝑦, 𝑃𝑥1 ·𝑦 · 𝑋 sk𝑢

0
= 𝑃𝑥1 ·𝑦 · pk𝑥0𝑢

ª®®¬ .
Then for (sk𝑢′, pk𝑢′) ∈ UKeyGen(pp), ConvertSig(vk, sk𝑢 , sk𝑢′, 𝜎)
outputs a new signature with the form of:

𝜎 ′ =
©­­«
(

𝑘∏
𝑖=1

𝐶
𝑥𝑖
𝑖

)𝑦−1
, 𝑃𝑦, 𝑃𝑦, 𝑃𝑥1 ·𝑦 · 𝑋 sk𝑢′

0
= 𝑃𝑥1 ·𝑦 · pk𝑥0

𝑢′
ª®®¬ .

It is clear that this looks like a fresh signature 𝜎 ′ in G1 × G∗
1
×

G∗
2
× G1 for pk𝑢′ with randomness 𝑦. So the output of ConvertSig

is distributed the same as the output of Sign. □

Lemma E.5 (Derivation-privacy). The construction described
in Section 3.3 provides Derivation-privacy.

Proof. For all (vk, sk) ∈ KeyGen(pp), pk𝑢 , ®𝑀 , ®𝑂 = ®𝜌 , 𝑘 ′, 𝑘 ′′, ®𝑇 ,
®𝑈 , uk𝑘′ , and 𝜎 . If SC.Open(𝐶 𝑗 , 𝑀𝑗 ,𝑂 𝑗) 𝑗 ∈𝑘 = 1 ∧ Verify(vk, pk𝑢 ,
®𝐶, 𝜎, (®𝑇, ®𝑈)) = 1 ∧ UKVerify(vk, uk𝑘′, 𝑘 ′, 𝜎) = 1, then for an in-

dex 𝑙 = 𝑘 + 1 ∈ [𝑘 + 1, 𝑘 ′], let 𝑀𝑙 be a message set such that

the message vector is ®𝑀∗ = (®𝑀,𝑀𝑙) and the related commitment

vector is ®𝐶∗ = (®𝐶,𝐶𝑙). We intend to show that ChangeRel pro-
duces outputs with the same distribution as Sign for vectors ®𝑀∗
and ®𝐶∗: Sign(sk, ®𝑀∗, 𝑘 ′, pk𝑢 ; ®𝜌) ≈ ChangeRel(𝑀𝑙 , 𝜎, ®𝐶, uk𝑘′, 𝑘 ′′).
More precisely, for some 𝑦 ∈ Z∗𝑝 , a signature 𝜎 = (𝑍,𝑌,𝑌,𝑇) ∈
G1 ×G∗

1
×G∗

2
×G1 satisfying Verify(vk, pk𝑢 , ®𝐶∗, 𝜎, (®𝑇, ®𝑈)) = 1 is of

the form

𝜎 =
©­­«
(

𝑘∏
𝑖=1

(𝐶∗𝑖)
𝑥𝑖

) 1

𝑦

, 𝑃𝑦, 𝑃𝑦, 𝑃𝑥1 ·𝑦 · pk𝑥0𝑢
ª®®¬

ConvertSig outputs the element 𝑍 of the signature as:

𝑍 =
©­­«

𝑘∏
𝑖=1

(
𝐶
𝑥𝑖
𝑖

) 1

𝑦 · ©­«
∏

𝑖∈[𝑡]∧𝑙 ∈[𝑘+1,𝑘′]
𝑃𝛼

𝑖 ·𝑥𝑙 ·𝑦−1ª®¬
𝑓𝑖 ª®®¬ =

∏ ((
𝐶
𝑥𝑖
𝑖

) 1

𝑦 ·𝐶
𝑥𝑙 · 1𝑦
𝑙

)
=

∏
(𝐶𝑥𝑖

𝑖
·𝐶𝑥𝑙

𝑙︸ ︷︷ ︸∏𝑙
𝑖=1 (𝐶∗𝑖)𝑥𝑖

)
1

𝑦

So for the whole signature, it outputs the signature as:

𝜎 ′ =
©­­«
(

𝑙∏
𝑖=1

(𝐶∗𝑖)
𝑥𝑖

) 1

𝑦

, 𝑃𝑦, 𝑃𝑦, 𝑃𝑥1 ·𝑦 · pk𝑥0𝑢
ª®®¬

which looks like a fresh signature 𝜎 in G1 × G∗
1
× G∗

2
× G1 for ®𝑀∗

using the randomness 𝑦. This is, for vectors ®𝐶∗, ®𝑀∗, ConvertSig
produces signatures with the same distribution as Sign. □

508

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

E.3 Unforgeability of SPSEQ-UC
Our main technical result is to prove that our scheme satisfies

unforgeability (Def. 3.3) in the generic group model (GGM) [37]

for asymmetric (“Type-3”) bilinear groups (for which there are no

efficiently computable homomorphisms between 𝑃 and 𝑃). In this

model, the adversary is only given handles of group elements, which

are just uniform random strings. To perform group operations, it

uses an oracle to which it can submit handles and is given back the

handle of the sum, inversion, etc of the group elements for which

it submitted handles. Here, we will use the additional notation for

the group law. Let analyze the unforgeability game in the GGM.

Theorem E.1. A generic adversary that computes at most 𝑞 group
operations and makes up to 𝑘 queries to i ts signature oracle cannot
win the semi-static game from Fig 1 for the scheme defined in 3.3 with

probability greater than
(
𝑜+𝑞 (4+ℓ ·𝑡)

)
2

(2𝑞+1)
𝑝 .

Proof. First we consider an adversary against the static game

defined in Fig 7 that only uses generic group operations on the

group elements it receives. After getting the public parameter

(𝛼𝑜𝑃, 𝛼𝑜𝑃)0≤𝑜≤𝑡 , a verification key

(
𝑋0, 𝑋1 = 𝑥1𝑃, . . . , 𝑋ℓ = 𝑥ℓ𝑃

)
,

public keys (𝑃1, . . . , 𝑃𝑏), vector commitments

(
𝐶
(𝑖)
1
, . . . ,𝐶

(𝑖)
𝑘 (𝑖)

)𝑞
𝑖=1

and signatures

(
𝑍𝑖 , 𝑆𝑖 , 𝑆𝑖 ,𝑇𝑖

)𝑞
𝑖=1

computed with randomness 𝑠𝑖 on

queries((
𝑀
(𝑖)
1
, . . . , 𝑀

(𝑖)
𝑘 (𝑖)

)
,
(
𝜌
(𝑖)
1
, . . . , 𝜌

(𝑖)
𝑘 (𝑖)

)
, 𝑘 (𝑖) ′, pk(𝑖)

)𝑞
𝑖=1

, with opening:

table keys

((
𝑈
(𝑖)
𝑗,𝑜

))
𝑗 ∈[𝑘 (𝑖)+1,𝑘′ (𝑖)],𝑜∈[𝑡]

the adversary outputs a pub-

lic user key pk(𝑞+1) , a vector of commitments

(
𝐶
(∗)
1
, . . . ,𝐶

(∗)
𝑘 (∗)

)
and

a corresponding signature

(
𝑍 ∗, 𝑆∗, 𝑆∗,𝑇 ∗

)
. As it must compute any

new group element by combining received group elements, it must

choose coefficients that we will represent here by using greek let-

ters, which define

𝐶∗
ℎ
= 𝜅 (ℎ)𝑃 +

𝑞∑
𝑗=1

(
𝜅
(ℎ)
𝑧,𝑗
𝑍 𝑗 + 𝜅 (ℎ)𝑠,𝑗

𝑆 𝑗 + 𝜅 (ℎ)𝑡, 𝑗
𝑇𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜅
(ℎ)
𝑚,𝑗,𝑜

𝑈
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜅
(ℎ,𝑞+1)
𝑎,𝑜 𝑎𝑜𝑃 + 𝜅 (ℎ)

𝑥,0
𝑋0 +

𝑏∑
𝑢=1

𝜅
(ℎ)
pk,𝑢𝑃𝑎

𝑍 ∗ = 𝜁𝑃 +
𝑞∑
𝑗=1

(
𝜁𝑧,𝑗𝑍 𝑗 + 𝜁𝑠,𝑗𝑆 𝑗 + 𝜁𝑡, 𝑗𝑇 ′𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘′(𝑗)+1

𝜁𝑚,𝑗,𝑜𝑈
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜁𝑎,𝑜𝑎
𝑜𝑃 + 𝜁𝑥,0𝑋0 +

𝑏∑
𝑢=1

𝜁pk,𝑢𝑃𝑎

𝑆∗ = 𝜎𝑃 +
𝑞∑
𝑗=1

(
𝜎𝑧,𝑗𝑍 𝑗 + 𝜎𝑠,𝑗𝑆 𝑗 + 𝜎𝑡, 𝑗𝑇𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘′(𝑗)+1

𝜎𝑚,𝑗,𝑜𝑈
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜎𝑎,𝑜𝑎
𝑜𝑃 + 𝜎𝑥,0𝑋0 +

𝑏∑
𝑢=1

𝜎pk,𝑢𝑃𝑎
)

𝑇 ∗ = 𝜏𝑃 +
𝑞∑
𝑗=1

(
𝜏𝑧,𝑗𝑍 𝑗 + 𝜏𝑠,𝑗𝑆 𝑗 + 𝜏𝑡, 𝑗𝑇𝑗 +

𝑡∑
𝑜=1

𝑘′(𝑗)∑
𝑚=𝑘′(𝑗)+1

𝜏𝑚,𝑗,𝑜𝑈
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜏𝑎,𝑜𝑎
𝑜𝑃 +

𝑏∑
𝑢=1

𝜏pk,𝑢𝑃𝑎
)

pk(𝑖) = 𝜓 (𝑖)𝑃 +
𝑖−1∑
𝑗=1

(
𝜓
(𝑖)
𝑧,𝑗
𝑍 𝑗 +𝜓 (𝑖)𝑠,𝑗

𝑆 𝑗 +𝜓 (𝑖)𝑡, 𝑗
𝑇𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘′(𝑗)+1

𝜓
(𝑖)
𝑚,𝑗,𝑜

𝑈
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜓
(𝑖)
𝑎,𝑜𝑎

𝑜𝑃 +𝜓 (𝑖)
𝑥,0
𝑋0 +

𝑏∑
𝑢=1

𝜓
(𝑖)
pk,𝑢𝑃𝑎

𝑆∗ = 𝜙𝑃 +
ℓ∑
𝑗=0

𝜙𝑥,𝑗𝑋 𝑗 +
𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑆 𝑗 +
𝑡∑

𝑜=1
𝜙𝑎,𝑜𝑎

𝑜𝑃

Using this, we can write, for all 1 ≤ 𝑖 ≤ 𝑞, the discrete logarithms

𝑐
(𝑖)
𝑗
, 𝑧𝑖 and 𝑡𝑖 in basis 𝑃 of the elements 𝐶

(𝑖)
𝑗

=
∏

𝑒∈𝑀 (𝑖)
𝑗

(𝛼 − 𝑒)𝑃 ,

𝑍𝑖 =

𝑘 (𝑖)∑
𝑗=1

𝑥 𝑗𝐶
(𝑖)
𝑗

𝑠𝑖
, 𝑇𝑖 = 𝑋1𝑠𝑖 + 𝑥0pk(𝑖) and 𝑈 (𝑖)𝑚,𝑜 =

𝑎𝑜𝑥𝑚
𝑠𝑖

𝑃 from the

oracle answers.

𝑐
(𝑖)
𝑗

= 𝜌
(𝑖)
𝑗

∏
𝑒∈𝑀 (𝑖)

𝑗

(𝛼 − 𝑒)𝑃 (1)

𝑧𝑖 =
1

𝑠𝑖

(
𝑘 (𝑖)∑
ℎ=1

𝑥ℎ𝑐
(𝑖)
ℎ

)
(2)

𝑡𝑖 = 𝑥1𝑠𝑖 + 𝑥0pk(𝑖) (3)

𝑢
(𝑖)
𝑚,𝑜 =

𝑎𝑜𝑥𝑚

𝑠𝑖
(4)

A successful forgery (𝑍 ∗, 𝑆∗, 𝑆∗,𝑇 ∗) on
(
pk(𝑞+1) , (𝐶∗

1
, . . . ,𝐶∗

𝑘 (𝑞+1)
)
)

satisfies the verification equations

𝑒 (𝑍 ∗, 𝑆∗) =
𝑘 (𝑞+1)∏
ℎ=1

𝑒 (𝐶∗
ℎ
, 𝑋ℎ)

𝑒 (𝑃, 𝑆∗) = 𝑒 (𝑆∗, 𝑃)

𝑒 (𝑇 ∗, 𝑃) = 𝑒 (𝑆∗, 𝑋1)𝑒 (pk(𝑞+1) , 𝑋0)

We interpret these values as multivariate rational fractions in vari-

ables 𝑥0, 𝑥1, . . . , 𝑥ℓ , 𝑠1, . . . , 𝑠𝑞, 𝑎, 𝑝1, . . . , 𝑝𝑏 .

Using the coefficients defined above and considering the loga-

rithms in base 𝑒 (𝑃, 𝑃) we obtain:

(
𝜁 +

𝑞∑
𝑗=1

(
𝜁𝑧,𝑗𝑧 𝑗 + 𝜁𝑠,𝑗𝑠 𝑗 + 𝜁𝑡, 𝑗 𝑡 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜁𝑚,𝑗,𝑜𝑢
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜁𝑎,𝑜𝑎
𝑜 + 𝜁𝑥,0𝑥0 +

𝑏∑
𝑢=1

𝜁pk,𝑢𝑝𝑎

)
(
𝜙 +

ℓ∑
𝑗=0

𝜙𝑥,𝑗𝑥 𝑗 +
𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜙𝑎,𝑜𝑎

𝑜
)
=

𝑘 (𝑞+1)∑
ℎ=1

𝑥ℎ𝑐
∗
ℎ

(5)

509

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

ExpUnfSPSEQ-UC,A (𝜆, ℓ, 𝑡,𝑢) :
• 𝑢 ← A()
• 𝑄 := ∅;UL := ∅, pp← PPGen(1𝜆, 1𝑡 , 1ℓ) ;
• UL ← UKeyGen𝑢 () ;
• (vk, sk) ← KeyGen(pp) ;
• ((sk∗𝑢 , pk∗𝑢), (®𝐶∗, ®𝑇 ∗, ®𝑈 ∗), 𝜎∗) ← AO

Sign
(
vk, pp, {pk𝑢 } (pk𝑢,sk𝑢)∈UL

)
return: (

∀(pk𝑢 , sk𝑢) ∉ UL, ∀(®𝑀,𝑘′, pk𝑢) ∈ 𝑄 : (®𝑀, ®𝑇 ∗) ∉ R𝑘′

∧ Verify(vk, pk∗𝑢 , ®𝐶∗, 𝜎∗, (®𝑇 ∗, ®𝑈 ∗)) = 1

)

OSign (®𝑀, ®𝜌, 𝑘′, pk𝑢) :
• If ℓ ≥ 𝑘′ ≥ 𝑘 :

• Then (𝜎, ®𝐶, uk𝑘′) ← Sign(sk, 𝑘′, ®𝑀, ®𝜌, pk𝑢)
• 𝑄 = 𝑄 ∪ {(®𝑀,𝑘′, pk𝑢) },
• return ((®𝐶, ®𝑂), 𝜎, uk𝑘′)
• Else return ⊥

Figure 7: Experiment ExpUnfStatSPSEQ-UC,A (𝜆, ℓ, 𝑡).

𝜎 +
𝑞∑
𝑗=1

(
𝜎𝑧,𝑗𝑧 𝑗 + 𝜎𝑠,𝑗𝑠 𝑗 + 𝜎𝑡, 𝑗 𝑡 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜎𝑚,𝑗,𝑜𝑢
(𝑞+1)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜎𝑎,𝑜𝑎
𝑜 + 𝜎𝑥,0𝑥0 +

𝑏∑
𝑢=1

𝜎pk,𝑢𝑝𝑎

=𝜙 +
ℓ∑
𝑗=0

𝜙𝑥,𝑗𝑥 𝑗 +
𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜙𝑎,𝑜𝑎

𝑜
(6)

𝜏 +
𝑞∑
𝑗=1

(
𝜏𝑧,𝑗𝑧 𝑗 + 𝜏𝑠,𝑗𝑠 𝑗 + 𝜏𝑡, 𝑗 𝑡 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜏𝑚,𝑗,𝑜𝑢
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜏𝑎,𝑜𝑎
𝑜 + 𝜏𝑥,0𝑥0 +

𝑏∑
𝑢=1

𝜏pk,𝑢𝑝𝑎

=𝑥1

(
𝜎 +

𝑞∑
𝑗=1

(
𝜎𝑧,𝑗𝑧 𝑗 + 𝜎𝑠,𝑗𝑠 𝑗 + 𝜎𝑡, 𝑗 𝑡 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜎𝑚,𝑗,𝑜𝑢
(𝑞+1)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜎𝑎,𝑜𝑎
𝑜 + 𝜎𝑥,0𝑥0 +

𝑏∑
𝑢=1

𝜎pk,𝑢𝑝𝑎

)
+ 𝑥0

(
𝜓 (𝑞+1) +

𝑞∑
𝑗=1

(
𝜓
(𝑞+1)
𝑧,𝑗

𝑧 𝑗 +𝜓 (𝑞+1)𝑠,𝑗
𝑠 𝑗 +𝜓 (𝑞+1)𝑡, 𝑗

𝑡 𝑗

+
𝑡∑

𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜓
(𝑞+1)
𝑚,𝑗,𝑜

𝑢
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜓
(𝑞+1)
𝑎,𝑜 𝑎𝑜 +𝜓 (𝑞+1)

𝑥,0
𝑥0 +

𝑏∑
𝑢=1

𝜓
(𝑞+1)
pk,𝑢 𝑝𝑎

)
(7)

We follow the standard proof technique for results in the generic

group model and now consider an “ideal” game in which the chal-

lenger treats all the (handles of) group elements as elements of

Z𝑝 (𝑠1, . . . , 𝑠𝑞, 𝑥0, 𝑥1, . . . , 𝑥ℓ , 𝑎, 𝑝1, . . . , 𝑝𝑏), that is, rational fractions
whose indeterminates represent the secret values chosen by the

challenger.

We first show that in the ideal game if the adversary’s output

satisfies the verification equations, then the first winning condition

is not satisfied, which demonstrates that the ideal game cannot be

won. We then compute the statistical distance from the adversary’s

point of view between the real and the ideal game at the end of the

proof.

In the ideal gamewe thus interpret the three equalities (5), (6) and

(7) as polynomial equalities over the fieldZ𝑝 (𝑠1, . . . , 𝑠𝑞, 𝑥0, 𝑥1, . . . , 𝑥ℓ ,
𝑎, 𝑝1, . . . , 𝑝𝑏). More precisely, we consider the equalities in the ring

Z𝑝 (𝑠1, . . . , 𝑠𝑞) [𝑥0, 𝑥1, . . . , 𝑥ℓ , 𝑎, 𝑝1, . . . , 𝑝𝑏], that is, the polynomial

ring with 𝑥1, . . . , 𝑥ℓ , 𝑎, 𝑝1, . . . , 𝑝𝑏 as indeterminates over the field

Z𝑝 (𝑠1, . . . , 𝑠𝑞). (Note that this interpretation is possible because

neither any 𝑥𝑖 ’s and 𝑝𝑢 nor 𝑎 never appear in the denominators

of any expressions.) As one of our proof techniques, we will also

consider the equalities over the ring factored by (𝑥0, 𝑥1, . . . , 𝑥ℓ), the
ideal generated by the 𝑥𝑖 ’s:

16

𝑍𝑝 (𝑠1, . . . , 𝑠𝑞) [𝑥0, 𝑥1, . . . , 𝑥ℓ , 𝑎, 𝑝1, . . . , 𝑝𝑛]/(𝑥0, 𝑥1, . . . , 𝑥ℓ)
�Z𝑝 (𝑠1, . . . , 𝑠𝑞) [𝑎, 𝑝1, . . . , 𝑝𝑛] .

From (2) and (3), over this quotient we have and 𝑡𝑖 = 𝑧𝑖 = 𝑢
(𝑗)
𝑚,𝑜 = 0

and thus (5)–(7) become(
𝜁 +

𝑞∑
𝑗=1

𝜁𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜁𝑎,𝑜𝑎

𝑜 +
𝑏∑

𝑢=1
𝜁pk,𝑢𝑝𝑎

)
(
𝜙 +

𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜙𝑎,𝑜𝑎

𝑜
)
= 0 (8)

𝜎 +
𝑞∑
𝑗=1

𝜎𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜎𝑎,𝑜𝑎

𝑜 +
𝑏∑

𝑢=1
𝜎pk,𝑢𝑝𝑎

= 𝜙 +
𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜙𝑎,𝑜𝑎

𝑜
(9)

𝜏 +
𝑞∑
𝑗=1

𝜏𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜏𝑎,𝑜𝑎

𝑜 +
𝑏∑

𝑢=1
𝜏pk,𝑢𝑝𝑎 = 0 (10)

By looking the coefficients of the monomials 𝑠 𝑗 ’s, 𝑝𝑢 ’s, 𝑎
𝑜
’s and

1 of (10), we deduce:

∀𝑗, 𝑜,𝑢 : 𝜏 = 𝜏𝑠,𝑗 = 𝜏𝑎,𝑜 = 𝜏pk,𝑢 = 0 (11)

And by looking the coefficients of the 𝑠 𝑗 ,
1

𝑠 𝑗
, 𝑎𝑜 ’s of (9), we deduce:

𝜎 = 𝜙,∀𝑜 : 𝜎𝑎,𝑜 = 𝜙𝑎,𝑜 , ∀𝑗 : 𝜎𝑠,𝑗 = 𝜙𝑠,𝑗 ∀𝑢 : 𝜎pk,𝑢 = 0 (12)

Now we can reuse (12) in (6) and look the equation modulo (𝑥0).
𝑞∑
𝑗=1

(
𝜎𝑧,𝑗𝑧 𝑗 + 𝜎𝑡, 𝑗𝑠 𝑗𝑥1+

𝑡∑
𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜎𝑚,𝑗,𝑜𝑢
(𝑞+1)
𝑚,𝑜

)
mod (𝑥0) =

ℓ∑
𝑗=1

𝜙𝑥,𝑗𝑥 𝑗 (13)

By looking the coefficient in the monomials 𝑥 𝑗 ’s, for 𝑗 > 0 and

because for all 𝑗 , 𝑑𝑒𝑔𝑠 𝑗 (𝑧 𝑗) = 𝑑𝑒𝑔𝑠 𝑗 (𝑢𝑚,𝑗,𝑜) = −1, we deduce:
∀𝑗 > 0 : 𝜙𝑥,𝑗 = 0. (14)

Then the equation (13) becomes:

16
Considering an equation of rational fractions over this quotient can also be seen

as simply setting ∀𝑖, 𝑥𝑖 = 0. Everything we infer about the coefficients from

these modified equations is also valid for the original equation, since these must

hold for all values (𝑠1, . . . , 𝑠𝑞 , 𝑥0, 𝑥1, . . . 𝑥ℓ , 𝑎, 𝑝1, . . . , 𝑝𝑏) and so in particular for

(𝑠1, . . . , 𝑠𝑞 , 0, 0, . . . , 0, 𝑎, 𝑝1, . . . , 𝑝𝑏) .
Yet another interpretation when equating coefficients in equations modulo

(𝑥0, 𝑥1, . . . , 𝑥ℓ) is that one equates coefficients only of monomials that do not contain

any 𝑥𝑖 .

510

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

𝑞∑
𝑗=1

(
𝜎𝑧,𝑗

(
𝑘 (𝑗)∑
𝑚=2

𝑥𝑚
∏

𝑒∈𝑀 (𝑗)𝑚

(𝑎−𝑒)
𝑠 𝑗

)
+ 𝜎𝑡, 𝑗𝑠 𝑗𝑥1+

𝑡∑
𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜎𝑚,𝑗,𝑜𝑢
(𝑞+1)
𝑚,𝑜

)
= 0 (15)

By looking all the monomials in 𝑥1𝑠 𝑗 , we deduce:

∀𝑗 : 𝜎𝑡, 𝑗 = 0 (16)

Now, for all 𝑗 , we look all the monomials of degree −1, in 𝑠 𝑗 , we
deduce:

∀𝑗 : 𝜎𝑧,𝑗

(
𝑘 (𝑗)∑
𝑚=1

𝑥𝑚
∏

𝑒∈𝑀 (𝑗)𝑚

(𝑎−𝑒)
𝑠 𝑗

)
+

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜎𝑚,𝑗,𝑜
𝑎𝑜𝑥𝑚
𝑠 𝑗

= 0

(17)

Then, by looking the monomials in 𝑎𝑜𝑥 𝑗 for all 𝑗 > 𝑘
(𝑗)

:

∀𝑚, 𝑗, 𝑜 : 𝜎𝑚,𝑗,𝑜 = 0 (18)

Then (17) becomes:

∀𝑗 : 𝜎𝑧,𝑗

(
𝑘 (𝑗)∑
𝑚=1

𝑥𝑚
∏

𝑒∈𝑀 (𝑗)𝑚

(𝑎−𝑒)
𝑠 𝑗

)
= 0 (19)

Then without any loss of generalities, we deduce:

∀𝑗 : 𝜎𝑧,𝑗 = 0 (20)

Now we look the equation (5) modulo (𝑥1, . . . , 𝑥ℓ):(
𝜙 + 𝜙𝑥,0𝑥0 +

𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗 +
𝑡∑

𝑜=1
𝜙𝑎,𝑜𝑎

𝑜

) (
𝜁 +

𝑞∑
𝑗=1

(
𝜁𝑠,𝑗𝑠 𝑗 + 𝜁𝑡, 𝑗 𝑡 𝑗

)
+

𝑡∑
𝑜=1

𝜁𝑎,𝑜𝑎
𝑜 + 𝜁𝑥,0𝑥0 +

𝑏∑
𝑢=1

𝜁pk,𝑢𝑝𝑎

)
mod (𝑥1, . . . , 𝑥ℓ) = 0

Now, because 𝑆∗ ≠ 0, we can deduce: 𝜙 + 𝜙𝑥,0𝑥0 +
𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗 +

𝑡∑
𝑜=1

𝜙𝑎,𝑜𝑎
𝑜 ≠ 0, then because

𝑡 𝑗 mod (𝑥1, . . . , 𝑥ℓ) =
𝑥0

𝑠 𝑗
pk(𝑗) mod (𝑥1, . . . , 𝑥ℓ)

we have: (
𝜁 +

𝑞∑
𝑗=1

(
𝜁𝑠,𝑗𝑠 𝑗 + 𝜁𝑡, 𝑗 𝑥0𝑠 𝑗 pk

(𝑗)) + 𝑡∑
𝑜=1

𝜁𝑎,𝑜𝑎
𝑜+

𝜁𝑥,0𝑥0 +
𝑏∑︁

𝑢=1

𝜁pk,𝑢𝑝𝑎

)
mod (𝑥1, . . . , 𝑥ℓ) = 0 (21)

Then, by looking constant coefficient in 𝑥0, we deduce:

∀𝑗 : 𝜁𝑠,𝑗 = 0, ∀𝑜 : 𝜁𝑎,𝑜 = 0, 𝜁 = 0 ∀𝑢 : 𝜁pk,𝑢 = 0 (22)

Then by noticing for all 𝑗 , we know pk(𝑗) is constant in 𝑠 𝑗 . By
looking coefficient constant in 𝑠 𝑗 , but of degree 1 in 𝑥0.

𝜁𝑥,0 = 0. (23)

Now, let’s look equation (7) modulo (𝑥0, 𝑥1)
𝑞∑
𝑗=1

(
𝜏𝑧,𝑗𝑧 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜏𝑚,𝑗,𝑜𝑢
(𝑗)
𝑚,𝑜

)
mod (𝑥0, 𝑥1) = 0

Now, for all 𝑗 , we look all the monomials of degree −1, in 𝑠 𝑗 , and
degree 0 in 𝑠𝑘 for 𝑘 > 𝑗 :

∀𝑗 : 𝜏𝑧,𝑗

(
𝑘 (𝑗)∑
𝑚=2

𝑥𝑚
∏

𝑒∈𝑀 (𝑗)𝑚

(𝑎−𝑒)
𝑠 𝑗

)
(24)

+
𝑡∑

𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜏𝑚,𝑗,𝑜
𝑎𝑜𝑥𝑚
𝑠 𝑗

mod (𝑥0, 𝑥1) = 0

Then, by looking the monomials in
𝑎𝑜𝑥𝑚
𝑠 𝑗

for𝑚 > 𝑘 (𝑗) :

∀𝑚, 𝑗, 𝑜 : 𝜏𝑚,𝑗,𝑜 = 0 (25)

Then (7) modulo (𝑥0) becomes:

𝑞∑
𝑗=1

(
𝜏𝑧,𝑗𝑧 𝑗 + 𝜏𝑡, 𝑗𝑥1𝑠 𝑗

)
mod (𝑥0)

=𝑥1

(
𝜎 +

𝑞∑
𝑗=1

(
𝜎𝑠,𝑗𝑠 𝑗

)
+

𝑡∑
𝑜=1

𝜎𝑎,𝑜𝑎
𝑜

)
(26)

By looking the monomials constant in 𝑠𝑖 , ∀𝑖 , we deduce:
∀𝑜 : 𝜎 = 𝜎𝑎,𝑜 = 0 (27)

(26) becomes thus:

𝑞∑
𝑗=1

(
𝜎𝑧,𝑗𝑧 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜎𝑚,𝑗,𝑜𝑢
(𝑞+1)
𝑚,𝑜

)
+ 𝜎𝑥,0𝑥0 = 𝜙𝑥,0𝑥0 (28)

By looking monomials constant in 𝑠𝑖 , ∀𝑖:
𝜎𝑥,0 = 𝜙𝑥,0 (29)

Then, by using (27),in (26), we deduce:

𝑞∑
𝑗=1

(
𝜏𝑧,𝑗𝑧 𝑗 + 𝜏𝑡, 𝑗𝑥1𝑠 𝑗

)
mod (𝑥0) = 𝑥1

(
𝑞∑
𝑗=1

𝜎𝑠,𝑗𝑠 𝑗

)
(30)

If we look in this equation for all 𝑗 , all the monomials of degree −1,
in 𝑠 𝑗 , and degree 0 in 𝑠𝑘 for 𝑘 > 𝑗 . We deduce

∀𝑗 : 𝜏𝑧,𝑗𝑧 𝑗 = 0

Then without any loss of generality, we can assume:

∀𝑗 : 𝜏𝑧,𝑗 = 0 (31)

Then by looking monomials in 𝑥1𝑠 𝑗 , for all 𝑗 , we deduce:

∀𝑗 : 𝜎𝑠,𝑗 = 𝜏𝑡, 𝑗 (32)

Then, (7) becomes:

𝑞∑
𝑗=1

𝜎𝑠,𝑗 𝑡 𝑗 + 𝜏𝑥,0𝑥0 = 𝑥1

(
𝑞∑
𝑗=1

𝜎𝑠,𝑗𝑠 𝑗 + 𝜎𝑥,0𝑥0

)
+ 𝑥0pk(𝑞+1) (33)

Now, if we look the monomial 𝑥0𝑥1, we deduce

𝜎𝑥,0 = 0 (34)

And (29) implies:

𝜙𝑥,0 = 0 (35)

Now, let’s look (5) by using (35), (14), (12):(𝑞∑
𝑗=1

(
𝜁𝑧,𝑗𝑧 𝑗 + 𝜁𝑡, 𝑗 𝑡 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜁𝑚,𝑗,𝑜𝑢
(𝑗)
𝑚,𝑜

))
(𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗

)
=

𝑘 (𝑞+1)∑
ℎ=1

𝑥ℎ𝑐
∗
ℎ

(36)

511

Proceedings on Privacy Enhancing Technologies 2023(3) Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer

Let 𝑖0 be the maximum of the 𝑖’s such that 𝜙𝑖 ≠ 0.

Then

(𝑞∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗

)
=

(𝑖0∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗

)
is of degree 1 in 𝑠𝑖0 and in 𝑠𝑖1 .

Now we can notice that in

𝑘 (𝑞+1)∑
ℎ=1

𝑥ℎ𝑐
∗
ℎ
, there is neither monomial

of degree −1 in 𝑠𝑖 and of degree 1 in 𝑠𝑘 with 𝑘 ≠ 𝑖 nor monomials

in 𝑠𝑖𝑠𝑘 , nor in 𝑠
2

𝑖

Because,

(𝑖0∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗

)
is of degree 1 in 𝑠𝑖0 .

We deduce that the left term has no term of degree 1 or −1 in
any indeterminate 𝑠𝑖 in {𝑠1, . . . , 𝑠𝑞}.

In particular, there is no monomials in 𝑥1𝑠𝑖 in this term,

Then

∀𝑖 : 𝜁𝑡,𝑖𝑡𝑖 = 0 (37)

∀𝑗 ≠ 𝑖0 : 𝜁𝑧,𝑗𝑧 𝑗 +
𝑡∑

𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜁𝑚,𝑗,𝑜𝑢
(𝑗)
𝑚,𝑜 = 0 (38)

Then (36) becomes:

(
𝜁𝑧,𝑖0𝑧𝑖0 +

𝑡∑
𝑜=0

𝑘′(𝑖0)∑
𝑚=𝑘 (𝑗)+1

𝜁𝑚,𝑗,𝑜𝑢
(𝑖0)
𝑚,𝑜

) (𝑖0∑
𝑗=1

𝜙𝑠,𝑗𝑠 𝑗
)
=

𝑘 (𝑞+1)∑
ℎ=1

𝑥ℎ𝑐
∗
ℎ

(39)

By noticing

𝑘 (𝑞+1)∑
ℎ=1

𝑥ℎ𝑐
∗
ℎ
has no monomial in 𝑠

𝑠 𝑗
𝑠𝑖
0

, for 𝑗 < 𝑖0, we

deduce:

∀𝑗 < 𝑖0 : 𝜙𝑠,𝑗 = 0 (40)

We can now transform (39) in:

𝜁𝑧,𝑖0

𝑘 (𝑖0)∑
𝑚=1

𝑥𝑚𝑐
(𝑖0)
𝑚 +

𝑡∑
𝑜=0

𝑘′(𝑖0)∑
𝑚=𝑘 (𝑗)+1

𝜁𝑚,𝑗,𝑜𝑥𝑚𝑎
𝑜 =

𝑘 (𝑞+1)∑
𝑚=1

𝑥𝑚𝑐
∗
𝑚 (41)

We can deduce by looking for all the monomials in 𝑥𝑖 :

∀𝑚 ≤ 𝑘 (𝑖0) : 𝜁𝑧,𝑖0𝑐
(𝑖0)
𝑚 = 𝑐∗𝑚 (42)

∀𝑚 ∈ {𝑘 (𝑖0) + 1, . . . , 𝑘 ′(𝑖0) } :
𝑡∑

𝑜=0
𝜁𝑚,𝑗,𝑜𝑎

𝑜 = 𝑐∗𝑚 (43)

Now, we can use all the equalities found to deduce from (7):

𝜎𝑠,𝑖0𝑡𝑖0 + 𝜏𝑥,0𝑥0
=𝑥1𝜎𝑠,𝑖0𝑠𝑖0

+ 𝑥0
(
𝜓 (𝑞+1) +

𝑞∑
𝑗=1

(
𝜓
(𝑞+1)
𝑧,𝑗

𝑧 𝑗 +𝜓 (𝑞+1)𝑠,𝑗
𝑠 𝑗 +𝜓 (𝑞+1)𝑡, 𝑗

𝑡 𝑗

+
𝑡∑

𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜓
(𝑞+1)
𝑚,𝑗,𝑜

𝑢
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜓
(𝑞+1)
𝑎,𝑜 𝑎𝑜 +𝜓 (𝑞+1)

𝑥,0
𝑥0 +

𝑏∑
𝑢=1

𝜓
(𝑞+1)
pk,𝑢 𝑝𝑎

)
(44)

It becomes:

𝜎𝑠,𝑖0𝑥0pk
(𝑖0) + 𝜏𝑥,0𝑥0 =

𝑥0

(
𝜓 (𝑞+1) +

𝑞∑
𝑗=1

(
𝜓
(𝑞+1)
𝑧,𝑗

𝑧 𝑗 +𝜓 (𝑞+1)𝑠,𝑗
𝑠 𝑗 +𝜓 (𝑞+1)𝑡, 𝑗

𝑡 𝑗

+
𝑡∑

𝑜=0

𝑘′(𝑞+1)∑
𝑚=𝑘 (𝑞+1)+1

𝜓
(𝑞+1)
𝑚,𝑗,𝑜

𝑢
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜓
(𝑞+1)
𝑎,𝑜 𝑎𝑜 +𝜓 (𝑞+1)

𝑥,0
𝑥0 +

𝑏∑
𝑢=1

𝜓
(𝑞+1)
pk,𝑢 𝑝𝑎

)
(45)

Then

𝜎𝑠,𝑖0pk
(𝑖0) + 𝜏𝑥,0 = pk(𝑞+1) . (46)

Because, the adversary should output the secret key associated

to pk(𝑞+1) . pk(𝑞+1) = 𝜓𝑃 .
Then, recall that because 𝜎𝑠,𝑖0 ≠ 0

pk(𝑖0) =

(
𝜓 − 𝜏𝑥,0

)
𝜎𝑠,𝑖0

. (47)

We deduce that pk(𝑖0) ∉ UL.
It implies that

(
®𝑀𝑖0 ,
®𝑇 ∗

)
∉ R𝑘 (𝑖0) , thus ∃ 𝑗0 ∈ {1, . . . , 𝑘 (𝑖0) }, such

that𝑇𝑗0 ⊄ 𝑀
(𝑖0)
𝑗0

. Then, it exists 𝑒 ′ ∈ 𝑇𝑗0 \𝑀
(𝑖0)
𝑗0

Now, let’s look how

𝑊 ∗
ℎ
has been built by the adversary:

𝑊 ∗𝑗0 = 𝜔𝑃 +
𝑞∑
𝑗=1

(
𝜔𝑧,𝑗𝑍 𝑗 + 𝜔𝑠,𝑗𝑆 𝑗 + 𝜔𝑡, 𝑗𝑇𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜔𝑚,𝑗,𝑜𝑈
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜔
(ℎ,𝑞+1)
𝑎,𝑜 𝑎𝑜𝑃 + 𝜔 (ℎ)

𝑥,0
𝑋0 +

𝑏∑
𝑢=1

𝜔
(ℎ)
pk,𝑢𝑃𝑎

Because VerifySubset outputs 1 then:(
𝜔 +

𝑞∑
𝑗=1

(
𝜔𝑧,𝑗𝑧 𝑗 + 𝜔𝑠,𝑗𝑠 𝑗 + 𝜔𝑡, 𝑗 𝑡 𝑗 +

𝑡∑
𝑜=0

𝑘′(𝑗)∑
𝑚=𝑘 (𝑗)+1

𝜔𝑚,𝑗,𝑜𝑢
(𝑗)
𝑚,𝑜

)
+

𝑡∑
𝑜=1

𝜔
(ℎ,𝑞+1)
𝑎,𝑜 𝑎𝑜 + 𝜔 (ℎ)

𝑥,0
𝑥0 +

𝑏∑
𝑢=1

𝜔
(ℎ)
pk,𝑢𝑝𝑎

)
(48)(∏

𝑒∈𝑇 ∗
𝑗
0

(𝛼 − 𝑒)
)
= 𝜁𝑧,𝑖0

∏
𝑒∈𝑀 (𝑖0)

𝑗
0

(𝛼 − 𝑒)

This equation modulo (𝑎 − 𝑒 ′):

𝜁𝑧,𝑖0

∏
𝑒∈𝑀 (𝑖0)

𝑗

(𝑎 − 𝑒) mod (𝑎 − 𝑒 ′) = 0

Then, we have a contradiction, because 𝑒 ′ ∉ 𝑀 (𝑖0)
𝑗

.

We have thus shown that in the “ideal”model, the attacker cannot

win the game. It remains to upper-bound the statistical distance

from the adversary point of view between these two models.

Difference between ideal and real game.We can upper bound

the degree of the denominators of all the rational fractions by

(2𝑞 + 𝑡 + 1). If the adversary computes at most 𝑜 group operations,

then there are at most 𝑜 + 𝑞(4 + ℓ · 𝑡) group elements. Using the

512

Practical Delegatable Anonymous Credentials From Equivalence Class Signatures Proceedings on Privacy Enhancing Technologies 2023(3)

union bound, we conclude that the adversary can distinguish the

two models with probability at most

(
𝑜+𝑞 (4+ℓ ·𝑡)

)
2

(2𝑞+𝑡+1)
𝑝 .

Difference between static and adaptative game. If we consider
a deterministic adaptative adversary (which can make adaptative

corruption like in the real game).

If there is no collision before the first corruption (it happens

with probability

(
𝑜+𝑞 (4+ℓ ·𝑡)

)
2

(2𝑞+𝑡+1)
𝑝), the challenger can guess

the traitor and then can make it static.

It can do it for 𝑐 corruption if there is no collision, and this could

happen with probability

𝑐
(
𝑜+𝑞 (4+ℓ ·𝑡)

)
2

(2𝑞+𝑡+1)
𝑝.

513

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Practical Example Application
	1.3 High Level Idea of Our Approach
	1.4 Comparison with Previous Work

	2 Preliminaries and Notation
	2.1 Set Commitments

	3 SPSEQ on Updatable Commitments
	3.1 Formal Definitions
	3.2 Security Definitions
	3.3 Construction
	3.4 Cross-Set Commitment Aggregation

	4 Delegatable Anonymous Credentials
	4.1 Security of DAC
	4.2 Construction of DAC
	4.3 Discussion of Various Aspects

	5 Implementation and Evaluation
	Acknowledgments
	References
	A Additional Preliminaries
	A.1 Set Commitments
	A.2 Zero-Knowledge Proofs of Knowledge

	B CSCA Construction
	C Theoretical Comparison to CDD
	C.1 Computational Complexity
	C.2 Communication Complexity

	D Additional Definitions
	D.1 Correctness of SPSEQ-UC
	D.2 Class-Hiding
	D.3 DAC Oracle Description and Security Properties

	E Proofs
	E.1 Security of DAC
	E.2 Privacy Notions of SPSEQ-UC
	E.3 Unforgeability of SPSEQ-UC

