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ABSTRACT
Web tracking through third-party cookies is considered a threat
to users’ privacy and is supposed to be abandoned in the near
future. Recently, Google proposed the Topics API framework as
a privacy-friendly alternative for behavioural advertising. Using
this approach, the browser builds a user profile based on naviga-
tion history, which advertisers can access. The Topics API has the
possibility of becoming the new standard for behavioural advertis-
ing, thus it is necessary to fully understand its operation and find
possible limitations.

This paper evaluates the robustness of the Topics API to a re-
identification attack where an attacker reconstructs the user profile
by accumulating user’s exposed topics over time to later re-identify
the same user on a different website. Using real traffic traces and
realistic population models, we find that the Topics API mitigates
but cannot prevent re-identification to take place, as there is a
sizeable chance that a user’s profile is unique within a website’s
audience. Consequently, the probability of correct re-identification
can reach 15 − 17%, considering a pool of 1,000 users. We offer the
code and data we use in this work to stimulate further studies and
the tuning of the Topic API parameters.
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1 INTRODUCTION
In the current web ecosystem, targeted or behavioural advertising
lets providers monetize their content, by collecting and processing
personal data to build accurate user profiles. Among the techniques,
web tracking is the most widespread technology [7, 15, 16]. It heav-
ily leverages third-party cookies, that allow tracking platforms to
follow the same user on different websites. The mechanism can be
summarized as follows: when a user visits a website, a tracker in-
stalls a third-party profiling cookie on the user’s client. This cookie
contains a unique identifier that lets the tracker identify the user
on subsequent visits. When the user visits a second website that
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embeds the same tracker, the cookie is sent to the tracker, as specifi-
cations mandate that cookies are handled on a per-domain basis. As
such, the tracker learns that the same user has visited the two web-
sites. Using this mechanism, trackers gather information on users
and build profiles describing their interests. Profiles are offered to
advertisers so that they can customize the content of the displayed
ads. In some cases, tracking platforms employ more sophisticated
and privacy-intrusive techniques such as browser fingerprinting or
ID synchronization [18, 23].

This massive data collection has created tension between users
and the ads ecosystem [10, 15, 24]. Some browsers, such as Mozilla
Firefox and Apple Safari, have already started battling third-party
cookies. Leading researchers and industries are studying new
paradigms that are more respectful of users’ privacy.

These new proposals have one common feature: the replacement
of third-party cookies and tracking with other techniques that let
the user control and limit the amount of disclosed personal infor-
mation. First, Google proposed the Federated Learning of Cohorts
(FLoC) [21]. In FLoC, users are clustered in cohorts according to
their interests, computed by each one’s browser based on the user’s
recent activity. In the proponents’ intentions, this solution should
have prevented tracking, as every user was “hidden” in his/her
cohort. However, the approach has been criticised [22]. The main
issue is that while a user could hide inside a cohort for a short pe-
riod of time, the sequence of cohorts they belonged to across time
could work as an identifier, increasingly unique. Eventually, Google
replaced it with a new proposal called Topics API. With the Topics
API, the browser is in charge to build the user’s profile based on
the navigation history. Websites can ask for a privacy-preserving
version of such profiles to serve targeted advertisements or services.
Among the mechanisms in place, the Topic API returns at most one
topic per epoch (a week), and randomly replaces 5% of actual topics
with random ones.

The Topics API framework has the potential to become the new
standard for behavioural advertising and replace the current con-
flicting web tracking system based on third-party cookies. In the
first quarter of 2024, Google will deprecate the use of cookies for
1% of Chrome users, to “support developers in conducting real
world experiments that assess the readiness and effectiveness of
their products without third-party cookies”1. It is thus urgent to
fully understand the operation of the Topics API, and independent

1https://privacysandbox.com/news/the-next-stages-of-privacy-sandbox-general-
availability, accessed on August 3, 2023
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researchers must verify the robustness of such an approach as done
by Mozilla and Google [8, 25].

In this paper, we provide an independent evaluation of the Topics
API. Using a data-driven approach, we build realistic population
models that we use to quantify the feasibility of a re-identification
attack: We assume that the attacker i) exploits the Topic API to
reconstruct the victim’s profile by accumulating her/his topics over
epochs, and ii) tries to re-identify the victim on the audience of
a second website – as studied by Epasto et al. [8]. If successful,
such an attack would tamper with the abandonment of third-party
cookies, allowing platforms to still track users across websites. We
face the problem by mapping it to the probability that a user is
𝑘-anonymous among the website audience, i.e., that there are 𝑘 − 1
other users with the same reconstructed profile. Generalising the
attack sketched by Thomson [25], we propose a robust denoising
algorithm that aims to filter the random topics introduced by the
Topics API.

We contribute to three main results:
(1) We show that the introduction of Topics API algorithm mit-

igates but cannot prevent re-identification. Depending on
the website’s audience size (e.g., 100,000 visitors) and popu-
lation heterogeneity, a sizeable fraction (e.g., 40%) of users
would still let the attacker reconstruct a denoised and unique
profile that allows re-identification if matched on a second
population.

(2) We demonstrate the replacement of actual topics with ran-
dom ones is key to limiting the attack. Yet, the denoising
algorithm is very efficient in removing random topics from
the reconstructed profiles the attacker builds.

(3) We show that in practice the probability of correctly re-
identify a user in a pool of 1,000 can top 15-17%, with false
positives being negligible (less than 0.2%). However, it is also
important to consider that such probabilities are a function
of the attacker’s observation period and that many weeks
may be needed to carry out the attack in practice.

Our study highlights the need for continued research and develop-
ment of privacy-preserving advertising techniques to ensure that
user privacy is respected in the digital age. To foster research in
this field, we release the code and data to replicate and extend our
experiments.2

The remainder of the paper is organized as follows: Section 2
formalizes Topics API operation and the threat model. In Section 3
and 4, we describe the dataset and models to generate synthetic
populations we use to run simulations, respectively. Section 5 illus-
trates the results in terms of 𝑘-anonymity, while Section 6 explores
the effectiveness of a re-identification attack. Section 7 summa-
rizes related work, and, finally, Section 8 discusses our findings and
concludes the paper.

2 THE TOPICS API AND THE THREAT MODEL
In this section, we describe how the Topics API operates for creating
a profile from the user’s browsing history. Then, we describe our
threat model – i.e., the possibility that an attacker links two profiles
referring to the same user as they are uniquely identifiable within
a given population.
2The code is available at https://github.com/nikhiljha95/topics-api-simulator.

Table 1: Main terminology to model Topics API algorithm
and threat model.

Symbol Definition

𝑛𝑡𝑜𝑝𝑖𝑐 Number of topics in the taxonomy
𝐸 Number of past epochs included in the profile
𝑝 Probability a random topic to replace a real topic
𝑁 Epochs of observation by the attacker
𝑈 User population set
𝜆𝑢,𝑡 Rate of visit by user 𝑢 to topic 𝑡
B𝑢,𝑒 Bag of visited websites by user 𝑢 at epoch 𝑒

T𝑢,𝑒 Bag of visited topics by user 𝑢 at epoch 𝑒

P𝑢,𝑒 Profile for the user 𝑢 at epoch 𝑒

P𝑢,𝑒,𝑤 Exposed Profile to website 𝑤 for user 𝑢 at epoch 𝑒

G𝑢,𝑁 ,𝑤 Global Reconstructed Profile by 𝑤 after 𝑁 epochs
R𝑢,𝑁 ,𝑤 Denoised Reconstructed Profile by 𝑤 after 𝑁 epochs

We consider a browser that a user employs to navigate the Inter-
net.3 We assume time is divided into epochs of duration Δ𝑇 (one
week in the current proposed Topics API operation). During each
epoch 𝑒 , the browser collects and counts the number of visits to
each website and forms a bag of websites B𝑢,𝑒 for the user𝑢. It keeps
track only of the website hostnames the user intentionally visited,
e.g., by typing its URL, or by clicking on a link in a web page or
other applications. Formally, given a user 𝑢 and the epoch 𝑒 , let
B𝑢,𝑒 = {(𝑤1, 𝑓1,𝑢,𝑒 ), (𝑤2, 𝑓2,𝑢,𝑒 ), . . . , (𝑤𝑛, 𝑓𝑛,𝑢,𝑒 )}, where {𝑤𝑖 } rep-
resent the visited websites and 𝑓𝑖,𝑢,𝑒 the number of times 𝑢 visited
𝑤𝑖 during epoch 𝑒 .

2.1 The Topics API profile construction
The Topics API algorithm operates in the browser and processes
the history of B𝑢,𝑒 over the past 𝐸 epochs to create a corresponding
Exposed Profile P𝑢,𝑒,𝑤 for the user 𝑢, epoch 𝑒 and each specific web-
site 𝑤 the user visits during the current epoch. In fact, the browser
builds a separate Exposed Profile for each visited website 𝑤 to miti-
gate re-identification attacks. We base the following description on
the public documentation of the Topics API available online.4 The
operation of the Topics API has the following steps.

Step 1 - From websites to topics: For each of the websites 𝑤𝑖 ∈
B𝑢,𝑒 , the browser extracts a corresponding topic 𝑡𝑖 . To this end, the
browser uses a Machine Learning (ML) classifier model that returns
the topic of a website given the characters and strings that compose
the website hostname.

At this step, each browsing history B𝑢,𝑒 is transformed into a
topic history T𝑢,𝑒 = {(𝑡1, 𝑓 ′1,𝑢,𝑒 ), (𝑡2, 𝑓

′
2,𝑢,𝑒 ), . . . , (𝑡𝑚, 𝑓 ′𝑚,𝑢,𝑒 )} where

𝑡𝑖 represents the topic the model outputs, and 𝑓 ′
𝑖,𝑢,𝑒

counts its total
occurrences. Each website is mapped to a topic and the original
frequencies 𝑓𝑖,𝑢,𝑒 are summed by topics into 𝑓 ′

𝑗,𝑢,𝑒
. There are 𝑛𝑡𝑜𝑝𝑖𝑐

which form a taxonomy of possible interests the users have. Such
taxonomy will include between a few hundred and a few thousand

3We intentionally confuse the term user and browser to identify the person and the
application they use to navigate the Internet.
4https://developer.chrome.com/docs/privacy-sandbox/topics/, accessed on August 3,
2023
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topics (the IAB Audience Taxonomy contains about 1,500 topics)5.
In our experiments, we employ the Google ML model implemented
in Chrome. In its current implementation, it supports 𝑛𝑡𝑜𝑝𝑖𝑐 = 349
topics6 and the model is based on a Neural Network trained by
Google using a manually curated set of 10,000 domains. It leverages
website hostnames only and neglects any other part of a URL.7

Step 2 - From Topics to Profiles: Given the topic history T𝑢,𝑒
for user 𝑢 at epoch 𝑒 , the browser selects the 𝑧 most frequently
visited topics and stores them into the Profile history P𝑢,𝑒 , which
will be referred as the user 𝑢 Profile at epoch 𝑒 in the following. 𝑧
is currently put to 5.

Step 3 - Per-website topic selection: The first time the user visits
the website 𝑤 , the browser generates a Exposed Profile P𝑢,𝑒,𝑤 . For
each past epoch 𝑖 ∈ {𝑒−1, . . . , 𝑒−𝐸}, the browser selects at random
one topic 𝑡∗

𝑖
from the Profile history P𝑢,𝑖 . P𝑢,𝑒,𝑤 contains thus at

most 𝐸 topics. To increase privacy guarantees, at each extraction,
with probability 𝑝 the browser replaces the topic 𝑡∗

𝑖
with a random

topic 𝑡𝑟𝑛𝑑 uniformly selected from the global topic list. 𝑝 is currently
suggested to be 0.05. P𝑢,𝑒,𝑤 contains thus at most 𝐸 topics (a topic
picked from P𝑢,𝑒−1, a topic from P𝑢,𝑒−2, etc.). Once generated, the
Exposed Profile remains the same for the whole epoch 𝑒 .

Usage by websites: From this point on, each time the user visits
the website𝑤 during the current epoch, the website𝑤 may request
the browser to share the current Exposed Profile P𝑢,𝑒,𝑤 and use
the returned topics to provide behavioural advertising. Notice that
the Exposed Profile P𝑢,𝑒,𝑤 is built only for websites intentionally
(first-party) visited by the user 𝑢. Any third-party service (e.g., a
component embedded on the webpage of site 𝑤 , but hosted on a
different domain) will receive topics of the first-party websites 𝑤 it
is embedded into. That is, all trackers embedded into the website 𝑤
receive always the Exposed Profiles P𝑢,𝑒,𝑤 of 𝑤 .

Periodic Profile update: At the beginning of the epoch 𝑒 + 1,
the browser computes the new Profile history P𝑢,𝑒+1 and discards
P𝑢,𝑒−𝐸 . Similarly, if and when the user visits again the website 𝑤 ,
the browser creates P𝑢,𝑒+1,𝑤 from P𝑢,𝑒,𝑤 : it includes a new topic
selected from P𝑢,𝑒+1 (Step 3), and removes the oldest topic, i.e.,
the one originally belonging to P𝑢,𝑒−𝐸+1 (keeping the others). This
means that a website continuously visited by a user can observe
up to one new topic per epoch (and such topic may be randomly
extracted).

2.2 Threat model
In this paper, we consider the threat model introduced by the same
proponents of Topics API [8] and discussed in a technical report by
Mozilla [25]. In detail, we consider the risk of re-identification – i.e.,
the possibility to link a Reconstructed User Profile from an audience
to a known individual; or that two websites use the Reconstructed
User Profiles to match their audiences. Such possibility has already

5https://iabtechlab.com/standards/audience-taxonomy/, accessed on August 3, 2023
6https://github.com/patcg-individual-drafts/topics/blob/main/taxonomy_v1.md, ac-
cessed on August 3, 2023
7The mapping from a website to a category is prone to inaccuracies and depends on the
employed ML model. Here we do not consider the implications of such errors. See https:
//developer.chrome.com/docs/privacy-sandbox/topics/#classifier-model, accessed on
August 3, 2023
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Figure 1: Threat model sketch: An attacker leverages the
Exposed Profiles obtained from the Topics API to re-identify
a user in the population of two websites.

been evaluated in the literature on similar contexts [13, 17, 27]. We
sketch the second attack in Figure 1.

2.2.1 The re-identification threat model. As in [8], we assume a
website𝑤 uses first-party cookies to track a user over time so that it
can reconstruct the set of topics users in its audience are interested
in. Then, it matches the derived profiles with the target profile of
the victim (or with all profiles of the second website audience).

In this attack, the attacker accumulates the Exposed Profiles
P𝑢,𝑒,𝑤 over epochs, overcoming the limitation introduced by Topics
API to limit the Exposed Profiles to one topic per epoch, for at
most 𝐸 epochs. Let us assume 𝑤 observes its users 𝑢 ∈ 𝑈 (𝑤)
for 𝑁 epochs (i.e., epochs in [1, 𝑁 ]). At the end of the process,
for each user 𝑢, it builds the Global Reconstructed User Profile as
G𝑢,𝑁 ,𝑤 = ∪𝑒∈[1,𝑁 ]P𝑢,𝑒,𝑤 . In the long run, the set of topics could
act as an identifier string (or fingerprint) for user 𝑢, enabling the
re-identification process either with the set of topics of a known
user or with users from the audience 𝑈2 of website 𝑤2.

Notice that this attack may be carried out by a third party too.
In this case, we assume some websites 𝑤1 and 𝑤2 collude with a
third-party service 𝑠 . Both 𝑤1 and 𝑤2 embed 𝑠 . They both share
with 𝑠 the user identifier each time a user visits them. The third
party then builds G𝑢,𝑁 ,𝑤1 and G𝑢,𝑁 ,𝑤2 autonomously so that it can
match the profiles of users in both audiences.8

2.2.2 Random topic replacement to prevent the attack. Being aware
of such an issue, the Topics API algorithm injects random top-
ics with probability 𝑝 in the Exposed Profile – see Step 3 in the
previous section. This has the benefit of making the Global Re-
constructed Profile G𝑢,𝑁 ,𝑤 both noisy (thus preventing the exact
re-identification with a known victim profile) and potentially iden-
tical for all users (i.e., for 𝑁 → ∞, all users’ Global Reconstructed

8Notice not every third-party 𝑠 will receive a topic. Only if 𝑠 observed the user visit
a site 𝑤 about the topic in question within the past 𝐸 weeks, then 𝑠 is allowed to
receive such a topic (see https://github.com/patcg-individual-drafts/topics). We ignore
such limitation, i.e., we assume that the third party 𝑠 is pervasive enough to make this
condition irrelevant because the third party is present on the most popular websites,
which will enable the reception of every topic. This is the case with popular web
trackers.
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Profiles would include all topics). Notice that the injection of ran-
dom topics runs separately for each website so that the Exposed
Profiles on the two websites would be different.

Therefore, the attacker is somehow forced to identify and elimi-
nate from G𝑢,𝑁 ,𝑤 topics that are likely random, obtaining an hope-
fully Denoised Reconstructed Profile R𝑢,𝑁 ,𝑤 ⊆ G𝑢,𝑁 ,𝑤 on which
exact matching can be used as a reasonable criterion for identifica-
tion. We present a discussion on how R𝑢,𝑁 ,𝑤 can be obtained from
G𝑢,𝑁 ,𝑤 in the next section.

2.2.3 Estimating the attack feasibility via 𝑘-anonymity. In this pa-
per, we study to what extent these countermeasures limit the re-
identification problem. We focus on the case of a website𝑤 building
the Denoised Reconstructed Profiles R𝑢,𝑁 ,𝑤 for all its users𝑢 ∈ 𝑈𝑤 .

To estimate the probability of the attack success, we compute
the probability of a user𝑢 being 𝑘-anonymized among the audience
of a given website. In other words, we study the probability at
which at least 𝑘 − 1 users 𝑢𝑖 expose the same identical Denoised
Reconstructed Profiles, i.e., R𝑢,𝑁 ,𝑤 = R𝑢𝑖 ,𝑁 ,𝑤 ∀𝑖 = (1, 2, . . . , 𝑙), 𝑙 >
𝑘 − 1.

Those users who expose a unique Denoised Reconstructed Profile
could be a potential target for re-identification. Conversely, if two
or more users in the website audience expose the same Denoised
Reconstructed Profile, re-identification would not be possible.

Note that the attacker could leverage other external informa-
tion than users’ topics (e.g., IP address, time-zone, browser, oper-
ating system, etc.) to obtain a more specific user fingerprint. This
would be equivalent to restricting the population of users the Global
Reconstructed Profile signature needs to be compared with, e.g.,
mounting the attacks to the subset of users having the same exter-
nal fingerprint. A discussion of this approach is out of the scope of
this paper.

2.3 Eliminating random topic noise
As introduced by the author of [25], the attacker could identify the
random topics 𝑡𝑟𝑛𝑑 by carrying out a simple statistical test, based
on the number of times a topic is exposed by a user. Recall that once
a topic has entered the user profile, it remains in it for 𝐸 consecutive
epochs; however, the attacker can easily reconstruct which “new”
topic entered the updated Exposed Profile by subtraction with the
Exposed Profile of the previous epoch. In a nutshell, the author
of [25] proposes the attacker keeps only those topics that entered
the user profile at least two different times within the window of
𝑁 epochs.

Here we generalize this attack, with the goal to optimize the
threshold below which topics are filtered out for every 𝑁 . Let
𝑝𝑟𝑛𝑑 = 𝑝/𝑁𝑡𝑜𝑝𝑖𝑐 be the probability with which a given random
topic 𝑡𝑟𝑛𝑑 replaces a real topic 𝑡∗𝑒 during the update of the Exposed
Profile P𝑢,𝑒,𝑤 . We compute the probability 𝑝∗

𝑟𝑛𝑑
(𝑓𝑟𝑛𝑑 , 𝑁 , 𝑝𝑟𝑛𝑑 ) ac-

cording to which such random topic enters the user profile at least
𝑓𝑟𝑛𝑑 times after 𝑁 observation epochs. Note that, by construc-
tion, 𝑝∗

𝑟𝑛𝑑
(𝑓𝑟𝑛𝑑 , 𝑁 , 𝑝𝑟𝑛𝑑 ) represents the probability with which a

topic which appears in G𝑢,𝑁 ,𝑤 exclusively for the effect of random
choices being inserted into R𝑢,𝑁 ,𝑤 .

Being the insertions of a random topic independent and identi-
cally distributed at every epoch, 𝑝∗

𝑟𝑛𝑑
(𝑓𝑟𝑛𝑑 , 𝑁 , 𝑝𝑟𝑛𝑑 ) can be reduced

to the probability of observing at least 𝑓𝑟𝑛𝑑 successes out of 𝑁 in-
dependent Bernoulli trials. Therefore it follows the complementary
cumulative of a Binomial distribution:

𝑝∗
𝑟𝑛𝑑

(𝑓𝑟𝑛𝑑 , 𝑁 , 𝑝𝑟𝑛𝑑 ) = 1 −
𝑓𝑟𝑛𝑑−1∑︁
𝑘=0

(
𝑁

𝑘

)
𝑝𝑘
𝑟𝑛𝑑

(1 − 𝑝𝑟𝑛𝑑 )𝑁−𝑘

This allows the attacker to derive the minimal value of threshold
𝑓𝑚𝑖𝑛 that makes 𝑝∗

𝑟𝑛𝑑
smaller than a target probability 𝑝∗

𝑚𝑖𝑛
:

𝑓𝑚𝑖𝑛 = arg min
𝑓

(
𝑝∗
𝑟𝑛𝑑

(𝑓 , 𝑁 , 𝑝𝑟𝑛𝑑 ) ≤ 𝑝∗𝑚𝑖𝑛

)
This strategy works by filtering out the topics that appear less

than 𝑓𝑚𝑖𝑛 times in G𝑢,𝑁 ,𝑤 . In other words, the attacker includes all
the topics that appear at least 𝑓𝑚𝑖𝑛 times during the observation
period to obtain the Denoised Reconstructed Profile R𝑢,𝑁 ,𝑤 .

Setting 𝑝∗
𝑚𝑖𝑛

= 10−5, with the currently proposed 𝑝 and 𝑁𝑡𝑜𝑝𝑖𝑐 ,
we obtain 𝑓𝑚𝑖𝑛 = 2 for 𝑁 ≤ 30, and 𝑓𝑚𝑖𝑛 = 3 for 31 ≤ 𝑁 < 276.

2.4 Implications of random topic elimination
The above filtering algorithm likely removes from G𝑢,𝑁 ,𝑤 topics
whose probability of being selected by the Topic API algorithm is
in the order of 𝑝𝑟𝑛𝑑 (as by construction they will likely appear less
than 𝑓𝑚𝑖𝑛 times in 𝑁 epochs).

In fact, this is equivalent to filtering out those real-but-rare topics
the user is interested in, but that she/he seldom visits, so that they
appear with very low probability among the top-𝑧 topics considered
by Topics API algorithm to build the profile history (Step 2). In a
nutshell, those rare topics that have a probability of being exposed
in the order of to 𝑝∗

𝑟𝑛𝑑
are at risk of being filtered out.

The resulting Denoised Reconstructed Profile R𝑢,𝑁 ,𝑤 thus will
be different than the actual profile of the target victim. The re-
identification attack thus would be possible only if the attacker
knows also the probability of the victim exposing a given topic.
By ignoring the rare topics, the attacker builds the effective victim
profile and matches it with R𝑢,𝑁 ,𝑤 .

Considering instead the re-identification attack carried out by
two websites to match their audiences (or by a third-party 𝑠 that
colludes with website 𝑤1 and 𝑤2), both 𝑤1 and 𝑤2 reconstruct
the same Denoised Reconstructed Profile R𝑢,𝑁 ,𝑤1 = R𝑢,𝑁 ,𝑤2 , thus
making this attack possible. In this case, the filter does not limit
the attack, but we expect it to make the profiles more anonymized
since rare topics would be filtered out (making the Denoised Re-
constructed Profiles more similar among those of different users).

We expect the proposed denoising algorithm to be very effective
in filtering out random topics. As discussed above, the algorithm
by design would also filter out true-but-unpopular topics for every
user.

3 DATASET
To simulate the Topic API algorithm in a realistic environment,
we rely on a dataset of actual browsing histories collected from a
population of users that joined a Personal Information Management
System (PIMS).
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3.1 Data collection methodology
In the context of the PIMCity project9, we designed, implemented,
and deployed a fully-fledged online PIMS called EasyPIMS and
opened it for experimentation [14]. Using EasyPIMS, a user has the
possibility to upload their personal information and fully control
which data to share and for what purpose. A simple web interface
allows the user to provide fine-grained consent for sharing the data
with data buyers and eventually to monetise their data in a mar-
ketplace. Among various types of data, the platform allows users
to share their browsing history by installing a browser plugin for
Google Chrome or Microsoft Edge on their PC running any operat-
ing system. Such plugin records all intentionally visited webpages
and stores them in a central repository. During the test of our PIMS,
we recruited 3, 369 volunteers who had the possibility of using the
platform for four months in 2022. Out of them 928 installed the
plugin. To join the PIMS, there was no restriction on the geographic
area, and users belong to 35 different countries in Europe, Asia, and
America. Considering the demographic information of the popu-
lation, 478 are male, 226 are female and 224 did not declare their
gender. The age ranges from 18 to 72 years, the average being 33.

In this paper, we leverage the actual browsing histories of EasyP-
IMS users that explicitly provided their consent for research pur-
poses to the usage of their browsing history and any personal data
we use. 613 gave such permissions. Among those, we restrict the
population to those users that actively used the platform. Since the
Topics API operates on a weekly basis, we consider a user to be
active in a given week if they visited at least 10 webpages. In total,
we obtain 268 users that result active in at least one week. We use
the sequence of websites visited by these users for our study.

Ethical Aspects. Our data collection process is compliant with
ethical principles and EU privacy regulations. EasyPIMS was part of
a European Project involving 12 partners and the European Commis-
sion has approved all the data collection and processing procedures.
Users voluntarily participated, were informed, explicitly opted-in
via the PIMS web interface, and were rewarded by sweepstakes.
We only use data of users who explicitly provided their consent for
the specific purpose of research, which was not the default choice
of the platform. Moreover, data processing has been carried out
in an anonymous fashion using a secure computing infrastructure
running up-to-date software and with restricted physical access
to authorized personnel. During data processing, we only process
data regarding browsing histories, neglecting all other attributes,
such as name, gender, or geographic location.

3.2 Characterization of users’ activity
In total, our dataset includes 2, 813, 283 webpage visits to 50, 976
different websites. The number of visits per user per week varies
significantly, with some users that used the platform for a few
weeks and others for the whole four-month experimental period.

Some users even installed the plugin on multiple browsers and
devices (e.g., desktop and laptop PC), increasing the amount of data
collected in their accounts. In detail, we characterize the different
usage patterns in Figure 2. We show the Empirical Cumulative
Distribution Function (ECDF) of the number of page and website

9https://www.pimcity-h2020.eu/, accessed on August 3, 2023
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Figure 2: Distribution of the number of visits for webpages
and websites per user per week.

visits each user recorded each week in Figure 2a and Figure 2b,
respectively. We observe a large variability. In the median, active
users access 222 web pages each week, with 26.1% of users that
visit less than 50 pages; conversely, 14% of the users visit more
than 1, 000 pages. The most active users have accessed about 10,000
pages in a week.

Similar considerations hold when we focus on the number of
unique websites a user visits in a week in Figure 2b. On the median,
active users access 30 different websites in a week, while the 25𝑡ℎ
and 75𝑡ℎ percentiles of the distribution are 10 and 71 websites,
respectively. The most active users access more than 500 websites
in a week.

Overall, we believe these figures reflect the natural variability of
users. Despite being limited, our dataset includes a real population
of users browsing the web, with different interests, backgrounds,
nationalities, etc. Unfortunately, we cannot advocate our dataset is
representative of general human behaviour and we do not exclude
it may be biased in some direction such as gender or education.
In the following, we use it to study the impact of the Topic API
algorithm to avoid an attacker to mount a re-identification attack.

3.3 Characterization of topic statistics
Using the current implementation of the Topic API ML model
Google opened since Chrome 101, for each of the 50,976 websites𝑤
in our dataset, we extract the corresponding topic 𝑡 the API returns.
We obtain 250 topics visited at least once by users in our dataset.
In the following, we report the characterization of the topic visits.

Focus first on the number of unique topics each user visited
at least once during the entire experimentation. This is useful to
understand how complicated (and unique) could be a Profile P𝑢,𝑒 .
We report the ECDF in Figure 3a. The distribution is quite spread:
in the median users visit 36 topics, with the most diverse users
visiting more than 150 topics. Conversely, a handful of users visit
less than 5 topics. Not reported here for the sake of brevity, the
median number of topics each user visits per week is 17, with a
maximum of about 70. Only less than 10% of users visit less than 5
topics in some weeks.
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Figure 3: Characterization of topic visits.

Figure 3b reports the ratio of users visiting a given topic. We sort
topics by their popularity in decreasing order. The ranking follows
a clear power-law distribution (notice the log-log scale), as typically
happens with popularity distributions in web measurements [2].
The top-5 topics are Search Engines, News, Arts & Entertainment,
Internet & Telecom, and Business & Industrial. The most popular
topic is visited by 99,3% of users, while up to 100 (200) topics are
visited by at least 10% (1%) of the users.

At last, we show the average rate of visits per topic in Fig-
ure 3c. We compute first the rate of visits of user 𝑢 to topic 𝑡

𝜆𝑢,𝑡 =
∑
𝑒 𝑓

′
𝑡,𝑢,𝑒/𝑇 , being 𝑇 the total activity time (discretized by

weeks) of user 𝑢 in the whole observation window. Then, we com-
pute the average rate of visits among the subset 𝑈 |𝑡 of users that
visited the topic 𝑡 as

𝜆𝑡 =
∑︁
𝑢∈𝑈 |𝑡

𝜆𝑢,𝑡

|𝑈 |𝑡 |
(1)

Notice a topic that is globally unpopular can still sizeably appear
in the Profile of those few users frequently visiting such topic. In
fact, the construction of the topic history T𝑢,𝑒 depends on the rate
of visits 𝜆𝑢,𝑡 the user 𝑢 has for the topics 𝑡 she/he is interested in
during the 𝑒-th epoch. Our dataset allows us to estimate 𝜆𝑢,𝑡 for all
users.

In the following, we present three models that allow us to gen-
erate some possible realistic population 𝑈 and to study the 𝑘-
anonymity properties of the resulting set of Denoised Reconstructed
Profiles {R𝑢,𝑁 ,𝑤 } the website𝑤 obtains for such population𝑈 after
𝑁 observation epochs.

4 SCENARIOS AND USER MODELS
We describe the process we follow to simulate a malicious web-
site that mounts a re-identification attack on the population of its
visitors. We create and study the system’s behaviour considering
different sets of personas, i.e., artificial visitors whose statistical
parameters are derived from the distribution of the real users in
our dataset.

4.1 Threat model scenario
We consider a website 𝑤 that observes and tracks a population
of personas 𝑈 that visit it. The website uses first-party cookies to
build the Denoised Reconstructed Profiles R𝑢,𝑁 ,𝑤 for each persona
in 𝑈 . Those personas whose R𝑢,𝑁 ,𝑤 results unique among 𝑈 are
potentially subject to the re-identification attack.

For simplicity, we assume that at each epoch 𝑒 , all personas visit
the website 𝑤 . At each visit, 𝑤 asks the Exposed Profile P𝑢,𝑒,𝑤
invoking the Topics API. This allows 𝑤 to discover a new topic
at each epoch.10 After 𝑁 epochs, 𝑤 eliminates those topics that
have been exposed less than 𝑓𝑚𝑖𝑛 times and obtains the Denoised
Reconstructed Profile R𝑢,𝑁 ,𝑤 for all users 𝑢 ∈ 𝑈 .

To assess the vulnerability to re-identification attack, we com-
pute the 𝑘-anonymity properties of the set {R𝑢,𝑁 ,𝑤 } of Denoised
Reconstructed Profiles.

4.2 Population models
We consider three models for the generation of 𝑈 . The first model
follows a mere trace-driven approach that aims at replicating the
browsing behaviour of the real users in our dataset. The other
models allow us to generate an artificial population𝑈 of any desired
size |𝑈 |: the second model obtains personas with the same first-
order statistical properties of the users in the trace; the third model
consists in a combination of the visiting rates by the users in our
dataset.

Real Users: In this first model, we consider each of the 268 users
in the dataset. Each user is characterized as a list of visit rates 𝜆𝑢,𝑡
for all 𝑡 = 1, 2, . . . , 𝑛𝑡𝑜𝑝𝑖𝑐 . 𝜆𝑢,𝑡 is calculated by averaging the occur-
rences 𝑓 ′𝑡,𝑢,𝑒 along the period in which the user 𝑢 has been active
in our collection system. 𝜆𝑢,𝑡 = 0 if that user never visited topic
𝑡 . Then, for each user 𝑢, we simulate users’ topic visits, which are
assumed to follow independent homogeneous Poisson processes, to
build the Profile history P𝑢,𝑒 over epochs 𝑒 = (1, 2, . . . , 𝑁 ). At each
epoch, the website 𝑤 discovers one topic for every user, and after
𝑁 epochs it obtains the set {R𝑢,𝑁 ,𝑤} of Denoised Reconstructed

10If the persona does not visit the website for some epochs, the attacker could still
recover up to 𝐸 past topics for every single visit. 𝑁 can then be considered the number
of effective epochs the victims visit 𝑤 and results in a lower bound to the number of
disclosed topics.
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Profiles. While accurate and real, this model is limited to the 268
users in our dataset. 11

I.I.D. Personas: We create a population of i.i.d. personas obeying
to the same marginal statistics as the set of real users from our
dataset. In detail, we leverage (i) the marginal ECDF of the number
of topics per user (Figure 3a), (ii) the marginal empirical distribution
of the topic popularity (Figure 3b), and (iii) the average empirical
rate of visits for each topic 𝜆𝑡 (Figure 3c). In such a way, we can
create a population of any size |𝑈 | that shares the same first-order
statistical properties as the population of our dataset. We adopt the
inverse transform sampling method [6] for the generation of the
random variable that follows a known ECDF. In detail, we generate
a persona 𝑢 according to a three-step process:

(1) We extract the number of topics 𝑐𝑢 the persona is interested
in from the empirical marginal distribution of the number
of topics per user (Figure 3a).

(2) We choose the set of the topics 𝐶𝑢 = {𝑡𝑖 }, 𝑖 = 1, 2, . . . , 𝑐𝑢 by
extracting with no repetitions 𝑐𝑢 topics from a normalized
version of the empirical distribution of the topic popularity
(Figure 3b).

(3) For each 𝑡 ∈ 𝐶𝑢 , we assign an effective visit rate 𝜆𝑡 from
Equation 1, which equals the average empirical visiting rate
(Figure 3c).

Notice that in step 2 we select each topic essentially independently
(just disregarding possible repetitions). This breaks existing corre-
lations among topics and may appear in part unrealistic. In fact, it
is known that real users show highly-correlated interests which
reflects in highly-correlated topics [28]. The resulting personas in
𝑈 have instead all the same statistical properties making the prob-
ability of having similar profiles high, increasing the probability
of being 𝑘-anonymous. As such this model is a rather pessimistic
scenario for the attacker.

Crossover Personas: We generate each persona𝑢 according to the
biologically-inspired crossover procedure during the generation of
offspring. We start the process from the population𝑈 ∗ of Real Users.
We then randomly select two parent individuals 𝑝0 and 𝑝1 from𝑈 ∗

and generate a new persona 𝑢. It inherits part of the genome (i.e.,
visit rates to topics) from 𝑝0 and part from 𝑝1. For this, we generate
a binary mask and assign the rate of 𝑝0 (𝑝1) if the corresponding bit
is true (false). In this third model, the correlation of the appearance
of topics is stronger than in the previous case. For this, we expect
this scenario to be optimistic for the attacker since the uniqueness
of personas is boosted by making them more heterogeneous and
easier to re-identify.

4.3 Simulation of visits and profile creation
Given the population 𝑈 , we assume each persona 𝑢 visits topic 𝑡
according to a homogeneous Poisson process with the assigned rate
𝜆𝑢,𝑡 . At each epoch 𝑒 , for each topic 𝑡 and persona𝑢, we thus extract
a Poisson distributed random variable that represents the number
of visits user 𝑢 performs to 𝑡 . This allows us to obtain the topic
history T𝑢,𝑒 , and from it the Profile history P𝑢,𝑒 which contains
only the top-𝑧 topics (Step 2 of Topic API algorithm). Next, we
11The empirical observation period is unfortunately not long enough to use directly
𝑓 ′𝑡,𝑢,𝑒 as input to build the profile history.
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Figure 4: The probability of a user being 2-anonymized with
different audiences of |𝑈 | = 268 users/personas. Without the
Topics API 𝑃𝑟𝑜𝑏 (2 − 𝑎𝑛𝑜𝑛) ≈ 0.17 for real users.

generate the Exposed Profile P𝑢,𝑒,𝑤 , possibly offering 𝑤 a random
topic instead of a real top topic (Step 3).

By repeating the periodic profile update procedure at the begin-
ning of each epoch 𝑒 + 1, we simulate the process for 𝑁 epochs
so that at the end 𝑤 compiles the Denoised Reconstructed Profile
R𝑢,𝑁 ,𝑤 for each persona 𝑢 ∈ 𝑈 .

5 RESULTS
In this section, we illustrate the results of our study. We first quan-
tify the probability of a persona to be 2-anonymized after different
observation epochs 𝑁 . Then, we evaluate the impact of the pop-
ulation size |𝑈 |. Finally, we discuss to what extent the injection
of random topics and the attacker’s filtering strategy impact the
2-anonymity probability.

In the following, where not expressly stated, we set 𝑝∗
𝑚𝑖𝑛

=

10−5 and consider the Google suggested values for the Topic API
parameters (𝑧 = 5, 𝐸 = 3, 𝑝 = 0.05,Δ𝑇 = 1 week). We repeat each
experiment 10 times and report the average performance.

5.1 Probability of being 2-anonymous
We start our analysis by showing the effectiveness of a re-
identification attack mounted on the profiles {R𝑢,𝑁 ,𝑤 } which
𝑤 builds using the Topics API. As described in Section 2.2, we
consider the attack on user 𝑢 not feasible whenever 𝑢 is 𝑘 = 2
anonymized. Therefore, we measure the probability Prob(2-anon)
to be 2-anonymous among personas in 𝑈 .

Here, we focus on a population of users/personas generated
according to the three models described in Section 4. In Figure 4,
we show the probability of such persona to be 2-anonymized after𝑁
observation epochs. As the simulations with real users are limited to
268 individuals by design, we carry out the study with 268 personas
for I.I.D. and Crossover models for a fair comparison.

For the first epochs, all Denoised Reconstructed Profiles result
2-anonymous because the attacker obtains few topics in which
each persona is interested. In fact, for 𝑁 = 1, all profiles R𝑢,1,𝑒
result empty because, by construction, the denoising algorithm
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discards the only topic 𝑢 offers to 𝑤 (no topic can appear more
than 𝑓𝑚𝑖𝑛 = 2). As epochs pass, the attacker accumulates topics
and starts creating unique Denoised Reconstructed Profiles. The
Prob(2-anon) starts decreasing until reaching a first asymptote: the
attacker is able to reconstruct rich profiles and only 3 to 20% of
personas results 2-anonymous for all three population models. At
epoch 31, suddenly the Prob(2-anon) increases significantly for all
models. This is the result of the increase of 𝑓𝑚𝑖𝑛 from 2 to 3 to
match the random topics filter target (probability 𝑝∗

𝑚𝑖𝑛
= 10−5).

As a consequence, the attacker starts to filter out also actual-but-
rare topics, building more homogeneous Denoised Reconstructed
Profiles. This effect appears every time the attacker has to increase
𝑓𝑚𝑖𝑛 . Apparently, setting 𝑁 = [25, 30] maximises the attack success
probability. In the following, we choose 𝑁 = 25.

Compare now the three models to generate the audience. In the
initial phase, we observe little differences between them, and the
fraction of 2-anonymous personas rapidly decreases for 𝑁 = [5, 15].
Note that the Crossover personas (blue dashed line) have a lower
Prob(2-anon) compared to other methods. This is expected because
the model generates more specific profiles by design. Conversely,
I.I.D personas (solid red line) apparently settle to a 2-anonymization
probability of ≈ 0.2. This is due to the homogenous profiles the
model generates so that the probability of being 2-anonymous
increases.

We now compare these figures to the scenario without the Topic
API algorithm. We assume the attacker builds users’ profiles directly
on the set of topics T𝑢,𝑒 . This is similar to what happens today,
where web trackers are free to directly build the topic list from
users, with no filters. In this case, we compute Prob(2-anon) on
the set T𝑢,𝑒 . It results in Prob(2-anon) = 0.17 for our real user data.
Comparing this result with the curves (and with the Real users in
particular) in Figure 4, we observe that Topics API offers limited
additional protection, provided the attacker can observe users for a
sufficient time.

In a nutshell, the Topics API allows an attacker to still build
specific user profiles so that they can be uniquely identified with
high probability. Yet it will need 25 to 30 epochs to reconstruct the
profiles. The 2-anonymization resulting probability is very similar
to Prob(2-anon) = 0.17 a web tracker would obtain without the Topic
API filter.

5.2 Impact of population size
We now quantify the impact of the population size on the probability
of a persona being 2-anonymized. Indeed, by increasing a website’s
audience, we increase the probability of finding other personas who
match the same profile. We measure this effect in Figure 5 where
we show how Prob(2-anon) varies with the population size |𝑈 |.

As expected, larger audiences increase the chance to be 2-
anonymized. Yet, the probability increases roughly logarithmically
with the cardinality of 𝑈 – notice the log scale on the 𝑥-axis. Thus,
even in the case of a population of 100, 000 personas, we still observe
35−42% of them being non-2-anonymous. Again, the homogeneous
I.I.D. personas model constitutes a worst-case for the attacker.

In a nutshell, the Topic API algorithm improves the 2 anonymity.
Still, a relevant fraction of users remains still non-2-anonymous
even in the case of large populations. Notice that the attacker can
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Figure 6: Probability of being 𝑘-anonymized with Topic API
active.

combine other information to reduce the population size, e.g., by
considering users with the same region, timezone, browser, oper-
ating system, etc. This would partition 𝑈 into subsets of smaller
cardinality, where the probability of not being 2-anonymous signif-
icantly increases.

5.3 Different 𝑘-anon levels
We generalize the above discussion by quantifying the 𝑘-anonymity
offered by the Topics API. Generally speaking, we consider a per-
sona anonymized if their Denoised Reconstructed Profile R𝑢,𝑁 ,𝑤

is not unique – i.e., it is 2-anonymized. Yet, if there are only two
personas sharing the same profile, with a probability of 0.5 one
could identify the correct persona. Here, we observe the probabil-
ity the target profile is shared by 𝑘 − 1 other users, i.e., of being
𝑘-anonymous. Intuitively, a higher 𝑘 offers stronger privacy guar-
antees.

Figure 6 shows 𝑃𝑟𝑜𝑏 (𝑘-𝑎𝑛𝑜𝑛) for different values of 𝑘 . Here we
consider a population of |𝑈 | = 1, 000 and 𝑁 = 25. We show curves
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different levels of 𝑝. We highlight the points at 𝑝 = 0 (no
random topics) and the points at 𝑝 = 0.5 (the default value
proposed for Topics API.

for I.I.D. and Crossover personas, with the former being a worst-
case for the attacker, the latter being more realistic in practice.

As expected, with increasing values of 𝑘 , the fraction of 𝑘-
anonymized personas decreases. Interestingly, observe how the
𝑘-anonymity probability decreases faster for Crossover personas
than for I.I.D. personas. For instance, in the latter case, a persona
has ≈ 10% of possibilities to share a profile with 10 or more other
individuals, while the probability is negligible (0.002) for Crossover
personas.

In a nutshell, the more heterogeneous the users, the harder is to
be 𝑘-anonymous and the Topic API algorithm does not prevent an
attacker to mount a re-identification attack.

5.4 Impact of random topic protection
We finally study the implications of replacing a real topic with a
random topic on the privacy properties offered by the Topics API
algorithm.

5.4.1 Benefit of topic replacement. Here, we quantify the benefits
offered by random topic replacement on Prob(2-anon). To this end,
we compare scenarios where Topic API algorithm disables (𝑝 = 0)
or enables (𝑝 = 0.05) the random topic replacement policies. When
disabled, the attacker does not adopt any filtering strategy.

In Figure 7 we compare results considering 𝑈 = 1, 000 personas,
and for different observation epochs 𝑁 . The role of random topic
appears clear since the first epochs: When not active (squared
dots), the probability of anonymization quickly decreases with the
observation epochs so that the attacker can build a unique profile
already after 10 epochs. With I.I.D. personas, 20% of the population
exhibits the same profile. For Crossover personas, in practice, each
profile results unique (Prob(2-anon) =0.02).

Activating the random topic replacement increases the proba-
bility of being 2-anonymous to a remarkable extent. Prob(2-anon)
never falls below 37% (8%) for I.I.D. (Crossover) personas. This is
caused by the denoise filter that the attacker must activate to filter
the random topics. In fact, it causes rarely exposed topics to be
filtered as well, which leads to an increase in the homogeneity of
Denoised Reconstructed Profiles, and ultimately, to an increase of
2-anonymization probability. Again, the step at 𝑁 = 31 reflects the
need to set 𝑓𝑚𝑖𝑛 = 3, increasing further the homogeneity of the
Denoised Reconstructed Profile. Note that when random topics are
disabled, no filter is in place and 𝑓𝑚𝑖𝑛 is always 0.

In a nutshell, without random topic replacement, the re-
identification attack would turn quite simple. Inserting random
topics helps in increasing the 2-anonymity probability. Yet, the
probability of having a unique Denoised Reconstructed Profile is
quite high even when we consider optimistically similar I.I.D. per-
sonas.

5.4.2 Impact of the choice of 𝑝 . At last, we quantify the role of
the probability of exposing a random topic 𝑝 . In Figure 8 we show
how Prob(2-anon) varies with different values of 𝑝 . We consider a
population of 1, 000 users observed for 𝑁 = 25 epochs. 𝑝 = 0.05
corresponds to the suggested value; 𝑝 = 0 means disabling the
random topic replacement and the denoising algorithm.

Considering the trend, the figure shows that, overall, 𝑝 has a
somewhat quantized impact. Considering I.I.D. personas (solid red
curve), 𝑝 = 0 leads to 𝑃𝑟𝑜𝑏 (2 − 𝑎𝑛𝑜𝑛) = 0.19. This probability
suddenly increases to ≈ 37% for all values of 𝑝 ∈ [0.01, 0.06], for
which 𝑓𝑚𝑖𝑛 = 2 suffice to guarantee to filter the random topics with
𝑝∗
𝑚𝑖𝑛

= 10−5. Then, when 𝑝 ≥ 0.07, Prob(2-anon) jumps to ≈ 45%.
This is because 𝑓𝑚𝑖𝑛 needs to be set to 3 to filter the random topics.
In turn, this causes the filtering of additional actual-but-rare topics,
and thus to more homogeneous Denoised Reconstructed Profiles.
The shape is similar for Crossover personas (blue dashed curve)
but with lower Prob(2-anon) values.

In a nutshell, while injecting random topics is beneficial to in-
crease the 2-anonymity properties of the set of Denoised Recon-
structed Profiles, the noise filtering algorithm is robust to a large
range of 𝑝 . At last, notice that turning 𝑝 too large would reduce the
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benefits of personalised content as well. Notice that the attacker
could also optimize the choice of 𝑝∗

𝑚𝑖𝑛
to balance the effect of al-

lowing some random topics and removing some actual-but-rare
topics. We leave this for future work.

6 PROBABILITY OF RE-IDENTIFICATION
After having explored the impact of parameters on the probability
of a user being 𝑘-anonymized, we now simulate the complete re-
identification attack described in Section 2.2. We consider two web-
sites𝑤1 and𝑤2 with populations𝑈1 and𝑈2, with |𝑈1 | = |𝑈2 | = 999.
By construction, we add the same persona 𝑣 (the victim) to both𝑈1
and𝑈2. We then evaluate the probability of re-identify 𝑣 by 𝑤1 and
𝑤2. For 𝑣 being to re-identified, two conditions shall occur:

• The Denoised Reconstructed Profile R𝑣,𝑁 ,𝑤𝑖
is unique in 𝑈1

and 𝑈2.
• 𝑤1 and 𝑤2 reconstruct the same profile for 𝑣 , i.e., R𝑣,𝑁 ,𝑤1 =

R𝑣2,𝑁 ,𝑤2 . Indeed, the Denoised Reconstructed Profiles can
differ due to the randomness of the topic selection and de-
noising processes.

Let
𝑃1 = 𝑃𝑟𝑜𝑏

(
R𝑣,𝑁 ,𝑤𝑖

unique in 𝑈𝑖

)
= 1 − 𝑃𝑟𝑜𝑏 (2-𝑎𝑛𝑜𝑛).

Therefore 𝑣 results unique in both populations with probability 𝑃2
1 .

Let
𝑃2 = 𝑃𝑟𝑜𝑏

(
R𝑣,𝑁 ,𝑤1 = R𝑣,𝑁 ,𝑤2

)
.

𝑃2 is the probability of correctly re-identifying 𝑣 . Thus, due to
the independence of previous events, the probability of correct re-
identification, i.e., a True Positive (TP), can be computed as:

𝑃𝑟𝑜𝑏 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒-𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛) = 𝑃2
1 · 𝑃2 .

Similarly, let

𝑃2 =𝑃𝑟𝑜𝑏
(
∃! 𝑣 ′ ∈ 𝑈2, 𝑣

′ ≠ 𝑣 : R𝑣,𝑁 ,𝑤1 = R𝑣′,𝑁 ,𝑤2

| R𝑣,𝑁 ,𝑤1 unique in 𝑈1
)
.

𝑃2 is the probability of incorrect re-identification given 𝑣 is unique
un 𝑈1.

The probability of an incorrect re-identification, i.e., a False Pos-
itive (FP), becomes:

𝑃𝑟𝑜𝑏 (𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒-𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛) = 𝑃1 · 𝑃2 .

In other words, given a match between two unique profiles 𝑣 ∈ 𝑈1
and 𝑣 ′ ∈ 𝑈2, the re-identification is successful and correct, i.e., a
TP, if 𝑣 ′ = 𝑣 . If instead 𝑣 ′ ≠ 𝑣 , the re-identification is successful but
wrong, i.e., a FP.

In the following, we report the results we obtain by repeating
for all 1,000 users in 𝑈1 the re-identification test. We consider each
persona in𝑈1 as a possible victim 𝑣 (and each time we replace a user
in 𝑈2 with 𝑣).12 As before, we repeat the experiment 10 times and
report the average results. We consider both I.I.D. and Crossover
populations and observe the TP and FP rate as they evolve over the
observation epochs 𝑁 .

We show the results in Figure 9a. Focus first on the probability of
being correctly re-identified (TP, circled dots). It increases with 𝑁 ,
i.e., the more the attackers observe the victims, the higher the prob-
ability of correctly re-identify them. The scenario with Crossover
12This is equivalent to assuming𝑈1 = 𝑈2 .
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Figure 9: Probability of a user being re-identified over two
websites with a 1, 000 user audience each.

personas appears more favourable to the attacker since the popula-
tion of users is more heterogeneous than the I.I.D. scenario, thus
Prob(2-anon) results small, and the Prob(correct re-identification)
pretty large. Conversely, in the scenario with I.I.D. personas the
construction of unique profiles is more challenging, i.e., 𝑃1 is smaller,
and thus the re-identification is harder. The step-effect at 𝑁 = 31
epochs is again due to the automatic increase in 𝑓𝑚𝑖𝑛 described
in Section 2.3 and observed, for instance, in Figure 4. The rise of
Prob(2-anon) causes the drop in Prob(correct re-identification).

Focus now on the probability of incorrect re-identification (FP,
crossed dots in Figure 9a). During the initial part of the profile re-
construction, the probability of finding the same-but-wrong profile
grows. This is because all profiles tend to initially be very sim-
ilar (see Figure 7). As soon as the profiles start to differentiate
well, the FP rate decreases. Once more, I.I.D. personas, being more
similar, lead more easily to FPs than Crossover personas. In the
latter case, the Prob(incorrect-identification) is smaller than 0.002
for 𝑁 ∈ [25, 30], and about two orders of magnitude smaller than
Prob(correct re-identification).

As a baseline, in Figure 9b we show the Prob(re-identification)
when the attacker does not apply the denoising algorithm (hence,
comparing Global Reconstructed Profiles G𝑣,𝑁 ,𝑤𝑖

). The Prob(correct
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re-identification) does not reach the 2%, because the random topics
exposed on different websites by users make their profiles more
difficult to re-identify. Moreover, the trend over time differs with
respect to the one shown in Figure 9a: the larger the observation
time, the larger the probability that every user would expose some
different random topics.

Here, we suppose the attacker looks for an exact match between
two user profiles, while it would be possible to use more flexible
and effective techniques to link the two sets [13, 27]. We leave the
evaluation of these alternative approaches for future work.

7 RELATEDWORK
From the dawn of the Web, behavioural advertising has been a pillar
of the ecosystem and entailed the collection of personal information
through web tracking. This phenomenon has been the subject of
several studies that measured its spread [7, 16] or dug into its
technical operation [1, 18, 23]. The implications of web tracking
on users’ privacy have become more and more debated by the
industry [12] and by the research community [10, 15, 24]. It also
fostered the birth of anti-tracking tools (i.e., the Ad and Tracker
Blockers [19]) and encouraged the legislator to issue privacy-related
regulations, such as the US CCPA [4] or the European GDPR [11].

Federated Learning of Cohorts (FLoC) has been the first public
effort by Google to go beyond the classical web tracking based on
third-party cookies [21]. In FLoC, users were grouped in cohorts
according to the interests inferred by each one’s browser. When
asking for information about a user visiting a website, third parties
were offered the user’s cohort, from which they could have infor-
mation about the user’s interests. In the intention of the proposal,
FLoC provided an acceptable utility for the advertisers, while hiding
the user (and thus, her identity) behind a group of peers [9]. How-
ever, criticism arose around the easiness for first- and third-party
cookies to follow the user over time exploiting the sequence of
cohorts to which she belongs to isolate and thus identify her [22].
The attack can exploit browser fingerprint to further improve its
effectiveness [3]. FLoC’s privacy anonymity properties can be bro-
ken in several ways [26]. As a response to the critics towards FLoC,
Google retired the proposal and conceived the Topics API, whose
functioning we describe in Section 2.1.

The Topics API exposes users’ profiles in terms of topics of
interest to the websites and advertising platforms. In this paper, we
study to what extent users’ profiles can be used by an attacker to re-
identify the same individual across time or space. Past works already
demonstrated that profiling users based on their browsing activity
can present severe risks to the privacy of the users [10]. They
can be identified with high probability based on the sequence of
visited websites [13, 17, 27]. Mitigation such as partitioned storage
has been put in place to limit the risk, but ways to bypass them
exist [20]. Specifically to the Topics API, the same threat we analyze
has been already identified by Epasto et al. [8] from Google. The
authors carry out an information theory analysis and conclude that
the attack is hardly feasible. In this paper, we go a step further.
Our analyses are not limited to an analytical study on profiles’
uniqueness but offer a thorough evaluation using real traffic traces
and different user models.

While writing this paper, proponents from Google published
a new work discussing the privacy implications of the Topics
API in [5]. They define a theoretical framework to determine re-
identification risk and test it on Topics API. Differently from us,
they do not consider the use of any denoising algorithm.

To the best of our knowledge, Thomson [25] from Mozilla has
issued the first independent study on the privacy guarantees of
Topics API, elaborating on the conclusions by Epasto et al. [8]. He
again used analytical models and raised severe concerns about the
offered privacy guarantees. We inspire our strategy for random
topic filtering from Thomson [25].

8 DISCUSSION AND FUTUREWORK
Summary. The Topics API represents a prominent proposal to

replace the current web-tracking solutions based on third-party
cookies with a more privacy-friendly approach. In this paper, we
have considered the scenario where an attacker carries out a re-
identification attack accumulating the topics a website gets via the
Topics API to build a unique user profile. Our experiments show
that such an attack can be successful, provided the attacker observes
the victim for enough epochs.

We showed how the replacement of actual topics with random
ones is fundamental for limiting the reconstruction of users’ profiles.
We designed an algorithm to overcome such protection so that the
attacker is able to denoise the reconstructed profiles and remove
random topics. This makes the denoised reconstructed profiles
robust, and the attack possible for a large range of the probability
𝑝 of a random topic replacement happening. All in all, we showed
how the re-identification attack mounted by websites succeeds
in about 15-17% of users, with a negligible probability of a false
re-identification.

Limitations. While the attack is possible, several points need to
be considered to judge the actual feasibility of such an attack:

• The time needed makes it impractical: Given the suggested
epoch duration of one week, the attacker needs 20 to 30
weeks (i.e., ≈ 6 months) to successfully reconstruct the vic-
tims’ profiles.

• During such time, the victim has to visit the attacker’s web-
site every week (or at least every 𝐸 weeks). If this does not
happen, the attacker would need even more time to accumu-
late enough topics the victim is interested in.

• The victim’s interests may change over time. This is not crit-
ical for the re-identification attack mounted by two websites
(as they will observe the victim during the same time period).
But this may harm the re-identification attack against an a
priori known victim profile.

• The larger the population, the harder the attack. Yet, the
attacker may leverage external information to partition the
audience and thus increasing the probability of a successful
attack.

Improvement of Topics API. Being a draft proposal, there is still
room to discuss possible improvements to the Topics API. For in-
stance:

• Periodically deleting first-party cookies would bring an im-
mediate privacy-related benefit, reducing the number of
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epochs to build profiles that could be matched across web-
sites. Figure 9 shows that deleting the first-party cookies ev-
ery 𝑁 = 10 epochs, for example, would keep the Prob(correct
re-identification) below 2% with the current attack setup,
with comparable Prob(incorrect re-identification).

• The default values of 𝑧, 𝐸, and 𝑝 proposed in the draft pro-
posal of Topics API are open to further review. We believe
that the code we offer can be used as a tool to investigate
how different parameter choices impact the probability of
re-identify users, choosing the best combination.

• The profile of a user P𝑢,𝑒 is currently populated by the 𝑧-
top topics in epoch 𝑒 . It could be worth considering other
approaches to build the profile, and better balance the utility
of the advertisers and the privacy of the users.

Future directions. Our work provides a first study on how re-
identification attacks can be carried out against the Topics API, and
several angles are still to be explored. In fact, our experiments can
be easily extended in several directions.

First, we rely on a dataset collected from the set of volunteers that
participated in the EasyPIMS experimentation. As such, we cannot
verify the dataset is representative of general human behaviour.
The process of gathering such kind of personal data is cumbersome,
but a larger and more heterogeneous audience may help in drawing
more solid conclusions. In a similar direction, it is interesting to
evaluate more diverse population generation approaches, including
diverse usage patterns, classes of users, etc. Similarly, the study of
the Topics API parameters can be extended to balance the utility
and privacy of exposed information.

Other research directions include the extension of the threat
model. The attacker could consider more sophisticated techniques
to match the profiles rather than a simplistic exact match on
the presence of a topic. For instance, the attacker could lever-
age the frequencies with which topics are exposed. Or can design
some maximum-likelihood algorithm to maximize the correct re-
identification probability. In the literature, several methodologies
have been proposed that can be reused for this goal.

Finally, we suppose the attacker has no background knowledge
of the victims. As said above, this assumption can be relaxed to
study to what extent any additional information on the user (e.g.,
retrieved through browser fingerprinting techniques) can help the
attacker.

The Topics API is a novel proposal by Google, and we believe
the research community should further work to understand the
implications of its design, as it might become the de facto standard
for online advertising in the near future.
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