
MAPLE: A Metadata-Hiding Policy-Controllable Encrypted
Search Platform with Minimal Trust
Tung Le

Virginia Tech

Blacksburg, Virginia, USA

tungle@vt.edu

Thang Hoang

Virginia Tech

Blacksburg, Virginia, USA

thanghoang@vt.edu

ABSTRACT
Commodity encrypted storage platforms (e.g., IceDrive, pCloud)

permit data store and sharing across multiple users while preserv-

ing data confidentiality. However, end-to-end encryption may not

be sufficient since it only offers confidentiality when the data is at

rest or in transit. Meanwhile, sensitive information can be leaked

from metadata representing activities during data operations (e.g.,

query, processing). Recent encrypted search platforms such as

DORY (OSDI’20) or DURASIFT (WPES’19) permit multi-user data

query functionalities, while protecting metadata privacy. However,

they either incur a high processing overhead or offer limited secu-

rity/functionality, and require strong trust assumptions.

We propose MAPLE, a new metadata-hiding encrypted search

platform that offers query functionalities (search, update) on the

shared data across multiple users with complex policy controls.

MAPLE protects metadata privacy all the time during query process-

ing, while achieving significantly (asymptotically) lower processing

overhead than state-of-the-art platforms. The core technique of

MAPLE is the design of oblivious data structures for search index

and access control coupled with secure computation techniques to

enable efficient query processing with a minimal trust. We fully

implemented MAPLE and evaluated its performance on commod-

ity cloud (Amazon EC2) under real settings. Experimental results

showed that MAPLE achieved a concrete performance comparable

with its counterparts, while offering provably stronger security

guarantees and more diverse functionalities.

KEYWORDS
oblivious access, access control, searchable encryption, encrypted

database, multi-party computation

1 INTRODUCTION
The advent of cloud STorage-as-a-Service (STaaS) has brought sig-

nificant benefits to individuals and businesses. Many commodity

STaaS platforms have been deployed (e.g., Dropbox [1], Google

Drive [3]), which permit not only data storage, but also sharing

across multiple users, thereby improving data accessibility, flexi-

bility and telecommuting. Despite their utility merits, STaaS plat-

forms pose significant privacy concerns to users. Once the data

is stored/shared on the cloud, it is unclear whether data will be

misused or compromised. Since the shared data can be naturally

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(4), 184–203

© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0105

sensitive (e.g., non-disclosure agreements, human subjects), it is

mandatory to ensure its confidentiality and integrity all the time.

Several commercial encrypted storage and sharing platforms

(e.g., Boxcryptor [4], Tresorit [5], Sync [2]) were proposed that

employ standard security measures (e.g., AES, MAC) to enable

confidentiality and integrity when the data is at-rest or in-transit.

However, end-to-end encryption may not be sufficient to ensure

robust confidentiality since sensitive information can still be leaked

during operations on the encrypted data (e.g., query, computation).

Specifically, an adversary can infer the data content by observing

metadata indicating activities on the data. Such metadata includes,

for example, what data is being accessed (access patterns); what

data is being searched (search patterns); what data is being up-

dated over time (update patterns); how much data involved in the

users’ queries (volume patterns), whom the data is shared with

(identity/policy leakage). In the private communication context,

metadata has been shown to be “densely interconnected, suscep-

tible to re-identification, and enables highly sensitive inferences”

[73]. A former general counsel at the US NSA has stated, “metadata

absolutely tells you everything about somebody’s life. If you have

enough metadata, you don’t really need content” [79].

Several attempts have been proposed to enhance the privacy and

functionalities in remote data storage and sharing. One research line

focuses on minimizing metadata leakage when sharing/accessing

data [11, 27–29, 31, 33, 50, 57, 69, 70, 85]. However, these schemes

offer limited functionalities (e.g., share and access only). Given that

the shared data across multiple users is generally of large-scale, it

is mandatory to offer query functionalities (i.e., search) to enhance

information retrieval experience, while ensuring metadata privacy.

Another line of research focuses on enabling encrypted query

functionalities over the encrypted data [20, 23, 39, 56, 62, 84]. How-

ever, they either leak significant metadata information [20], and/or

only support private queries over private data, thereby not permit-

ting sharing functionalities [56]. Many devastating attacks have

shown that the adversary can recover the encrypted query and data

contents by exploiting many types of metadata leakage ranging

from search patterns [59, 67, 75] to access patterns [7, 59, 66] and

volume patterns [15, 66] during query operations. In addition, the

importance of oblivious update has also been emphasized since up-

date patterns may also reveal sensitive information as mentioned in

[12, 78]. These works concentrate on designing new efficient mecha-

nisms to support hiding the pattern of write operations. There exists

a few schemes that can offer a high level of metadata privacy, while

permitting data sharing and query functionalities (e.g., [35, 37, 39]).

Unfortunately, they suffer from a poor performance penalty [39],

and/or require a strong assumption such as fully trusted clients

[35, 39] and secure hardware [37].

184

https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0105

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

Table 1: Comparison of MAPLE with prior encrypted search systems.

Scheme Security Functionality Complexity Delay‡

MS MC SP UP VP MU AC Search Update Search (s) Update (s)
Standard SE [23] (1,1) ✗ ✗ ✗ ✗ ✗ ✗ O(𝑛) O (𝑤) 0.11 0.03

DURASIFT [39] ✗ ✗ ✓ ✗ ✓ ✓ ✓ O(𝑁𝑀) — 2.43 —

ODSE [56] (𝑡, 𝑁) ✗ ✓ ✓ ✓ ✗ ✗ O(𝑁𝑀) O (𝜆𝑀) 1.80 0.22

DORY [35] (1, 2) ✗ ✓ ✗ ✓ ✓ ✗ O(𝑁𝑚) O (𝑚) 0.23 0.10

Ours (𝑁 − 1, 𝑁) ✓ ✓ ✓ ✓ ✓ ✓ O(𝑁 log𝑚) O (𝑚 log𝑁 +𝑚2) 0.59 6.17

•MS: Malicious server;MC: Malicious client; SP: Search pattern; UP: Update pattern; VP: Volumne pattern;MU: Multi-user; AC: Access control
• 𝑁 : Total number of documents;𝑀 : Total number of unique keywords over all documents (keyword universe);𝑚: Size of keyword representation per document; 𝜆: Security parameter; 𝑛:
Number of documents matched per keyword search; 𝑤: Number of keywords per updated document. In practice, 𝑤 <𝑚 ≪ 𝑀 , 𝑛 ≪ 𝑁 and𝑚 ≪ 𝑁 .

• All ODSE, DURASIFT, DORY and MAPLE require distributed servers to offer sharing functionalities and/or improved security that may not be available in standard (single-server) SE.

MAPLE offers fine-grained access control along with metadata privacy and integrity against malicious client(s) and server(s), all of which are not simultaneously achieved in prior works.

‡ This result is obtained on the subset of enwiki dataset [8] with 𝜆 = 128, 𝑁 = 65536,𝑚 = 16384 ,𝑀 ≈ 1.9𝑀 (see §7 for more details and results).

Given that there is a lack of multi-user encrypted search plat-

forms with desirable functionalities and security properties, we ask

the following question:

Can we design a new encrypted search platform that offers strong

security (e.g., access control, metadata privacy) with critical function-

alities (i.e., update, search), while achieving a practical performance

for multi-user storage and sharing applications?

1.1 Our Results and Contributions
We answer the aforementioned question affirmatively with a de-

sign of MAPLE, a new encrypted search platform that offers high

security (access control, metadata-privacy) and vital functionalities.

MAPLE offers the following properties:

• Document sharingwith complex policy controls. MAPLE per-

mits document sharing across multiple users with fine-grained

access control, in which the data owner can specify access permis-

sion (read/write/none) for each user to every single document.

• Efficient keyword search on shared documents with access
control. MAPLE enables searching over the shared collection

to retrieve documents that the users are authorized. The search

complexity in MAPLE is efficient both asymptotically and exper-

imentally. Specifically, the search in MAPLE is logarithmic to the

(average) number of keywords per document, compared with

linear either to the size of the keyword universe (e.g., [39, 56]), or

to the number of keywords per document [35]. The asymptotic

advantage permits MAPLE to offer a comparable concrete search

delay over its counterparts, while offering higher security (hid-

ing update patterns, access control). Compared with platforms

offering the same security level, MAPLE outperforms by a few

orders of magnitude.

• Efficient dynamism. MAPLE permits both the authorized users

and the document owner to update the shared documents and the

user permissions (i.e., granting/revocation), respectively, over the

time. The update in MAPLE is only logarithmic to the number

of documents, while offering obfuscated update patterns.

• Complete metadata-hiding with minimal trust. The most

important advantage of MAPLE over all prior works is that

MAPLE hides all metadata leakage when performing data opera-

tions including share, search, and update. MAPLE hides search

patterns (keyword search frequency), update patterns (docu-

ment/permission update frequency), volume patterns (how many

documents/keywords in the search result/updated document),

all of which have recently been shown vulnerable to practical

attacks [7, 15, 66, 75]. To achieve all these security properties,

MAPLE requires a minimal trust, in which ℓ − 1 out of ℓ servers,
as well as the users, can be untrusted and behave maliciously.

• Technique: Oblivious table. The core technique of MAPLE is

the oblivious data structure for secure row/column operations

on the table, by which the search index is instantiated. We refine

the design of oblivious matrix in [53] with auxiliary compo-

nents to enable efficient retrieval and recovery of the original

row/column in the table. The oblivious table permits both key-

word search and document update with a logarithmic cost, and

thus, is more efficient than prior works that incur linear pro-

cessing (e.g., [35, 39, 56]). The oblivious table is also used for a

fine-grained access control that permits an efficient check/update

of user permission with a logarithmic cost without leaking what

permission is updated.

1.2 Technical Highlights
We rely on the blueprint design of state-of-the-art distributed en-

crypted search platforms (i.e., [35, 39, 56]) that instantiate the search

index with a table for metadata privacy during query processing.

We start by giving a brief overview of these approaches.

A brief overview of table-based search index. In table-based

index, the searchable keywords are assigned to one dimension (e.g.,

columns), while the document identifiers are assigned to the other

dimension of the table. With this arrangement, searching of a key-

word is achieved by retrieving a column while document update

is done by replacing a row of the table. All the table-based en-

crypted search platforms [35, 39, 56] employed Private Information

Retrieval (PIR) techniques (e.g., [29, 43, 44]) to privately retrieve a

column during search, thereby hiding search and volume patterns.

Despite their merits, there exist some performance and security is-

sues in these designs. First, early systems assigned each keyword in

the keyword universe to a unique column (or row) of the table. This

design causes the search index to be not only highly sparse, but also

of large size when storing a large-scale document collection. For

instance, in the collection with 5M+ documents (e.g., [8]), the size

of keyword universe is more than 7M+, (and thus the index size can

be in terabytes) while the majority of the dataset has less than 200

keywords per document. Later systems like DORY [35] addressed

this sparsity by applying a Bloom filter for keyword representation

per document, which reduces the index size at the cost of a small

(yet acceptable) false positive rate in the search result.

Despite the elegant design of DORY, there are still some limita-

tions. First, it relies on PIR techniques for keyword search, which

185

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

user

server

server

server

MPC
proxy

server

server

server

user

ORAM
Controller

Access Control
Probabilistic
Search Index

search/update

Oblivious Table Structure

Figure 1: Key components of MAPLE and its high-level workflow.

incurs a linear processing overhead to the table size. Second, the

document update in DORY leaks metadata information (i.e., update

patterns), and thus may be vulnerable to statistical attacks [20].

Finally, it requires the clients that share the same set of documents

to be fully trusted given that they maintain the same decryption

key. When the adversary corrupts a client and a server, the update

confidentiality of honest clients can be compromised. This attack

cannot be prevented even when update operation is made oblivious

as the adversary can simply decrypt the index before and after the

update and compare the differences.

Idea 1: Oblivious table for search index representation. Our
first idea is that instead of using PIR for private search, which incurs

a linear processing cost, we design an oblivious data structure

that permits private retrieval of a row (or column) of the table in

a more asymptotically efficient manner than PIR approaches via

oblivious access techniques such as Oblivious RAM [92]. Note that

simply using ORAM on the original table structure only enables

oblivious access to one dimension but not both. Our oblivious table

permits both row and column accesses with overhead logarithmic

to the number of rows and columns, respectively. We instantiate

the search index with the oblivious table, which permits to conduct

a private search or document update with a logarithmic overhead

compared with linear as in PIR approaches.

Idea 2: Emulating oblivious table and access control viamulti-
party computation. Our second step is to enforce access control to
enable data sharing. First, we delegate all oblivious table operations

to the servers using Multi-Party Computation (MPC) techniques so

that the user does not need to provide any secret state information.

Second, we instantiate access control with another oblivious table

that has the same number of rows with the index table (assuming

documents are in row dimension). By ensuring that the row align-

ment of these tables is always consistent after every operation, we

can enforce access control by using low-cost MPC operations (e.g.,

bit-wise AND) to filter out documents the user is not authorized

to access during keyword search. Due to the characteristic of the

index and access control tables, where their cell values are either 0,

1, or in 2 bits, we can emulate all the operations needed for keyword

search/document update with boolean-friendlyMPC. By usingMPC

protocols with dishonest majority (e.g., [95]), MAPLE requires only

one server to be semi-honest while the rest (other servers and the

users) can be malicious.

Putting everything together. By combining two ideas, we come

up with the complete MAPLE system that offers keyword search,

document/permission update functionalities with complete meta-

data hiding and sublinear processing overhead. We present the

components and high-level workflow of our system in Figure 1.

To search for a keyword, the user computes its Bloom filter, and

requests the servers to emulate oblivious table accesses on several

rows (or columns) indicated by the Bloom filter. The servers then

emulate oblivious access on the access control table to obtain user

permission on all documents, and finally filter out all documents

that the user is not authorized to access using MPC techniques.

To update a document, the user computes a new Bloom filter for

the keyword representation of the updated document. The servers

emulate oblivious access on the access control table to verify the

user permission, and then emulate oblivious access on the index

table to replace the old row with a new Bloom filter representation.

1.3 Related Work
Searchable encryption (SE). SE was first suggested by Song

et al. [84], followed by a body of Symmetric SE (SSE) schemes

proposed that offer encrypted search over encrypted data plus

dynamic update via an encrypted index [21, 24, 42, 61, 62, 87, 88]

(see [18, 77] for a comprehensive survey). Most SSE schemes only

support a single user and leak metadata information such as search

patterns, update patterns and history, access patterns, and volume

patterns, all of which have been demonstrated vulnerable to many

devastating leakage-abuse attacks [7, 15, 59, 66, 67, 99]. Some SSE

schemes permit adjustable leakage and efficiency trade-off [36].

To improve functionality and efficiency, SE has been explored in

other settings such as multi-user [64, 91] and multi-server [19, 56,

60, 65, 76]. However, most these schemes use a deterministic query

encryption, and thus leak search and access patterns.

Oblivious access primitives. ORAM [47] and PIR [30] are two

cryptographic primitives that can hide the access patterns. While

generic ORAM hides both read and write patterns and PIR only

hides read patterns, there are some special ORAM that only hide

one type of operations (either read [90] or write only [16, 78]) and

some PIR that hide write patterns [22]. Similar to SE, both PIR and

ORAM were also explored in multi-user [13, 26, 31, 58, 71] and

multi-server [22, 25, 30, 43, 45, 48, 52, 54] settings to improve the

efficiency, resiliency, and functionality. All these techniques only

support generic access, but not searchability.

Oblivious platforms. Some oblivious storage platforms employ

ORAM and/or PIR primitives to hide metadata during data oper-

ations in data outsourcing [9, 27, 28, 68, 72, 80, 86, 97]. There are

few platforms [35, 39, 82] that further enable query functionalities

on top of data access while maintaining metadata privacy, some of

which offer multi-user settings (e.g., [35, 39]).

Oblivious platforms with secure hardware. There is a line of
research that employs trusted hardware (e.g., SGX [32]) to build

practical and usable oblivious platforms with diverse functional-

ities [34, 38, 41, 51, 55, 74, 89]. These platforms require a strong

security assumption on the hardware (e.g., isolation, tamper-free,

side-channel resistance).

186

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

2 PRELIMINARIES
Notation. | | denotes the concatenation operator. We denote [𝑁] as
a set {1, . . . , 𝑁 }. 𝑥 $← [𝑁] means 𝑥 is selected uniformly at random

from the set {1, . . . , 𝑁 }. We denote𝐻 : {0, 1}∗ → [𝑁] as a mapping

function. Given a table T, T[𝑖, ∗] and T[∗, 𝑗] denote accessing the
row 𝑖 and column 𝑗 of T, respectively. T[𝑖, 𝑗] denotes accessing the

cell indexed at row 𝑖 and column 𝑗 . T⊤ denotes the transpose of

T. Let F be a finite field, 𝜆 be the security parameter, and negl(·)
be a negligible function. We denote 𝐴

𝑐≈ 𝐵 as the computational

indistinguishability between two distributions 𝐴 and 𝐵.

2.1 Secure Multi-Party Computation
Muti-Party Computation (MPC) permits ℓ parties to jointly evaluate

a function 𝑓 (𝑥1, . . . , 𝑥ℓ) → (𝑦1, . . . , 𝑦ℓ), in which each party P𝑖
learns its output 𝑦𝑖 without leaking its private input 𝑥𝑖 to the other

parties. In this paper, although we use MPC as a black box, we

provide basic background on MPC along with its useful properties.

Prior to joint evaluation, the parties can share their secret input

𝑥 with each other via XOR (𝑥 = ⊕𝑖𝑥𝑖), addition (𝑥 =
∑
𝑖 𝑥𝑖), or in

special forms (e.g., Yao sharings [98]).

Authentication. To achieve integrity against malicious adver-

saries, a Message Authentication Code (MAC) can be added. We

recall the BDOZ-style MAC [14] that is mostly used in garbling pro-

tocols with constant-round (e.g., [94, 95]). An authenticated share

of a secret 𝑥 to party P𝑖 is ⟨𝑥⟩𝑖 = (𝑥𝑖 ,{𝑚𝑖, 𝑗 }𝑖≠𝑗 ,{𝑘 𝑗,𝑖 }𝑖≠𝑗), where
𝑥 = ⊕𝑖𝑥𝑖 , 𝑘 𝑗,𝑖 is the MAC key that P𝑖 uses to authenticate the share
𝑏 𝑗 of party P𝑗 , and𝑚𝑖, 𝑗 = 𝑘 𝑗,𝑖 ⊕ 𝑏𝑖 · Δ 𝑗 is the MAC of the share 𝑏𝑖

authenticated by party P𝑗 under P𝑗 ’s global MAC key Δ 𝑗 ∈ {0, 1}𝜆 .
Secure operations. All the linear computations (e.g., addition,

scalar multiplication) on the authenticated shares can be performed

locally. We omit the subscript to denote the share of the secret being

computed in MPC in general. Specifically, ⟨𝑥 + 𝑦⟩ = ⟨𝑥⟩ + ⟨𝑦⟩ and
⟨𝑐 · 𝑥⟩ = 𝑐 · ⟨𝑥⟩, where 𝑐 ∈ F is a public scalar and +, · denote the
addition and multiplication over F. We use ⊞ to denote the secure

addition protocol between authenticated shares. For multiplication

between shares, it can be achieved with the aid of pre-processing

that generates correlated randomness (e.g., Beaver multiplication

triples (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩) such that 𝑐 = 𝑎 ·𝑏) in the offline phase. We use

⊠ to denote such a secure multiplication protocol as ⟨𝑧⟩ = ⟨𝑥⟩⊠ ⟨𝑦⟩
where 𝑧 = 𝑥 × 𝑦, or ⟨z⟩ = ⟨x⟩ ⊠ ⟨y⟩ (entry-wise multiplication if x
and y are vectors).

In this paper, we make use of MPC protocols for boolean opera-

tions including secure comparison and selection as follows.

• ⟨𝑏⟩ ← Πmpc .cmp(⟨𝑥1⟩, ⟨𝑥2⟩): Given two authenticated shares

⟨𝑥1⟩, ⟨𝑥2⟩, it outputs an authenticated share bit ⟨𝑏⟩ such that

𝑏 = 1 if 𝑥1 = 𝑥2; otherwise 𝑏 = 0 if 𝑥1 ≠ 𝑥2.

• ⟨𝑦⟩ ← Πmpc .sel(⟨𝑏⟩, ⟨𝑥1⟩, ⟨𝑥2⟩): Given an authenticated share of

a bit ⟨𝑏⟩ and two authenticated shares of values ⟨𝑥1⟩, ⟨𝑥2⟩, it
outputs an authenticated share ⟨𝑦⟩ such that 𝑦 = 𝑥1 if 𝑏 = 0;

otherwise 𝑦 = 𝑥2 if 𝑏 = 1.

We present how to implement these functions in §D.2. Finally, we

extend the notation to denote the (authenticated) share of a vector.

Given v = (𝑣1, . . . , 𝑣𝑛), ⟨v⟩ = (⟨𝑣⟩1, . . . , ⟨𝑣𝑛⟩) is the (authenticated)
share of v, where each of its elements is secret-shared.

2.2 Oblivious RAM
ORAM [47] permits a client to privately access data in an untrusted

memory without leaking the access pattern. We recall the Tree-

ORAM paradigm by Shi et al. [83], which consists of the following

PPT algorithms.

• (𝑠𝑡,M) ← TreeORAM.Setup(1𝜆,DB, 𝑁): Given a security pa-

rameter 𝜆, a database DB and its size 𝑁 , it outputs a client state

𝑠𝑡 and a server stateM.

• (𝐵, 𝑠𝑡 ′,M ′) ← TreeORAM.Access(op, id, 𝐵′, 𝑠𝑡,M): Given an ac-
cess operation op ∈ {read,write, update}1, a block identifier id, a
data block to be written/updated 𝐵′ (if op = update, 𝐵′ contains
only the portion of data to be updated for id), a client state 𝑠𝑡 ,
a server stateM, it outputs the requested block 𝐵, the updated

client state 𝑠𝑡 ′ and the updated server stateM ′.
In Tree-based ORAM, the database is organized into a binary tree

structure maintained by the server as its stateM. Individual blocks

in the database are located at random locations in the binary tree.

This requires the client to maintain the state information 𝑠𝑡 in the

form of position map (pm) to keep track of the block locations in the

tree, i.e., pm[bid] ← pid, where bid and pid are the block identifier

and the identifier of the path where the block resides, respectively.

To remove this need, pm can be stored in smaller ORAM structures

using recursion technique (see [83] for more details).

3 MODEL
System model. Our system consists of a document owner, 𝑡 data

users, and ℓ servers. The document owner owns a document collec-

tion DB and would like to share it with 𝑡 usersU𝑖 with different

access privileges. We consider a single owner for ease of presenta-

tion. It is easy to extend into multi-owner by reserving a dedicated

space in the shared DB for each data owner. We aim to enable

keyword search and document update functionalities for 𝑡 users

over the shared document collection stored in ℓ servers. Generally

speaking, our scheme consists of the following PPT algorithms:

• M ← Setup(1𝜆,DB,L, 𝑀, 𝑁, 𝑡): Given a security parameter 𝜆, a

database DB, an access control list L where L(𝑢,𝑑) ∈ {r,w,⊥}
contains permission of user 𝑢 on document 𝑑 , a bound on the

number of keywords𝑀 , number of documents 𝑁 , and number

of users 𝑡 , it returns a server stateM.

• J ← KSearch(𝑤, uid,M): Given a keyword𝑤 , a user identifier

uid, and a server stateM, it outputs document identifiers J =

(fid1, . . . , fid𝑛) that𝑤 appears in and uid is authorized to access.

• M ′ ← DUpdate(fid, uid,w,M): Given a document identifier fid,
a user identifier uid, a list of updated keywords w, and a server

stateM, it outputs a new server stateM ′.
• M ′ ← PUpdate(fid, uid, 𝑝,M): Given a document identifier fid,
a user identifier uid, a permission attribute 𝑝 , and a server state

M, it outputs a new server stateM ′.
Threatmodel. In our system, the data owner is fully trusted, while

the users and the servers are untrusted. We also assume that the

parties communicate with each other in a synchronous manner

and the communication channels between end-to-end parties are

1
Standard ORAM offers read and write as main operations. We introduce update

for easy presentation of implementing ORAM with MPC in our protocol for some

functionalities. In the client-server setting, update can be implemented as ORAMwrite.

187

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

pair-wise secure (e.g., via SSL). We assume a malicious adversary

that can corrupt up to ℓ ′ < ℓ servers and 𝑡 ′ < 𝑡 users in the system.

Specifically, the adversary is not only curious about the queries of

the honest users, but also deviates from the protocol. For example,

the adversary is curious about (i) which keyword is being searched

and/or the frequency (i.e., search patterns); (ii) what document is

being updated and/or the frequency (i.e., update patterns); (ii) how

many documents (or keywords) appear in the search/update query

(i.e., volume patterns); (iv) whether the user has an access privilege

to a particular document. The adversary can also inject malicious

inputs into the protocol to compromise the integrity of the system.

Security model. We aim to achieve confidentiality, integrity, and

metadata privacy against a malicious adversary that corrupts up

to ℓ ′ < ℓ servers and an arbitrary number of users. Let A be the

adversary that controls all the corrupted parties and U be the

honest user who has access to a list of documents D ′, respectively.
• Search obliviousness:A cannot infer which keyword has been

searched byU andwhether or notU has searched for the same or

different keywords with another honest user.A also cannot infer

which documents (and how many) that match the search query

and which documents (and how many) the userU is authorized

to search. If A is the user that performs a keyword search, A
cannot infer which documents among the list of unauthorized

documents that match its query.

• Update obliviousness: A cannot infer which document has

been updated byU and whether or notU has updated the same

or different document with another honest user. A also cannot

infer which keywords (or whether the same or different key-

words) are added/deleted in each update operation, and whether

or notU is authorized to perform update.

These obliviousness properties indicate that in each search/update

operation, no information is leaked apart from the user identity

who performs the operation. Thus, they also imply the forward

and backward privacy [21] in the standard encrypted search. We

present the formal definition of forward/backward privacy and

search/update obliviousness via quantified leakage functions in

Appendix B. In addition to obliviousness properties, our scheme

aims to achieve integrity and anonymity properties as follows.

• Search integrity: A cannot tamper with the result of the search

operation performed by the honest userU.

• Update integrity: A cannot tamper with the update query of

the honest userU (e.g., by adding/deleting some keywords on

behalf ofU). If A is the user that performs a document update,

A cannot update the document which is not authorized.

• Anonymity:A cannot determine the identity of the honest user

U who performs the search/update request, given thatU uses an

anonymous communication channel to interact with the servers

(e.g., Tor network).

We present an ideal functionality FMSrch that captures the main

functionalities offered by our system in Figure 17 (see Appendix

due to space constraint). We define the security of our system using

the ideal/real-world simulation paradigm as follows.

Definition 1 (L-simulation based security: privacy + verifi-
ability). Let L = {LStp,LSrch,LUpd} be leakage functions during
setup, keyword search, and document update operations. A protocol

Π is said securely realize FMSrch in the presence of a malicious ad-

versary if, for every PPT adversary A in the real world, there exists a

PPT simulator S in the ideal world such that

| Pr[RealΠ,A (𝜆) = 1] − Pr[IdealFMSrch,S,L (𝜆)] | ≤ negl(𝜆)

Metadata privacy on document retrieval/update. In this paper,

we only focus on the search index privacy. From the system-wide

viewpoint, it is also necessary to seal leakages in the document

retrieval/update phase that occurs after processing the search in-

dex as discussed in [49]. Ensuring privacy for document access

can be achieved independently with existing ORAM/PIR-based file

systems (e.g., [27, 28, 33, 51]). These techniques can be integrated

orthogonally into our scheme to achieve system-wide security.

4 OBLIVIOUS TABLE
We present OTAB, an oblivious structure for efficient row and col-

umn access in a table without leaking row/column access patterns.

Definition 2 (Oblivious Data Structure [96]). Let addr𝐷 (®𝑜𝑝)
be the physical addresses generated during a sequence of operations

®op = ((op
1
, arg

1
), . . . , (op𝐿, arg𝐿)) on data structure 𝐷 . 𝐷 is said

to be oblivious, if there exists a PPT simulator S, such that for any

polynomial-length sequence of operations ®op, we have that

addr𝐷 (®op)
𝑐≈ S(𝐿) .

Our OTAB consists of the following PPT algorithms:

• (𝑠𝑡,M) ← OTAB.Setup(1𝜆,T′, 𝑁 ,𝑀): Given a security parame-

ter 𝜆, an 𝑁 ×𝑀 table T′, it returns a client state 𝑠𝑡 and a server

stateM.

• (v, 𝑠𝑡 ′,M ′) ← OTAB.Access(op, id, v′, 𝑠𝑡,M): Given an opera-

tion type op ∈ {read,write, update}, a row/column identifier id,
an updated row/column v′, a client state 𝑠𝑡 , and a server state

M, it outputs a row/column v in the oblivious table, an updated

client state 𝑠𝑡 ′, and an updated server stateM ′.
• v← OTAB.Reconstruct(v′, 𝑠𝑡): Given a row/column v′ in the

oblivious table and a state 𝑠𝑡 , it outputs original row/column v.
Figure 2 presents the setup and access protocols of OTAB in

detail. The idea is to treat each dimension of the table as a “logical”

ORAM structure, where each row (or column) is treated as an

ORAM block. With this representation, OTAB permits the back-

end ORAM scheme to be executed on its row (or column) dimension

to access the desired row (or column). Generally speaking, given a

table T′ of size 𝑁 ×𝑀 as an input, we create a bigger table T of size

𝑧 ·𝑁 ×𝑧 ·𝑀 , where 𝑧 is the expansion factor of the back-end ORAM,

which contains all data of T′. Due to the back-end ORAM, all rows

and columns of T need to be shuffled in such a way that each of

them resides at a random path as indicated by the logical back-end

ORAM structure. We denote such row and column permutations

as 𝜋r and 𝜋c, respectively (line 3). Notice that such permutations

do not need to be keyed since we store such random assignments

in the position map components. Specifically, we use two position

maps, pmr and pmc, to keep track of the logical path and the exact

location of the rows and columns of T′ in T, respectively (line 5).

We also maintain two components hr and hc, which can be thought

of as the row and column headers of T, respectively (line 6). These

components store the row/column indices of the original table T′

188

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

in T, which will be used to reconstruct the original row/column of

T′ from the retrieved row/column of T′. As the elements in these

headers will be shuffled due to underlying Tree-ORAM operations,

for simplicity and ease of presentation, we treat them as part of T,
where they can be stored at the index 0 ofT (line 7). In general, given

that OTAB.Setup generates necessary components (two position

maps, row/column headers) for later row/column access using the

back-end ORAM protocol, it can be considered as the extended

TreeORAM.Setup procedure for oblivious table access.

The access operation in OTAB works by arranging the underly-

ing Tree-ORAM components according to which dimension of the

table is being accessed (lines 11–14). Each time ORAM is executed

on the row/column dimension of OTAB, some of the rows/columns

will be shuffled. Thus, when updating a row/column of the original

T, we need to create a corresponding row/column of the oblivious

T′, where the data in the original row/column is (re)ordered ac-

cording to the current state of T′ (lines 15–17). Once the access
procedure by the underlying Tree-ORAM is finished, the client and

server update their state information accordingly (lines 19–26).

Finally, we may need to reconstruct the original row/column from

the one retrieved from the oblivious table by rearranging the data to

the original order. This can be done with the Reconstruct algorithm,

where the rearrangement is realized using the row/column header

(lines 33–34).

In summary, the consistency of row/column access in OTAB is

maintained via 4 auxiliary components: row/column headers and

row/column position maps. The position maps keep track of loca-

tions of columns/rows of the original table when they are moved

around in the OTAB structure due to Tree-ORAM operations. Mean-

while, the headers permit the client to recover the original col-

umn/row from OTAB or to create an updated column/row that is

consistent with the current OTAB state. We present a toy example

of column/row access in OTAB with consistency in Appendix A

(Figure 12).

Complexity. The cost of OTAB depends on the back-end ORAM

being used. OTAB adds a small factor of constant 𝑧 to the complexity

since both the rows and columns are expanded 𝑧 times. Assume

Circuit-ORAM [92] is the back-end ORAM, the complexity of row

and column access by OTAB is O(𝑧 ·𝑀 log(𝑧 · 𝑁)) = O(𝑀 log𝑁)
and O(𝑧 · 𝑁 log(𝑧 ·𝑀)) = O(𝑁 log𝑀), respectively, where 𝑁 and

𝑀 are the number of rows and columns of the original table.

5 OUR MAPLE PLATFORM
We give an overview and then present our platform in detail.

5.1 Overview
We first present the data structures in our scheme. We then present

a strawman construction to illustrate our main idea.

Data structures. MAPLE consists of two main structures: an index

(IDX) for keyword search and an access control (AC) for document-

user permission management. We instantiate both IDX and ACwith

tables. WLOG, we assume the keywords and document identifiers

are assigned to the columns and rows in IDX, respectively. In AC,
the user and document identifiers are in the columns and rows,

respectively. For instance, IDX[𝑖, 𝑗] = 1means the keyword indexed

at column 𝑗 appears in the document indexed at row 𝑖 . AC[𝑖, 𝑗] =
r/w means the user indexed at column 𝑗 is permitted to read/write

• OTAB.Setup(1𝜆,T′, 𝑁 ,𝑀) :
1: T← 0

(𝑧·𝑁 +1)×(𝑧·𝑀+1)
, hr ← 0

𝑧·𝑁
, hc ← 0

𝑧·𝑀
,

2: for 𝑖 = 1 to 𝑁 and 𝑗 = 1 to𝑀 do
3: 𝑥𝑖 ← 𝜋r (𝑖) , 𝑦𝑖 ← 𝜋c (𝑗) ⊲ 𝜋r/𝜋c is row/col permutation

4: T[𝑥𝑖 , 𝑦 𝑗] ← T′ [𝑖, 𝑗]
5: pmr [𝑖] .id← 𝜋r (𝑖) , pmc [𝑗] .id← 𝜋c (𝑗)
6: hr [𝑥𝑖] ← 𝑖 , hc [𝑦 𝑗] ← 𝑗

7: T[0, 1 . . . 𝑧𝑀] ← hc , T[1 . . . 𝑧𝑁 , 0] ← hr
8: return (𝑠𝑡,M), where 𝑠𝑡 = (pmr, pmc, hr, hc) andM = T

• OTAB.Access(op, id, v′, 𝑠𝑡,M) :
9: Parse 𝑠𝑡 = (pmr, pmc, hr, hc) ,M = T
10: 𝑌 ← 0,DB←⊥, T′ ← T
11: if op is a row access then
12: pm← pmr , 𝑌 ← 𝑀 , and DB← (T[1, ∗], . . . ,T[𝑧 · 𝑁, ∗])
13: else if op is a column access then
14: pm← pmc , 𝑌 ← 𝑁 , and DB← (T[∗, 1], . . . ,T[∗, 𝑧 ·𝑀])
15: v̂← 0

𝑧·𝑌

16: for 𝑖 = 1 to 𝑌 do
17: v̂[𝑥𝑖] ← v′ [𝑖] where 𝑥𝑖 ← pm[𝑖] .id
18: (v, pm′,DB′) ← TreeORAM.Access(op, id, v̂, pm,DB)
19: if op is a row access then
20: pm′r ← pm′, pm′c ← pmc
21: (T′ [1, ∗], . . . ,T′ [𝑧 · 𝑁, ∗]) ← DB′

22: h′r ← T′ [1 . . . 𝑧𝑁 , 0], h′c ← hc
23: else if op is a column access then
24: pm′c ← pm′, pm′r ← pmr
25: (T′ [∗, 1], . . . ,T′ [∗, 𝑧 ·𝑀]) ← DB′

26: h′c ← T′ [0, 1 . . . 𝑧𝑀], h′r ← hr
27: return (v, 𝑠𝑡 ′,M′) , where 𝑠𝑡 ′ = (pm′r, pm′c, h′r, h′c) ,M′ = T′

• OTAB.Reconstruct(v′, 𝑠𝑡) :
28: Parse 𝑠𝑡 = (pmr, pmc, hr, hc)
29: if v′ is a row in OTAB then
30: h← hc , 𝑌 ← 𝑀

31: else if v′ is a column in OTAB then
32: h← hr , 𝑌 ← 𝑁

33: for 𝑖 = 0 to 𝑧 · 𝑌 do
34: v[𝑦𝑖] ← v′ [𝑖] where 𝑦𝑖 ← h[𝑖]
35: return v

Figure 2: Oblivious table protocols.

the document indexed at row 𝑖 . For simplicity, we assume that the

document identifiers fid and user identifiers uid correspond to their

indices in IDX and AC, respectively, i.e., fid ∈ [𝑁] and uid ∈ [𝑡].
For keywords, we use a public mapping function 𝐻 that encodes

each keyword to a unique binary string (e.g., ASCII) and maps

its binary representation to a unique column identifier in IDX as

𝐻 : {0, 1}∗ → [𝑀], where𝑀 is the number of columns.

We instantiate IDX and ACwith tables due to the following secu-

rity and efficiency advantages. First, the table hides the size patterns

of the search results, which may lead to volume leakage-abuse at-

tacks [7, 15, 66]. Second, the table permits both search and update

operations to be performed in two separate dimensions in a synchro-

nous manner. We are aware that the table may incur high storage

and computation overhead when the database is large. Therefore,

we will design various strategies to mitigate this limitation.

Strawman proposal. We first present a strawman scheme to

demonstrate the intuition of our proposed design. Instead of relying

on PIR-like techniques as prior works that incur linear processing,

we use ORAM-based approach by instantiating IDX and AC with

oblivious table. To search for a keyword 𝑤 with a user uid, we
first determine the (column) index of 𝑤 in IDX as cid ← 𝐻 (𝑤).
We then perform oblivious access over the column dimension of

IDX to obtain the column cid representing the list of document

identifiers that 𝑤 appears in. Next, we perform oblivious access

189

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

over the column dimension AC to obtain the access permission

of uid on every document, thereby filtering out some identifiers

in cid that uid is not authorized to access before sending the final

result to the user uid. To update a document with an identifier fid
for a user uid, we create a row u that represents all keywords that

appear in fid. We then perform an oblivious access over the row

dimension of AC to check if uid is authorized to update fid (i.e.,

AC[uid, fid] ?

= ‘w’), and perform an oblivious access on IDX to to

replace the old row as IDX[fid, ∗] ← u.
While the strawman scheme seems to work at the first glance,

there are challenges in realizing the idea in a secure and efficient

manner. First, the size of IDX is O(𝑁 · 𝑀), where 𝑁 , 𝑀 are the

total number of documents and unique keywords in the entire data-

base, respectively. Given the high sparsity of keywords in nature,

it is likely that𝑀 will grow drastically when 𝑁 increases, thereby

incurring the high complexity. For instance, in the Wikipedia cor-

pus [8] with 𝑁 ≈ 5M documents, the size of keyword universe is

approximately 𝑀 ≈ 7M, and thus the storage cost can grow up

to several terabytes. Moreover, each search and update operation

incurs O(𝑁 · log𝑀) and O(𝑀 · log𝑁) time complexity, respectively,

due to OTAB. Such costs may be high in practice if𝑀 is large.

Another challenge is the emulation of oblivious table in themulti-

user setting, where the adversary can be present at both user and

server sides. For instance, prior platforms prevent malicious server

via authentication [35]. However, this approach assumes that the

trusted user maintains a private MAC key, which is not possible in

the multi-user setting, where some of the users can be adversarial

and therefore, are untrusted. Furthermore, our oblivious table in §4

also requires the trusted user to maintain some secret states (e.g.,

permutations, position maps), which is not feasible as the users in

the multi-user setting are untrusted. In the following, we present

techniques to address these challenges efficiently.

5.2 Reducing Index Size
To reduce the index size and processing time, we employ a Bloom

filter (BF) [17] to represent the keyword set per document. Let

BF = (Init,Gen,Verify) be the BF for a set S defined as follows.

• (𝐻1, . . . , 𝐻𝐾) ← BF.Init(𝑚,𝐾): Given two parameters𝑚 and 𝐾 ,

it outputs 𝐾 mappings 𝐻𝑖 : S → [𝑚].
• u← BF.Gen(S): It takes a set S as input. It initializes a vector

u = 0
𝑚
. For each 𝑠 ∈ S, it computes and sets u[𝐻𝑖 (𝑠)] ← 1 for

all 𝑖 ∈ [𝐾]. It outputs u as the compressed representation of S.
• {0, 1} ← BF.Verify(u, 𝑠): It takes an element 𝑠 as input. It com-

putes and outputs a bit 𝑏 ← u[𝐻1 (𝑠)] ∧ · · · ∧u[𝐻𝐾 (𝑠)], in which

𝑏 = 0 if 𝑠 ∉ S, otherwise 𝑏 = 1.

For each document, we compute a BF to generate a compressed

representation for the keywords in it. We assume each document

has at most 𝑞 distinct keywords and the compressed representation

is of length𝑚. We select𝑚, 𝐾 to achieve a low False Positive (FP)

rate determined as Pr[FP] =
(
1 − (1 − 1/𝑚)𝑞𝐾

)𝐾
.

The search procedure for a keyword𝑤 now proceeds as follows.

• We compute 𝐾 column identifiers by BF cid𝑖 = 𝐻𝑖 (𝑤).
• For each cid𝑖 , we execute v̂𝑖 ← OMAT.Access(read, cid𝑖 ,⊥, IDX)
and v′ ← OMAT.Access(read, uid,⊥,AC). Finally, we perform

the bitwise AND of 𝐾 + 1 columns as v← v̂1 ∧ v̂2 ∧ · · · ∧ v̂𝐾 ∧v′
and return v to the user.

With BF, we reduce the IDX size from O(𝑁 · 𝑀) to O(𝑁 ·𝑚),
where𝑚 ≪ 𝑀 . Note that due to the smaller index size, search and

update will also be more efficient.

5.3 Emulating Oblivious Table via MPC Proxy
In this section, we present how to emulate oblivious table to en-

able privacy-preserving keyword search and document update effi-

ciently in the multi-user setting.

MPC proxy. In MAPLE, we employ ℓ servers that together form

a so-called MPC proxy to process keyword search (or document

update) requests from the users. Specifically, the servers will jointly

execute MPC protocols to emulate OTAB access on the search index

IDX and the access controlAC for search/update operations without

leaking the search/update/volume patterns. As we will show that

emulating OTAB only incurs boolean operations, it suffices for the

MPC proxy to employ boolean-friendly MPC protocols. Therefore,

we opt to employ Authenticated Garbled Circuit in [95] as it offers

security with dishonest majority with fast online processing and

privacy degree scalability (w.r.t the number of servers).

5.3.1 Authenticated I/O. In MAPLE, the user sends a search (or up-

date) query to the MPC proxy and receives a corresponding output.

Given that the user does not participate in the secure computation,

we need to ensure the user shares correct input to the individual

servers in the MPC proxy, while receiving trustworthy output. We

employ the authenticated input and output protocols in [27] with

the following interfaces (see §D.1 for details).

• (⟨𝑣⟩1, . . . , ⟨𝑣⟩𝑛) ← Πmpc .Input(𝑣1, . . . , 𝑣𝑛): Given 𝑛 user secrets,

it outputs the corresponding authenticated shares to MPC proxy.

• (𝑣1, . . . , 𝑣𝑛) ← Πmpc .Output(⟨𝑣1⟩, . . . , ⟨𝑣𝑛⟩): Given𝑛 shares from
MPC proxy, it outputs the corresponding secrets to the user.

5.3.2 OTAB Emulation. We present how the OTAB access is emu-

lated with the MPC proxy in MAPLE. For the sake of brevity, we

show how to emulate oblivious column access in OTAB since the

row access can be done analogously.

Suppose the OTAB structure contains the data of a table with

𝑀 columns and 𝑁 rows. Let q = (op, cid, v′) be the client query to

the MPC proxy, where op is the operation type (read, write, update),

cid is the column identifier to be accessed and v′ is the column data

to be updated. The client distributes the authenticated shares of q
to the proxy using the above authenticated input protocol as

⟨q⟩ ← Πmpc .Input(q)
The proxy then emulates the TreeORAM.Access procedure in OTAB
(Figure 2, line 18) with boolean MPC. In MAPLE, we employ Circuit-

ORAM [92] as the backend ORAM protocol due to its optimal cir-

cuit complexity. Recall that the access procedure in Circuit-ORAM

invokes two main subroutines: Read and Evict, which can be em-

ulated using the oblivious comparison Πmpc .cmp(·) and selection

Πmpc .sel(·) protocols as follows.
In Read subroutine, the requested column cid is retrieved by ac-

cessing O(log𝑚) columns that reside on the same logical path with

cid in OTAB structure. Let (⟨v1⟩, . . . , ⟨v𝑚⟩) be the authenticated
shares of such columns and (⟨𝑥1⟩, . . . , ⟨𝑥𝑚⟩) be the shares of their

190

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

corresponding identifiers. The MPC proxy computes the share of a

selection vector ⟨s⟩ = (⟨𝑠1⟩, . . . , ⟨𝑠𝑚⟩) via oblivious comparison as

⟨𝑠𝑖 ⟩ ← Πmpc .cmp(⟨cid⟩, ⟨𝑥𝑖 ⟩) (1)

for 𝑖 ∈ [𝑚]. Let ⟨ṽ⟩ be the share of the column cid initialized

with 0
𝑁
. The proxy obtains ⟨ṽ⟩ by iterating the oblivious selection

protocol between ⟨ṽ⟩ and𝑚 columns on the logical path as

⟨ṽ⟩ ← Πmpc .sel(⟨𝑠𝑖 ⟩, ⟨ṽ⟩, ⟨v𝑖 ⟩) (2)

for 𝑖 ∈ [𝑚]. In Evict subroutine, the proxy first computes the column

to be updated via oblivious selection as

⟨v̂⟩ ← Πmpc .sel(⟨op⟩, ⟨ṽ⟩, ⟨v′⟩)

The proxy then privately writes ⟨v̂⟩ back to OTAB structure and

shuffle the columns in a logical path chosen deterministically. The

shuffle is realized with boolean operations by computing an eviction

plan that determines which columns to be moved in the logical path

according to their assigned positions. As shown in Equation 1 and

Equation 2, the proxy determines what columns to be picked by

their identifiers using the oblivious comparison protocol, and then

relocates the column data using the oblivious selection protocol.

Position map. As discussed, the MPC proxy needs to know the

logical path of the requested column inOTAB structure for OTAB ac-

cess emulation. In MAPLE, we store this path directly on the MPC

proxy using the recursive technique in [83]. When emulating OTAB,

the MPC proxy retrieves/updates the path of the requested col-

umn/row by accessing the recursive ORAM structure using the

oblivious comparison and selection protocols as shown above.

Consistency in mixed row/column access sequence. As pre-
sented in §4, OTAB requires a permutation to convert the col-

umn/row data of the original table to the corresponding column/row

in OTAB structure during write/update operations (i.e., lines 15–17

in Figure 2). In the multi-user setting, the user is untrusted and

stateless and, therefore, we delegate such permutation to the MPC

proxy using a permutation matrix. Specifically, we create a𝑚 × 𝑧𝑚
matrix P, where P[𝑖, 𝑗] = 1 indicates the 𝑖-th original column is

relocated at the 𝑗-th column in OTAB. Whenever the columns in

OTAB are shuffled due to the previous column accesses, we per-

form the same computation on P so that P will keep track of the

latest positions of the original columns in OTAB. Once the user

updates a row u′ in the original table, the MPC proxy first computes

û← u′×P to obtain the appropriate row in OTAB before emulating

the ORAM access.

The other components that must be kept consistent are the col-

umn and row headers (hc and hr). Similar to the permutation matrix,

whenever we shuffle the columns (resp. rows) in OTAB during a

column (resp. row) access using boolean MPC, we apply the same

computation on hc (resp. hr) to shuffle the original column identi-

fiers accordingly.

Additional notation. We use ⟨·⟩ to denote the emulation of

OTAB access with MPC as ⟨ṽ⟩ ← ⟨OTAB.Access⟩(⟨op⟩, ⟨id⟩, ⟨v′⟩),
which returns the authenticated shares of the requested column/row.

5.4 Protocol Details
We present the protocol of our proposed MAPLE platform in Fig-

ure 3 and Figure 4 with the following details.

MAPLE.Setup(1𝜆,DB, L,𝑚, 𝑁 , 𝑡) :
1: Initialize I← 0

𝑁×𝑚
, A← 0

𝑁×𝑡
, and P← 0

𝑚×𝑧·𝑚

2: for each document 𝑑𝑖 ∈ DB do
3: W𝑖 ← Extract unique keywords in 𝑑𝑖
4: u𝑖 ← BF.Gen(W𝑖)
5: I[𝑖, ∗] ← u𝑖
6: A[𝑖, 𝑗] ← L(𝑖, 𝑗) for 1 ≤ 𝑗 ≤ 𝑡
7: (pm𝑑 , pm𝑤 , h𝑑 , h𝑤 , IDX) ← OTAB.Setup(1𝜆, I, 𝑁 ,𝑚)
8: (pm𝑑 , pm𝑢 , h𝑑 , h𝑢 ,AC) ← OTAB.Setup(1𝜆,A, 𝑁 , 𝑡)
9: for 𝑖 = 1 to𝑚 do
10: P[𝑖, 𝑥𝑖] ← 1, where 𝑥𝑖 ← pm𝑤 [𝑖] .id
11: (⟨IDX⟩, ⟨AC⟩, ⟨h𝑑 ⟩, ⟨h𝑢 ⟩) ← Πmpc .Input(IDX,AC, h𝑑 , h𝑢) ⊲ U → S
12: (⟨pm𝑑 ⟩, ⟨pm𝑤 ⟩, ⟨pm𝑢 ⟩, ⟨P⟩) ← Πmpc .Input(pm𝑑 , pm𝑤 , pm𝑢 , P) ⊲ U → S
13: returnM ← (⟨IDX⟩, ⟨AC⟩, ⟨h𝑑 ⟩, ⟨h𝑢 ⟩, ⟨P⟩, ⟨pm𝑑 ⟩, ⟨pm𝑤 ⟩, ⟨pm𝑢 ⟩)

MAPLE.KSearch(𝑤, uid;M) :
14: for 𝑖 = 1 to 𝐾 do
15: cid𝑖 ← 𝐻𝑖 (𝑤)
16: (⟨cid1 ⟩, . . . , ⟨cid𝐾 ⟩, ⟨uid⟩) ← Πmpc .Input(cid1, . . . , cid𝐾 , uid) ⊲ U → S
17: for 𝑖 = 1 to 𝐾 do
18: ⟨v̂𝑖 ⟩ ← ⟨OTAB.Access⟩

(
read, ⟨cid𝑖 ⟩,⊥, ⟨pm𝑤 ⟩, ⟨IDX⟩

)
19: ⟨v′⟩ ← ⟨OTAB.Access⟩

(
read, ⟨uid⟩,⊥, ⟨pm𝑢 ⟩, ⟨AC⟩

)
20: ⟨v⟩ ← ⟨v̂1 ⟩ ⊠ ⟨v̂2 ⟩ ⊠ . . . ⊠ ⟨v̂𝐾 ⟩ ⊠ ⟨v′⟩
21: ⟨v′′⟩ ← ⟨v⟩ ⊠ ⟨h𝑑 ⟩
22: v′′ ← Πmpc .Output(⟨v′′⟩) ⊲ S → U
23: return J ← {fid : fid ∈ v′′ ∧ fid ≠ 0}

Figure 3: MAPLE Protocols.

5.4.1 Setup Phase. Given a document collection, the data owner

initializes two empty tables I and A for search index and access

control, respectively (Figure 3, line 1). The owner extracts keywords

in each document, and creates a BF for keyword representation

(lines 2–5). The owner also sets the user permission for each doc-

ument on the access control (line 6). The owner then creates the

oblivious tables IDX and AC, as well as their components for the

search index and the access control, respectively (lines 7, 8). For

simplicity, we assume the columns represent the keywords, while

the rows represent the documents. Notice that it is necessary to

apply the same random row permutation (line 3 in Figure 2) in both

IDX and AC to ensure the positions of documents in these tables

are identical for correct search.

Since the user is expected to receive a list of document identifiers

from the search, we maintain a document header h𝑑 indicating

the document identifiers at each row of IDX. We also maintain a

user header h𝑢 indicating the user identifier at each column of

IDX for permission update operations. As discussed in §5.3.2, once

the oblivious table index is setup, we also create a permutation

matrix P that maps keyword positions in the original index to

the correct positions in IDX for update consistency (lines 9– 10) .

Note that our scheme does not maintain permutation matrix for

column operations and the keyword header h𝑤 because update

only happens row-wise and search only happens column-wise,

respectively. Finally, once all necessary components are created,

the data owner executes Πmpc .Input(·) protocol to distribute them

to the MPC proxy (line 11). A final remark is that in MAPLE, all

the position maps (pm𝑑 , pm𝑤 , pm𝑢) are stored at the proxy in the

recursive ORAM structures under the form of authenticated shares.

5.4.2 Search Protocol. To search for a keyword𝑤 , the user com-

putes its column identifiers cid𝑖 in Iwith BF (line 15) and distributes
them along with her identifier to the MPC proxy using the authenti-

cated input protocol (line 16). The proxy then emulates OTAB access

191

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

on IDX to retrieve the corresponding columns v̂cid𝑖 (line 18), and
then emulate OTAB access on AC to retrieve the column v′ stor-
ing the permission of uid on all documents (line 19). Due to BF,

𝑤 appears in fid𝑗 (with high probability) if v̂cid𝑖 [fid𝑗] = 1 ∀ cid𝑖 .
Thus, the MPC proxy performs the secure bitwise AND operation

between all columns as v← v̂cid1 ∧ v̂cid2 ∧ · · · ∧ v̂cid𝐾 to obtain the

search result. Since vcid𝑗 are all binary vectors, the bitwise AND is

equivalent to multiplication over F2 and thus, it can be realized with
the MPC multiplication protocol. To filter out documents that uid is

not authorized, the proxy performs secure bitwise AND operation

between v and v′ (line 20).
The proxy then computes the list of document identifiers v′′

that match with the user query by performing an entry-wise multi-

plication v′′ ← v × h under secure computation (line 21). Finally,

the proxy outputs the list of document identifiers to the user using

the authenticated output protocol (lines 22–23).

5.4.3 Update Protocols.

Document update. Given a document (with identifier fid) with a

list of updated keywords w, the user uid creates a BF u that repre-

sents the keyword appearance in the updated document (Figure 4,

line 1). Specifically, u[𝑥𝑖, 𝑗] = 1, where 𝑥𝑖, 𝑗 = 𝐻 𝑗 (𝑤𝑖) for each 𝑤𝑖
and 𝑗 ∈ [𝐾], while other elements are set to 0 (lines 2–4). The user

then uses the authenticated input protocol to secret-share the BF

representation u, the user identifier uid, and the document iden-

tifier fid with the MPC proxy (line 5). The proxy then multiplies

u with the permutation matrix P to permute the elements in u to

their correct positions in IDX (line 12).

Finally, the proxy emulates OTAB read on AC to check if uid is

permitted to update the document fid (lines 6–10). If so, the proxy

emulates OTAB write on IDX over the row dimension with fid to

update the document accordingly (line 13). Otherwise, it simply

performs a dummy read on fid = 0, which happens when 𝑏 = 0.

Remark that the positions of document identifiers in AC and

IDX must be kept identical for correct permission check in search.

Therefore, when implementing this protocol, we use the same se-

lection query and eviction plan during OTAB accesses on AC and

IDX to permute their rows consistently.

Permission update. MAPLE permits the access control to be up-

dated with a restriction that only the data owner can perform

this operation. Thus, the owner authenticates herself with the

MPC proxy using a standard authentication mechanism (e.g., user-

name/password).

Once authenticated, the data owner secret-shares the user iden-

tifier uid, the document identifier fid, and the new permission

𝑝 ∈ {r,w,⊥} to be updated to the MPC proxy using the authen-

ticated input protocol (line 14). Next, the MPC proxy creates an

update vector and emulates OTAB update on AC over the row di-

mension with fid to update the user permission accordingly (lines

15-16). Similar to the document update, it is necessary to perform a

dummy access on IDX with the same selection query and eviction

plan used in AC access to ensure the document positions in IDX
and AC consistent for correct search (line 17).

5.5 Cost Analysis
We analyze the complexity of MAPLE. Let 𝑚,𝑘, 𝑁 , 𝑡, ℓ, 𝑧 be the

size of keyword representation per document (i.e., BF size), the BF

MAPLE.DUpdate(fid, uid,w,M) :
1: u← {0}𝑚
2: for 𝑖 = 1 to 𝑛 and 𝑗 = 1 to 𝐾 do
3: cid𝑖,𝑗 ← 𝐻 𝑗 (𝑤𝑖) ⊲ w = (𝑤1, . . . , 𝑤𝑛)
4: u[cid𝑖,𝑗] ← 1

5: (⟨u⟩, ⟨uid⟩, ⟨fid⟩) ← Πmpc .Input(u, uid, fid) ⊲ U → S
6: ⟨û′⟩ ← ⟨OTAB.Access⟩ (read, ⟨fid⟩,⊥,⊥, ⟨AC⟩)
7: for 𝑖 = 1 to 𝑧 · 𝑡 do
8: ⟨𝑏 ⟩′ ← Πmpc .cmp(⟨uid⟩, ⟨h𝑢 [𝑖] ⟩)
9: ⟨𝑏 ⟩′′ ← Πmpc .cmp(⟨û′ [𝑖] ⟩, ‘w’)
10: ⟨𝑏 ⟩ ← ⟨𝑏′⟩ ⊠ ⟨𝑏′′⟩
11: ⟨op⟩ ← Πmpc .sel(⟨𝑏 ⟩, read,write)
12: ⟨u⟩ ← ⟨u⟩ ⊠ ⟨P⟩
13: ⟨OTAB.Access⟩ (⟨op⟩, ⟨fid⟩, ⟨u⟩,⊥, ⟨IDX⟩)

MAPLE.PUpdate(fid, uid, 𝑝,M) :
14: (⟨fid⟩, ⟨uid⟩, ⟨𝑝 ⟩) ← Πmpc .Input(fid, uid, 𝑝) ⊲ U → S
15: ⟨u⟩ ← 0

𝑡
, ⟨u[uid] ⟩ ← ⟨𝑝 ⟩

16: ⟨OTAB.Access⟩ (update, ⟨fid⟩, ⟨u⟩,⊥, ⟨AC⟩)
17: ⟨OTAB.Access⟩ (read, ⟨fid⟩,⊥,⊥, ⟨IDX⟩)

Figure 4: MAPLE Protocols (cont.).

parameter, the number of documents, and the number of users, the

number of servers, and the back-end ORAM expansion, respectively.

We assume ℓ, 𝑘, 𝑡, 𝑧 are small constants (e.g., 𝑘 = 7, 𝑧 = 2, ℓ ∈ [6]).
For keyword search, the client secret-shares a search query of size

O(𝑘) to the MPC proxy, and receives a column of size O(𝑁 log𝑁)
as the search result. Given that O(log𝑁) bits is needed for each

document identifier representation, the total client bandwidth cost

is O(𝑁 log𝑁) and the computation time is O(𝑁). At the MPC

proxy, the servers emulate 𝑘 OTAB column accesses on the search

index, in which each incurs O(𝑁 log𝑚) inter-server bandwidth
overhead and O(𝑁 log𝑚) computation complexity due to Circuit-

ORAM. For each access, MPC proxy also shuffles O(log𝑚) columns

(via multiplication) of the permutation matrix P to keep track of

the keyword positions in OTAB, which takes O(𝑚 log𝑚) time. The

MPC proxy emulates an OTAB column access on the access control

structure to check the user permission, which costsO(𝑁 log 𝑡) inter-
server bandwidth and computation overhead. Finally, the MPC

proxy performs multiplication between (𝑘 + 1) columns, which

costs O(𝑘 ·𝑁) bandwidth/processing overhead. Therefore, the total
server cost is O(𝑘 (𝑁 log𝑚 +𝑚 · log𝑚) + 𝑁 log 𝑡) = O(𝑁 log𝑚)
given that𝑚 ≪ 𝑁 and 𝑘 , 𝑡 are constants.

For document update, the user creates a row for keyword rep-

resentation of the updated document with BF, which incurs O(𝑚)
processing time. The user secret shares the row to the MPC proxy,

which costs O(𝑚) bandwidth. At the proxy, the servers first per-
mute the row using the permutation matrix, which incurs O(𝑚2)
bandwidth/processing overhead. The servers then emulate anOTAB

row access to the access control structure for permission verifi-

cation, which incurs O(𝑡 log𝑁) bandwidth/processing overhead,

and then emulate an OTAB row access to the search index for

document update, which incurs O(𝑚 log𝑁) bandwidth/processing
overhead. In total, the server cost is O(𝑚2 + 𝑡 log𝑁 +𝑚 log𝑁) =
O(𝑚2 +𝑚 log𝑁) as 𝑡 is fixed.

The cost of permission update is similar to that of document

update, except that permutationmatrix multiplication is not needed,

i.e., O(𝑡 log𝑁 +𝑚 log𝑁) = O(𝑚 log𝑁).
For storage overhead, the user is stateless, meaning they do not

need to store any information. For the MPC proxy, each server

stores a share of the oblivious tables for the search index and the

192

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

access control. These tables are of size O(𝑧2 · 𝑁 ·𝑚) and O(𝑧2 ·
𝑁 · 𝑡). The position map components for these tables are stored in

recursive ORAM and thus do not add the extra storage overhead

asymptotically. The servers also maintain the permutation matrix

of size O(𝑚2) and the headers for oblivious tables, whose total size
is O(𝑁 +𝑚). In total, since 𝑧 = 2, 𝑡 is constant, the overall storage

cost per server is O(𝑧2 ·𝑁 · (𝑚 + 𝑡) +𝑁 +𝑚 +𝑚2) = O(𝑁 ·𝑚 +𝑚2).

6 SECURITY ANALYSIS
We analyze the security of OTAB and MAPLE schemes.

Lemma 1. OTAB is an oblivious data structure by Definition 2 that

securely realizes the ideal functionality for oblivious table in Figure 15.

Theorem 1. MAPLE achieves L-simulation security by Definition 1,

where L = {LStp,LSrch,LUpdt}, LStp = {𝑚, 𝑁, 𝑡}, LSrch = {∅},
and LUpdt = {∅}.

We present the proof in Appendix.

7 EXPERIMENTAL EVALUATION
7.1 Implementation and Configuration
We fully implemented our proposed platform in C++ consisting of ≈
5,000 lines of code. We used EMP-toolkit library [93] to realize the
MPC proxy with AGC technique [95] and libzeromq [6] library

for network communication. Our implementation is available at

https://github.com/vt-asaplab/MAPLE.

Two-level parallelism. To optimize the performance of our scheme,

we implemented parallelism at two levels including thread-level

and server-level. For thread-level parallelism, we modified the im-

plementation of the online phase in EMP-toolkit library to utilize

multi-core CPUs, where the evaluation step can be performed in

parallel by multi-threading. For server-level parallelism, our plat-

form makes use of each server in the MPC proxy as both the garbler

and evaluator, where each server in ℓ servers evaluates a data-

independent circuit of size 𝑇 /ℓ for the entire circuit of size 𝑇 .
Hardware and network. We deployed the MPC proxy with Ama-

zon EC2 r5n.16xlarge instances each equipped with 32-core Intel

Xeon Platinum 8375C CPU @ 2.90GHz and 512 GB memory. We

used a 2021 Macbook Pro 14 as the user. The network bandwidth

between servers is 37Gbps and the network bandwidth between

servers and the user is 20Mbps with a 10ms round-trip latency.

Dataset. We used a subset of enwiki-latest-pages-articles dataset
[8] to evaluate the performance of our technique. We used WikiEx-
tractor [10] to extract 16,331,564 distinct text-only articles from

the dataset. We removed empty articles that contain no keyword

and randomly selected 1M articles as the testing set. We extract

unique keywords using the standard tokenization method. The size

of keyword universe is𝑀 = 4,080,169.

7.2 Parameters and Counterparts Selection
We compare MAPLE with other encrypted search platforms that of-

fer similar functionalities or security properties (e.g., metadata hid-

ing) to our technique. Specifically, we choose ODSE [56], DURASIFT

[39] and DORY [35] as the main counterparts. We selected standard

parameters to achieve 128-bit security in all schemes as follows.

2
10

2
12

2
14

2
16

2
18

2
20

10
−1

10
0

10
1

10
2

10
3

10
4

documents

D
e
l
a
y
(
s
)
(
l
o
g
)

ODSE DURASIFT DORY

DORY-AGC MAPLE

Figure 5: Search delay of MAPLE and its counterparts.

• MAPLE: We used standard parameters for AGC including 128-

bit AES/MAC keys. For BF, we selected parameters such that

the FP rate is small. Specifically, ≈ 99.54% number of documents

have ≤ 300 keywords in our testing set (see Figure 20 in Appen-

dix E). So, we set BF size𝑚 = 2
14

and the number of hashing

𝑘 = 7 to achieve < 10
−6

FP rate (§5.2) to adapt for the case of

1 million documents. For OTAB, we selected standard Circuit-

ORAM parameters including bucket size 𝑧 = 2 and stash sizes

𝑆𝑤 = log
2
(𝑚), 𝑆𝑓 = log

2
(𝑁), 𝑆𝑢 = log

2
(𝑡), where𝑚 is BF size,

𝑁 is the number of documents, and 𝑡 is the number of users.

• ODSE [56]: We used standard parameters as suggested in the

original work. We compare our scheme with ODSEwoxor, which
employs XOR-PIR and Write-Only ORAM for oblivious search

and update, respectively, along with the computational MAC

technique with 128-bit key.

• DURASIFT [39]: We used standard parameters including 128-bit

key for IND-CPA encryption, 128-bit seed for pseudorandom

generator (PRG), DPF in [43] and GMW protocol in [46] for

oblivious search. The size of the search index is 𝑁 ·𝑀 , where𝑀

is the size of the keyword universe.

• DORY [35]: We selected the BF parameters similar to our scheme

including𝑚 = 2
14

and 𝑘 = 7. Note that the BF size is larger than

the one chosen in the original work since we test on much larger

dataset (i.e., up to 300 keywords compared with 73 keywords per

document in Enron dataset originally used in [35]). We used 128-

bit keys for IND-CPA encryption, MAC, and PRG seed. DORY

uses DPF in [43] for oblivious search. Additionally, we create

a variant of DORY (denoted as DORY-AGC) that has the same

trust assumption as ours (i.e., trustless user) by substituting its

DPF-based PIR with AGC-based PIR. We compare MAPLE with

this variant to demonstrate our performance advantage under

the same security assumption.

Evaluationmetrics. We evaluate our scheme and its counterparts

according to the overall latency, the client/server processing delay,

and the network communication overhead. We further evaluate

the scalability of our scheme with various numbers of servers to

improve the privacy degree.

7.3 Overall Results
7.3.1 Keyword Search. Figure 5 illustrates the search latency of our
scheme and its counterparts with different numbers of documents

ranging from 2
10

to 2
20
. We can see that our scheme is up to 4.3×

faster than DURASIFT, 1.2×–3.1× faster than ODSE but 1.3×–2.8×
slower than DORY. With 1K users and 64K documents, our scheme

takes approximately 0.6s to accomplish a search, and increases

193

https://github.com/vt-asaplab/MAPLE

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

2
10

2
12

2
14

2
16

2
18

2
20

10
−1

10
0

10
1

10
2

10
3

10
4

BF sizes

D
e
l
a
y
(
s
)
(
l
o
g
)

DORY-AGC DORY MAPLE

Figure 6: Search delay with varied BF sizes.

to about 8.1s for 1M documents. The latency of all the schemes

grows almost linearly to the number of documents since the search

complexity of all the schemes is linear to the number of documents.

MAPLE is slightly slower than DORY mostly due to the com-

munication overhead incurred by AGC protocol, which does not

happen in DORY as it uses DPF. However, it is worth noting that our

scheme can offer security for both malicious users and malicious

servers plus access control, while DORY can only offer security for

a malicious server (no access control, trusted client). On the other

hand, MAPLE outperforms both ODSE and DURASIFT with 3×–4×
faster search time, since their complexity grows linearly to the size

of keyword universe, while it only grows logarithmically to the size

of keyword representation in MAPLE. With 1M documents, the

keyword universe can contain up to 2.7M keywords, while the key-

word representation is fixed at 16K (i.e., ≈ 160× smaller) to cover

99.54% of the entire dataset. When comparing DORY under the

same trust assumption (DORY-AGC), MAPLE is 64.7×–80.9× faster.
This is because MAPLE incurs a quasilinear complexity (w.r.t the

table index size) due to OTAB while DORY-AGC incurs a quadratic

overhead due to MPC evaluation for PIR.

In summary, the cost difference between MAPLE/DORY over

DURASIFT/ODSE is mostly due to the use of probabilistic data

structure (i.e., BF) vs. plain bitmap for search index. When applying

BF on DURASIFT/ODSE, we estimated that their cost will be similar

to DORY. Meanwhile, the cost difference betweenMAPLE vs. DORY

(or DURASIFT/ODSE) is mainly due to the ORAM emulation by

MPC vs. efficient PIR evaluation thanks to trusted user(s). When

putting all the schemes under the same trust assumption (trustless

users), MAPLE outperforms other platforms by almost two orders

of magnitude due to the complexity difference between OTAB and

PIR. We further analyze the performance of OTAB in §7.5.

Varying BF sizes. Figure 6 demonstrates the impact of varying

BF sizes on the performance of MAPLE and DORY under 𝑁 =

2
16

documents. MAPLE is 2.6×–10.7× slower than DORY when

𝑚 ≤ 2
14
, and start to outperform DORY when 𝑚 ≥ 2

16
with

one order of magnitude faster. It is due to the fact that the search

complexity in MAPLE is only logarithmic to the BF size, compared

with linear growth in DORY. ComparedwithDORY-AGC,MAPLE is

two to three orders of magnitude faster especially when BF size

is large (2
20
). Note that larger BF size permits each document to

contain more unique keywords or reduce the false positive rate, and

thus our scheme will be more beneficial for large database settings

that require high precision search. For example, there are many

documents in the enwiki-latest-pages-articles dataset that contain

2
10

2
11

2
12

2
13

2
14

2
15

2
16

7

8

9

10

users

L
a
t
e
n
c
y
(
s
) MAPLE

(a) Varying # users

2 3 4 5 6

10

15

20

25

servers

L
a
t
e
n
c
y
(
s
) MAPLE

(b) Varying # servers

Figure 7: Search delay of MAPLE by varying # users and # servers.

2
10

2
12

2
14

2
16

2
18

2
20

10
−2
10

0

10
2

10
4

10
6

10
8

documents

L
a
t
e
n
c
y
(
s
)
(
l
o
g
) ODSE DORY

DORY-AGC MAPLE

(a) Document update

2
10

2
12

2
14

2
16

2
18

2
20

10
0

10
1

10
2

documents

L
a
t
e
n
c
y
(
s
)
(
l
o
g
) 1K 4K

8K 16K

(b) Permission update

Figure 8: Update delay of MAPLE and its counterparts.

more than 3,500 keywords, which requires the BF size to be set to

2
18

to achieve less than one false positive document.

Varying number of users. Figure 7a presents the end-to-end

search delay of our schemewith varied numbers of users. Increasing

the number of users does not significantly impact the search delay

of our scheme. Specifically, increasing the number of users 64 times

(from 1K to 64K users) only adds 1.2 seconds to the end-to-end

search delay (≈ 1.1 times). This is due to the use of oblivious table

to privately verify the user permission, whose cost only grows

logarithmically to the number of users.

Varying number of servers. We further evaluate the impact of

increasing the number of servers to improve privacy degree on

the search delay. Figure 7b shows that the search latency increases

non-linearly w.r.t the number of servers. This is because having

more servers reduces the size of circuits evaluated by each server,

but increases the overhead to evaluate AND and XOR gates. With ℓ

servers and𝑇 -sized circuit, the circuit size that each server evaluates

is𝑇 /ℓ , while each XOR gate evaluation incurs ℓ − 1 XOR operations

and each AND gate evaluation incurs (ℓ−1) (3ℓ+5) XOR operations

plus (ℓ − 1)ℓ AES invocations. As a result, adding one more server

increases the network overhead to 16.7%, 8.3%, 5% and 3.3% over

the time starting from ℓ = 2 to 6 servers. The increasing number for

XOR operations are 61.9%, 32.4%, 22.7%, and 17.8%, and the number

of AES operations increases 100%, 50%, 33.3%, and 25%.

7.3.2 Update.

Document update. Figure 8a presents the update delay of MAPLE

and its counterparts. MAPLE takes 3.4s and 6.2s to update a docu-

ment in 1K documents and 64K documents, respectively, and goes

up to 7.9s for 1M documents. The majority of update overhead

stems from the nonconsecutive memory access of row data given

that the oblivious table is stored column-wise for efficient search.

Another factor is due to the permutation to rearrange the keyword

representation, which takes a fixed amount of 1.8s for the BF of

size𝑚 = 2
14

regardless of number of documents in the dataset.

MAPLE is 3.3s–7.8s slower than DORY and ODSE, which take

70–150ms, and 30–373ms, respectively, to finish a document update.

194

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

Table 2: Monetary cost per search/update operation in MAPLE.

Docs 2
10

2
12

2
14

2
16

2
18

2
20

Srch Time (s) 0.0723 0.1267 0.2308 0.5923 2.1276 8.0671

Cost ($) 0.0002 0.0003 0.0006 0.002 0.006 0.021

Updt Time (s) 3.3844 4.2317 5.3618 6.1727 6.8564 7.9426

Cost ($) 0.009 0.011 0.014 0.016 0.018 0.021

2
10

2
12

2
14

2
16

2
18

2
20

0

2

4

6

8

10

docs

D
e
l
a
y
(
s
)

Intra-server b/w

Server processing

(a) Search

2
10

2
12

2
14

2
16

2
18

2
20

0

2

4

6

8

10

docs

D
e
l
a
y
(
s
)

(b) Update

Figure 9: Detailed cost of keyword search and document update.

Note that we do not compare with DURASIFT as it does not offer

document update functionality. Although MAPLE is slower than

DORY and ODSE, it is worth noting that MAPLE guarantees update

pattern privacy (not achieved by DORY), and document sharing

with access control under untrusted user assumption (not offered

by DORY and ODSE). When comparing with the oblivious update

version of DORY (i.e., DORY-AGC), we can see that MAPLE is 6.2×–
2491.1× faster. It is because MAPLE utilizes OTAB for oblivious row

access with O(𝑚 log𝑁) cost, while DORY-AGC costs O(𝑚𝑁) due
to PIR. Thus, we envision our MAPLE platform is highly desirable

for applications where the document update is infrequent but its

metadata privacy must be guaranteed.

Permission update. We present the delay to update user permis-

sion in MAPLE in Figure 8b. Since we perform permission update

on the row dimension, its cost grows logarithmically to the number

of documents, where in the case of 1K users it takes 1.6s with 1K

documents, and goes up to 4.4s for 64K documents and 6.1s for 1M

documents. Permission update is slightly faster than document up-

date since it does not require permutation that costs a fixed amount

of 1.8s. We also experiment the impact of user set on the permission

update delay. Specifically, the delay to update a user permission

among 1K, 4K, 8K, and 16K in the case of 1M documents is approx-

imately 6.1s, 7.2s, 8.7s and 11.6s, respectively. This matches with

the asymptotic complexity of permission update, where the cost

grows logarithmically to the number of documents, but linearly to

the number of users due to the oblivious table.

7.3.3 Monetary cost. We report the monetary cost for each key-

word search and document update operation by our MAPLE scheme

in Table 2. The cost is computed based on two Amazon EC2 servers

(r5n.16xlarge) pricing at $4.77/hr per instance.

7.4 Cost Breakdown
Figure 9 presents the detailed cost of keyword search and docu-

ment update in MAPLE. There are three factors that impact the

MAPLE delay including the user processing, the computation cost

at the proxy and the network communication.

Client processing. In MAPLE, the client cost is negligible because

she only needs to execute the MPC input and output protocols with

the MPC proxy, which invokes cheap arithmetic operations. For

keyword search, the client additionally invokes 𝑘 = 7 calls to the

hash function to compute the column identifiers of the searched

keyword in the BF. For document update, since the user only gen-

erates a small updated keyword representation, its overhead is also

minimal. In our benchmark, all these operations took less than

20ms, which is hardly visible in Figure 9 where the total delay is

dominated by the overhead at the proxy.

Network communication. In MAPLE, there are two types of

communication: (i) between the user and the proxy, (ii) between the

servers in the proxy during MPC execution. The user network is

negligible since the user only shares the search/update query to the

proxy and receives the result, whose total cost is O(ℓ𝑁 log𝑁)-bit
for search (i.e., ≈ 16MB for 1M documents with ℓ = 2 servers), and

O(ℓ𝑚) for update (i.e., ≈ 4KB for the BF size𝑚 = 2
14
).

The majority overhead of network delay stems from the inter-

server communication to emulate OTAB accesses and other secure

computations with MPC, which contributes up to 43% to the total

search delay and 32% to the total update delay as shown in Figure 9.

Due to AGC [95], there is a step in the online phase where the

“garbler” server and the other “evaluator” server exchange masked

inputs and masked labels to each other. For each wire, its masked

value is of 1 B and its masked label is of 16 B. For each search, the

proxy emulates 8 OTAB accesses (7 for search index and 1 for access

control). As we use Circuit-ORAM [92] as the backend ORAM, the

evaluation circuit for a column access in the search index and

access control has ≈ 3𝑁 (𝑧 log𝑚 +𝑆𝑤) and ≈ 3𝑁 (𝑧 log 𝑡 +𝑆𝑢) input
wires, respectively. Concretely, the total evaluation circuit size per

keyword search on the search index is ≈ 15.5MB, 992.3MB, and

15.5 GB, for 1K, 64K, and 1M documents, respectively. The total

evaluation circuit size per user permission check among 1K users

is ≈ 1.6MB, 101.3MB and 1.6 GB, for 1K, 64K, and 1M documents,

respectively. As a result, in the search procedure, network delay for

search is about 3.3ms, 0.23s, and 3.4s for 1K, 64K, and 1M documents,

respectively, which attributes 4.6% - 42.5% to the total delay.

In document update, the majority of network overhead is due

to the permutation, which requires 2
28

input wires resulting in the

bandwidth of 4.5GB. The evaluation circuit for row access in the

search index has ≈ 3𝑚(𝑧 log𝑁 + 𝑆𝑓) and ≈ 1.5M, 2.4M, and 2.9M

input wires for 1K, 64K, and 1M documents, respectively. Also, for

1K users, the evaluation circuit for a column access in the access

control has ≈ 3𝑁 (𝑧 log 𝑡 + 𝑆𝑢) and ≈ 92.2K, 5.9M, and 94.4M input

wires for 1K, 64K, and 1M documents, respectively. Concretely, the

total bandwidth cost per document update on the search index

is ≈ 4.5 GB, 4.6 GB, and 6.1 GB, for 1K, 64K, and 1M documents,

respectively. As a result, in the update procedure, network delay is

about 1.1s-1.3s, which attributes 14.2% - 24.1% to the total delay.

Proxy processing. As presented in §5.3.2, search and update op-

erations in our scheme are realized with comparison and selection

circuits containing XOR and AND gates. Since comparison is only

executed on a very small data portion (i.e., at most 32-bit for col-

umn/row identifiers), the majority of proxy computation stems

from the execution of selection circuits on the entire rows/columns

of the search index and access control. Each selection evaluation

circuit of 𝑇 input wires contains 3𝑇 XOR gates and 𝑇 AND gates.

Evaluating an XOR gate is cheap because it incurs XOR operations

195

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

2
10

2
12

2
14

2
16

2
18

2
20

10
−1

10
0

10
1

10
2

rows

D
e
l
a
y
(
s
)
(
l
o
g
)

ORAM

OTAB

(a) Column access

2
10

2
12

2
14

2
16

2
18

2
20

10
−1

10
1

10
3

rows

D
e
l
a
y
(
s
)
(
l
o
g
)

(b) Row access

Figure 10: Performance of OTAB vs. plain ORAM for table access.

2
10

2
12

2
14

2
16

2
18

2
20

10
−1

10
0

10
1

10
2

documents

D
e
l
a
y
(
s
)
(
l
o
g
)

ORAM+GC+BF

MAPLE

(a) Keyword search

2
10

2
12

2
14

2
16

2
18

2
20

10
1

10
3

10
5

documents

D
e
l
a
y
(
s
)
(
l
o
g
)

(b) Document update

Figure 11: Performance of MAPLE vs. plain ORAM.

including 1 operation between two input wire values and (ℓ −1) op-
erations between the corresponding label values. Evaluating AND

gates is more expensive, where each gate incurs 1 XOR between

two input wire values, (ℓ − 1) (3ℓ + 5) XOR between 128-bit val-

ues, and (ℓ − 1)ℓ AES invocations. For keyword search, the servers

evaluate ≈ (63𝑁 (𝑧 log𝑚 +𝑆𝑤) + 9𝑁 (𝑧 log 𝑡 + 𝑆𝑢)) (concretely from
3.0M to 3.1B) XOR gates and ≈ (21𝑁 (𝑧 log𝑚 + 𝑆𝑤) + 3𝑁 (𝑧 log 𝑡 +
𝑆𝑢) + 7𝑁 + 𝑁 log𝑁) (from 1.0M to 1.0B) AND gates for 1K to 1M

documents with 1K users. Given that two-level parallelism is imple-

mented, evaluating all these XOR and AND gates takes 70ms–4.6s,

which attributes 57.4%–90.9% to the total delay. For document up-

date, the servers evaluate a total of ≈ (𝑚(𝑚 − 1) + 9𝑚(𝑧 log𝑁 +
𝑆𝑓) + 9𝑁 (𝑧 log 𝑡 + 𝑆𝑢)) (from 273.1M to 560.4M) XOR gates and

≈ (𝑚2 + 3𝑚(𝑧 log𝑁 + 𝑆𝑓) +𝑚 + 3𝑁 (𝑧 log 𝑡 + 𝑆𝑢)) (from 270.0M

to 365.8M) AND gates. The amount of overhead from evaluating

O(𝑚2) XOR and AND gates for permutation is about 0.9s. Most

latency stems from random memory access when accessing rows

in the oblivious table. This is because we store the oblivious table

for search-friendly, where the table is stored column-wise in the

memory. Each document update takes 2.3s–6.6s to evaluate all XOR

and AND gates, as well as read/write the row data from the memory,

which accounts for 51.1%–71.2% of the total delay.

7.5 Comparison with ORAM
Weperform experiments to compare the performance ofMAPLEwith

directly applying plain ORAM on table structure (without using

OTAB). We first benchmark the performance of OTAB compared

with directly using ORAM to access row/column in a table structure.

In this experiment, we use Circuit-ORAM with the same parameter

(bucket size 𝑧 = 2, stash size 𝑆𝑐 = 14) for both plain ORAM and

OTAB approach as the underlying ORAM scheme to perform col-

umn access, and bucket size 𝑧 = 2, stash size 𝑆𝑟 = log(𝑁), where
𝑁 is the number of rows for oblivious row access in OTAB. In the

plain ORAM approach, we package each column of the original

table as a Circuit-ORAM block, while OTAB doubles the number of

rows and columns in the original table.

Figure 10a and Figure 10b present the end-to-end delay of ac-

cessing a single column and row in a table with 2 × 214 columns

and varied number of rows, respectively. We can see that accessing

a column with plain ORAM is 1.1×–1.9× faster than OTAB. It is

because in the plain ORAM approach, each column is packaged

directly as an ORAM block, and the size of each column is not dou-

bled as in OTAB to assist oblivious update. Meanwhile, row access

in plain ORAM takes two to three orders of magnitude more time

than OTAB. It is because plain ORAM can only support efficient

column access, but not row access. To hide the row access patterns,

it requires processing the entire table.

We now report the performance of MAPLE and the plain ORAM

approach when both use MPC to enable oblivious search and multi-

user functionalities. Figure 11a and Figure 11b present the end-to-

end search and update delay of MAPLE and plain ORAM on BF table

with MPC, respectively. In the plain ORAM approach, since the

column size is not expanded to support oblivious update, its search

latency is about 2× smaller than our MAPLE since it invokes MPC

evaluation around 2 times less than MAPLE. However, in document

update, plain ORAM approach takes 9.3×–4982.1× more time than

MAPLE. It is due to the fact that plain ORAM incursMPC evaluation

(e.g., secure AND/XOR operations) on O(𝑁) rows compared with

only O(log𝑁) rows per document access in MAPLE.

8 CONCLUSION
In this paper, we introduced MAPLE, a new metadata-hiding plat-

form that enables encrypted search and update on shared data

across multiple users maintaining privacy-preserving fine-grained

policy controls. MAPLE is the first to compose various crypto-

graphic techniques including secure computation, oblivious proba-

bilistic data structures, and ORAM for high security/privacy guar-

antees. Experimental results demonstrated that MAPLE is efficient

for both keyword search and document update operations.

From a real-world use-case perspective, MAPLE is highly desir-

able for applications featuring a balanced frequency of keyword

search and document update operations, in which the privacy of

each operation is highly critical (i.e., no metadata leakage in any

type of operations), and a small error in the search result is accept-

able. MAPLE is less favorable for applications that are primarily

focused on either search or update operations. Additionally, if the

perfect search accuracy is paramount and the update privacy is not

a primary concern, alternative techniques that are solely based on

ORAM, PIR, or standard SSE may be more appropriate.

ACKNOWLEDGMENTS
Wewould like to thank our shepherd and the anonymous reviewers

in PETS 2023 for their insightful comments and suggestions to

improve the quality of our work. This research is supported by an

unrestricted gift from Robert Bosch, 4-VA, and the Commonwealth

Cyber Initiative (CCI) — an investment in the advancement of

cyber R&D, innovation, and workforce development. For more

information about CCI, visit www.cyberinitiative.org.

REFERENCES
[1] 2008. What can Dropbox help you do? https://www.dropbox.com.

[2] 2011. Sync: Secure cloud storage, privacy guaranteed. https://www.sync.com/.

[3] 2012. Google Drive: Easy and secure access to your content. https://www.

google.com/drive/.

196

https://www.dropbox.com
https://www.sync.com/
https://www.google.com/drive/
https://www.google.com/drive/

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

[4] 2013. Boxcryptor: No. 1 cloud encryption made in Germany. https://www.

boxcryptor.com/en/.

[5] 2013. Tresorit: Secure file sharing & content collaboration with encryption.

https://tresorit.com/secure-file-sharing.

[6] 2021. ZeroMQ: An open-source universal messaging library. https://github.

com/zeromq/libzmq

[7] 2022. IHOP: Improved Statistical Query Recovery against Searchable Symmetric

Encryption through Quadratic Optimization. In 31st USENIX Security Symposium

(USENIX Security 22). USENIX Association, Boston, MA. https://www.usenix.

org/conference/usenixsecurity22/presentation/oya

[8] 2022. The Wikipedia Corpus. https://dumps.wikimedia.org/.

[9] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. 2014.

Verifiable oblivious storage. In International Workshop on Public Key Cryptogra-

phy. Springer, 131–148.

[10] Giusepppe Attardi. 2015. WikiExtractor. https://github.com/attardi/

wikiextractor.

[11] Adam J Aviv, Seung Geol Choi, Travis Mayberry, and Daniel S Roche. 2016.

Oblivisync: Practical oblivious file backup and synchronization. arXiv preprint

arXiv:1605.09779 (2016).

[12] Adam J. Aviv, Seung Geol Choi, Travis Mayberry, and Daniel S. Roche.

2017. ObliviSync: Practical Oblivious File Backup and Synchronization. In

24th Annual Network and Distributed System Security Symposium, NDSS 2017,

San Diego, California, USA, February 26 - March 1, 2017. The Internet So-

ciety. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/

oblivisync-practical-oblivious-file-backup-and-synchronization/

[13] Michael Backes, Amir Herzberg, Aniket Kate, and Ivan Pryvalov. 2016. Anony-

mous ram. In European Symposium on Research in Computer Security. Springer,

344–362.

[14] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-

homomorphic encryption and multiparty computation. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer,

169–188.

[15] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2019. Revisiting leakage

abuse attacks. Cryptology ePrint Archive (2019).

[16] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. 2014.

Toward robust hidden volumes using write-only oblivious ram. In Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications Security.

203–214.

[17] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[18] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. 2014. A

survey of provably secure searchable encryption. ACM Computing Surveys

(CSUR) 47, 2 (2014), 1–51.

[19] Christoph Bösch, Andreas Peter, Bram Leenders, Hoon Wei Lim, Qiang Tang,

Huaxiong Wang, Pieter Hartel, and Willem Jonker. 2014. Distributed search-

able symmetric encryption. In 2014 Twelfth Annual International Conference on

Privacy, Security and Trust. IEEE, 330–337.

[20] Raphael Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and backward

private searchable encryption from constrained cryptographic primitives. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security. 1465–1482.

[21] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and backward

private searchable encryption from constrained cryptographic primitives. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security. 1465–1482.

[22] Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostrovsky. 2020. Effi-

cient 3-party distributed ORAM. In International Conference on Security and

Cryptography for Networks. Springer, 215–232.

[23] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, andMichael Steiner. 2014. Dynamic Searchable Encryption

in Very-Large Databases: Data Structures and Implementation. IACR Cryptol.

ePrint Arch. 2014 (2014), 853.

[24] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-

tion with support for boolean queries. In Annual cryptology conference. Springer,

353–373.

[25] T-H Hubert Chan, Jonathan Katz, Kartik Nayak, Antigoni Polychroniadou, and

Elaine Shi. 2018. More is less: Perfectly secure oblivious algorithms in the

multi-server setting. In International Conference on the Theory and Application

of Cryptology and Information Security. Springer, 158–188.

[26] Binyi Chen, Huijia Lin, and Stefano Tessaro. 2016. Oblivious parallel RAM:

improved efficiency and generic constructions. In Theory of Cryptography Con-

ference. Springer, 205–234.

[27] Weikeng Chen, Thang Hoang, Jorge Guajardo, and Attila A. Yavuz. 2022. Tita-

nium: A Metadata-Hiding File-Sharing System with Malicious Security. Cryptol-

ogy ePrint Archive, Paper 2022/051. https://doi.org/10.14722/ndss.2022.24161

https://eprint.iacr.org/2022/051.

[28] Weikeng Chen and Raluca Ada Popa. 2020. Metal: a metadata-hiding file-sharing

system. In NDSS Symposium 2020.

[29] Benny Chor, Niv Gilboa, and Moni Naor. 1997. Private information retrieval by

keywords. Citeseer.

[30] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

information retrieval. Journal of the ACM (JACM) 45, 6 (1998), 965–981.

[31] Sherman SM Chow, Katharina Fech, Russell WF Lai, and Giulio Malavolta. 2020.

Multi-client oblivious RAM with poly-logarithmic communication. In Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security. Springer, 160–190.

[32] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology

ePrint Archive (2016).

[33] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and

Raluca Ada Popa. 2021. Snoopy: Surpassing the scalability bottleneck of oblivi-

ous storage. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles. 655–671.

[34] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and

Raluca Ada Popa. 2021. Snoopy: Surpassing the scalability bottleneck of oblivi-

ous storage. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles. 655–671.

[35] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica. 2020.

DORY: An Encrypted Search System with Distributed Trust. Cryptology ePrint

Archive, Report 2020/1280. https://ia.cr/2020/1280.

[36] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and

Saurabh Shintre. 2020. {SEAL}: Attack mitigation for encrypted databases via

adjustable leakage. In 29th USENIX Security Symposium (USENIX Security 20).

2433–2450.

[37] Saba Eskandarian and Matei Zaharia. 2017. Oblidb: Oblivious query processing

for secure databases. arXiv preprint arXiv:1710.00458 (2017).

[38] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing

for Secure Databases. Proceedings of the VLDB Endowment 13, 2 (2019).

[39] Brett Hemenway Falk, Steve Lu, and Rafail Ostrovsky. 2019. DURASIFT: A

Robust, Decentralized, Encrypted Database Supporting Private Searches with

Complex Policy Controls. In Proceedings of the 18th ACM Workshop on Privacy

in the Electronic Society (London, United Kingdom) (WPES’19). Association for

Computing Machinery, New York, NY, USA, 26–36. https://doi.org/10.1145/

3338498.3358651

[40] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to

identification and signature problems. InConference on the theory and application

of cryptographic techniques. Springer, 186–194.

[41] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-

schbaum, and Ahmad-Reza Sadeghi. 2017. HardIDX: Practical and secure index

with SGX. In IFIP Annual Conference on Data and Applications Security and

Privacy. Springer, 386–408.

[42] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New constructions for forward and backward private

symmetric searchable encryption. In Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security. 1038–1055.

[43] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Appli-

cations. In EUROCRYPT.

[44] Ian Goldberg. 2007. Improving the robustness of private information retrieval.

In 2007 IEEE Symposium on Security and Privacy (SP’07). IEEE, 131–148.

[45] Ian Goldberg. 2007. Improving the robustness of private information retrieval.

In 2007 IEEE Symposium on Security and Privacy (SP’07). IEEE, 131–148.

[46] Oded Goldreich, Silvio Micali, and AviWigderson. 1987. How to play any mental

game. In Annual ACM Symposium on Theory of Computing.

[47] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[48] S Dov Gordon, Jonathan Katz, and Xiao Wang. 2018. Simple and efficient two-

server ORAM. In International Conference on the Theory and Application of

Cryptology and Information Security. Springer, 141–157.

[49] Zichen Gui, Kenneth G Paterson, and Sikhar Patranabis. 2023. Rethinking

searchable symmetric encryption. In 2023 IEEE Symposium on Security and

Privacy (SP).

[50] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. 2019. Private

anonymous data access. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques. Springer, 244–273.

[51] Thang Hoang, Rouzbeh Behnia, Yeongjin Jang, and Attila A Yavuz. 2020. MOSE:

Practical multi-user oblivious storage via secure enclaves. In Proceedings of the

Tenth ACM Conference on Data and Application Security and Privacy. 17–28.

[52] Thang Hoang, Jorge Guajardo, and Attila A Yavuz. 2020. MACAO: Amaliciously-

secure and client-efficient active ORAM framework. NDSS 2020 (2020).

[53] Thang Hoang, Ceyhun D Ozkaptan, Gabriel Hackebeil, and Attila Altay Yavuz.

2018. Efficient oblivious data structures for database services on the cloud. IEEE

Transactions on Cloud Computing 9, 2 (2018), 598–609.

[54] Thang Hoang, Ceyhun D Ozkaptan, Attila A Yavuz, Jorge Guajardo, and Tam

Nguyen. 2017. S3oram: A computation-efficient and constant client bandwidth

blowup oram with shamir secret sharing. In Proceedings of the 2017 ACM SIGSAC

197

https://www.boxcryptor.com/en/
https://www.boxcryptor.com/en/
https://tresorit.com/secure-file-sharing
https://github.com/zeromq/libzmq
https://github.com/zeromq/libzmq
https://www.usenix.org/conference/usenixsecurity22/presentation/oya
https://www.usenix.org/conference/usenixsecurity22/presentation/oya
https://dumps.wikimedia.org/
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/oblivisync-practical-oblivious-file-backup-and-synchronization/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/oblivisync-practical-oblivious-file-backup-and-synchronization/
https://doi.org/10.14722/ndss.2022.24161
https://eprint.iacr.org/2022/051
https://ia.cr/2020/1280
https://doi.org/10.1145/3338498.3358651
https://doi.org/10.1145/3338498.3358651

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

Conference on Computer and Communications Security. 491–505.

[55] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A Yavuz. 2019.

Hardware-supported ORAM in effect: Practical oblivious search and update

on very large dataset. Proceedings on Privacy Enhancing Technologies 2019, 1

(2019).

[56] Thang Hoang, Attila Yavuz, F. Durak, and Jorge Guajardo. 2019. A multi-server

oblivious dynamic searchable encryption framework. Journal of Computer

Security 27 (09 2019), 1–28. https://doi.org/10.3233/JCS-191300

[57] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. 2020. Ghostor: Toward a Secure

{Data-Sharing} System from Decentralized Trust. In 17th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 20). 851–877.

[58] T-H Hubert Chan and Elaine Shi. 2017. Circuit OPRAM: Unifying statistically

and computationally secure ORAMs and OPRAMs. In Theory of Cryptography

Conference. Springer, 72–107.

[59] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Ac-

cess Pattern disclosure on Searchable Encryption: Ramification, Attack and

Mitigation. In NDSS.

[60] Seny Kamara, Tarik Moataz, Andrew Park, and Lucy Qin. 2021. A Decentralized

and Encrypted National Gun Registry. In 2021 IEEE Symposium on Security and

Privacy (SP). 1520–1537. https://doi.org/10.1109/SP40001.2021.00072

[61] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and dynamic

searchable symmetric encryption. In International conference on financial cryp-

tography and data security. Springer, 258–274.

[62] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 2012 ACM conference on

Computer and communications security. 965–976.

[63] Jonathan Katz and Andrew Y. Lindell. 2008. Aggregate Message Authentication

Codes. In Topics in Cryptology – CT-RSA 2008, Tal Malkin (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 155–169.

[64] Aggelos Kiayias, Ozgur Oksuz, Alexander Russell, Qiang Tang, and Bing Wang.

2016. Efficient encrypted keyword search for multi-user data sharing. In Euro-

pean symposium on research in computer security. Springer, 173–195.

[65] Mehmet Kuzu, Mohammad Saiful Islam, and Murat Kantarcioglu. 2012. Efficient

similarity search over encrypted data. In 2012 IEEE 28th International Conference

on Data Engineering. IEEE, 1156–1167.

[66] Steven Lambregts, Huanhuan Chen, Jianting Ning, and Kaitai Liang. 2022. VAL:

Volume and Access Pattern Leakage-Abuse Attack with Leaked Documents. In

European Symposium on Research in Computer Security. Springer, 653–676.

[67] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan. 2014. Search

Pattern Leakage in Searchable Encryption: Attacks and New Construction. Inf.

Sci. 265 (may 2014), 176–188. https://doi.org/10.1016/j.ins.2013.11.021

[68] Jacob R Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua

Schiffman. 2013. Shroud: Ensuring Private Access to {Large-Scale} Data in the

Data Center. In 11th USENIX Conference on File and Storage Technologies (FAST

13). 199–213.

[69] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder.

2015. Privacy and access control for outsourced personal records. In 2015 IEEE

Symposium on Security and Privacy. IEEE, 341–358.

[70] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. 2017.

Maliciously secure multi-client ORAM. In International Conference on Applied

Cryptography and Network Security. Springer, 645–664.

[71] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. 2017.

Maliciously secure multi-client ORAM. In International Conference on Applied

Cryptography and Network Security. Springer, 645–664.

[72] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2013. Efficient private

file retrieval by combining ORAM and PIR. NDSS 2013 (2013).

[73] Jonathan Mayer, Patrick Mutchler, and John C Mitchell. 2016. Evaluating the

privacy properties of telephone metadata. Proceedings of the National Academy

of Sciences 113, 20 (2016), 5536–5541.

[74] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and

Raluca Ada Popa. 2018. Oblix: An efficient oblivious search index. In 2018

IEEE Symposium on Security and Privacy (SP). IEEE, 279–296.

[75] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not

Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In 30th

USENIX Security Symposium (USENIX Security 21). USENIX Association, 127–142.

https://www.usenix.org/conference/usenixsecurity21/presentation/oya

[76] Vasilis Pappas, Mariana Raykova, Binh Vo, Steven M Bellovin, and Tal Malkin.

2011. Private search in the real world. In Proceedings of the 27th Annual Computer

Security Applications Conference. 83–92.

[77] Geong Sen Poh, Ji-Jian Chin, Wei-Chuen Yau, Kim-Kwang Raymond Choo, and

Moesfa Soeheila Mohamad. 2017. Searchable symmetric encryption: designs

and challenges. ACM Computing Surveys (CSUR) 50, 3 (2017), 1–37.

[78] Daniel S Roche, Adam Aviv, Seung Geol Choi, and Travis Mayberry. 2017. De-

terministic, stash-free write-only oram. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. 507–521.

[79] Alan Rusbridger. 2013. The Snowden leaks and the public. , 31–34 pages.

[80] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.

2016. Taostore: Overcoming asynchronicity in oblivious data storage. In 2016

IEEE Symposium on Security and Privacy (SP). IEEE, 198–217.

[81] Jacob T Schwartz. 1980. Fast probabilistic algorithms for verification of polyno-

mial identities. Journal of the ACM (JACM) 27, 4 (1980), 701–717.

[82] Zhiwei Shang, Simon Oya, Andreas Peter, and Florian Kerschbaum. 2021. Ob-

fuscated access and search patterns in searchable encryption. arXiv preprint

arXiv:2102.09651 (2021).

[83] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAMwith O((logN) 3) worst-case cost. In International Conference on The Theory

and Application of Cryptology and Information Security. Springer, 197–214.

[84] Dawn Xiaoding Song, D. Wagner, and A. Perrig. 2000. Practical techniques for

searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security and

Privacy. S&P 2000. 44–55. https://doi.org/10.1109/SECPRI.2000.848445

[85] Emil Stefanov and Elaine Shi. 2013. Multi-cloud oblivious storage. In Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security.

247–258.

[86] Emil Stefanov and Elaine Shi. 2013. Multi-cloud oblivious storage. In Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security.

247–258.

[87] Shi-Feng Sun, Ron Steinfeld, Shangqi Lai, Xingliang Yuan, Amin Sakzad,

Joseph K Liu, Surya Nepal, and Dawu Gu. 2021. Practical Non-Interactive

Searchable Encryption with Forward and Backward Privacy.. In NDSS.

[88] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld, Amin Sakzad, Viet

Vo, and Surya Nepal. 2018. Practical backward-secure searchable encryption

from symmetric puncturable encryption. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security. 763–780.

[89] Afonso Tinoco, Sixiang Gao, and Elaine Shi. 2022. EnigMap: Signal Should Use

Oblivious Algorithms for Private Contact Discovery. Cryptology ePrint Archive

(2022).

[90] Shruti Tople, Yaoqi Jia, and Prateek Saxena. 2019. {PRO-ORAM}: Practical
{Read-Only} Oblivious {RAM}. In 22nd International Symposium on Research

in Attacks, Intrusions and Defenses (RAID 2019). 197–211.

[91] Jiafan Wang and Sherman SM Chow. 2022. Omnes pro uno: Practical multi-

writer encrypted database. In USENIX Security.

[92] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of

the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security. 850–861.

[93] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[94] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated garbling

and efficient maliciously secure two-party computation. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security. 21–37.

[95] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-scale secure

multiparty computation. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security. 39–56.

[96] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. 2014. Oblivious data structures. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security.

215–226.

[97] Peter Williams, Radu Sion, and Alin Tomescu. 2012. Privatefs: A parallel obliv-

ious file system. In Proceedings of the 2012 ACM conference on Computer and

communications security. 977–988.

[98] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th

Annual Symposium on Foundations of Computer Science (sfcs 1986). 162–167.

https://doi.org/10.1109/SFCS.1986.25

[99] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your

Queries Are Belong to Us: The Power of File-Injection Attacks on Search-

able Encryption. In 25th USENIX Security Symposium (USENIX Security 16).

USENIX Association, Austin, TX, 707–720. https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/zhang

[100] Richard Zippel. 1979. Probabilistic algorithms for sparse polynomials. In Inter-

national symposium on symbolic and algebraic manipulation. Springer, 216–226.

A OBLIVIOUS TABLE VISUALIZATION
We present a toy example of how column and row accesses in

OTAB are performed in Figure 12. Given a tableM of size 3× 2, the
oblivious table (OTAB) of M is a (bigger) table of size 7 × 3, where
each dimension of M is expanded to O(𝑍) times (where 𝑍 is the

bucket size of the underlying Tree-based ORAM scheme), and the

row and column data of M is assigned to random row and column

locations, respectively, in OTAB. OTAB is augmented by a row

header hr and a column header hc that keep track of the locations

of the original rows and columns ofM in OTAB.

198

https://doi.org/10.3233/JCS-191300
https://doi.org/10.1109/SP40001.2021.00072
https://doi.org/10.1016/j.ins.2013.11.021
https://www.usenix.org/conference/usenixsecurity21/presentation/oya
https://doi.org/10.1109/SECPRI.2000.848445
https://github.com/emp-toolkit
https://doi.org/10.1109/SFCS.1986.25
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/zhang

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

1

2

3

1 2
-

3

-

-

2

-

1

- 2 1

1. ACCESS ROW 1 OF M

Table M

col header hc

row header hr

Interpret OTAB
rows as ORAM tree
(step 12, Fig. 2)

- 2 1

OTAB

-

3

1

-

2

-

-

2. ACCESS COLUMN 2 OF M

Interpret OTAB
columns as ORAM tree

(step 14, Fig. 2)

- 2 1

OTAB

-

3

1

-

2

-

-

-

3

1

-

2

-

-

2 - 1

Read path
(step 18, Fig. 2) Reorder

(steps 29-34, Fig. 2)

Evict
(step 18, Fig. 2)

Retrieved OTAB row
(step 27, Fig. 2)

Original row 1
(step 35, Fig. 2)

hc

hc hr

Read path
(step 18, Fig. 2)

Evict
(step 18, Fig. 2)

row

column

Reorder
(steps 31-34, Fig. 2)

Original col 2
(step 24, Fig. 2)

OTAB

hc

hr

setup
(steps 1-8,
Fig. 2)

Retrieved
OTAB
column (step
27, Fig. 2)

hr

-

3

1

-

2

-

-

Updated hr
(step 22, Fig. 2)

2 - 1Updated hc
(step 26, Fig. 2)

1.i

1.ii

1.iii

1.iv

2.i

2.ii

2.iii2.iv

Figure 12: Toy example of row/column access in OTAB.

To access the first row of the original table M, we first interpret

the rows in OTAB as the logical ORAM tree (step 1.i). We then

execute the Tree-based ORAM access procedure on the interpreted

tree, which incurs the path retrieval (step 1.ii) and eviction subrou-

tines (step 1.iii). After executing the Tree-based ORAM access, we

obtain a row in OTAB containing the elements of the first row ofM
in a permuted order. In this case, the column header hc is needed to
rearrange the permuted elements to obtain the original row (step

1.iv). As some rows in OTAB will be shuffled during the Tree-based

ORAM access, the corresponding values in the row header also

needs to be updated accordingly. We also show in Figure 12 how a

column inM is accessed (steps 2.i – 2.iv) following the same principle

as row access.

B DEFINITIONS
Forward privacy and backward privacy are the standard security

notions in encrypted search schemes. We present the forward and

backward privacy definitions in the context of multi-user as follows.

Let L = {LStp,LSrch,LUpdt} be the set of stateful leakage

functions containing the leakage during setup, search, and up-

date operation, respectively. Let Q be a sequence of all opera-

tions and 𝑡 be the timestamp when an operation occurs. Q records

(𝑡, uid,𝑤) for a search on keyword 𝑤 at time 𝑡 by user uid, and
(𝑡, uid, fid, {(𝑤𝑖 , op𝑖)}𝑛𝑖=1) for an update on document with identi-

fier fid and a set of updated keywords {𝑤𝑖 } at time 𝑡 with corre-

sponding operations {op𝑖 }, where op𝑖 ∈ {𝑎𝑑𝑑, 𝑑𝑒𝑙}, by user uid. In
this setting, we consider each update operation contains all key-

words being added or deleted in the updated document, instead of

individual keyword-document pairs as prior works.

Let sp(𝑤) be the search pattern over keyword 𝑤 consisting of

the timestamps of all search queries on𝑤 performed by some user.

sp(𝑤) = {(𝑡, uid) : (𝑡, uid,𝑤) ∈ 𝑄} (3)

Definition 3 (Forward-privacy). AnL-adaptively-secure encrypted
search is forward-private if the update leakage LUpdt

can be written

as

LUpdt (uid, fid, {𝑤𝑖 , op𝑖 }𝑛𝑖=1) = L
′(uid, fid, {op𝑖 }𝑛𝑖=1)

where L′ is stateless.

Definition 4 (Backward-privacy). Let TimeDB(𝑤) be a function
that returns the list of all timestamp/document-identifier pairs of

keyword 𝑤 that have been added to the database by some user uid
and have not been subsequently deleted by some user uid′ as

TimeDB(𝑤) = {(𝑡, uid, fid) | (𝑡, uid, fid, (𝑤, 𝑎𝑑𝑑)) ∈ 𝑄∧
∀(𝑡 ′, uid′) : (𝑡 ′, uid′, fid, (𝑤,𝑑𝑒𝑙)) ∉ 𝑄}

Let Updates(𝑤) be a function that returns the timestamp of all inser-

tion and deletion operations for𝑤 by some user uid in 𝑄 .

Updates(𝑤) = {𝑡 | (𝑡, uid, fid, (𝑤, 𝑎𝑑𝑑)) ∈ 𝑄 ∨ (𝑡, uid, fid, (𝑤,𝑑𝑒𝑙)) ∈ 𝑄

LetDelHist(𝑤) be a function that returns the history of deleted entries
including which deletion corresponding to which addition.

DelHist(𝑤) = {(𝑡𝑎𝑑𝑑 , 𝑡𝑑𝑒𝑙) | ∃fid : (𝑡𝑎𝑑𝑑 , uid, fid, (𝑤, 𝑎𝑑𝑑)) ∈ 𝑄

∧ (𝑢𝑑𝑒𝑙 , uid, fid, (𝑤,𝑑𝑒𝑙)) ∈ 𝑄}

An L-adaptively-secure encrypted search scheme is backward-

private with different types if the update and search leakage functions

LUdpt
and LSrch

can be written as one of the following cases:

• (Type-I): LUdpt (uid, fid, {𝑤𝑖 , op𝑖 }𝑛𝑖=1) = L
′(uid, {𝑜𝑝𝑖 }𝑛𝑖=1) and

LSrch (uid,𝑤𝑖) = L′′(sp(𝑤𝑖),TimeDB(𝑤𝑖), 𝑎𝑤𝑖)∀𝑖 ∈ [𝑛].
• (Type-II): LUdpt (uid, fid, {𝑤𝑖 , 𝑜𝑝𝑖 }𝑛𝑖=1) = L

′(uid, {𝑤𝑖 , op𝑖 }𝑛𝑖=1)
and LSrch (uid,𝑤𝑖) = L′′(sp(𝑤𝑖),TimeDB(𝑤𝑖),Updates(𝑤𝑖))
∀𝑖 ∈ [𝑛].
• (Type-III): LUdpt (uid, fid, {𝑤𝑖 , op𝑖 }𝑛𝑖=1) = L

′(uid, {𝑤𝑖 , op𝑖 }𝑛𝑖=1)
and LSrch (uid,𝑤) = L′′(sp(𝑤),TimeDB(𝑤),DelHist(𝑤)).

199

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

Setup. On command (𝑠𝑒𝑡𝑢𝑝,DB, 𝑁) , it stores DB.
Data access. On command (𝑎𝑐𝑐𝑒𝑠𝑠, op, id, 𝐵′) , it gets 𝐵 ← DB[id]. If op = update,
it updates the 𝑖-th bit in block DB[id] with 𝑏′𝑖 , where 𝑏′𝑖 ∈ 𝐵′ is the 𝑖-th bit in 𝐵′

such that 𝑏′𝑖 ≠⊥. Else if op = write, it replaces DB[id] ← 𝐵′. Finally, it returns 𝐵.

Figure 13: Ideal functionality FTreeORAM of Tree-ORAM.

Setup. The simulator executes the real TreeORAM.Setup protocol honestly with

a dummy database DB′ (e.g., DB′ = {0}𝑁) and sends 𝑠𝑒𝑡𝑢𝑝 command with Z’s

chosen database to the ideal functionality FTreeORAM .

Data access. The simulator executes the real TreeORAM.Access protocol honestly
on the dummy block identifier id′ (e.g., id′ = 0), dummy block data 𝐵′ (e.g., 𝐵′ = {0}),
and dummy operation op′. The simulator sends 𝑎𝑐𝑐𝑒𝑠𝑠 command with Z’s request

to the ideal functionality FTreeORAM and returns the output of FTreeORAM to Z.

Figure 14: Simulator STreeORAM for ideal functionality FTreeORAM.

where 𝑎𝑤𝑖 is the total number of updates on 𝑤𝑖 , and L′,L′′ are
stateless.

Definition 5 (Search andUpdateObliviousness). AnL-adaptively-
secure encrypted search scheme is search and update oblivious if the

search and update leakage functions LSrch,LUpdt
can be written as

LSrch (uid,𝑤) = L′(uid)

LUpdt (uid, fid, {𝑤𝑖 , op𝑖 }𝑛𝑖=1) = L
′′(uid)

where L′,L′′ are stateless.

C PROOFS
C.1 Proof of Lemma 1

Proof. We construct a simulator SOTAB such that a PPT envi-

ronmentZ cannot distinguish between the real and ideal protocol

execution. The environmentZ selects inputs for the OTAB client

and obtains the corresponding outputs. The environment Z can

corrupt the server storing the oblivious table and takes control over

its action. WhenZ stops, it outputs a bit indicating whetherZ is

interacting with real protocol or simulated protocol. In the simula-

tor SOTAB, it runs a copy of OTAB protocol online and invokes the

Tree-ORAM simulator STreeORAM to simulate the ORAM access.

Figure 13 and Figure 14 present the ideal functionality Foram and the

simulator STreeORAM of Tree-ORAM, respectively. SOTAB relays

the messages between the client, the server, and the environment

Z such thatZ will see the same interface as when interacting with

the real protocol. Figure 16 presents the specification of SOTAB.
To demonstrate that the simulated and real process are indis-

tinguishable, we show that the view of Z in the ideal world is

indistinguishable from its view in the real process. Note that the

view contains the transcript during the protocol execution of the

corrupted server and the input/output of the honest client.

We argue that the view for each operation on the oblivious

table has the exactly same distribution in the real and in the sim-

ulated case: First, in the input phase, the oblivious table being

sent to the server looks uniformly random when it is IND-CPA

encrypted. Second, during each row/column read/write operation,

since OTAB makes use of a secure Tree-ORAM protocol (e.g., [92]),

it generates a set of uniformly random and independent values that

are simulatable by the Tree-ORAM simulator STreeORAM regardless

Setup. On command (𝑠𝑒𝑡𝑢𝑝,T) , where T ∈ F𝑁×𝑀 , it stores T
Row access. On command (𝑟𝑜𝑤_𝑎𝑐𝑐𝑒𝑠𝑠, op, rid, u) , it gets û← T[rid, ∗]. If op =

update, it updates T[rid, 𝑗] ← u[𝑗] if u[𝑗] ≠ ⊥ for 1 ≤ 𝑗 ≤ 𝑁 . Else if op = write,
it replaces T[rid, ∗] ← u. Finally, it returns û.
Column access. On command (𝑐𝑜𝑙_𝑎𝑐𝑐𝑒𝑠𝑠, op, cid, v) , it gets v̂ ← T[∗, cid]. If
op = update, it updates T[𝑗, cid] ← v[𝑗] if v[𝑗] ≠ ⊥ for 1 ≤ 𝑗 ≤ 𝑀 . Else if

op = write, it replaces T[∗, cid] ← v. Finally, it returns v̂.

Figure 15: Ideal functionality FOTAB of oblivious table.

Setup. The simulator executes the real setup protocol honestly with the dummy

table T′ and sends 𝑠𝑒𝑡𝑢𝑝 command to ideal functionality FOTAB .
Row access. The simulator executes the protocol OTAB.Access honestly on the

dummy row identifier rid′, dummy row data u′, and dummy operation op′. To simulate

the inner ORAM access operation, the simulator invokes the Tree-ORAM simulator

STreeORAMwith dummy inputs. The simulator sends 𝑟𝑜𝑤_𝑎𝑐𝑐𝑒𝑠𝑠 command with

Z’s request to the ideal functionality FOTAB and returns the output of FOTAB to Z.

Column access. The simulator executes the protocol OTAB.Access honestly on the

dummy column identifier cid′, dummy column data v′, and dummy operations op′.
To simulate the inner ORAM access operation, the simulator invokes the Tree-ORAM

simulator STreeORAMwith dummy inputs. The simulator sends 𝑐𝑜𝑙𝑢𝑚𝑛_𝑎𝑐𝑐𝑒𝑠𝑠 com-

mand with Z’s request to the ideal functionality FOTAB and returns the output of

FOTAB to Z.

Figure 16: Simulator SOTAB for ideal functionality FOTAB.

Setup. On command (𝑠𝑒𝑡𝑢𝑝, IDX, L) , it stores (IDX, L) .
Keyword Search. On command (𝑠𝑒𝑎𝑟𝑐ℎ, 𝑤, uid) , it returns J = {fid : fid ∈
IDX(𝑤) ∧ L(uid, fid) ∈ {r, rw}}.
Document Update. On command (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡_𝑢𝑝𝑑𝑎𝑡𝑒, fid, uid,w) , it checks if
L(uid, fid) ?

= w. If this holds, it sets IDX(𝑤𝑖) ← IDX(𝑤𝑖) ∪ {fid} if 𝑤𝑖 is added
keyword, otherwise IDX(𝑤𝑖) ← IDX(𝑤𝑖) \ {fid} if 𝑤𝑖 is deleted keyword for each

𝑤𝑖 ∈ w.

Permission Update. On command (𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑢𝑝𝑑𝑎𝑡𝑒, fid, uid, 𝑝) , it sets

L(uid, fid) ← 𝑝 .

Figure 17: Ideal functionality FMSrch of our MAPLE platform.

of which row/column is being accessed. Specifically, these values

include the uniformly random logical paths and the encrypted

rows/columns.

Now, if the real or simulated protocol proceeds to the last step

in each command, the only new data thatZ sees is the output col-

umn/row v requested. In the simulation, v is obviously the correct

column/row requested byZ since it was read directly from the ideal

functionality. To finish the proof, we show that the same happens in

the real process with overwhelming probability. In other words, the

event that the real protocol terminates but the output is not correct

occurs with negligible probability. As discussed, oblivious table em-

ploys Circuit-ORAM to access the requested row/column, and thus

the integrity depends on the verifiability of the back-end ORAM. In

Circuit-ORAM, verifiability is achieved with authenticated encryp-

tion, wherein the integrity of all rows/columns being transmitted

to the honest client during protocol execution is checked. □

C.2 Proof of Theorem 1
Proof. We construct a simulator SMAPLE such that a PPT envi-

ronmentZ cannot distinguish between the real and ideal protocol

execution. The environmentZ selects inputs for the honest parties

(which is the MAPLE user and some of the servers in the proxy)

and obtains the corresponding outputs. The environment Z can

200

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

Input. The simulator executes the protocolMAPLE.Setup honestly over the dummy

index IDX′ of size 𝑘 × 𝑁 and dummy access control list L′ of size 𝑡 × 𝑁 and sends

𝑠𝑒𝑡𝑢𝑝 command to the ideal functionality F𝑀𝐴𝑃𝐿𝐸 .
Keyword Search. The simulator executes the protocolMAPLE.KSearch honestly

on the dummy keyword 𝑤′ and the dummy user identifier uid′. The simulator then

sends 𝑘𝑒𝑦𝑤𝑜𝑟𝑑_𝑠𝑒𝑎𝑟𝑐ℎ command to the ideal functionality F𝑀𝐴𝑃𝐿𝐸 , and returns

the output of FOTAB .
Document Update. The simulator executes the protocolMAPLE.DUpdate honestly
on the dummy document identifier fid′, the dummy user identifier uid′ and the dummy

updated keywords w′. The simulator sends 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡_𝑢𝑝𝑑𝑎𝑡𝑒 command to the

ideal functionality FMSrch .

PermissionUpdate. The simulator executes the protocolMAPLE.PUpdate honestly
on the dummy document identifier fid′, the dummy user identifier uid′ and the

dummy permission 𝑝′. The simulator sends 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑢𝑝𝑑𝑎𝑡𝑒 command to the

ideal functionality FMSrch .

Figure 18: Simulator SMAPLE for FMSrch.

corrupt up to 𝑡 servers in the proxy and takes control over their

action. When Z stops, it outputs a bit indicating whether Z is

interacting with real protocol or simulated protocol. The simulator

runs a copy ofMAPLE protocol online. It relays the messages be-

tween the parties (client and server) andZ such thatZ will see the

same interface as when interacting with the real protocol. Figure 18

presents the specification of SMAPLE.

We show that the view ofZ in the ideal world is indistinguish-

able from the view in the real process. The view contains the tran-

script of the protocol execution of the corrupted servers and the

input/output of the honest user. We argue that the view for each

operation has the exactly same distribution in the real and in the

simulated case: First, in the setup phase, the search index and the ac-

cess control as well as their auxiliary components (e.g., row/column

header and permutation matrix) always look uniformly random

due to secret sharing invoked in Πmpc .Input(·) protocol. Second,
during each keyword search or document update operation, due to

the security of oblivious table, the honest parties will always send

a set of uniformly random and independent values regardless of

what keyword/document is being search/updated. Specifically, in

the keyword search, the proxy emulates oblivious accesses over the

column dimension of the oblivious tables representing the index

and access control, and then performs exclusive-AND operations

to filter unauthorized documents and obtain the final search results.

As shown in §5.3 and §5.4.2, all these processings are realized with

MPC boolean operation techniques in MAPLE, which were proven

to yield random and independent values during protocol execution

[95]. In the document update, the proxy performs matrix multipli-

cation for keyword permutation followed by emulating oblivious

table accesses on the search index and the access control, all of

which are realized by MPC boolean protocols that yield uniformly

and independent values during protocol execution.

Now, if the real or simulated protocol proceeds to the last step

in each command, the only new data thatZ sees is the output of

the search result D. In the simulation, D is obviously the correct

column/row data requested by Z since it was read directly from

the ideal functionality. We show that the same happens in the real

process with overwhelming probability. In other words, the event

that the real protocol terminates but the output is not correct occurs

with negligible probability.

In our real protocol, the integrity of the search result depends on

four factors: (i) the integrity of the MPC input protocol to distribute

the search request to the proxy, (iii) the integrity of MPC compu-

tation during search operation at the proxy, (ii) the integrity of

previous document update operations (if any), and (iv) the integrity

of MPC output protocol. Since MAPLE harnesses authenticated

MPC, the integrity of MPC computation during search and update

is achieved. It remains to show that the MPC input and output pro-

tocols offer integrity for the values being transmitted to or received

from the proxy. We can see that Πmpc .Input(·) protocol indeed re-

lies on Πmpc .Output(·) protocol to broadcast a reliable randomness

for the user to distribute the masked secrets to the proxy. Thus, as

long as Πmpc .Output(·) protocol offers integrity with overwhelm-

ing probability, the integrity of the search protocol in our scheme

will be achieved. We can see that Πmpc .Output(·) protocol relies
on probabilistic polynomial identity testing technique to check the

integrity of secret values being privately opened to the honest user

from their shares. In this technique, the honest user requests the

proxy to evaluate an 𝑛-degree random polynomial representing

share of 𝑛 secrets revealed to the user at a random evaluation point.

On the other hand, the honest user herself evaluates another 𝑛-

degree polynomial representing 𝑛 secrets opened by the proxy at

the same evaluation point. Due to Schwartz-Zippel lemma [81, 100],

the probability these two polynomials are different but their evalu-

ation is the same is 𝑛/|F|. This implies the secrets revealed to the

honest user are consistent with their authenticated shares at the

proxy with overwhelming probability, thereby enabling integrity

in our search protocol. □

D MPC PROTOCOLS
D.1 Secure Input/Output for MPC Proxy
We present the secure input and output protocols proposed in [27]

for the user to interact with the MPC proxy. The main idea is to

rely on the polynomial identity testing applied in zero-knowledge

proofs as well as random masking techniques using correlated

randomness. We denote J𝑥K𝑖 as the share of the secret 𝑥 to party

P𝑖 .

• (𝑣1, . . . , 𝑣𝑛) ← Πmpc .Output(⟨𝑣1⟩, . . . , ⟨𝑣𝑛⟩): Given 𝑛 authenti-

cated shares ⟨𝑣1⟩, . . . , ⟨𝑣𝑛⟩ from the MPC proxy, each sever S𝑖
in the proxy individually samples a random J𝑟K𝑖

$← F and sends

it along with (J𝑣1K𝑖 , . . . , J𝑣𝑛K𝑖) to the user. The user computes

𝑣 ′ ← ∑
𝑖J𝑣K𝑖 and 𝑟 ′ ←

∑
𝑖J𝑟K𝑖 . The user forms a polynomial

𝑓 ′(𝑋) = 𝑟 ′ + ∑𝑛𝑖=1 𝑣 ′𝑖 · 𝑋 𝑖 , while the MPC proxy evaluates the

polynomial ⟨𝑓 ′(𝛼)⟩ = ⟨𝑟 ⟩+∑𝑛𝑖=1⟨𝑣⟩𝑖 ·𝑋 𝑖 at a random point𝛼
$← F

chosen by the user. The MPC proxy publicly opens 𝑓 (𝛼) (with
verifiability by the underlying MPC protocol). If 𝑓 (𝛼) = 𝑓 ′(𝛼),
the user outputs and accepts (𝑣 ′

1
, . . . , 𝑣 ′𝑛) as the correct secrets

corresponding to ⟨𝑣1⟩, . . . , ⟨𝑣𝑛⟩. Otherwise, the user aborts.
• (⟨𝑣⟩1, . . . , ⟨𝑣⟩𝑛) ← Πmpc .Input(𝑣1, . . . , 𝑣𝑛): Given 𝑛 secrets (𝑣1,
. . . , 𝑣𝑛) ∈ F𝑛 from the user, the user first receives𝑛 random values

from theMPCproxy by executing (𝑟1, . . . , 𝑟𝑛) ← Πmpc .Output(⟨𝑟1⟩,
. . . , ⟨𝑟𝑛⟩), where ⟨𝑟𝑖 ⟩ is the authenticated share of the random 𝑟𝑖
generated during preprocessing. The user broadcasts 𝑣 ′

𝑖
← 𝑣𝑖 −𝑟𝑖

to the MPC proxy, which, in turn, obtains the authenticated

shares by computing ⟨𝑣𝑖 ⟩ ← 𝑣 ′
𝑖
+ ⟨𝑟𝑖 ⟩ for 𝑖 ∈ [𝑛].

201

Proceedings on Privacy Enhancing Technologies 2023(4) Tung Le and Thang Hoang

⟨𝑏 ⟩ ← Πmpc .cmp(⟨𝑥 ⟩, ⟨𝑦⟩)
14: Parse ⟨𝑥 ⟩ as ⟨𝑥0𝑥1 . . . 𝑥𝑛−1 ⟩, ⟨𝑦⟩ as ⟨𝑦0𝑦1 . . . 𝑦𝑛−1 ⟩ ⊲ binary representation

15: for 𝑖 = 0 to 𝑛 − 1 do
16: ⟨𝑐𝑖 ⟩ ← ⟨𝑥𝑖 ⟩ ⊞ ⟨𝑦𝑖 ⟩
17: ⟨𝑏 ⟩ ← (1 ⊞ ⟨𝑐0 ⟩) ⊠ (1 ⊞ ⟨𝑐1 ⟩) ⊠ . . . (1 ⊞ ⟨𝑐𝑛−1 ⟩)
18: return ⟨𝑏 ⟩

⟨𝑐 ⟩ ← Πmpc .sel(⟨𝑏 ⟩, ⟨𝑥 ⟩, ⟨𝑦⟩) :
1: Parse ⟨𝑥 ⟩ as ⟨𝑥0𝑥1 . . . 𝑥𝑛−1 ⟩, ⟨𝑦⟩ as ⟨𝑦0𝑦1 . . . 𝑦𝑛−1 ⟩ ⊲ binary representation

2: for 𝑖 = 0 to 𝑛 − 1 do
3: ⟨𝑧𝑖 ⟩ ←

((
⟨𝑥𝑖 ⟩ ⊞ ⟨𝑦𝑖 ⟩

)
⊠ ⟨𝑏 ⟩

)
⊞ ⟨𝑥𝑖 ⟩

4: return ⟨𝑧 ⟩ ← ⟨𝑧0𝑧1 . . . 𝑧𝑛−1 ⟩

⟨𝑏 ⟩ ← Πmpc .gt(⟨𝑥 ⟩, ⟨𝑦⟩)
1: Parse ⟨𝑥 ⟩ as ⟨𝑥0𝑥1 . . . 𝑥𝑛−1 ⟩, ⟨𝑦⟩ as ⟨𝑦0𝑦1 . . . 𝑦𝑛−1 ⟩ ⊲ binary representation

2: for 𝑖 = 0 to 𝑛 − 1 do
3: ⟨𝑐𝑖 ⟩ ← ⟨𝑥𝑖 ⟩ ⊠ (1 ⊞ ⟨𝑦𝑖 ⟩)
4: ⟨𝑏 ⟩ ← 1 ⊞ (1 ⊞ ⟨𝑐0 ⟩) ⊠ (1 ⊞ ⟨𝑐1 ⟩) ⊠ · · · ⊠ (1 ⊞ ⟨𝑐𝑛−1 ⟩)
5: return ⟨𝑏 ⟩

Figure 19: Secure boolean operations.

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

#keywords (×102)

F
r
a
c
t
i
o
n
o
f
d
o
c
u
m
e
n
t
s
(
%
)

Figure 20: Keyword distribution of our enwiki subdataset.

Note that the above interactive input/output protocols can be made

non-interactive via Fiat-Shamir transformation [40], in which the

user’s random challenge can be derived directly by hashing the

current protocol transcripts.

D.2 Secure Boolean Computation
We present the algorithmic details of some secure boolean opera-

tions that are used in our platform in Figure 19. Note that in binary

field, ⊠ and ⊞ are equivalent to secure bit-wise AND and XOR

operations, respectively.

E ADDITIONAL EXPERIMENTS
Figure 20 presents the keyword distribution of our testing set, where

the 𝑦-axis shows the proportion of articles that have less than a

number of keywords on the 𝑥-axis.

E.1 Storage Cost
We report the storage cost of MAPLE as follows. OTAB incurs 4×
expansion to the original tables (search index, access control) to

support both oblivious search and update efficiently. Moreover,

for malicious security, each bit of OTAB is attached with a MAC

component consisting of the share of the MAC key and MAC value.

This results in the total size of 18.2 GB to 2.2 TB to store all the

necessary data structures in MAPLE. Since this size is large, we

2 3 4 5 6

0

5

10

15

20

keywords

L
a
t
e
n
c
y
(
s
)

DURASIFT

MAPLE

Figure 21: Multi-keyword search delay (64K documents).

applied 𝑘-top caching strategy to partially cache them on memory

for efficient processing.

MAC components are the most dominant factor in the total stor-

age overhead. Therefore, in our future work, we will explore several

strategies to reduce the size of the MAC components such as aggre-

gate MAC [63]. We will investigate how to evaluate such aggregate

MAC with MPC (similar to running encryption/decryption circuits

in 2PC in [60]). We expect this strategy will decrease the storage

overhead down to 9MB-8.5 GB (259×-2063× smaller) at the cost of

incurring 33.7%–47.9% more overhead in the search. We leave this

investigation as our future work.

E.2 Multi-keyword Search
We compared the performance of our scheme in handling multi-

keyword search with DURASIFT [39]. Figure 21 presents the end-

to-end search delay of our scheme and DURASIFT for 𝑛-keyword

queries where 𝑛 ∈ [6]. In this experiment, we repeat the single-

keyword search for each term in the multi-keyword query and then

perform corresponding secure boolean operations to obtain final

result. MAPLE takes about 1.2s to process a boolean query with two

keywords compared with 4.9s by DURASIFT. The search delay of

both schemes grows almost linearly with the number of keywords

in the search query but by varying degrees. With six terms in a

query, MAPLE takes roughly 3.7s while DURASIFT takes around

15.8s. We can see that MAPLE is more efficient than DURASIFT

(i.e., 3.8×–4.3× faster) in all cases mostly due to the use of Bloom

filter for compact keyword representation. Moreover, by using

oblivious table to instantiate the search index, our search time is

only logarithmic to the small size of keyword representation (i.e.,

16K), whereas DURASIFT is linear to the large size of the keyword

universe (i.e., 1.9M).

E.3 Preprocessing Cost
We present the preprocessing costs to generate necessary materials

in the offline phase that will be used in the online keyword search

and document update evaluation in Figure 22 and Figure 23. Specif-

ically, Figure 22 shows the number of AND gates needed for each

search and update, which dominates most of the preprocessing cost.

Figure 23 illustrates the corresponding latency to prepare circuits

for AGC evaluation in both search and update in the setting of

two servers. For the number of documents ranging from 2
10

to

2
20
, the number of AND gates for each search grows from 2M to

2B, thereby the latency of preprocessing for each search operation

increases from 8.4𝑠 to 832.3𝑠 , respectively. Because AGC circuits

202

MAPLE: A Metadata-Hiding Policy-Controllable Encrypted Search Platform with Minimal Trust Proceedings on Privacy Enhancing Technologies 2023(4)

2
10

2
12

2
14

2
16

2
18

2
20

10
6

10
7

10
8

10
9

10
10

documents

#
A
N
D
s
(
l
o
g
)

Preprocessing

(a) Keyword search

2
10

2
12

2
14

2
16

2
18

2
20

3

4

5

6

7
·106

documents

#
A
N
D
s

Preprocessing

(b) Document update

Figure 22: The number of AND gates.

2
10

2
12

2
14

2
16

2
18

2
20

10
1

10
2

10
3

10
4

documents

T
i
m
e
(
s
)
(
l
o
g
)

Preprocessing

(a) Keyword search

2
10

2
12

2
14

2
16

2
18

2
20

2

4

6

8

10

documents

T
i
m
e
(
s
)

Preprocessing

(b) Document update

Figure 23: Preprocessing time.

in update are smaller than circuits in search, and each update just

requires one OTAB access operation instead of 𝑘 = 7 OTAB access

operations on the search index as keyword search, the offline phase

for an update prepares a significantly smaller number of AND gates

than for a search, which grows from 3.3M to 6.6M, corresponding

to the latency rising from 3.4𝑠 to 6.7𝑠 for the number of documents

increasing from 1K to 1M, respectively. As the preprocessing phase

is independent with search and update queries, the precomputed

triples of AGC can be stored on storage device (e.g., SSD), and later

reloaded to the RAM memory for evaluating in the online phase.

203

	Abstract
	1 Introduction
	1.1 Our Results and Contributions
	1.2 Technical Highlights
	1.3 Related Work

	2 Preliminaries
	2.1 Secure Multi-Party Computation
	2.2 Oblivious RAM

	3 Model
	4 Oblivious Table
	5 Our MAPLE Platform
	5.1 Overview
	5.2 Reducing Index Size
	5.3 Emulating Oblivious Table via MPC Proxy
	5.4 Protocol Details
	5.5 Cost Analysis

	6 Security Analysis
	7 Experimental Evaluation
	7.1 Implementation and Configuration
	7.2 Parameters and Counterparts Selection
	7.3 Overall Results
	7.4 Cost Breakdown
	7.5 Comparison with ORAM

	8 Conclusion
	Acknowledgments
	References
	A Oblivious Table Visualization
	B Definitions
	C Proofs
	C.1 Proof of Lemma 1
	C.2 Proof of Theorem 1

	D MPC Protocols
	D.1 Secure Input/Output for MPC Proxy
	D.2 Secure Boolean Computation

	E Additional Experiments
	E.1 Storage Cost
	E.2 Multi-keyword Search
	E.3 Preprocessing Cost

