
Trifecta: Faster High-Throughput Three-Party Computation over
WAN Using Multi-Fan-In Logic Gates
Sina Faraji

University of Waterloo

sina.faraji@uwaterloo.ca

Florian Kerschbaum

University of Waterloo

florian.kerschbaum@uwaterloo.ca

ABSTRACT
Multi-party computation (MPC) has been a very active area of

research, and recent industrial deployments exist. Practical MPC is

currently limited to low-latency, high-throughput network setups,

i.e., local-area networks (LAN). However, many use cases require the

participation of different entities located in different data centers,

i.e., communication over wide-area networks (WAN). Although,

constant-round MPC exists, it has very high communication cost.

In this paper we investigate the reduction of the round complexity

of secret-shared based multi-party computation. We propose a new

three-party computation protocol that allows to compute multi-fan-

in gates in one round without any precomputation. Our protocol

outperforms related work, including constant-round protocols, over

WANs. For example, we improve throughput of AES-128 over WAN

by a factor of more than 2.2× compared to related work.

KEYWORDS
SecureMulti-Party Computation,Binary Circuits,Multi-Fan-InGates

1 INTRODUCTION
Secure (multi-party) computations (MPC) enable the privacy-pre-

serving processing of joint data. In an MPC, two or more parties

jointly compute a function with the condition that other than the

output, no party learns anything about the input of other parties.

In recent years, many theoretical MPC constructions have found

applications in practice. For example, Google and Mastercard have

deployed a two-party computation for ad conversions [28, 51] and

Meta has released the CrypTen toolkit for machine learning in

multi-party computations [32].

There are two fundamental approaches to secure multi-party

computation. In the first approach, initially proposed by Yao in

his seminal work [49], the parties use a garbled Boolean circuit to

evaluate the function in a single round of communication. In the

second, the parties secret-share their inputs among each other and

compute the circuit in multiple rounds. Although constant round

protocols like the Yao’s protocol [49] for 2-party and Beaver et al.’s

protocol [4] for multi-party computation are assumed to perform

better over high latency networks, the communication overhead of

exchanging garbled circuits in these protocols significantly impacts

their throughput. In contrast, secret-shared based protocols have

lightweight communication cost and can be highly parallelized.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(4), 224–237
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0107

In recent years, there has been increasing research on multi-

party computation based on secret-sharing. The main bottleneck

in the performance of these protocols is computing arithmetic

multiplication and/or Boolean AND gates as it requires the parties

to communicate with each other. In the case of 2-party computation,

Beaver [3] proposed to divide the computation into a pre-processing

phase and an online phase. In the pre-processing phase, the parties

generate so called multiplication triples to be consumed in the

online phase. However, the pre-processing phase involves heavy

cryptographic operations such as oblivious transfer (OT) [40] or

homomorphic encryption (HE) [16] to generate the multiplication

triples which limits the overall performance of the protocol. It is

also not always possible for the parties to be present prior to the

execution of the protocol such as in ad-hoc applications.

To avoid such a computationally heavy pre-processing, many

protocols have been proposed for 3-party computation. The proto-

col by Araki et al. [1] leverages a replicated secret-sharing scheme

and only requires 1 bit of communication per AND gate per party

and uses only simple field operations in the semi-honest security

model. The semi-honest protocol version of ASTRA [12] further

improves throughput with total 2 bits of communication necessary

per AND gate (less than 1 bit per party) in the online phase. But

there is no publicly available implementation to replicate their re-

sults and compare to. Other protocols exist [13, 15, 20, 33, 43] that

extend recent secret-shared based computation to the malicious

security model. However, semi-honest majority security has been

deployed by many in practice [7, 28, 51] and is sufficient wherever

the parties are unlikely to be malicious but want to keep their data

private. Moreover, as Goyal and Song [24] show, malicious security

comes for free in honest-majority MPC.

In this paper we investigate the reduction of the round com-

plexity of secret-shared based multi-party computation of circuits

composed of binary gates in the semi-honest model. We propose

a new multi-party computation protocol for three parties (3PC)

with an honest majority that a) has a communication cost of 1

bit per party per 2-fan-in AND gates and b) allows to compute

multi-fan-in gates in one round, all without any pre-processing.

For 𝑙-fan-in gates our protocol’s communication cost is 2
𝑙 − 𝑙 − 1

(parties P1 and P2) or 2 (party P3) bits. However, any 𝑙-fan-in gate

can replace up to 𝑙 − 1 2-fan-in AND gates. Previous proposals for

two-party protocols supporting multi-fan-in gates [41, 42] exists

but they require function-dependent pre-processing unlike our ap-

proach (no pre-processing). This limitation is inherent to the nature

of two-party protocols. Any two-party protocol based on secret

shares necessarily requires a pre-processing phase using public-

key cryptography, whereas multi-party protocols can be based on

information-theoretic assumptions alone.

224

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0107

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates Proceedings on Privacy Enhancing Technologies 2023(4)

To take advantage of the improved performance of our multi-

party computation protocol, we design improved circuits that use

multi-fan-in AND gates. Previous works such as [11, 47] aim to

develop compilers or logic synthesis toolboxes that output Boolean

circuits with lower multiplicative depth tailored toward multi-party

applications. The multiplicative depth of the circuit is especially

important for secret-shared based multi-party computation as each

level of the circuit adds a round trip time (RTT) latency to the run-

ning time of the protocol. Although, these solutions are automated,

we found manual design a better approach to build circuits with

multi-fan-in AND gates, since it provides us with more flexibil-

ity to choose the optimal fan-in count resulting in the shallowest

construction. Other works that have considered multi-fan-in AND

gates such as [41, 42] follow the same line. However, in both the

fan-in count is limited to 4 due to the limitations of the underlying

protocol whereas we allow for upto 8 fan-in AND gates. In par-

ticular, we design a new multi-fan-in adder based on Sklansky’s

design [25] which reduces multiplicative depth of adding two 64-bit

numbers from 7 up to 3 (Section 4). We also design a new multi-

fan-in multiplier based on Wallace’s design [48] which reduces the

multiplicative depth of multiplying two 64-bit numbers from 18 up

to 8. Finally, we build a circuit for the comparison functionality for

which the multi-fan-in gates are a natural choice (Section 4) and

reduce the multiplicative depth of the circuit comparing two 64-bit

numbers from 7 to 3. The comparison circuit is especially useful

in multi-party computation where it finds many applications in

sorting [27], PSI [45], auctions [7] and Privacy Preserving Machine

Learning (PPML) [38, 39]. We chose to implement all our functions

using binary gates, since it avoids share conversions. In hybrid

protocols that use both binary and arithmetic sharing, a conversion

from arithmetic to binary (and back) is often needed before (and

after) comparison, because the comparison is best performed over

binary circuits. Conversions between arithmetic and binary shares

are costly and in many cases cause loss of precision [39] and limit

the number of sequential operations that can be performed. For

example, both [38, 39] introduce truncation algorithms that require

pre-processing and [12] keep their circuits to only one level of

multiplication.

Our protocol remains efficient especially over WAN. For the

common benchmark of computing AES cipher blocks, our proto-

col is the first to achieve sub-second latency over WAN in our

setup for all key sizes. We implement our protocol in the MP-SPDZ

framework [29] and experimentally compare it to the protocol by

Araki et al. [1], Beaver et al.’s technique [4] using replicated secret

sharing (as Araki et al. use) [31] and the online phase of ABY2

[42]. The online phase of the two-party protocol ABY2 requires

no public-key cryptographic primitives similar to 3PC. Our proto-

col outperforms these protocols in simulated and real WANs. We

use different Amazon data centers connected over the Internet as

the real WAN. We improve throughput of AES-128 by a factor of

more than 2.2× compared to the best competitor. Our protocol is

particularly efficient in case of a real WAN, since it has asymmetric

communication allowing a high-latency connection for one party.

This leads to much more efficient protocols on these (real) WANs.

In summary, we contribute

• A new honest-majority three-party multi-party computa-

tion protocol secure in the semi-honest model that allows

to compute multi-fan-in AND gates in one round without

precomputation (Section 3)

• New designs of multi-fan-in circuits for addition, multiplica-

tion and comparison (Section 4)

• An experimental evaluation of our protocol in the MP-SPDZ

framework comparing it to related work [1, 4, 42] (Section

5). We show our protocol outperforms both garbled circuit

[4] and secret-shared based [1] protocols with similar setup

as ours in running-time and throughput over WAN for the

common benchmark of AES. (Section 5)

2 PRELIMINARIES
In this section, we describe our parameters, notation, secret sharing

scheme, our correlated randomness setup and the message passing

technique of our framework.

2.1 Notation
In our protocol, we have three parties P = {𝑃1, 𝑃2, 𝑃3} which are

connected by standard bidirectional, secure and authenticated chan-

nels e.g. via TLS over TCP/IP. Let 𝑃𝑖±1 refer to the next (+) or previ-
ous (-) party with wrap-around, i.e., 𝑃3+1 is 𝑃1 and 𝑃1−1 is 𝑃3.

We work over the ring Z2𝑛 . We present protocols for 𝑛 = 1, i.e.,

bits, but it is possible to extend our protocols to 𝑛 > 1. We use 𝜅 to

refer to the computational security parameter.

2.2 Correlated Randomness
Our protocol relies on the fact that each pair of parties {𝑃𝑖 , 𝑃𝑖+1}
can obtain a fresh random element 𝑟 on demand, without any in-

teraction beyond a short initial setup.

To enable this, let 𝐹 : {0, 1}𝜅 × {0, 1}𝜅 −→ {0, 1}𝑛 be a pseudo-

random function (PRF), mapping strings into the ring Z2𝑛 . The
function 𝐹 can be instantiated, for instance, usingAES in the counter

mode.

Preprocessing:

(1) Init: Each party 𝑃𝑖
• Samples 𝑆𝑖,𝑖−1, 𝑆𝑖,𝑖+1 ∈ {0, 1}𝜅
• Sends 𝑆𝑖,𝑖−1 to 𝑃𝑖−1 and 𝑆𝑖,𝑖+1 to 𝑃𝑖+1.

(2) Setup: Each party 𝑃𝑖
• Sets R𝑖−1 (𝑥) = F𝑆𝑖+1,𝑖 (𝑥) ⊕ F𝑆𝑖,𝑖+1 (𝑥)
• Sets R𝑖+1 (𝑥) = F𝑆𝑖−1,𝑖 (𝑥) ⊕ F𝑆𝑖,𝑖−1 (𝑥)

Online:
(3) GenNextRandom: Parties 𝑃𝑖 and 𝑃 𝑗

• Party 𝑃𝑖 computes 𝑟𝑖, 𝑗 = R𝑖−1 (𝑖𝑑𝑖, 𝑗)
• Party 𝑃 𝑗 computes 𝑟𝑖, 𝑗 = R𝑗+1 (𝑖𝑑𝑖, 𝑗)
(without loss of generality 𝑗 = 𝑖 + 1)

Figure 1: Correlated randomness functionality

Figure 1 shows how the parties interact in the preprocessing

phase to share random seeds for the PRFs. During the online phase,

parties (𝑃𝑖 , 𝑃 𝑗) call GenNextRandom to obtain the random value

225

Proceedings on Privacy Enhancing Technologies 2023(4) Faraji and Kerschbaum

𝑟𝑖, 𝑗 = 𝑟 𝑗,𝑖 . It is important to note that party 𝑃𝑘 is oblivious to the

value 𝑟𝑖, 𝑗 .

We remark that by using a pseudo-random function, we can only

provide security against computationally bounded adversaries and

hence our overall protocol is computationally secure.

2.3 Message Masking
We use the correlated randomness from Section 2.2 to mask the

messages passed between the parties. Each party 𝑃𝑖 runs the func-

tionality Preprocessing twice to obtain two distinct pairs of corre-

lated PRFs (𝑅𝑖−1, 𝑅𝑖+1) and (𝑅′
𝑖−1, 𝑅

′
𝑖+1) which we use to define the

masking functions:

𝑀𝑖→𝑖+1 = 𝑅𝑖+1

𝑀𝑖→𝑖−1 = 𝑅′
𝑖−1

𝑀𝑖+1→𝑖−1 = 𝑅𝑖−1

𝑀𝑖−1→𝑖+1 = 𝑅′
𝑖+1

(1)

Mask: To send a value 𝑣 from 𝑃𝑖 to 𝑃 𝑗

(1) 𝑃𝑖 invokes𝑀𝑖→𝑗 to get𝑚𝑖→𝑗 .

(2) 𝑃𝑖 computes 𝑐 = 𝑣 +𝑚𝑖→𝑗 and sends it to 𝑃 𝑗 .

Figure 2: Message passing with correlated randomness

As shown in Figure 2, for each interaction between the pair of

parties (𝑃𝑖 , 𝑃 𝑗), the sender 𝑃𝑖 masks its message 𝑣 with the value

𝑚𝑖→𝑗 before sending it to 𝑃 𝑗 . We remark that the other party 𝑃𝑘
also knows the mask𝑚𝑖→𝑗 due to the properties of the correlated

randomness setup and hence the value 𝑣 is now additively secret-

shared between 𝑃 𝑗 and 𝑃𝑘 .

2.4 Secret Sharing
Wedefine a 2-out-of-3 secret sharing scheme, denoted by𝜋3

2
-sharing

as follows. In order to share a secret 𝑥 ∈ Z2𝑛 , the dealer samples

two random elements 𝛼, 𝛽 ∈ 𝑍2𝑛 and distributes the shares such

that:

• 𝑃1’s share is the pair (𝑥 + 𝛼, 𝛽).
• 𝑃2’s share is the pair (𝑥 + 𝛽, 𝛼).
• 𝑃3’s share is the pair (𝛼, 𝛽).

Notice that any two shares suffice to recover 𝑥 . . Table 1 sum-

marizes the individual shares of the servers for a secret 𝑥 and the

necessary PRFs obtained during the preprocessing phase.

| 𝜋3
2
-sharing | Rand | Mask

𝑃1 | (𝑥 + 𝛼, 𝛽) | 𝑅3, 𝑅2 |𝑀1→2, 𝑀1→3, 𝑀2→3, 𝑀3→2

𝑃2 | (𝑥 + 𝛽, 𝛼) | 𝑅1, 𝑅3 |𝑀2→3, 𝑀2→1, 𝑀3→1, 𝑀1→3

𝑃3 | (𝛼, 𝛽) | 𝑅3, 𝑅1 |𝑀3→1, 𝑀3→2, 𝑀1→2, 𝑀2→1

Table 1: Different shares and PRFs held by the parties

We use the following Lemma in the security proof which is

straight-forward to see.

Lemma 2.1. For any two values 𝑥1, 𝑥2 ∈ Z2𝑛 , and for any 𝑖 ∈
{1, 2, 3} the distribution over 𝑃𝑖 ’s share of 𝑥1 is identical to the distri-
bution over 𝑃𝑖 ’s share of 𝑥2.

3 OUR PROTOCOL
In this section, we describe our protocol for three-party compu-

tation. Our protocol works for arithmetic circuits over the ring

Z2𝑛 with Boolean circuits being a special case (𝑛 = 1). The main

advantage of our protocol over related work [1, 12, 41, 42] is its

ability to compute multi-input multiplication gates (multi-fan-in

AND gates in the Boolean case) for 3-party computation in one

round of communication without any precomputation.

3.1 Boolean Circuits
In order to simplify the illustration, we start by describing the

protocol for the special case of Boolean circuits with AND and XOR

gates. We assume three parties {𝑃1, 𝑃2, 𝑃3} that have correlated

randomness setup as described in Section 2.2 and use the message

passing technique as described in Section 2.3.

3.1.1 XOR (addition) gates. Let (𝑥1+𝛼1, 𝛽1), (𝑥1+𝛽1, 𝛼1), (𝛼1, 𝛽1)
be a secret sharing of 𝑥1, and (𝑥2+𝛼2, 𝛽2), (𝑥2+𝛽2, 𝛼2), (𝛼2, 𝛽2) be a
secret sharing of 𝑥2. In order to compute a secret sharing of 𝑥1 + 𝑥2,
each party locally computes the addition of its corresponding shares

(no communication needed):

• 𝑃1 computes 𝑥1 + 𝛼1 + 𝑥2 + 𝛼2 and 𝛽1 + 𝛽2 and outputs(
(𝑥1 + 𝑥2) + (𝛼1 + 𝛼2), (𝛽1 + 𝛽2)

)
• 𝑃2 computes 𝑥1 + 𝛽1 + 𝑥2 + 𝛽2 and 𝛼1 + 𝛼2 and outputs(

(𝑥1 + 𝑥2) + (𝛽1 + 𝛽2), (𝛼1 + 𝛼2)
)

• 𝑃3 computes 𝛼1 + 𝛼2 and 𝛽1 + 𝛽2 and outputs(
(𝛼1 + 𝛼2), (𝛽1 + 𝛽2)

)
It is straight-forward to verify that the above is a valid 𝜋3

2
-sharing

of 𝑥1 + 𝑥2.

3.1.2 AND (multiplication) gates. We begin by describing the

protocol for computing a 2-fan-in AND gate. This requires each

party to send a single bit, which seems to be the optimal achievable

bandwidth in the information-theoretic, three-party setting [1]

without preprocessing. Let 𝑥1 and 𝑥2 be secret-shared among the

parties as before.

(1) Step 1 - Compute (3,3)-sharing:
• 𝑃1 computes 𝑣1 = (𝑥1 + 𝛼1) (𝑥2 + 𝛼2).
• 𝑃2 computes 𝑣2 = (𝑥1 + 𝛽1)𝛼2 + (𝑥2 + 𝛽2)𝛼1.
• 𝑃3 computes 𝑣3 = 𝛼1𝛽1 + 𝛼2𝛽2 + 𝛼1𝛼2.

We observe that (𝑣1, 𝑣2, 𝑣3) constitute a (3, 3)−sharing of 𝑡 = 𝑥1𝑥2.

However, to proceed further in the protocols, we need to generate

a 𝜋3
2
-sharing of 𝑡 .

(2) Step 2 - Communication:
• 𝑃1 sends 𝑐1 = 𝑣1 +𝑚1→2 to 𝑃2.

• 𝑃2 sends 𝑐2 = 𝑣2 +𝑚2→1 to 𝑃1.

• 𝑃3 sends 𝑐3 = 𝑣3 +𝑚3→1 to 𝑃1.

(3) Step 3 - Compute 𝜋3
2
-sharing:

• 𝑃1 computes (𝑡 + 𝛼𝑡 , 𝛽𝑡) =
{
𝑣1 + 𝑐2 + 𝑐3
𝑐3 +𝑚1→2

226

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates Proceedings on Privacy Enhancing Technologies 2023(4)

• 𝑃2 computes (𝑡 + 𝛽𝑡 , 𝛼𝑡) =
{
𝑣2 + 𝑐1 +𝑚3→1

𝑚2→1 +𝑚3→1

• 𝑃3 computes (𝛼𝑡 , 𝛽𝑡) =
{
𝑚2→1 +𝑚3→1

𝑐3 +𝑚1→2

In order to show that the result is a valid 𝜋3
2
-sharing of 𝑥1𝑥2, we

need to show that both (𝑡 + 𝛼𝑡) + 𝛼𝑡 , and (𝑡 + 𝛽𝑡) + 𝛽𝑡 are equal to

𝑥1𝑥2. This can be demonstrated as follows:

(𝑡 + 𝛼𝑡) + 𝛼𝑡 = 𝑣1 + 𝑐2 + 𝑐3 + 𝛼𝑡

= 𝑣1 + 𝑣2 + 𝑣3 +𝑚2→1 +𝑚3→1 + 𝛼𝑡

= 𝑥1𝑥2 + 𝛼𝑡 + 𝛼𝑡

= 𝑥1𝑥2

Where the first equality is by the definition of the shares, second

equality stems from the definitions of 𝑐2 and 𝑐3 and the third equal-

ity can be derived from the combination of Step 1 and the definition
of 𝛼𝑡 . It can be shown that the second equation 𝑥1𝑥2 = (𝑡 + 𝛽𝑡) + 𝛽𝑡
holds similarly.

3.1.3 Multi-fan-in AND (multiplication) gates.

3-Fan-in AND gate. Since the method described in Section 3.1.2

can not be trivially generalized to compute ℓ-fan-in AND gates

with ℓ ≥ 3, to simplify the exposition, we start by showing how to

compute a 3-fan-in AND gate. Let 𝑥1, 𝑥2, and 𝑥3 be the inputs to

a 3-fan-in AND gate where each 𝑥𝑖 is 𝜋
3

2
-shared among the set of

parties {𝑃1, 𝑃2, 𝑃3}.
To output a valid 𝜋3

2
-sharing of the product 𝑡 = 𝑥1𝑥2𝑥3, the pro-

tocol requires the parties to compute a (2,2)-sharing (𝑡 + 𝛼𝑡 , 𝛼𝑡)
between 𝑃1 and {𝑃2, 𝑃3} following the protocol described in Fig-

ure 3.

In order to see the correctness, Observe that

𝑣2
2
𝛽3 + 𝑣3

2
𝛽2 + 𝑣4

2
𝛽1

= 𝑥1𝑥2𝛽3 + 𝑥1𝑥3𝛽2 + 𝑥2𝑥3𝛽1 + 𝛽1𝛽2𝛽3
(2)

Thus,

𝑐1
2
+ 𝑐2

2
𝛽3 + 𝑐32𝛽2 + 𝑐

4

2
𝛽1

= 𝑣1
2
+ 𝑣2

2
𝛽3 + 𝑣3

2
𝛽2 + 𝑣4

2
𝛽1

+𝑚1

2→1
+𝑚2

2→1
𝛽3 +𝑚3

2→1
𝛽2 +𝑚4

2→1
𝛽1

= 𝑥1𝑥2𝑥3 + 𝑥1𝛽2𝛽3 + 𝛽1𝑥2𝛽3 + 𝛽1𝛽2𝑥3

+𝑚1

2→1
+𝑚2

2→1
𝛽3 +𝑚3

2→1
𝛽2 +𝑚4

2→1
𝛽1

(3)

Where the first equality stems from the definitions of 𝑐1
2
, ..., 𝑐4

2

by 𝑃2 and the second equality is derived by expanding the terms

of (𝑥1 + 𝛼1) (𝑥2 + 𝛼2) (𝑥3 + 𝛼3) and cancelling the repeated values

from Eq. (2). Therefore, 𝑃1 computes

• Compute (2,2)-sharing of 𝑥1𝑥2𝑥3
(1) 𝑃2 computes

v2 =


𝑣1
2
= (𝑥1 + 𝛽1) (𝑥2 + 𝛽2) (𝑥3 + 𝛽3)

𝑣2
2
= (𝑥1 + 𝛽1) (𝑥2 + 𝛽2)

𝑣3
2
= (𝑥1 + 𝛽1) (𝑥3 + 𝛽3)

𝑣4
2
= (𝑥2 + 𝛽2) (𝑥3 + 𝛽3)

(2) 𝑃2 sends 𝑐
𝑖
2
= 𝑣𝑖

2
+𝑚𝑖

2→1
to 𝑃1 for all 𝑣

𝑖
2
.

(3) 𝑃1 computes

𝑡+𝛼𝑡 = 𝑐1
2

+ 𝑐2
2
𝛽3 + 𝑐32𝛽2 + 𝑐

4

2
𝛽1

+ (𝑥1 + 𝛼1)𝛽2𝛽3 + 𝛽1 (𝑥2 + 𝛼2)𝛽3
+ 𝛽1𝛽2 (𝑥3 + 𝛼3)
+𝑚1

3→2

(4) 𝑃3 computes

𝑣1
3
=𝑚1

2→1
+𝑚2

2→1
𝛽3 +𝑚3

2→1
𝛽2 +𝑚4

2→1
𝛽1

+ 𝛼1𝛽2𝛽3 + 𝛽1𝛼2𝛽3 + 𝛽1𝛽2𝛼3

(5) 𝑃3 sends 𝑐
1

3
= 𝑣1

3
+𝑚1

3→2
to 𝑃2 and sets 𝛼𝑡 = 𝑐1

3
.

(6) 𝑃2 sets 𝛼𝑡 = 𝑐1
3
.

Figure 3: Computing (2,2)-sharing of the product 𝑥1𝑥2𝑥3

𝑡 + 𝛼𝑡

= 𝑥1𝑥2𝑥3 + 𝑥1𝛽2𝛽3 + 𝛽1𝑥2𝛽3 + 𝛽1𝛽2𝑥3

+𝑚1

2→1
+𝑚2

2→1
𝛽3 +𝑚3

2→1
𝛽2 +𝑚4

2→1
𝛽1

+ (𝑥1 + 𝛼1)𝛽2𝛽3 + 𝛽1 (𝑥2 + 𝛼2)𝛽3 + 𝛽1𝛽2 (𝑥3 + 𝛼3)
+𝑚1

3→2

= 𝑥1𝑥2𝑥3 +𝑚1

2→1
+𝑚2

2→1
𝛽3 +𝑚3

2→1
𝛽2 +𝑚4

2→1
𝛽1

+ 𝛼1𝛽2𝛽3 + 𝛽1𝛼2𝛽3 + 𝛽1𝛽2𝛼3 +𝑚1

3→2

= 𝑥1𝑥2𝑥3 + 𝑐13
Where the first equality holds by substituting with the equiva-

lence from Eq. (3), the second equality is derived by cancelling the

values 𝑥1𝛽2𝛽3, 𝛽1𝑥2𝛽4, 𝛽1𝛽2𝑥3, and the final equality is derived by

the definition of 𝑐1
3
by 𝑃3.

However, the multiplication protocol is not complete as the par-

ties must have a 𝜋3
2
-sharing of 𝑡 . To complete the protocol, the

parties run a symmetric computation with the roles of 𝑃1 and 𝑃2
exchanged. This will output a (2,2)-sharing (𝑡 + 𝛽𝑡 , 𝛽𝑡) between
𝑃2 and {𝑃1, 𝑃3}. Together, the two (2,2)-sharings constitute a valid

𝜋3
2
-sharing of 𝑡 .

3.1.4 ℓ-Fan-in AND (multiplication) gates. In this subsection,

we describe the protocol to compute ℓ-fan-in AND gates for the

general case ℓ ≥ 3. Similar to the 3-fan-in case, our protocol con-

structs two (2,2)-sharings of the product 𝑡 = 𝑥1 ...𝑥ℓ between the

227

Proceedings on Privacy Enhancing Technologies 2023(4) Faraji and Kerschbaum

• Compute (2,2)-sharing 𝑥1 ...𝑥ℓ
(1) 𝑃2 computes

𝑣𝜙 (𝐼) =
∏
𝑥𝑖 ∈𝐼

(𝑥𝑖 + 𝛽𝑖)

for 𝐼 ⊆ P(𝑋) and |𝐼 | > 1,

(2) 𝑃2 sends 𝑐
𝜙 (𝐼)
2

= 𝑣
𝜙 (𝐼)
2

+𝑚𝜙 (𝐼)
2→1

to 𝑃1 for all 𝑣
𝜙 (𝐼)
2

.

(3) 𝑃1 computes

𝑡 + 𝛼𝑡 =
∑︁

𝐼 ⊆𝑋, |𝐼 |>1
𝑐
𝜙 (𝐼)
2

∏
𝑥 𝑗∉𝐼

𝛽 𝑗

+
∑︁

𝑥𝑖 ∈𝑋,𝐼={𝑥𝑖 }
(𝑥𝑖 + 𝛼𝑖)

∏
𝑥 𝑗∉𝐼

𝛽 𝑗

+ 𝑏
∏
𝑖∈L

𝛽𝑖 +𝑚1

3→2

where 𝑏 = 1 if 𝑛 is even o.w. 𝑏 = 0.

(4) 𝑃3 computes

𝑣1
3
=

∑︁
𝐼 ⊆𝑋, |𝐼 |>1

𝑚
𝜙 (𝐼)
2→1

∏
𝑥 𝑗∉𝐼

𝛽 𝑗

+
∑︁

𝑥𝑖 ∈𝑋,𝐼={𝑥𝑖 }
𝛼𝑖

∏
𝑥 𝑗∉𝐼

𝛽 𝑗

(5) 𝑃3 sends 𝑐
1

3
= 𝑣1

3
+𝑚1

3→2
to 𝑃2 and sets 𝛼𝑡 = 𝑐1

3
.

(6) 𝑃2 sets 𝛼𝑡 = 𝑐1
3
.

Figure 4: Computing (2,2)-sharing of the product 𝑥1 ...𝑥ℓ

parties. In the following, we only present the (2,2)-sharing where

𝑃1 holds 𝑡 + 𝛼𝑡 and {𝑃2, 𝑃3} both hold (𝛼𝑡). Since the roles of 𝑃1
and 𝑃2 are symmetric, the full protocol follows naturally.

Let L = {1, ..., ℓ}, 2L = {0, ..., 2ℓ − 1}, and P(𝑋) be the power
set of the set of inputs 𝑋 = {𝑥1, ..., 𝑥ℓ }. Define 𝜙 : P(𝑋) → 2

L
as

𝜙 (𝐼) = Σ𝑥𝑖 ∈𝐼 2
𝑖−1

. Parties {𝑃1, 𝑃2, 𝑃3} hold a 𝜋3
2
-sharing of each 𝑥𝑖

such that 𝑃1 holds (𝑥𝑖 + 𝛼𝑖 , 𝛽𝑖), 𝑃2 holds (𝑥𝑖 + 𝛽𝑖 , 𝛼𝑖) and 𝑃3 holds
(𝛼𝑖 , 𝛽𝑖). The protocol for computing a (2,2)-sharing of 𝑡 = 𝑥1 ...𝑥ℓ is

presented in Fig. 4.

To show correctness, we need the following lemma.

Lemma 3.1. Assume {𝑥1, ..., 𝑥ℓ } and {𝛽1, ..., 𝛽ℓ } are two sets of
values over Z2. Then∑︁

𝐼 ⊆𝑋, |𝐼 |>1

∏
𝑥𝑖 ∈𝐼

(𝑥𝑖 + 𝛽𝑖)
∏
𝑥 𝑗∉𝐼

𝛽 𝑗

=
∏
𝑖∈ℓ

𝑥𝑖 +
∑︁

𝑥𝑖 ∈𝑋,𝐼={𝑥𝑖 }
𝑥𝑖

∏
𝑥 𝑗∉𝐼

𝛽 𝑗 + 𝑏
∏
𝑖∈ℓ

𝛽𝑖

where 𝑏 = 1 if ℓ is even, 𝑏 = 0 otherwise.

Proof. Let 𝑋𝐼 =
∏
𝑥𝑖 ∈𝐼

𝑥𝑖
∏
𝑥 𝑗∉𝐼

𝛽 𝑗 for every 𝐼 where 1 < |𝐼 | < ℓ . It

is straight-forward to see that 𝑋𝐼 is a factor of the term∑
𝐼 ⊆𝐴⊆P(𝑋)

∏
𝑥𝑖 ∈𝐴

(𝑥𝑖 + 𝛽𝑖)
∏

𝑥 𝑗∉𝐴

(𝛽 𝑗)

The number of sets 𝐴 ∈ P(𝑋) where 𝐼 ⊆ 𝐴 is 2
ℓ−|𝐼 |

. Since 1 <

|𝐼 | < ℓ , it follows that each 𝑋𝐼 is repeated an even number of times

on the left side of the equation, hence, it gets cancelled. Following

the same argument, observe that terms of the form 𝑥𝑖
∏

𝑥 𝑗≠𝑥𝑖

𝛽 𝑗 occur

a total 2
ℓ−1 − 1 times where the subtraction is due to {𝑥𝑖 } being

excluded from the sum. Similarly, 𝑥1 ...𝑥ℓ only appears once and∏
𝑖∈L

𝛽𝑖 occurs 2
ℓ − ℓ − 1 times. Thus, completing the proof. ■ □

Therefore, the correctness of the protocol follows from

𝑡 + 𝛼𝑡 =
∑︁

𝐼 ⊆𝑋, |𝐼 |>1

∏
𝑥𝑖 ∈𝐼

(𝑥𝑖 + 𝛽𝑖)
∏
𝑥 𝑗∉𝐼

𝛽 𝑗

+
∑︁

𝐼 ⊆𝑋, |𝐼 |>1
𝑚
𝜙 (𝐼)
2→1

∏
𝑥 𝑗∉𝐼

𝛽 𝑗

+
∑︁

𝑥𝑖 ∈𝑋,𝐼={𝑥𝑖 }
𝑥𝑖

∏
𝑥 𝑗∉𝐼

𝛽 𝑗 +
∑︁

𝑥𝑖 ∈𝑋,𝐼={𝑥𝑖 }
𝛼𝑖

∏
𝑥 𝑗∉𝐼

𝛽 𝑗

+ 𝑏
∏
𝑖∈L

𝛽𝑖 +𝑚1

3→2

=
∏
𝑖∈L

𝑥𝑖 +
∑︁

𝐼 ⊆𝑋, |𝐼 |>1
𝑚
𝜙 (𝐼)
2→1

∏
𝑥 𝑗∉𝐼

𝛽 𝑗

+
∑︁

𝑥𝑖 ∈𝑋,𝐼={𝑥𝑖 }
𝛼𝑖

∏
𝑥 𝑗∉𝐼

𝛽 𝑗 +𝑚1

3→2

=
∏
𝑥𝑖 ∈L

𝑥𝑖 + 𝑐13

(2)

where the first equality is derived by the definition of 𝑐
𝜙 (𝐼)
2

, the

second equality is derived by substituting Lemma 3.1, and the final

equality is derived from the definition of 𝑐1
3
.

3.2 Threat Model and Security
In this subsection, we prove the security of our protocol in the

presence of a static semi-honest adversary controlling one of the

three parties. Since our goal is to compute a Boolean circuit, the

functionality is deterministic and we can use the following security

definition by Goldreich [21]:

Definition 3.2. Let 𝑓 : ({0, 1}∗)3 → ({0, 1}∗)3 be a deterministic
3-ary functionality and let 𝜋 be a protocol. We say that 𝜋 securely
computes 𝑓 in the presence of one static semi-honest adversary if for
every ®𝑥 ∈ ({0, 1}∗)3 where |𝑥1 | = |𝑥2 | = |𝑥3 | the following holds:

1) Correctness: 𝑂𝑈𝑇𝑃𝑈𝑇𝜋 (®𝑥) = 𝑓 (®𝑥), and
2) Privacy: There exists probabilistic polynomial time algorithms

S𝑖 such that for every corrupted party 𝑖 ∈ {1, 2, 3}:
S𝑖 (𝑥𝑖 , 𝑓𝑖 (®𝑥)) = {𝑉 𝐼𝐸𝑊 𝜋

𝑖
(®𝑥)}

Where 𝑉 𝐼𝐸𝑊 𝜋
𝑖
(®𝑥) is the view of party 𝑖 and consists of its input

𝑥𝑖 , its internal random coins 𝑟𝑖 and the messages received by 𝑖 during
the protocol execution.

Proof. The correctness requirement of our protocol follows im-

mediately as the parties compute the circuit C which implements

functionality 𝑓 and we have already shown correctness for the AND

(multiplication) and XOR (addition) gates composing the circuit.

It remains to show privacy. If party 𝑃3 is corrupted, note that

it receives nothing during the execution of the protocol both for

228

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates Proceedings on Privacy Enhancing Technologies 2023(4)

XOR gates and AND gates. The only messages that 𝑃3 receives are

the setup bits for the correlated randomness from 𝑃1 and 𝑃2 which

are just two independent random bits 𝑆1,2, 𝑆2,1 ∈ {0, 1}𝜅 . Thus the
simulator S3 simply chooses two random bits 𝑆 ′

1,2
, 𝑆 ′

2,1
, sets up

the pseudo-random functions with them. For each output wire in

which 𝑃3 receives output, given the shares computed thus far by

the simulator and the true output value, S3 can generate the exact

shares it would receive from the other parties. This is because of

the secret sharing scheme’s property that given one party’s shares

and the exact value of the secret, the associated parties’ shares

can be fully determined. Thus, the simulator’s view is completely

indistinguishable form a real execution of 𝜋 .

If party 𝑃1 is corrupted, unlike 𝑃3 it receives messages during

the protocol execution from both parties 𝑃2 and 𝑃3. The view of 𝑃1
during the protocol execution consists of the random bits 𝑆2,3, 𝑆3,2 it

receives from 𝑃2 and 𝑃3 respectively for the correlated randomness

setup and the messages it receives from them for 2-fan-in and

ℓ-fan-in AND gates. The simulator S1 simulates the correlated

randomness setup bits as in the case of 𝑃3. For any AND gate 𝑔 in

the circuit, 𝑃1 receives messages depending on the gate’s fan-in:

(1) If 𝑔 is a 2-fan-in AND gate, then 𝑃1 receives one single bit

from 𝑃2 which is (𝑥1 + 𝛽1)𝛼2 + (𝑥2 + 𝛽2)𝛼1 +𝑚2→1 where

𝑥1 and 𝑥2 are the the actual inputs to gate 𝑙 and𝑚2→1 is the

randomness 𝑃2 uses for communication with 𝑃1 on that gate.

Since the bit is masked with the random bit𝑚2→1 obtained

from the shared pseudo-random function between 𝑃2 and

𝑃3 that is oblivious to 𝑃1, the simulator S1 simply samples a

random bit and simulates the above message.

(2) If 𝑔 is a ℓ-fan-in AND gate, then 𝑃1 receives 2
ℓ − ℓ − 1 bits

from 𝑃2 and one bit from 𝑃3 as described in the Section 3.1.4.

However, all these messages are masked using random bits as

in the 2-fan-in case unknown to 𝑃1. Therefore, S1 simulates

such gates by sampling 2
ℓ − ℓ random bits.

Finally, for each output wire S1 does the same thing as S3.

If 𝑃2 is corrupted, we observe that the views of 𝑃1 and 𝑃2 on

ℓ-fan-in AND gates and the correlated randomness setup bit is

symmetric. The only difference in the view of these two parties

occurs when computing a 2-fan-in AND gate where 𝑃2 receives an

additional bit from 𝑃3 that 𝑃1 does not. However, since this bit is

also masked with a random bit unknown to 𝑃2, the simulator for

𝑃2 can simply sample an additional random bit.

Thus, we can construct a simulator for all static adversaries,

hence, from this and by the security of the pseudo-random function,

the simulator-generated views are identically distributed to that of

a real protocol execution. ■

4 COMMUNICATION-EFFICIENT CIRCUITS
In this section, we describe how to use multi-fan-in AND gates to

design binary circuits with lower multiplicative depth.

Specifically, we focus on adder, multiplier and comparator cir-

cuits.

In the following, the depth of the circuit denotes the number of

multiplicative stages and the size is the total number of multiplica-

tions.

Adder: An 𝑛-bit adder takes two 𝑛-bit numbers 𝑎 and 𝑏 and outputs

a 𝑛-bit number 𝑠 plus a carry out 𝑐 . The simplest construction for

an adder is the Ripple-Carry adder which has minimal size but due

to its sequential structure has a multiplicative depth of 𝑛. Therefore,

it is not well-suited for MPC purposes.

Parallel Prefix Adders (PPA) [25] use prefix tree networks with

generate and propagate signals to obtain lower depth circuits with a

trade-off against circuit size. There are many PPA designs with dif-

ferent characteristics. However, Sklansky PPA achieves the lowest

depth without excessively increasing circuit size. Using traditional

Sklansky PPA with 2-fan-in gates results in a circuit depth of log
2
𝑛.

Due to the associativity of propagate and generate signals, taking

advantage of higher-fan-in gates is straightforward. This yields a

higher parallelization and decreases the depth of the circuit by a

factor of log
2
ℓ .

As our protocol has communication complexity exponential in

the AND gate fan-in, we limit ourselves to Sklansky structures

that are based on ℓ ≤ 8-fan-in AND gates. Table 2 compares the

depth and size of the circuits for different bit-widths for the Ripple-

Carry adder, an unmodified Sklansky PPA adder and our two new

constructions with multi-fan-in AND gates up to ℓ ≤ 4 and ℓ ≤ 8,

respectively.

Algorithm

depth size

16 32 64 128 16 32 64 128

Ripple-Carry 16 32 64 128 31 63 127 255

Sklansky 5 6 7 8 65 161 385 897

ℓ ≤4-fan-in 3 4 5 8 73 177 433 993

ℓ ≤8-fan-in 3 3 3 4 87 213 561 1249

Table 2: Comparison of adder circuit depth and size for dif-
ferent constructions and bit-widths

Multiplier: An 𝑛-bit multiplier takes two 𝑛-bit numbers 𝑎 and 𝑏 and

outputs a 2𝑛-bit number 𝑝 as their product. The common algorithm

for multiplication is the same as the high-school method where first

𝑛 partial products of bit-length 𝑛 are computed by multiplying each

bit of the multiplier by the multiplicand and left-shifting the result

by the position of the multiplier’s bit. The basic multiplier circuit

then uses a 2𝑛-bit adder to sum the partial products one after one

until the final product is reached.

Even with our depth-optimized adders, this approach has a

𝑛 logℓ 𝑛 depth when sequentially adding the partial products and

using 2-fan-in AND gates in the adder design. Summing up the

partial products in a binary tree reduces the number of addition

levels from 𝑛 to log𝑛 but it is still expensive in MPC protocols.

In logic synthesis, a Wallace tree [48] multiplier is used to gather

all the partial products in a tree structure. Then, each column of bits

are divided in groups of 3 and reduced to 2 bits using Full Adders

and Half Adders. This process is repeated until there are only 2

bits left at each position whereby a final 2𝑛-bit adder is used to

output the product. A Wallace tree multiplier therefore has a depth

of log
1.5 𝑛+ logℓ 2𝑛+1where the former is the number of reduction

stages and the latter is due to the final adder.

229

Proceedings on Privacy Enhancing Technologies 2023(4) Faraji and Kerschbaum

Algorithm

depth size

16 32 64 128 16 32 64 128

Standard 45 93 189 381 496 2016 8128 32640

Wallace 13 15 18 21 512 2058 8226 32836

ℓ ≤4-fan-in 7 9 9 11 1229 5304 21997 89416

ℓ ≤8-fan-in 6 6 8 11 1422 6612 24834 96679

Table 3: Comparison of multiplier circuit depth and size for
different constructions and bit-widths

There are many optimization techniques to further reduce the

number of stages. Asif and Kong [2] introduce the notion of Counter-

BasedWallace (CBW) tree reduction where 4:3, 5:3, 6:3 and 7:3 coun-

ters are applied to each column to compress more bits at each stage

reducing the number of stages to log
2.3 𝑛. By a similar extension,

using 15:4 counters results in log
3.75 𝑛 stages and larger counters

𝑁 : 𝑀 in log𝑁 /𝑀 𝑛. However, the counter circuit is not a depth-1

circuit anymore, and, hence, requires additional communication

rounds per stage.

We use multi-fan-in AND gates to design depth-1 counter cir-

cuits and take full advantage of the fewer reduction stages without

incurring extra communication rounds per stage. However, this

comes with a trade-off against the size of the circuit and also needs

higher fan-in AND gates. Table 3 compares the depth and size

of the circuits for different bit-widths for the standard multiplier,

the Wallace-tree multiplier and our two new constructions with

7:3 counters and ℓ ≤ 4-fan-in AND gates and 15:4 counters and

ℓ ≤ 8-fan-in AND gates.

Comparator: A binary circuit to compare two 𝑛-bit numbers 𝑎, 𝑏

in secure computation is presented by Fischlin [19]. A number 𝑎 is

greater than another number 𝑏 if, for some 𝑖 , the 𝑖-th bit of 𝑎 is 1

and 0 for 𝑏 and all the more significant bits > 𝑖 are equal. Formally:

𝑎 > 𝑏 ⇐⇒
⊕𝑛

𝑖=1

(
𝑎𝑖 ∧ ¬𝑏𝑖 ∧

∧𝑛
𝑗=𝑖+1 (𝑎 𝑗 = 𝑏 𝑗)

)
where 𝑎 𝑗 = 𝑏 𝑗 can be rewritten as ¬(𝑎 𝑗 ⊕ 𝑏 𝑗). Using a tree

structure of 2-fan-in AND gates will result in a circuit of depth

log
2
𝑛 + 1 to compute the product of terms in Fischlin’s equation.

Similar to the adder circuit, higher fan-in gates can be used to reduce

the number of communication rounds by minimizing the depth

of the multiplicative tree. Table 4 compares the depth and size of

the circuits for different bit-widths for the unmodified comparator

and our two new constructions with multi-fan-in AND gates up to

ℓ ≤ 4 and ℓ ≤ 8, respectively.

5 EXPERIMENTAL IMPLEMENTATION AND
BENCHMARKS

In this section, we provide empirical results of a prototypical imple-

mentation demonstrating the efficiency gains due to (our protocol

design and) the use of multi-fan-in AND gates compared to Araki

et al.’s [1] and Beaver et al.’s protocol [4]. Recall that ASTRA [12],

which (slightly) improves over Araki et al.’s protocols, has no public

implementation to replicate their results. We begin by describing

the setup environment and implementation details.

Algorithm

depth size

16 32 64 128 16 32 64 128

Standard 5 6 7 8 63 143 319 703

ℓ ≤4-fan-in 3 4 4 5 39 95 207 479

ℓ ≤8-fan-in 3 3 3 4 37 83 175 415

Table 4: Comparison of comparator circuit depth and size for
different constructions and bit-widths

We implement our protocol using the MP-SPDZ [29] framework

in C++11. For our servers, we use three AWS t2.large instances

equipped with two Intel Xeon E5-2686 v4 2.3GHz CPUs and 8 GB

RAM. We run the experiments in a simulated WAN and a real

WAN setting. To simulate the WAN, we run all three parties on a

single instance imposing a round-trip time (RTT) of 100ms and a

channel bandwidth of 160Mbps bymanipulating the Kernel’s Traffic

Control for the local interface. Over the WAN, the machines are

instantiated in Amazon Web Services data centers at US East (P1),
US West (P2) and North Europe (P3). In this setting, the network

statistics for each pair P1-P2, P1-P3, P2-P3 are measured separately,

where the average RTTs are approximately 50ms, 100ms and 150ms
with channel bandwidth of approximately 235Mbps, 115Mbps and

75Mbps, respectively. For our AES benchmark we also use a local-

area network (LAN) with all 3 parties running on the same machine

connected by the loopback interface which has roughly 20 Gbps

bandwidth and a RTT of 0.05 ms. We use TLS over TCP for secure

communication between each pair of parties.

We compare the performance of our protocol against the closest

competitor [1] which shares the same threat model, requires no pre-

computation as ours and has a publicly available implementation.

We ensure fair comparison by running the MP-SPDZ implemen-

tation of Araki et al.’s protocol [1] in our environment. As Araki

et al.’s protocol [1] does not support multi-fan-in AND gates, the

results are only reported for circuits based on standard 2-fan-in

AND gates. We then extend the measurements to multi-fan-in gates

for our protocol. We also compare to the implementation of Beaver

et al.’s protocol [4] in the MP-SPDZ framework [29] based on the

techniques by Keller and Yanai [31]. For Beaver et al.’s technique

2-fan-in gates are optimal, since they have the lowest communi-

cation cost and the number of communication rounds cannot be

further reduced by increasing the fan-in. Hence, we use circuits

with 2-fan-in gates for Beaver et al.’s technique. We use the online

running time and communication cost as the measured quantities

to benchmark the protocols. To generate both the standard 2-fan-

in and the round-optimized circuits using the multi-fan-in AND

gates, we implemented a Python module to compile the circuit de-

signs into Bristol Fashion format suitable as input to the MP-SPDZ

framework.

We perform the comparison for three types of circuits. First,

we begin by analyzing the advantages of multi-fan-in gates in the

theoretically optimal case of an AND-tree (Section 5.1). Second,

we compare our performance to related work [1, 4] for our depth-

optimized building block circuits for addition, multiplication and

comparison (Section 5.2). Third, we compare our performance to

230

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates Proceedings on Privacy Enhancing Technologies 2023(4)

related work for a practical circuit, the AES block cipher, which has

been used in many related works as a benchmark (Section 5.3). For

this comparison, we also include the 2-party protocol ABY2 [42],

since it also supports multi-fan-in gates. However, we only compare

to the online phase (ignoring its offline phase) of ABY2, in order to

avoid having to resort to public-key operations. Since, we operate

in a 3-party setup our protocol can be and is implemented without

public-key cryptography.

5.1 Results for AND Trees
To analyze the performance of 2-fan-in AND gates compared to

the multi-fan-in AND gates, we construct a prototype circuit that

computes

∧𝑛
𝑖=1 𝑎𝑖 for an 𝑛-bit number 𝑎. Similar to the comparison

circuits from Section 4, a tree structure of AND gates is used to ag-

gregate the input wires in multiple rounds until the final product is

output. The depth and size of this circuit are ⌈logℓ 𝑛⌉ and ℓ ⌈logℓ 𝑛⌉−1
ℓ−1 ,

respectively allowing for ℓ-fan-in AND gates.

Figure 5 shows the running time of the AND-tree aggregator for

designs based on 2,4,8-fan-in AND gates and Araki et al.’s protocol

[1] using 2-fan-in gates. In the simulated WAN setting, we observe

in the case of 2-fan-in gates, that for both Araki et al.’s [1] and our

protocol, the running time increases linearly with the multiplicative

depth of the circuit. However, our protocol consistently takes one

RTT time less to complete which is due to the asymmetry of the

roles of the parties. This behavior has been noticed before in other

protocols, notably ASTRA [12], where similarly, the majority of

the communication and computation is handled by only a pair

of the parties, namely P1-P2. In our protocol, P3 does not receive
any bits from the other parties, i.e., it can execute the protocol

without waiting on any inbound communication. Consequently,

by the time P1 and P2 reach the final level of the circuit, they have

already received the information required from P3 to do the local

computation. Hence, they can finalize the protocol with no latency

saving an extra RTT in the running time.

In the real WAN setting, this improvement becomes even more

significant as our protocol provides the flexibility to setup the par-

ties such that the communication link between P1-P2 has the lowest
latency among all the pairs. This effectively reduces the delay for

each round from the maximum to the minimum RTT among each

pair of the parties due to the role of P3 as explained. In Figure 5, we

observe that our protocol achieves better performance by improving

up to 1.7× upon Araki et al.’s protocol [1].

Next, we analyze the impact of multi-fan-in AND gates and

demonstrate the full power of our protocol. Even when using only a

slightly higher fan-in ℓ ≤ 4-AND gates, we achieve an improvement

in the running time of 2× for the simulated WAN and 3.5× for the

real WAN compared to Araki et al.’s protocol [1]. This is mainly

due to the reduced depth of the circuits, though the asymmetry of

our protocol contributes to the increased performance over WAN

as well.

The running time can be further reduced by using ℓ ≤ 8-fan-in

AND gates. The performance gain becomes more noticeable as

the circuit sizes grow larger. However, for some input lengths the

running time is not improved upon the case of ℓ ≤ 4-fan-in. This

is because the circuit depth remains the same regardless of the

design using either ≤ 4 or ≤ 8 fan-in AND gates. However, since

4 6 8 10 12

200

400

600

800

Input bit-width in powers of 2

O
n
l
i
n
e
r
u
n
n
i
n
g
t
i
m
e
i
n
(
m
s
)

Sim. WAN

[1] (2-fan-in)

2-fan-in

4-fan-in

8-fan-in

4 6 8 10 12

200

400

600

800

Input bit-width in powers of 2

O
n
l
i
n
e
r
u
n
n
i
n
g
t
i
m
e
i
n
(
m
s
)

WAN

[1] (2-fan-in)

2-fan-in

4-fan-in

8-fan-in

Figure 5: Online latency of AND-tree computation for multi-
ple input bit-width

our protocol has exponential communication cost in the fan-in, the

optimal constructions are the ones leveraging smaller fan-in, i.e.,

ℓ ≤ 4-fan-in gates.

Table 5 shows the communication cost of our protocol for run-

ning 100 instances of the AND-tree aggregator in parallel. We report

the numbers for all the parties, however, as P1 and P2 have symmet-

ric behaviour, they incur the same amount of communication and

are thus grouped together. The results for Araki et al.’s protocol [1]

are the same as ours in the case of circuits with only 2-fan-in gates

as they both send one bit per party per 2-fan-in AND gate. We see

that for each input size, the communication cost increases for P1,
P2 as higher fan-in gates are used. This is an expected behaviour,

since the multi-fan-in AND gates consume exponentially more bits

231

Proceedings on Privacy Enhancing Technologies 2023(4) Faraji and Kerschbaum

Party Fan-in

Comm. (KB)

Tree-2
4

Tree-2
6

Tree-2
8

Tree-2
10

Tree-2
12

P1, P2
2 0.013 0.018 0.042 0.138 0.522

4 0.017 0.039 0.127 0.479 1.887

8 0.072 0.288 1.123 4.518 18.072

P3
2 0.011 0.017 0.041 0.137 0.521

4 0.011 0.015 0.031 0.095 0.351

8 0.010 0.012 0.019 0.046 0.156

Table 5: Comparison of communication cost of AND-tree
computation per party for multiple input bit-width

on the link P1-P2. This explains why it is not always optimal to

use higher fan-in gates, i.e., when they do not sufficiently reduce

the multiplicative depth. For example, the 2
10
-tree aggregator cir-

cuit based on 8-fan-in AND gates has 10× more communication

cost than the one based on 4-fan-in AND gates, while there is no

improvement in running time.

However, we observe that P3 uses less communication with

higher fan-ins. This is because P3 always sends 2 bits per multi-fan-

in AND gates regardless of the fan-in. Therefore, its communication

cost gets lower as the circuit sizes shrink due to replacing lower

fan-in with higher fan-in gates.

Another observation here is that our protocol has the advantage

of being resilient to a lower bandwidth or even a change in band-

width between one party and the others due to its asymmetry. If one

of the parties suffers from a limited bandwidth to the other parties,

we can dynamically assign it the role of P3, i.e., the party with the

lowest communication overhead. As a consequence, our protocol

may maintain its performance in case of bandwidth fluctuations,

particularly if high fan-in AND gates are used. This improves over

Araki et al.’s protocol [1] which would suffer a significant perfor-

mance downgrade under such circumstances. Chaudhari et al. have

already noted this for ASTRA [12] for two-fan-in gates.

5.2 Results for Communication-Efficient
Circuits

We benchmark the latency and communication cost of our depth-

optimized circuits for addition, multiplication and comparison from

Section 4 in our protocol and related work [1, 4]. We take a multi-

step approach. In the first step, we compare common circuits against

our depth-optimized circuits using only 2-fan-in gates in our and

Araki et al.’s protocol (see Table 6). This demonstrates the advan-

tages of our circuits over non-optimized ones on WAN for either

our or Araki et al.’s protocol. Then, in the second step we further

optimize these circuits with multi-fan gates (see Table 7). This

optimization is only possible in our protocol and demonstrates

the advantages of our protocol over Araki et al.’s protocol. The

combination of the two approaches – depth-optimized circuits and

multi-fan-in gates – yield the best results in our protocol and cannot

be matched by Araki et al.’s protocol. In the third step, we compare

this combination in our protocol to the common circuits in Beaver

et al.’s protocol (see Table 8). Beaver et al.’s protocol performs in-

dependent of circuit-depth and best on two-fan-in gates. Hence,

we are comparing the best modes for each protocol and the results

demonstrate the advantages of our protocol. Next to latency, we

also report communication costs (see Tables 9 and 10).

Circuit Work

n = 16 n = 32 n = 64

Sim. WAN Sim. WAN Sim. WAN

RC Adder

[1] 0.906 0.903 1.709 1.678 3.322 3.316

This 0.865 0.507 1.671 0.927 3.281 1.708

Sklansky

[1] 0.352 0.302 0.405 0.401 0.452 0.448

This 0.312 0.196 0.361 0.255 0.412 0.257

Standard

Multiplier

[1] - - 6.494 6.492 9.607 9.608

This - - 6.452 3.243 9.571 4.789

Wallace

[1] 0.906 0.911 1.111 1.059 1.317 1.298

This 0.865 0.512 1.067 0.609 1.272 0.718

Comparator

[1] 0.352 0.351 0.403 0.404 0.453 0.455

This 0.312 0.203 0.362 0.251 0.413 0.248

Table 6: Comparison of online running time (sec) of our pro-
tocol, Araki et al.’s protocol [1] for addition, multiplication
and comparison circuits

We start by analyzing the effect of our protocol when using only

2-fan-in AND gates. Although, Büscher and Katzenbeisser [11] also

build depth-optimized circuits, they only theoretically analyze them

and do not report any experimental results. Table 6 compares the

running time of our protocol against Araki et al.’s protocol [1] for

both vanilla and our optimized versions of adder, multiplier and

comparator circuits. In the simulatedWAN setting, the running time

is consistently improved but very similar. Over the real WAN, we

take advantage of the asymmetry in the communication structure

of our protocol to further reduce the total latency as explained. This

increases the running time gains of our protocol to up to 2× over

Araki et al.’s protocol.

In Table 7, we present the running time of our protocol for the

depth-optimized circuits based on multi-fan-in AND gates. The

results show a pattern consistent with our observations for the

AND-tree aggregators from Section 5.1, e.g., the running time im-

proves as the multiplicative depth of the circuit decreases due to

the use of higher fan-in AND gates.

Next, we compare our protocol against constant-round, garbled

circuit-based protocols. We compare to the semi-honest 3-party

version of the Beaver et al.’s protocol [4], which has comparable

security assumption to our protocol. The inputs are divided into

replicated secret-shares as in Araki et al.’s protocol [1]. Beaver et

al.’s protocol [4] also has a precomputation phase which we do not

report. During the precomputation phase, each party 𝑃𝑖 garbles the

circuit locally. Then, in the online phase, the parties jointly generate

a distributed garbled circuit which they subsequently evaluate to

obtain their output.

232

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates Proceedings on Privacy Enhancing Technologies 2023(4)

Table 8 summarizes the running time of our protocol and the

online phase of Beaver et al.’s protocol [4] for addition, multiplica-

tion and comparison. We report only the running times for the best

possible circuits for each protocol. In the simulated WAN setting,

Beaver et al.’s protocol [4] has a lower running time for a single

instance of all functions. However, over the real WAN, our protocol

outperforms it in all except the 32-bit addition functionality where

it, however, matches it. We observe that, since the best circuits for

our protocol are based on multi-fan-in AND gates, the reduced

number of communication rounds significantly affects its running

time over WAN. Although Beaver et al.’s protocol [4] has a con-

stant number of rounds, the communication cost of distributing

the garbled circuit dominates the network latency. Table 9 shows

these communication costs for each function in both protocols. Our

protocol has a lower communication cost of 30-420× for 32-bit and

18-120× for 64-bit circuits. The difference in communication costs is

further underpinned by the running time of batches of 100 parallel

instances of the same circuit. In these cases, our protocol is faster

in both simulated and real WAN settings and processes a higher

number of parallel circuits.

Circuit

Fan Sim. WAN (s) WAN (s)

In 16 32 64 128 16 32 64 128

Sklansky

2 0.312 0.362 0.412 0.463 0.196 0.255 0.257 0.310

4 0.211 0.261 0.261 0.312 0.150 0.194 0.201 0.206

8 0.203 0.212 0.213 0.266 0.150 0.152 0.204 0.203

Wallace

2 0.865 1.067 1.272 1.388 0.512 0.609 0.718 0.865

4 0.665 0.767 0.925 1.064 0.411 0.461 0.628 0.641

Comp.

2 0.312 0.362 0.413 0.463 0.203 0.251 0.248 0.316

4 0.211 0.261 0.261 0.313 0.146 0.203 0.202 0.216

8 0.211 0.211 0.212 0.263 0.151 0.154 0.155 0.217

Table 7: Comparison of online running time (sec) of addition,
multiplication and comparison circuits for multiple fan-ins
and input bit-width

Finally, in Table 10, we show the communication cost of our

protocol for running 1000 instances of each circuit in parallel along-

side a breakdown of their numbers of AND gates by fan-in. The

circuits are mostly composed of 2-fan-in and ℓ ≤ 4-fan-in AND

gates. Hence, despite the exponential communication complexity

of multi-fan-in gates in our protocol, the majority of the computa-

tion is performed using AND gates of low fan-in which results in

an overall sub-exponential increase in communication cost when

using our protocol with multi-fan-in gates.

5.3 Results for AES with Optimized S-box
Since the work by Pinkas et al. [44], the running time to evaluate

an AES block cipher has been the common benchmark to measure

the performance of MPC protocols. In privacy-preserving AES, one

party holds the key 𝑘 , another party holds a message𝑚 and the goal

is to learn 𝐴𝐸𝑆𝑘 (𝑚) without revealing any more information about

𝑘 or𝑚. This has many interesting applications in practice including

encrypted databases [9, 34] and secure user authentication [1, 30].

Func. Work

Batch = 1 Batch = 100

Sim. WAN Sim. WAN

32 64 32 64 32 64 32 64

Add.

[4] 0.150 0.150 0.150 0.207 0.583 0.652 1.211 1.37

This 0.212 0.213 0.152 0.204 0.252 0.252 0.252 0.253

Mult.

[4] 0.586 0.639 1.179 1.316 7.493 11.375 20.35 24.64

This 0.767 0.925 0.461 0.628 0.960 1.422 0.727 1.174

Comp.

[4] 0.150 0.199 0.200 0.351 0.651 0.874 1.448 3.279

This 0.211 0.212 0.154 0.155 0.251 0.252 0.251 0.249

Table 8: Comparison of online running time (sec) of our pro-
tocol and Beaver et al.’s protocol [4] for addition, multiplica-
tion and comparison circuits

Function Work n = 32 n = 64

Addition

[4] 38.900 78.300

This 1.325 4.378

Multiplication

[4] 3600.000 4940.000

This 8.533 37.173

Comparison

[4] 87.050 194.100

This 0.584 2.010

Table 9: Comparison of communication cost (KB) of our and
Beaver et al.’s protocol [4] for addition, multiplication and
comparison circuits

C
i
r
c
u
i
t n = 16 n = 32 n = 64

AND
Comm.

(MB)

AND
Comm.

(MB)

AND
Comm.

(MB)

2 4 8 2 4 8 2 4 8

S
k
l
a
n
k
s
y 65 - - 0.056 161 - - 0.094 385 - - 0.182

43 30 - 0.104 107 70 - 0.208 235 198 - 0.504

39 24 24 0.595 87 74 52 1.325 183 190 188 4.378

W
a
l
l
a
c
e

828 - - 0.342 3330 - - 1.282 13098 - - 4.949

718 511 - 1.783 2755 2549 - 8.533 10830 11167 - 37.173

C
o
m
p
. 63 - - 0.056 143 - - 0.089 319 - - 0.161

8 31 - 0.088 32 63 - 0.154 48 159 - 0.342

10 19 8 0.291 12 55 16 0.584 16 95 64 2.010

Table 10: Comparison of communication cost of 1000 in-
stances of addition, multiplication and comparison circuits
formultiple fan-ins and input bit-width. The communication
cost of Araki et al.’s protocol [1] is the same as our protocol
for only 2-fan-in gates.

233

Proceedings on Privacy Enhancing Technologies 2023(4) Faraji and Kerschbaum

The AES block cipher is implemented in multiple sequential

rounds. Each round performs four operations on the input bytes,

namely, SubBytes (S-box), ShiftRows, MixColumn and AddRound-

Key [14]. Huang et al. show that only the S-boxes require non-linear

operations and hence are relevant to the running time of MPC pro-

tocols [26]. Boyar et al. present an optimized circuit of depth 4

and size 34 with only standard 2-fan-in AND gates [8]. Utilizing

the power of 3-fan-in gates, Patra et al. reduce the depth of this

circuit to 3 while keeping the same size [42]. We additionally take

advantage of 4-fan-in gates to build a circuit of depth 2. This comes

at the cost of increasing the size of the circuit to 66 of which 22 are

2-fan-in, 22 are 3-fan-in and 22 are 4-fan-in AND gates.

Param. Work

AES-128 AES-192 AES-256

Sim. WAN Sim. WAN Sim. WAN

Runtime

(sec)

[42] 2.006 2.052 2.408 2.455 2.810 2.856

[1] 1.964 2.071 2.417 2.520 2.720 2.885

[4] 0.651 1.147 0.673 1.120 0.677 1.124

This 1.056 0.655 1.258 0.747 1.458 0.858

Comm

(KB)

[42] 2.64 3.16 3.69

[1] 2.04 2.42 2.85

[4] 11680 13080 16110

This 165.7 198.2 230.8

Table 11: Comparison of online running time and communi-
cation cost of our protocol and [1, 4] for AES. Results of our
protocol and [1, 42] are reported for 100 parallel instances

Table 11 compares the latency and communication cost of our

protocol for this AES circuit to those of related work [1, 4, 42].

ABY2 [42] is a two-party protocol, but we only compare to the

online phase, which does not require public-key cryptographic

operations but only operations on secret shares as our protocol. We

use our new depth-optimized circuit for our protocol and ABY2 [42],

since they both support multi-fan-in gates. We use the circuit by

Boyar et al. [8] (only 2-fan-in gates) for Araki et al.’s [1] and Beaver

et al.’s protocol [4]. Our protocol has a higher communication cost

than related work [1, 42] as it requires an exponential number

of bits in the fan-in. However, in the simulated WAN setting, we

outperform the running time of both, ABY2 [42] and Araki et al.’s

protocol [1] by 1.9× for AES-128. Our running time advantage is

even stronger over WANwhere our protocol improves by 1.8× even

over Beaver et al.’s protocol [4] due to the effects of its asymmetric

communication. We achieve sub-second running time for all the 3

key sizes of AES over the real WAN (Amazon data centers) which

is a first for MPC protocols with the same setting as ours. This

is particularly important in case of streaming encryption, such as

AES-CBC mode.

The other common metric, with which to analyze MPC proto-

cols running AES, is throughput, i.e., the number of AES blocks per

second a protocol can compute. Table 12 compares the amortized

throughput of our protocol to related work [1, 4, 42] in both LAN

and WAN. We use circuits with depth-3 S-boxes built only with

Circuit Work LAN WAN

AES-128

[4] 131.9 3.2

[42] 75 K 4.8 K

[1] 115.5 K 8.2 K

This 111.2 K 18.1 K

AES-192

[4] 119.3 2.4

[42] 62.5 K 4.2 K

[1] 95.5 K 6.8 K

This 91.6 K 14.8 K

AES-256

[4] 89.1 2

[42] 54.2 K 3.6 K

[1] 81.3 K 5.8 K

This 78.4 K 12.2 K

Table 12: Comparison of online throughput of our protocol
and [1, 4] for AES.

3-fan-in gates (no 4 fan-in gates) for our protocol and ABY2 [42]. De-

spite that our new depth-2 S-boxes are shallower, their communica-

tion overhead uses too much bandwidth lowering total (amortized)

throughput.

Araki et al.’s protocol [1] has the highest throughput in LAN.

Our protocol’s throughput is slightly lower, but still competitive

since we require extra branching instructions and PRF invocations

to compute multi-fan-in AND gates. Over WAN, this additional

computation becomes less relevant compared to the network la-

tency such that our protocol improves by 2.2× over Araki et al.’s

protocol [1] and 3.8× over ABY2 [42]. Our protocol has the highest

throughput for all key sizes in WAN. Beaver et al.’s protocol [4]

is not competitive in this throughput benchmark due to its high

communication cost. We, hence, conjecture that it is also not com-

petitive for large and wide circuits.

6 RELATEDWORK
Two-party computation [49, 50] and multi-party computation [6,

22] have been introduced almost 40 years ago and since have been

subject to intense investigation. In 2002 Maurer presented a simple

multi-party computation protocol in the information-theoretic set-

ting using replicated secret shares for educational purposes [37].

Araki et al. [1] improve this protocol by using correlated random-

ness from pseudo-random functions and their resulting protocol

requires only one bit of communication per party for multiplication

in the semi-honest setting which is optimal in the information-

theoretic setting without preprocessing. Follow up work [20] ex-

tends this protocol to be secure against a malicious adversaries

with increased cost of 10 bits per multiplication and an additional

offline phase. Following this work, ABY3 [39] additionally designs

efficient conversions between binary sharing, arithmetic sharing

and Yao sharing and customized building blocks with specific fo-

cus on inference in Machine Learning (ML) models. Also tailored

to ML inference, Chameleon [46] makes use of Du and Atallah’s

protocol [18] with the help a semi-trusted party in the offline phase

which removes the requirement for all the parties to be online

during the protocol execution but their communication cost per

234

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates Proceedings on Privacy Enhancing Technologies 2023(4)

multiplication is 4 bits. Recently, ASTRA [12] was presented as a

new protocol following the secret sharing scheme by Gordon et

al. [23] that allows for a multiplication protocol with 2 bits of online

communication. It introduces a pre-computation phase, such that

the total communication cost (pre-computation plus online) equals

that of Araki et al. [1]. Similar to Chameleon, only two parties have

to participate during the online phase. This allows for an improve-

ment in the running time of the protocol where each round takes

the minimum latency among each pair of parties as opposed to

the maximum in Araki et al.’s protocol [1]. Our protocol shares the

same property with ASTRA, however, no preprocessing is needed

in our protocol. Since there is no public implementation for ASTRA,

we can not replicate their results. We expect the running time of

ASTRA be on the same order of our protocol on circuits using only

2-fan-in gates since the communication structure of both protocols

is essentially the same.

Most multi-party protocols require a number of communication

rounds linear in the multiplicative depth of the circuit they com-

pute. An exception are constant-round protocols based on Beaver

et al.’s technique [4]. Beaver et al.’s original construction had a

communication complexity cubic in the number of parties. Recent

improvement [5, 35, 36] have communication complexity quadratic

in the number of parties. However, these protocols are practically

even less efficient for current circuit sizes due to their use of com-

plex cryptography. Hence, we compare our protocol to a modified

version of Beaver et al.’s original technique based on replicated se-

cret sharing [31] and show that our protocol offers better efficiency

over simulated and real WANs despite higher round complexity.

Araki et al.’s protocol and ASTRA offer near-optimal efficiency.

However, their security may be criticized, because they operate in

the semi-honest model. Chaudhari et al. present a version secure

against malicious adversaries in the same publication [12]; Araki et

al. [20] offer a separate version. There exist protocols with further

efficiency improvements in the malicious model; some are three-

party protocols [33, 43] and some are four party protocols [10, 13,

15]. Securing our protocol against malicious adversaries is future

work.

To speed-up the online phase, Dessouky et al. [17] introduced

two different 2-party semi-honest protocols that use multi-input

lookup tables (LUT) rather than 2-input gates to reduce the number

of communication rounds for binary circuits. The best proposed

constructions for AES S-box needs 795 bytes of communication in 3

rounds and 257 bytes of communication in 1 round for both versions

of their protocols, respectively. In comparison, our protocol only

requires 130 bits of communication in 3 rounds which is further

distributed among 3 parties. In another work, Rotaru et al. [30]

extends the support for lookup tables to the multi-party setting

with malicious security. By operating over binary finite fields, they

improve the online communication cost of AES S-box to 48 bits

in 1 round in the semi-honest 3-party case instantiated with the

field F
2
8 . However, unlike our protocol, this requires a resource-

intensive offline phase with a throughput of < 1 blocks per second

which hinders the applicability of the protocol in settings where pre-

processing is infeasible or unwanted such as ad-hoc computations.

In addition, each evaluation round involves two-way communi-

cation between all pair of parties in contrast to our protocol. In fact,

considering the real WAN setup in Section 5.3, it takes 75 ms to pro-

cess a single round in Rotaru et al.’s protocol whereas ours is only

25 ms. Therefore, despite the fact that our AES S-box has 3× the

number of communication rounds, the overall latency is effectively

the same for both protocols in this environment. This applies to

many computations over many WAN due to the difference between

the maximum and minimum round trip time among the parties.

We remark though that the [30] is secure in a dis-honest majority

setting while our protocol works for honest-majority.

In a similar direction to ours, both Ohata et al. [41] and ABY2 [42]

introduced 2-party protocols for multi-fan-in multiplication in the

semi-honest model. Ohata et al. [41] modify the precomputation

of Beaver multiplication triples [3] to support multi-fan-in gates.

The online communication cost of this approach grows linearly

with the fan-in of the multiplication. Using a new sharing scheme,

the ABY2 [42] protocol requires a constant communication of just

2 bits for arbitrary fan-in multiplications. On the downside, both

protocols suffer from function-dependent preprocessing with com-

putation and communication costs that scale exponentially with

the multiplication fan-in.

7 CONCLUSION
In this work, we present a new honest-majority 3-party compu-

tation protocol secure against semi-honest adversaries. We show

that our protocol maintains the near-optimal communication com-

plexity to compute 2-fan-in AND gates while it is also capable of

evaluating multi-fan-in AND gates in a single round of communi-

cation. Yet, it does not require any preprocessing. We build new

depth-optimized circuits for basic operations such as addition, mul-

tiplication and comparison by taking advantage of multi-fan-in

AND gates. We demonstrate the performance gains of our pro-

tocol for these circuits by extensive experiments. For a common

benchmark, we use the AES circuit that we further optimize with

multi-fan-in AND gates. Our protocol achieves a 2-4× improvement

for both latency and throughput over state-of-the-art protocols in

the WAN environment.

We point out a few open problems to explore in future work.

First, with the increasing demand for privacy-preserving Machine

Learning (PPML), it is interesting to analyze the efficiency of our

protocol in these applications. Second, our protocol is secure for

an honest-majority in the semi-honest model. Achieving security

against other adversary structures with malicious or covert partic-

ipants is future work. The last but not the least open problem is

expanding our techniques to compute multi-fan-in AND gates in a

single communication round for the general 𝑛-party setting.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the Natural Sciences and

Engineering Research Council (NSERC) for grants RGPIN-05849,

and IRC-537591, the Royal Bank of Canada and Amazon Web Ser-

vices Canada.

REFERENCES
[1] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an

Honest Majority. In Proceedings of The 23rd ACM Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016.

235

Proceedings on Privacy Enhancing Technologies 2023(4) Faraji and Kerschbaum

[2] Shahzad Asif and Yinan Kong. 2015. Design of an Algorithmic Wallace Multiplier

using High Speed Counters. In Proceedings of the 10th International Conference of
Computing for Engineering and Sciences, Istanbul, ICCES 2015, Turkey. July, 29-31,
2015.

[3] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.

In Proceedings of the 11th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1991.

[4] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The round complexity

of secure protocols (extended Abstract). In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA.

[5] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. 2017. Efficient Scalable

Constant-Round MPC via Garbled Circuits. In Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-

tended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, May 2-4, 1988, Chicago, Illinois, USA.

[7] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas Toft. 2019. Secure

Multiparty Computation Goes Live. In 13th International Conference on Financial
Cryptography and Data Security, FC 2009, Accra Beach, Barbados, February 23-26,
2009.

[8] Joan Boyar, Philip Matthews, and René Peralta. 2013. Logic minimization tech-

niques with applications to cryptology. J. Cryptol. 26, 2 (2013).
[9] Luís T. A. N. Brandão, Nicolas Christin, George Danezis, and Anonymous. 2015.

Toward mending two nation-scale brokered identification systems. In Proceedings
of The 15th Privacy Enhancing Technologies Symposium, Philadelphia, PA, USA,
June 30 – July 2, 2015.

[10] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH: Fast

and robust framework for privacy-preserving machine learning. In Proceedings
of the 20th Annual Privacy Enhancing Technologies, Vol. 2. 459–480.

[11] Niklas Büscher and Stefan Katzenbeisser. 2017. Compilation for Secure Multi-party
Computation. Springer.

[12] Harsh Chaudhari, A. Choudhury, Ashish Patra, and Ajith Suresh. 2019. ASTRA:

High Throughput 3PC over Rings with Application to Secure Prediction. In

Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop, CCSW@CCS 2019, London, UK, November 11, 2019.

[13] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC

Framework for Privacy Preserving Machine Learning. In 27th Annual Network
and Distributed System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020.

[14] J. Daemen and V. Rijmen. 2002. The Design of Rijndael: AES — The Advanced
Encryption Standard. Springer.

[15] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic Four:

Honest-majority four-party secure computation with malicious security. In 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021.

[16] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

Computation from Somewhat Homomorphic Encryption. In Proceedings 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.

[17] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider,

Shaza Zeitouni, and Michael Zohner. 2017. Pushing the communication barrier

in secure computation using lookup tables. In The 24th Annual Network and
Distributed System Security Symposium, NDSS 2017, San Diego, California, USA,
February 26 - March 1, 2017.

[18] Wenliang Du and Mikhail J. Atallah. 2001. Protocols for secure remote database
access with approximate matching. Springer.

[19] Marc Fischlin. 2001. A Cost-Effective Pay-Per-Multiplication ComparisonMethod

for Millionaires. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track
at RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings.

[20] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-

Throughput Secure Three-Party Computation for Malicious Adversaries and

an Honest Majority. In Proceedings of the 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2017, Paris,
France, April 30 - May 4, 2017.

[21] Oded Goldreich. 2002. Secure Multi-Party Computation. https://www.wisdom.

weizmann.ac.il/~oded/PSX/prot.pdf.

[22] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA.

[23] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. 2018. Secure computation

with low communication from cross-checking. In Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application of
Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part III.

[24] Vipul Goyal and Yifan Song. 2020. Malicious Security Comes Free in Honest-

Majority MPC. In ryptology ePrint Archive, Report 2020/134.
[25] David Harris. 2003. A Taxonomy of Parallel Prefix Networks. In Proceedings of

The 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA,
November 9-12, 2003.

[26] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster secure two-

party computation using garbled circuits. In 20th USENIX Security Symposium,
USENIX Security 2011, San Francisco, CA, USA, August 8-12, 2011.

[27] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,

Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2019. PILOT:

Practical Privacy-Preserving Indoor Localization Using OuTsourcing. In 4th IEEE
European Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden,
June 17-19, 2019.

[28] Mihaela Ion, Ben Kreuter, Ahmet ErhanNergiz, Sarvar Patel, Shobhit Saxena, Karn

Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On Deploying

Secure Computing: Private Intersection-Sum-with-Cardinality. In IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11,
2020.

[29] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-

putation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, USA, November 9-13, 2020.

[30] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-

Vazquez, and Srinivas Vivek. 2017. Faster Secure Multi-Party Computation of AES

and DES Using Lookup Tables. In Proceedings of The 15th International Conference
on Applied Cryptography and Network Security, ACNS 2017, Kanazawa, Japan,
July10-12, 2017.

[31] Marcell Keller and Avishay Yanai. 2018. Efficient Maliciously Secure Multiparty

Computation for RAM. In Proceedings of the 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2018,
Tel Aviv, Israel, April 29 - May 3, 2018.

[32] Brian Knott, Shobha Venkataraman, Awni Y. Hannun, Shubho Sengupta, Mark

Ibrahim, and Laurens van der Maaten. 2021. CrypTen: Secure Multi-Party Com-

putation Meets Machine Learning. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual.

[33] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. In 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021.

[34] Sven Laur, Rilvo Talviste, and Jan Willemson. 2013. AES block cipher imple-

mentation and secure database join on the SHAREMIND secure multi-party

computation framework. In Proceedings of the 11th International Conference on
Applied Cryptography and Network Security, ACNS 2013, Banff, Canada, June 25-28,
2013.

[35] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. 2019. Efficient

Constant-Round Multi-party Computation Combining BMR and SPDZ. Journal
of Cryptology 32, 3 (2019), 1026–1069.

[36] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. 2016. More Efficient

Constant-Round Multi-party Computation from BMR and SHE. In Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part I.

[37] Ueli M. Maurer. 2020. Secure Multi-party Computation Made Simple. In Security
in Communication Networks, Third International Conference, SCN 2002, Amalfi,
Italy, September 11-13, 2002. Revised Papers.

[38] Payman Mohassel and Peter Rindal. 2017. Secureml: A system for scalable

privacy-preserving machine learning. In In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.

[39] Peyman Mohassel and Peter Rindal. 2021. ABY3: A Mixed Protocol Framework

for Machine Learning. In Proceedings of the 25th Annual (ACM) Conference on
Computer and Communications Security, Toronto, Canada, October 15-19, 2018.

[40] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. 2012. A NewApproach to Practical Active-Secure Two-Party Computation.

In Proceedings 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012.

[41] Satsuya Ohata and Koji Nuida. 2020. Communication-Efficient (Client-Aided)

Secure Two-Party Protocols and Its Application. In 24th International Conference
on Financial Cryptography and Data Security, Kota Kinabalu, Malaysia, February
10–14, 2020.

[42] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation. In 30th USENIX Secu-
rity Symposium, USENIX Security 2021, August 11-13, 2021.

[43] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving

Machine Learning. In 27th Annual Network and Distributed System Security Sym-
posium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.

[44] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.

2009. Secure Two-Party Computation is Practical. In Advances in Cryptology -
ASIACRYPT 2009 - 15th International Conference on the Theory and Application of
Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009.

236

https://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf
https://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf

Trifecta: Faster High-Throughput Three-Party Computation over WAN Using Multi-Fan-In Logic Gates Proceedings on Privacy Enhancing Technologies 2023(4)

[45] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yana. 2019.

“Efficient circuit- based PSI with linear communication. In 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Eurocrypt, Darmstadt, Germany, May 19-23, 2019.

[46] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure

Computation Framework for Machine Learning Applications. In Proceedings of
the 13th ACM Symposium on Information, Computer and Communications Security,
ASIACCS 2018, Incheon, Korea, June 4-8, 2018.

[47] Eleonora Testa, Mathias Soeken, Heinz Riener, Luca Amaru, and Giovanni De

Micheli. 2019. A Logic Synthesis Toolbox for Reducing the Multiplicative Com-

plexity in Logic Networks. In Proceedings of the 56th Annual Design Automation
Conference, Las Vegas, NV, USA, June 3-5, 2019.

[48] C.S. Wallace. 1964. A suggestion for a fast multiplier. IEEE Trans. Comput. 13
(1964), 14–17.

[49] Andrew Chi-Chih Yao. 1982. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, November
3-5, 1982.

[50] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, October
27-29, 1986.

[51] Moti Yung. 2015. From Mental Poker to Core Business: Why and How to Deploy

Secure Computation Protocols?. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, Denver, CO, USA, October 12-16,
2015.

237

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Correlated Randomness
	2.3 Message Masking
	2.4 Secret Sharing

	3 Our Protocol
	3.1 Boolean Circuits
	3.2 Threat Model and Security

	4 Communication-Efficient Circuits
	5 Experimental Implementation and Benchmarks
	5.1 Results for AND Trees
	5.2 Results for Communication-Efficient Circuits
	5.3 Results for AES with Optimized S-box

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

