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ABSTRACT
Partition selection, or set union, is an important primitive in differ-

entially private mechanism design: in a database where each user

contributes a list of items, the goal is to publish as many of these

items as possible under differential privacy.

In this work, we present a novel mechanism for differentially

private partition selection. This mechanism, which we call DP-SIPS,

is very simple: it consists of iterating the naive algorithm over

the data set multiple times, removing the released partitions from

the data set while increasing the privacy budget at each step. This

approach preserves the scalability benefits of the naive mechanism,

yet its utility compares favorably to more complex approaches

developed in prior work.
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1 INTRODUCTION
Group-level aggregation is a fundamental building block for many

data analysis tasks. For example, doctors may want to understand

mortality rates for patients with different underlying conditions,

and search engine developers may want to study the frequency of

different search queries that users are making.

With increased awareness of the risks of data disclosure, increas-

ingly data analysts are using differentially private mechanisms to

answer queries on sensitive data sets. In both of the given examples,

the aggregate values (e.g., the mortality rates, or the frequencies

of search queries) are sensitive, but also the groups themselves are

sensitive. Revealing that some user in the data set has a particu-

lar disease or made a particular search query could itself violate

privacy—even if it is never revealed who that person is. Addition-

ally, the set of groups may be a priori unknown or impractical to

enumerate, like in vocabulary extraction [11] or the private release

of search queries [14].

In order to privately do a group-level aggregation in such settings,

one must first privately compute the set of groups represented

in the data set—ideally, releasing as many as possible while still

maintaining privacy. More formally, the mechanism𝑀 gets a data

set 𝑥 = (𝑊1, . . . ,𝑊𝑁 ) where each user 𝑖 has a list of items𝑊𝑖 and𝑀
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differentially privately releases a subset 𝑆 ⊆ ∪𝑖𝑊𝑖 of the partitions

that is as large as possible.

We study this problem, called differentially private partition se-
lection (also called key selection or set union), with a focus on

approaches that can be incorporated into general-purpose differen-

tially private tooling. When designing such frameworks, scalability

is of paramount importance [1, 2, 21]: underlying mechanisms must

be able to run even when the input or the output is too large to fit

on a single machine. In such cases, the computation itself must also

be parallelizable, so it can run across multiple machines and avoid

unacceptably long running times.

Differentially private partition selection mechanisms have been

proposed as early as 2009 [14], but recent work has shed a new

light on this problem, and proposed alternative approaches that

bring significant utility gains [6, 11]. To obtain these utility im-

provements, these newer mechanisms use a greedy approach: each

user considers what items have been contributed by previous users

so far, and “chooses” which items to contribute according to a policy,
chosen carefully to maintain a sensitivity bound. Unfortunately,

these mechanisms do not scale: each user chooses their contribu-

tion based on the contribution of all previous users, so the data has

to be processed one user after another, and the overall algorithm

cannot be parallelized. This intuition can be verified experimentally:

we show that such algorithms eventually time out or run out of

memory when the input is very large, even on clusters of multiple

machines. Because these greedy algorithms do not scale, differential

privacy tools that need to handle large datasets cannot use these

smarter approaches, and instead must rely on the naive algorithm

and its underwhelming utility [9, 10, 15].

This raises a natural question: can we achieve the utility benefits

of policy-based approaches, while preserving the scalability of more

naive approaches? In this work, we introduce a new approach

that combines both benefits: DP-SIPS, short for scalable, iterative
partition selection.

DP-SIPS relies on a simple idea: rather than having to process

the data of each user sequentially, it runs the naive, massively-

parallelizable algorithm multiple times, splitting the privacy budget

between each step and removing items that were previously discov-

ered. It uses a minuscule amount of privacy budget to publish and

then remove the “heavy hitters”–those which have an enormous

amount of weight in the histogram–and allocates the majority of

the budget to discovering items that remain after heavy hitters

are removed from the dataset. On skewed datasets, the removal of

heavy hitters allows users to allocate proportionally more weight in

subsequent histograms to less-frequent items while the increased

privacy budget on later iterations also lowers the threshold for

releasing an item.
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As we show experimentally on multiple real-world and synthetic

datasets, this mechanism has a similar utility to greedy approaches,

but scales horizontally: increasing the number of cluster nodes

significantly reduces runtime. This makes it a suitable choice for

implementation in general-purpose DP infrastructure with high

scalability requirements.

The rest of this paper is organized as follows:

• In Section 2, we formally define the problem and the building

blocks we use for DP-SIPS and its privacy accounting.

• In Section 3, we detail existing approaches to differentially

private partition selection.

• In Section 4, we introduce our algorithm and the proof of its

privacy guarantees.

• In Section 5, we report on the experimental evaluation of

DP-SIPS.

• Finally, in Section 6, we discuss our results, report on some

unsuccessful approaches that we tried, and outline directions

for future work.

2 PRELIMINARIES
A data set 𝑥 = (𝑊1, . . . ,𝑊𝑁 ) contains a set of user lists𝑊𝑖 ∈ U∗.
We refer to elements inU as items or partitions, and define partition
selection (also called key selection or set union) as follows:

Definition 1 (Private Partition Selection Problem). Given
a (possibly unbounded) universe U of items and a data set 𝑥 =

(𝑊1, . . . ,𝑊𝑁 ) of user lists 𝑊𝑖 ∈ U∗, an algorithm M solves the
private partition selection problem if it is differentially private, and
M outputs a set 𝑆 ⊆ ∪𝑖𝑊𝑖 .

We begin by presenting the standard notion of differential pri-

vacy. Two data sets 𝑥, 𝑥 ′ are neighbors if they differ on one user’s list:
𝑥 = 𝑥 ′ ∪𝑊𝑖∗ . Informally, differential privacy requires that an algo-

rithm’s output is distributed similarly on every pair of neighboring

data sets.

Definition 2 (Differential Privacy [7, 8]). A randomized
algorithmM : U∗ → Y is (𝜀, 𝛿)-differentially private if for every
pair of neighboring datasets 𝑥, 𝑥 ′ ∈ U∗ and for all subsets 𝑌 ⊆ Y,

Pr[M(𝑥) ∈ 𝑌 ] ≤ 𝑒𝜀 · Pr[M(𝑥 ′) ∈ 𝑌 ] + 𝛿.

A common variant of differential privacy, called zCDP, is use-

ful for analyzing algorithms that sample noise from a Gaussian

distribution (as ours will). The definition of zCDP uses the Rényi

Divergence:

Definition 3 (Rényi Divergence). Fix two probability distribu-
tions 𝑃 and 𝑄 over a discrete domain 𝑆 . Given a positive 𝛼 ≠ 1, Rényi
divergence of order 𝛼 of distributions 𝑃 and 𝑄 is

𝐷𝛼 (𝑃 | |𝑄) =
1

1 − 𝛼 log

(∑︁
𝑠∈𝑆

𝑃 (𝑠)𝛼𝑄 (𝑠)1−𝛼
)
.

Definition 4 (𝜌-zCDP [4]). A randomizedmechanismM : X∗ →
Y satisfies 𝜌-zCDP if, for all 𝑥, 𝑥 ′ ∈ X∗ differing on a single entry,

𝐷𝛼 (𝑀 (𝑥) | |𝑀 (𝑥 ′)) ≤ 𝜌 · 𝛼 ∀𝛼 ∈ (1,∞) . (1)

This definition can also be relaxed to approximate zCDP.

Definition 5 (Approximate zCDP [4]). A randomized mecha-
nism𝑀 : X𝑛 → Y is 𝛿-approximately 𝜌-zCDP if, for all 𝑥, 𝑥 ′ ∈ X𝑛
differing on a single entry, there exist events 𝐸 = 𝐸 (𝑀 (𝑥)) and
𝐸 ′ = 𝐸 ′(𝑀 (𝑥 ′)) such that, for all 𝛼 ∈ (1,∞),

𝐷𝛼 (𝑀 (𝑥) |𝐸 | |𝑀 (𝑥 ′) |𝐸′) ≤ 𝜌 · 𝛼 and (2)

𝐷𝛼 (𝑀 (𝑥 ′) |𝐸′ | |𝑀 (𝑥) |𝐸 ) ≤ 𝜌 · 𝛼, (3)

and Pr[𝐸] ≥ 1 − 𝛿 and Pr[𝐸 ′] ≥ 1 − 𝛿 .

Approximate zCDP satisfies composition and post-processing

properties.

Lemma 6 ([4], Lemma 8.2). Let 𝑀 : X𝑛 → Y and 𝑀 ′ : X𝑛 ×
Y → Z. Suppose 𝑀 satisfies 𝛿-approximate 𝜌-zCDP and for all
𝑦 ∈ Y,𝑀 ′(·, 𝑦) : X𝑛 →Z satisfies 𝛿 ′-approxmiate 𝜌 ′-zCDP. Define
𝑀 ′′ : X𝑛 → Z by 𝑀 ′′(𝑥) = 𝑀 ′(𝑥,𝑀 (𝑥)). Then, 𝑀 ′′ satisfies
(𝛿 + 𝛿 ′ − 𝛿 · 𝛿 ′)-approximate (𝜌 + 𝜌 ′)-zCDP.

Next we show a conversion from approximate zCDP to approxi-

mate DP. We rewrite the conversion lemma from [4] to be slightly

more general (i.e. it uses an existing conversion from zCDP to ap-

proximate DP), and then apply the tight zCDP-to-approximate DP

conversion given in [5]. Overall, this gives a tighter approximate

zCDP-to-approximate DP conversion than what is stated in Lemma

8.8 of [4].

Lemma 7 (Generalized version of Lemma 8.8 from [4]). Sup-
pose we can show that every mechanism that satisfies 𝜌-zCDP must
satisfy 𝜖∗ (𝜌), 𝛿∗ (𝜌)-approximate DP. That is, (𝜖∗, 𝛿∗) is a function
converting a (pure) zCDP guarantee to an approximate DP guarantee.
SupposeM : X𝑁 → Y satisfies 𝛿-approximate 𝜌-zCDP. Then,M
satisfies (𝜖∗ (𝜌), 𝛿 + (1 − 𝛿)𝛿∗ (𝜌))-DP.

Lemma 8 ([5], Proposition 7). SupposeM : X𝑁 → Y satisfies
𝜌-zCDP. ThenM satisfies (𝜖, 𝛿)-approximate DP for any 𝜖 > 0 and

𝛿 = inf

𝛼 ∈(1,∞)
exp((𝛼 − 1) (𝛼 · 𝜌 − 𝜖))

𝛼 − 1

(
1 − 1

𝛼

)𝛼
. (4)

Combining Lemma 7 and Lemma 8 gives us the following.

Corollary 9. SupposeM : X𝑁 → Y satisfies 𝛿-approximate
𝜌-zCDP. ThenM satisfies (𝜖, 𝛿 + (1 − 𝛿)𝛿 ′)-approximate DP for any
𝜖 > 0 and

𝛿 ′ = inf

𝛼 ∈(1,∞)
exp((𝛼 − 1) (𝛼 · 𝜌 − 𝜖))

𝛼 − 1

(
1 − 1

𝛼

)𝛼
. (5)

A common primitive in building private algorithms, the Gaussian

Mechanism, satisfies 𝜌-zCDP.

Definition 10 (Gaussian Distribution). The Gaussian distri-
bution with parameter 𝜎 and mean 0, denotedN(0, 𝜎2) is defined for
all ℓ ∈ R and has probability density

ℎ(ℓ) = 1

𝜎
√
2𝜋

𝑒
− ℓ2

2𝜎2 .

Definition 11 (ℓ2-Sensitivity). Let 𝑓 : U𝑛 → R𝑑 be a function.
Its ℓ2-sensitivity is

Δ𝑓 = max

𝑥,𝑥 ′∈U
𝑥,𝑥 ′𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2 .
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Definition 12 (Gaussian Mechanism [4]). Let 𝑓 : U𝑛 → R𝑑
be a function with ℓ2-sensitivity Δ𝑓 . Then the Gaussian mechanism
is the algorithm

M𝑓 (𝑥) = 𝑓 (𝑥) + (𝑍1, . . . , 𝑍𝑑 ),

where 𝑍𝑖 ∼ N
(
0,

Δ2

𝑓

2𝜌

)
. AlgorithmM𝑓 satisfies 𝜌-zCDP.

3 PRIOR APPROACHES TO PARTITION
SELECTION

In this section we discuss three existing algorithms for differentially

private partition selection. We begin with the naive algorithm,

called Weighted Gaussian, in Section 3.1. In Section 3.2, we present

Policy Gaussian [11] and Greedy updates Without sampling [6].

The algorithms all have three main steps: first, they compute a

weighted histogram, which is simply a mapping from an item𝑢 ∈ U
to a weight𝐻 [𝑢] ∈ R; second, they add calibrated noise to each item
in the histogram; and lastly, they release items that are above some

appropriately-chosen threshold 𝑇 . The primary difference between

the algorithms is in how they compute the weighted histogram.

This high-level algorithm for private partition selection is described

in Algorithm 1, which can be composed with different weighted

histogram algorithms.

Algorithm 1 High-Level Partition Selection Algorithm

Input: Data set of user partitions 𝑥 = (𝑊1, . . . ,𝑊𝑁 )
Weighted Histogram Algorithm Weighted_Hist
Threshold 𝑇

Noise distribution D
Output: Partitions 𝑆 ⊆ ∪𝑖𝑊𝑖

1: Initialize empty set 𝑆 ← {}
2: 𝐻 ← Weighted_Hist(𝑥) ⊲ Compute weighted histogram

3: for 𝑢 ∈ 𝑆𝑢𝑝𝑝 (𝐻 ) do
4: 𝑍𝑢 ∼ D
5: �̂� [𝑢] ← 𝐻 [𝑢] + 𝑍𝑢
6: if �̂� [𝑢] ≥ 𝑇 then
7: 𝑆 ← 𝑆 ∪ {𝑢}

return 𝑆

3.1 Baseline: Weighted Gaussian
The Weighted Gaussian algorithm (Algorithm 2) is one of the sim-

plest and first algorithms for private partition selection [14]. To

build a weighted histogram, the algorithm first pre-processes the

data set by removing any duplicates within a user’s set and trun-

cating each user’s set to have at most Δ0 items. Then, the users

compute a histogram with bounded ℓ2-sensitivity as follows: each

user 𝑖 updates the weight 𝐻 [𝑢] for each of the items 𝑢 in their set

𝑊𝑖 with the following rule:

𝐻 [𝑢] ← 𝐻 [𝑢] + 1√︁
|𝑊𝑖 |

.

The resulting weighted histogram has an ℓ2-sensitivity of 1, so it

can be composed with the high-level algorithm using calibrated

Gaussian noise and an appropriate threshold to ensure that the over-

all algorithm satisfies 𝛿-approximate 𝜌-zCDP. In the statement of

Algorithm 2, Φ(·) is used to denote the cumulative density function

of the standard Gaussian distribution and Φ−1 (·) is its inverse.

Algorithm 2 Weighted Gaussian

Input: Data set 𝑥 = (𝑊1, . . . ,𝑊𝑁 )
Privacy parameters (𝜌, 𝛿)
Maximum per-user contribution Δ0

Output: Partitions 𝑆 ⊆ ∪𝑖𝑊𝑖

1: Initialize empty histogram 𝐻 ← {}
2: Initialize empty set 𝑆 ← {}
3: for 𝑖 = 1, . . . , 𝑁 do
4: 𝑊𝑖 ← get rid of duplicate items from𝑊𝑖

5: 𝑊𝑖 ← uniformly sample at most Δ0 items from𝑊𝑖

6: for 𝑢 ∈𝑊 𝑖 do
7: 𝐻 [𝑢] ← 𝐻 [𝑢] + 1√︃

|𝑊 𝑖 |

8: 𝜎 ← 1√
2𝜌

9: 𝑇 ← max𝑘∈[Δ0 ]
{

1√
𝑘
+ 𝜎 · Φ−1

(
(1 − 𝛿)1/𝑘

)}
10: for 𝑢 ∈ 𝑆𝑢𝑝𝑝 (𝐻 ) do
11: �̂� [𝑢] ← 𝐻 [𝑢] + N (0, 1

2𝜌 )
12: if �̂� [𝑢] ≥ 𝑇 then
13: 𝑆 ← 𝑆 ∪ {𝑢}

return 𝑆

Theorem 13. Fix any 𝜌 > 0, any 𝛿 ∈ (0, 1), and any Δ0 ∈ N. The
Weighted Gaussian algorithm (Algorithm 2) satisfies 𝛿-approximate
𝜌-zCDP.

See Appendix A for the proof of Theorem 13.

The Weighted Gaussian algorithm benefits from being highly

scalable. In particular, it lends itself well to parallel computation

across several computers within a cluster, because the weights on

each histogram item can be computed in parallel as well as the noise

addition and thresholding steps (see Figure 8). Thus, Algorithm 2 is

the standard approach for doing partition selection on data sets that

are too large to fit in a single machine’s memory. Unfortunately,

Weighted Gaussian suffers from poor accuracy compared to the

greedy approaches we discuss next.

3.2 Greedy Approaches
One problem with the Weighted Gaussian algorithm is users waste

their sensitivity budget on histogram items that are already well

above the threshold. Most real-world data has highly skewed item

frequencies, but Weighted Gaussian increments all items in a user’s

set by the same amount.

The two greedy algorithms we discuss next solve this problem by

iterating through the users one-by-one and using an update policy
and the current state of the histogram to decide how to allocate

weight across the items in their set. That is, each user’s update de-

pends on previous users’ updates. For example, in both algorithms,

users do not contribute to items in 𝐻 that have already reached 𝑇 ∗,
the threshold 𝑇 plus some positive buffer; items that have reached

the buffered threshold are very likely to be returned after noise

is added and thus do not need more weight. These adaptive up-

date rules are carefully chosen so that the overall algorithm has
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bounded global sensitivity. As we will discuss in later sections, the

main downside of these algorithms is their sequential nature. By

design, they require iterating over the entire data set, which may

be prohibitively slow for industrial data sets.

3.2.1 Policy Gaussian [11] (DPSU). As with theWeighted Gaussian

algorithm, the data set is pre-processed by removing duplicate items

from each user’s set and truncating the user sets to some fixed

maximum size Δ0. Then, the algorithm iterates sequentially over

the users and, for each item 𝑢 in user 𝑖’s set𝑊𝑖 , the user increments

𝐻 [𝑢] by a weight that is proportional to 𝑇 ∗ − 𝐻 [𝑢], where 𝑇 ∗ is
equal to 𝑇 plus some positive buffer. Essentially, items that are
further from the buffered threshold get more weight added to them,
and those that have already reached the buffered threshold get none.
The weight that a user adds to each item is normalized so a single

user’s update to 𝐻 has an ℓ2-norm of at most 1.We refer to this

algorithm as DPSU.

Gopi et al. prove that the global ℓ2-sensitivity of the entire Policy

Gaussian algorithm is bounded by 1, so applying the high-level al-

gorithm (Algorithm 1) with appropriately-scaled Gaussian noise to

each item and thresholding are sufficient for satisfying differential

privacy.

3.2.2 Greedy updates Without sampling (GW) [6]. Carvalho et

al. observe that, rather than removing duplicate items in a user’s

set, one can use this frequency information to decide where to

allocate sensitivity budget. GW iterates over the users, and each

user computes 𝑢∗: the most frequent item in their list such that

𝐻 [𝑢∗] is below the buffered threshold 𝑇 ∗. Then, the user incre-

ments 𝐻 [𝑢∗] by min(1,𝑇 ∗ − 𝐻 [𝑢∗], 𝑏𝑢𝑑𝑔𝑒𝑡) where 𝑏𝑢𝑑𝑔𝑒𝑡 is the
user’s remaining ℓ1 budget. This process is repeated until the user’s

initial budget of 1 is consumed or the user has no items left that are

below 𝑇 ∗1. Carvalho et al. prove that their GW algorithm for build-

ing a weighted histogram has a global ℓ1-sensitivity bound of 1, so

running the high-level algorithm (Algorithm 1) with Laplace noise

and thresholding is sufficient for satisfying differential privacy.

One notable feature of their algorithm is that it can use item fre-

quency information from a public data set to increase the accuracy

of the frequency estimates. We do not use this feature when com-

paring it to other algorithms, since our goal is to create a general-

purpose algorithm that could be incorporated into a privacy frame-

work without requiring a data analyst to input a public data set.

4 DP-SIPS
In this section we present DP-SIPS: Differentially Private Scalable,

Iterative Partition Selection, detailed in Algorithm 3. The basic

structure is quite simple: it runs Weighted Gaussian on the data set

multiple times with increasing privacy budget (and corresponding

decreasing thresholds); on each iteration, the partitions returned

by Weighted Gaussian are removed from each of the users’ sets.

Because Weighted Gaussian updates the histogram uniformly

across a user’s items, when returned partitions are removed from

the user’s set, they can allocate more weight to their remaining

items (see Figure 1). The first iteration returns the very popular

1
As the algorithm is presented in [6], it does not always terminate. In particular, they

do not consider the case when a user has budget left but all of its items have reached

𝑇 ∗ , but adding this condition luckily does not affect the privacy proof.

items using only a tiny fraction of the overall privacy budget, and

subsequent iterations yield less frequent items. The action of the

algorithm is twofold: in each iteration, the threshold is lowered at
the same time as users allocate more weight to each of the items that
remain in their sets (since the user sets get smaller when previously-

returned items are removed).

Furthermore, the user sets are re-truncated on each iteration

after the previously returned partitions are removed. For data sets

that are both skewed in the item frequencies and in the sizes of

users’ sets, this allows additional items to be included on each

iteration.

Algorithm 3 DP-SIPS: Scalable, Iterative Partition Selection

Input: Data set 𝑥 = (𝑊1, . . . ,𝑊𝑁 )
Maximum per-user contribution Δ0

Privacy parameters 𝜌, 𝛿

Number of iterations 𝐼

Privacy budget allocation factor 𝑟 > 0

Output: Subset 𝑆 ⊆ ∪𝑖𝑊𝑖

1: 𝑆 ← {}
2: for 𝑖 = 0, . . . , 𝐼 − 1 do
3: if 𝑟 = 1 then
4: (𝜌𝑖 , 𝛿𝑖 ) ←

(
𝜌

𝐼
, 𝛿
𝐼

)
5: else
6: (𝜌𝑖 , 𝛿𝑖 ) ←

(
𝜌 · 𝑟 𝐼−𝑖−1 · 1−𝑟

1−𝑟 𝐼 , 𝛿 · 𝑟 𝐼−𝑖−1 · 1−𝑟
1−𝑟 𝐼

)
7: 𝑃𝑖 ← Weighted_Gauss (𝑥 = (𝑊1, . . . ,𝑊𝑁 ), 𝜌𝑖 , 𝛿𝑖 ,Δ0)
8: for 𝑗 ∈ 𝑁 do
9: 𝑊𝑗 ←𝑊𝑗 \ 𝑃𝑖 ⊲ Remove already-found partitions

10: 𝑆 ← 𝑆 ∪ 𝑃𝑖
return 𝑆

Theorem 14. For any 𝜌 > 0 and any 𝛿 ∈ (0, 1], Algorithm 3
satisfies 𝛿-approximate 𝜌-zCDP.

Proof. By Theorem 13, each call to Weighted_Gauss satisfies 𝛿𝑖 -
approximate 𝜌𝑖 -zCDP. Applying composition and postprocessing

(Lemma 6), Algorithm 3 satisfies

(∑𝐼−1
𝑖=0 𝛿𝑖

)
-approximate

(∑𝐼−1
𝑖=0 𝜌𝑖

)
-

zCDP.

If 𝑟 = 1, then clearly

∑𝐼−1
𝑖=0 𝜌/𝐼 = 𝜌 and similarly

∑𝐼−1
𝑖=0 𝛿/𝐼 = 𝛿 .

Now, for 𝑟 ≠ 1 we will solve for these summations using the

closed-form formula for geometric sums.

𝐼−1∑︁
𝑖=0

𝜌𝑖 =

𝐼−1∑︁
𝑖=0

𝜌 · 𝑟 𝐼−𝑖−1 · 1 − 𝑟
1 − 𝑟 𝐼

= 𝜌 · 1 − 𝑟
1 − 𝑟 𝐼

·
𝐼−1∑︁
𝑖=0

𝑟 𝐼−𝑖−1

= 𝜌 · 1 − 𝑟
1 − 𝑟 𝐼

·
𝐼−1∑︁
𝑗=0

𝑟 𝑗 = 𝜌 · 1 − 𝑟
1 − 𝑟 𝐼

· 1 − 𝑟
𝐼

1 − 𝑟 = 𝜌.

An identical calculation holds for

∑𝐼−1
𝑖=0 𝛿𝑖 . Thus, Algorithm 3 satis-

fies 𝛿-approximate 𝜌-zCDP. □

A key advantage of DP-SIPS is that it is massively parallelizable:

within each iteration, the mechanism performs a simple groupby-

count operation, which can be distributed among multiple cores or

a cluster of multiple machines. DP-SIPS requires multiple iterations,

so it takes longer to run than the naive algorithm. However, only
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Figure 1: Depiction of Weighted Gaussian noisy histogram (left) compared to intermediate SIPS noisy histograms (right three
diagrams) on a skewed data set. Solid blue bars represent partitions that will be returned, and yellow outlines represent the
weight of each item on the previous iteration. Although the threshold for Weighted Gaussian is lower than each of the SIPS
thresholds, SIPS benefits from less-frequent items getting increased weight as returned partitions are removed from user sets.

a few iterations are required to achieve good accuracy (see Sec-

tion 5.2.3), so its runtime is still reasonable even on large datasets.

A visual explanation of the scalability property of DP-SIPS in com-

parison with other approaches can be found in Figure 8, and an

experimental performance and scalability comparison can be found

in Section 5.3.

Relation to Algorithm 7 in [13]. Private Product-Distribution Es-

timator in [13] privately estimates a product of 𝑑 Bernoulli distri-

butions, and has some structural similarities to DP-SIPS: it also

uses weighted Gaussian iteratively with decreasing thresholds, re-

moving items above the threshold in each round to estimate the

frequencies of each coordinate. Aside from the problem setting

(bounded vs. unbounded domain) and goal (distribution estimation

vs. partition selection), a major difference is that [13] partitions

the dataset horizontally into log(𝑑/2) groups, and uses different

subsets of user records on each round. This partitioning step is

key to their privacy and accuracy arguments and leads to log(𝑑/2)
rounds rather than the constant number of rounds that DP-SIPS

uses.

4.1 Scalability Analysis in the MapReduce
Framework

We analyze DP-SIPS in the MapReduce model of distributed com-

puting to better understand its scaling behavior on a cluster. The

model proceeds in rounds that are synchronized across worker

nodes running in parallel. The data records begin arbitrarily par-

titioned among the worker nodes. Each round begins with a map
phase in which the worker node applies a map to each record in

its partition. Next, the records are shuffled among the workers so

that records with the same key are located on the same worker

node. Lastly, each worker processes the records in the reduce phase.
The three phases (map, shuffle, and reduce) constitute one round

in the MapReduce framework. Typically, the shuffle phase is the

most time intensive since large amounts of data must move among

the worker nodes, so the overall number of rounds usually reflects

an algorithm’s efficiency on a real system.

DP-SIPS proceeds in the following steps (see Figure 2):

Figure 2: MapReduce Diagram for DP-SIPS. Each iteration
within SIPS involves two rounds of MapReduce.

(1) Shuffle records by user_id
(2) Bound the number of contributions per user

(3) Shuffle records by item. Call this dataset 𝐷 .
(4) Count the number of items, add noise, and store the set of

items 𝑆 above the threshold

(5) Do a join to remove items in 𝑆 from 𝐷 . The records now

consist of 𝐷 \ 𝑆 . If this is the last iteration, this step can be

skipped.

(6) Return to Step 1 for 𝐼 iterations in total.

All but the last iteration of DP-SIPS involves three MapReduce

rounds: first shuffling records by user to truncate; then shuffling

by item to count, add noise, and threshold; lastly, doing a join

with the original data to remove items that were released. In the

last iteration, the join is not necessary. So, in total the algorithm

does 3(𝐼 − 1) + 2 rounds in the MapReduce framework, where

𝐼 is the number of iterations of DP-SIPS. In our experiments we

set 𝐼 = 3, so DP-SIPS performs 8 MapReduce rounds. Weighted

Gaussian only uses 2 MapReduce rounds, since 𝐼 = 1. The greedy

algorithms cannot be parallelized–specifically the greedy methods

for histogram computation–so each record must be loaded into the

one worker node to make its contribution to the histogram. This

requires 𝑂 (𝑁 ) rounds of MapReduce, where 𝑁 is the number of

users. Indeed, our experimental results in Section 5.3 (Figures 10 and

11) show that the runtime of DP-SIPS decreases with the number

of cores while the greedy algorithms stay constant.
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Data set Users Observations Vocabulary Size

Reddit 223,388 373,983 155,701

Twitter 702,682 2,811,774 1,300,123

Finance 1,400,465 1,400,465 267,256

IMDb 49,999 49,999 194,532

Wikipedia 245,103 245,103 631,866

Amazon 4,000,000 4,000,000 4,250,427

Synthetic_80M 80,000,000 4,643,596,660 741,129,124

Table 1: Number of users, number of observations, and true
vocabulary size for each data set we consider.

5 EXPERIMENTAL RESULTS
We use data sets of several different sizes from varied text domains

to validate the empirical performance of the DP-SIPS algorithm, and

we find that in general DP-SIPS has comparable accuracy to DPSU

and GWwhile scaling to large data sets that DPSU and GW timeout

on. As with prior works, we focus on the problem of vocabulary

discovery under the constraint of user-level privacy.

We begin by describing the data sets in Section 5.1 and then,

in Section 5.2 we discuss how the empirical accuracy of DP-SIPS

compares to that of existing algorithms, and in Section 5.3 we

discuss the results from our scalability experiments.

5.1 Data sets
Weuse six publicly-available data sets and one synthetically-generated

data set to study the accuracy of DP-SIPS against existing partition

selection algorithms, and we use the largest two of the seven for

scalability experiments on Amazon Elastic Map Reduce clusters.

Reddit [18] is a data set of text posts collected from r/AskReddit

which appeared as a benchmark in [6, 11]. We also use four data

sets that appeared in [6]: Twitter [19], comprising customer sup-

port tweets to and from large corporations; Finance [3], financial
headlines for stocks; IMDb [17], a set of movie reviews scraped from

IMDb; Wikipedia [20], a set of Wikipedia abstracts (where we treat

each abstract as a separate user set).

For the scalability experiments, we use Amazon [12], a publicly-
available text data set from Kaggle of 4 million Amazon product

reviews, and a synthetically generated data set Synthetic_80M
with 80million users and 4.6 billion observations. The synthetic data

set, Synthetic_80M, is generated as follows. First, each user draws

the number of items in their set from a Pareto distribution of scale 10

and shape 1.16; this captures the common “80-20 principle” observed

on many empirical datasets that states that 80% of outcomes are due

to 20% of causes. Then, each item in each user’s set is generating

by sampling from a zeta distribution of parameter 1.1; this captures

Zip’s law, which states that in many types of data (including words

in natural languages), the rank-frequency distribution follows an

inverse relation.

Table 1 lists the number of users, number of observations, and the

vocabulary size of each data set. Using the same methods as [6, 11],

we preprocess all non-synthetic data sets using tokenization with

nltk.word_tokenize, removing URLs and symbols, and lower cas-

ing all words.

5.2 Accuracy results
Because the goal of partition selection is to privately output as

many partitions as possible, we measure accuracy as the number of
partitions released. To date, there are no analytical accuracy guar-

antees for any prior partition selection algorithms (in the setting

where users contribute multiple items), so we must use experimen-

tal validation to understand the accuracy of each algorithm.

We test the accuracy of the four algorithms: Weighted Gaussian

(Algorithm 2), SIPS (our Algorithm 3), Policy Gaussian (DPSU) from

[11], and Greedy updates Without sampling (GW) from [6].

Table 2 shows the following accuracy trends for SIPS on the

datasets described in Section 5.1:

• SIPS only performs slightly worse than both GW and DPSU

on one dataset (Finance); in general, SIPS’ performance is

on par with DPSU’s.

• The accuracy of SIPS is consistently approximately double

that of Weighted Gaussian.

In addition, Figures 3, 4, and 5 demonstrate that the relative

accuracy of each algorithm on a given data set remains consistent

across different choices of privacy parameters.

5.2.1 Accuracy Inconsistencies. While GW tends to perform well,

its accuracy on the IMDb and Wikipedia data sets is below even

that of Weighted Gaussian (see Figure 5). To further investigate this

phenomenon, we modify these two data sets in addition to Finance
to remove repeated items within each user’s set (see the data sets

marked as “deduplicated” in Table 2). Note also that the accuracy

of the other three algorithms is unaffected by deduplication since

they all perform this preprocessing step to the data sets.

Without any item frequency information, the algorithm adds

all of its weight to a randomly-selected item, so one would expect

the performance on all three data sets to be worse than Weighted

Gaussian. To the contrary, GW’s accuracy on the deduplicated

Finance data set is still significantly higher than the others, and

GW’s accuracy on the deduplicated IMDb and Wikipedia is again
worse than Weighted Gaussian. Figure 5 shows that GW’s poor

relative accuracy on IMDb worsens at higher levels of epsilon.

We believe that GW’s inconsistent accuracy depends on the ratio

between vocabulary size and number of observations: GW performs

very well on datasets where this ratio is small (Finance: 0.19),
and very poorly on datasets with large relative vocabulary (IMDb:
3.8). Other factors, such as the short length of Finance headlines
compared to IMDb reviews and Wikipedia abstracts, might also

play a role. We did not attempt to fully resolve this discrepancy

in GW’s accuracy; however, we present these results as a caution

when selecting a partition selection algorithm.

5.2.2 Comparing zCDP to DP. We implement our algorithm to sat-

isfy approximate zCDP to take advantage of its simpler composition

properties over standard DP. In [11], the Policy Gaussian algorithm

satisfies (𝜀, 𝛿)-DP, but the threshold and Gaussian noise can easily

be recalibrated to satisfy approximate zCDP instead. We do so in

this work to facilitate the comparison to our algorithm. Unfortu-

nately, the GW algorithm from [6] has a bounded ℓ1-sensitivity and

uses Laplace noise, so it is not easily converted to satisfy approxi-

mate zCDP without a significant loss in accuracy. Instead, we use

Corollary 9 to choose appropriate (𝜀, 𝛿) parameters for the given 𝜌
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Data set Wt. Gauss SIPS DPSU GW

Reddit 6,160 11,392 11,186 11,984

Twitter 12,632 23,649 23,576 27,184

Finance 17,350 27,559 29,005 37,503

IMDb 3,728 7,759 5,845 3,133

Wikipedia 11,340 21,037 18,129 11,251

Amazon 67,522 144,805 143,997 185,563

Synthetic_80M 711,601 1,137,467 - -

Finance (deduplicated) - - - 37,563

IMDb (deduplicated) - - - 3,005

Wikipedia (deduplicated) - - - 9,802

Table 2: Number of partitions returned by Wt. Gauss (Algorithm 2), SIPS (Algorithm 3), DPSU (Policy Gaussian from [11]),
and GW (from [6]) on six data sets. Additionally, we run GW on three data sets where duplicates within user lists have been
removed. Note that the other three algorithms already deduplicate user sets. For SIPS we use 3 iterations and 𝑟 = 1/3. For Wt.
Gaussian, SIPS, and DPSU, the privacy budget is set to 𝜌 = 0.1, 𝛿 = 10

−5, and the user contributions are truncated to Δ0 = 100.
For GW, 𝜀 = 1.7 and 𝛿 = 8.1142 × 10−5, which implies 10−5-approximate 0.1-zCDP. On Synthetic_80M, DPSU and GW ran out of
memory before completing the computation.

Figure 3: Accuracy on Reddit as a function of varying epsilon
(and associated 𝜌), for 𝛿 = 10

−5.

and 𝛿𝐶𝐷𝑃 . The tables in Appendix B give the conversions derived

from Corollary 9 used for our experiments.

The conversion from approximate zCDP to approximate DP is

not exactly tight (meaning the given (𝜀, 𝛿) may be higher than the

true privacy guarantee given by the approximate zCDP parameters).

Because of the looseness of the conversion, the GW algorithm’s

accuracy may be slightly inflated when compared to the other

algorithms.

Doing the privacy budget accounting using approximate zCDP is

not exactly tight either; instead, one could use numerical methods to

compute the total privacy budget spent [16]. At the time of writing,

we could not find a working implementation of such methods that

could support the privacy property of Weighted Gaussian. Doing

so could slightly improve the privacy analysis of DP-SIPS, leading

Figure 4: Accuracy on Reddit as a function of varying delta
for 𝜀 = 1.7.

to more favorable comparisons with other approaches. Further-

more, using approximate zCDP has the advantage of being easier

to integrate with existing differential privacy software [2, 15].

Doing the privacy budget accounting with zCDP is not exactly

tight either: numerical methods using

5.2.3 Selecting hyperparameters. Our algorithm has several hyper-

parameters (aside from the privacy parameters 𝜌 and 𝛿) that need

to be set by the data analyst: Δ0 the maximum number of items per

user, 𝑟 the ratio between the privacy budget for iteration 𝑖 + 1 and
𝑖 , and 𝐼 the number of iterations in the algorithm. One option is

to divide the privacy budget and try several hyperparameter set-

tings and select the setting with the highest accuracy; however, this

wastes a lot of privacy budget. We find that the accuracy of DP-SIPS

is largely invariant to reasonable settings of the hyperparameters,

and we provide general rules of thumb for selecting them.
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Figure 5: Accuracy on IMDb as a function of varying epsilon
for fixed 𝛿 = 10

−5.

Iterations 𝐼 Partitions Returned

1 5,464

2 10,041

3 11,126

4 11,182

5 11,541

6 11,061

8 11,585

10 11,637

Table 3: SIPS’s accuracy as a function of the number of iter-
ations on Reddit with parameters 𝜌 = 0.1, 𝛿 = 10

−5, 𝑟 = 1/3,
and Δ0 = 50.

Figures 6 and 7 display the accuracy of our algorithm on five data

sets with varying 𝑟 and Δ0, respectively. For the given setting of 𝛿

and 𝜌 , the accuracy of DP-SIPS is largely unaffected by different

choices of 𝑟 and Δ0 across 5 data sets, and Table 3 shows that

the accuracy of DP-SIPS only slightly increases with the number

of iterations 𝐼 on the Reddit data set (for the given settings of

the other parameters). Furthermore, Figure 6 (privacy ratio 𝑟 = 1)

suggests that evenly splitting the budget among the rounds yields

lower accuracy than geometrically increasing the budget at each

round.

The results suggest that DP-SIPS has good accuracy for a large

range of hyperparameters (aside from the privacy parameters). We

recommend using the following settings: 𝑟 ∈ [0.2, 0.4], 𝐼 ≥ 3, and

Δ0 set to an overestimate of the true maximum number of per-user

contributions. If the true maximum number of contributions per

user is public, Δ0 should be set to that value.

5.3 Scalability results
We benchmark the algorithms in several ways, and we find that

DP-SIPS and Weighted Gaussian scale well with large data sets,

while DPSU and GW do not.

Figure 6: Number of partitions returned by SIPS versus the
choice of the privacy ratio parameter, 𝑟 . All other hyperpa-
rameters are identical to those listed in Table 2. For all 5 data
sets, the accuracy is maximized for 𝑟 ∈ [0.1, 0.4].

Figure 7: Number of partitions returned by SIPS for varying
per-user maximum contribution bounds, Δ0. All other hy-
perparameters are identical to those listed in Table 2. On all
5 data sets, increasing Δ0 past 100 has almost no affect on
accuracy, with maximum accuracy for Δ0 ∈ [5, 150]. We note
that Finance is unusual as each financial headline is quite
short.

For the scalability experiments, we implement all of the algo-

rithms in PySpark to take advantage of parallelism within the al-

gorithms. We then run the algorithms on Amazon Elastic Map

Reduce (EMR) clusters, and we tailor the PySpark session settings

to the number of cores and memory allocation for both driver and

executor nodes to reflect the available resources of the machines.

To benchmark the algorithms, we measure the amount of time re-

quired to run the algorithm (after the dataset has already been read
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Figure 8: Parallelism diagram for Weighted Gaussian (left), SIPS (middle), and greedy algorithms (right). Arrows represent
computational steps while boxes represent the data set. The steps of Weighted Gaussian can run in parallel on parts of the
data set while greedy algorithms must run sequentially over the data set. Each iteration of SIPS can run in parallel, but the
iterations must be done sequentially.

in to PySpark) and return the number of partitions that were dis-

covered, in order to ensure PySpark’s lazy evaluation executed the

algorithm during the timing phase. See Appendix C for information

about the machine specifications.

For our first scalability experiment, we run the algorithms on

subsets of Synthetic_80M, a synthetic data set with 80 million

users and 4.6 billion items in total, and benchmark the algorithms

as the number of users increases. Figure 9 shows the results of this

experiment. DP-SIPS and Weighted Gaussian scale well to large

data sets while DPSU and GW timeout or run out of memory on

subsets with just 2 million and 10 million users, respectively. We

ran this experiment on an EMR cluster with 8 nodes, each of size

m5a.8xlarge (each node has 32 processor cores and 128 GB of

memory).

To further investigate the scaling behaviors of the algorithms,

we ran more scalability experiments on a smaller data set, Amazon,
which consists of product reviews from 4 million users. Figure 10

shows the results from the first experiment, in which we measure

the runtimes of the algorithms on clusters with a single master

node and varying numbers of core nodes. All nodes are of type

m5a.2xlarge, which has 8 processor cores and 32 GB of memory.

Figure 10 illustrates the following runtime trends:

• The runtimes of Weighted Gaussian and SIPS both decrease

as the number of core nodes increases.

• The runtimes of DPSU and GW remain approximately the

same even as the number of core nodes increases.

These results confirm the intuition that Weighted Gaussian and

SIPS are both parallelizable and thus scale well with increased

cluster sizes, even on large data sets. Additionally, it confirms our

observation that since DPSU and GW need to iterate sequentially

Figure 9: Algorithm runtimes on subsets of Synthetic_80M
of given sizes on a cluster of 8 m5a.8xlarge nodes. The algo-
rithms were run with the same hyperparameters as those
listed in Table 2. DPSU and GW timed out after subsets with
2 million and 10 million users, respectively.

over each user, increasing the cluster size does little to improve

their running times.

We run an additional scalability experiment on Amazon: instead
of increasing the number of core nodes, we increase the sizes of the

core nodes. We use a single master node and two core nodes, and

increase the sizes of all three nodes. Table 11 shows similar trends

as the previous experiment: Weighted Gauss and SIPS scale with
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Figure 10: Algorithm runtimes on Amazon dataset with in-
creasing number of m5a.2xlarge cores in the cluster. The al-
gorithms were run with the same hyperparameters as those
listed in Table 2.

Figure 11: Algorithm runtimes on Amazon dataset with in-
creasing sizes of nodes in a cluster with 1 master node and 2
core nodes. The algorithms were run with the same hyperpa-
rameters as those listed in Table 2.

increased node sizes while DPSU and GW do not. So, even when

the sizes of the machines increase, this makes little difference in

the runtimes of DPSU and SIPS.

Comparing Figures 10 and 11, we see that for DP-SIPS, the com-

munication overhead between machines is small. Specifically we

can compare SIPS’s performance on 8 cores in Figure 10, a cluster

with 1 master node and 8 core nodes each of type m5a.2xlarge (8

CPU cores, 32 GB memory) to m5a.8xlarge (32 CPU cores, 128 GB

memory) in Figure 11, a cluster with 1 master node and 2 core nodes.

In both, the core nodes have in total 8 · 8 = 2 · 32 CPU cores and

8 · 32 = 2 · 128 GB of memory among them. The runtimes of SIPS

in the first case is 58.41 seconds while in the second case, it is 66.28

seconds, which suggests that the communication overhead is small.

In fact, SIPS runs faster on a cluster of 9 smaller machines than a

cluster of 3 larger machines. This discrepancy could be the result

of any number of factors in the machine specifications.

Our takeaway is clear: the scalability experiments confirm that

DPSU and GW are not suitable for massive data sets and the pro-

hibitively poor run times of DPSU and GW on industrial-scale data

sets cannot be overcome by increasing the computational power

of the cluster (either in number of machines or even machine size)

because the algorithms are not parallelizable on a fundamental

level. For larger data sets, SIPS and Weighted Gaussian are the only

feasible algorithms and SIPS consistently has improved accuracy

over Weighted Gaussian.

6 DISCUSSION
Differentially private partition selection (or set union) is a fun-

damental problem for many private data analysis tasks. Prior ap-

proaches to this problem either suffer from poor accuracy or are

prohibitively slow on large data sets because they are designed to se-

quentially iterate over the users. We present a simple algorithm for

differentially private partition selection that achieves accuracy that

is comparable to DPSU and runtimes that scale well with increased

computational resources.

6.1 Unsuccessful Attempts
One natural question we explored is: can we boost the accuracy of

DPSU using our method of iterating several times and removing

partitions from the data set that were previously returned? We

found that empirically this did not boost the accuracy on the data

sets that we tested. Intuitively, this makes sense because the per-

user Gaussian update policy in DPSU prevents users from adding

weight to items that have already reached the buffered threshold.

Such items will very likely be released after the noise addition and

thresholding steps. The DPSU approach achieves the same goal as

iterating, albeit with more precision due to the greedy nature of

the Policy Gaussian per-user updates.

6.2 Future work
This work raises several natural questions. From a practical per-

spective, one may wonder whether there is a scalable algorithm

with higher accuracy than DP-SIPS. Another interesting line of

inquiry could consider theoretical guarantees on the number of

partitions released, possibly under some distributional assumptions

on the data. We believe these lines of inquiry would give important

insights into a fundamental problem in private data analysis.
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A PROOF OF THEOREM 13
Proof of Theorem 13. Since the algorithm is simply comput-

ing a stable histogram, the proof follows from standard arguments.

Let us denote Algorithm 2 byM. Fix any 𝜌 > 0, any 𝛿 ∈ (0, 1),
and any Δ0 ∈ N. Fix two neighboring data sets 𝑥 = (𝑊1, . . . ,𝑊𝑁 )
and 𝑥 ′, where 𝑥 ′ contains one extra user set𝑊 ∗. Let 𝐸 be the event

thatM(𝑥 ′) ⊆ ∪𝑖∈[𝑁 ]𝑊𝑖 ; that is, the partitions returned for data set

𝑥 ′ are in the support ofM(𝑥). We will first argue that, conditioned

on event 𝐸, the output distributions ofM(𝑥) andM(𝑥 ′) satisfy
pure zCDP (Definition 4). Then we will argue that, because of the

thresholding step, event 𝐸 occurs with probability at least 1 − 𝛿 .
If we condition bothM(𝑥) andM(𝑥 ′) on event 𝐸, then by the

Gaussianmechanism (Definition 12) and post-processing (Lemma 6),

Algorithm 2 satisfies pure zCDP (Definition 4).

Now, it remains to show that Pr[𝐸] ≥ 1− 𝛿 . First, note that each
user contributes to most Δ0 items in the histogram, and further

note that event 𝐸𝑐 occurs when at least one item from𝑊 ∗ that is
not in 𝑥 is released. Let𝑊 ′ denote the set of items in𝑊 ∗ that do
not appear in 𝑥 . Then,

Pr[𝐸] = Pr[∀𝑢 ∈𝑊 ′, 𝑢 ∉M(𝑥)]
= Pr[∩𝑢∈𝑊 ′�̂� [𝑢] ≤ 𝑇 ]
= Pr[∩𝑢∈𝑊 ′𝐻 [𝑢] + 𝑍𝑢 ≤ 𝑇 ] For 𝑍𝑢 ∼ N(0, 1/2𝜌)

=
∏
𝑢∈𝑊 ′

Pr[𝐻 [𝑢] + 𝑍𝑢 ≤ 𝑇 ] By independence of 𝑍𝑢 ’s

=
∏
𝑢∈𝑊 ′

Pr

[
1√︁
|𝑊 ′ |

+ 𝑍𝑢 ≤ 𝑇
]

=

(
Pr

[
1√︁
|𝑊 ′ |

+ 𝑍𝑢 ≤ 𝑇
]) |𝑊 ′ |

Since 𝑍𝑢 ’s are i.i.d.

≥ min

𝑘∈[Δ0 ]

{(
Pr

[
1

√
𝑘
+ 𝑍𝑢 ≤ 𝑇

] )𝑘}
Since |𝑊 ′ | ≤ Δ0

≥ 1 − 𝛿 By definition of 𝑇 .

Therefore,M is 𝛿-approximate 𝜌-zCDP. □

B PRIVACY PARAMETER CONVERSIONS
Tables 4 and 5 give the conversions between zCDP and DP that we

use for the experiments, as well as the values of 𝛼 that are used in

Corollary 9 to do the conversions.

𝜌 𝛿𝐶𝐷𝑃 𝜀 𝛿𝐷𝑃 𝛼

0.001 1 × 10−5 0.14 5.00 × 10−5 77.033

0.005 1 × 10−5 0.338 5.08 × 10−5 37.037

0.01 1 × 10−5 0.495 4.99 × 10−5 27.128

0.05 1 × 10−5 1.2 4.99 × 10−5 13.283

0.1 1 × 10−5 1.765 4.96 × 10−5 9.86

0.5 1 × 10−5 4.41 4.90 × 10−5 5.127

Table 4: Values of 𝜌, 𝛿𝐶𝐷𝑃 , 𝜀, and 𝛿𝐷𝑃 used for experiments
with fixed 𝛿𝐷𝑃 and varying 𝜀.

𝜌 𝛿𝐶𝐷𝑃 𝜀 𝛿𝐷𝑃 𝛼

0.005 1 × 10−9 0.62 1.04 × 10−9 64.073

0.0055 1 × 10−8 0.62 1.02 × 10−8 58.443

0.006 1 × 10−7 0.62 1.01 × 10−7 53.732

0.007 1 × 10−6 0.62 1.01 × 10−6 46.334

0.0083 1 × 10−5 0.62 1.01 × 10−5 39.398

0.01 1 × 10−4 0.62 1.01 × 10−4 33.037

0.013 1 × 10−3 0.62 1.01 × 10−3 25.863

Table 5: Values of 𝜌, 𝛿𝐶𝐷𝑃 , 𝜀, and 𝛿𝐷𝑃 used for experiments
with fixed 𝜀 and varying 𝛿𝐷𝑃 .
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https://github.com/google/differential-privacy/tree/main/privacy-on-beam
https://github.com/google/differential-privacy/tree/main/privacy-on-beam
https://pipelinedp.io
https://tmlt.dev
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C AMAZON EMR CLUSTER SPECIFICATIONS
Table 6 shows the number of CPU cores and amount of memory

available to each type of machine on Amazon EMR that we use in

our experiments.

Machine Size Cores Memory (GB)

m5a.xlarge 4 16

m5a.2xlarge 8 32

m5a.4xlarge 16 64

m5a.8xlarge 32 128

Table 6: Number of cores and memory per EMR machine of
each size.

268


	Abstract
	1 Introduction
	2 Preliminaries
	3 Prior Approaches to Partition Selection
	3.1 Baseline: Weighted Gaussian
	3.2 Greedy Approaches

	4 DP-SIPS
	4.1 Scalability Analysis in the MapReduce Framework

	5 Experimental Results
	5.1 Data sets
	5.2 Accuracy results
	5.3 Scalability results

	6 Discussion
	6.1 Unsuccessful Attempts
	6.2 Future work

	Acknowledgments
	References
	A Proof of Theorem 13
	B Privacy Parameter Conversions
	C Amazon EMR Cluster Specifications

