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ABSTRACT
Decentralized, offline, and privacy-preserving e-cash could fulfil

the need for both scalable and byzantine fault-resistant payment

systems. Existing offline anonymous e-cash schemes are unsuitable

for distributed environments due to a central bank. We construct

a distributed offline anonymous e-cash scheme, in which the role

of the bank is performed by a quorum of authorities, and present

its two instantiations. Our first scheme is compact, i.e. the cost of

the issuance protocol and the size of a wallet are independent of

the number of coins issued, but the cost of payment grows linearly

with the number of coins spent. Our second scheme is divisible

and thus the cost of payments is also independent of the number

of coins spent, but the verification of deposits is more costly. We

provide formal security proof of both schemes and compare the

efficiency of their implementations.
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1 INTRODUCTION
At the present moment, there is a pressing need for private elec-

tronic cash (e-cash), as shown by growing interest in blockchain-

based systems and Centrally-Banked Digital Currencies (CBDCs),

but no privacy-enhanced and decentralized system exists that scales

to the requirements of this application scenario. To address this

problem, we introduce the first decentralized offline e-cash scheme

with provable security and full implementation that can efficiently

support electronic payments. In contrast to the current privacy-

enhanced blockchain, systems do not require a constant online

presence of the payees. The issuance of coins is non-interactive, i.e.,

the authorities do not need to synchronise, as we do not rely on

MPC protocols. Moreover, our scheme maps to distributed payment

systems such as CBDCs, a technology that urgently requires fur-

ther attention in terms of privacy. The idea of distributing issuance

among a quorum of authorities has been so far explored in the con-

text of attribute-based credentials [50, 54] and online anonymous

e-cash schemes [5].

Contributions: Our paper makes the following contributions:

• We introduce a construction ΠEC for threshold issuance offline

e-cash (EC). To the best of our knowledge, this is the first offline

e-cash scheme with threshold issuance. To this end, we define the

system model and the security properties in the ideal-world/real-

world paradigm [21] by proposing an ideal functionality FEC for

EC (Sections §3, §4).
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• We propose two instantiations of ΠEC based on compact [14] and

divisible [49] e-cash (Section §5). Our schemes are more efficient

than [14, 49] thanks to the use of Pointcheval-Sanders signatures

in the random oracle model and to decreasing the number of coin

secrets. We formally prove that our construction ΠEC realizes

FEC when instantiated with the algorithms of our compact and

divisible e-cash schemes (Sections §D, §E).

• We provide an open-source Rust implementation of both schemes

and present an extensive evaluation of their performance and

trade-offs (Section §6). To the best of our knowledge, this is the

first such practical comparison.

2 BACKGROUND AND MOTIVATION
Anonymous e-cash was originally proposed by Chaum as a digital

analog of regular cash, which also allows for private payments [22].

Unlike physical cash, e-coins are easy to duplicate, hence e-cash

schemes must prevent double-spending and typically that is done

by having a centralized bank [2, 6, 7, 10, 14, 18–20, 45, 46, 49].

Thus, there has been a revival of interest in adopting privacy to

decentralized blockchain systems, in which coins are authenticated

by proving in ZK that they belong to a public list of valid coins

maintained on the blockchain, thus they do not require a central

bank to prevent double-spending [43].

Although blockchain-based privacy-enhanced systems such as

ZCash and Monero have users [44, 51, 55], such decentralized e-

cash systems require being online to check the status of payments,

which simply does not scale to the speed of transactions needed

by real-world payment systems or support the reality of transac-

tions that need to be made without internet access, so the usage of

blockchains for payments remains small in proportion to traditional

payments. Also, as could happen to any other low-transaction fee

blockchain that advertises high throughput, the ZCash blockchain

has suffered an attack of ‘spam’ transactions that have increased the
blockchain size to such an extent that ZCash has suffered fromwhat

is effectively a denial-of-service attack that has collapsed its through-
put (i.e., simply downloading the blockchain becomes nearly im-

possible) [25]. Similarly, ‘layer 2’ solutions based on blockchain

technologies such as zero-knowledge roll-ups, which increase trans-

action speed and (in some cases) privacy, are also vulnerable to

these attacks [59]. By virtue of not requiring a merchant to be on-

line all the time but only needing eventual settlement over regular

epochs, our system avoids these issues while maintaining the ad-

vantages of decentralization. Hence, it is to be expected that current

privacy-enhanced blockchain systems that require an online setting

will evolve into decentralized offline e-cash systems similar to the

one presented in this paper. While proposals exist to enable offline

payments in blockchain-based cryptocurrencies such as payment

channel networks [33], they typically do not offer strong privacy

protection as only users who share a channel can transact with

each other and so users who make a payment are not anonymous,
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similarly as in [27], and cashing out payments still requires online

blockchain interactions. Even privacy-preserving offline payment

channels effectively restrict payment transactions and the network

topology of payment channels can lead participants to be effectively

de-anoymized [37, 53].

On the other side of the spectrum, centralized CBDCs have

gained increasing interest in over a hundred countries and will

soon be deployed in Europe and China [4, 57]. CBDC systems typi-

cally sacrifice user transaction privacy from the settlement layer

and can lead to the possibility of dystopian surveillance of user fi-

nancial transactions [26]. Although financial transaction data could

be considered a matter of national security, MIT and the Federal

Reserve of Massachusetts in the United States have begun explor-

ing blockchain systems for its CBDC efforts without transaction

unlinkability [41]. In stark contrast, Switzerland’s Central Bank

has put forward a centralized online privacy-preserving scheme

called ‘eCash 2.0’, but offline payments would require special hard-

ware and are currently not supported. The European Central Bank

(ECB) recently published a list of requirements for the Digital Euro,

which include privacy of user transactions from the settlement

layer and offline transactions [4]. Our scheme would fulfil those cri-

teria, and we present how it could be integrated with a blockchain.

Furthermore, distributing the issuing power would be practical for

emerging multi-nation economic proposals for joint issuance of cur-

rencies such as the South American joint reserve currency SUR in

the ‘Banco del Sur’ recently endorsed by Brazil and Argentina [42].

Even more importantly, practically preventing byzantine faults in

centralized CBDCs requires it to be managed by a set of distributed

parties, similar to Facebook’s Diem project’s consensus protocol

based on HotStuff [58]. In this manner, our system unifies the objec-

tives of blockchain research for decentralization while maintaining

compatibility with the requirements for privacy-preserving CBDC

by decentralizing e-cash.

Online vs Offline Ecash. To revisit the original e-cash proposal,

the solution to double-spending is to associate each coin with a

unique serial number, which is used to detect double-spending by

dishonest users and prevent dishonest providers from depositing a

payment twice [22]. In online e-cash schemes [22, 54], providers are

constantly connected to the bank and can then check if a coin has

been double-spent before accepting a payment. An alternative and

more realistic solution space is given by offline e-cash schemes [7, 10,

14, 18–20, 49], which do not require a permanent online connection

between a provider and the bank. The provider can accept payment

and deposit it at a later settlement stage as there is a guarantee that

users who double-spend will be identified by the bank.

An important issue in the design of anonymous e-cash schemes

is paying the exact amount as users cannot receive change, since

the providers are not anonymous towards the bank. If a user re-

ceives change, the user would in fact become a provider and lose

anonymity. In online e-cash, the user can contact the bank in or-

der to exchange a coin for lower denominations in order to make

the payment. In offline e-cash, contacting the bank is not allowed

during the spending phase. Transferable e-cash schemes [2, 24, 45]

are one solution to this problem, allowing a user to further spent a

previously received coin without interacting with the bank. Hence,

providers can return the change to the users that paid. Although

transferable e-cash is appealing, state-of-the-art schemes [6] are

much less efficient than non-transferable ones.

An alternative solution to preserve user unlinkability is to use

coins of the smallest denomination. However, the large number of

coins that may need to be spent easily yields an inefficient scheme.

To solve this problem, researchers have focused on designing of-

fline e-cash protocols whose complexity does not depend on the

number of coins withdrawn or spent. In anonymous compact e-cash
schemes [7, 14], the cost of storing a wallet of 𝑁 coins and the cost

of withdrawing 𝑁 coins is independent of 𝑁 . However, the cost of

spending 𝑛 ≤ 𝑁 coins grows linearly with 𝑛. Anonymous divisible
e-cash schemes [10, 18–20, 46, 49] improve the efficiency of compact

e-cash and allow the user to spend 𝑛 ≤ 𝑁 coins with cost indepen-

dent of 𝑛. Therefore, in the last decade, research has focused solely

on divisible e-cash. However, divisible schemes achieve constant

spending cost at the expense of much more expensive deposit and

identification phases, and to our knowledge, efficiency analysis of

compact e-cash schemes with multiple denominations has not been

conducted, as well as a fair comparison between practical imple-

mentations of divisible and compact e-cash has never been done.

Therefore, it is unclear which scheme is better for the use-case

of offline e-cash as required by privacy-enhanced CBDCs [4] and

blockchain-based scalability. Our analysis shows that compact e-

cash with multiple denominations is preferable for small payments,

which would naturally compose the majority of offline e-cash trans-

actions in application scenarios such as a user-facing blockchain

or CBDC where practical deployment concerns would necessitate

distributed authorities.

In order to address the urgent scalability issues of blockchain

systems and possibly dangerous centralization of CBDCs without

privacy, a formal treatment of offline e-cash is needed, including a

fair comparison of compact and divisible e-cash.

3 THRESHOLD ISSUANCE OFFLINE E-CASH
In this section, we introduce an offline e-cash scheme with thresh-

old issuance (EC). First, we outline its system model and informally

define the security properties. To define formally the security prop-

erties of EC, we construct the ideal functionality FEC and explain

how it guarantees those properties.

3.1 System Model
An EC scheme involves 𝑛 authorities (V1, . . . ,V𝑛), any number of

usersU𝑗 and any number of providers P𝑘 . The interaction between
those parties takes place through a setup, withdrawal, spend and

deposit phase. Users withdraw wallets containing one or more

electronic coins from the authorities and spend themwith providers,

who then deposit them back with the authorities.

In the setup phase, a trusted third party generates the public

parameters params. Next, the public verification key pk is generated,
alongside key pairs (skV𝑖 , pkV𝑖 )𝑖∈[1,𝑛] for each of the authorities

V𝑖 . The keys are generated in such a way that a user needs to

receive a withdrawal from at least 𝑡 authorities in order to create a

wallet. The key generation can be executed by a trusted third party

or run in a distributed way [34, 38]. Finally, each userU𝑗 generates
a key pair (skU𝑗 , pkU𝑗 ).
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To obtain a wallet with 𝐿 coins, where 𝐿 is a public parameter

of the scheme, a userU𝑗 engages in the withdrawal protocol. To
this end,U𝑗 sends a request req to a set of 𝑡 different authorities.

Each V𝑖 verifies req and using its secret key skV𝑖 issues back a

response res. U𝑗 verifies res and extracts from it a partial wallet

W𝑖 . OnceU𝑗 has completed the protocol with at least 𝑡 authorities,

and collected the threshold number of partial wallets, U𝑗 aggre-
gates them to form a single consolidated wallet W with 𝐿 coins

of the same monetary value. To spend 𝑉 coins with a provider

P𝑘 the user generates a payment pay using her wallet W and pay-

ment information payinfo. payinfo contains the provider’s identity
and other information about the payment and must be unique for

each payment.U𝑗 sends pay to P𝑘 , who verifies it. To deposit the
payment pay, provider P𝑘 sends pay to a bulletin board BB. Each

authority reads pay from BB, verifies it and checks it against all

the payments previously written on BB, in order to rule out double

spending and double depositing. The double spending detection

mechanism reveals the public key of the userU𝑗 if the user double-
spent any coin, while double depositing detection reveals that the

payment is deposited twice if two payments contain the same pay-

ment information payinfo. Otherwise, the payment is deposited

successfully.

3.2 Security Properties
As defined in [10], secure anonymous offline e-cash schemes should

satisfy four properties. We describe them informally, taking into

account that, in our schemes, the bank is replaced by a number of

authorities.

Traceability: guarantees that no more coins can be deposited

than those that have been withdrawn. In particular, adversarial

parties are not able to forge wallets. It also guarantees that an

honest authority is able to identify a user who double-spends a

coin. Double-depositing is also detected by the authority.

Unlinkability: ensures that no coalition of dishonest authorities,

users and providers is able to link the withdrawal of the wallet with

the spending of its coins. It also guarantees that multiple spendings

performed by the same user cannot be linked with each other.

Exculpability: requires that an honest user cannot be found guilty
of double-spending.

Clearance: ensures that only the provider that receives a payment

is able to deposit it.

3.3 Ideal Functionality
We define the security properties of offline e-cash with threshold

issuance in the ideal-world/real-world paradigm. To this end, in

Figure 1 we define the ideal functionality FEC. FEC interacts with

authorities (V1, . . . ,V𝑛), any number of usersU𝑗 and any number

of providers P𝑘 . FEC is parameterized by a threshold 𝑡 , a universe

of pseudonyms U𝑝 , a universe of wallet identifiers Uw , a universe

of request identifiers Ureq , a universe of payment information Uinfo ,

and a number 𝐿 of coins in a wallet. In §A, we define the security

properties of the cryptographic primitives used in our EC schemes.

Remarks about FEC. When describing ideal functionalities, we

use the conventions introduced in [13] and summarised in §B.

Aborts. When invoked by any party, FEC first checks the correct-

ness of the input. FEC aborts if any of the inputs does not belong

to the correct domain. FEC also aborts if an interface is invoked at

an incorrect moment in the protocol. For example, an authorityV𝑖
cannot invoke the ec.issue interface on input a request identifier

reqid if that authority did not receive a request associated with

reqid. Similar abortion conditions are listed when FEC receives a

message from the simulator S.
Session identifier. The session identifier sid has the structure

(V1, . . . ,V𝑛, sid ′). This allows any authorities (V1, . . . ,V𝑛) to cre-

ate an instance of FEC. After the first invocation of FEC, FEC im-

plicitly checks that the session identifier in a message is equal to

the one received in the first invocation.

Query identifiers. Before FEC queries the simulatorS, FEC saves

its state, which is recovered when receiving a response from S. If
an interface, e.g. ec.request, can be invoked by a party more than

once, FEC creates a query identifier qid, which allows FEC to match

a query to S to a response from S. Creating qid is not necessary if

an interface, such as ec.setup, can be invoked only once by each

authority, and the authority identifier is revealed to S.

Description of FEC. In the following, we explain how each of the

interfaces of FEC works:

1 An authority V𝑖 uses the ec.setup interface to set up FEC.

FEC stores the fact thatV𝑖 has run the setup interface and enforces

that each authority runs the setup interface only once. The simula-

tor S is allowed to learn thatV𝑖 has run the setup interface. FEC

allows each authorityV𝑖 to run the setup interface independently

of other authorities, i.e. the execution of the setup interface for one

authority can be finalized without the involvement of other author-

ities. Therefore, FEC is realizable by protocols where authorities

run the setup interface independently of each other. For example,

protocols where each authority creates its own keys, or protocols

where authorities obtain their keys from a trusted third party that

generates them. FEC can be modified so that it is realizable by pro-

tocols in which the setup interface requires interaction between

authorities, e.g. protocols that use a distributed key generation

protocol as a building block.

2 A user U𝑗 or a provider P𝑘 use the ec.register interface
to register. FEC stores the fact that U𝑗 or P𝑘 has registered, and

enforces that each user or provider runs the registration interface

only once. The simulator S is allowed to learn thatU𝑗 or P𝑘 has

run the setup interface.

3 A userU𝑗 runs the ec.request interface given an authority

identifierV𝑖 , a request identifier reqid and a wallet numberwn. The
request identifier reqid is used to bind a request to its subsequent

issuance, while the wallet number wn is used to associate the re-

quest to a wallet. FEC checks that the user has run the registration

interface, and that there is not a request pending from U𝑗 to V𝑖
with the same identifier. Then, if a database forU𝑗 is not stored,
FEC stores a tuple (sid,U𝑗 ,wct,DB), where wct is a counter of the
number of wallets ofU𝑗 initialized to 1, andDB is a (initially empty)

database. DB has entries of the form [wn,wid, 𝑙,V], where wn is

the wallet number, wid is a wallet identifier, 𝑙 is the number of coins

spent from the wallet wn, and V is the set of authorities that issued

requests for the creation of this wallet. If wn received as input is

such that wn ∉ [1,wct], then FEC increments wct, sets wn← wct,
picks a random wallet identifier wid and stores a new entry [wn,
wid, 0, ∅] in the database forU𝑗 . The reason for creating wid is that,
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(1) On input (ec.setup.ini, sid) from an authority V𝑖 :
• Abort if sid ≠ (V1, . . . ,V𝑛, sid′) , or if V𝑖 ∉ sid, or if 𝑛 < 𝑡 , or if

(sid,V𝑖 , 0) is already stored.

• Store (sid,V𝑖 , 0) and send (ec.setup.sim, sid,V𝑖 ) to S.
S. On input (ec.setup.rep, sid,V𝑖 ) from S:
• Abort if (sid,V𝑖 , 0) is not stored or if (sid,V𝑖 , 1) is already stored.
• Store (sid,V𝑖 , 1) and send (ec.setup.end, sid) to V𝑖 .

(2) On input (ec.register.ini, sid) from user U𝑗 or provider P𝑘 :
• Abort if there is a tuple (sid,U𝑗 , 0) stored.
• Store (sid,U𝑗 , 0) and send (ec.register.sim, sid,U𝑗 ) to S.

S. On input (ec.register.rep, sid,U𝑗 ) from the simulator S:
• Abort if (sid,U𝑗 , 0) is not stored or if (sid,U𝑗 , 1) is stored.
• Store (sid,U𝑗 , 1) and send (ec.register.end, sid) to U𝑗 .

(3) On input (ec.request.ini, sid,V𝑖 , reqid,wn) from user U𝑗 :
• Abort if sid ≠ (V1, . . . ,V𝑛, sid′) , or if V𝑖 ∉ sid, or if 𝑛 < 𝑡 , or if

reqid ∉ Ureq .

• Abort if (sid,U𝑗 , 1) is not stored, or if (sid,U′𝑗 ,V′𝑖 , reqid
′,wn,

user) stored such that U′
𝑗
= U𝑗 , V′𝑖 = V𝑖 and reqid′ = reqid.

• Store (sid,U𝑗 ,V𝑖 , reqid,wn, user) .
• If (sid,U′

𝑗
,wct,DB) such that U′

𝑗
= U𝑗 is not stored, store (sid,

U𝑗 ,wct,DB) , where wct is a counter of the number of wallets of

U𝑗 initialized to 1, and DB is a (initially empty) database.

• If wn ∉ [1,wct ], set wct ← wct + 1, set wn ← wct, pick random

wid ← Uw , and store an entry [wn,wid, 0, ∅] in DB. Update wct
and DB in the tuple (sid,U𝑗 ,wct,DB) .
• Create a fresh qid and store (qid,U𝑗 ,V𝑖 , reqid,wn) .
• If V𝑖 is honest, send (ec.request.sim, sid, qid,U𝑗 ,V𝑖 ) to the sim-

ulator S, else pick wid from the entry [wn′,wid, 0, ∅] ∈ DB such

that wn′ = wn and send (ec.request.sim, sid, qid,U𝑗 ,V𝑖 ,wid) to
the simulator S.

S. On input (ec.request.rep, sid, qid) from the simulator S:
• Abort if (qid′,U𝑗 ,V𝑖 , reqid,wn) such that qid′ = qid is not stored,
or if (sid,V𝑖 , 1) is not stored.
• Store the tuple (sid,U𝑗 ,V𝑖 , reqid,wn, authority) , delete (qid,U𝑗 ,
V𝑖 , reqid,wn) , and send (ec.request.end, sid,U𝑗 , reqid) to V𝑖 .

(4) On input (ec.issue.ini, sid,U𝑗 , reqid) from an authority V𝑖 :
• Abort if a tuple (sid,U′

𝑗
,V′

𝑖
, reqid′,wn, authority) such that U′

𝑗

= U𝑗 , V′𝑖 = V𝑖 and reqid′ = reqid is not stored.

• Create a fresh qid, store (qid,U𝑗 ,V𝑖 , reqid,wn, issue) and delete

(sid,U𝑗 ,V𝑖 , reqid,wn, authority) .
• Send (ec.issue.sim, sid, qid,V𝑖 ,U𝑗 ) to the simulator S.

S. On input (ec.issue.rep, sid, qid) from the simulator S:
• Abort if (qid′,U𝑗 ,V𝑖 , reqid,wn, issue) such that qid′ = qid is not

stored.

• If U𝑗 or V𝑖 are honest, take the tuple (sid,U′𝑗 ,wct,DB) such that

U′
𝑗
= U𝑗 , and replace the entry [wn′,wid, 𝑙,V] in DB such that

wn′ = wn by [wn′,wid, 𝑙,V ∪ {V𝑖 }].
• Delete (qid,U𝑗 ,V𝑖 , reqid,wn, issue) , and delete (sid,U′

𝑗
,V′

𝑖
,

reqid′,wn, user) such that U′
𝑗
= U𝑗 , V′𝑖 = V𝑖 and reqid′ = reqid.

• Send (ec.issue.end, sid, reqid,V𝑖 ) to U𝑗 .
(5) On input (ec.spend.ini, sid,wn,𝑉 ,D, payinfo, P, P𝑘 ) from U𝑗 :
• Abort if P ∉ U𝑝 , or if payinfo ∉ Uinfo , or if payinfo does not con-

tain P𝑘 , or if (sid,U′𝑗 ,wct,DB) such that U′
𝑗
= U𝑗 is not stored.

• Abort if there is not an entry [wn′,wid, 𝑙,V] ∈ DB such that wn′

= wn. Else, proceed as follows:

– Abort if U𝑗 is honest and either𝑉 ∉ [1, 𝐿] or 𝑙 +𝑉 > 𝐿.

– Abort if U𝑗 is corrupt and D ∉ [1, 𝐿]. Else overwrite𝑉 ← |D |.
– Abort if |V | < 𝑡 ′, where 𝑡 ′ = 𝑡 , if U𝑗 is honest, or 𝑡 ′ = 𝑡 − 𝑡 , if
U𝑗 is corrupt and there are 𝑡 corrupt authorities.

• If U𝑗 is honest, update [wn,wid, 𝑙,V] to [wn,wid, 𝑙 +𝑉 ,V].
• Create a fresh qid and store (qid,U𝑗 ,wn,𝑉 ,D, payinfo, P, P𝑘 ) .
• Send (ec.spend.sim, sid, qid) to S.

S. On input (ec.spend.rep, sid, qid) from S:
• Abort if (qid′,U𝑗 ,wn,𝑉 ,D, payinfo, P, P𝑘 ) such that qid′ = qid
is not stored and if (sid, P′

𝑘
, 1) such that P′

𝑘
= P𝑘 is not stored.

• Create a random unique payment identifier payid and store (sid,
payid,U𝑗 ,wn,𝑉 ,D, payinfo, P, P𝑘 , 0) .
• Delete (qid,U𝑗 ,wn,𝑉 ,D, payinfo, P, P𝑘 ) .
• Send (ec.spend.end, payid,𝑉 , payinfo, P) to P𝑘 .

(6) On input (ec.deposit.ini, sid, payid) from a provider P𝑘 :
• Abort if a tuple (sid, payid′,U𝑗 ,wn,𝑉 ,D, payinfo, P, P′𝑘 , 𝑏) such
that payid′ = payid, P′

𝑘
= P′

𝑘
and 𝑏 = 0 is not stored.

• Create a fresh qid and store (qid, payid, P𝑘 ) .
• If U𝑗 is corrupt and there is at least one corrupt authority,

send (ec.deposit.sim, sid, qid,U𝑗 ,wn,𝑉 ,D, payinfo, P, P𝑘 ) to S.
Else if U𝑗 is honest and there is at least one corrupt author-

ity, send (ec.deposit.sim, sid, qid,𝑉 , payinfo) to S. Else, send
(ec.deposit.sim, sid, qid) to S.

S. On input (ec.deposit.rep, sid, qid) from S:
• Abort if a tuple (qid′, payid, P𝑘 ) such that qid′ = qid is not stored.

• Update the stored tuple (sid, payid′,U𝑗 ,wn,𝑉 ,D, payinfo, P, P′𝑘 ,
𝑏) such that payid′ = payid, P′

𝑘
= P′

𝑘
and 𝑏 = 0 to contain 𝑏 = 1.

• Delete (qid, payid, P𝑘 ) .
• Send (ec.deposit.end, sid, payid) to P𝑘 .

(7) On input (ec.depvf.ini, sid,U, payinfo) from an authority V𝑖 :
• Abort if (sid,V′

𝑖
, 1) such that V′

𝑖
= V𝑖 is not stored or if there

exists U𝑗 ∈ U such that a tuple (sid,U𝑗 , 1) is not stored.
• Create a fresh qid and store (qid,U, payinfo,V𝑖 ) .
• Send (ec.depvf.sim, sid, qid,U′, d) to S. U′ is the set of users U𝑗
∈ U such that U𝑗 did not send a request to V𝑖 and U𝑗 was not
received previously as input by V𝑖 in another set U. d is the num-

ber of payments deposited since ec.depvf was last invoked by V𝑖 .
S. On input (ec.depvf.rep, sid, qid) from S:
• Abort if (qid′,U, payinfo,V𝑖 ) such that qid′ = qid is not stored.

• If there is no tuple (sid, payid,U𝑗 ,wn,𝑉 ,D, payinfo′, P, P𝑘 , 𝑏)
such that payinfo′ = payinfo and 𝑏 = 1, set 𝑐 ← 0.

• If there are𝐾 > 1 tuples (sid, payid,U𝑗 ,wn,𝑉 ,D, payinfo′, P, P𝑘 ,
𝑏) such that payinfo′ = payinfo and 𝑏 = 1, set 𝑐 ← (P1, . . . , P𝐾 ) ,
where (P1, . . . , P𝐾 ) are the provider identities such that either

P𝑘 is not included in payinfo, or there are two or more tuples

deposited by P𝑘 .
• If there is 1 tuple (sid, payid,U𝑗 ,wn,𝑉 ,D, payinfo′, P, P𝑘 , 𝑏) such
that payinfo′ = payinfo and 𝑏 = 1, proceed as follows:

– If P𝑘 is not in payinfo, output 𝑐 ← P𝑘 .
– Else, if U𝑗 is honest, set 𝑐 ← 1.

– Else, if U𝑗 is corrupt, check if there are other tuples (sid, payid,
U′
𝑗
,wn′,𝑉 ,D′, payinfo, P, P𝑘 , 𝑏) such that U′

𝑗
= U𝑗 , wn′ =

wn′ and 𝑏 = 1. For all such tuples, check if D′ ∩D = ∅. If that is
the case for all tuples, set 𝑐 ← 1. Else, if U𝑗 ∈ U, set 𝑐 ← U𝑗 ,
else set 𝑐 ← ⊥.

• Delete (qid,U, payinfo,V𝑖 ) .
• Send (ec.depvf.end, sid, payinfo, 𝑐) to V𝑖 .

Figure 1: Ideal Functionality FEC
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in our e-cash schemes, requests for the same wallet can be linked to

each other if authorities communicate with each other. Therefore,

whenV𝑖 is dishonest, FEC leaks wid to the simulator S. FEC does

not leak wn because dishonest authorities do not necessarily learn

how many wallets a user requests.

After being prompted by the simulator S, FEC checks thatV𝑖
has run the setup interface, records thatU𝑗 sends a request toV𝑖
with identifier reqid for wallet wn, and sendsU𝑗 and reqid toV𝑖 .

4 An authorityV𝑖 runs the ec.issue interface given a user iden-
tifierU𝑗 and a request identifier reqid. FEC checks whether there

is a request identifier reqid pending for a request from U𝑗 to V𝑖 .
In that case, after being prompted by the simulator S, FEC records

thatV𝑖 has run the issuance for the request reqid. Concretely, FEC

updates the entry [wn,wid, 𝑙,V] in DB such that wn is the wallet

number associated with reqid to contain V𝑖 in the set V. Finally,
FEC informsU𝑗 thatV𝑖 has run the issuance for the request reqid.

5 A userU𝑗 runs the ec.spend interface given a wallet number

wn, a number 𝑉 of coins to be spent, a set of coin indices D, pay-
ment information payinfo, a pseudonym P and a provider identifier

P𝑘 . The payment information payinfo should be unique for each

spending, but FEC checks that later when verifying a deposit. If

U𝑗 is honest, FEC checks that there are enough non-spent coins

related to wn (𝑙 + 𝑉 ≤ 𝐿, where 𝑙 is in the entry [wn,wid, 𝑙,V]
∈ DB) and in that case adds 𝑉 to the number of spent coins. In

contrast, ifU𝑗 is corrupt, FEC records that the coins with indices D
are spent, regardless of whether they were spent before or not. FEC

also checks that enough authorities have issued the wallet wn to

U𝑗 . In that case, after being prompted by the simulator, FEC checks

that P𝑘 has run the registration interface and creates a payment

identifier payid to store the information related to this spending.

Finally FEC sends payid, 𝑉 , payinfo and P to P𝑘 . We remark that

P𝑘 does not learn U𝑗 , and P can be different for each spending

so that spendings by U𝑗 are unlinkable to each other and to the

request phase.

6 A provider P𝑘 runs the ec.deposit interface on input a pay-

ment identifier payid. If there is a payment with identifier payid
related to P𝑘 that is not deposited, FEC proceeds to deposit it. If

no authorities are corrupt, FEC does not leak to S any information

about the deposited payment. However, if at least one authority is

corrupt and the user that computed the payment is corrupt, FEC

leaks the full information about the payment. If at least one author-

ity is corrupt but the user that computed the payment is honest,

the authority leaks the number 𝑉 of coins spent and the payment

information payinfo. After being prompted by the simulator, FEC

marks that payment as deposited and informs P𝑘 that the payment

has been deposited.

7 An honest authority V𝑖 runs the ec.depvf interface given
a list of user identifiers U and payment information payinfo. FEC

checks thatV𝑖 has run the setup interface and that all the users in

U have run the registration interface. FEC leaks to the simulator the

identities of those users inU that were unknown byV𝑖 . This is done
because, in our protocol, V𝑖 needs to retrieve the public key for

that user, and the adversary learns that. FEC also leaks the number

of deposits that were made since the last timeV𝑖 run the deposit

verification interface. This is done because, in our protocol, the

authority needs to read the new deposits from the bulletin board,

and the adversary learns that. We remark that those leakages can be

avoided in our protocols by using a registration functionality that

does not leak the retrieved public key to the adversary and a bulletin

board functionality that does not leak the number of read operations.

We allow this leakage in our functionality because we think that

hiding such information is not crucial and because, thanks to that,

more efficient constructions can realize our functionality.

After being prompted by the simulator, FEC checks the deposited

payment with payment information payinfo. If no such deposited

payment exists, FEC sets 𝑐 ← 0. If there is more than one deposited

payment with payinfo, FEC sets 𝑐 to contain the identifiers of the

provider(s) that deposited those payments more than once, or just

once if the identity of the provider is not in payinfo. If there is 1
such tuple, FEC sets 𝑐 to the identity of the provider that deposited

the payment if that identity is not in payinfo. Else, FEC sets 𝑐 ← 1 if

the user that made a payment with payinfo is honest, which means

that there has not been a double spending. If the user is corrupt,

FEC checks whether there are deposited payments where the coins

spent in the payment related with payinfo have also been spent.

If that is not the case, FEC sets 𝑐 ← 1. Else, if the user identifier

is in U, FEC sets 𝑐 to the identifier of the user that double spent,

and otherwise sets 𝑐 ← ⊥, which indicates that double spending

has been detected but the user has not been identified. FEC sends 𝑐

along with payinfo toV𝑖 .

Security properties. We now argue that FEC guarantees the secu-

rity properties defined in §3.2.

Traceability. In the ec.spend interface, when a user wishes to

spend coins in the wallet wn, FEC checks that the user has been

issued that wallet by at least 𝑡 − 𝑡 authorities. This guarantees that
users cannot forge wallets. Moreover, in the ec.depvf interface, FEC

guarantees that, if coins were double spent, the user is identified

whenever the user identifier is included in the set U. FEC also finds

providers guilty of wrongly depositing a payment, either when

they deposit a payment with the same payinfo more than once, or

when they deposit a payment with payinfo that does not contain
the provider’s identity.

Unlinkability. In the ec.spend interface, the user identity is not

revealed to the provider. The provider only receives a pseudonym,

which can be different at each spending. This guarantees that pay-

ments from the same user cannot be linked with each other or to

withdrawals by that user.

Exculpability. FEC never finds an honest user guilty of double

spending. Any protocol that realizes FEC must guarantee that.

Clearance. In the ec.depvf interface, FEC never accepts a deposit

as valid if the identity of the provider that made the deposit is not

contained in payinfo.
We remark that FEC does not take into account the case where 𝑡

or more authorities are corrupt. We will analyze the security of

constructionΠEC under the assumption that at most 𝑡−1 authorities

are corrupt.

Discussion. FEC defines an ideal protocol that consists of the

usual phases of previous e-cash schemes and provides the security

properties typically guaranteed by previous schemes. Therefore,

FEC can be used to analyze the security of other schemes in the

ideal-world/real-world paradigm. In particular, it can be used for

schemes without threshold issuance by setting 𝑛 = 1 and 𝑡 = 1.
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4 CONSTRUCTION ΠEC

In Figure 2, we describe our construction ΠEC for FEC. ΠEC uses the

ideal functionalities FSMT for secure message transmission, FNYM

for a pseudonymous channel, FKG for key generation, FREG for reg-

istration and FBB for an authenticated bulletin board, which are de-

scribed in C. FSMT is used for the communication channel between

users and authorities in the ec.request and ec.issue interfaces, while
FNYM is used for the communication channel between users and

providers in the ec.spend interface. FKG runs algorithms Setup and

KeyGenV, and is used in the ec.setup and ec.register interfaces to
generate and distribute both the parameters of the scheme and the

keys of the authorities. FREG is used in the ec.register interface to
register the user public keys, and in the ec.issue and ec.depvf inter-
faces to give those keys to authorities. FBB is used in the ec.deposit
interface to deposit payments, and in the ec.depvf interface to let

authorities retrieve the deposited payments. We remark that ΠEC

also uses a functionality for random oracle FRO as in [50] to model

the random oracle queries done in the algorithms used as a building

block. However, this is omitted in the description of ΠEC.

In the ec.register interface, providers generate their own key pair,
although it is not used later in the protocol. This is done to simplify

the description of the protocol by making users and providers call

the same ec.register interface. Nevertheless, when the protocol is

instantiated by replacing the ideal functionalities used as building

blocks with concrete protocols that realize them, providers will

need to generate their own keys.

ΠEC uses the algorithms defined below. In §5, we instantiate them

for both our compact and divisible e-cash schemes. We define these

algorithms to provide a unique description of ΠEC that contains all

the operations that are repeated in both our compact and divisible

e-cash schemes.

Setup(1k, 𝐿). It computes the system parameters params on input

the security parameter 1
k
and the number of coins 𝐿 in a full

wallet. These parameters are publicly available.

KeyGenV(params, 𝑡, 𝑛). Given params, the threshold 𝑡 , and the

number of authorities 𝑛, output the public verification key pk
and the key pairs (skV𝑖 , pkV𝑖 )𝑖∈[1,𝑛] for each of the authorities.

KeyGenU(params). It is run by each userU𝑗 to generate a secret

key and a public key (skU𝑗 , pkU𝑗 ).
Request(params, skU𝑗 ). On input params and the secret key skU𝑗

of the user U𝑗 , output a request req and request information

reqinfo.
RequestVf (params, req, pkU𝑗 ). Given params, a request req and

the public key pkU𝑗 of the user U𝑗 , output 1 if the request is

valid and 0 otherwise.

Issue(params, skV𝑖 , req). On input params, the secret key of au-

thorityV𝑖 and a request req, output a response res.
IssueVf (params, pkV𝑖 , skU𝑗 , res, reqinfo). Given params, the pub-

lic key pkV𝑖 of authorityV𝑖 , the secret key skU𝑗 of userU𝑗 , a
response res and request information reqinfo, output a partial
wallet W𝑖 if the response res is correct and is associated to a

request with request information reqinfo, else output 0.

AggrWallet(pk, skU𝑗 , S, ⟨W𝑖 ⟩𝑖∈S). Given the public key pk, the se-
cret key skU𝑗 , a set of indices S ∈ [1, 𝑛] and partial wallets

⟨W𝑖 ⟩𝑖∈S, output a walletW if |S| ≥ 𝑡 , else output 0.

Spend(pk, skU𝑗 ,W , payinfo,𝑉 ). Given the public key pk, the se-

cret key skU𝑗 , a walletW , payment information payinfo, and a

number of coins𝑉 , outputs an updated walletW ′ and a payment

pay if there are 𝑉 non-spent coins inW or 0 otherwise.

SpendVf (pk, pay, payinfo). Given the public key pk, a payment

pay, and payment information payinfo, output the number 𝑉 of

coins received if the payment is correct, or 0 otherwise.

Identify(params, PK, pay
1
, pay

2
, payinfo

1
, payinfo

2
). Given the pa-

rameters params, a list of user public keys PK , and two payments

pay
1
and pay

2
with respective payment information payinfo

1

and payinfo
2
:

• Output 1 if pay
1
and pay

2
are payments where different coins

were used.

• Else, output payinfo
1
if payinfo

1
= payinfo

2
, which indicates

that the payment has been double deposited.

• Else, output the public key pkU𝑗 ∈ PK of the user U𝑗 that
double spent a coin in payments pay

1
and pay

2
.

• Else, output ⊥.

5 INSTANTIATION OF ΠEC

5.1 Threshold Issuance Compact Ecash
Our compact EC scheme is based on the scheme proposed in [14].

In order to provide threshold issuance, we use the Coconut proto-

col [54] with the modifications in [50]. We also make some changes

in the scheme in [14] to improve efficiency (see 5.1.2).

5.1.1 High-level Overview. In [14], a central bank plays the role of

the authority. In the setup phase, the bank generates a key pair for

a signature scheme, and each of the users generates a key pair.

Withdrawal Phase. A wallet of 𝐿 coins is a signature under the

bank’s public key on a user secret key skU𝑗 and two random values

v and t. The userU𝑗 obtains the signature from the bank on (skU𝑗 ,
v, t) through a blind signature protocol. The bank does not learn any
of the signed values, but learns the user public key pkU𝑗 associated
with skU𝑗 .
Spending Phase. In order to spend coin 𝑙 ∈ [0, 𝐿 − 1],U𝑗 proves
in zero-knowledge (ZK) possession of a signature on (skU𝑗 , v, t).
Additionally,U𝑗 generates a serial number 𝑆 and a double-spending

tag𝑇 , which are used to detect and identify double-spenders. 𝑆 and

𝑇 are computed by evaluating the pseudorandom function (PF) in

§A.6 on input 𝑙 . Concretely, 𝑆 is the output of the PF 𝑓g,v on input 𝑙 .

𝑇 is computed on input skU𝑗 , the output of the PF 𝑓g,t on input 𝑙 ,

and 𝑅 ← 𝐻 (payinfo). payinfo is given by the provider and should

be unique for each payment.U𝑗 also proves in ZK that 𝑆 and 𝑇 are

correctly computed.

Deposit phase. The provider sends to the bank the payment re-

ceived from the user. To check whether the coin has been double-

spent, the bank compares the serial number 𝑆 with the serial num-

bers of previously received coins. If there is a match, but the pay-

ment information payinfo is the same in both coins, then the bank

finds that the provider has deposited the coin twice. Else, the bank

identifies the user that double-spent the coin by using the double-

spending tags of both coins.

5.1.2 Our extensions. In our compact EC scheme, the signature

scheme is instantiated with PS signatures, which are described in
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(1) On input (ec.setup.ini, sid) , V𝑖 does the following:
• Abort if sid ≠ (V1, . . . ,V𝑛, sid′) , or if V𝑖 ∉ sid, or if 𝑛 < 𝑡 .

• Abort if (sid, params, pk, skV𝑖 , pkV𝑖 ) is already stored.

• Send (kg.getkey.ini, sid) to FKG. In its first invocation, FKG

runs params ← Setup(1k, 𝐿) and (pk, ⟨skV𝑖 , pkV𝑖 ⟩𝑖∈[1,𝑛] ) ←
KeyGenV(params, 𝑡, 𝑛) . FKG sends (kg.getkey.end, sid, params,
pk, skV𝑖 , pkV𝑖 ) to V𝑖 .
• Store (sid, params, pk, skV𝑖 , pkV𝑖 ) and output (ec.setup.end, sid) .

(2) On input (ec.register.ini, sid) , U𝑗 (or P𝑘 ) does the following:
• Abort if (sid, skU𝑗 , pkU𝑗 ) is already stored.

• Send (kg.retrieve.ini, sid) to FKG. FKG sends (kg.retrieve.end,
sid, v) . If v = (params, pk, ⟨pkV𝑖 ⟩𝑖∈[1,𝑛] ) , store (sid, params, pk,
⟨pkV𝑖 ⟩𝑖∈[1,𝑛] ) , else abort.

• Run (skU𝑗 , pkU𝑗 ) ← KeyGenU(params) .
• Set sidREG ← (U𝑗 , sid′) and send (reg.register.ini, sidREG, pkU𝑗 )
to FREG. FREG sends (reg.register.end, sidREG) to U𝑗 .
• Store (sid, skU𝑗 , pkU𝑗 ) and output (ec.register.end, sid) .

(3) On input (ec.request.ini, sid,V𝑖 , reqid,wn) , U𝑗 and V𝑖 do:
• U𝑗 aborts if sid ≠ (V1, . . . ,V𝑛, sid′) , or if V𝑖 ∉ sid, or if 𝑛 < 𝑡 ,

or if reqid ∉ Ureq , or if (sid, skU𝑗 , pkU𝑗 ) is not stored, or if there
is (sid,V′

𝑖
, reqid′,wn) such that reqid′ = reqid and V′

𝑖
= V𝑖 .

• If there is not a tuple (sid,wct) , U𝑗 stores (sid, 0) .
• Ifwn ∉ [1,wct ],U𝑗 setswct ← wct+1, setswn← wct, runs (req,
reqinfo) ← Request(params, skU𝑗 ) , stores (sid,wn, req, reqinfo)
and updates (sid,wct) . U𝑗 stores (sid,V𝑖 , reqid,wn) .
• U𝑗 sets sidSMT ← (U𝑗 ,V𝑖 , sid′) and sends (smt.send.ini, sidSMT,

⟨reqid, req⟩) to FSMT.

• V𝑖 receives (smt.send.end, sidSMT, ⟨reqid, req⟩) from FSMT.

• V𝑖 aborts if (sid, params, pk, skV𝑖 , pkV𝑖 ) is not stored.
• V𝑖 aborts if there is a tuple (sid, reqid′, req,U′𝑗 ) stored such that

reqid′ = reqid and U′
𝑗
= U𝑗 .

• V𝑖 parses sidSMT as (U𝑗 ,V𝑖 , sid′) . If (sid,U′𝑗 , pkU𝑗 ) such that

U′
𝑗
= U𝑗 is not stored, V𝑖 does the following:

– V𝑖 sets sidREG ← (U𝑗 , sid′) and sends (reg.retrieve.ini,
sidREG) to FREG. FREG sends (reg.retrieve.end, sidREG, pkU𝑗 )
to V𝑖 .

– If pkU𝑗 = ⊥, V𝑖 aborts, else V𝑖 stores (sid,U𝑗 , pkU𝑗 ) .
• V𝑖 runs 𝑏 ← RequestVf (params, req, pkU𝑗 ) . If 𝑏 = 0, V𝑖 aborts,
else V𝑖 stores (sid, reqid, req,U𝑗 ) .
• V𝑖 outputs (ec.request.end, sid,U𝑗 , reqid) .

(4) On input (ec.issue.ini, sid,U𝑗 , reqid) , V𝑖 and U𝑗 do the following:

• V𝑖 aborts if (sid, reqid′, req,U′𝑗 ) such that reqid′ = reqid and U′
𝑗

= U𝑗 is not stored.
• V𝑖 runs res← Issue(params, skV𝑖 , req) .
• V𝑖 deletes (sid, reqid, req,U𝑗 ) , sets sidSMT ← (V𝑖 ,U𝑗 , sid′) and
sends (smt.send.ini, sidSMT, ⟨reqid, res⟩) to FSMT.

• U𝑗 receives (smt.send.end, sidSMT, ⟨reqid, res⟩) from FSMT.

• U𝑗 parses sidSMT as (V𝑖 ,U𝑗 , sid′) . U𝑗 aborts if a tuple (sid,
V′
𝑖
, reqid′,wn) such that reqid′ = reqid and V′

𝑖
= V′

𝑖
is not

stored. Else U𝑗 takes the stored tuple (sid,wn′, req, reqinfo) such
that wn′ = wn and runs W𝑖 ← IssueVf (params, pkV𝑖 , skU𝑗 , res,
reqinfo) . IfW𝑖 = 0, U𝑗 aborts.
• If there is not a tuple (sid,wn′, S,W) such that wn′ = wn, U𝑗
stores (sid,wn, ∅, ∅) .
• U𝑗 updates (sid,wn, S,W) to (sid,wn, S ∪ {𝑖 },W ∪ {W𝑖 }) .

• If (sid,wn′,W ) such that wn′ = wn is not stored, and if |S | ≥ 𝑡
in the tuple (sid,wn′, S,W) such that wn′ = wn, then U𝑗 runs W
← AggrWallet(pk, skU𝑗 , S,W) and stores (sid,wn,W ) .
• U𝑗 deletes (sid,V𝑖 , reqid,wn) .
• Output (ec.issue.end, sid, reqid,V𝑖 ) .

(5) On input (ec.spend.ini, sid,wn,𝑉 ,D, payinfo, P, P𝑘 ) , U𝑗 and V𝑖 do:
• U𝑗 aborts if P ∉ U𝑝 , or if payinfo ∉ Uinfo , or if payinfo does not
contain P𝑘 , or if (sid,wn′,W ) such that wn′ = wn is not stored,

or if𝑉 ∉ [1, 𝐿].
• U𝑗 runs𝑏 ← Spend(pk, skU𝑗 ,W , payinfo,𝑉 ) . If𝑏 = 0,U𝑗 aborts.
Else U𝑗 parses 𝑏 as (W ′, pay) and updates the stored tuple (sid,
wn,W ) to (sid,wn,W ′) .
• U𝑗 sends (nym.send.ini, sid, ⟨pay, payinfo⟩, P, P𝑘 ) to FNYM.

• P𝑘 receives (nym.send.end, sid, ⟨pay, payinfo⟩, P) from FNYM.

• P𝑘 aborts if (sid, params, pk, ⟨pkV𝑖 ⟩𝑖∈[1,𝑛] ) is not stored, or if
payinfo does not contain P𝑘 .
• P𝑘 runs 𝑏 ← SpendVf (pk, pay, payinfo) . If 𝑏 = 0, P𝑘 aborts, else

P𝑘 sets𝑉 ← 𝑏, creates a random unique payment identifier payid
and stores (sid, payid, pay, payinfo,𝑉 , 0) .
• P𝑘 outputs (ec.spend.end, payid,𝑉 , payinfo, P) .

(6) On input (ec.deposit.ini, sid, payid) , P𝑘 does the following:

• Abort if a tuple (sid, payid′, pay, payinfo,𝑉 ,𝑏) such that payid′ =
payid and 𝑏 = 0 is not stored.

• Send (bb.write.ini, sid, ⟨pay, payinfo⟩) to the functionality FBB.

FBB sends (bb.write.end, sid) to P𝑘 .
• Update the tuple (sid, payid, pay, payinfo,𝑉 ,𝑏) so that 𝑏 = 1.

• Output (ec.deposit.end, sid, payid) .
(7) On input (ec.depvf.ini, sid,U, payinfo) from an authority V𝑖 :
• Abort if (sid, params, pk, skV𝑖 , pkV𝑖 ) is not stored.
• For all U𝑗 ∈ U, if (sid,U′𝑗 , pkU𝑗 ) such that U′

𝑗
= U𝑗 is not

stored, do the following:

– Set sidREG ← (U𝑗 , sid′) and send (reg.retrieve.ini, sidREG) to
FREG. FREG sends back (reg.retrieve.end, sidREG, pkU𝑗 ) .

– If pkU𝑗 = ⊥, abort, else store (sid,U𝑗 , pkU𝑗 ) .
• Include in PK the public keys pkU𝑗 in all the stored tuples (sid,
U𝑗 , pkU𝑗 ) such that U𝑗 ∈ U.

• If (sid, i) is not stored, set i = 1 and store (sid, i) .
• While m′ ≠ ⊥, do the following:

– Send (bb.read.ini, sid, i) to FBB. FBB sends back (bb.read.end,
sid,m′) . If m′ = (P𝑘 , pay, payinfo) , store (sid, P𝑘 , pay,
payinfo) .

– Increment i.
• Update i in the tuple (sid, i) .
• Find all the stored tuples (sid, P𝑘 , pay, payinfo′) such that

payinfo′ = payinfo and do the following:

– If there is no tuple such that payinfo′ = payinfo, set 𝑐 ← 0.

– If there are 𝐾 > 1 tuples such that payinfo′ = payinfo, set
𝑐 ← (P1, . . . , P𝐾 ) , where (P1, . . . , P𝐾 ) are providers that

deposited payments with payinfo more than once, or that de-

posited a payment such that P𝑘 is not included in payinfo.
– If there is one tuple such that payinfo′ = payinfo, output 𝑐 ←
P𝑘 if the identity of the provider is not in payinfo. Else, for all the
remaining tuples (sid, P′

𝑘
, pay′, payinfo′) , run the algorithm 𝑐

← Identify(params, PK, pay, pay′, payinfo, payinfo′) until 𝑐 ≠

1. If 𝑐 = 1 for all tuples, set 𝑐 ← 1.

• Output (ec.depvf.end, sid, payinfo, 𝑐) .

Figure 2: Construction ΠEC
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§A.5. In the setup phase, the secret keys skV𝑖 for each of the author-

ities (V1, . . . ,V𝑛) are generated by evaluating random polynomials

of degree 𝑡 − 1 on input [1, 𝑛], while the verification key pk used to

verify wallets corresponds to a secret key that would be given by

the evaluation of those polynomials on input 0. In the withdrawal

phase, the user runs a blind signature protocol with at least 𝑡 au-

thorities. After obtaining at least 𝑡 valid signatures, the user uses

Lagrange interpolation to obtain a signature verifiable with pk.
A wallet is a signature on (skU𝑗 , v). In comparison to [14], we

remove the secret t. Thanks to this change, the size of the wallet

is smaller, and the ZK proofs used in both the withdrawal and

spending phase are more efficient in comparison to [14]. To make

this change possible, we modify the way the serial number 𝑆 and

double spending tag 𝑇 are computed. Concretely, 𝑆 is the output of

the PF 𝑓𝛿,v on input 𝑙 , and the computation of𝑇 uses the evaluation

of the PF 𝑓g,v on input 𝑙 , i.e., we use a new generator 𝛿 for the

computation of the serial numbers. This change allows us to use

the same secret v as the index of both PFs without compromising

the security of our scheme. In §F, we quantify the cost reduction

attained by removing t. We further improve the efficiency of the

withdrawal phase, by removing the need for the bank to contribute

randomness to create v in the blind signature protocol in [14]. In

our protocol, the user picks v and as discussed in §5.1.4, this change

does not compromise the security of our scheme. We also improve

efficiency by using one ZK proof 𝜋𝑣 to spend 𝑉 coins, instead of

repeating 𝑉 times the spending protocol for one coin.

5.1.3 Construction. The algorithms of our compact EC scheme are

defined below. In §A, we describe the cryptographic primitives used

by the algorithms.

Setup(1k, 𝐿). Execute the following steps:
• Run (p,G, ˜G,G𝑡 , e, g, g̃) ← G(1k).
• Pick 3 random generators (𝛾1, 𝛾2, 𝛿) ← G.
• Output params← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝐿).

KeyGenV(params, 𝑡, 𝑛). Execute the following steps:
• Choose (1 + 2) polynomials (𝑣,𝑤1,𝑤2) of degree (𝑡 − 1) with
random coefficients in Z𝑝 .
• Set (𝑥,𝑦1, 𝑦2) ← (𝑣 (0),𝑤1 (0),𝑤2 (0)).
• For 𝑖 = 1 to 𝑛, set the secret key skV𝑖 of each authorityV𝑖 as
skV𝑖 = (𝑥𝑖 , 𝑦𝑖,1, 𝑦𝑖,2) ← (𝑣 (𝑖),𝑤1 (𝑖),𝑤2 (𝑖)).
• For 𝑖 = 1 to 𝑛, set the verification key pkV𝑖 of each authority

V𝑖 as pkV𝑖 = (𝛼𝑖 , 𝛽𝑖,1, ˜𝛽𝑖,1, 𝛽𝑖,2, ˜𝛽𝑖,2) ← (g̃𝑥𝑖 , g𝑦𝑖,1 , g̃𝑦𝑖,1 , g𝑦𝑖,2 ,
g̃𝑦𝑖,2 ).
• Set the verification key pk = (params, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2) ←
(params, g̃𝑥 , g𝑦1 , g̃𝑦1 , g𝑦2 , g̃𝑦2 ).
• Output (pk, ⟨pkV𝑖 , skV𝑖 ⟩

𝑛
𝑖=1
).

KeyGenU(params). Execute the following steps:
• Pick random skU𝑗 ← Z𝑝 and compute pkU𝑗 ← gskU𝑗 .
• Output (skU𝑗 , pkU𝑗 ).

Request(params, skU𝑗 ). Execute the following steps:
• Pick random v ← Z𝑝 and set (m1,m2) = (skU𝑗 , v).
• Pick random 𝑜 ← Z𝑝 and compute com = g𝑜

∏
2

𝑗=1
𝛾
m𝑗
𝑗

.

• Compute h← 𝐻 (com), where 𝐻 is a hash function modeled

as a random oracle.

• Compute commitments to each of the messages. For 𝑗 = 1 to

2, pick random 𝑜 𝑗 ← Z𝑝 and set com𝑗 = g𝑜 𝑗 hm𝑗 .

• Compute a ZK argument of knowledge 𝜋𝑠 via the Fiat-Shamir

heuristic for the following relation: (In our schemes, we use

the Fiat-Shamir heuristic for efficiency reasons. We discuss an

alternative in C.6.)

𝜋𝑠 =NIZK{(m1,m2, 𝑜, 𝑜1, 𝑜2) : com = g𝑜
2∏
𝑗=1

𝛾
m𝑗
𝑗
∧

pkU𝑗 ← gm1 ∧ {com𝑗 = g𝑜 𝑗 hm𝑗 }∀𝑗 ∈[1,2] }

• Set reqinfo← (h, 𝑜1, 𝑜2, v) and req← (h, com, com1, com2, 𝜋𝑠 ).
Output req and reqinfo.

RequestVf (params, req, pkU𝑗 ). Execute the following steps:
• Parse req as (h, com, com1, com2, 𝜋𝑠 ).
• Compute h′ ← 𝐻 (com) and output 0 if h ≠ h′.
• Verify the ZK argument 𝜋𝑠 by using the tuple (params, h, com,
com1, com2, pkU𝑗 ). Output 0 if the proof 𝜋𝑠 is not correct, else

output 1.

Issue(params, skV𝑖 , req). Execute the following steps:
• Parse req as (h, com, com1, com2, 𝜋𝑠 ) and skV𝑖 as (𝑥𝑖 , 𝑦𝑖,1, 𝑦𝑖,2).
• Compute 𝑐 = h𝑥𝑖

∏
2

𝑗=1
com𝑦𝑖,𝑗

𝑗
.

• Set the blinded signature share �̂�𝑖 ← (h, 𝑐).
• Output res← �̂�𝑖 .

IssueVf (params, pkV𝑖 , skU𝑗 , res, reqinfo). Do the following:

• Parse reqinfo as (h′, 𝑜1, 𝑜2, v), res as �̂�𝑖 = (h, 𝑐), and pkV𝑖 as
(𝛼𝑖 , 𝛽𝑖,1, ˜𝛽𝑖,1, 𝛽𝑖,2, ˜𝛽𝑖,2). Output 0 if h ≠ h′.
• Compute 𝜎𝑖 = (h, 𝑠) ← (h, 𝑐

∏
2

𝑗=1
𝛽
−𝑜 𝑗
𝑖, 𝑗
).

• Set (m1,m2) ← (skU𝑗 , v). Output 0 if e(h, 𝛼𝑖
∏

2

𝑗=1

˜𝛽
m𝑗
𝑖, 𝑗
) =

e(𝑠, g̃) does not hold.
• Output W𝑖 ← (𝑖, 𝜎𝑖 , v).

AggrWallet(pk, skU𝑗 , S, ⟨W𝑖 ⟩𝑖∈S). Execute the following steps:
• If |S| ≠ 𝑡 , output 0.

• For all 𝑖 ∈ S, evaluate at 0 the Lagrange basis polynomials

𝑙𝑖 = [
∏
𝑗 ∈S, 𝑗≠𝑖 (0 − 𝑗)] [

∏
𝑗 ∈S, 𝑗≠𝑖 (𝑖 − 𝑗)]−1

mod p
• For all 𝑖 ∈ S, parseW𝑖 as (𝑖, 𝜎𝑖 , v) and 𝜎𝑖 as (h, 𝑠𝑖 ).
• Compute the signature 𝜎 = (h, 𝑠) ← (h,∏𝑖∈S 𝑠

𝑙𝑖
𝑖
).

• Parse pk as (params, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Set (m1,m2) = (skU𝑗 , v) and output 0 if e(h, 𝛼∏2

𝑗=1

˜𝛽
m𝑗
𝑗
) =

e(𝑠, g̃) does not hold, else output W ← (𝜎, v, 𝑙), where 𝑙 is a
counter from 0 to 𝐿 − 1 initialized to 0.

Spend(pk, skU𝑗 ,W , payinfo,𝑉 ). Execute the following steps:
• ParseW as (𝜎, v, 𝑙). If 𝑙 +𝑉 − 1 ≥ 𝐿, output 0.

• Parse 𝜎 as (h, 𝑠) and pk as (params, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Pick random 𝑟 ← Z𝑝 and 𝑟 ′ ← Z𝑝 .

• Compute 𝜎 ′ = (h′, 𝑠 ′) ← (h𝑟 ′, 𝑠𝑟 ′ (h′)𝑟 ) and 𝜅 ← 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 .

• Pick random 𝑜𝑐 ← Z𝑝 and compute the commitment 𝐶 ←
g𝑜𝑐𝛾v

1
.

• For 𝑘 ∈ [0,𝑉 − 1], compute 𝑅𝑘 ← 𝐻 ′(payinfo, 𝑘), where
payinfo must contain the identifier of the merchant, and 𝐻 ′ is
a collision-resistant hash function.

• For 𝑘 ∈ [0,𝑉 −1], set 𝑙𝑘 ← 𝑙 +𝑘 , pick random 𝑜𝑎𝑘 and compute

𝐴𝑘 = g𝑜𝑎𝑘 𝛾𝑙𝑘
1
.

• For 𝑘 ∈ [0,𝑉 −1], compute the serial numbers 𝑆𝑘 ← 𝑓𝛿,v (𝑙𝑘 ) =
𝛿1/(v+𝑙𝑘+1)

and also compute the double spending tags 𝑇𝑘 ←
gskU𝑗 (𝑓g,v (𝑙𝑘 ))𝑅𝑘 = gskU𝑗 +𝑅𝑘/(v+𝑙𝑘+1) .
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• For 𝑘 ∈ [0,𝑉 − 1], compute the values 𝜇𝑘 ← 1/(v + 𝑙𝑘 + 1)
and 𝑜𝜇𝑘 ← −(𝑜𝑎𝑘 + 𝑜𝑐 )𝜇𝑘 .
• Compute a ZK argument of knowledge 𝜋𝑣 via the Fiat-Shamir

heuristic for the following relation:

𝜋𝑣 =NIZK{(skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩
𝑉−1

𝑘=0
) :

𝜅 = 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 ∧ 𝐶 = g𝑜𝑐𝛾v

1
∧

⟨𝐴𝑘 = g𝑜𝑎𝑘 𝛾𝑙𝑘
1
∧ 𝑙𝑘 ∈ [0, 𝐿 − 1] ∧

𝑆𝑘 = 𝛿𝜇𝑘 ∧ 𝛾1 = (𝐴𝑘𝐶𝛾1)𝜇𝑘 g𝑜𝜇𝑘 ∧

𝑇𝑘 = gskU𝑗 (g𝑅𝑘 )𝜇𝑘 ⟩𝑘∈[0,𝑉−1] }

In §F, we explain this ZK proof and show how to prove the

statement 𝑙𝑘 ∈ [0, 𝐿 − 1].
• Output a payment pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶,
𝜋𝑣) and an updated walletW ′ ← (𝜎, v, 𝑙 +𝑉 ).

SpendVf (pk, pay, payinfo). Execute the following steps:
• Parse pk as (params, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Parse pay as (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣).
• Parse 𝜎 ′ as (h′, 𝑠 ′) and output 0 if h′ = 1 or if e(h′, 𝜅) = e(𝑠 ′, g̃)
does not hold.

• Output 0 if not all the serial numbers ⟨𝑆𝑘 ⟩𝑘∈[0,𝑉−1] are differ-
ent from each other.

• For 𝑘 ∈ [0,𝑉 − 1], compute 𝑅𝑘 ← 𝐻 ′(payinfo, 𝑘).
• Verify 𝜋𝑣 by using payinfo, pk, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 , 𝑅𝑘 ⟩𝑘∈[0,𝑉−1] ,𝐶 and

𝜅. Output 0 if the proof is not correct, else output 𝑉 .

Identify(params, PK, pay
1
, pay

2
, payinfo

1
, payinfo

2
). Do:

• Parse pay
1
as (𝜅1, 𝜎

′
1
, ⟨𝑆𝑘,1,𝑇𝑘,1, 𝐴𝑘,1⟩𝑘∈[0,𝑉1−1] ,𝑉1,𝐶1, 𝜋𝑣,1).

• Parse pay
2
as (𝜅2, 𝜎

′
2
, ⟨𝑆𝑘,2,𝑇𝑘,2, 𝐴𝑘,2⟩𝑘∈[0,𝑉2−1] ,𝑉2,𝐶2, 𝜋𝑣,2).

• For 𝑘 ∈ [0,𝑉1 − 1], for 𝑗 ∈ [0,𝑉2 − 1], check whether 𝑆𝑘,1 =

𝑆 𝑗,2. If the equality never holds, output 1.

• Else, output payinfo
1
if payinfo

1
= payinfo

2
.

• Else, for 𝑘 ∈ [0,𝑉1 − 1] and 𝑗 ∈ [0,𝑉2 − 1] such that 𝑆𝑘,1 =

𝑆 𝑗,2, compute pkU𝑗 ← (𝑇
𝑅𝑘,1
𝑗,2
/𝑇𝑅 𝑗,2
𝑘,1
) (𝑅𝑘,1−𝑅 𝑗,2)−1

If pkU𝑗 ∈ PK
output pkU𝑗 , else output ⊥.

5.1.4 Security Analysis of Compact E-Cash. In §D, we prove for-

mally that ΠEC, when instantiated with the algorithms of our com-

pact EC scheme, realizes FEC. In this section, we give intuition on

why our scheme is secure.

Unlinkability. In the withdrawal phase, a corrupt authority does

not learn the user secrets (skU𝑗 , v) thanks to the hiding property
of the Pedersen commitment scheme and to the ZK property of

the argument 𝜋𝑠 . In the spend phase, a corrupt provider does not

learn anything from a payment beyond the number of coins spent.

To prove that, several properties are used. First, we use the ZK

property of the argument 𝜋𝑣 . Second, to prove that 𝐶 and 𝐴𝑘 do

not reveal any information about v or 𝑙𝑘 , we use the hiding prop-

erty of the Pedersen commitment scheme. Third, to prove that 𝑆𝑘
and 𝑇𝑘 do not reveal any information about pkU𝑗 , v or 𝑙𝑘 , we use

the pseudorandomness property of the PF, along with the XDH

assumption.
1
Finally, as in the modified version of Coconut in [50],

the PS signature is “randomized” in a way that enables us to prove

1
In contrast to [14], the XDH assumption is needed in our scheme because we use the

same coin secret v to compute 𝑆𝑘 and𝑇𝑘 .

signature possession without revealing any information about the

original signature or the signed messages.

Traceability, Exculpability and Clearance. In order to prove

that a user cannot spend coins that she has not withdrawn be-

fore, we use several properties of our building blocks. The weak

simulation extractability property allows us to extract the witnesses

from the ZK arguments 𝜋𝑠 . Thanks to that extraction, we can use

the binding property of the commitment scheme com included in

a request message to ensure that different commitments com and

com′ commit to different tuples (skU𝑗 , v). This is required for the

unforgeability of PS signatures in the RO model. We remark that

com is the input to the random oracle and that it is necessary to en-

sure that a different generator h is created to sign different message

tuples. The binding property of com guarantees that. Second, we

use the weak simulation extractability property of arguments 𝜋𝑣
to extract the witnesses. Thanks to that, in the spending phase, we

can extract a signature on (skU𝑗 , v) from a payment message and

show that, if a user did not withdraw at least 𝑡 signatures from 𝑡 dif-

ferent authorities, then the user can be used to break the existential

unforgeability property of PS signatures in the RO model.

Therefore, we know that, if more coins are deposited than those

being withdrawn, it is the case that a user has double-spent coins or

that a provider has double-deposited coins. In the deposit phase, an

authority checks that payments that are deposited have different se-

rial numbers. We show that the extractability of 𝜋𝑣 , along with the

discrete logarithm assumption, guarantees that the serial numbers

and double spending tags are correctly computed. Therefore, if two

payments have at least one common serial number, there are three

possibilities: (1) Double depositing, (2) double spending, (3) none of

the former. Double depositing can be punished by checking whether

two payments are associated with the same payment information

payinfo, which contains the identifier of the provider. We recall

that payinfo is signed in 𝜋𝑣 . Moreover, our construction ΠEC uses

an authenticated bulletin board. Thus, an authority can check that

the provider that deposits a payment is the same whose identity

is in payinfo. The latter guarantees the clearance property. If dou-
ble depositing did not happen because the payment information

payinfo and payinfo′ is different in those payments, the authority

can retrieve the public key of the user who double spent a coin

through the computation described in the algorithm Identify. This
computation requires that 𝑅𝑘 ← 𝐻 ′(payinfo, 𝑘) is different from
𝑅′
𝑘′
← 𝐻 ′(payinfo′, 𝑘 ′). We show that, if the hash function 𝐻 ′ is

collision-resistant, the double spender can always be identified. In

our scheme, a corrupt user is able to compute two payments where

there is no double spending, yet two serial numbers are equal. The

reason is that, unlike in the scheme in [14], the user picks the coin

secret v on its own. When a corrupt user does that, our security

analysis guarantees that, under the hardness of the discrete loga-

rithm assumption, algorithm Identify will never identify an honest

user as the double spender. This guarantees the exculpability prop-

erty. Moreover, we also show that, under the discrete logarithm

assumption, a corrupt user cannot compute a payment with a serial

number that is equal to a serial number in a payment computed

by an honest user. Consequently, when Identify detects that two

serial numbers are equal, but is unable to find the public key of the
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user who double spent (i.e. Identify outputs ⊥), we are in a case in

which in fact there is no double-spending.

5.2 Threshold Issuance Divisible E-Cash
In our compact EC scheme in §5.1, the cost of the spending phase

grows linearly with the number of coins spent. In divisible e-cash,

the cost of the spending phase is independent of the number of

coins spent. To make that possible, the main change in comparison

to compact e-cash is that the serial numbers of coins are generated

during the deposit phase, rather than the spending phase.

Our divisible EC scheme is based on the work by Pointcheval

et al. [49], which proposes a scheme in the standard model with

Groth-Sahai proofs [36]. We modify that scheme as follows. In [49],

a wallet is a signature on two group elements (𝑈1,𝑈2) = (𝑢
skU𝑗
1

, 𝑢v
2
)

We replace the signature scheme used in [49] by the PS signature

scheme, and we sign (skU𝑗 , v). Thus, the wallet in our divisible EC

scheme has the same form as in our compact EC scheme. Thanks to

that, in the withdrawal phase we use the same algorithms Request,
RequestVf, Issue, IssueVf and AggrWallet (see §5.1.3) to provide a

threshold issuance protocol. At setup, algorithms KeyGenV and

KeyGenU also work as in §5.1.3.

In the spending phase in [49], a Groth-Sahai non-interactive ZK

proof and a Groth-Sahai non-interactive witness-indistinguishable

proof are computed. The latter involves proof of possession of the

signature on (𝑈1,𝑈2). In our scheme, we use a NIZK argument

computed via the Fiat-Shamir heuristic, which involves all the

statements proven in both the Groth-Sahai ZK proof and witness-

indistinguishable proof. To prove possession of a PS signature on

(skU𝑗 , v), we use the method depicted in algorithm Spend in §5.1.3.

Because Groth-Sahai proofs are randomizable, in [49], the user

needs to compute a one-time signature on the payment. A statement

is added to the Groth-Sahai proof to certify the public key used

for the one-time signature. In our scheme, this is not needed, be-

cause non-interactive ZK arguments computed via the Fiat-Shamir

heuristic are signatures of knowledge.

The remaining values computed in the spending phase, and the

statements proven about them, are the same in [49] and in our

scheme. We note that our non-interactive ZK argument involves

proving knowledge of group elements in addition to discrete loga-

rithm representations. We show how this is done in §A.3.

5.2.1 High-level Overview. A wallet of 𝐿 coins is a signature on

(skU𝑗 , v), where skU𝑗 is the secret key of userU𝑗 and v is a coin

secret. The 𝐿 serial numbers of the coins in a wallet are given by

SN𝑙 = e(𝜍, g̃)v𝑦𝑙 , 𝑙 ∈ [1, 𝐿] where values 𝑦 and 𝜍 are part of the

parameters of the scheme.

Withdrawal Phase. The withdrawal phase is the same as in our

compact EC scheme in §5.1.3.

Spending Phase. In the spending phase, to spend𝑉 coins, the user

needs to give information that allows the authorities to compute the

𝑉 serial numbers of the spent coins, but no more than that. To this

end, to spend𝑉 coins with indices [𝑙, 𝑙+𝑉 −1], the user computes an

ElGamal encryption 𝜙𝑉 ,𝑙 of 𝜍
v
𝑙
under the public key 𝜂𝑉 . The values

𝜍𝑙 (for 𝑙 ∈ [1, 𝐿]) and 𝜂𝑉 (for 𝑉 ∈ [1, 𝐿]) are part of the public

parameters of the scheme. 𝜙𝑉 ,𝑙 is used in the deposit phase by the

authorities to generate the serial numbers (SN𝑙 , . . . , SN𝑙+𝑉−1
). This

ELGamal encryption with public key 𝜂𝑉 restricts the authorities to

generate only those 𝑉 serial numbers.

To enable identification of double spenders, the user computes the

double spending tag 𝜑𝑉 ,𝑙 as an ElGamal encryption of (g𝑅)skU𝑗 𝜃v
𝑙

under public key 𝜂𝑉 , where 𝑅 is a hash of the payment information

payinfo given by the provider. The values 𝜃𝑙 , for 𝑙 ∈ [1, 𝐿], are part
of the parameters of the scheme.

The user also needs to prove in zero-knowledge that 𝜙𝑉 ,𝑙 and 𝜑𝑉 ,𝑙
are correctly computed. To this end, the user proves possession of

a signature on (skU𝑗 , v) and proves that those values were used to

compute 𝜙𝑉 ,𝑙 and 𝜑𝑉 ,𝑙 . Additionally, the user needs to prove that

the correct values 𝜍𝑙 and 𝜃𝑙 in the public parameters have been

used, and that 𝑙 ≤ 𝐿 − 𝑉 + 1. To allow the user to prove those

statements, the public parameters of the scheme contain signatures

on the pairs (𝜍𝑙 , 𝜃𝑙 ) (for 𝑙 ∈ [1, 𝐿]). The user proves possession of the
signature on the pair (𝜍𝑙+𝑉−1

, 𝜃𝑙+𝑉−1
) and proves that (𝜍𝑙 , 𝜃𝑙 ) are

correctly chosen through the equations e(𝜍𝑙 , ˜𝛿𝑉−1) = e(𝜍𝑙+𝑉−1
, 𝑔)

and e(𝜃𝑙 , ˜𝛿𝑉−1) = e(𝜃𝑙+𝑉−1
, 𝑔). The values

˜𝛿𝑘 ← g̃𝑦
𝑘
(for 𝑘 ∈

[0, 𝐿 − 1]) are part of the parameters of the scheme. Although this

proof does not prove that 𝑙 ≥ 1, in the security analysis it is shown

that the user is unable to generate (𝜍𝑙 , 𝜃𝑙 ) such that 𝑙 ∉ [1, 𝐿].
Deposit Phase. In the deposit phase, an authority checks whether

a coin has been double spent. For this purpose, the authority com-

putes the serial numbers of the spent coins by doing SN𝑘 ←
e(𝜙𝑉 ,𝑙 [2], ˜𝛿𝑘 )e(𝜙𝑉 ,𝑙 [1], 𝜂𝑉 ,𝑘 ) for 𝑘 ∈ [0,𝑉 − 1]. Here, the values
𝜂𝑙,𝑘 for 𝑙 ∈ [1, 𝐿] and 𝑘 ∈ [0, 𝑙 − 1] are part of the parameters of

the scheme. Because of those values, the size of the parameters is

quadratic in the number 𝐿 of coins in a wallet, but this is only the

case for the parameters that the authorities need, i.e., the size of

parameters for users is linear in 𝐿.

When a collision between serial numbers of two payments is de-

tected, the authority uses the security tags of both payments for

identification of the user who double spent. The mechanism used is

similar to the one of our compact EC scheme in §5.1. However, in

the divisible EC scheme, the authority, rather than computing the

user key, checks whether an equality holds for each of the public

keys of the users one by one, which is a disadvantage.

5.2.2 Construction. Our divisible e-cash scheme works as follows:

Setup(1k, 𝐿). Execute the following steps:
• Run grp = (p,G, ˜G,G𝑡 , e, g, g̃) ← G(1k).
• Pick random generators 𝜂,𝛾1, 𝛾2 ← G.
• Generate random scalars (𝑧,𝑦) ← Z𝑝 and compute (𝜍, 𝜃 ) ←
(g𝑧 , 𝜂𝑧). Generate for 𝑙 ∈ [1, 𝐿], 𝑎𝑙 ← Z𝑝 .
• For 𝑙 ∈ [1, 𝐿], compute (𝜍𝑙 , 𝜃𝑙 ) ← (𝜍𝑦

𝑙
, 𝜃𝑦

𝑙 ).
• For 𝑘 ∈ [0, 𝐿 − 1], compute

˜𝛿𝑘 ← g̃𝑦
𝑘
.

• For 𝑙 ∈ [1, 𝐿], compute 𝜂𝑙 ← g𝑎𝑙 .
• For 𝑙 ∈ [1, 𝐿], for 𝑘 ∈ [0, 𝑙 − 1], compute 𝜂𝑙,𝑘 ← g̃−𝑎𝑙 ·𝑦

𝑘
.

• Run algorithm (pk𝑠𝑝𝑠 , sk𝑠𝑝𝑠 ) ← KeyGen(grp, 2, 0) of the SPS
scheme in §A.5.

• For 𝑙 ∈ [1, 𝐿], compute 𝜏𝑙 ← Sign(sk𝑠𝑝𝑠 , ⟨𝜍𝑙 , 𝜃𝑙 ⟩).
• Set the parameters for users params𝑢 ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝜂,
𝛾1, 𝛾2, {𝜂𝑙 , 𝜍𝑙 , 𝜃𝑙 , 𝜏𝑙 }𝐿𝑙=1

, { ˜𝛿𝑘 }𝐿−1

𝑘=0
, pk𝑠𝑝𝑠 ). Set the additional pa-

rameters for authorities params𝑎 ← ({⟨𝜂𝑙,𝑘 ⟩𝑙−1

𝑘=0
}𝐿−1

𝑙=1
).

• Output params← (params𝑢 , params𝑎).
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Spend(pk, skU𝑗 ,W , payinfo,𝑉 ). Execute the following steps:
• Parse W as (𝜎, v, 𝑙) and 𝜎 as (h, 𝑠). If 𝑙 +𝑉 − 1 > 𝐿, output 0.

• Parse pk as (params𝑢 , 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Pick random scalars 𝑟 ← Z𝑝 and 𝑟 ′ ← Z𝑝 and compute

𝜎 ′ = (h′, 𝑠 ′) ← (h𝑟 ′, 𝑠𝑟 ′ (h′)𝑟 ).
• Compute 𝜅 ← 𝛼 ˜𝛽

skU𝑗
1

˜𝛽v
2
g̃𝑟 .

• Pick random 𝑟1, 𝑟2 ← Z𝑝 and set 𝜙𝑉 ,𝑙 = (𝜙𝑉 ,𝑙 [1], 𝜙𝑉 ,𝑙 [2]) ←
(g𝑟1 , 𝜍v

𝑙
𝜂
𝑟1

𝑉
).

• Set 𝑅 ← 𝐻 ′(payinfo), where 𝐻 ′ is a collision-resistant hash
function, and compute

𝜑𝑉 ,𝑙 = (𝜑𝑉 ,𝑙 [1], 𝜑𝑉 ,𝑙 [2]) ← (g𝑟2 , (g𝑅)skU𝑗 𝜃v
𝑙
𝜂
𝑟2

𝑉
)

• Take params𝑢 from pk. Take the public key pk𝑠𝑝𝑠 = (𝑌,𝑊1,

𝑊2, 𝑍 ) and the signature 𝜏𝑙+𝑉−1
= (𝑅𝑙+𝑉−1

, 𝑆𝑙+𝑉−1
,𝑇𝑙+𝑉−1

).
• Compute a ZK argument of knowledge 𝜋𝑣 via the Fiat-Shamir

heuristic for the following relation:

𝜋𝑣 =NIZK{(skU𝑗 , v, 𝑟 , 𝑟1, 𝑟2, 𝜍𝑙 , 𝜃𝑙 , 𝜍𝑙+𝑉−1
,

𝜃𝑙+𝑉−1
, 𝑅𝑙+𝑉−1

, 𝑆𝑙+𝑉−1
,𝑇𝑙+𝑉−1

) :

𝜅 = 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 ∧

𝜙𝑉 ,𝑙 [1] = g𝑟1 ∧ 𝜙𝑉 ,𝑙 [2] = 𝜍v𝑙 𝜂
𝑟1

𝑉
∧

𝜑𝑉 ,𝑙 [1] = g𝑟2 ∧ 𝜑𝑉 ,𝑙 [2] = (g𝑅)
skU𝑗 𝜃v

𝑙
𝜂
𝑟2

𝑉
∧

e(𝜍𝑙 , ˜𝛿𝑉−1) = e(𝜍𝑙+𝑉−1
, 𝑔) ∧

e(𝜃𝑙 , ˜𝛿𝑉−1) = e(𝜃𝑙+𝑉−1
, 𝑔) ∧

e(𝑅𝑙+𝑉−1
,𝑇𝑙+𝑉−1

)e(g, g̃)−1 = 1 ∧
e(𝑅𝑙+𝑉−1

, 𝑌 )e(𝑆𝑙+𝑉−1
, g̃)𝑒 (𝜍𝑙+𝑉−1

,𝑊1) ·
𝑒 (𝜃𝑙+𝑉−1

,𝑊2)e(𝑔, 𝑍 )−1 = 1

This signature of knowledge signs the payment information

payinfo. Since there are group elements in the witness, the

transformation described in §A.3 is needed. We depict the

argument after applying the transformation in Appendix G.

• Output a payment pay ← (𝜅, 𝜎 ′, 𝜙𝑉 ,𝑙 , 𝜑𝑉 ,𝑙 , 𝑅, 𝜋𝑣,𝑉 ) and an

updated wallet W ′ ← (𝜎, v, 𝑙 +𝑉 ).
SpendVf (pk, pay, payinfo). Execute the following steps:
• Parse pay as (𝜅, 𝜎 ′, 𝜙𝑉 ,𝑙 , 𝜑𝑉 ,𝑙 , 𝑅, 𝜋𝑣,𝑉 ) and 𝜎 ′ as (h′, 𝑠 ′). Out-
put 0 if h′ = 1 or if e(h′, 𝜅) = e(𝑠 ′, g̃) does not hold.
• Output 0 if 𝑅 ≠ 𝐻 ′(payinfo).
• Verify 𝜋𝑣 by using payinfo, pk, 𝜙𝑉 ,𝑙 , 𝜑𝑉 ,𝑙 , 𝑉 , 𝑅 and 𝜅. Output

0 if the proof is not correct, else output 𝑉 .

Identify(params, PK, pay
1
, pay

2
, payinfo

1
, payinfo

2
). Compute:

• Parse pay
1
as (𝜅1, 𝜎

′
1
, 𝜙𝑉1,𝑙1,1, 𝜑𝑉1,𝑙1,1, 𝑅1, 𝜋𝑣,1,𝑉1).

• Parse pay
2
as (𝜅2, 𝜎

′
2
, 𝜙𝑉2,𝑙2,2, 𝜑𝑉2,𝑙2,2, 𝑅2, 𝜋𝑣,2,𝑉2).

• For 𝑘 ∈ [0,𝑉1 − 1], compute the serial numbers

SN𝑘,1 ← e(𝜙𝑉1,𝑙1,1 [2], ˜𝛿𝑘 )e(𝜙𝑉1,𝑙1,1 [1], 𝜂𝑉1,𝑘 ) .

For 𝑘 ∈ [0,𝑉2 − 1], compute the serial numbers

SN𝑘,2 ← e(𝜙𝑉2,𝑙2,2 [2], ˜𝛿𝑘 )e(𝜙𝑉2,𝑙2,2 [1], 𝜂𝑉2,𝑘 ).

• Output 1 if none of the serial numbers SN𝑘1,1, for 𝑘1 ∈ [0,𝑉1 −
1], is equal to SN𝑘2,2, for 𝑘2 ∈ [0,𝑉2 − 1].
• Else, output payinfo

1
if payinfo

1
= payinfo

2
.

• Else, let 𝑘1 ∈ [0,𝑉1 − 1] and 𝑘2 ∈ [0,𝑉2 − 1] be two indices

such that SN𝑘1,1 = SN𝑘2,2. Compute

𝑇1 ← e(𝜑𝑉1,𝑙1,1 [2], ˜𝛿𝑘1
)e(𝜑𝑉1,𝑙1,1 [1], 𝜂𝑉1,𝑘1

)
and

𝑇2 ← e(𝜑𝑉2,𝑙2,2 [2], ˜𝛿𝑘2
)e(𝜑𝑉2,𝑙2,2 [1], 𝜂𝑉2,𝑘2

).

For each pkU𝑗 ∈ PK, checkwhether𝑇1𝑇
−1

2
= e(pkU𝑗 , ˜𝛿

𝑅1

𝑘1

˜𝛿
−𝑅2

𝑘2

)
and output pkU𝑗 if the equality holds. Output⊥ if the equality

does not hold for any pkU𝑗 ∈ PK.

5.2.3 Security Analysis of Divisible E-Cash. In §E, we prove for-

mally that ΠEC, when instantiated with the algorithms of our divis-

ible EC scheme, realizes FEC. In this section, we give intuition on

why our scheme is secure. The security analysis of our divisible EC

scheme is based on the security analysis given for our compact EC

scheme regarding the withdrawal phase and the non-interactive

ZK argument of possession of PS signatures used in the spending

phase. As in our compact EC scheme, the anonymity property also

relies on the hiding property of Pedersen commitments and the

ZK property of the proof system, as well as on the method to “ran-

domize” signatures in the spend phase. The traceability property

relies on the weak simulation extractability property of the non-

interactive ZK arguments of knowledge, the binding property of

the commitment scheme and the existential unforgeability property

of PS signatures in the RO model.

The remaining part of our analysis follows the security proof

given in [49] for the divisible e-cash scheme. The anonymity prop-

erty holds under the 𝑁 -MXDH’ assumption (see §A.2). In [49], it

is shown that this assumption holds in the generic bilinear group

model.

The traceability property relies on the existential unforgeability

of the SPS scheme in [1], which guarantees that the values (𝜍𝑙+𝑉−1
,

𝜃𝑙+𝑉−1
) used as a witness in the ZK argument 𝜋𝑣 are correct. It

also relies on the 𝐵𝐷𝐻𝐼 assumption, which guarantees that the

adversary cannot generate values (𝜍𝑙 , 𝜃𝑙 ) such that 𝑙 < 1. Those two

properties, along with the above-mentioned binding property of the

commitment scheme and the existential unforgeability property

of PS signatures in the RO model, guarantee that the ElGamal

encryptions 𝜙𝑉 ,𝑙 and 𝜑𝑉 ,𝑙 in payment are computed correctly. This

ensures that, if there is double-spending, an authority can identify

the user that double-spent a coin.

As noted in [10], in an RO model version of the scheme in [49],

like our scheme, we can extract the user’s secret key from the

ZK argument 𝜋𝑣 . Thus, we can show that an honest user cannot

be found guilty of double spending under the discrete logarithm

assumption. In our scheme, unlike in [49], the authority does not

contribute randomness to the generation of the coin secret v. This
means that, as in our compact EC scheme, the adversary is able to

generate two payments where there is no double spending, and

yet there is a match between serial numbers. In that case, it is

guaranteed that an honest user will not be found guilty.

As for clearance, like in our compact EC scheme, our construction

in §4 guarantees that only the provider that receives a payment can

deposit it. This is done by using an authenticated bulletin board and

checking that the provider’s identity is contained in the payment

information payinfo.
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Table 1: Average number of spent coins given 𝐷 and 𝑃𝑚𝑎𝑥

𝑃𝑚𝑎𝑥 𝐷 Avg. Num. Coins

10 [1, 2, 5] 1.9

100 [1, 2, 5, 10, 20, 50] 3.4

1000 [1, 2, 5, . . . , 100, 200, 500] 5.1

10000 [1, 2, 5, . . . , 1000, 2000, 5000] 6.8

100000 [1, 2, 5, . . . , 10000, 20000, 50000] 8.5

1000000 [1, 2, 5, . . . , 10000, 20000, 50000] 17.5

6 EFFICIENCY ANALYSIS AND COMPARISON
For years research has focused almost exclusively on divisible e-

cash because of the constant cost of the spending phase. However,

this is achieved at the expense of much more expensive deposit

and identification phases. In this section, we compare the efficiency

of our compact and divisible EC schemes. To this end, in §F, we

describe an instantiation of our compact EC scheme with a con-

crete set membership proof, and in §G, we describe how the NIZK

arguments of our divisible EC scheme are instantiated. Our com-

parison shows that our compact EC with multiple denominations,

an idea mentioned but never explored, keeps efficient deposit and

identification phases, while dramatically reducing the spending

phase cost as opposed to using one denomination. In fact, when

the price range is not large, the concrete (as opposed to asymptotic)

cost of compact EC with multiple denominations is smaller than

that of divisible EC also in the spending phase. Such a comparison

was not done before and can guide the choice of an EC scheme for

a practical payment system.

In §6.1, we analyze the average number of coins that need to

be spent depending on the choice of denominations. In §6.2, we

describe the implementation of our schemes and compare their

performance.

6.1 Choice of Multiple Denominations
The spending phase is arguably the phase in which time constraints

are more demanding. Spending one coin is more efficient in our

compact e-cash scheme than in our divisible e-cash scheme. How-

ever, for any real-world payment, multiple coins need to be spent,

and consequently, the compact e-cash scheme is not practical. To

counter this problem, a solution that has often been suggested in

the e-cash literature, but not studied in depth, is to use multiple

denominations. A question that arises when using multiple denom-

inations is how to choose those denominations optimally, i.e., to

minimize the average number of coins that need to be spent. This

optimal denomination problem has been studied in the context of

Fiat currencies [52]. Assuming that all the prices within a range [1,
𝑃𝑚𝑎𝑥 ] are equally likely, and fixing the number𝐷 of denominations,

the problem is to find the set of denominations that minimizes the

average number of spent coins. As calculated in [52], for a price

range of [1, 100] cents, and the denominations [1, 5, 10, 25], the av-
erage number of coins spent is 4.7. However, using the optimal sets,

which are [1, 5, 18, 25] and [1, 5, 18, 29], the average is 3.89.

In general, the optimal denomination problem is NP-hard. Given

a naive approach of choosing 1 as the smallest denomination (to

be able to pay for the lowest price), we must calculate the number

of all possible sets of 𝐷 − 1 denominations in the range [1, 𝑃𝑚𝑎𝑥 ],

which is given by the number of combinations without repetition

𝐶𝐷−1 (𝑃𝑚𝑎𝑥 ), and the average number of coins needed to pay for

prices in [1, 𝑃𝑚𝑎𝑥 ] for each set of those 𝐷 denominations. This

computation is too expensive for practical values of𝐷 and 𝑃𝑚𝑎𝑥 (e.g.

𝐷 = 15 and 𝑃𝑚𝑎𝑥 = 1000000 cents), although it can be optimized

by restricting the set of denominations to those that fulfil certain

properties.

A problem with using multiple denominations in e-cash is that

a user may not be able to pay a price even given enough funds. For

example, a user left with two coins of 10 cents is not able to pay for

a price of 11 cents. The obvious solution to this problem would be

to allow the user to exchange one coin of 10 cents for 10 coins of 1

cent, but this would require interaction with authorities, turning

the scheme into an online one. For the scheme to remain offline,

the only solution would be for the user to withdraw coins of 1 cent

denomination. Therefore, for practical use of the compact e-cash

scheme, we need an easy-to-use set of denominations. Taking the

denominations of the euro (i.e. [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000,

2000, 5000, 10000, 20000, 50000] cents) as an example, in Table 1 we

calculate the average number of coins that need to be spent for

different values of 𝑃𝑚𝑎𝑥 and 𝐷 . Although these denominations

are not optimal, the results in [52] suggest that the improvement

derived from using an optimal denomination set for the same values

of 𝐷 is not dramatic. Furthermore, these denominations allow us

to compute the optimal representation for a given price (i.e. the

optimal number of coins of each denomination that are needed

to pay), by running the simple greedy algorithm [52], whereas the

optimal denomination set may not allow that. Therefore, we use

those denominations to compare the efficiency of our compact

e-cash with that of the divisible e-cash scheme.

6.2 Implementation and Comparison
Implementation. We implement the protocols presented in §5.1

and §5.2 in Rust1.56.0. Our implementation is open source.
2
For the

implementation of the elliptic curve we use a fork of bls12_381
library and further extend it to facilitate operations in G𝑡 .

3
All

benchmarks were run on a dedicated 16 GB Linode machine, with

a 2.2 GHz AMD CPU. To minimize accuracy errors, we execute

each measurement 300 times and compute its average. With this

specification, a single exponentiation in G takes approximately

531.24 us, in
˜G approximately 2.13 ms, while in G𝑡 approximately

3.85 ms. A single pairing operation takes 2.59 ms.

Evaluation. For our benchmarks, we set the number of authori-

ties to 𝑛 = 100 with a threshold of 𝑡 = 70. The maximum number of

coins in a wallet is set to 𝐿 = 100. We also set the number of users

to 100, which determines the size of the set of public keys used as

input to algorithm Identify. We always place the target public key

as the last one 𝑃𝐾 list.

The withdrawal protocol is the same in both our compact and

divisible EC schemes. Algorithm Request takes on average 9.16

ms. The algorithms run by the authorities, i.e. RequestVf and Issue,
take in total 8.64 ms on average. Algorithm IssueVf takes 8.47 ms.

We remark that to withdraw a wallet, a user needs to run Request
only once because the same request is sent to at least 𝑡 authorities.

2
https://github.com/nymtech/nym/tree/research/ecash

3
https://github.com/jstuczyn/bls12_381
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Table 2: Performance benchmarks of Compact and Divisible
EC. For Compact EC we measure for 𝑉 = 1.

Compact EC Divisible EC

Spend 34.75 ms 124.49 ms

SpendVf 34.15 ms 129.81 ms

Identify 1.61 ms 133.81 ms

However, algorithm IssueVf needs to be run at least 𝑡 times to verify

each of the responses. Finally, algorithm AggrWallet, which is run

just once after 𝑡 valid responses have been received from different

authorities, takes 65.28 ms. We consider that those timings are

practical, and we stress that they do not depend on the number of

coins in a full wallet.

Table 2 presents a comparison between spending a single coin

in our compact EC scheme vs spending 𝑉 coins in our divisible

EC scheme. Algorithms Spend and SpendVf are almost four times

faster in the compact than in the divisible EC scheme. However,

as we noted earlier, the cost of the spending phase in the divisible

EC scheme is independent of the number of coins spent, while

in the compact EC scheme, it grows linearly. As an example, let

1267 be the price to be paid. The total execution time to settle a

payment using the compact EC scheme would take 44.03 seconds,

thus significantly more than in the divisible EC scheme.

However, the spending phase of our compact e-cash scheme

can be optimized as follows. First, algorithm Spend allows us to

spend 𝑉 coins with cost smaller than the cost of running 𝑉 times

Spend to spend one coin. Our benchmarks show that spending

𝑉 = 2 takes on average 53.43 ms, which is almost 25% faster

than executing the spend protocol twice sequentially to spend one

coin. Second, as discussed in §6.1, we can run several instances

of the scheme in parallel and assign to each of them a different

denomination. For example, let’s consider a set of denominations

[1000, 500, 100, 50, 20, 10, 5, 2, 1]. Given our price of 1267, the spender

now executes the pay function five times with value𝑉 = 1 for coins

[1000, 50, 10, 5, 2] and once with value 𝑉 = 2 for coins with denom-

ination 100. Thus, the total execution time is 261.93 ms, which is

significantly faster. However, in case of large payments and a limited

number of denominations, the compact e-cash is still significantly

inefficient. For example, given denominations [100, 50, 20, 10, 5, 2, 1]
we need 425.34 ms to complete a payment of 1267. A similar depen-

dency can be observed in the case of payment verification.

We use our analysis from §6.1 to estimate the average time

required to complete a payment using our compact EC scheme

given different price ranges [1, 𝑃𝑚𝑎𝑥 ] and sets of denominations.

The results are summarised in Table 3. We observe that our compact

EC scheme is more efficient than our divisible EC scheme for small

price ranges and small sets of denominations.

Themajor advantage of the compact EC scheme over the divisible

EC scheme is a fast identification phase. In the compact EC scheme,

to detect double-spending, an authority simply needs to compare

serial numbers. In a practical setting, it is likely that double spending

happens infrequently, and so the computation cost for the authority

is negligible. However, in the divisible EC scheme, the authority

needs to compute the serial numbers of a payment by running

Identify before the authority can compare them with the serial

Table 3: Average time required to complete a payment in
Compact EC for different values of 𝐷 and 𝑃𝑚𝑎𝑥

𝑃𝑚𝑎𝑥 𝐷 Spend [ms]

10 [1, 2, 5] 50.84

100 [1, 2, 5, 10, 20, 50] 90.98

1000 [1, 2, 5, . . . , 100, 200, 500] 136.46

10000 [1, 2, 5, . . . , 1000, 2000, 5000] 181.95

100000 [1, 2, 5, . . . , 10000, 20000, 50000] 227.43

1000000 [1, 2, 5, . . . , 10000, 20000, 50000] 468.26

numbers of other payments. The computation of a serial number

involves two pairings.

Once double spending is detected, the compact EC scheme can

identify the user guilty of double spending in 1.61ms, independently

of the number of users in the system. However, in the divisible EC

scheme, the computation is more expensive and it grows linearly

with the number of users in the system. We remark that the timings

given in Table 2 are calculated for 100 users, but in practice this

number could be orders of magnitude bigger, which makes iden-

tification in compact e-cash much more efficient than in divisible

e-cash.

7 CONCLUSION AND FUTUREWORK
In this work, we proposed the first offline anonymous e-cash scheme

with threshold issuance, motivated by the concrete scalability con-

cerns of blockchains and concerns with centralization in CBDCs [4].

We define the ideal functionality and propose two instantiations

based on an improved compact and a divisible e-cash. We have

shown that our schemes realize the ideal functionality and formally

prove their security. We have also implemented both schemes and

compared their efficiency, showing that compact e-cash is more ef-

ficient and feasible for smaller transactions, which would naturally

compose the majority of offline e-cash transactions in application

scenarios such as a user-facing blockchain or CBDCwhere practical

deployment concerns would necessitate distributed authorities.

As future work, we will describe how our schemes can be inte-

grated with a blockchain-based bulletin board. We outline how this

integration could be done in §H. This would allow our scheme to

fulfil the requirements for a distributed privacy-enhanced CBDC [4]

and even provide scalability via offline transactions for existing

blockchain systems like ZCash [51].
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A BUILDING BLOCKS
A.1 Bilinear Maps
Let G, ˜G and G𝑡 be groups of prime order p. A map e : G× ˜G→ G𝑡
must satisfy bilinearity, i.e., e(g𝑥 , g̃𝑦) = 𝑒 (g, g̃)𝑥𝑦 ; non-degeneracy,
i.e., for all generators g ∈ G and g̃ ∈ ˜G, e(g, g̃) generates G𝑡 ;
and efficiency, i.e., there exists an efficient algorithm G(1k) that
outputs the pairing group setup (p,G, ˜G,G𝑡 , e, g, g̃) and an efficient

algorithm to compute e(𝑎, 𝑏) for any𝑎 ∈ G,𝑏 ∈ ˜G. In type 3 pairings,

G ≠ ˜G and there exists no efficiently computable homomorphism

𝑓 :
˜G→ G.

A.2 Assumptions
We recall the assumptions that are needed to prove the security of

our schemes.

Definition A.1. [XDH and SXDH Assumptions [3]] Given (p,G,
˜G,G𝑡 , e, g, g̃), the external Diffie-Hellman assumption states that

the decisional Diffie-Hellman problem is intractable in G or in
˜G.

The symmetric external Diffie-Hellman assumption states that it is

intractable in both G and
˜G.

Definition A.2. [𝑞-SDH Assumption [9]] Given (g, g𝑥 , g𝑥2

, . . . ,

g𝑥
𝑞 ) ∈ G𝑞+1, the strong Diffie-Hellman assumption states that it is

hard to output a pair (𝑚, g1/(𝑥+𝑚) ) ∈ Z𝑝 × G.

Definition A.3. [𝑦-DDHI Assumption [14]] Let G be a group of

prime order 𝑞 and let g be a generator of G. Given (g, g𝑥 , . . . , g (𝑥𝑦 ) ,
𝑅) for a random 𝑥 ← Z𝑝 , the decisional Diffie-Hellman inversion

assumption states that it is hard to decide if 𝑅 = g1/𝑥
or not.

Definition A.4. [𝑁 -BDHI Assumption [8]] Given (p,G, ˜G,G𝑡 , e,
g, g̃) and the tuple ({g𝑦𝑖 }𝑁

𝑖=0
, {g̃𝑦𝑖 }𝑁

𝑖=0
) ∈ G𝑁+1 × ˜G𝑁+1, the bilin-

ear Diffie-Hellman inversion assumption states that it is hard to

compute e(g, g̃)1/𝑦 ∈ G𝑡 .

Definition A.5. [𝑁 -MXDH’ Assumption [49]] ∀𝑁 ∈ N∗, we de-
fine𝐶 = 𝑁 3 −𝑁 2

, 𝑆 = 𝐶 + 1, 𝐸 = 𝑁 2 −𝑁 , 𝐷 = 𝑆 + 𝐸, and 𝑃 = 𝐷 +𝐶 .
Given (p,G, ˜G,G𝑡 , e, g, g̃) and {(g𝛾

𝑘
, h𝛾

𝑘 )𝑃
𝑘=0

, (g𝛼𝛿𝛾−𝑘 , h𝛼𝛿𝛾−𝑘 )𝐸
𝑘=0

,

(g𝜒𝛾𝑘 , h𝜒𝛾𝑘 )𝑃
𝑘=𝐷+1, (g

𝛼𝛾−𝑘 , g𝜒𝛾
𝑘/𝛼 , h𝜒𝛾

𝑘/𝛼 )𝐶
𝑘=0
} ∈ G2𝑃+5𝑆+2𝐸+2

, as

well as (g̃𝛾𝑘 , g̃𝛼𝛾−𝑘 )𝐶
𝑘=0
∈ ˜G2𝑆

and a pair (g𝑧1 , h𝑧2 ) ∈ G2
, it is hard

to decide whether 𝑧1 = 𝑧2 = 𝛿 + 𝜒𝛾𝐷/𝛼 or (𝑧1, 𝑧2) is random.

Definition A.6. [𝑛-DHE [15]] Let (p,G, ˜G,G𝑡 , e, g, g̃) ← G(1𝑘 )
and 𝛼 ← Z𝑝 . Given (p,G, ˜G,G𝑡 , e, g, g̃) and a tuple (g1, g̃1, . . . , g𝑛,
g̃𝑛, g𝑛+2, . . . , g2𝑛) such that g𝑖 = g (𝛼

𝑖 )
and g̃𝑖 = g̃ (𝛼

𝑖 )
, for any p.p.t.

adversary A, Pr[g (𝛼𝑛+1) ← A(p,G, ˜G,G𝑡 , e, g, g̃, g1, g̃1, . . . , g𝑛, g̃𝑛,
g𝑛+2, . . . , g2𝑛)] ≤ 𝜖 (𝑘).
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A.3 Zero-Knowledge Arguments of Knowledge
Informally speaking, a zero-knowledge argument of knowledge

is a two-party protocol between a prover and a verifier with two

properties. First, it should be a proof of knowledge, i.e., there should

exist a knowledge extractor that extracts the secret input from a

successful prover with all but negligible probability. Second, it

should be zero-knowledge, i.e., for all possible verifiers there exists

a simulator that, without knowledge of the secret input, yields a

distribution that cannot be distinguished from the interaction with

a real prover.

To express a zero-knowledge argument of knowledge, we follow

the notation introduced by Camenisch and Stadler [17], i.e., we

denote as ZK{(𝑤) : 𝑦 = 𝑓 (𝑤)} a “zero-knowledge proof of knowledge
of the secret input𝑤 such that 𝑦 = 𝑓 (𝑤)”, where𝑤 is a secret input,

while 𝑦 and the function 𝑓 are publicly known.

Let L be a language in NP. We can associate to any NP-language

L a polynomial time recognizable relation RL defining L as L =

{𝑥 : ∃𝑤 s.t. (𝑥,𝑤) ∈ RL}, where |𝑤 | ≤ poly( |𝑥 |). The string 𝑤 is

called a witness for membership of 𝑥 ∈ L.
A protocol Σ = (P,V) for an NP-language L is an interactive

proof system. The prover P and the verifierV know an instance

𝑥 of the language L. The prover P also knows a witness 𝑤 for

membership of 𝑥 ∈ L. Σ-protocols have a 3-move shape where

the first message 𝛼 , called commitment, is sent by the prover. The

second message 𝛽 , called challenge, is chosen randomly and sent by

the verifier. The last message 𝛾 , called response, is sent by the prover.
A Σ-protocol fulfills the properties of completeness, honest-verifier

zero-knowledge, and special soundness defined in Faust et al. [29].

In our e-cash schemes, zero-knowledge arguments of knowledge

based on the Fiat-Shamir transform [30] are used. The Fiat-Shamir

transform removes the interaction between the prover P and the

verifierV of a Σ protocol by replacing the challenge with a hash

value 𝐻 (𝛼, 𝑥) computed by the prover, where 𝐻 is modeled as a

random oracle. (It is possible to include an additional message𝑚 as

input to 𝐻 , i.e. 𝐻 (𝛼, 𝑥,𝑚), turning the argument of knowledge into

a signature of knowledge of the message𝑚.) An argument 𝜋 consists

of (𝛼, 𝐻 (𝛼, 𝑥), 𝛾). The Fiat-Shamir system is denoted by (P𝐻 ,V𝐻 )
and fulfills the properties of zero-knowledge and weak simulation

extractability defined in Faust et al. [29], which we recall below.

Definition A.7 (Zero-Knowledge). Define the zero knowledge sim-

ulator S as follows. S is a stateful algorithm that can operate in

two modes: (ℎ𝑖 , 𝑠𝑡) ← S(1, 𝑠𝑡, 𝑞𝑖 ) answers random oracle queries

𝑞𝑖 , while (𝜋, 𝑠𝑡) ← S(2, 𝑠𝑡, 𝑥) outputs a simulated proof 𝜋 for an

instance 𝑥 . S(1, · · · ) and S(2, · · · ) share the state 𝑠𝑡 that is updated
after each operation.

LetL be a language in NP. Denote with (S1,S2) the oracles such
that S1 (𝑞𝑖 ) returns the first output of (ℎ𝑖 , 𝑠𝑡) ← S(1, 𝑠𝑡, 𝑞𝑖 ) and
S2 (𝑥,𝑤) returns the first output of (𝜋, 𝑠𝑡) ← S(2, 𝑠𝑡, 𝑥) if (𝑥,𝑤) ∈
RL . A protocol (P𝐻 ,V𝐻 ) is a non-interactive zero-knowledge

proof for the language L in the random oracle model if there exists

a ppt simulator S such that for all ppt distinguishers D we have

Pr[D𝐻 ( ·),P
𝐻 ( ·, ·) (1𝑘 ) = 1] ≈ Pr[DS1 ( ·),S2 ( ·, ·) (1𝑘 ) = 1],

where both P and S2 oracles output ⊥ if (𝑥,𝑤) ∉ RL .
Definition A.8 (Weak Simulation Extractability). Let L be a lan-

guage in NP. Consider a non-interactive zero-knowledge proof

system (P𝐻 ,V𝐻 ) for L with zero-knowledge simulator S. Let
(S1,S′

2
) be oracles returning the first output of (ℎ𝑖 , 𝑠𝑡) ← S(1,

𝑠𝑡, 𝑞𝑖 ) and (𝜋, 𝑠𝑡) ← S(2, 𝑠𝑡, 𝑥) respectively. (P𝐻 ,V𝐻 ) is weakly
simulation extractable with extraction error 𝜈 and with respect to S
in the random oracle model, if for all ppt adversariesA there exists

an efficient algorithm EA with access to the answers (T𝐻 ,T) of
(S1,S′

2
) respectively such that the following holds. Let

acc = Pr[(𝑥∗, 𝜋∗) ← AS1 ( ·),S′
2
( ·) (1𝑘 ; 𝜌) :

(𝑥∗, 𝜋∗) ∉ T ;VS1 (𝑥∗, 𝜋∗) = 1]

ext = Pr[(𝑥∗, 𝜋∗) ← AS1 ( ·),S′
2
( ·) (1𝑘 ; 𝜌);

𝑤∗ ← EA (𝑥∗, 𝜋∗; 𝜌,T𝐻 ,T) : (𝑥∗, 𝜋∗) ∉ T ; (𝑥∗,𝑤∗) ∈ RL],

where the probability space in both cases is over the random choices

of S and the adversary’s random tape 𝜌 . Then, there exists a con-

stant 𝑑 > 0 and a polynomial 𝑝 such that whenever acc ≥ 𝜈 , we
have ext ≥ (1/𝑝) (acc − 𝜈)𝑑 .

Types of proofs. We use known results for computing ZK proofs

of discrete logarithms [17]. A protocol proving knowledge of ex-

ponents (𝑤1, . . . ,𝑤𝑛) that satisfy the formula 𝜙 (𝑤1, . . . ,𝑤𝑛) is de-
scribed as

ZK{(𝑤1, . . . ,𝑤𝑛) : 1 = 𝜙 (𝑤1, . . . ,𝑤𝑛)} (1)

The formula 𝜙 (𝑤1, . . . ,𝑤𝑛) consists of conjunctions and disjunc-

tions of “atoms”. An atom expresses group relations, such as

𝑘∏
𝑗=1

𝑔
𝑓𝑗
𝑗
= 1

where the 𝑔 𝑗 ’s are elements of prime order groups and the 𝑓𝑗 ’s are

polynomials in the variables (𝑤1, . . . ,𝑤𝑛).
A proof system for (1) can be transformed into a proof system

for more expressive statements about secret exponents sexps and
secret bases sbases:

ZK{(sexps, sbases) : 1 = 𝜙 (sexps, bases ∪ sbases)} (2)

The transformation adds an additional base ℎ to the public bases.

For each 𝑔 𝑗 ∈ sbases, the transformation picks a random exponent

𝜌 𝑗 and computes a blinded base 𝑔′
𝑗
= 𝑔 𝑗h𝜌 𝑗 . The transformation

adds 𝑔′
𝑗
to the public bases bases, 𝜌 𝑗 to the secret exponents sexps,

and rewrites 𝑔
𝑓𝑗
𝑗
into 𝑔′

𝑗
𝑓𝑗ℎ−𝑓𝑗𝜌 𝑗 .

The proof system supports pairing product equations

𝑘∏
𝑗=1

𝑒 (𝑔 𝑗 , 𝑔 𝑗 ) 𝑓𝑗 = 1 (3)

in groups of prime order with a bilinear map e, by treating the target
groupG𝑡 as the group of the proof system. The embedding for secret

bases is unchanged, except for the case in which both bases in a

pairing are secret. In this case, 𝑒 (𝑔 𝑗 , 𝑔 𝑗 ) 𝑓𝑗 must be transformed into

𝑒 (𝑔′
𝑗
, 𝑔′
𝑗
) 𝑓𝑗 𝑒 (𝑔′

𝑗
, ˜ℎ)−𝑓𝑗𝜌 𝑗 𝑒 (ℎ,𝑔′

𝑗
)−𝑓𝑗𝜌 𝑗 𝑒 (ℎ, ˜ℎ) 𝑓𝑗𝜌 𝑗𝜌 𝑗 .

A.4 Commitment Schemes
A commitment scheme consists of algorithms CSetup, Com and

VfCom. The algorithm CSetup(1k) generates the parameters of the
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commitment scheme parc , which include a description of the mes-

sage spaceM. Com(parc, x) outputs a commitment com to x and

auxiliary information open. A commitment is opened by revealing

(x, open) and checking whether VfCom(parc, com, x, open) outputs
1 or 0.

A commitment scheme should fulfill the correctness, hiding and

binding properties. We recall the definitions of those properties

below.

Definition A.9 (Correctness). Correctness requires that VfCom
accepts all commitments created by algorithm Com, i.e., for all

x ∈ M

Pr

[
parc ← CSetup(1k); (com, open) ← Com(parc, x) :

1 = VfCom(parc, com, x, open)

]
= 1 .

Definition A.10 (Hiding Property). The hiding property ensures

that a commitment com to x does not reveal any information about x.
For any ppt adversary A, the hiding property is defined as follows:

Pr


parc ← CSetup(1k);
(x0, x1, st) ← A(parc);
b← {0, 1}; (com, open) ← Com(parc, xb);
b′ ← A(st, com) :

x0 ∈ M ∧ x1 ∈ M ∧ b = b′


≤ 1

2

+ 𝜖 (k) .

Definition A.11 (Binding Property). The binding property ensures
that com cannot be opened to another value x ′. For any ppt adver-

sary A, the binding property is defined as follows:

Pr


parc ← CSetup(1k);
(com, x, open, x ′, open′) ← A(parc) :

x ∈ M ∧ x ′ ∈ M ∧ x ≠ x ′

∧ 1 = VfCom(parc, com, x, open)
∧ 1 = VfCom(parc, com, x ′, open′)


≤ 𝜖 (k) .

Our e-cash schemes use the commitment scheme by Peder-

sen [47] to commit to elements 𝑥 ∈ Z𝑝 , where 𝑝 is a prime. This

commitment scheme is perfectly hiding and computationally bind-

ing under the discrete logarithm assumption. The Pedersen com-

mitment scheme consists of the following algorithms.

• CSetup(1𝑘 ). On input the security parameter 1
𝑘
, pick random

generators g, h of a group G𝑝 of prime order p. Output parc =

(𝑔, ℎ,M), whereM = Z𝑝 .
• Com(parc, 𝑥). Check that 𝑥 ∈ M. Pick random value open ∈ Z𝑝 ,
compute com = gopenh𝑥 , and output com.

• VfCom(parc, com, 𝑥 ′, open′). Recompute com′ = gopen
′
h𝑥
′
. If com

= com′ then output 1 else 0.

When committing to a tuple of messages, the Pedersen commit-

ment scheme works as follows.

• CSetup(1k, 𝑙). On input the security parameter 1
k
and an upper

bound 𝑙 on the number of elements to be committed, pick 𝑙 + 1

random generators h1, . . . , h𝑙 , g of a group G𝑝 of prime order p.
Output parc = (ℎ1, . . . , ℎ𝑙 , 𝑔,M), whereM = Z𝑙𝑝 .

• Com(parc, ⟨𝑥1, . . . , 𝑥𝑙 ⟩). Pick random value open← Z𝑝 , compute

com = gopen
∏𝑙
𝑖=1

h𝑥𝑖
𝑖

and output com.

• VfCom(parc, com, ⟨𝑥 ′
1
, . . . , 𝑥 ′

𝑙
⟩, open′). Recompute commitment

com′ = gopen
′∏𝑙

𝑖=1
h
𝑥 ′𝑖
𝑖
. If it is the case that com = com′ then output

1 else 0.

A.5 Signature Schemes
A signature scheme consists of the algorithms KeyGen, Sign, and
VfSig. KeyGen(1k) outputs a secret key sk and a public key pk,
which include a description of the message spaceM. Sign(sk,m)
outputs a signature 𝜎 on message m ∈ M. VfSig(pk, 𝜎,m) outputs
1 if 𝜎 is a valid signature on m and 0 otherwise. This definition

can be extended to blocks of messages (m1, . . . ,m𝑞). In this case,

KeyGen(1k, 𝑞) receives the maximum number of messages as input.

A signature scheme must fulfill the correctness and existential

unforgeability properties [32], which we recall below.

Definition A.12 (Correctness). Correctness ensures that the algo-
rithm VfSig accepts the signatures created by the algorithm Sign on

input a secret key computed by algorithm KeyGen. More formally,

correctness is defined as follows.

Pr

[
(sk, pk) ← KeyGen(1k); m←M;

𝜎 ← Sign(sk,m) : 1 = VfSig(pk, 𝜎,m)

]
= 1

Definition A.13 (Existential Unforgeability). The property of ex-

istential unforgeability ensures that it is not feasible to output a

signature on a message without knowledge of the secret key or of

another signature on that message. Let O𝑠 be an oracle that, on

input sk and a message m ∈ M, outputs Sign(sk,m), and let S𝑠 be
a set that contains the messages sent to O𝑠 . More formally, for any

ppt adversary A, existential unforgeability is defined as follows.

Pr

[
(sk, pk) ← KeyGen(1k); (m, 𝜎) ← A(pk)O𝑠 (sk, ·) :

1 = VfSig(pk, 𝜎,m) ∧ m ∈ M ∧ m ∉ S𝑠

]
≤ 𝜖 (k)

Pointcheval-Sanders (PS) signatures. The PS signature scheme

is defined as follows [48].

KeyGen(1k, 𝑞). Run G(1k) to obtain a pairing group setup 𝜃 =

(p,G, ˜G,G𝑡 , e, g, g̃). Pick random secret key (𝑥,𝑦1, . . . , 𝑦𝑞) ←
Z
𝑞+1
𝑝 . Output the secret key sk = (𝜃, 𝑥,𝑦1, . . . 𝑦𝑞) and the

public key pk = (𝜃, 𝛼, 𝛽1, ˜𝛽1, . . . , 𝛽𝑞, ˜𝛽𝑞) ← (𝜃, g̃𝑥 , g𝑦1 , g̃𝑦1 ,

. . . , g𝑦𝑞 , g̃𝑦𝑞 ).
Sign(sk,m1, . . . ,m𝑞). Parse sk as (𝜃, 𝑥,𝑦1, . . . , 𝑦𝑞). Pick up random

𝑟 ← Z𝑝 and set ℎ ← g𝑟 . Output the signature 𝜎 = (ℎ, 𝑠) ←
(ℎ,ℎ𝑥+𝑦1m1+...+𝑦𝑞m𝑞 ).

VfSig(pk, 𝜎,m1, . . . ,m𝑞). Output 1 if e(ℎ, 𝛼∏𝑞

𝑗=1

˜𝛽
m𝑗
𝑗
) = e(𝑠, g̃)

and ℎ ≠ 1. Otherwise output 0.

This signature scheme is randomizable. To randomize a signature

𝜎 = (ℎ, 𝑠), pick random 𝑟 ′ ← Z𝑝 and compute 𝜎 ′ = (ℎ𝑟 ′, 𝑠𝑟 ′). The
elements (𝛽1, . . . , 𝛽𝑞) in the public key are needed for the blind

signature issuance protocol in [48], as well as for the issuance

protocols of Coconut and of our e-cash schemes.

Pointcheval-Sanders signatures in the random oracle model.
Coconut and our e-cash schemes use a variant of PS signatures

in which, in algorithm Sign, the random generator ℎ is computed

via a hash function, which is modeled as a random oracle (RO).

This variant has been formalized in [50] as PS signatures in the RO

model.

In [50], the syntax of algorithm Sign is as follows. Sign uses a

random oracle 𝐻 :M𝑟𝑜 → S. Sign(sk,m1, . . .m𝑞, r, st) receives as
input a secret key sk, a tuple of messages (m1, . . . ,m𝑞), a value r ∈
M𝑟𝑜 and state information st, which stores tuples of the form (m1,

. . . ,m𝑞, r). Sign outputs a signature 𝜎 on (m1, . . . ,m𝑞) if st does
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not contain a tuple (m′
1
, . . . ,m′𝑞, r

′) such that (m1, . . . ,m𝑞) ≠ (m′
1
,

. . . ,m′𝑞) and r = r ′. Sign also outputs updated state information

st ′.
The PS signature scheme in the RO model scheme works as

follows. The algorithms KeyGen and VfSig remain unmodified.

Sign(sk,m1, . . . ,m𝑞, r, st). Parse sk as (𝜃, 𝑥,𝑦1, . . . , 𝑦𝑞). If st con-
tains a tuple (m′

1
, . . . ,m′𝑞, r

′) such that (m1, . . . ,m𝑞) ≠ (m′
1
,

. . . ,m′𝑞) and r = r ′, output 𝜎 = ⊥ and st ′ = st. Other-
wise compute h ← 𝐻 (r) and output the signature 𝜎 =

(ℎ, 𝑠) ← (ℎ,ℎ𝑥+𝑦1m1+...+𝑦𝑞m𝑞 ) and the updated state infor-

mation st ′ = st ∪ {(m1, . . . ,m𝑞, r)}.
We recall the definition of the existential unforgeability property

in the RO model below.

Definition A.14 (Existential Unforgeability in the RO [50]). For
any ppt adversary A, existential unforgeability in the RO model is

defined as follows.

Pr


(sk, pk) ← KeyGen(1k);
(m, 𝜎) ← A(pk)O𝑠 (sk, ·, ·),𝐻 ( ·) :

1 = VfSig(pk, 𝜎,m) ∧ m ∈ M ∧ m ∉ S𝑠

 ≤ 𝜖 (k)
O𝑠 (sk, ·, ·) works as follows. On input sk, a message m = (m1, . . . ,

m𝑞) and the value r , O𝑠 runs (𝜎, st ′) ← Sign(sk,m1, . . . ,m𝑞, r, st).
O𝑠 replaces st by st ′ and returns 𝜎 to A. (st is empty in the first

invocation of O𝑠 .) S𝑠 is a set that contains the messages sent to O𝑠 .

In comparison to the definition of existential unforgeability (see

Definition A.13), A has access to the random oracle 𝐻 , and the

signing oracle is modified to follow the new syntax. The PS scheme

in the RO model is existentially unforgeable under the generalized

PS assumption proposed in [39, 40].

Structure-Preserving Signature (SPS) scheme. In a SPS scheme,

the public key, the messages, and the signatures are group elements

in G and
˜G, and verification must consist purely in the checking of

pairing product equations. Our divisible e-cash scheme uses the SPS

scheme in [1]. In this SPS scheme, 𝑎 elements in G and 𝑏 elements

in
˜G are signed.

KeyGen(grp, 𝑎, 𝑏). Let grp ← (p,G, ˜G,G𝑡 , e, g, g̃) be the bilinear

map parameters. Pick at random𝑢1, . . . , 𝑢𝑏 , 𝑦,𝑤1, . . .𝑤𝑎, 𝑧 ← Z∗𝑝
and compute 𝑈𝑖 = 𝑔

𝑢𝑖
, 𝑖 ∈ [1..𝑏], 𝑌 = g̃𝑦 ,𝑊𝑖 = g̃𝑤𝑖 , 𝑖 ∈ [1..𝑎]

and 𝑍 = g̃𝑧 . Return the verification key pk ← (grp,𝑈1, . . . ,𝑈𝑏 ,

𝑌 ,𝑊1, . . . ,𝑊𝑎, 𝑍 ) and the signing key sk ← (pk, 𝑢1, . . . , 𝑢𝑏 , 𝑦,𝑤1,

. . . ,𝑤𝑎, 𝑧).
Sign(sk, ⟨𝑚1, . . . ,𝑚𝑎+𝑏⟩). Pick 𝑟 ← Z∗𝑝 , and set

𝑅 ← g𝑟 , 𝑆 ← g𝑧−𝑟𝑦
𝑎∏
𝑖=1

𝑚
−𝑤𝑖
𝑖

, 𝑇 ← (g̃
𝑏∏
𝑖=1

𝑚
−𝑢𝑖
𝑎+𝑖 )

1/𝑟 ,

and output the signature 𝜎 ← (𝑅, 𝑆,𝑇 ).
VfSig(pk, 𝜎, ⟨𝑚1, . . . ,𝑚𝑎+𝑏⟩). Output 1 if it is satisfied that

e(𝑅,𝑌 )e(𝑆, g̃)
𝑎∏
𝑖=1

e(𝑚𝑖 ,𝑊𝑖 ) = e(𝑔, 𝑍 )

and

e(𝑅,𝑇 )
𝑏∏
𝑖=1

e(𝑈𝑖 ,𝑚𝑎+𝑖 ) = e(g, g̃)

A.6 Pseudorandom Functions
Pseudorandom functions (PF) [11, 31] are a family of indexed func-

tions 𝐹 = {𝐹𝑠 } such that: (1) given the index 𝑠 , 𝐹𝑠 can be efficiently

evaluated on all inputs; (2) no probabilistic polynomial-time al-

gorithm without 𝑠 can distinguish evaluations 𝐹𝑠 (𝑥𝑖 ) for inputs
𝑥𝑖 of its choice from random values. We recall the definition of

pseudorandom functions in [11].

Definition A.15 (Pseudorandom Function Family). A family of

functions F = {𝐹𝑠 }𝑠∈𝑆 , indexed by a set 𝑆 , and where 𝐹𝑠 : 𝐷 → 𝑅

for all 𝑠 , is a pseudorandom function (PRF) family if for a randomly

chosen 𝑠 , and all PPTA, the distinguishing advantage Pr𝑠←𝑆 [A 𝑓𝑠 ( ·)

= 1] − Pr𝑓←(𝐷→𝑅) [A 𝑓 ( ·) = 1] is negligible, where (𝐷 → 𝑅) de-
notes the set of all functions from 𝐷 to 𝑅.

Our compact e-cash scheme uses the PF in [14], which works as

follows. For every 𝑛, a function 𝑓 is defined by the tuple (G, p, g, 𝑠),
where G is a group of order p, p is an 𝑛-bit prime, g is a generator

of G, and 𝑠 is a seed in Z𝑝 . For any input 𝑥 ∈ Z𝑝 (except for

𝑥 = −1 mod p), the function 𝑓G,p,g,𝑠 (·), which we denote as 𝑓g,𝑠 for

fixed values of (G, p, g), is defined as 𝑓g,𝑠 (𝑥) = g1/(𝑠+𝑥+1)
. This PF

is secure under the 𝑦-DDHI assumption in G, which we recall in

§A.2. This PF is based on the verifiable random function in [28],

which is secure under the 𝑦-DBDHI assumption.

A.7 Notation
In Table 4, we summarize the notation used in our paper.

B IDEAL-WORLD/REAL-WORLD PARADIGM
The security of a protocol 𝜑 is analyzed by comparing the view of

an environmentZ in a real execution of 𝜑 against that ofZ in the

ideal protocol defined in F𝜑 . Z chooses the inputs of the parties

and collects their outputs. In the real world,Z can communicate

freely with an adversary A who controls both the network and

any corrupt parties. In the ideal world, Z interacts with dummy

parties, who simply relay inputs and outputs betweenZ and F𝜑 ,
and a simulator S. We say that a protocol 𝜑 securely realizes F𝜑
if Z cannot distinguish the real world from the ideal world, i.e.,

Z cannot distinguish whether it is interacting with A and parties

running protocol 𝜑 or with S and dummy parties relaying to F𝜑
A protocol 𝜑G securely realizes F in the G-hybrid model when

𝜑 is allowed to invoke the ideal functionality G. Therefore, for
any protocol𝜓 that securely realizes G, the composed protocol 𝜑𝜓 ,

which is obtained by replacing each invocation of an instance of G
with an invocation of an instance of𝜓 , securely realizes F .

In the ideal functionalities described in this paper, we consider

static corruptions. When describing ideal functionalities, we use

the conventions introduced in [13], which are summarised in B.

Interface Naming Convention. An ideal functionality can be in-
voked by using one or more interfaces. The name of a message in an

interface consists of three fields separated by dots, e.g., ec.setup.ini
in FEC in §3.3. The first field indicates the name of the function-

ality and is the same in all interfaces of the functionality. This

field is useful for distinguishing between invocations of different

functionalities in a hybrid protocol that uses two or more different

functionalities. The second field indicates the kind of action per-

formed by the functionality and is the same in all messages that
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Table 4: Table of symbols

Symbol Meaning

Bilinear Maps

e Bilinear map

G Bilinear setup

p Prime number

G Group of order p
˜G Group of order p
G𝑡 Group of order p
g Generator of G

g̃ Generator of
˜G

Z𝑝 Integers modulo p
Security Definitions

A Adversary

Z Environment

S Simulator

F Ideal Functionality

pid Party identifier

sid Session identifier

qid Query identifier

Pr Probability

O Oracle

k Security parameter

𝜖 Negligible function

E-cash

EC Threshold issuance offline anonymous e-cash

U User

P Provider

V Authority

𝑛 Number of authorities

𝑡 Threshold

𝐿 Number of coins in a full wallet

𝑉 Number of coins spent in a payment

params Parameters

skV Authority secret key

pkV Authority public key

skU User secret key

pkU User public key

req Withdrawal request

res Withdrawal response

W Wallet

pay Payment

payinfo Payment information

BB Bulletin Board

the functionality exchanges within the same interface. The third

field distinguishes between the messages that belong to the same

interface, and can take the following different values. A message

ec.setup.ini is the incoming message received by the functionality,

i.e., the message through which the interface is invoked. A message

ec.setup.end is the outgoing message sent by the functionality, i.e.,

the message that ends the execution of the interface. The message

ec.setup.sim is used by the functionality to send a message to S,
and the message ec.setup.rep is used to receive a message from S.
Network vs local communication. The identity of an interac-

tive Turing machine instance (ITI) consists of a party identifier pid
and a session identifier sid. A set of parties in an execution of a

system of interactive Turing machines is a protocol instance if they

have the same session identifier sid. ITIs can pass direct inputs

to and outputs from “local” ITIs that have the same pid. An ideal

functionality F has pid = ⊥ and is considered local to all parties.

An instance of F with the session identifier sid only accepts in-

puts from and passes outputs to machines with the same session

identifier sid. Some functionalities require the session identifier to

have some structure. Those functionalities check whether the ses-

sion identifier possesses the required structure in the first message

that invokes the functionality. For the subsequent messages, the

functionality implicitly checks that the session identifier equals

the session identifier used in the first message. Communication

between ITIs with different party identifiers must take place over

the network. The network is controlled by A, meaning that he can

arbitrarily delay, modify, drop, or insert messages.

Query identifiers. Some interfaces in a functionality can be in-

voked more than once. When the functionality sends a message

ec.setup.sim to S in such an interface, a query identifier qid is in-

cluded in the message. The query identifier must also be included

in the response ec.setup.rep sent by S. The query identifier is used

to identify the message ec.setup.sim to which S replies with a mes-

sage ec.setup.rep. We note that, typically, S in the security proof

may not be able to provide an immediate answer to the function-

ality after receiving a message ec.setup.sim. The reason is that S
typically needs to interact with the copy of A it runs in order to

produce the message ec.setup.rep, but A may not provide the de-

sired answer or may provide a delayed answer. In such cases, when

the functionality sends more than one message ec.setup.sim to S,
S may provide delayed replies, and the order of those replies may

not follow the order of the messages received.

Aborts. When an ideal functionality F aborts after being activated

with a message sent by a party, we mean that F halts the execution

of its program and sends a special abortionmessage to the party that

invoked the functionality. When an ideal functionality F aborts

after being activated with a message sent by S, we mean that F
halts the execution of its program and sends a special abortion

message to the party that receives the outgoing message from F
after F is activated by S.

C DEFINITIONS OF IDEAL FUNCTIONALITIES
C.1 Secure Message Transmission
Our e-cash schemes use the functionality FSMT for secure message

transmission described in [21]. FSMT interacts with a sender T and

a receiver R, and consists of one interface smt.send. T uses the

smt.send interface to send a message m to FSMT. FSMT leaks l(m),
where l :M → N is a function that leaks the message length, to

the simulator S. After receiving a response from S, FSMT sends m
to R. S cannot modify m. The session identifier sid contains the

identities of T and R.
Ideal Functionality FSMT. FSMT is parameterized by a message

spaceM and by a leakage function l : M → N, which leaks the

message length.

(1) On input (smt.send.ini, sid,m) from a party T :
• Abort if sid ≠ (T ,R, sid ′) or if m ∉M.

• Create a fresh qid and store (qid,R,m).
• Send (smt.send.sim, sid, qid, l(m)) to S.

S. On input (smt.send.rep, sid, qid) from S:
• Abort if (qid,R,m) is not stored.
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• Delete the record (qid,R,m).
• Send (smt.send.end, sid,m) to R.

C.2 Key Genearation
In our e-cash constructions, the setup phase generates the parame-

ters params through algorithm Setup(1k, 𝐿). Moreover, algorithm

KeyGenV(params, 𝑡, 𝑛) generates a key pair for the Pointcheval-

Sanders signature scheme in such a way that the shares of the

secret key are given to 𝑛 authorities, so that 𝑡 ≤ 𝑛 authorities are

needed to produce a signature.

To simplify our security analysis, in a manner similar to [50],

we define an ideal functionality FKG that runs both algorithms. In

our construction in §4, FKG gives params and the public keys pk
and (pkV𝑖 )𝑖∈[1,𝑛] to any party running the protocol, while each

authorityV𝑖 also receives his secret key skV𝑖 .
FKG could be replaced by an ideal functionality for distributed

key generation (DKG) [34, 38]. DKG would avoid the need of a

trusted party to generate the keys. With that replacement, our

constructions would realize a modified version of our functionality

in §3.3, where authorities cannot finalize the execution of the setup

interface without involvement of other authorities. The security

analysis of the remaining phases of our e-cash schemes is not

affected by the fact that the authorities keys are generated by a

trusted party or through a DKG protocol.

FKG interacts with 𝑛 authorities (A1, . . . ,A𝑛). FKG consists of

two interfaces kg.getkey and kg.retrieve. The interface kg.getkey
is used by A𝑖 to obtain its public key pkV𝑖 and secret key skV𝑖 , as
well as the public key pk and the parameters params. The interface
kg.retrieve is used by any party P to obtain pk, params and the

public keys ⟨pkV𝑖 ⟩
𝑛
𝑖=1

of each of the authorities.

Ideal Functionality FKG. FKG is parameterized by probabilistic al-

gorithms Setup and KeyGenV, a security parameter 1
k
, a threshold

𝑡 and a number 𝐿 of coins in a wallet.

(1) On input (kg.getkey.ini, sid) from an authority A𝑖 :
• Abort if sid ≠ (A1, . . . ,A𝑛, sid ′), or if 𝑛 < 𝑡 .

• If (sid, params, pk, ⟨skV𝑖 , pkV𝑖 ⟩𝑖∈[1,𝑛] ) is not stored, do the

following:

– Run params← Setup(1k, 𝐿).
– Run (pk, ⟨skV𝑖 , pkV𝑖 ⟩𝑖∈[1,𝑛] ) ← KeyGenV(params, 𝑡, 𝑛).
– Store (sid, params, pk, ⟨skV𝑖 , pkV𝑖 ⟩𝑖∈[1,𝑛] ).
• Create a fresh qid and store (qid,A𝑖 ).
• Send (kg.getkey.sim, sid, qid, params, pk, ⟨pkV𝑖 ⟩𝑖∈[1,𝑛] ) toS.

S. On input (kg.getkey.rep, sid, qid) from the simulator S:
• Abort if (qid,A𝑖 ) such that qid ≠ qid ′ is not stored.
• Delete (qid,A𝑖 ).
• Send (kg.getkey.end, sid, params, pk, skV𝑖 , pkV𝑖 ) to A𝑖 .

(2) On input (kg.retrieve.ini, sid) from any party P:
• Abort if sid ≠ (A1, . . . ,A𝑛, sid ′).
• If the tuple (sid, params, pk, ⟨skV𝑖 , pkV𝑖 ⟩𝑖∈[1,𝑛] ) is stored, set
v ← (params, pk, ⟨pkV𝑖 ⟩𝑖∈[1,𝑛] ), else set v ← ⊥.
• Create a fresh qid and store (qid,P, v).
• Send (kg.retrieve.sim, sid, qid, v) to S.

S. On input (kg.retrieve.rep, sid, qid) from S:
• Abort if (qid ′,P, v) such that qid ′ ≠ qid is not stored.

• Delete the record (qid,P, v).
• Send (kg.retrieve.end, sid, v) to P.

C.3 Registration
Our protocol uses the functionality FREG for key registration by

Canetti [21]. FREG interacts with any party T that registers a mes-

sage v and with any party P that retrieves the registered message.

FREG consists of two interfaces reg.register and reg.retrieve. The
interface reg.register is used by T to register a message v with

FREG. A party P uses reg.retrieve to retrieve v from FREG.

Ideal Functionality FREG. FREG is parameterized by a message

spaceM.

(1) On input (reg.register.ini, sid, v) from a party T :
• Abort if sid ≠ (T , sid ′), or if v ∉ M or if there is a tuple

(sid, v′, 0) stored.
• Store (sid, v, 0).
• Send (reg.register.sim, sid, v) to S.

S. On input (reg.register.rep, sid) from the simulator S:
• Abort if (sid, v, 0) is not stored or if (sid, v, 1) is already stored.
• Store (sid, v, 1) and parse sid as (T , sid ′).
• Send (reg.register.end, sid) to T .

(2) On input (reg.retrieve.ini, sid) from any party P:
• If (sid, v, 1) is stored, set v′ ← v; else set v′ ← ⊥.
• Create a fresh qid and store (qid,P, v′).
• Send (reg.retrieve.sim, sid, qid, v′) to S.

S. On input (reg.retrieve.rep, sid, qid) from S:
• Abort if (qid,P, v′) is not stored.
• Delete the record (qid,P, v′).
• Send (reg.retrieve.end, sid, v′) to P.

C.4 Pseudonymous Channel
Our e-cash schemes use the functionality FNYM for a secure ideal-

ized pseudonymous channel. We use FNYM to describe our e-cash

schemes for simplicity, in order to hide the details of real-world

pseudonymous channels. FNYM is similar to the functionality for

anonymous secure message transmission in [16]. FNYM interacts

with senders T and receivers R. FNYM is parameterized by a mes-

sage spaceM, a security parameter k, a universe of pseudonyms

U𝑝 , and a leakage function l, which leaks the message length. FNYM

consists of one interfaces nym.send. T uses the nym.send interface
to send a message m ∈ M, a pseudonym P ∈ U𝑝 and a receiver

identifier R to FNYM. FNYM sends l(m) to the simulator S. After
receiving a response from S, FNYM sends m and P to R.
R does not learn the identifier T . Instead R learns a pseudonym

P chosen by T . T can choose different pseudonyms to make the

messages sent unlinkable towards R.
Ideal Functionality FNYM. FNYM is parameterized by a message

spaceM, a security parameter k, a universe of pseudonyms U𝑝 ,
and a leakage function l, which leaks the message length.

(1) On input (nym.send.ini, sid,m, P,R) from T :
• Abort if m ∉M, or if P ∉ U𝑝 .
• Create a fresh qid and store (qid, P,T ,m,R).
• Send (nym.send.sim, sid, qid, l(m)) to S.

S. On input (nym.send.rep, sid, qid) from S:
• Abort if (qid ′, P,T ,m,R) such that qid = qid ′ is not stored.
• Delete the record (qid, P,T ,m,R).
• Send (nym.send.end, sid,m, P) to R.
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C.5 Authenticated Bulletin Board
Our e-cash schemes use the functionality FBB for an authenticated

bulletin boardBB [56]. ABB is used to store the payments deposited

by providers, and to verify that there are not double spendings or

double deposits. FBB interacts with writersW𝑗 and readers R𝑘 .
W𝑗 uses the bb.write interface to send a message m to FBB. FBB

increments a counter ct of the number of messages stored in BB
and appends [ct,W𝑗 ,m] to BB. R𝑘 uses the bb.read interface on

input an index i. If i ∈ [1, ct], FBB takes the tuple [i,W𝑗 ,m] in BB
and sends (W𝑗 ,m) to R𝑘 .
Ideal Functionality FBB. FBB is parameterized by a universe of

messages U𝑚 . FBB interacts with writersW𝑗 and readers R𝑘 .
(1) On input (bb.write.ini, sid,m) fromW𝑗 :

• Abort if m ∉ U𝑚 .

• Create a fresh qid and store (qid,W𝑗 ,m).
• Send (bb.write.sim, sid, qid) to S.

S. On input (bb.write.rep, sid, qid) from S:
• Abort if (qid ′,W𝑗 ,m) such that qid ′ = qid is not stored.

• If (sid,BB, ct) is not stored, set BB← ⊥ and ct ← 0.

• Increment ct, append [ct,W𝑗 ,m] to BB and update ct and
BB in (sid,BB, ct).
• Delete (qid,W𝑗 ,m).
• Send (bb.write.end, sid) toW𝑗 .

(2) On input (bb.read.ini, sid, i) from R𝑘 :
• Create a fresh qid and store (qid,R𝑘 , i).
• Send (bb.read.sim, sid, qid) to S.

S. On input (bb.read.rep, sid, qid) from S:
• Abort if (qid ′,R𝑘 , i) such that qid ′ = qid is not stored.

• If (sid,BB, ct) is stored and i ∈ [1, ct], take [i,W𝑗 ,m] from
BB and set m′ ← (W𝑗 ,m), else set m′ ← ⊥.
• Send (bb.read.end, sid,m′) to R𝑘 .

C.6 Ideal Functionality F R
SZK

In our schemes, for efficiency reasons, we use the Fiat-Shamir

heuristic to compute signatures of knowledge. This implies that our

schemes are not UC secure. To allow for UC security, our schemes

canmake use of the ideal functionalityF R
SZK

for signatures of knowl-

edge, which we define below. To be realized, this functionality re-

quires a signature of knowledge scheme that provides straight-line

extraction.

Functionality F R
SZK

interacts with any parties P that obtain the

parameters par and compute and verify signatures of knowledge.

The interaction between the functionality F R
SZK

and those parties

takes place through the following interfaces:

(1) Any party P employs the szk.setup interface to obtain the

parameters par .
(2) Any party P employs the szk.prove interface to obtain a

signature of knowledge 𝜋 on input a witnesswit, an instance

ins and a message mes such that (wit, ins) ∈ R.
(3) Any party P employs the szk.verify interface to verify a

signature of knowledge 𝜋 for an instance ins and a message

mes.
F R

SZK
uses a table Tbl. Tbl consists of entries of the form [ins,mes,

𝜋,𝑢], where ins is an instance, mes is a message, 𝜋 is a signature

of knowledge, and 𝑢 is a bit that indicates whether 𝜋 is a valid

signature of knowledge for the instance ins or not. F R
SZK

also uses a

set S that contains all the parties that have obtained the parameters

par .
F R

SZK
is similar to the ideal functionality for non-interactive zero-

knowledge in [35]. F R
SZK

asks the simulator S to provide simulation

and extraction algorithms at setup. In [35], the functionality asks

the simulator to provide simulated signatures of knowledge and to

extract witnesses when the szk.prove and szk.verify interfaces are

invoked. We choose the first alternative because it hides from the

simulator the instances and messages and also when the parties

compute and verify signatures of knowledge. In comparison to the

functionality in [35], F R
SZK

adds the message to be signed.

The functionality F R
SZK

does not allow the computation and

verification of signatures of knowledge using parameters par that
were not generated by the functionality. As can be seen, the in-

terfaces szk.prove and szk.verify do not receive the parameters of

the scheme as input and, in order to compute and verify signa-

tures of knowledge, the functionality employs the parameters that

it stores. Therefore, a construction that realizes this functionality

must ensure that the honest parties employ the same parameters.

To achieve this, some form of trusted setup is required. We depict

F R
SZK

below.

Ideal Functionality F R
SZK

. SZK.SimProve and SZK.Extract are ppt
algorithms. F R

SZK
is parameterized with a description of a relation

R. F R
SZK

interacts with any parties P that obtain the parameters

par and compute and verify signatures of knowledge.

(1) On input (szk.setup.ini, sid) from any party P:
• Generate a random qid and store (qid,P).
• If the tuple (sid, par, td, SZK.SimProve, SZK.Extract) is not
stored, send the message (szk.setup.req, sid, qid,P) toS, else
send (szk.setup.sim, sid, qid,P) to S.

S. On input from S the message (szk.setup.alg, sid, qid, par, td,
SZK.SimProve, SZK.Extract):
• Abort if (qid,P) is not stored.
• If (sid, par, td, SZK.SimProve, SZK.Extract) is not stored, do
the following:

– Store (sid, par, td, SZK.SimProve, SZK.Extract).
– Create an empty set S.
• Set S← S ∪ P.
• Delete (qid,P).
• Send (szk.setup.end, sid, par) to P.

S. On input (szk.setup.rep, sid, qid) from S:
• Abort if (qid,P) is not stored or if (sid, par, td, SZK.SimProve,
SZK.Extract) is not stored.
• Set S← S ∪ P.
• Delete (qid,P).
• Send (szk.setup.end, sid, par) to P.

(2) On input (szk.prove.ini, sid,wit, ins,mes) from a party P:
• Abort if P ∉ S or if (wit, ins) ∉ R.
• Run 𝜋 ← SZK.SimProve(sid, par, td, ins,mes).
• Append [ins,mes, 𝜋, 1] to Table Tbl.
• Send (szk.prove.end, sid, 𝜋) to P.

(3) On input (szk.verify.ini, sid, ins,mes, 𝜋) from a party P:
• Abort if P ∉ S.
• If there is an entry [ins,mes, 𝜋,𝑢] in Tbl, set 𝑣 ← 𝑢.

• Else, do the following:
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– Extract wit ← SZK.Extract(sid, par, td, 𝜋, ins,mes).
– If (wit, ins) ∉ R, set 𝑣 ← 0, else set 𝑣 ← 1.

– Append [ins,mes, 𝜋, 𝑣] to Tbl.
• Send (szk.verify.end, sid, 𝑣) to P.
We discuss the three interfaces of F R

SZK
.

(1) The szk.setup.ini message is sent by any party P. If the
algorithms are not stored, F R

SZK
asks the simulator S to

send the parameters par , the trapdoor td and the algorithms

SZK.SimProve and SZK.Extract. Else, F R
SZK

asks the simula-

tor to allow the setup phase to be completed for party P.
When the simulator provides the parameters, trapdoor and

algorithms, the functionality stores them if they were not

stored before. Both when the simulator provides the algo-

rithms or when it simply prompts the completion of the

setup phase for party P, the functionality records that P
obtains the parameters and sends the parameters to P.

(2) The szk.prove.ini message is sent by any honest party P on

input a witness wit, an instance ins and a messagemes. F R
SZK

aborts if P did not obtain the parameters. This is required

because F R
SZK

enforces that the computation of a signature

of knowledge is a local process (note that F R
SZK

does not

communicate with the simulator when computing a signa-

ture of knowledge), so parties in the real world must have

obtained the parameters before computing a signature of

knowledge. F R
SZK

runs the algorithm SZK.SimProve on input
par , td and ins to get a simulated signature of knowledge

𝜋 . SZK.SimProve does not receive the witness wit as input,
and therefore a signature of knowledge scheme that realizes

this functionality must fulfill the zero-knowledge property.

F R
SZK

stores [ins,mes, 𝜋, 1] in Tbl and sends 𝜋 to P.
(3) The szk.verify.ini message is sent by any honest party P

on input an instance ins, a message mes, and a signature of

knowledge 𝜋 . F R
SZK

aborts if P did not obtain the parame-

ters because the verification of a signature of knowledge is

enforced to be a local process. If there is an entry [ins,mes,
𝜋,𝑢] already stored in Tbl, then the functionality returns

the bit 𝑢. Therefore, any signature of knowledge scheme

that realizes this functionality must be consistent. Else, the

functionality runs the algorithm SZK.Extract to get a wit-

ness wit such that (wit, ins) ∈ R. Therefore, any scheme

that realizes F R
SZK

must be extractable. If extraction fails, the

functionality sets the verification result to 0, i.e., extraction

must succeed unless the signature of knowledge is incorrect.

The functionality records the verification result in Tbl and
returns that result.

D SECURITY PROOF FOR OUR COMPACT
E-CASH SCHEME

To prove that construction ΠEC, instantiated with the algorithms

of the compact e-cash scheme in §5.1, securely realizes the ideal

functionality FEC, we have to show that for any environment Z
and any adversaryA there exists a simulator S such thatZ cannot

distinguish between whether it is interacting with A and the pro-

tocol in the real world or with S and FEC. The simulator thereby

plays the role of all honest parties in the real world and interacts

with FEC for all corrupt parties in the ideal world.

S runs a copy of any adversary A, which is used to provide to

Z a view that is indistinguishable from the view given byA in the

real world. To achieve that,S must simulate the real-world protocol

towards the copy ofA, in such a way thatA cannot distinguish an

interaction with S from an interaction with the real-world protocol.

S uses the information provided by FEC to provide a simulation of

the real-world protocol.

Our simulator S runs copies of the functionalities FSMT, FNYM,

FKG, FREG and FBB. When any of the copies of these functionalities

aborts, S implicitly forwards the abortion message to the adversary

if the functionality sends the abortion message to a corrupt party.

S also runs copies of the extractors E𝑠 and E𝑣 and simulators

S𝑠 and S𝑣 for the non-interactive zero-knowledge arguments of

knowledge 𝜋𝑠 and 𝜋𝑣 , which are computed through the Fiat-Shamir

transform. We remark that they involve calls to the random ora-

cle and rewinding of the adversary. For simplicity, we omit those

details.

Challenges in the proof. Our compact e-cash scheme with thresh-

old issuance is based on an existing compact e-cash scheme [14].

We instantiate that scheme with the Pointcheval-Sanders signature

scheme, and then we use an existing threshold issuance protocol for

Pointcheval-Sanders signatures [50] to provide threshold issuance.

Nevertheless, the security proof does not follow straightforwardly

from the proofs in [14, 50].

First, in the blind issuance protocol of the compact e-cash scheme

in [14] one of the coin secrets is chosen jointly between the user

and the bank, i.e. both the bank and the user add randomness to

compute the secret. In a threshold issuance setting, it would be

necessary that all the authorities add the same randomness without

communicating between them. While adding a mechanism to do

that is possible, in order to improve efficiency we decided to have

the secret be chosen by the user only. This implies that, when a

corrupt user picks up the secrets of two wallets, the user could

pick up the secrets in such a way that two coins have the same

serial number. Consequently, when those coins are spent, there is

a situation in which double spending is detected (because serial

numbers are the same), although no double spending has happened.

In that case, we prove that the identification algorithm cannot

output the public key of an honest user, and we are able to do that

under the discrete logarithm assumption.

Second, to improve efficiency, we use only one coin secret in-

stead of the two coins secrets used in [14]. When using two coin

secrets, it is straightforward to show that serial numbers and dou-

ble spending tags do not reveal any information about the secrets

by using the pseudorandomness property of the pseudorandom

function. However, when using the same secret for both, but a

different generator, we need to add an additional reduction to the

XDH assumption.

Simulator. We describe the simulator S for the case in which a

subset of usersU𝑗 , a subset of providers P𝑘 and up to 𝑡 − 1 authori-

ties are corrupt. S simulates the honest parties in the protocol ΠEC

and runs copies of the ideal functionalities involved.

Honest authorityV𝑖 starts setup. When the functionality FEC

sends the message (ec.setup.sim, sid,V𝑖 ), the simulator S runs a

copy of the functionality FKG on input (kg.getkey.ini, sid). When
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the functionality FKG sends the message (kg.getkey.sim, sid, qid,
params, pk, ⟨pkV𝑖 ⟩𝑖∈[1,𝑛] ), S forwards that message to A.

Honest authorityV𝑖 ends setup. When the adversary A sends

the message (kg.getkey.rep, sid, qid), S runs a copy of FKG on in-

put that message. When FKG sends (kg.getkey.end, sid, params, pk,
skV𝑖 , pkV𝑖 ), S sends (ec.setup.rep, sid,V𝑖 ) to FEC.

Corrupt authority ˜V𝑖 starts setup. When a corrupt authority

˜V𝑖 sends the message (kg.getkey.ini, sid), S runs a copy of FKG

on input that message. When FKG sends (kg.getkey.sim, sid, qid,
params, pk, ⟨pkV𝑖 ⟩𝑖∈[1,𝑛] ), S forwards that message to

˜V𝑖 .
Corrupt authority ˜V𝑖 ends setup. When

˜V𝑖 sends the message

(kg.getkey.rep, sid, qid), S runs a copy of FKG on input that mes-

sage. When FKG sends (kg.getkey.end, sid, params, pk, sk
˜V𝑖 , pk ˜V𝑖 ),

S sends (ec.setup.ini, sid) to the functionality FEC. When FEC

sends (ec.setup.sim, sid, ˜V𝑖 ), the simulator S sends the message

(ec.setup.rep, sid, ˜V𝑖 ) to FEC. When FEC sends (ec.setup.end, sid),
S sends the message (kg.getkey.end, sid, params, pk, sk

˜V𝑖 , pk ˜V𝑖 )
to

˜V𝑖 .
Honest user (or provider) requests keys. When FEC sends the

message (ec.register.sim, sid,U𝑗 ), S runs a copy of FKG on input

(kg.retrieve.ini, sid). When the functionality FKG sends the mes-

sage (kg.retrieve.sim, sid, qid, v), S forwards that message to A.

Honest user (or provider) receives and registers keys. When

A sends (kg.retrieve.rep, sid, qid), S runs FKG on input that mes-

sage. When the functionality FKG sends (kg.retrieve.end, sid, v),
the simulator S runs (skU𝑗 , pkU𝑗 ) ← KeyGenU(params), sets
sidREG ← (U𝑗 , sid ′) and runs a copy of FREG on input the mes-

sage (reg.register.ini, sidREG, pkU𝑗 ). When FREG sends the mes-

sage (reg.register.sim, sidREG, pkU𝑗 ), S forwards that message to

A.

Honest user (or provider) finalizes the registration of keys.
WhenA sends the message (reg.register.rep, sidREG),S runs FREG

on input that message.When FREG sends (reg.register.end, sidREG),
S sends (ec.register.rep, sid,U𝑗 ) to FEC.

Corrupt user (or provider) requests keys. When A sends the

message (kg.retrieve.ini, sid), S runs FKG on input that message.

When FKG sends (kg.retrieve.sim, sid, qid, v), S forwards that mes-

sage to A.

Corrupt user (or provider) receives keys. When A sends the

message (kg.retrieve.rep, sid, qid), S runs FKG on input that mes-

sage. When FKG sends (kg.retrieve.end, sid, v), S forwards that

message to A.

Corrupt user (or provider) registers keys. When A sends the

message (reg.register.ini, sidREG, pkU𝑗 ),S runs FREG on input that

message. When the functionality FREG sends (reg.register.sim,
sidREG, pkU𝑗 ), S forwards that message to A.

Corrupt user (or provider) finishes the registration of keys.
When A sends (reg.register.rep, sidREG), S runs FREG on input

that message. When FREG sends (reg.register.end, sidREG), the sim-

ulator S, acting as the corrupt userU𝑗 , sends (ec.register.ini, sid)
to FEC. When the functionality FEC sends (ec.register.sim, sid,U𝑗 ),
the simulator S sends (ec.register.rep, sid,U𝑗 ) to FEC. When FEC

sends the message (ec.register.end, sid), S sends (reg.register.end,
sidREG) to A.

Honest user sends a request to honest authority. When FEC

sends (ec.request.sim, sid, qid,U𝑗 ,V𝑖 ), the simulator S parses the

session identifier sid as (V1, . . . ,V𝑛, sid ′), sets sidSMT ← (U𝑗 ,V𝑖 ,
sid ′) and sends (smt.send.sim, sidSMT, qid, l(m)) toA, where l(m)
is equal to the length of the message that the honest user sends to

an authority in the ec.request interface.
Adversary forwards request. When the adversary A sends the

message (smt.send.rep, sidSMT, qid) to reply to (ec.request.sim,
sid, qid,U𝑗 ,V𝑖 ), S checks if a tuple (sid,U𝑗 ,V𝑖 ) is stored. If not,
S runs the procedure in Figure 3. After that, S sends the message

(ec.request.rep, sid, qid) to FEC.

Honest user sends a request to corrupt authority. WhenFEC

sends (ec.request.sim, sid, qid,U𝑗 ,V𝑖 ,wid),S checks if a tuple (sid,
U ′
𝑗
,wid ′,wn) such thatU ′

𝑗
= U𝑗 and wid ′ = wid is stored. If not,

S does the following:

• Pick up the stored tuple (sid,U ′
𝑗
,wct) such thatU ′

𝑗
= U𝑗 . (This

tuple is initialized to wct = 0.)

• Set wct ← wct + 1.

• Set wn← wct.
• Store (sid,U𝑗 ,wid,wn).
• Update wct in the tuple (sid,U𝑗 ,wct).
S parses the session identifier sid as (V1, . . . ,V𝑛, sid ′), sets sidSMT

← (U𝑗 ,V𝑖 , sid ′) and sends (smt.send.sim, sidSMT, qid, l(m)) toA,

where l(m) is equal to the length of the message that the honest

user sends to an authority in the ec.request interface.
Corrupt authority receives request from honest user. When

FEC sends (ec.request.end, sid,U𝑗 , reqid) to a corrupt authority ˜V𝑖 ,
S retrieves the stored tuple (sid,U𝑗 ,wid,wn) such thatU ′

𝑗
= U𝑗

and wid was received before in the message (ec.request.sim, . . .)
associated with the message (ec.request.end, . . .) received now. S
runs a copy of a user on input (ec.request.ini, sid, ˜V𝑖 , reqid,wn).
(We remark that wn used a input to the copy of the user is not

necessarily equal to the value of wn received by the honest user

from the environment. However, it is enough to ensure that the

same wn is used for each wid received from FEC, so that the copy of

the user produces the same request for each wid.) When the copy of

the user runs algorithm Request, S uses the public key pkU𝑗 that
was previously computed for userU𝑗 . S also uses the simulator S𝑠
to compute a simulated proof 𝜋𝑠 , and sets com, com1 and com2 to

be commitments to random messages. When the copy of the user

sends the message (smt.send.ini, sidSMT, ⟨reqid, req⟩) to FSMT, S
runs FSMT on input that message. When FSMT sends the message

(smt.send.sim, sid, qid, l(m)),S runsFSMT on input (smt.send.rep,
sid, qid). When FSMT sends (smt.send.end, sid, ⟨reqid, req⟩), S for-

wards that message to
˜V𝑖 .

Corrupt authority requests user keys. When the adversary A
sends (reg.retrieve.ini, sidREG),S runs a copy of FREG on input that

message. When FREG sends (reg.register.sim, sid, v), S forwards

that message to A.

Corrupt authority receives user keys. When the adversary A
sends (reg.register.rep, sid), S runs FREG on input that message.

When FREG sends (reg.retrieve.end, sidREG, v), S forwards that

message to A.

Corrupt user requests credential. When the adversaryA sends

the message (smt.send.ini, sidSMT, ⟨reqid, req⟩), S runs FSMT on
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Procedure: Retrieve user key

• The simulatorS sets sidREG ← (U𝑗 , sid ′) and runs the func-
tionality FREG on input (reg.retrieve.ini, sidREG). When

FREG sends (reg.retrieve.sim, sidREG, qid, v′), S forwards

that message to A.

• WhenA sends (reg.retrieve.rep, sidREG, qid), S runs FREG

on input that message. When FREG sends (reg.retrieve.end,
sidREG, v′), if v′ = ⊥, S aborts, else S stores (sid,U𝑗 ,V𝑖 ).

Figure 3: Procedure for simulating user key retrieval.

input that message. When FSMT sends (smt.send.sim, sidSMT, qid,
l(m)), S sends that message to A.

Honest authority receives request from corrupt user. When

the adversaryA sends (smt.send.rep, sidSMT, qid),S runs FSMT on

input that message. When FSMT sends the message (smt.send.end,
sidSMT,m), S parses the message m as ⟨reqid, req⟩ and sidSMT as

(U𝑗 ,V𝑖 , sid ′). S does the following:

• Abort if the authorityV𝑖 did not end the setup.

• Check if a tuple (sid,U𝑗 ,V𝑖 ) is stored. If not, S runs the proce-

dure in Figure 3.

• Abort if there is a stored tuple (U ′
𝑗
,wn,R, req, ⟨m1,m2, 𝑜, 𝑜1, 𝑜2⟩)

such thatU ′
𝑗
= U𝑗 and {reqid,V𝑖 } ∈ R. Here S aborts because

there is a request pending with the same request identifier reqid
fromU𝑗 forV𝑖 , like it is done in the real protocol.

• If there is a stored tuple (U ′
𝑗
,wn,R, req′, ⟨m1,m2, 𝑜, 𝑜1, 𝑜2⟩) such

that U ′
𝑗
= U𝑗 and req′ = req, then update the set R ← R ∪

{reqid,V𝑖 } in that tuple and take wn from that tuple. Else do the

following:

– Follow the steps of an honest authority in ΠEC to verify req.
This involves verifying the request by running the algorithm

𝑏 ← RequestVf (params, req, pkU𝑗 ). (S checked before that

the corrupt user registered pkU𝑗 through the procedure in

Figure 3.) Abort if 𝑏 = 0.

– Parse req as (h, com, com1, com2, 𝜋𝑠 ). Run the extractor E𝑠 to
extract the witness ⟨m1,m2, 𝑜, 𝑜1, 𝑜2⟩ from 𝜋𝑠 .

– If there is a tuple stored (U𝑗 ,wn,R, ⟨h, com′, com1, com2, 𝜋𝑠 ⟩,
⟨m′

1
,m′

2
, 𝑜, 𝑜1, 𝑜2⟩) such that com′ = com but (m′

1
,m′

2
) ≠ (m1,

m2), S outputs failure.

– If there is a stored tuple (U𝑗 ,wn,R, req, ⟨m1,m2, 𝑜, 𝑜1, 𝑜2⟩) such
that req = ⟨h, com′, com1, com2, 𝜋𝑠 ⟩ and com′ = com, then take

wn from that tuple and store a tuple (U𝑗 ,wn,R, req, ⟨m1,m2,

𝑜, 𝑜1, 𝑜2⟩), where R← {reqid,V𝑖 } and ⟨m1,m2, 𝑜, 𝑜1, 𝑜2⟩ is the
witness that was output by the extractor E𝑠 . (We remark that

wn is the same because, if com is the same in two requests, the

partial signatures obtained from two different authorities can

be aggregated, even if the values (com1, com2, 𝜋𝑠 ) are different.)
Else do the following:

∗ Pick up the stored tuple (sid,U ′
𝑗
,wct) such thatU ′

𝑗
= U𝑗 .

(This tuple is initialized to wct = 0.)

∗ Set wct ← wct + 1.

∗ Set wn← wct.

∗ Store (U𝑗 ,wn,R, req, ⟨m1,m2, 𝑜, 𝑜1, 𝑜2⟩), whereR← {reqid,
V𝑖 }.
∗ Update wct in the tuple (sid,U𝑗 ,wct).
S sends (ec.request.ini, sid,V𝑖 , reqid,wn) to the functionality

FEC. When FEC sends (ec.request.sim, sid, qid,U𝑗 ,V𝑖 ), S sends

(ec.request.rep, sid, qid) to FEC.

Honest authority issues attribute. When the functionality FEC

sends the message (ec.issue.sim, sid, qid,V𝑖 ,U𝑗 ), S parses sid as

(V1, . . . ,V𝑛, sid ′), sets sidSMT ← (V𝑖 ,U𝑗 , sid ′) and sends the mes-

sage (smt.send.sim, sidSMT, qid, l(m)), where l(m) is the length of

the message that an honest authority sends in the ec.issue interface.
Adversary forwards issuance. When the adversaryA sends the

message (smt.send.rep, sidSMT, qid),S sends (ec.issue.rep, sid, qid)
to FEC.

Corrupt user receives issuance. When FEC sends the message

(ec.issue.end, sid, reqid,V𝑖 ) to a corrupt user U𝑗 , the simulator

S finds the stored tuple (U ′
𝑗
,wn,R, req, ⟨m1,m2, 𝑜, 𝑜1, 𝑜2⟩) such

that U ′
𝑗
= U𝑗 and there is element {reqid ′,V ′

𝑖
} ∈ R such that

reqid ′ = reqid and V ′
𝑖
= V𝑖 . S parses req as (h, com, com1, com2,

𝜋𝑠 ). S parses the secret key skV𝑖 as (𝑥𝑖 , 𝑦𝑖,1, 𝑦𝑖,2), computes 𝑐 =

h𝑥𝑖
∏

2

𝑗=1
com𝑦𝑖,𝑗

𝑗
and sets the blinded signature share �̂�𝑖 ← (h, 𝑐)

as in ΠEC. If a tuple (sid,U ′𝑗 ,wn
′, S) such that U ′

𝑗
= U𝑗 and wn′

= wn is not stored, S stores a tuple (sid,U𝑗 ,wn, {𝑖}), else updates
S ← S ∪ {𝑖} in the tuple (sid,U𝑗 ,wn, S). After that, S removes

{reqid,V𝑖 } from the set R in the tuple (U𝑗 ,wn,R, req, ⟨m1,m2, 𝑜,

𝑜1, 𝑜2⟩). Finally, S sets sidSMT ← (V𝑖 ,U𝑗 , sid ′), sets res← �̂�𝑖 and

sends (smt.send.end, sidSMT, ⟨reqid, res⟩) to A.

Corrupt authority issues attribute. When a corrupt authority

˜V𝑖 sends the message (smt.send.ini, sidSMT, ⟨reqid, res⟩), S runs

FSMT on input that message. When the functionality FSMT sends

(smt.send.sim, sid, qid, l(m)), S sends that message to A.

Honest user receives issuance from corrupt authority. After
the adversary A sends the message (smt.send.rep, sid, qid), the
simulator S runs FSMT on input that message. When FSMT sends

(smt.send.end, sidSMT, ⟨reqid, res⟩), the simulator S parses sidSMT

as (V𝑖 ,U𝑗 , sid ′) and runs the copy of the userU𝑗 on input that mes-

sage. We remark that the copy of the user finds the request identifier

reqid of the request associated with this issuance message, or aborts

if it is not found. When the copy of the user outputs (ec.issue.end,
sid, reqid,V𝑖 ), S sends (ec.issue.ini, sid,U𝑗 , reqid) to FEC. When

FEC sends (ec.issue.sim, sid, qid,V𝑖 ,U𝑗 ),S sends (ec.issue.rep, sid,
qid) to FEC.

Honest user begins spending. When FEC sends (ec.spend.sim,
sid, qid), S sends (nym.send.sim, sid, qid, l(m)) to A, where l(m)
is the length of the message ⟨pay, payinfo⟩ sent by an honest user

in the spend interface. Here we consider that the length does

not change depending on the number of spent coins. This can

be achieved by setting a maximum number of coins to be spent and

sending always messages whose length is the length of the message

when the maximum number of coins is spent.

Adversary forwards spending. When A sends (nym.send.rep,
sid, qid), S sends (ec.spend.rep, sid, qid) to FEC.

Corrupt provider receives spending. When FEC sends themes-

sage (ec.spend.end, payid,𝑉 , payinfo, P), S sets the payment pay
← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) by running the procedure
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in Figure 4. S stores (sid, payid, pay, payinfo) and sends the mes-

sage (nym.send.end, sid, ⟨pay, payinfo⟩, P) to A.

Corrupt user begins spending. When the adversary A sends

(nym.send.ini, sid, ⟨pay, payinfo⟩, P,P𝑘 ), S runs FNYM on input

that message. When FNYM sends (nym.reply.sim, sid, qid, l(m)),
S sends that message to A.

Honest provider receives spending from corrupt user. When

A sends themessage (nym.reply.rep, sid, qid), the simulatorS runs

FNYM on input that message. When the functionality FNYM sends

(nym.send.end, sid, ⟨pay, payinfo⟩, P), S runs 𝑏 ← SpendVf (pk,
pay, payinfo). If 𝑏 = 0, S aborts. Otherwise S runs the proce-

dure in Figure 5 to check the payment and store a tuple (pay,
payinfo, ⟨skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩). After that, S checks

that the algorithm for identification of double spenders identifies

the double spender properly by running the procedure in Figure 6.

S sets D ← {𝑙𝑘 |𝑘 ∈ [0,𝑉 − 1]} and sends (ec.spend.ini, sid,wn,
𝑉 ,D, payinfo, P,P𝑘 ) to FEC. When the functionality FEC sends the

message (ec.spend.sim, sid, qid),S sends (ec.spend.rep, sid, qid) to
FEC.

Honest provider begins deposit of honest userU𝑗 payment.
If there are not corrupt authorities, FEC sends (ec.deposit.sim, sid,
qid) and S picks up random payinfo ← Uinfo and 𝑉 ← [1, 𝐿].
If there is at least one corrupt authority, FEC sends the message

(ec.deposit.sim, sid, qid,𝑉 , payinfo).
After receiving the message from FEC, S runs the procedure in

Figure 4 to simulate an honest user payment pay. S runs a copy

of FBB on input (bb.write.ini, sid, ⟨pay, payinfo⟩). When FBB sends

(bb.write.sim, sid, qid), S forwards that message to A.

Honest provider starts deposit of corrupt userU𝑗 payment.
When FEC sends the message (ec.deposit.sim, sid, qid,U𝑗 ,wn,𝑉 ,
D, payinfo, P,P𝑘 ), S finds the tuple (pay, payinfo′, ⟨skU𝑗 , v, 𝑟 , 𝑜𝑐 ,
⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩), where pay is (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉 ′−1] ,

𝑉 ′,𝐶, 𝜋𝑣), such that skU𝑗 is the secret key corresponding to the pub-
lic key registered by the corrupt userU𝑗 , v is the serial number asso-

ciated with the wallet wn, 𝑉 ′ = 𝑉 , ⟨𝑙𝑘 ⟩𝑘∈[0,𝑉−1] = D, and payinfo′

= payinfo. S runs FBB on input (bb.write.ini, sid, ⟨pay, payinfo⟩).
When FBB sends (bb.write.sim, sid, qid), S forwards that message

to A. We remark that FEC sends (ec.deposit.sim, sid, qid,U𝑗 ,wn,
𝑉 ,D, payinfo, P,P𝑘 ) instead (ec.deposit.sim, sid, qid) when the de-

posit corresponds to a payment made by a corrupt user and when at

least one authority is corrupt. When all the authorities are honest,

the adversary in the real world does not have access to the informa-

tion in FBB, and thus the simulator does not need to learn from FEC

whether a payment made by a corrupt user has been deposited.

Honest provider ends deposit. When the adversary A sends

the message (bb.write.rep, sid, qid), S runs FBB on input that mes-

sage. When FBB sends (bb.write.end, sid), S sends (ec.deposit.rep,
sid, qid) to FEC.

Corrupt provider begins deposit. WhenA sends (bb.write.ini,
sid, ⟨pay, payinfo⟩), the simulator S checks if a tuple (sid, payid,
pay′, payinfo′) such that pay′ = pay and payinfo′ = payinfo is

stored. If it is stored, which means that this is a payment that was

sent to A by the simulator acting as an honest user, S takes payid
from that tuple and proceeds with step 2 below. Otherwise we are in

the case of a payment that a corrupt user sent to a corrupt provider,

Procedure: Simulate honest user payment

• Pick random 𝑟 ← Z𝑝 and 𝑟 ′ ← Z𝑝 .
• Compute 𝜎 ′ = (h′, 𝑠 ′) ← (g𝑟 ′, g𝑟𝑟 ′).
• Compute 𝜅 ← g̃𝑟 .
• For 𝑘 ∈ [0,𝑉 − 1], pick random 𝑆𝑘 ← G, 𝑇𝑘 ← G and 𝐴𝑘
← G.
• Pick random 𝐶 ← G.
• Run the simulator S𝑣 to compute a simulated proof 𝜋𝑣 .

Figure 4: Procedure for simulating an honest user payment.

Procedure: Check Corrupt User Payment

• S parses pay as (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣).
• S runs the extractor E𝑣 to extract the witness (skU𝑗 , v, 𝑟 ,
𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
) from the proof 𝜋𝑣 .

• S parses 𝜎 ′ as (h′, 𝑠 ′) and computes �̂� = ( ˆh, 𝑠) = (h′,
𝑠 ′(h′)−𝑟 ).
• S runs the verification equation e( ˆh, 𝛼 ˜𝛽

skU𝑗
1

˜𝛽v
2
) = e(𝑠, g̃) of

the Pointcheval-Sanders signature scheme. If the verifica-

tion equation does not hold, S outputs failure.

• S finds a tuple (U𝑗 ,wn,R, ⟨h, com, com1, com2, 𝜋𝑠 ⟩, ⟨m1,m2,

𝑜, 𝑜1, 𝑜2⟩) such thatm1 = skU𝑗 andm2 = v. If such a tuple is
not stored, S outputs failure, else S takesU𝑗 and wn from

that tuple. We remark that, in this tuple,U𝑗 is always the
identity of a corrupt user.

• S finds a tuple (sid,U ′
𝑗
,wn′, S) such thatU ′

𝑗
= U𝑗 and wn′

= wn. S outputs failure if such a tuple is not stored, or if

|S| < 𝑡 − 𝑡 , where 𝑡 is the number of corrupt authorities.

• For 𝑘 ∈ [0,𝑉 − 1], S checks whether 𝑆𝑘 = 𝛿1/(v+𝑙𝑘+1)
and

𝑇𝑘 = gskU𝑗 +𝑅𝑘/(v+𝑙𝑘+1) , where 𝑅𝑘 ← 𝐻 ′(payinfo, 𝑘). If any
of those checks fails, S outputs failure.

• S stores the tuple (pay, payinfo, ⟨skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 ,
𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩).

Figure 5: Procedure for checking a corrupt user payment.

and thus S did not receive it during the spending phase. S proceeds

with step 1.

Step 1. S proceeds as follows:

• S runs 𝑏 ← SpendVf (pk, pay, payinfo). If 𝑏 = 0, the simulator S
aborts.

• S runs the procedure in Figure 5 to store (pay, payinfo, ⟨skU𝑗 , v,
𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩).

• The simulator S checks that the algorithm for identification

of double spenders identifies the double spender properly by

running the procedure in Figure 6.

S setsD← {𝑙𝑘 |𝑘 ∈ [0,𝑉−1]}, picks a random pseudonym P ← U𝑝 ,
takes the identity P𝑘 of the corrupt provider that sent the message

(bb.write.ini, . . .), and sends (ec.spend.ini, sid,wn,𝑉 ,D, payinfo, P,
P𝑘 ) to FEC. When FEC sends the message (ec.spend.sim, sid, qid),
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Procedure: Check Double Spending

• S takes the tuple (pay, payinfo, ⟨skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 ,
𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩) for the payment made by a corrupt user.

• For all the stored tuples (pay′, payinfo′, ⟨sk′U𝑗 , v
′, 𝑟 ′, 𝑜 ′𝑐 , ⟨𝑙 ′𝑘 ,

𝑜 ′𝑎𝑘 , 𝜇
′
𝑘
, 𝑜 ′𝜇𝑘 ⟩

𝑉 ′−1

𝑘=0
⟩), S checks whether sk′U𝑗 = skU𝑗 , v

′ =

v and ⟨𝑙 ′
𝑘
⟩𝑘∈[0,𝑉 ′−1] ∩ ⟨𝑙𝑘 ⟩𝑘∈[0,𝑉−1] ≠ ∅, which means

that there is a double spending. S sets PK to contain all

the registered public keys and runs the algorithm 𝑐 ←
Identify(params, PK, pay, pay′, payinfo, payinfo′). Then S
proceeds as follows:

– If there is double spending, S does the following:

∗ If payinfo = payinfo′ and 𝑐 ≠ payinfo, S outputs fail-

ure. We note that authorities verify that payinfo con-
tains an identifier of the provider that deposited the

payment. This avoids that an honest provider can be

found guilty when an adversarial provider e.g. double

deposits a payment with payment information payinfo
that contains the identifier of an honest provider.

∗ If payinfo ≠ payinfo′ and 𝑐 ≠ pkU𝑗 , where pkU𝑗 is the
public key associated with secret key skU𝑗 , S outputs

failure.

– If there is not double spending, and if 𝑐 = pkU𝑗 , where
pkU𝑗 is a public key associated with an honest user, S
outputs failure. We remark that it is possible for the adver-

sary to produce two payments where there is not double-

spending, and yet the algorithm Identify detects double
spending. When that happens, we must ensure that al-

gorithm Identify does not output the public key of an

honest user. We recall that authorities verify that payinfo
contains an identifier of the provider that deposited the

payment, which also avoids an honest provider from be-

ing framed in this case.

Figure 6: Procedure for checking double spending.

S sends (ec.spend.rep, sid, qid) to FEC. When FEC sends the mes-

sage (ec.spend.end, payid,𝑉 , payinfo, P), S proceeds with step 2.

Step 2. S sends (ec.deposit.ini, sid, payid) to FEC. When FEC sends

(ec.deposit.sim, sid, qid), S runs a copy of FBB on input the mes-

sage (bb.write.ini, sid, ⟨pay, payinfo⟩). When FBB sends the mes-

sage (bb.write.sim, sid, qid), S forwards that message to A.

Corrupt provider ends deposit. When the adversary A sends

the message (bb.write.rep, sid, qid), S runs the copy of FBB on

input that message. When FBB sends (bb.write.end, sid), S sends

(ec.deposit.rep, sid, qid) to FEC. When FEC sends (ec.deposit.end,
sid, payid), S sends (bb.write.end, sid) to A.

Honest authority runs deposit verification. When FEC sends

the message (ec.depvf.sim, sid, qid,U′, d), for allU𝑗 ∈ U′, S runs

the procedure in Figure 3. After that, for 𝑖 = 1 to d, S does the

following:

• Send (bb.read.sim, sid, qid) to A.

• Receive (bb.read.rep, sid, qid) from A.

S sends (ec.depvf.rep, sid, qid) to FEC.

Corrupt authority starts reading of bulletin board. WhenA
sends (bb.read.ini, sid, i), S runs FBB on input that message. When

FBB sends (bb.read.sim, sid, qid), S forwards that message to A.

Corrupt authority ends reading of bulletin board. When the

adversaryA sends (bb.read.rep, sid, qid), S runs FBB on input that

message. When FBB sends (bb.read.end, sid,m′), S parses m′ as
(P𝑘 , pay, payinfo). If (pay, payinfo) is a payment that was com-

puted by S, S parses pay as (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣)
and checks whether any serial number 𝑆𝑘 is equal to any of the

other serial numbers stored in the payments in FBB. If that is the

case, S outputs failure. Otherwise S sends (bb.read.end, sid,m′)
to A. We remark that payments computed by the adversary were

already checked before by S through the procedure in Figure 6.

Theorem D.1. When a subset of usersU𝑗 , a subset of providers P𝑘
and up to 𝑡−1 authoritiesV𝑖 are corrupt, ΠEC securely realizes FEC in
the random oracle model and in the (FSMT, FNYM, FKG, FREG, FBB)-
hybrid model if the non-interactive proof of knowledge scheme is zero-
knowledge and provides weak simulation extractability, the signature
scheme by Pointcheval-Sanders in the RO model is unforgeable, the
commmitment scheme is hiding and binding, the function in §A.6 is
pseudorandom, and the hash function 𝐻 ′ is collision-resistant.

Proof of Theorem D.1. We show by means of a series of hybrid

games that the environment Z cannot distinguish between the

ensemble REAL
ΠEC,A,Z and the ensemble IDEALFEC,S,Z with non-

negligible probability. We denote by Pr[Game 𝑖] the probability
that the environment distinguishes Game 𝑖 from the real-world

protocol.

Game 0: This game corresponds to the execution of the real-world

protocol. Therefore, Pr[Game 0] = 0.

Game 1: This game proceeds asGame 0, except thatGame 1 runs

the extractor E𝑠 for the non-interactive ZK proofs of knowledge

𝜋𝑠 sent by the adversary. Under the weak simulation extractabil-

ity property of the proof system (Definition A.8), we have that

| Pr[Game 1] − Pr[Game 0] | ≤ Adv
ext
A .

Game 2: This game proceeds as Game 1, except that Game 2

outputs failure if two request messages were received from the

adversary with commitments com′ and com and proofs 𝜋 ′𝑠 and 𝜋𝑠
such that com′ = com but, after extraction of the witnesses (m′

1
,

m′
2
, 𝑜 ′, 𝑜 ′

1
, 𝑜 ′

2
) from 𝜋 ′𝑠 and (m1,m2, 𝑜, 𝑜1, 𝑜2) from 𝜋𝑠 , (m′

1
,m′

2
) ≠

(m1,m2). Under the binding property of the commitment scheme,

we have that | Pr[Game 2] − Pr[Game 1] | ≤ Adv
bin
A .

Proof. Given an adversary that makes Game 2 output failure

with non-negligible probability, we construct an algorithm 𝐵 that

breaks the binding property of the commitment scheme with non-

negligible probability. 𝐵 works as follows. 𝐵 receives the parameters

of the Pedersen commitment scheme parc = (g, 𝛾1, 𝛾2) from the

challenger. When running FKG, 𝐵 uses those parameters to set the

values (g, 𝛾1, 𝛾2) in the parameters params ← (p,G, ˜G,G𝑡 , e, g, g̃,
𝛾1, 𝛾2, 𝛿, 𝐿). When the adversary sends two requests with commit-

ments com′ and com and proofs 𝜋 ′𝑠 and 𝜋𝑠 such that com′ = com
but, after extraction of the witnesses (m′

1
,m′

2
, 𝑜 ′, 𝑜 ′

1
, 𝑜 ′

2
) from 𝜋 ′𝑠

and (m1,m2, 𝑜, 𝑜1, 𝑜2) from 𝜋𝑠 , it holds that (m′
1
,m′

2
) ≠ (m1,m2),

𝐵 sends (com,m1,m2, 𝑜,m′
1
,m′

2
, 𝑜 ′) to the challenger. □

Game 3: This game proceeds asGame 2, except thatGame 3 runs

the extractor E𝑣 for the non-interactive ZK proofs of knowledge
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𝜋𝑣 sent by the adversary. Under the weak simulation extractabil-

ity property of the proof system (Definition A.8), we have that

| Pr[Game 3] − Pr[Game 2] | ≤ Adv
ext
A .

Game 4: This game proceeds asGame 3, except that, after extract-

ing the witness (skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
) from a proof 𝜋𝑣 ,

Game 4 takes the payment pay = (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,
𝐶, 𝜋𝑣) that contains 𝜋𝑣 and parses 𝜎 ′ as (h′, 𝑠 ′). Game 4 computes

�̂� = ( ˆh, 𝑠) = (h′, 𝑠 ′(h′)−𝑟 ). Then Game 4 outputs failure if �̂� is

not a valid signature. As shown below, the computation �̂� = ( ˆh,
𝑠) = (h′, 𝑠 ′(h′)−𝑟 ) always produces a valid signature, and thus

| Pr[Game 4] − Pr[Game 3] | = 0.

Proof. We follow the proof in [50]. We observe that, after extrac-

tion from 𝜋𝑣 is successful, 𝜅 is of the form 𝜅 ← 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 . We

also know that the following equality holds

e(h′, 𝜅) = e(𝑠 ′, g̃)

If we replace 𝜅 by 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 , we have that

e(h′, 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 ) = e(𝑠 ′, g̃)

If we now multiply the two sides of the equality by e(h′, g̃−𝑟 ), we
have that

e(h′, 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 )e(h′, g̃−𝑟 ) = e(𝑠 ′, g̃)e(h′, g̃−𝑟 )

and this gives us

e(h′, 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
) = e(𝑠 ′(h′)−𝑟 , g̃)

which is the verification equation of the Pointcheval-Sanders sig-

nature scheme for the signature (h′, 𝑠 ′(h′)−𝑟 ). Therefore, the com-

putation �̂� = ( ˆh, 𝑠) = (h′, 𝑠 ′(h′)−𝑟 ) always produces a valid signa-

ture. □

Game 5: This game proceeds as Game 4, except that Game 5 out-

puts failure if, after computing the signature �̂� = ( ˆh, 𝑠) = (h′,
𝑠 ′(h′)−𝑟 ) on (skU𝑗 , v), it is the case that the adversary was not is-

sued at least 𝑡−𝑡 signatures from 𝑡−𝑡 different authorities on (skU𝑗 ,
v). Under the unforgeability property of Pointcheval-Sanders sig-

natures in the random oracle model, we have that | Pr[Game 5] −
Pr[Game 4] | ≤ Adv

unf
A · ((𝑛− 𝑡)!/((𝑡 −1− 𝑡)!(𝑛− 𝑡 +1)!)), where 𝑛

is the number of authorities, 𝑡 is the threshold and 𝑡 is the number

of corrupt authorities.

Proof. We follow the proof in [50]. We construct an algorithm 𝐵

that interacts with the challenger of the existential unforgeabil-

ity game in the RO model (Definition A.14) and the adversary A
and that shows that, if A makes Game 5 output failure with non-

negligible probability, thenA can be used by 𝐵 to break the existen-

tial unforgeability property in the ROmodel of Pointcheval-Sanders

signatures.

𝐵 receives a public key (𝜃, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2) from the challenger. To

set up the keys when running functionality FKG, 𝐵 proceeds as

follows.

• 𝐵 uses the bilinear map setup 𝜃 to set params. 𝐵 uses the public

key received from the challenger to set the verification key pk =

(params, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Let T be the set of indices of corrupt authorities. Let U be a set

of indices of size 𝑡 − 1 − |T| picked at random from [1, 𝑛] \ T.
Let S′ ← T ∪ U. To compute the secret keys and public keys

of the authorities V𝑖 such that 𝑖 ∈ S′, 𝐵 picks random (𝑥𝑖 , 𝑦𝑖,1,
𝑦𝑖,2) ← Z𝑝 and computes pkV𝑖 = (𝛼𝑖 , 𝛽𝑖,1, ˜𝛽𝑖,1, 𝛽𝑖,2, ˜𝛽𝑖,2) ← (g̃𝑥𝑖 ,
g𝑦𝑖,1 , g̃𝑦𝑖,1 , g𝑦𝑖,2 , g̃𝑦𝑖,2 ).
• Let S← S′ ∪ {0} and let D = [1, 𝑛] \ S′. To compute the public

keys of the remaining authorities, i.e. the authorities in the set D,

𝐵 does the following. Let (𝛼0, 𝛽0,1, ˜𝛽0,1, 𝛽0,2, ˜𝛽0,2) ← (𝛼, 𝛽1, ˜𝛽1,

𝛽2, ˜𝛽2). For all 𝑑 ∈ D:
– For all 𝑖 ∈ S, evaluate at 𝑑 the Lagrange basis polynomials

𝑙𝑖 = [
∏

𝑗 ∈S, 𝑗≠𝑖
(𝑑 − 𝑗)] [

∏
𝑗 ∈S, 𝑗≠𝑖

(𝑖 − 𝑗)]−1
mod p

– For all 𝑖 ∈ S, take (𝛼𝑖 , 𝛽𝑖,1, ˜𝛽𝑖,1, 𝛽𝑖,2, ˜𝛽𝑖,2) and then do

pkV𝑑 =(𝛼𝑑 , 𝛽𝑑,1, ˜𝛽𝑑,1, 𝛽𝑑,2,
˜𝛽𝑑,2) =

(
∏
𝑖∈S

𝛼
𝑙𝑖
𝑖
,
∏
𝑖∈S

𝛽
𝑙𝑖
𝑖,1
,
∏
𝑖∈S

˜𝛽
𝑙𝑖
𝑖,1
,
∏
𝑖∈S

𝛽
𝑙𝑖
𝑖,2
,
∏
𝑖∈S

˜𝛽
𝑙𝑖
𝑖,2
).

To reply the random oracle queries 𝐻 (com) of the adversary A,

𝐵 forwards the query com to the random oracle provided by the

challenger and sends A the response h given by the challenger.

When A sends a valid request req ← (h, com, com1, com2, 𝜋𝑠 ), 𝐵
runs the extractor E𝑠 to extract the witness (m1,m2, 𝑜, 𝑜1, 𝑜2) from
𝜋𝑠 . 𝐵 outputs failure if two request messages were received with

commitments com′ and com and proofs 𝜋 ′𝑠 and 𝜋𝑠 such that com′

= com but, after extraction of the witnesses from 𝜋 ′𝑠 and 𝜋𝑠 , (𝑚′1,
𝑚′

2
) ≠ (𝑚1,𝑚2). As shown in Game 2, the probability that 𝐵 fails

is negligible if the commitment scheme is binding. This guarantees

that com is different for each tuple of messages (𝑚′
1
,𝑚′

2
), which is

necessary when querying the signing oracle.

If the request is sent to an authorityV𝑖 such that 𝑖 ∈ U, 𝐵 computes

an issuance message by following ΠEC and stores (𝑚1,𝑚2,V𝑖 ). (We

note that in this case 𝐵 knows the secret key of the authority.) If

the request is sent toV𝑑 such that 𝑑 ∈ D, 𝐵 proceeds as follows:

• 𝐵 submits the message tuple (𝑚1,𝑚2) that was extracted by E𝑠
and the commitment com to the signing oracle provided by the

challenger. The challenger sends a signature 𝜎0 = (h, 𝑠0) and
state information st ′.
• For all 𝑖 ∈ S′, 𝐵 computes a signature 𝜎𝑖 = (h, 𝑠𝑖 ) by using the

secret keys of authorities in S′.
• For all 𝑖 ∈ S, 𝐵 evaluates at 𝑑 the Lagrange basis polynomials

𝑙𝑖 = [
∏

𝑗 ∈S, 𝑗≠𝑖
(𝑑 − 𝑗)] [

∏
𝑗 ∈S, 𝑗≠𝑖

(𝑖 − 𝑗)]−1
mod p

• 𝐵 computes the signature 𝜎𝑑 = (h, 𝑠𝑑 ) ← (h,
∏
𝑖∈S 𝑠

𝑙𝑖
𝑖
). We note

that in this computation the signature sent by the challenger is

used.

• 𝐵 computes �̂�𝑑 = (h, 𝑠𝑑𝛽𝑜1

𝑑,1
𝛽
𝑜2

𝑑,2
) and includes it in the issuance

message sent to A. 𝐵 stores (𝑚1,𝑚2,V𝑑 ).
After the adversaryA sends a valid payment pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 ,
𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣), 𝐵 proceeds as follows.

• 𝐵 runs the extractor E𝑣 to extract the witness (skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 ,
𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
) from the proof 𝜋𝑣 .

• 𝐵 parses 𝜎 ′ as (h′, 𝑠 ′) and computes �̂� = ( ˆh, 𝑠) = (h′, 𝑠 ′(h′)−𝑟 ).
𝐵 runs the verification equation e( ˆh, 𝛼 ˜𝛽

skU𝑗
1

˜𝛽v
2
) = e(𝑠, g̃) of the

Pointcheval-Sanders signature scheme. If for any signature �̂�𝑙 the
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verification equation does not hold, 𝐵 outputs failure. As shown

in Game 4, the probability that 𝐵 outputs failure is 0.

• 𝐵 checks that there are at least 𝑡 − |T| tuples (𝑚1,𝑚2,V𝑖 ) stored
for 𝑡 − |T| honest authorities. If that is the case, 𝐵 does noth-

ing because A was issued enough signatures to compute the

payment. Else, if the adversaryA received less than 𝑡 − |T| signa-
tures from honest authorities, butA did receive a signature from

an authority V𝑑 such that 𝑑 ∈ D, 𝐵 fails because 𝐵 had to the

query signing oracle to issue that signature to the adversary and

therefore he cannot use �̂� as a forgery. However, if A received

less than 𝑡 − |T| signatures from honest authorities, and all those

authoritiesV𝑖 are such that 𝑖 ∈ U, 𝐵 sends �̂� to the challenger to

win the existential unforgeability game.

Finally, the probability that 𝐵 fails can be bound as follows. 𝐵 needs

to query the signing oracle of the challenger whenever A requests

a signature from an authorityV𝑑 such that 𝑑 ∈ D. Therefore, when
A is able to show a signature without receiving 𝑡 − |T| signatures
shares from 𝑡 − |T| different honest authorities, 𝐵 fails whenever

A did request a signature from an authorityV𝑑 such that 𝑑 ∈ D.
In the worst case,A received 𝑡 − 1− |T| signatures from 𝑡 − 1− |T|
honest authorities. In that worst case, 𝐵 only succeeds when those

𝑡 − 1 − |T| authorities are those authoritiesV𝑖 such that 𝑖 ∈ U. The
probability that 𝐵 succeeds, i.e. the probability that A picks those

𝑡 − 1 − |T| authorities from the set of 𝑛 − |T| authorities is given by

the inverse of the number of (𝑡 − 1 − |T|)-element combinations of

𝑛 − |T| objects taken without repetition

(𝑡 − 1 − |T|)!(𝑛 − 𝑡 + 1!)
(𝑛 − |T|)!

We remark that, in the frequent case in which 𝑡 = 𝑛, then 𝐵 succeeds

with probability 1/(𝑡 − |T|). □

Game 6: This game proceeds asGame 5, except that, after extract-

ing the witness (skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
) from a proof

𝜋𝑣 , Game 6 takes the payment pay = (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,
𝑉 ,𝐶, 𝜋𝑣) that contains 𝜋𝑣 and the associated payment informa-

tion payinfo and computes the serial numbers 𝑆 ′
𝑘
← 𝛿1/(v+𝑙𝑘+1)

and the double spending tags 𝑇 ′
𝑘
← gskU𝑗 +𝑅𝑘/(v+𝑙𝑘+1) , where 𝑅𝑘

= 𝐻 ′(payinfo, 𝑘). Then Game 6 outputs failure if, for any 𝑘 ∈
[0,𝑉 − 1], 𝑆 ′

𝑘
≠ 𝑆𝑘 or 𝑇 ′

𝑘
≠ 𝑇𝑘 . Under the hardness of the discrete

logarithm problem, | Pr[Game 6] − Pr[Game 5] | ≤ Adv
dlog
A .

Proof. We have an adversary A that, with non-negligible proba-

bility, sends payment information payinfo and a payment pay = (𝜅,
𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) such that, after extracting from

𝜋𝑣 the witness (skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
) and computing

𝑆 ′
𝑘
← 𝛿1/(v+𝑙𝑘+1)

and𝑇 ′
𝑘
← gskU𝑗 +𝑅𝑘/(v+𝑙𝑘+1) for all 𝑘 ∈ [0,𝑉 − 1],

we have that 𝑆 ′
𝑘
≠ 𝑆𝑘 or 𝑇 ′

𝑘
≠ 𝑇𝑘 for some 𝑘 ∈ [0,𝑉 − 1]. We con-

struct an algorithm 𝐵 that uses that adversary to solve the discrete

logarithm problem.

𝐵 works as follows. Given an instance (ℎ,ℎ𝑥 ) of the discrete loga-
rithm problem, when running the functionality FKG to set up the

parameters params ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝐿), 𝐵 sets g ←
ℎ and 𝛾1 ← ℎ𝑥 . When the adversary outputs a payment pay that

fulfills the condition described above for a certain 𝑘 ∈ [0,𝑉 − 1], 𝐵

outputs

𝑥 ←
(𝑜𝑎𝑘 + 𝑜𝑐 )𝜇𝑘 + 𝑜𝜇𝑘

1 − ((v + 𝑙𝑘 + 1)𝜇𝑘 )
We show that the discrete logarithm 𝑥 is computed correctly as

follows. The non-interactive ZK proof of knowledge 𝜋𝑣 is described

by

𝜋𝑣 =NIZK{(skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩
𝑉−1

𝑘=0
) :

𝜅 = 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 ∧ 𝐶 = g𝑜𝑐𝛾v

1
∧

⟨𝐴𝑘 = g𝑜𝑎𝑘 𝛾𝑙𝑘
1
∧ 𝑙𝑘 ∈ [0, 𝐿 − 1] ∧

𝑆𝑘 = 𝛿𝜇𝑘 ∧ 𝛾1 = (𝐴𝑘𝐶𝛾1)𝜇𝑘 g𝑜𝜇𝑘 ∧

𝑇𝑘 = gskU𝑗 (g𝑅𝑘 )𝜇𝑘 ⟩𝑘∈[0,𝑉−1] }

After successful extraction of the witness (skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 ,
𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
), we know that the statements proven by 𝜋𝑣 hold. In the

case that 𝑆 ′
𝑘
≠ 𝑆𝑘 for some 𝑘 ∈ [0,𝑉 − 1], we have that

𝛿1/(v+𝑙𝑘+1) ≠ 𝛿𝜇𝑘

and thus 1/(v + 𝑙𝑘 + 1) ≠ 𝜇𝑘 . In the case that 𝑇 ′
𝑘
≠ 𝑇𝑘 for some 𝑘 ∈

[0,𝑉 − 1], we have that

gskU𝑗 +𝑅𝑘/(v+𝑙𝑘+1) ≠ gskU𝑗 (g𝑅𝑘 )𝜇𝑘

and thus we can also deduce that 1/(v + 𝑙𝑘 + 1) ≠ 𝜇𝑘 .

We also have the following:

𝛾1 = (𝐴𝑘𝐶𝛾1)𝜇𝑘 g𝑜𝜇𝑘

= (g𝑜𝑎𝑘 𝛾𝑙𝑘
1
g𝑜𝑐𝛾v

1
𝛾1)𝜇𝑘 g𝑜𝜇𝑘

= 𝛾
(v+𝑙𝑘+1)𝜇𝑘
1

g (𝑜𝑎𝑘 +𝑜𝑐 )𝜇𝑘+𝑜𝜇𝑘

and therefore

𝛾1 = g
(𝑜𝑎𝑘 +𝑜𝑐 )𝜇𝑘 +𝑜𝜇𝑘
1−( (v+𝑙𝑘 +1)𝜇𝑘 )

This equation shows that, when 1/(v+𝑙𝑘 +1) ≠ 𝜇𝑘 , we can compute

the discrete logarithm 𝑥 as described above. □

Game 7: This game proceeds as Game 6, except that in Game 7

the non-interactive ZK proofs of knowledge 𝜋𝑣 that are sent to the

adversary are replaced by simulated proofs computed by the simu-

lator S𝑣 . Under the zero-knowledge property of the proof system

(see Definition A.7), we have that | Pr[Game 7] − Pr[Game 6] | ≤
Adv

zk
A .

Game 8: This game proceeds as Game 7, except that in Game 8,

for the payments pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) that
are sent to the adversary, the values 𝜅 and 𝜎 ′ are computed as

follows:

• Pick random 𝑡 ← Z𝑝 and 𝑡 ′ ← Z𝑝 .
• Compute 𝜎 ′ = (h′, 𝑠 ′) ← (g𝑡 ′, g𝑡𝑡 ′).
• Compute 𝜅 ← g̃𝑡 .
As shown below, | Pr[Game 8] − Pr[Game 7] | = 0.

Proof. This proof follows the proof in [50]. We show that values

𝜅 and 𝜎 ′ follow the same distribution as the ones computed by the

honest user in the real-world protocol. Observe that the honest user

computes the following:

• Pick random 𝑟 ← Z𝑝 and 𝑟 ′ ← Z𝑝 .
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• Set 𝜎 ′ = (h′, 𝑠 ′) ← (h𝑟 ′, 𝑠𝑟 ′ (h′)𝑟 ), where we have that

(h𝑟
′
, 𝑠𝑟
′
(h′)𝑟 ) = (h𝑟

′
, h(𝑥+skU𝑗 𝑦1+v𝑦2+𝑟 )𝑟 ′)

= (g𝑢𝑟
′
, g (𝑥+skU𝑗 𝑦1+v𝑦2+𝑟 )𝑢𝑟 ′)

• Set 𝜅 ← 𝛼𝛽
skU𝑗
1

𝛽v
2
g̃𝑟 = g̃𝑥+skU𝑗 𝑦1+v𝑦2+𝑟

.

Therefore, 𝑡 corresponds to (𝑥 + skU𝑗𝑦1 + v𝑦2 + 𝑟𝑙 ) and 𝑡 ′ cor-
responds to 𝑢𝑟 ′, where 𝑢 is a random value such that h = g𝑢 .
Both (𝑥 + skU𝑗𝑦1 + v𝑦2 + 𝑟 ) and 𝑢𝑟 ′ are random. Observe as well

that the verification equation e(h′, 𝜅) = e(𝑠 ′, g̃) still holds because
e(g𝑡 ′, g̃𝑡 ) = e(g𝑡𝑡 ′, g̃). □

Game 9: This game proceeds as Game 8, except that in Game 9

the non-interactive ZK proofs of knowledge 𝜋𝑠 that are sent to the

adversary are replaced by simulated proofs computed by the simu-

lator S𝑠 . Under the zero-knowledge property of the proof system

(see Definition A.7), we have that | Pr[Game 9] − Pr[Game 8] | ≤
Adv

zk
A .

Game 10: This game proceeds asGame 9, except that inGame 10,

in each request that is sent to the adversary, the values (com1,

com2) are replaced by com1 ← g𝑜1hm1
and com2 ← g𝑜2hm2

, where

(𝑜1,m1, 𝑜2,m2) are random values in Z𝑝 . At this point, the non-

interactive ZK proofs of knowledge 𝜋𝑠 are simulated proofs of

false statements. We also remark that, after Game 8, the compu-

tation of payment messages does not use the signatures obtained

in the issuance phase. Since the values (com1, com2) are uniformly

distributed at random, this change does not alter the view of the

environment and we have that | Pr[Game 10] − Pr[Game 9] | = 0.

Game 11: This game proceeds asGame 10, except that inGame 11,

in each request that is sent to the adversary, the value com is re-

placed by picking random com ← G. Under the hiding property

of the commitment scheme, | Pr[Game 11] − Pr[Game 10] | ≤
𝑁 · AdvhidA , where 𝑁 is the number of commitments com sent to

the adversary. Since the Pedersen commitment scheme is perfectly

hiding, | Pr[Game 11] − Pr[Game 10] | = 0.

Proof. The proof uses a sequence of games Game 10.𝑖 , for 𝑖 = 0 to

𝑁 . Game 10.0 is equal to Game 10, whereas Game 10.𝑁 is equal

to Game 11. In Game 10.𝑖 , the first 𝑖 commitments sent to the

adversary are set to random values, whereas the remaining ones

are set as in Game 10.

Given an adversary that distinguishes between Game 10.𝑖 and

Game 10.(𝑖 + 1) with non-negligible probability, we construct an

algorithm 𝐵 that breaks the hiding property of the commitment

scheme. 𝐵 works as follows. 𝐵 receives the parameters of the Ped-

ersen commitment scheme parc = (g, 𝛾1, 𝛾2) from the challenger.

When running FKG, 𝐵 uses those parameters to set the values (g,
𝛾1, 𝛾2) in the parameters params ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝐿).
To compute the first 𝑖 commitments, 𝐵 sets com to random. To

compute the commitment 𝑖 + 1, 𝐵 sends the messages (skU𝑗 , v) to
the challenger. 𝐵 sets com to the challenge commitment received

from the challenger. As can be seen, if the challenge commitment

commits to (skU𝑗 , v), then we are in Game 10.𝑖 , whereas if the

challenge commitment commits to a random message, then we are

in Game 10.(𝑖 + 1). The remaining commitments are computed as

in Game 10. 𝐵 sends the adversarial guess to distinguish between

Game 10.𝑖 and Game 10.(𝑖 + 1) to the challenger of the hiding

game. □

Game 12: This game proceeds asGame 11, except that inGame 12,

for the payments pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) that
are sent to the adversary, for all 𝑘 ∈ [0,𝑉 − 1], the values 𝐴𝑘 ← G
are set to random elements in G. The value 𝐶 is also set to a ran-

dom element in G. Under the hiding property of the commitment

scheme, we have that | Pr[Game 12] −Pr[Game 11] | ≤ 𝑁 ·AdvhidA ,

where 𝑁 is the number of commitments𝐶 and𝐴𝑘 sent to the adver-

sary. Since the Pedersen commitment scheme is perfectly hiding,

| Pr[Game 12] − Pr[Game 11] | = 0. We omit the proof, which is

similar to the proof of indistinguishability between Game 10 and

Game 11.

Game 13: This game proceeds asGame 12, except that inGame 13,

for the payments pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) that
are sent to the adversary, for all 𝑘 ∈ [0,𝑉 − 1], the values 𝑆𝑘 and

𝑇𝑘 are computed by doing 𝑆𝑘 ← 𝛿𝑟𝑘 and 𝑇𝑘 ← gskU𝑗 (g𝑟𝑘 )𝑅𝑘 ,
where 𝑟𝑘 ← Z𝑝 is picked up randomly. Under the pseudoran-

domness property of the pseudorandom function, we have that

| Pr[Game 13] − Pr[Game 12] | ≤ Adv
pseu
A .

Proof. Given an adversary that is able to distinguish Game 12

from Game 13 with non-negligible probability, we construct an

algorithm 𝐵 that breaks the pseudorandomness property of the

pseudorandom function 𝑓G,p,g,𝑠 (·) described in §A.6. 𝐵 receives

from the challenger the parameters (G, p, g). When running FKG,

𝐵 picks up random 𝑎 ∈ Z𝑝 , computes 𝛿 ← g1/𝑎
and sets the

parameters params ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝐿). We remark

that, after Game 11, request messages are computed without re-

quiring knowledge of the coin secret v, and so 𝐵 does not need

to know the secret 𝑠 of the pseudorandom function to compute

them. Similarly, after Game 12, payment messages are computed

without requiring knowledge of the coin secret v. To compute a

payment pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) to be sent to
the adversary, 𝐵 follows the changes described up to Game 12 and,

additionally, to compute ⟨𝑆𝑘 ,𝑇𝑘 ⟩𝑘∈[0,𝑉−1] , 𝐵 does the following.

For all 𝑘 ∈ [0,𝑉 − 1], 𝐵 sends the coin index 𝑙𝑘 to the oracle of the

challenger, which provides a response𝑍𝑘 . 𝐵 sets𝑇𝑘 ← gskU𝑗 (𝑍𝑘 )𝑅𝑘
and 𝑆𝑘 ← 𝑍

1/𝑎
𝑘

. As can be seen, if 𝑍𝑘 = 𝑓G,p,g,𝑠 (𝑙𝑘 ), 𝑇𝑘 and 𝑆𝑘 are

computed as in Game 12, whereas if 𝑍𝑘 is random, 𝑍𝑘 are com-

puted as in Game 13. Therefore, 𝐵 uses the guess of the adversary

to distinguish betweenGame 12 andGame 13 in order to break the

pseudorandomness property of the pseudorandom function. □

Game 14: This game proceeds asGame 13, except that inGame 14,

for the payments pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) that
are sent to the adversary, for all 𝑘 ∈ [0,𝑉 − 1], the values 𝑆𝑘 and

𝑇𝑘 are computed by picking random 𝑆𝑘 ← G and 𝑇𝑘 ← G. Under
the external Diffie-Hellman (XDH) assumption in G, we have that

| Pr[Game 14] − Pr[Game 13] | ≤ 𝑁𝑠 · AdvxdhA , where 𝑁𝑠 is the

number of serial numbers and double spending tags sent to the

adversary.

Proof. The proof uses a sequence of games Game 13.𝑖 , for 𝑖 = 0

to 𝑁𝑠 . Game 13.0 is equal to Game 13, whereas Game 13.(𝑁𝑠 ) is
equal to Game 14. In Game 13.𝑖 , the values 𝑆𝑘 and 𝑇𝑘 of the first 𝑖

payments sent to the adversary are set to random values, whereas

in the remaining payments they are set as in Game 13.

Given an adversary that distinguishes between Game 13.𝑖 and

Game 13.(𝑖 + 1) with non-negligible probability, we construct an
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algorithm 𝐵 that uses that adversary to solve the XDH problem

with non-negligible probability. 𝐵 works as follows. Given an in-

stance (ℎ,ℎ𝑎, ℎ𝑏 , 𝑍 ) of the XDH problem in G, when running FKG

to set up the parameters params← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝐿),
𝐵 sets g ← h𝑎 and 𝛿 ← ℎ. When setting the 𝑖 + 1 serial num-

ber and double spending tag sent to the adversary, 𝐵 sets 𝑆𝑘 ←
h𝑏 and 𝑇𝑘 ← gskU𝑗 (𝑍 )𝑅𝑘 . As can be seen, when 𝑍 is random, 𝑆𝑘
and 𝑇𝑘 are random values and we are thus in Game 13.(𝑖 + 1).
In contrast, when 𝑍 = ℎ𝑎𝑏 , we have that 𝑆𝑘 = ℎ𝑏 = 𝛿𝑏 and 𝑇𝑘

= (ℎ𝑎)skU𝑗 (ℎ𝑎𝑏 )𝑅𝑘 = (g)skU𝑗 (g𝑏 )𝑅𝑘 , and thus the distribution is

equal to that of Game 13.𝑖 . Therefore, 𝐵 can use the guess of the

adversary to distinguish between Game 13.𝑖 and Game 13.(𝑖 + 1)
in order to solve the XDH problem in G with non-negligible proba-

bility. □

Game 15: This game proceeds as Game 14, except that Game 15

checks that algorithm Identify identifies the double spender when

there is double spending. To do that, when the adversary sends

two valid payments (pay, payinfo) and (pay′, payinfo′), after ex-
tracting the witness ⟨skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩) from the

proofs 𝜋𝑣 ∈ pay and ⟨sk′U𝑗 , v
′, 𝑟 ′, 𝑜 ′𝑐 , ⟨𝑙 ′𝑘 , 𝑜

′
𝑎𝑘
, 𝜇 ′
𝑘
, 𝑜 ′𝜇𝑘 ⟩

𝑉 ′−1

𝑘=0
⟩) from

the proof 𝜋 ′𝑣 ∈ pay′,Game 15 checks whether sk′U𝑗 = skU𝑗 , v
′ = v

and ⟨𝑙 ′
𝑘
⟩𝑘∈[0,𝑉 ′−1] ∩ ⟨𝑙𝑘 ⟩𝑘∈[0,𝑉−1] ≠ ∅, which means that there is a

double spending. In that caseGame 15 sets PK to contain all the reg-

istered public keys and runs the algorithm 𝑐 ← Identify(params,
PK, pay, pay′, payinfo, payinfo′). Then Game 15 does the follow-

ing:

• If payinfo = payinfo′ and 𝑐 ≠ payinfo, Game 15 outputs failure.

• If payinfo ≠ payinfo′ and 𝑐 ≠ pkU𝑗 , where pkU𝑗 is the public
key associated with secret key skU𝑗 , Game 15 outputs failure.

The probability that Game 15 fails is negligible under the collision-

resistance property of the hash function 𝐻 ′, i.e. we have that

| Pr[Game 15] − Pr[Game 14] | ≤ Adv
col−res
A .

Proof. InGame 6, we have shown that, if a payment is valid, under

the hardness of the discrete logarithm assumption, the serial num-

bers 𝑆𝑘 and the double-spending tags 𝑇𝑘 are correctly computed.

Hence, if there are two payments with witnesses ⟨skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 ,
𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩) and ⟨sk′U𝑗 , v

′, 𝑟 ′, 𝑜 ′𝑐 , ⟨𝑙 ′𝑘 , 𝑜
′
𝑎𝑘
, 𝜇 ′
𝑘
, 𝑜 ′𝜇𝑘 ⟩

𝑉 ′−1

𝑘=0
⟩) such

that sk′U𝑗 = skU𝑗 , v
′ = v and ⟨𝑙 ′

𝑘
⟩𝑘∈[0,𝑉 ′−1] ∩ ⟨𝑙𝑘 ⟩𝑘∈[0,𝑉−1] ≠ ∅,

the proof in Game 6 guarantees that, for those coin indices such

that 𝑙 ′
𝑘′

= 𝑙𝑘 (where 𝑘 ′ ∈ [0,𝑉 ′ − 1] and 𝑘 ∈ [0,𝑉 − 1]), it is the
case that 𝑆 ′

𝑘′
= 𝑆𝑘 = 𝛿1/(v+𝑙𝑘+1)

. Therefore, the algorithm Identify
always detects double spending.

After detecting double spending, the algorithm Identify checks if
payinfo = payinfo′ and in that case sets 𝑐 = payinfo. Therefore, the
first condition under which Game 15 fails never happens.

If payinfo ≠ payinfo′, algorithm Identify computes

pkU𝑗 ← ((𝑇
′
𝑘′)

𝑅𝑘 /𝑇𝑅
′
𝑘′

𝑘
) (𝑅𝑘−𝑅

′
𝑘′ )
−1

We have that 𝑅𝑘 = 𝐻 ′(payinfo, 𝑘) and 𝑅′
𝑘′

= 𝐻 ′(payinfo′, 𝑘 ′). The
proof in Game 6 also guarantees that the double spending tags are

correctly computed. Hence, we know 𝑇𝑘 = gskU𝑗 (g1/(v+𝑙𝑘+1) )𝑅𝑘

and 𝑇 ′
𝑘′

= gskU𝑗 (g1/(v+𝑙𝑘+1) )𝑅
′
𝑘′ . Let 𝑍 = g1/(v+𝑙𝑘+1)

. We have that

pkU𝑗 = ((𝑇
′
𝑘′)

𝑅𝑘 /𝑇𝑅
′
𝑘′

𝑘
) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= ((gskU𝑗 (𝑍 )𝑅
′
𝑘′ )𝑅𝑘 /(gskU𝑗 (𝑍 )𝑅𝑘 )𝑅

′
𝑘′ ) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= ((gskU𝑗 𝑅𝑘 (𝑍 )𝑅
′
𝑘′𝑅𝑘 )/(gskU𝑗 𝑅

′
𝑘′ (𝑍 )𝑅𝑘𝑅

′
𝑘′ )) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= (gskU𝑗 𝑅𝑘 /gskU𝑗 𝑅
′
𝑘′ ) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= (gskU𝑗 (𝑅𝑘−𝑅
′
𝑘′ ) ) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= gskU𝑗

Therefore, algorithm Identify outputs the public key of the double

spender, except when 𝑅𝑘 = 𝑅′
𝑘′
. Given that 𝑅𝑘 = 𝐻 ′(payinfo, 𝑘) and

𝑅′
𝑘′

= 𝐻 ′(payinfo′, 𝑘 ′), if 𝑅𝑘 = 𝑅′
𝑘′
, a collision for the hash function

𝐻 ′ has been found. □

Game 16: This game proceeds as Game 15, except that, even if

there is not double spending,Game 16 sets PK to contain all the reg-

istered public keys and runs the algorithm 𝑐 ← Identify(params,
PK, pay, pay′, payinfo, payinfo′). If it is the case that 𝑐 = pkU𝑗 ,
where pkU𝑗 is a public key associated with an honest user,Game 16

outputs failure. We show that Game 16 outputs failure with neg-

ligible probability under the hardness of the discrete logarithm

problem, i.e. | Pr[Game 16] −Pr[Game 15] | ≤ 𝑁𝑢 ·AdvdlogA , where

𝑁𝑢 is the number of public keys of honest users.

Proof. Given an adversary that makes Game 16 fail with non-

negligible probability, we construct an algorithm 𝐵 that solves the

discrete logarithm problemwith non-negligible probability.𝐵works

as follows. 𝐵 receives an instance (ℎ,ℎ𝑥 ) of the discrete logarithm
problem from the challenger. When running FKG, 𝐵 sets g ← ℎ

and sets the parameters params ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝐿).
𝐵 picks randomly an honest userU𝑗 and, when that user registers

her public key, 𝐵 sets pkU𝑗 ← h𝑥 . We remark that, since Game 9,

knowledge of skU𝑗 is not needed to compute request messages. We

also remark that, since Game 8, knowledge of skU𝑗 is not needed
to compute payment messages. Therefore, 𝐵 can simulate those

messages without knowledge of skU𝑗 .
At some point 𝐵 receives from the adversary two payments (pay,
payinfo) and (pay′, payinfo′) that make Game 16 fail. If the pub-

lic key pkU𝑗 obtained after running Identify is different from the

value ℎ𝑥 received from the challenger, 𝐵 fails. Otherwise 𝐵 com-

putes skU𝑗 as follows. First, 𝐵 extracts the witness ⟨sk, v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 ,
𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩) from the proofs 𝜋𝑣 ∈ pay and ⟨sk′, v′, 𝑟 ′, 𝑜 ′𝑐 , ⟨𝑙 ′𝑘 ,

𝑜 ′𝑎𝑘 , 𝜇
′
𝑘
, 𝑜 ′𝜇𝑘 ⟩

𝑉 ′−1

𝑘=0
⟩) from the proof 𝜋 ′𝑣 ∈ pay′. Given that double

spending has been detected, and that in Game 6 we proved that se-

rial numbers and double spending tags are correctly computed, we

know that there is 𝑆𝑘 ∈ pay and 𝑆 ′
𝑘′
∈ pay′ such that 𝑆𝑘 = 𝑆 ′

𝑘′
= 𝛿𝑏 ,

where 𝑏 = (1/(v + 𝑙𝑘 + 1)) = (1/(v′ + 𝑙 ′
𝑘′
+ 1)). Therefore, we also

know that the double spending tags are of the form 𝑇𝑘 = gsk+𝑏𝑅𝑘

and 𝑇 ′
𝑘′

= gsk
′+𝑏𝑅′

𝑘′ . From the computation of algorithm Identify,
410
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we have that

pkU𝑗 = ((𝑇
′
𝑘′)

𝑅𝑘 /𝑇𝑅
′
𝑘′

𝑘
) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= ((gsk
′+𝑏𝑅′

𝑘′ )𝑅𝑘 /(gsk+𝑏𝑅𝑘 )𝑅
′
𝑘′ ) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= ((g𝑅𝑘 sk
′+𝑏𝑅𝑘𝑅′𝑘′ )/(g𝑅

′
𝑘′ sk+𝑏𝑅𝑘𝑅

′
𝑘′ )) (𝑅𝑘−𝑅

′
𝑘′ )
−1

= (g𝑅𝑘 sk
′−𝑅′

𝑘′ sk) (𝑅𝑘−𝑅
′
𝑘′ )
−1

= (g (𝑅𝑘 sk
′−𝑅′

𝑘′ sk)/(𝑅𝑘−𝑅
′
𝑘′ ) )

Therefore, 𝐵 computes 𝑥 ← (𝑅𝑘 sk′ − 𝑅′𝑘′sk)/(𝑅𝑘 − 𝑅
′
𝑘′
) to solve

the discrete logarithm problem. If the adversary succeeds with

probability 𝛼 , 𝐵 succeeds with probability 𝛼/𝑁𝑢 , where 𝑁𝑢 is the

number of public keys of honest users. □

Game 17: This game proceeds as Game 16, except that Game 17

outputs failure when the serial number of a payment computed by

an honest user is equal to a serial number of another payment. The

probability that two serial numbers have the same value is bounded

by 𝑁𝑠/|G|, where 𝑁𝑠 is the number of serial numbers and |G| is
the size of G. Additionally, we show below that the probability that

an adversarial user computes a payment with a serial number that

is equal to a serial number in a payment computed by an honest

user is negligible thanks to the hardness of the discrete logarithm

problem. Therefore, we have that | Pr[Game 17] − Pr[Game 16] |
≤ 𝑁𝑠/|G| + 𝑁𝑠 · AdvdlogA .

Proof. Given an adversary that makes Game 17 fail with non-

negligible probability, we construct an algorithm 𝐵 that solves the

discrete logarithm problemwith non-negligible probability.𝐵works

as follows. 𝐵 receives an instance (ℎ,ℎ𝑥 ) of the discrete logarithm
problem from the challenger. When running FKG, 𝐵 sets 𝛿 ← ℎ

and sets the parameters params ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝐿).
𝐵 picks randomly a serial number in a payment computed by an

honest user and sets 𝑆𝑘 ← ℎ𝑥 . We recall that, sinceGame 14, serial

numbers in payments computed by honest users are random values

in G.
At some point, 𝐵 finds that a payment received from the adversary

has a serial number that is equal to a serial number in a payment

computed by an honest user. If that serial number is not equal to

ℎ𝑥 , 𝐵 fails. Otherwise 𝐵 extracts the witness ⟨sk, v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑜𝑎𝑘 ,
𝜇𝑘 , 𝑜𝜇𝑘 ⟩𝑉−1

𝑘=0
⟩) from the proof 𝜋𝑣 in the payment pay sent by the

adversary. Thanks to the proof in Game 6, we know that the serial

number 𝑆𝑘 = ℎ𝑥 in pay is of the form 𝑆𝑘 = 𝛿1/(v+𝑙𝑘+1)
. Therefore, 𝐵

outputs 𝑥 ← 1/(v+𝑙𝑘+1). If the adversary succeeds with probability
𝛼 , 𝐵 succeeds with probability 𝛼/𝑁𝑠 , where 𝑁𝑠 is the number of

serial numbers. □

The distribution of Game 17 is identical to that of our simulation.

In Game 17, the request message is computed without knowl-

edge of the values skU𝑗 and v. The payment is computed without

knowledge of the signatures and without knowledge of the signed

messages skU𝑗 and v. Additionally, it is guaranteed that the ad-

versary cannot compute a payment on a wallet defined by skU𝑗
and v unless the adversary obtained enough signatures from hon-

est authorities. It is also guaranteed that, if the adversary double

spends coins, then an adversarial user or provider will be identified.

Moreover, it is guaranteed that an honest user or provider will not

be found guilty of double spending. The overall advantage of the

environment to distinguish between the real and the ideal protocol

is | Pr[Game 17] −Pr[Game 0] | ≤ Adv
ext
A +Adv

bin
A +Adv

unf
A · ((𝑛−

𝑡)!/((𝑡 − 1 − 𝑡)!(𝑛 − 𝑡 + 1)!)) + AdvzkA + (𝑁𝑢 + 𝑁𝑠 + 1) · AdvdlogA +
𝑁𝑠/|G| +AdvpseuA +𝑁𝑠 ·AdvxdhA +Adv

col−res
A , where 𝑁𝑢 is the num-

ber of users and 𝑁𝑠 is the number of serial numbers. The discrete

logarithm assumption are implied by the DDHI assumption, which

is used to prove that the function in §A.6 is pseudorandom. This

concludes the proof of Theorem D.1.

E SECURITY PROOF FOR OUR DIVISIBLE
E-CASH SCHEME

In §D, we provide a detailed security proof for our compact EC

scheme. In this section, we analyze the security of our divisible EC

scheme, but we omit a full proof. Instead, we discuss the points

where the security analysis of our divisible EC scheme differs from

the analysis of our compact EC scheme.

For the interfaces ec.setup, ec.register, ec.request, and ec.issue,
the simulator for the divisible EC scheme is equal to that of our

compact EC scheme. We recall that both schemes use the same

algorithms for the ec.register, ec.request and ec.issue interfaces.

For the ec.setup interface, although algorithm Setup is different in

our schemes, the algorithm is run in both cases by FKG, as specified

in our simulation.

In the spending phase, the simulator for the divisible EC scheme,

like in the compact EC scheme, outputs failure when the adversary

submits a payment such that the simulator fails to extract a valid PS

signature, or when the adversary did not receive signatures from

𝑡 − 𝑡 authorities on the signed messages. Additionally, the simu-

lator for the divisible EC scheme outputs failure if it is unable to

extract a SPS signature on (𝜍𝑙+𝑉−1
, 𝜃𝑙+𝑉−1

), where (𝜍𝑙+𝑉−1
, 𝜃𝑙+𝑉−1

)
are part of the public parameters. It also outputs failure if the ex-

tracted (𝜍𝑙 , 𝜃𝑙 ) are not part of the public parameters. In the security

proof, the probability that extraction fails is negligible thanks to

the weak simulation extractability property of the ZK argument 𝜋𝑣 ,

the existential unforgeability of the SPS signature scheme, and the

BDHI assumption. All these arguments ensure that 𝜙𝑉 ,𝑙 and 𝜑𝑉 ,𝑙
are computed correctly.

In the spending phase, to simulate a payment (𝜅, 𝜎 ′, 𝜙𝑉 ,𝑙 , 𝜑𝑉 ,𝑙 ,
𝑅, 𝜋𝑣,𝑉 ), the values 𝜅 and 𝜎 ′ for the proof of possession of a PS

signature are simulated like in the simulator for our compact EC

scheme (see Figure 4). The proof 𝜋𝑣 is also simulated by using

the simulator 𝑆𝑣 . The values 𝜙𝑉 ,𝑙 and 𝜑𝑉 ,𝑙 are set to random. In

the security proof, it can be shown that a simulated payment is

indistinguishable from an honestly computed payment under the

𝑁 -MXDH’ assumption. The proof is similar to one given in [49].

We remark that, in the proof in [49], an element of the 𝑁 -MXDH’

instance is needed to simulate the request message because the

element𝑈2 = 𝑢v
2
is revealed to the bank, whereas in our case that

is not needed thanks to the hiding property of the commitment

scheme.

In the deposit phase, the behavior of both simulators is similar,

taking into account that the serial numbers and double spending

tags are computed differently. The simulator also outputs failure

if double spending happened but the identification algorithm does

not identify the double spender. In the security proof, after it is
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ensured, as described above, that the ElGamal encryptions 𝜙𝑉 ,𝑙 and

𝜑𝑉 ,𝑙 sent by the adversary are computed correctly, we know that

serial numbers and double spending tags can be retrieved. Then

we can prove, as in the case of the compact EC scheme, that the

user guilty of double spending can be identified under the collision

resistance property of the hash function 𝐻 ′.
The simulator also outputs failure when there is not double

spending, but an honest user is found guilty. In the security proof,

like in our EC scheme, we can show that the simulator fails with

negligible probability under the hardness of the discrete logarithm

problem.

F COMPACT E-CASHWITH RANGE PROOF
INSTANTIATION

The zero-knowledge argument of knowledge in algorithm Spend
involves a statement 𝑙 ∈ [0, 𝐿 − 1] to prove the validity of the

index of the spent coin. To implement it, one option is to use the

set membership proof described in [12]. This proof consists in

proving possession of a signature that signs the index 𝑙 . We use the

Pointcheval-Sanders signature scheme to instantiate it. Algorithm

Setup is extended to compute a signing key pair and signatures on

all the values in the range [0, 𝐿−1]. Algorithm Spend is extended to
include a zero-knowledge argument of knowledge of the signature

that signs 𝑙 , and algorithm SpendVf is extended to verify it. The

modified algorithms work as follows:

Setup(1k, 𝐿). Execute the following steps:
• Run (p,G, ˜G,G𝑡 , e, g, g̃) ← G(1k).
• Pick 3 random generators (𝛾1, 𝛾2, 𝛿) ← G.
• Run (sk, pk) ← KeyGen(1k, 1), i.e., pick random secret key (𝑥,
𝑦) ← Z2

𝑝 and output the secret key sk = (𝑥,𝑦) and the public

key pk = (𝛼𝑠𝑚, ˜𝛽𝑠𝑚) ← (g̃𝑥 , g̃𝑦).
• For all 𝑙 ∈ [0, 𝐿 − 1], compute 𝜎𝑙 ← Sign(sk, 𝑙), i.e., pick random

𝑟𝑙 ← Z𝑝 , set ℎ𝑙 ← g𝑟𝑙 and output the signature 𝜎𝑙 = (ℎ𝑙 , 𝑠𝑙 ) ←
(ℎ𝑙 , ℎ

𝑥+𝑦𝑙
𝑙
).

• Set the parameters params ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝛼𝑠𝑚,
˜𝛽𝑠𝑚, 𝜎0, . . . , 𝜎𝐿−1, 𝐿).

• Output params.
Spend(pk, skU𝑗 ,W , payinfo,𝑉 ). Execute the following steps:
• ParseW as (𝜎, v, 𝑙). If 𝑙 +𝑉 − 1 ≥ 𝐿, output 0.

• Parse 𝜎 as (h, 𝑠).
• Parse pk as (params, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Pick random 𝑟 ← Z𝑝 and 𝑟 ′ ← Z𝑝 .
• Compute 𝜎 ′ = (h′, 𝑠 ′) ← (h𝑟 ′, 𝑠𝑟 ′ (h′)𝑟 ).
• Compute 𝜅 ← 𝛼 ˜𝛽

skU𝑗
1

˜𝛽v
2
g̃𝑟 .

• Pick random 𝑜𝑐 ← Z𝑝 and compute the commitment𝐶 ← g𝑜𝑐𝛾v
1
.

• For 𝑘 ∈ [0,𝑉 − 1], compute 𝑅𝑘 ← 𝐻 ′(payinfo, 𝑘), where payinfo
must contain the identifier of the merchant, and 𝐻 ′ is a collision-
resistant hash function.

• For 𝑘 ∈ [0,𝑉 − 1], set 𝑙𝑘 ← 𝑙 + 𝑘 , pick random 𝑜𝑎𝑘 and compute

𝐴𝑘 = g𝑜𝑎𝑘 𝛾𝑙𝑘
1
.

• For 𝑘 ∈ [0,𝑉 − 1], do the following:

– Compute 𝑆𝑘 ← 𝑓𝛿,v (𝑙𝑘 ) = 𝛿1/(v+𝑙𝑘+1)
.

– Compute 𝑇𝑘 ← gskU𝑗 (𝑓g,v (𝑙𝑘 ))𝑅𝑘 = gskU𝑗 +𝑅𝑘/(v+𝑙𝑘+1) .

• For 𝑘 ∈ [0,𝑉 − 1], compute the values 𝜇𝑘 ← 1/(v + 𝑙𝑘 + 1) and
𝑜𝜇𝑘 ← −(𝑜𝑎𝑘 + 𝑜𝑐 )𝜇𝑘 .
• Parse params as the tuple (p,G, ˜G,G𝑡 , e, g, g̃, 𝛾1, 𝛾2, 𝛿, 𝛼𝑠𝑚, ˜𝛽𝑠𝑚,

𝜎0, . . . , 𝜎𝐿−1, 𝐿).
• For 𝑘 ∈ [0,𝑉 − 1], pick random 𝑟𝑘 ← Z𝑝 and 𝑟 ′

𝑘
← Z𝑝 .

• For 𝑘 ∈ [0,𝑉 −1], parse 𝜎𝑙𝑘 as (h𝑙𝑘 , 𝑠𝑙𝑘 ). Compute 𝜎 ′
𝑙𝑘

= (h′
𝑙𝑘
, 𝑠 ′
𝑙𝑘
)

← (h𝑟
′
𝑘

𝑙𝑘
, 𝑠
𝑟 ′
𝑘

𝑙𝑘
(h′
𝑙𝑘
)𝑟𝑘 ).

• For 𝑘 ∈ [0,𝑉 − 1], compute 𝜅𝑘 ← 𝛼𝑠𝑚 ˜𝛽
𝑙𝑘
𝑠𝑚 g̃𝑟𝑘 .

• Compute a ZK argument of knowledge 𝜋𝑣 via the Fiat-Shamir

heuristic for the following relation:

𝜋𝑣 =NIZK{(skU𝑗 , v, 𝑟 , 𝑜𝑐 , ⟨𝑙𝑘 , 𝑟𝑘 , 𝑜𝑎𝑘 , 𝜇𝑘 , 𝑜𝜇𝑘 ⟩
𝑉−1

𝑘=0
) :

𝜅 = 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 ∧ 𝐶 = g𝑜𝑐𝛾v

1
∧

⟨𝐴𝑘 = g𝑜𝑎𝑘 𝛾𝑙𝑘
1
∧ 𝜅𝑘 = 𝛼𝑠𝑚 ˜𝛽

𝑙𝑘
𝑠𝑚 g̃𝑟𝑘∧

𝑆𝑘 = 𝛿𝜇𝑘 ∧ 𝛾1 = (𝐴𝑘𝐶𝛾1)𝜇𝑘 g𝑜𝜇𝑘 ∧

𝑇𝑘 = gskU𝑗 (g𝑅𝑘 )𝜇𝑘 ⟩𝑘∈[0,𝑉−1] }

The equation 𝜅 = 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 proves that 𝜅 commits to the

signed messages. (𝜅 is used as part of the proof of signature

possession.) The equation 𝐶 = g𝑜𝑐𝛾v
1
proves that 𝐶 commits to

the same value v committed in 𝜅. The equations 𝐴𝑘 = g𝑜𝑎𝑘 𝛾𝑙𝑘
1

and 𝜅𝑘 = 𝛼𝑠𝑚 ˜𝛽
𝑙𝑘
𝑠𝑚 g̃𝑟𝑘 prove that the value 𝑙𝑘 committed in 𝐴𝑘

is in the valid range [0, 𝐿 − 1] for a wallet with 𝐿 coins. The

equations 𝑆𝑘 = 𝛿𝜇𝑘 , 𝛾1 = (𝐴𝑘𝐶𝛾1)𝜇𝑘 g𝑜𝜇𝑘 and𝑇𝑘 = gskU𝑗 (g𝑅𝑘 )𝜇𝑘
prove that the serial numbers 𝑆𝑘 and the security tags 𝑇𝑘 are

correctly computed. This non-interactive argument signs the

payment information payinfo.
• Output pay ← (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 , 𝜅𝑘 , 𝜎 ′𝑙+𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣) as
well as an updated walletW ′ ← (𝜎, v, 𝑙 +𝑉 ).

SpendVf (pk, pay, payinfo). Execute the following steps:
• Parse pk as (params, 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Parse pay as (𝜅, 𝜎 ′, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 , 𝜅𝑘 , 𝜎 ′𝑙𝑘 ⟩𝑘∈[0,𝑉−1] ,𝑉 ,𝐶, 𝜋𝑣).
• Parse 𝜎 ′ as (h′, 𝑠 ′) and output 0 if h′ = 1 or if e(h′, 𝜅) = e(𝑠 ′, g̃)
does not hold.

• For 𝑘 ∈ [0,𝑉 − 1], parse 𝜎 ′
𝑙𝑘
as (h′

𝑙𝑘
, 𝑠 ′
𝑙𝑘
) and output 0 if h′

𝑙𝑘
= 1

or if e(h′
𝑙𝑘
, 𝜅𝑘 ) = e(𝑠 ′

𝑙𝑘
, g̃) does not hold.

• Output 0 if not all the serial numbers ⟨𝑆𝑘 ⟩𝑘∈[0,𝑉−1] are different
from each other.

• For 𝑘 ∈ [0,𝑉 − 1], compute 𝑅𝑘 ← 𝐻 ′(payinfo, 𝑘).
• Verify 𝜋𝑣 by using payinfo, pk, ⟨𝑆𝑘 ,𝑇𝑘 , 𝐴𝑘 , 𝑅𝑘 , 𝜅𝑘 ⟩𝑘∈[0,𝑉−1] , 𝐶
and 𝜅. Output 0 if the proof is not correct, else output 𝑉 .

Cost reduction by using one secret in the wallet. We quantify the

reduction of costs attained by having a wallet that signs one secret

instead of two (as done in the compact e-cash scheme in [14]), in

addition to the user secret key. First, we analyze the communication

and storage costs. Let |G|, | ˜G| and |Z𝑝 | denote the bit size of ele-
ments inG, ˜G and Z𝑝 respectively. The size of the public parameters

does not change. The size of public keys of authorities is 2|G| +3| ˜G|
with one secret and 3|G| + 4| ˜G| with two secrets. The size of the

secret key of authorities is 3|Z𝑝 | with one secret and 4|Z𝑝 | with
two secrets. In the withdrawal phase, the size of a response does

not change, but the size of a request is 8|G| + 6|Z𝑝 | with one secret
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and 10|G| + 8|Z𝑝 | with two secrets. The wallet size is 2|G| + 1|Z𝑝 |
with one secret and 2|G| + 2|Z𝑝 | with two secrets. The size of a

payment of 𝑉 coins is (2 + 5𝑉 + 1) |G| + (1 +𝑉 ) | ˜G| + (5 + 5𝑉 ) |Z𝑝 |
with one secret and (2+ 5𝑉 + 2) |G| + (1+𝑉 ) | ˜G| + (7+ 7𝑉 ) |Z𝑝 | with
two secrets.

Second, we analyze the computation cost. We remark that the num-

ber of bilinear map computations does not change. Let |𝑀 | and |𝐸 |
denote the cost of a multi-exponentiation and of a exponentiation

respectively. In a withdrawal phase in which the user contacts 𝑡

authorities, the total cost is 9|𝑀 | + (4 + 7𝑡) |𝐸 | with one secret and

12|𝑀 | + (5 + 10𝑡) |𝐸 | with two secrets. In a spending phase in which

𝑉 coins are spent, the total cost is (6 + 11𝑉 ) |𝑀 | + (4 + 5𝑉 ) |𝐸 | with
one secret and (9 + 13𝑉 ) |𝑀 | + (5 + 5𝑉 ) |𝐸 | with two secrets. The

cost of the deposit phase does not change.

G COMPLETE DESCRIPTION OF THE
DIVISIBLE E-CASH SCHEME

The zero-knowledge argument of knowledge in algorithm Spend
in §5.2 involves proving knowledge of secret bases. For this pur-

pose, the transformation described in §A.3 needs to be applied. In

algorithm Setup, the generators𝜓 ∈ G and
˜𝜓 ∈ ˜G are added. In algo-

rithm Spend, the secret bases are blinded, and the zero-knowledge

argument is modified accordingly. We describe below the mod-

ified algorithms Setup, Spend and SpendVf. Moreover, we also

describe the algorithms KeyGenV, KeyGenU, Request, RequestVf,
Issue, IssueVf and AggrWallet, which were not depicted in §5.2.

Setup(1k, 𝐿). Execute the following steps:
• Run grp = (p,G, ˜G,G𝑡 , e, g, g̃) ← G(1k).
• Pick random generators 𝜂,𝛾1, 𝛾2,𝜓 ∈ G and

˜𝜓 ∈ ˜G.
• Generate random scalars (𝑧,𝑦) ← Z𝑝 and, for 𝑙 ∈ [1, 𝐿], 𝑎𝑙 ←
Z𝑝 .
• Compute (𝜍, 𝜃 ) ← (g𝑧 , 𝜂𝑧).
• For 𝑙 ∈ [1, 𝐿], compute (𝜍𝑙 , 𝜃𝑙 ) ← (𝜍𝑦

𝑙
, 𝜃𝑦

𝑙 ).
• For 𝑘 ∈ [0, 𝐿 − 1], compute

˜𝛿𝑘 ← g̃𝑦
𝑘
.

• For 𝑙 ∈ [1, 𝐿], compute 𝜂𝑙 ← g𝑎𝑙 .
• For 𝑙 ∈ [1, 𝐿], for 𝑘 ∈ [0, 𝑙 − 1], compute 𝜂𝑙,𝑘 ← g̃−𝑎𝑙 ·𝑦

𝑘
.

• Run the algorithm (pk𝑠𝑝𝑠 , sk𝑠𝑝𝑠 ) ← KeyGen(grp, 2, 0) of the
structure-preserving signature scheme in §A.5.

• For 𝑙 ∈ [1, 𝐿], compute 𝜏𝑙 ← Sign(sk𝑠𝑝𝑠 , ⟨𝜍𝑙 , 𝜃𝑙 ⟩).
• Set the parameters for users params𝑢 ← (p,G, ˜G,G𝑡 , e, g, g̃, 𝜂,
𝛾1, 𝛾2, {𝜂𝑙 , 𝜍𝑙 , 𝜃𝑙 , 𝜏𝑙 }𝐿𝑙=1

, pk𝑠𝑝𝑠 ,𝜓, ˜𝜓 ). Set the additional parameters

for authorities params𝑎 ← ({ ˜𝛿𝑘 }𝐿−1

𝑘=0
, {⟨𝜂𝑙,𝑘 ⟩𝑙−1

𝑘=0
}𝐿−1

𝑙=1
).

• Set the parameters params← (params𝑢 , params𝑎).
• Output params.
KeyGenV(params𝑢 , 𝑡, 𝑛). Execute the following steps:
• Choose (1 + 2) polynomials (𝑣,𝑤1,𝑤2) of degree (𝑡 − 1) with
random coefficients in Z𝑝 .
• Set (𝑥,𝑦1, 𝑦2) ← (𝑣 (0),𝑤1 (0),𝑤2 (0)).
• For 𝑖 = 1 to 𝑛, set the secret key skV𝑖 of each authority V𝑖 as
skV𝑖 = (𝑥𝑖 , 𝑦𝑖,1, 𝑦𝑖,2) ← (𝑣 (𝑖),𝑤1 (𝑖),𝑤2 (𝑖)).
• For 𝑖 = 1 to 𝑛, set the verification key pkV𝑖 of each authorityV𝑖
as pkV𝑖 = (𝛼𝑖 , 𝛽𝑖,1, ˜𝛽𝑖,1, 𝛽𝑖,2, ˜𝛽𝑖,2) ← (g̃𝑥𝑖 , g𝑦𝑖,1 , g̃𝑦𝑖,1 , g𝑦𝑖,2 , g̃𝑦𝑖,2 ).
• Compute the verification key pk = (params𝑢 , 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2) ←
(params𝑢 , g̃

𝑥 , g𝑦1 , g̃𝑦1 , g𝑦2 , g̃𝑦2 ).

• Output (pk, ⟨pkV𝑖 , skV𝑖 ⟩
𝑛
𝑖=1
).

KeyGenU(params𝑢 ). Execute the following steps:

• Pick random skU𝑗 ← Z𝑝 and compute pkU𝑗 ← gskU𝑗 .
• Output (skU𝑗 , pkU𝑗 ).
Request(params𝑢 , skU𝑗 ). Execute the following steps:

• Pick random v ← Z𝑝 and set (m1,m2) = (skU𝑗 , v).
• Pick random 𝑜 ← Z𝑝 and compute com = g𝑜

∏
2

𝑗=1
𝛾
m𝑗
𝑗

.

• Compute h← 𝐻 (com), where 𝐻 is modeled as a random oracle.

• Compute commitments to each of the messages. For 𝑗 = 1 to 2,

pick random 𝑜 𝑗 ← Z𝑝 and set com𝑗 = g𝑜 𝑗 hm𝑗 .
• Compute a ZK argument of knowledge 𝜋𝑠 via the Fiat-Shamir

heuristic for the following relation:

𝜋𝑠 =NIZK{(m1,m2, 𝑜, 𝑜1, 𝑜2) :

com = g𝑜
2∏
𝑗=1

𝛾
m𝑗
𝑗
∧ pkU𝑗 ← gm1∧

{com𝑗 = g𝑜 𝑗 hm𝑗 }∀𝑗 ∈[1,2] }

• Set reqinfo← (h, 𝑜1, 𝑜2, v).
• Set req← (h, com, com1, com2, 𝜋𝑠 ).
• Output req and reqinfo.
RequestVf (params𝑢 , req, pkU𝑗 ). Execute the following steps:
• Parse req as (h, com, com1, com2, 𝜋𝑠 ).
• Compute h′ ← 𝐻 (com), where 𝐻 is modeled as a random oracle.

Output 0 if h ≠ h′.
• Verify 𝜋𝑠 by using the tuple (params𝑢 , h, com, com1, com2). Out-
put 0 if the proof 𝜋𝑠 is not correct, else output 1.

Issue(params𝑢 , skV𝑖 , req). Execute the following steps:
• Parse req as (h, com, com1, com2, 𝜋𝑠 ).
• Parse skV𝑖 as (𝑥𝑖 , 𝑦𝑖,1, 𝑦𝑖,2).
• Compute 𝑐 = h𝑥𝑖

∏
2

𝑗=1
com𝑦𝑖,𝑗

𝑗
.

• Set the blinded signature share �̂�𝑖 ← (h, 𝑐).
• Output res← �̂�𝑖 .

IssueVf (params𝑢 , pkV𝑖 , skU𝑗 , res, reqinfo). Execute the following

steps:

• Parse reqinfo as (h′, 𝑜1, 𝑜2, v).
• Parse res as �̂�𝑖 = (h, 𝑐). Output 0 if h ≠ h′.
• Parse pkV𝑖 as (𝛼𝑖 , 𝛽𝑖,1, ˜𝛽𝑖,1, 𝛽𝑖,2, ˜𝛽𝑖,2).
• Compute 𝜎𝑖 = (h, 𝑠) ← (h, 𝑐

∏
2

𝑗=1
𝛽
−𝑜 𝑗
𝑖, 𝑗
).

• Set (m1,m2) = (skU𝑗 , v). Output 0 if e(h, 𝛼𝑖
∏

2

𝑗=1

˜𝛽
m𝑗
𝑖, 𝑗
) = e(𝑠, g̃)

does not hold.

• Output W𝑖 ← (𝑖, 𝜎𝑖 , v).
AggrWallet(pk, skU𝑗 , S, ⟨W𝑖 ⟩𝑖∈S). Execute the following steps:
• If |S| ≠ 𝑡 , output 0.

• For all 𝑖 ∈ S, evaluate at 0 the Lagrange basis polynomials

𝑙𝑖 = [
∏

𝑗 ∈S, 𝑗≠𝑖
(0 − 𝑗)] [

∏
𝑗 ∈S, 𝑗≠𝑖

(𝑖 − 𝑗)]−1
mod p

• For all 𝑖 ∈ S, parseW𝑖 as (𝑖, 𝜎𝑖 , v) and 𝜎𝑖 as (h, 𝑠𝑖 ).
• Compute the signature 𝜎 = (h, 𝑠) ← (h,∏𝑖∈S 𝑠

𝑙𝑖
𝑖
).

• Parse pk as (params𝑢 , 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Set (m1,m2) = (skU𝑗 , v) and output 0 if e(h, 𝛼∏2

𝑗=1

˜𝛽
m𝑗
𝑗
) =

e(𝑠, g̃) does not hold, else output W ← (𝜎, v, 𝑙), where 𝑙 is a
counter from 1 to 𝐿 initialized to 1.
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Spend(pk, skU𝑗 ,W , payinfo,𝑉 ). Execute the following steps:
• Parse W as (𝜎, v, 𝑙). If 𝑙 +𝑉 ≥ 𝐿, output 0.

• Parse 𝜎 as (h, 𝑠).
• Parse pk as (params𝑢 , 𝛼, 𝛽1, ˜𝛽1, 𝛽2, ˜𝛽2).
• Pick random scalars 𝑟 ← Z𝑝 and 𝑟 ′ ← Z𝑝 .
• Compute 𝜎 ′ = (h′, 𝑠 ′) ← (h𝑟 ′, 𝑠𝑟 ′ (h′)𝑟 ).
• Compute 𝜅 ← 𝛼 ˜𝛽

skU𝑗
1

˜𝛽v
2
g̃𝑟 .

• Pick random scalars 𝑟1, 𝑟2 ← Z𝑝 .
• Compute 𝜙𝑉 ,𝑙 = (𝜙𝑉 ,𝑙 [1], 𝜙𝑉 ,𝑙 [2]) ← (g𝑟1 , 𝜍v

𝑙
𝜂
𝑟1

𝑉
).

• Set 𝑅 ← 𝐻 (payinfo), where 𝐻 is a collision-resistant hash func-

tion, and set 𝜑𝑉 ,𝑙 = (𝜑𝑉 ,𝑙 [1], 𝜑𝑉 ,𝑙 [2]) ← (g𝑟2 , (g𝑅)skU𝑗 𝜃v
𝑙
𝜂
𝑟2

𝑉
).

• Take params𝑢 from pk. Take the public key pk𝑠𝑝𝑠 = (𝑌,𝑊1,𝑊2,

𝑍 ) and the signature 𝜏𝑙+𝑉−1
= (𝑅𝑙+𝑉−1

, 𝑆𝑙+𝑉−1
,𝑇𝑙+𝑉−1

).
• Pick random

(𝜌𝜍𝑙 , 𝜌𝜃𝑙 , 𝜌𝜍𝑙+𝑉−1
, 𝜌𝜃𝑙+𝑉−1

, 𝜌𝑅𝑙+𝑉−1
, 𝜌𝑆𝑙+𝑉−1

, 𝜌𝑇𝑙+𝑉−1
) ← Z𝑝

• Compute the blinded bases 𝜍 ′
𝑙
← 𝜍𝑙𝜓

𝜌𝜍𝑙 , 𝜃 ′
𝑙
← 𝜃𝑙𝜓

𝜌𝜃𝑙 , 𝜍 ′
𝑙+𝑉−1

←
𝜍𝑙+𝑉−1

𝜓
𝜌𝜍𝑙+𝑉−1 and 𝜃 ′

𝑙+𝑉−1
← 𝜃𝑙+𝑉−1

𝜓
𝜌𝜃𝑙+𝑉−1 , and the blinded

bases for the signature 𝑅′
𝑙+𝑉−1

← 𝑅𝑙+𝑉−1
𝜓
𝜌𝑅𝑙+𝑉−1 , 𝑆 ′

𝑙+𝑉−1
←

𝑆𝑙+𝑉−1
𝜓
𝜌𝑆𝑙+𝑉−1 and 𝑇 ′

𝑙+𝑉−1
← 𝑇𝑙+𝑉−1

˜𝜓
𝜌𝑇𝑙+𝑉−1 .

• Compute 𝜌1 ← −v𝜌𝜍𝑙 , 𝜌2 ← −v𝜌𝜃𝑙 and 𝜌3 ← 𝜌𝑅𝑙+𝑉−1
𝜌𝑇𝑙+𝑉−1

.

• Compute a ZK argument of knowledge 𝜋𝑣 via the Fiat-Shamir

heuristic for the following relation:

𝜋𝑣 =NIZK{(skU𝑗 , v, 𝑟 , 𝑟1, 𝑟2, 𝜌𝜍𝑙 , 𝜌𝜃𝑙 , 𝜌𝜍𝑙+𝑉−1
, 𝜌𝜃𝑙+𝑉−1

,

𝜌𝑅𝑙+𝑉−1
, 𝜌𝑆𝑙+𝑉−1

, 𝜌𝑇𝑙+𝑉−1
, 𝜌1, 𝜌2, 𝜌3) :

𝜅 = 𝛼 ˜𝛽
skU𝑗
1

˜𝛽v
2
g̃𝑟 ∧ (4)

𝜙𝑉 ,𝑙 [1] = g𝑟1 ∧ 𝜙𝑉 ,𝑙 [2] = (𝜍 ′𝑙 )
v𝜓𝜌1𝜂

𝑟1

𝑉
∧ (5)

𝜑𝑉 ,𝑙 [1] = g𝑟2 ∧ 𝜑𝑉 ,𝑙 [2] = (g𝑅)
skU𝑗 (𝜃 ′

𝑙
)v𝜓𝜌2𝜂

𝑟2

𝑉
∧ (6)

e(𝜍 ′
𝑙
, ˜𝛿𝑉−1)e(𝜓, ˜𝛿𝑉−1)−𝜌𝜍𝑙 = e(𝜍 ′

𝑙+𝑉−1
, 𝑔)e(𝜓,𝑔)−𝜌𝜍𝑙+𝑉−1 ∧

(7)

e(𝜃 ′
𝑙
, ˜𝛿𝑉−1)e(𝜓, ˜𝛿𝑉−1)−𝜌𝜃𝑙 = e(𝜃 ′

𝑙+𝑉−1
, 𝑔)e(𝜓,𝑔)−𝜌𝜃𝑙+𝑉−1 ∧

(8)

e(𝑅′
𝑙+𝑉−1

, 𝑌 )e(𝜓,𝑌 )−𝜌𝑅𝑙+𝑉−1 e(𝑆 ′
𝑙+𝑉−1

, g̃)e(𝜓, g̃)−𝜌𝑆𝑙+𝑉−1 ·
𝑒 (𝜍 ′

𝑙+𝑉−1
,𝑊1)𝑒 (𝜓,𝑊1)−𝜌𝜍𝑙+𝑉−1 𝑒 (𝜃 ′

𝑙+𝑉−1
,𝑊2)𝑒 (𝜓,𝑊2)−𝜌𝜃𝑙+𝑉−1 ·

e(g, 𝑍 )−1 = 1 ∧ (9)

e(𝑅′
𝑙+𝑉−1

,𝑇 ′
𝑙+𝑉−1

)e(𝑅′
𝑙+𝑉−1

, ˜𝜓 )−𝜌𝑇𝑙+𝑉−1 ·

e(𝜓,𝑇 ′
𝑙+𝑉−1

)−𝜌𝑅𝑙+𝑉−1 e(𝜓, ˜𝜓 )𝜌3e(g, g̃)−1 = 1 (10)

Equation 4 is part of the proof of possession of the wallet signa-

ture that signs (skU𝑗 , v). Equation 5 and 6 prove that 𝜙𝑉 ,𝑙 and

the security tag 𝜑𝑉 ,𝑙 are well-formed and are computed on input

(skU𝑗 , v). Equation 7, 8, 9 and 10 prove that the values 𝜍𝑙 and

𝜃𝑙 , which were used to compute 𝜙𝑉 ,𝑙 and 𝜑𝑉 ,𝑙 respectively, are

part of the public parameters and fulfill 𝑙 ≤ 𝐿 − 𝑉 + 1. This is

accomplished by proving possession of a signature on 𝜍𝑙+𝑉−1

and 𝜃𝑙+𝑉−1
in equations 9 and 10, and proving that the indices

of 𝜍𝑙+𝑉−1
and 𝜃𝑙+𝑉−1

and 𝜍𝑙 and 𝜃𝑙 are related by a difference

of 𝑉 − 1 is equation 7 and 8 respectively. This non-interactive

argument signs the payment information payinfo.

• Output a payment pay ← (𝜅, 𝜎 ′, 𝜙𝑉 ,𝑙 , 𝜑𝑉 ,𝑙 , 𝜍 ′𝑙 , 𝜃
′
𝑙
, 𝜍 ′
𝑙+𝑉−1

, 𝜃 ′
𝑙+𝑉−1

,

𝑅′
𝑙+𝑉−1

, 𝑆 ′
𝑙+𝑉−1

,𝑇 ′
𝑙+𝑉−1

, 𝑅, 𝜋𝑣,𝑉 ) and an updated wallet W ′ ←
(𝜎, v, 𝑙 +𝑉 ).

SpendVf (pk, pay, payinfo). Execute the following steps:
• Parse 𝜎 ′ as (h′, 𝑠 ′) and output 0 if h′ = 1 or if e(h′, 𝜅) = e(𝑠 ′, g̃)
does not hold.

• Output 0 if 𝑅 ≠ 𝐻 (payinfo) or if payinfo does not contain the

identifier of the merchant.

• Verify 𝜋𝑣 by using payinfo, pk, 𝜙𝑉 ,𝑙 , 𝜑𝑉 ,𝑙 , 𝜍 ′𝑙 , 𝜃
′
𝑙
, 𝜍 ′
𝑙+𝑉−1

, 𝜃 ′
𝑙+𝑉−1

,

𝑅′
𝑙+𝑉−1

, 𝑆 ′
𝑙+𝑉−1

, 𝑇 ′
𝑙+𝑉−1

, 𝑉 , 𝑅 and 𝜅. Output 0 if the proof is not

correct, else output 𝑉 .

Identify(params, PK, pay
1
, pay

2
, payinfo

1
, payinfo

2
). Execute:

• Parse pay
1
as

pay
1
=(𝜅1, 𝜎

′
1
, 𝜙𝑉1,𝑙1,1, 𝜑𝑉1,𝑙1,1, 𝜍

′
𝑙1,1
, 𝜃 ′
𝑙1,1
, 𝜍 ′
𝑙1+𝑉1−1,1

, 𝜃 ′
𝑙1+𝑉1−1,1

,

𝑅′
𝑙1+𝑉1−1,1

, 𝑆 ′
𝑙1+𝑉1−1,1

,𝑇 ′
𝑙1+𝑉1−1,1

, 𝑅1, 𝜋𝑣,1,𝑉1) .

• Parse pay
2
as

pay
2
=(𝜅2, 𝜎

′
2
, 𝜙𝑉2,𝑙2,2, 𝜑𝑉2,𝑙2,2, 𝜍

′
𝑙2,2
, 𝜃 ′
𝑙2,2
, 𝜍 ′
𝑙2+𝑉2−1,2

, 𝜃 ′
𝑙2+𝑉2−1,2

,

𝑅′
𝑙2+𝑉2−1,2

, 𝑆 ′
𝑙2+𝑉2−1,2

,𝑇 ′
𝑙2+𝑉2−1,2

, 𝑅2, 𝜋𝑣,2,𝑉2) .

• For 𝑘 ∈ [0,𝑉1 − 1], compute the serial numbers

SN𝑘,1 ← e(𝜙𝑉1,𝑙1,1 [2], ˜𝛿𝑘 )e(𝜙𝑉1,𝑙1,1 [1], 𝜂𝑉1,𝑘 ).

For 𝑘 ∈ [0,𝑉2 − 1], compute the serial numbers

SN𝑘,2 ← e(𝜙𝑉2,𝑙2,2 [2], ˜𝛿𝑘 )e(𝜙𝑉2,𝑙2,2 [1], 𝜂𝑉2,𝑘 ).

• Output 1 if none of the serial numbers SN𝑘1,1, for 𝑘1 ∈ [0,𝑉1 − 1],
is equal to SN𝑘2,2, for 𝑘2 ∈ [0,𝑉2 − 1].
• Else, output payinfo

1
if payinfo

1
= payinfo

2
.

• Else, let 𝑘1 ∈ [0,𝑉1 − 1] and 𝑘2 ∈ [0,𝑉2 − 1] be two indices such

that SN𝑘1,1 = SN𝑘2,2. Compute

𝑇1 ← e(𝜑𝑉1,𝑙1,1 [2], ˜𝛿𝑘1
)e(𝜑𝑉1,𝑙1,1 [1], 𝜂𝑉1,𝑘1

),

and

𝑇2 ← e(𝜑𝑉2,𝑙2,2 [2], ˜𝛿𝑘2
)e(𝜑𝑉2,𝑙2,2 [1], 𝜂𝑉2,𝑘2

) .

For each pkU𝑗 ∈ PK, check whether 𝑇1𝑇
−1

2
= e(pkU𝑗 , ˜𝛿

𝑅1

𝑘1

˜𝛿
−𝑅2

𝑘2

)
and output pkU𝑗 if the equality holds. Output ⊥ if the equality

does not hold for any pkU𝑗 ∈ PK.

H INTEGRATION
In our schemes, deposited payments are verified by the authorities.

Double-spending is detected by storing previous payments on a

bulletin board and checking that serial numbers in a deposited

payment are not equal to any serial number of previously submitted

payments. A blockchain can be used to implement the bulletin board.

When a provider wishes to deposit a payment, the payment is

broadcast to authorities, which could also be 𝑛 validators in a proof-

of-stake blockchain. The consensus mechanism of the blockchain

is then used to agree on whether the payment is valid and, in that

case, recorded in the blockchain. This allows decentralizing also

the deposit phase of our protocols.

Also, note that authorities in this setting may leave and enter the

system dynamically. However, we must take into account that an

authority that leaves the system still possesses a valid share of the
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secret key, and we assume that, after leaving the system, the author-

ity becomes corrupt. Similarly to decentralized e-cash schemes, in

our schemes we assume an honest majority, i.e. if 𝑛 = 2𝑎 + 1, there

are at most 𝑎 corrupt authorities. For our schemes to be secure,

if 𝑎 is the number of corrupt authorities currently in the system,

and 𝑏 is the number of authorities that have left, we need that

𝑎 + 𝑏 < 𝑡 , where 𝑡 is the threshold. Therefore, algorithm KeyGenV
needs to be run periodically to create a new public verification

key pk and new key pairs (skV𝑖 , pkV𝑖 )𝑖∈[1,𝑛] so as to ensure that
𝑎 + 𝑏 < 𝑡 . This implies that e-cash expires whenever a new key is

created. A time interval in which users can convert old wallets to

use the new secret key can be given [23]. Once this interval ends,

e-cash expiration makes it possible to delete the payments stored

for double-spending detection and reset the bulletin board, which

avoids an ever-growing blockchain [25]. The blockchain can thus

be used as a settlement layer for offline e-cash transactions.

For our deployment, we have implemented a non-interactive

distributed key generation protocol [34] to replace the KeyGenV

algorithm. This protocol enables key resharing, which we use when

the number of authorities that have left is such that 𝑎 +𝑏 < 𝑡 holds,

and computation of a new key, which we use when 𝑎 + 𝑏 < 𝑡 does

not hold anymore.

This scheme would get the best of both worlds, that of online

blockchain and offline e-cash, but further research needs to be

done to specify this model formally and parameterize a real-world

implementation. Threshold-issuance offline e-cash may end up

solving the pressing problems of privacy and scalability of payments

in both blockchain and even CBDCs as e-cash moves from theory

into practice.
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