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ABSTRACT

We present Rhode, a novel system that enables privacy-preserving
training of and prediction on Recurrent Neural Networks (RNNs)
in a cross-silo federated learning setting by relying on multiparty
homomorphic encryption. Rhode preserves the confidentiality of
the training data, the model, and the prediction data; and it mit-
igates federated learning attacks that target the gradients under
a passive-adversary threat model. We propose a packing scheme,
multi-dimensional packing, for a better utilization of Single Instruc-
tion,Multiple Data (SIMD) operations under encryption.Withmulti-
dimensional packing, Rhode enables the efficient processing, in
parallel, of a batch of samples. To avoid the exploding gradients
problem, Rhode provides several clipping approximations for per-
forming gradient clipping under encryption. We experimentally
show that the model performance with Rhode remains similar to
non-secure solutions both for homogeneous and heterogeneous
data distributions among the data holders. Our experimental evalua-
tion shows that Rhode scales linearly with the number of data hold-
ers and the number of timesteps, sub-linearly and sub-quadratically
with the number of features and the number of hidden units of
RNNs, respectively. To the best of our knowledge, Rhode is the first
system that provides the building blocks for the training of RNNs
and its variants, under encryption in a federated learning setting.
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1 INTRODUCTION

Collecting and mining sequential data, e.g., time-series, is the basis
for numerous applications in the domains of healthcare, energy,
and finance. For instance, in personalized healthcare, electrocardio-
grams (ECGs) are used to monitor patients and to detect heartbeat
arrhythmia; and, in finance, historical economic records are mined
to forecast stock prices. The state-of-the-art time-series mining
is achieved by employing machine learning (ML) algorithms that
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extract useful patterns from the data. A well-known class of algo-
rithms widely used for learning on time-series data is recurrent
neural networks (RNNs) [42, 128] and its variants, e.g., Gated Recur-
rent Units (GRUs) and Long-short Term Memory (LSTMs), that are
capable of modelling high-dimensional and non-linear relationships
in dynamic systems [130].

Training effective RNNs for time-series tasks requires large
amounts of data that are usually generated by multiple sources
and scattered across several data holders. Sharing or centralizing
this data is difficult because it is privacy sensitive [158]. For example,
smart-meter data might leak householders’ identities [20] and their
activities [108], location data reveal information about peoples’
lifestyles and beliefs [115, 136, 137, 157], and healthcare time-series
are by nature private information [11, 94]. Additionally, privacy
regulations enforce strict rules for sharing this type of data [51, 63].
As a result, privacy-preserving data sharing and collaborative ML
solutions have gained a significant importance [18, 66, 94].

Federated learning (FL) is a machine learning paradigm that
enables privacy-preserving collaborative training of ML models.
With FL, data holders retain their data in their own premises and
share model updates with an aggregation server that coordinates
the learning over their joint data [82, 83, 98]. FL has been applied in
many time-series applications by using RNNs to forecast the energy
load [43], to predict the next word typed on mobile phones [26, 58],
and to classify cancer in healthcare systems [49]. Although FL
provides collaborative learning without data sharing, it still raises
privacy concerns: The shared intermediate model is vulnerable to
privacy attacks that can reconstruct parties’ input data or infer
the membership of data samples in the training set, hence needs
to be protected during the training process [38, 40, 52, 64, 73, 102,
113, 147, 148, 162, 166]. Moreover, it was recently shown that RNNs
are particularly vulnerable to inference attacks (e.g., membership
inference) compared to traditional neural networks [154].

To overcome these shortcomings, several works propose integrat-
ing protection mechanisms such as differential privacy (DP), secure
multiparty computation (SMC), or homomorphic encryption (HE)
in the FL process. Each of these techniques, however, introduces a
different trade-off: DP solutions decrease the utility of theMLmodel
Ð in particular for RNNS [154] Ð while their level of practical pri-
vacy protection remains unclear [71]; SMC solutions lack scalability
in terms of circuit complexity and number of parties due to high
communication overheads [56, 79]; and HE solutions do not scale
with the model complexity due to high computational overhead. Re-
cently, a multifaceted approach, termed multiparty homomorphic
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encryption (MHE) [9, 46], where the private key is secret-shared
among the parties, has been used by several works to better balance
the aforementioned trade-offs with privacy-preserving federated
learning [48, 129]. However, these solutions focus solely on the
training of generalized linear models or feed-forward neural net-
works and do not tackle the training of RNNs, which introduces its
own additional challenges: (i) the sequential computations make
the training procedure slow and hard to parallelize, and (ii) the long-
term dependencies lead to exploding/vanishing gradients [13, 119].

By building upon MHE-based works [48, 129], we design Rhode,
a novel system that enables the training of and predictions on RNNs
and its variants in a cross-silo federated learning setting with 𝑁

data holders by performing all the computations under homomorphic

encryption. Rhode protects the confidentiality of the training data,
the local gradients, and the global model under a passive adversary
model (a common assumption for cross-silo settings) that allows
collusions of up to 𝑁 − 1 data holders. To achieve this, both the
local gradients and the FL model remain encrypted throughout
Rhode’s pipeline. Hence, Rhode mitigates passive FL attacks that
target the gradients or the global model by concealing all opera-
tions throughout the learning. To accelerate RNN training, Rhode
enables mini-batch training by relying on a packing scheme that
reduces the processing time of a batch. To address the problem
of exploding gradients, Rhode uses efficient polynomial approxi-
mations of the gradient clipping function. After training, Rhode
enables predictions-as-a-service (PaaS) to a querier that obliviously
evaluates the trained model on its private inputs and obtains the
prediction results. We implement Rhode and our experimental
evaluation shows that its accuracy is on par with non-private cen-
tralized and decentralized solutions. Moreover, it scales sub-linearly
with the number of features, sub-quadratically with the hidden RNN
dimension, and linearly with the timesteps, the batch size and the
number of data holders. For example, Rhode can process 256K sam-
ples distributed among 10 data holders with an RNN of 32 hidden
units and 4 timesteps, over 100 global training iterations, in ∼1.5
hours. In summary, our contributions are the following:

• We present Rhode, a novel system for the training of RNNs
in a cross-silo FL setting that conceals all intermediate values
and the model that are communicated in the FL process by
relying on MHE. After training, Rhode enables oblivious
predictions to a querier that provides its encrypted inputs.
• We design a multi-dimensional packing scheme that en-
ables efficient encrypted matrix operations suitable for mini-
batch training. We show that matrix multiplication with our
scheme improves the state of the art [72, 129] in terms of
throughput proportionally to the dimension of the matrices.
Moreover, with our packing scheme, the number of crypto-
graphic keys required is independent of the matrix size.
• We propose and evaluate polynomial approximations for
performing gradient clipping under encryption to alleviate
the problem of exploding gradients that is inherent to RNNs.
• We experimentally evaluate Rhode and show that it scales
sub-linearly with the number of features, sub-quadratically
with the hidden RNN dimension, linearly with the timesteps
or the batch size, and sub-linearly (or linearly) with the num-
ber of data holders depending on the number of samples in

the dataset. Moreover, its homomorphic operations and build-
ing blocks have negligible effect on the model performance
for common time-series forecasting benchmarks, with both
homogeneous and heterogeneous (imbalanced) data distri-
butions among the parties.

To the best of our knowledge, Rhode is the first system that enables
the training of and prediction on RNNs in a cross-silo FL setting un-
der encryption. Rhode mitigates passive FL attacks during training
and preserves the privacy of the data holders’ data, the intermediate
model, the querier’s evaluation data, and the final model.

2 RELATED WORK

We review the related work on privacy-preserving time-series, as
well as on privacy-preserving federated training of, and prediction
on machine learning (ML) models.

2.1 Privacy-Preserving Time-Series

Previous works aiming to protect the privacy of time-series data
employed secure aggregation techniques to enable the computation
of simple statistics and analytics [84, 101, 123], whereas others
combined secure aggregation with differential privacy to bound the
leakage stemming from the computations [19, 132]. More recently,
Liu et al. [93] employed secure multi-party computation (SMC)
techniques for privacy-preserving collaborative medical time-series
analysis. Dauterman et al. [37] use function secret sharing (FSS) to
support various functionalities, e.g., multi-predicate filtering. All
these authors focus on simple collaborative time-series tasks and
not on the privacy-preserving training of ML models on time-series
data, which is the main focus of this work.

2.2 Privacy-Preserving Federated Training of
Machine Learning Models

Federated learning (FL) enables different data holders to perform
the collective training of a ML model while maintaining the data
in their local premises and communicating only the local model
updates to an aggregation server [82, 83, 98]. FL was applied on
many time-series applications such as load forecasting [43], natural
language processing [26, 58], traffic flowprediction, [95], and health-
care systems [49]. However, recent research has shown that sharing
gradients or local model updates in FL leads to severe privacy leak-
age because membership inference and data/label reconstruction
attacks are effective [38, 40, 52, 64, 73, 102, 113, 147, 148, 162, 166].

One common approach for privacy-preserving decentralized or
federated ML is to use secure aggregation protocols that hide the
data holders’ model updates while only revealing their combination
to the server. Various such protocols have been proposed based on
HE [91, 121, 122], functional encryption [152, 153], or SMC [12, 16].
However, the aggregated global model remains vulnerable to pri-
vacy attacks such as model inversion [47] or membership infer-
ence [135]. Other works integrate differential privacy (DP) into
the learning phase by injecting noise on the intermediate model
updates [1, 88, 99, 134, 149, 151] or by combining it with secure ag-
gregation techniques [71, 138, 144] such that the aggregated global
model meets the DP requirements. McMahan et al. recently applied
DP to RNNs to protect user-level privacy [100], and Wen et al. ap-
plied local DP to a FL framework for energy-theft detection [150].
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However, DP introduces a privacy vs. utility trade-off that is hard to
parameterize. Yang et al. show that perturbing the gradients during
training or the final model weights to achieve DP guarantees results
in higher utility loss for RNNs than other neural networks [154].

Another line of research applies SMC to protect the privacy of
the full decentralized ML pipeline [2, 5, 15, 21, 25, 27, 30, 50, 53, 81,
106, 107, 114, 131, 140, 145, 146]. However, SMC solutions require
data holders to secret-share their data among a limited number of
computing parties and their confidentiality is ensured under non-
collusion assumptions (typically, honest majority [2, 21, 25, 27, 107,
145]) among them. Furthermore, they introduce high communica-
tion overhead and scale poorly in terms of the circuit complexity
or the number of parties [56, 79]. Overall, existing SMC solutions
enable the training of regression models and feed-forward neural
networks, whereas RNNs have not been studied. One recent work,
which relies on additive secret-sharing, investigated the training
of recurrent neural networks as a case study [160], but without
evaluating runtime performance or scalability.

Some works employ homomorphic encryption (HE) to encrypt
the clients’ data, before outsourcing it to a server that performs the
model training [159]. Zheng et al. use SMC in combination with HE
for maliciously secure FL [164, 165]. None of these works, however,
address the learning of sequential patterns over the data. To bal-
ance the trade-off between privacy, utility, and performance, several
works apply multiparty homomorphic encryption (MHE) [9] to re-
alize decentralized trust and to enable efficient collaborative homo-
morphic operations, such as collective bootstrapping [111]. These
works apply MHE to FL to conceal any information exchanged dur-
ing the learning process [48, 129]. However, their focus is on gen-
eralized linear models [48] or feed-forward neural networks [129],
and not the training of RNNs. For instance, the packing scheme
and the matrix/vector operations employed in [129] are tailored
for the processing of a single sample (thus eliminating explicit
transpose and matrix multiplications; see Section 7.6 for compar-
isons demonstrating the unsuitability of this approach for training
RNNs). Whereas in this work, we propose a novel packing scheme
suitable for mini-batch RNN training and enable matrix transpose
and matrix multiplications. Moreover, we propose several polyno-
mial approximations to enable critical operations for RNNs, such
as gradient clipping, under MHE.

A different line of research is focused on the private aggregation
of teacher ensembles (PATE) [117, 118], and its variants [96, 156];
different from our work, their main goal is knowledge transfer
by combining DP and generative adversarial networks (GANs).
Choquette-Choo et al. recently proposed CaPC Learning that en-
ables confidential and private collaborative learning by relying
on SMC, HE, and DP, in order to increase the utility of each data
holder’s local ML model [32]. However, CaPC Learning is evaluated
only on feed-forward neural networks and the number of parties
needs to be large enough to obtain better utility/privacy guarantees.
Our work decouples privacy from the amount of data or the number
of parties.

Overall, Rhode enables the training of RNNs in a cross-silo FL
while protecting the confidentiality of the training data, the local
gradients, and the global model in a passive threat model with up to
𝑁−1 collusions among the data holders. By design, Rhodemitigates
passive FL inference attacks during training, as all intermediate

values that are communicated remain encrypted and as it enables
all the computations of the FL pipeline under encryption.

2.3 Privacy-Preserving Prediction on Machine
Learning Models

Privacy-preserving prediction on ML models plays an important
role for Prediction-as-a-Service (Paas) solutions whose aim is to
protect the model from the client (who queries the model) and the
client’s evaluation data from the service provider. A series of works
employ SMC or HE (or a combination of them) to enable privacy
of both the data and the model holder [14, 54, 62, 67, 75, 92, 104,
120, 125, 127]. These works, however, develop and improve crypto-
graphic primitives that support the evaluation of feed-forward neu-
ral networks. Only a few recent studies focus on privacy-preserving
prediction on RNNs by relying on several cryptographic primitives
such as HE [10, 70], two-party computation (2PC) [124], secure
multiparty computation [45], and hybrid approaches combining
HE and garbled circuits [44]. Similar to these works, Rhode pro-
tects the confidentiality of the model and the client’s evaluation
data during the prediction phase. However, our work is broader, as
it also enables federated training under encryption.

3 BACKGROUND

We present preliminaries on multiparty homomorphic encryption
(MHE), federated learning, and recurrent neural network (RNNs).

3.1 Multiparty Homomorphic Encryption

In this work, we rely on multiparty homomorphic encryption
(MHE) to enable distributed cryptographic operations. We em-
ploy the multiparty variant of Cheon-Kim-Kim-Song (CKKS), a
leveled homomorphic-encryption scheme based on the ring learn-
ing with errors (RLWE) problem [29], that is proposed by Mouchet
et al. [111]. This scheme is secure against post-quantum attacks,
enables floating-point arithmetic, and tolerates collusions of up to
𝑁 − 1 parties, under a passive threat model. Below, we summarize
the most important operations of this scheme:

Key Generation: Each data holder 𝑖 locally generates a secret key
(𝑠𝑘𝑖 ). The public key (𝑝𝑘) and evaluation keys ([𝑒𝑘]) are collectively
generated from the data holders’ secret keys (CKeyGen( [𝑠𝑘𝑖 ])).
[𝑒𝑘] is a set of special public keys that are required for the execution
of homomorphic multiplications and rotations. With this scheme,
any data holder can encrypt and locally perform homomorphic op-
erations by using 𝑝𝑘 and [𝑒𝑘], but decrypting a ciphertext requires
the collaboration among all data holders (CDecrypt(c𝑝𝑘 , [𝑠𝑘𝑖 ])).
We denote any ciphertext encrypted under 𝑝𝑘 with bold-face c𝑝𝑘
throughout this paper. When there is no ambiguity, we omit the
sub-index and use c.

Arithmetic Operations and Parallelization: The CKKS homo-
morphic encryption scheme enables approximate arithmetic over
a vector of complex numbers (CN/2) for a polynomial ring of di-
mension N . Encrypted operations over CN/2 are carried out in a
Single Instruction Multiple Data (SIMD) manner, which enables
parallelization over the N/2 plaintext vector slots.
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Arithmetic Circuit Depth and Collective Bootstrapping: A
fresh ciphertext has an initial level of L and at most L multi-
plications (i.e., an L-depth circuit) can be evaluated on it. When
the levels are exhausted, the ciphertext is refreshed with a collec-
tive bootstrapping operation (CBootstrap(c𝑝𝑘 , [𝑠𝑘𝑖 ])) that enables
further operations. We note here that CBootstrap(·) is a costly op-
eration with approximately 2 orders of magnitude higher overhead
than a homomorphic addition/multiplication.

Slot Rotations: The slots of a ciphertext can be re-arranged via
rotations to the left/right. RotL/R(c𝑝𝑘 , 𝑘) homomorphically rotates
c𝑝𝑘 to the left/right by 𝑘 positions using [𝑒𝑘].
Collective Key-Switch: This operation changes the encryption
key of a ciphertext c from 𝑝𝑘 to 𝑝𝑘 ′ (CKeySwitch(c𝑝𝑘 , 𝑝𝑘 ′, [𝑠𝑘𝑖 ])).
As such, only the holder of the secret key corresponding to 𝑝𝑘 ′ can
decrypt the result c𝑝𝑘′ .
Note that the aforementioned operations are MHE (i.e., interactive)
ones if they are termed as ‘collective’ (or if the operation name
starts with C, e.g., CKeyGen(·)), otherwise they are pure CKKS
functionalities. For further details about the CKKS scheme, e.g.,
relinearization and rescaling, we refer the reader to the original
work of Cheon et al. [29], and for more information about the
collective MHE operations to the work of Mouchet et al. [111].

3.2 Federated Learning

Federated Learning (FL) is an emerging collaborative ML approach
that enables multiple data holders to train a model without shar-
ing their local data [82, 83, 98]. With FL, each data holder per-
forms several training iterations on its local data, and the resulting
local models are aggregated into a global model via an aggrega-
tion server. We summarize the most popular federated learning
algorithm, i.e., FedAvg, proposed by McMahan et al. [98] in Al-
gorithm 1.𝑊 𝑘

𝑖 denotes the model weights of the 𝑖𝑡ℎ data holder

during the 𝑘𝑡ℎ iteration. If no sub-index is used, then it simply
denotes the global model weights at a certain iteration. The server
initializes the model weights, sends them to a random subset of
data holders 𝑆 that execute the local gradient descent algorithm
(Local Gradient Descent(·); see Section 4.2 for the details of the
algorithm when it is tailored for RNN execution under encryption
with Rhode) to update their local model. The model updates from
each data holder are aggregated to the global model via weighted
averaging (𝑛𝑖 denotes the number of local samples at the 𝑖𝑡ℎ data
holder and 𝑛 the total number of samples). The number of global
and local iterations are denoted as 𝑒 and 𝑙 , respectively. Note that
FedAvg is a generalization of the standard FedSGD algorithm with
several local iterations performed on each data holder’s side.

3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a special type of models
that enable learning on sequential data (e.g., time-series) [42, 128].
A typical RNN is composed of an input layer that obtains the se-
quential input to the network, a hidden layer, and an output layer.
Contrary to feed-forward neural networks where the information
flows from the input to the output layer, in an RNN, the information
is fed back to the network through connections between its nodes.
The RNN input is a sequence where each item in the sequence is
called a timestep. The hidden layer consists of several hidden units

Algorithm 1 Federated Averaging Algorithm (FedAvg)

1: Initialize the global model𝑊 0
⊲ Server executes

2: for 𝑘 = 0→ 𝑒 − 1 do ⊲ Global iterations
3: Choose 𝑆 random subset of 𝑁 data holders
4: Send𝑊 𝑘 to each data holder in 𝑆

5: for ℓ = 0→ 𝑙 − 1 do ⊲ Local iterations
6: 𝑊 𝑘+1

𝑖 ← Local Gradient Descent( ·) ⊲ at each 𝑆𝑖 ∈ 𝑆
7: end for

8: 𝑊 𝑘+1 ← ∑𝑁
𝑖=1

𝑛𝑖
𝑛 𝑊 𝑘+1

𝑖 ⊲ Server executes
9: end for

(neurons). Each hidden unit has a hidden state that retains the infor-
mation from the previous timestep. Thus, RNNs capture sequential
patterns in the data by processing each timestep sequentially and
by updating the hidden state. In this way, RNNs use earlier informa-
tion in the sequence to learn the current output and retain a form
of memory. A typical RNN, e.g., an Elman network [42], takes a
sequential input (𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑇 ) of𝑇 timesteps and outputs the
prediction 𝑦𝑡 through the hidden units and an activation function
𝜑 (·) by sequentially computing the hidden state at time 𝑡 as:

ℎ𝑡 = 𝜑 (ℎ𝑡−1 ×𝑊 + 𝑥𝑡 ×𝑈 + 𝑏ℎ)
𝑦𝑡 = ℎ𝑡 ×𝑉 + 𝑏𝑦

(1)

where 𝑈 ,𝑊 , and 𝑉 denote the input-to-hidden, hidden-to-hidden,
and hidden-to-output weight matrices, respectively, and 𝑏ℎ and 𝑏𝑦
the hidden and output biases. Note that the input at each timestep
𝑥𝑡 can be itself a 𝑑-dimensional feature vector (or a matrix 𝑏 × 𝑑
for a batch of size 𝑏). But to avoid notation overflow, we assume
that each timestep is a scalar value throughout the paper, unless
otherwise stated. The dimensions of𝑈 ,𝑊 , and 𝑉 are 𝑑 × ℎ, ℎ × ℎ
and ℎ × 𝑜 , where 𝑑 , ℎ, and 𝑜 are the input, hidden, and the output
dimensions, respectively. Jordan networks [74] are similar to Elman
ones but with a slightly different hidden unit, i.e., ℎ𝑡 = 𝜑 (𝑦𝑡−1 ×
𝑊 + 𝑥𝑡 ×𝑈 + 𝑏ℎ). Consequently, the size of the weight matrix𝑊
in Jordan networks is 𝑜 × ℎ.

The training of RNNs is an iterative process with a series of
forward and backward passes (FP and BP, respectively). FP com-
prises the prediction by using the formulas in Eq. 1. However, BP is
computed via the back-propagation through time (BPTT) algorithm
that takes into account the error propagated through the hidden
units and computes the gradients by following the chain rule [128].
We describe in detail the operations of this process under Rhode in
Section 4.2. Finally, we note that there are various RNN structures,
e.g., many-to-one or many-to-many, depending on the input and
output layer size (e.g., a many-to-many structure yields outputs
for 𝜅 timesteps). Configuring Rhode to support these is trivial and
requires simple alterations in its implementation. However, RNN
variants in terms of architecture, such as Gated Recurrent Unit
(GRU) or Long Short-Term Memory (LSTM), require modifications
to the hidden units. Throughout this paper, we consider the tradi-
tional RNN architecture that is called simple, vanilla, or an Elman
RNN [42], yet our solution can be extended to more complex RNN
architectures (see Section 6).
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4 RHODE DESIGN

We introduce the problem and the overview of our solution. We
also present the challenges associated with RNN training.

4.1 Problem Statement

We first discuss the system and threat model of Rhode, as well as
its training and prediction objectives.

System Model. We consider a cross-silo FL setting with a mod-
erate number of data holders (𝑁 ) (typically in the range of 2 to
200 [77]). The data holders are interconnected in a tree-structured
topology for efficient communication (although our system can be
adapted to any network topology, e.g., the standard FL topology,
see Appendix A). Each data holder 𝑖 has its time-series input data
𝑋 𝑖 and the corresponding output 𝑌 𝑖 (𝑌 𝑖 ∈ {0, 1, . . . , 𝑛} for n-class
classification or 𝑌 𝑖 ∈ R for regression tasks) for training a joint
ML model (horizontal FL). After training, the data holders enable
PaaS for a querier 𝑞 with evaluation data 𝑋𝑞 . The querier can be
one of the data holders or an external entity and obtains 𝑌𝑞 , the
prediction result. We assume that all data holders are available
during execution; dropouts are not supported by Rhode due to the
underlying cryptographic operations that require all data holders to
participate (see Appendix A for an extension to tolerate dropouts).

ThreatModel.We assume a passive-adversary threatmodel (which
is a common threat model for cross-silo settings) that allows collu-
sions between up to 𝑁 − 1 parties, including the data holders and
the querier. As such, the data holders follow the protocol, but up
to 𝑁 − 1 of them can share their observations or their inputs to
extract information about the honest data holder’s inputs. Rhode
aims at preserving the confidentiality of both the input data and
the model during the training and prediction pipelines. We note
that our focus is on mitigating passive FL inference attacks that
target the model during training. Active adversaries during train-
ing or inference attacks targeting the outputs during prediction,
e.g., model stealing [143], are out of the scope of this work. We
discuss complementary mechanisms that can be used orthogonally
to Rhode to mitigate such attacks in Appendix A.

Training. The data holders aim at collaboratively training an RNN
modelwithout relying on a trusted party andwithout revealing their
data to any other party. Rhode’s objective is to enable this and to
mitigate passive FL attacks that target the model or local gradients.
As we optimize the communication via a tree-structured topology,
the root plays the role of the aggregation server in traditional FL,
and for brevity, throughout the paper, we refer to this node as the
aggregation server.

Prediction. Rhode’s objective is to protect the confidentiality of
both the querier’s data and the trained RNN model, i.e., the data
holders should not learn anything about the querier’s evaluation
data and the querier should not learn anything about the model
other than what it can learn from the prediction output.

4.2 Solution Overview

To fulfill the training and prediction objectives under the given
threat model, Rhode relies on FL and MHE. To protect data confi-
dentiality and to mitigate the passive FL inference attacks during

training, Rhode retains the model and all the intermediate val-
ues communicated through the network in encrypted form. This
implies that all the local RNN operations performed by the data
holders need to be carried out under encryption. To efficiently en-
able this, Rhode uses a packing strategy and several cryptographic
optimizations that are detailed in Section 5. To refresh the noise
accumulated by the homomorphic operations, Rhode performs
bootstrapping (CBootstrap(·)) when required (depending on the
RNN and security parameters). For clarity, we refer to Algorithm 1
for our high-level protocol. Rhode enables, under encryption, both
FedAvg and FedSGD with every data holder included in each itera-
tion (i.e., |𝑆 | = 𝑁 ) since we consider a cross-silo setting and given
that all data holders are available to participate in cryptographic
operations. By enabling RNN training, Rhode can handle sequential
data yet, throughout the paper, we use time-series as an example.

4.2.1 Private Training. The training protocol of Rhode operates
in four phases: Setup, Local Computation, Aggregation, and
Model-Update. We detail these phases hereunder:

Setup Phase: In this phase, the necessary cryptographic and learn-
ing parameters are decided by the data holders, i.e., the minimum
security guarantees, the RNN architecture, and the learning param-
eters, e.g., the learning rate (𝜂), the batch size (𝑏), and the number
of global (𝑒) and local iterations (𝑙). Then, the data holders gener-
ate their secret keys (𝑠𝑘𝑖 , for the 𝑖𝑡ℎ data holder) and collectively
generate the corresponding public key (𝑝𝑘) with the MHE scheme
(Section 3.1). For the training execution to start, the aggregation
server initializes the global model (Line 1, Algorithm 1), encrypts it
with 𝑝𝑘 , and broadcasts it to all data holders.

Local Computation Phase: Each data holder receives the en-
crypted global model weights and begins the Local Gradient De-
scent(·) (Line 6, Algorithm 1), i.e., the execution of the forward
pass (FP) and backward pass (BP) on its local data as detailed in
Algorithm 2 for a simple many-to-many RNN with 𝜅=𝑇 outputs.
Note that for different RNN architectures such as GRU or LSTMs,
the local gradient descent algorithm should be altered (see Sec-
tion 6). We denote the encryption of any value, vector, or matrix
with bold-face, e.g.,W, and for clarity, we omit the indices of the
global iteration and the data holder in Algorithm 1. 𝑥𝑡 is the input
𝑑-dimensional feature-vector for a timestep 𝑡 (or a matrix of size
𝑏 × 𝑑 for a batch of size 𝑏, in which case the outer-vector products
in the backward pass become matrix multiplications) and𝑦𝑡 the cor-
responding output(s). 𝜑 (·) (𝜑 ′(·)) indicates any type of activation
function (and its derivative), e.g., Tanh. We denote the transpose
of a matrix 𝐴 as 𝐴𝑇 , the element-wise multiplication with ⊙, the
matrix or vector multiplication with ×, and the outer product with
⊗. Note that the characteristics of RNNs incur several challenges
when training them under encryption. We discuss these challenges
in Section 4.3 and propose several techniques to alleviate them in
Section 5.

Aggregate Phase: Data holders collectively aggregate their locally
computed models (or gradients). That is, each data holder sends its
(encrypted) local model to its parent, and each parent homomor-
phically sums the received child-models with its own. As such, the
aggregation server receives the sum of all the local models.
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Algorithm 2 Local Computation Phase (RNN)

Inputs: U,W,V, hprev, 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑡 ), 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑡 )
Outputs: ∇U, ∇W, ∇V
1: h0 ← hprev
2: for 𝑡 ← 1 : 𝑇 do ⊲ Forward Pass (FP)
3: z𝑡 ← h𝑡−1 ×W + 𝑥𝑡 × U
4: h𝑡 ← 𝜑 (z𝑡 )
5: p𝑡 ← h𝑡 × V
6: end for

7: hprev ← h𝑡
8: dhnext = 0

9: ∇U, ∇W, ∇V = 0

10: for 𝑡 ← 𝑇 : 1 do ⊲ Backward Pass (BP)
11: dy← p𝑡 − 𝑦𝑡
12: dh← dy × V𝑇 + dhnext
13: dz← dh ⊙ 𝜑′ (z𝑡 )
14: dhnext ← dz ×W𝑇

15: ∇V← ∇V + h𝑡 ⊗ dy

16: ∇U← ∇U + 𝑥𝑡 ⊗ dz

17: ∇W← ∇W + h𝑡−1 ⊗ dz

18: end for

Model-Update Phase: The aggregation server updates the global
model by averaging the local models of the data holders (Line 8,
Algorithm 1). At this phase, the aggregation server also applies
gradient clipping (see Section 5.2 for details). Since the batch size is
public information (agreed upon in the Setup Phase), the division for
averaging over the encrypted local models becomes a multiplication
with a plaintext value. The global model is then broadcast to all
data holders for the next Local Computation Phase.
Overall, the model training composes the Local Computation, Ag-
gregate, and the Model-Update Phases, which are repeated for a
predefined number of global iterations (𝑒).

4.2.2 Predictions-as-a-Service (PaaS). After the collective model
training, the data holders (i) use the encrypted model for oblivi-
ous PaaS without decryption, or (ii) if required by the application,
collectively decrypt the model and reveal it to all the data holders
or an external party for semi-oblivious PaaS. In both cases, the
querier’s evaluation data is encrypted with the data holders’ pub-
lic key and we rely on the collective key-switch functionality of
the underlying MHE scheme (Section 3.1). In particular, for (i), the
querier encrypts 𝑋𝑞 with the data holders’ collective key 𝑝𝑘 , the
data holders then compute the prediction on the encrypted data
using the encrypted model, and switch the encryption key of the
result with CKeySwitch(X𝑞

𝑝𝑘
, 𝑞𝑘, [𝑠𝑘𝑖 ]), where 𝑞𝑘 is the querier’s

key. Thus, only the querier can decrypt the prediction result. For (ii),
the collective decryption is simply a special case of the collective
key-switch with the encrypted model as input and no target public
key. The rest of the evaluation is same as oblivious PaaS.

4.3 Challenges Associated with RNN Training

We discuss the challenges, as well as several solutions, associated
with the training of RNNs in general. We also highlight how these
challenges (and their solutions) further increase the difficulty of
RNN training under encryption. Section 5 presents the building
blocks that Rhode employs to alleviate these challenges.

RNNs are inherently challenging to train because of their sequen-
tial operations, i.e., the computations performed over the timesteps
(the dependency of each network node on the output of its previous
one). This phenomenon causes two issues when training RNNs: (i)
the training procedure is slow, complex, and hard to parallelize, and
(ii) the gradients tend to explode (or vanish) due to long-term depen-
dencies between timesteps in the execution of the back-propagation
through time (BBPT) algorithm [13, 119].

To mitigate the first challenge, several works suggest accelerat-
ing RNN training through data parallelization, i.e., via a distributed
approach and/or mini-batch training [68, 80, 133]. For example, a
master-slave approach where slave machines first compute the gra-
dients and then a master machine aggregates them to perform the
global update (Map-Reduce algorithm [33]) is commonly proposed.
Rhode ensures similar efficiency to such distributed training-based
approaches, through federated learning that is, by definition, dis-
tributed and resembles the master-slave relationship proposed for
distributed RNNs. On the other hand, mini-batch training under
homomorphic encryption requires a well-suited packing scheme
for efficient matrix multiplication and transpose operations. There-
fore, in Section 5.1, we propose a novel multi-dimensional packing
scheme that reduces the processing time of a large batch.

The second challenge of exploding or vanishing gradients is
addressed by several techniques such as the use of gating mech-
anisms, e.g., LSTMs [65], along with a possible modification of
the gradient propagation [78], encoder-decoder approaches [31],
gradient clipping [119], non-saturating functions [22], and various
recurrent-weight initialization techniques via identity or orthogo-
nal matrices [61, 86]. Employing LSTMs as a solution to the problem
of exploding/vanishing gradients brings its own challenges, due to
the computational complexity of training LSTMs under homomor-
phic encryption, and we discuss the costs of such an extension in
Section 6. Although various weight-initialization techniques are
straightforward for Rhode to adopt, we opt for gradient clipping ś
a widely used mitigation technique for exploding gradients when
training simple RNNs. However, gradient clipping is not easy to
compute under encryption as it requires a comparison function that
is not homomorphically enabled. Therefore, we present various
approximations for the efficient computation of an element-wise
clipping function, through different polynomials (Section 5.2).

5 CRYPTOGRAPHIC BUILDING BLOCKS

We detail the main cryptographic building blocks that are used in
Rhode. We describe the packing scheme and the optimized ma-
trix operations including the matrix-multiplication and matrix-
transpose in Section 5.1 and the approximated building blocks in
Section 5.2. We analyze Rhode’s security in Appendix B.

5.1 Packing and Optimized Matrix Operations

Wepresent the packing scheme and the optimizedmatrix operations
used for RNN training in Rhode. Due to the use of homomorphic
encryption (HE), packing has a significant effect on the training
performance as through SIMD operations, it enables mini-batch
training which alleviates the inherent high training times of RNNs.
In addition, matrix operations are the most heavy and frequent
operations in RNNs (see Lines 2-5 and 12-17, Algorithm 2). Thus,
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Algorithm 3Multi-dimensional Matrix Multiplication

Inputs: A, B two ℓ×ℓ matrices of ciphertexts, each encrypting a sub-matrix
of dimension (𝑛/ℓ) × (𝑛/ℓ) , the linear transformations 𝜎 , 𝜏 , 𝜙𝑖 and𝜓𝑖

Outputs: C← A ⊗ B

1: for 𝑖 = 1→ ℓ do

2: for 𝑗 = 1→ ℓ do

3: z← 𝜎 (B𝑖,𝑗 ) ⊲ Depth 1
4: b𝑖,𝑗 ← {𝜙0 (z), . . . , 𝜙𝑛/ℓ−1 (z) } ⊲ Depth 1
5: end for

6: end for

7: for 𝑖 = 1→ ℓ do

8: for 𝑗 = 1→ ℓ do

9: z← 𝜏 (A𝑖,𝑗 ) ⊲ Depth 1
10: a← {𝜓0 (z), . . . ,𝜓𝑛/ℓ−1 (z) } ⊲ Depth 1
11: for 𝑘 = 1→ ℓ do

12: C𝑖,𝑘 ← C𝑖,𝑘 + ⟨a, b𝑖,𝑗 ⟩ ⊲ Depth 1
13: end for

14: end for

15: end for

non-square matrices with a worst case of extra space used reduced
from 𝑛(𝑛 − 1) to 𝑛

ℓ (
𝑛
ℓ − 1), (ii) it provides a better amortized multi-

plication complexity as it packs up to N2 ·
ℓ2

𝑛2 matrices (instead of
N
2𝑛2 ) in parallel with O(𝑛ℓ) complexity for the multiplication, but
amortizes to O(𝑛/ℓ) per matrix (instead of O(𝑛)), (iii) it reduces
the complexity of the transpose operation from O(

√
𝑛) to O(

√︁
𝑛/ℓ)

(only the 𝜉 permutation needs to be evaluated on the sub-matrices
and permutations between ciphertexts are free), and (iv) it enables
more efficient matrix slot manipulations as rows of sub-matrices
can be individually moved and/or rotated. We further minimize
the number of redundant homomorphic operations by leveraging
the techniques used in the double-hoisting baby-step giant-step
algorithm [17] to evaluate linear transforms and delay ciphertext
relinearization. We describe the protocol for multi-dimensional
matrix multiplication in Algorithm 3. We present guidelines for
configuring 𝛿 and other cryptographic parameters in Appendix C.

Rhode employs the multi-dimensional packing for efficient mini-
batch training under encryption. In particular, we distribute the
RNN input batch along the łthird" dimension (see Figure 1b), by
expressing the batch as 𝑝 parallel matrices (as if computing an en-
semble of 𝑝 parallel RNNs). We can increase the batch size (up to
𝑝 ∗ 𝑛/ℓ) at no additional cost as it fits into the same ciphertext. To
enable further operations, i.e., to make the input batch compatible
with the weight matrices, we replicate the latter across the third di-
mension, so that the weight matrices are aligned with their parallel
slices from the input batch. The computation of the FP and BP for
all the timesteps results in a parallel slicing of the gradients across
the third dimension. These gradients are then aggregated (with
log(𝑝) rotations to perform an inner sum operation), to ensure con-
sistency among the parallel instances. Note that for batches that fit
into one ciphertext, our multi-dimensional packing is equivalent
to an optimized version (via block-matrices) of Jiang et al.’s [72]
approach. However, for bigger dimensions, where the matrix is split
over more than one ciphertext, multi-dimensional packing yields
better amortized matrix multiplication cost (see Section 7.6).

5.2 Approximated RNN Building Blocks

To compute any non-linear activation or clipping function under
CKKS encryption, Rhode relies on polynomial approximations
employing the least-squares orMinimaxmethods. The least-squares
method finds the optimal polynomial that minimizes the squared
error between the real function and its approximation over an
interval, whereas Minimax minimizes the corresponding maximum
error. Admittedly, the maximum error with Minimax decreases
as the approximation degree (𝔭) increases or as the range of the
interval shrinks. However, note that with larger 𝔭, the polynomial
evaluation becomes more expensive (with a scale of𝑂 (log(𝔭))) and
smaller interval ranges are not always possible due to the need of
accommodating the range of the recurrent neural network outputs.
We remark that choosing 𝔭 and the interval of approximations
is a non-trivial task under privacy constraints. Yet, these can be
determined by synthetic datasets or based on data distribution-
based heuristics such as computing the minimum, the maximum,
and the mean of feature vector means per dataset [62].

Activation Functions. A neural network is a pipeline of lay-
ers composed of neurons on which linear and non-linear trans-
formations (activations) are applied. Typical activation functions
are Sigmoid (𝜑 (𝑥)= 1

1+𝑒−𝑥 ), ReLU (𝜑 (𝑥)=𝑚𝑎𝑥 (0, 𝑥)), Tanh (𝜑 (𝑥)=
𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 ), etc., that are not computable under encryption as they
comprise non-linear operations (e.g., comparison, exponentiation).
To overcome this, previous works either change the function to
a linear or square one [10, 54], or rely on approximation tech-
niques employing the least-squares method [48, 129], polynomial
splines [92], Legendre [62] or Chebyshev polynomials [62, 85]. For
RNNs, the choice of activation function is critical due to exploding
gradients problem (i.e., the function should be bounded) and com-
monly used functions are Tanh and ReLU (that can approximated
as SoftPlus, i.e., 𝜑 (𝑥)=𝑙𝑛(1 + 𝑒𝑥 ) [129]). Thus, we also rely on poly-
nomial approximations to enable the execution of these activation
functions.

Gradient Clipping. As described in Section 4.3, when the weights
have a large norm, the gradients accumulated over multiple steps
of the BBPT algorithm can grow exponentially; gradient clipping is
one of the well-established techniques to mitigate this issue. Thus,
in Rhode, the aggregation server applies clipping during the Model
Update Phase (see Section 4.2). Pascanu et al. [119] propose clipping
the gradients based on their infinity-norm, yet applying directly
their function under encryption is challenging due to the norm
calculation that comprises comparison operations. Thus, inspired
from their norm-clipping, we propose a gradient clipping strategy
that restricts the infinity-norm of the gradients to a closed interval
whose limits are defined by a threshold |𝑚 |. We apply the following
function element-wise to the accumulated gradient vector 𝑥 :

Clip(𝑥,𝑚) =



−𝑚 𝑥 ≤ −𝑚
𝑥 −𝑚 < 𝑥 < 𝑚

𝑚 𝑥 ≥ 𝑚
Clip(𝑥,𝑚) is a baseline as this function is also difficult to prac-

tically approximate due to its non-smoothness near the clipping
interval limits [−𝑚,𝑚]. Therefore, we introduce two softer approx-
imations for clipping. The first one is based on Tanh, which is very
similar to Clip except for the clipping interval limits −𝑚 and𝑚:
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TanhClip(𝑥,𝑚) =𝑚 ∗ 𝑡𝑎𝑛ℎ
( 𝑥
𝑚

)

The second one is based onReLU, i.e.,Clip(𝑥,𝑚) = 𝑥+ReLU(−(𝑥+
𝑚))−ReLU(𝑥−𝑚). Since Rhode softly approximates the ReLU func-
tionwith SoftPlus, SoftClip is defined accordingly as SoftClip(𝑥,𝑚) =
𝑥 + SoftPlus(−(𝑥 +𝑚)) − SoftPlus(𝑥 −𝑚), or:

SoftClip(𝑥,𝑚) = 𝑥 + ln 1 + 𝑒−(𝑥+𝑚)

1 + 𝑒 (𝑥−𝑚)

Overall,Rhode enables the approximated execution of both TanhClip
and SoftClip. We evaluate the performance of both clipping approx-
imations and provide the plots of the approximated curves (by
Minimax) and their errors for polynomial degrees of 𝔭=5 and 𝔭=15
in Appendix D. We observe that both functions achieve a simi-
lar average error over the approximation interval, yet SoftClip is
slightly better than TanhClip for higher degrees in terms of error
and behavior around the limits of the approximation interval.

6 EXTENSION TO MORE COMPLEX RNNS

So far, we have described Rhode’s workflow with a simple RNN
architecture, yet, Rhode can be extended to more complex ones
such as GRUs and LSTMs. Rhode’s main building blocks, i.e., the
approximated activation/clipping functions, the multi-dimensional
packing, the matrix multiplication and transpose operations are suf-
ficient to implement such complex RNNs. As the multi-dimensional
packing preserves the structure of the matrices in the plaintext
slots after multiplication and transpose operations, any pipeline
can be built from our blocks. RNNs such as GRUs or LSTMs, require
changes only on the Local Computation Phase of Rhode. We briefly
explain how to extend Rhode to GRUs and LSTMs.

GRU.We summarize the protocol for the GRU architecture in Al-
gorithm 4 ( Appendix E). Such an RNN has the same workflow as a
simple RNN but with different operations inside the GRU unit. A
typical GRU comprises an Update Gate (R-Gate) that decides how
much information from previous timesteps is needed for future
ones, a Reset Gate (Z-Gate) that decides how much information
to forget, and a Candidate activation (N-Gate) similar to the hid-
den state of an RNN unit. Other GRU variants modify these gates
by computing only (or excluding) the biases [39, 60]. Both Z- and
R-Gates include an activation function that is typically a Sigmoid,
𝜚= 1

1+𝑒−𝑥 , and the hidden state comprises the Tanh activation func-

tion, 𝜑=𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 . Then, the pipeline for the forward pass (FP) of

a GRU is similar to a simple RNN and the backpropagation (BP)
follows the BBPT with the chain rule for the calculation of the
derivatives and the loss (see Algorithm 4). In more detail, the FP
(Lines 2-10) comprises encrypted matrix multiplications, additions,
and activation functions, thus, the packing scheme of Rhode, the
matrix multiplication and the approximated building blocks can
be directly applied. Similarly, the BP comprises the same opera-
tions as the FP but additionally requires multiple executions of the
transpose, which is also supported by Rhode (Section 5.1).

LSTM. LSTM includes a Forget Gate (f), an Input Gate (i), a Cell
State (c), and an Output Gate (o). The hidden state is calculated as:

𝑓𝑡 = 𝜚 (𝑊𝑓 × 𝑥𝑡 +𝑈𝑓 × ℎ𝑡−1 + 𝑏 𝑓 ) ▷ Forget Gate

𝑖𝑡 = 𝜚 (𝑊𝑖 × 𝑥𝑡 +𝑈𝑖 × ℎ𝑡−1 + 𝑏𝑖 ) ▷ Input (Update) Gate

𝑜𝑡 = 𝜚 (𝑊𝑜 × 𝑥𝑡 +𝑈𝑜 × ℎ𝑡−1 + 𝑏𝑜 ) ▷ Output Gate

𝑐𝑎 = 𝜑 (𝑊𝑐 × 𝑥𝑡 +𝑈𝑐 × ℎ𝑡−1 + 𝑏𝑐 ) ▷ Cell Input Activation

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑎 ▷ Cell State

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑐𝑡−1 + 𝜑 (𝑐𝑡 ) ▷ Hidden State

where𝑈 · and𝑊· denote the weight matrices,𝑏 · the bias vector, with
the respective gate names as sub-indices (·). As in GRUs, the MHE
execution of LSTM requires the matrix multiplication, element-wise
multiplication, addition, and activation functions (approximated via
our building blocks). We note that the element-wise multiplication
with multi-dimensional packing is straight-forward and requires
ℓ2 ciphertext multiplications. Due to the nature of the operations,
the BP for LSTM training is similar to GRU-BP and requires the
exact same operations of the forward pass with the addition of the
transpose operation which is supported by Rhode.

Overall, different RNN architectures composed of the aforemen-
tioned operations can be enabled using Rhode’s building blocks.
Yet, it is worth mentioning that implementing these models under
MHE is non-trivial and will increase Rhode’s computation and
communication overhead; its experimental evaluation on such com-
plex RNN architectures is a direction for future work. Here, we
roughly estimate the overhead incurred by GRUs and LSTMs. For
the forward pass, a GRU requires 3× the operations (i.e., 2 multi-
plication and additions followed by an activation) of Lines 3-4 in
Algorithm 2 and element-wise multiplications which are negligible
compared to matrix multiplications. Then, the prediction (Line 5,
Algorithm 2) remains the same. Due to the chain rule, the same ra-
tionale holds for the BP. Similarly, LSTMs require 4× the operations
of Lines 3-4 in Algorithm 2 followed by 3× more element-wise
multiplications, but with one less matrix multiplication for the
prediction step. Thus, we estimate that implementing GRUs and
LSTMs without parallelization will result in a 3×ś4× slower local
computation phase than simple RNNs. Finally, as the number of
GRU and LSTM weight matrices are 3× and 4× bigger than simple
RNNs, similar estimates apply for the communication overhead
incurred by collective bootstrapping and the FL workflow.

7 SYSTEM EVALUATION

We analyze Rhode’s theoretical complexity in Section 7.1. Then,
we present our experimental setup in Section 7.2. We evaluate
Rhode’s model performance, scalability with different parameters,
and runtime in Sections 7.3, 7.4, and 7.5, respectively. Finally, we
compare Rhode with prior work in Section 7.6.

7.1 Complexity Analysis

We summarize Rhode’s complexity by taking into account the
memory usage per data holder, as well as its communication and
computational costs for an Elman network (Algorithm 2). Here,
we discuss the dominating terms that affect the memory, commu-
nication, and computation costs and we provide a more detailed
analysis with an example network configuration in Appendix F.
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The memory usage per data holder depends on the number of
input plaintexts, activation ciphertexts (e.g., h𝑡 in Algorithm 2),
weight ciphertexts (e.g., U,V,W), and gradient ciphertexts (e.g.,
∇U,∇W,∇V). Subsequently, the number of ciphertexts storing the
matrix and vectors required for Rhode’s execution has a direct
impact on the communication cost. Recall that during RNN training,
communication among the data holders is triggered by: (a) the
collective bootstrapping (CBootstrap(·)) operation to refresh the
ciphertexts, and (b) the federated learning (FL) workflow, where
data holders communicate their local gradients (Aggregate Phase).
Both (a) and (b) incur costs that depend on the number and size of
the weight/gradient ciphertexts (see Appendix F for details).

Rhode’s computational cost per data holder and per local itera-
tion depends on the number of CBootstrap(·) operations (which
are ∼2 orders of magnitude slower than a homomorphic addi-
tion/multiplication), the degree 𝔭 of the polynomial approxima-
tions, and the cost of the linear transformations (i.e., 𝜎 , 𝜏 ,𝜓𝑖 and 𝜙𝑖 )
required for the matrix multiplication. Indeed, these linear transfor-
mations dominate the complexity of the matrix multiplication (see
Algorithm 3); the rest of the algorithm comprises only multiplica-
tions and additions, which are negligible in comparison. Overall,
Rhode’s RNN training protocol requires several multiplications
with the weight matrices (W,U,V) and their transposes (V𝑇 ,W𝑇 ).
As these matrices are not updated through the local iteration per

timestep, we can pre-compute their linear transformations at the
beginning of each iteration and re-use them for all timesteps. For
the network structure of Algorithm 2, this reduces the cost to O(6𝛿)
from O(6𝑇𝛿) per local iteration, at a memory cost of ×d per matrix.

7.2 Experimental Setup

We present the datasets used for model performance evaluation.
We describe the data distribution, RNN configuration, and security
parameters. We provide the implementation details in Appendix G.

Datasets and Tasks.We employ the Hourly Energy Consumption
(HEC) [76], Stock Prices (Stock) [36], and Inflation datasets [35], for
time-series forecasting tasks. HEC contains the hourly energy con-
sumption of several companies during a specific time period [76].
The forecasting task is to use early sequences of energy consump-
tion and predict the future value for sequences of length 𝑇 . The
Stock dataset contains historical daily stock statistics for 10 compa-
nies [36]. The task on this dataset is to predict the average open-
high-low-closing (OHLC) price of the next day, given the OHLC
of the previous 𝑇 days. The Inflation dataset contains quarterly
inflation rates from 40 countries and the task is to predict the infla-
tion rate of the next quarter given the previous 𝑇 quarters. We also
employ the Breast Cancer Wisconsin dataset (BCW) [126] that con-
tains benign and malignant breast cancer samples for classification.
More details about the datasets can be found in Appendix H. For
each experimental setting, we split the dataset into training (80%)
and test (20%) sets. For the Rhode’s scalability and microbenchmark
experiments, we use synthetic datasets.

Dataset Distribution. For the model performance experiments
(Section 7.3), we split the data among 𝑁=10 data holders and evalu-
ate two different settings: (i) Even (E) distribution, where we uni-
formly distribute the dataset to 10 data holders, and (ii) Imbalanced

(I) distribution where we simulate a heterogeneous setting (see

Dataset
Model Performance (MAE | 𝑅2 or Acc )

L C FL Rhode

HEC-E10 0.066 | 0.749 0.014 | 0.987 0.024 | 0.965 0.026 | 0.957
HEC-I10 0.081 | 0.625 0.014 | 0.987 0.025 | 0.962 0.027 | 0.955

HEC-E20 0.066 | 0.749 0.014 | 0.986 0.024 | 0.964 0.026 | 0.957
HEC-I20 0.081 | 0.626 0.014 | 0.986 0.025 | 0.962 0.027 | 0.954

Stock-E5 0.023 | 0.966 0.008 | 0.996 0.020 | 0.982 0.017 | 0.987
Stock-I5 0.024 | 0.976 0.008 | 0.996 0.012 | 0.992 0.012 | 0.992

Inflation-E8 0.067 | 0.778 0.067 | 0.775 0.067 | 0.774 0.067 | 0.771
Inflation-I8 0.103 | 0.579 0.066 | 0.777 0.066 | 0.777 0.067 | 0.770

BCW-E9 0.888 0.936 0.936 0.929
BCW-I9 0.880 0.936 0.900 0.914

Table 1: Rhode’s model performance in various settings

(𝑁=10) compared to three baselines: local training (L), cen-

tralized (C), and federated learning (FL).

Appendix H). We annotate the results per setting as "DatasetName-
TypeT" where TypeT denotes the type of the data distribution with
the sequence length 𝑇 , e.g., HEC-I10, denotes imbalanced data
distribution and 𝑇=10 on the HEC dataset.

RNN Configuration. For the HEC and Stocks model performance
experiments, we use an Elman network with a local batch size of
𝑏=256, a hidden dimension of ℎ=32, a learning rate of 𝜂=0.1, and
varying timesteps 𝑇=[5 − 20], and we train the RNN for 𝑒=1, 000
and 𝑒=300 global iterations, resp. For the Inflation dataset, we em-
ploy a Jordan network that is widely used for financial forecasting
tasks [41, 59, 69, 109, 167, 168] with parameters 𝑏=128, ℎ=16, 𝜂=0.1,
𝑇=8, and 𝑒=500. For BCW, we evaluate an Elman network used
for breast cancer classification [34, 112, 139, 163] with 𝑏=32, ℎ=64,
𝜂=0.2,𝑇=9, and 𝑒=400. For all experiments, the data holders perform
one local iteration and we use the same approximation parameters:
SoftClip(𝑥,𝑚) with a clipping threshold of |𝑚 |=5, approximated
with a 𝔭=7 polynomial over the interval [−60, 60] as a result of
preliminary evaluations on the datasets. To expedite the model
performance experiments (Section 7.3), we simulate Rhode’s fully-
encrypted training pipeline in plaintext by using the approximated
activation and clipping functions, and a fixed-precision.

Security Parameters. Unless otherwise stated, we set the degree
of the cyclotomic polynomial to N=214 and the modulus of the
keys to 𝑄≈2438. These parameters yield 128-bit security according
to the homomorphic encryption standard [6]. We set the plaintext
scale to 231, and the initial ciphertext level is L=9.

7.3 Model Performance

Table 1 shows Rhode’s model performance results on various
datasets and settings. For each setting, we report the mean abso-
lute error (MAE) and 𝑅2-scores for forecasting tasks and accuracy
(Acc) for the classification one. The table displays the performance
of three baselines: (a) L stands for local training, where each data
holder trains its own local model with the original network (original
activation functions and clipping), i.e., without taking advantage of
the other parties’ data, (b) C stands for centralized training, where
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the ciphertext multiplications (h𝑡−1 ×W) dominate the runtime.
The communication overhead also scales sub-linearly; as increasing
𝑑 increases the number of ciphertexts to be bootstrapped. Figure 2b
shows that Rhode scales sub-quadratically, with increasing ℎ when
𝛿=32; while increasing ℎ quadratically increases the number of ci-
phertexts for the weight matrixW, this affects the runtime of a few
matrix multiplications only (see Section 7.1). This trend holds also
for the communication due to an increased number of ciphertexts
that are bootstrapped by the aggregation server. Figures 2c and 2d
demonstrate that Rhode’s runtime scales linearly with increasing𝑇
or𝑏 due to the sequential operations over the timesteps or the linear
increase in the number of ciphertexts processed. Finally, Figure 2e
shows that Rhode’s local computation time remains constant with
increasing 𝑁 , as the data holders compute local operations at the
same time, whereas the communication overhead increases linearly,
as more data holders are involved in the interactive protocols.

7.5 Runtime Performance

Table 2 displays Rhode’s training and prediction runtimes (for
the original and optimized implementations, including communi-
cation) for various many-to-one RNN architectures (Elman) with
𝑁=10 data holders. The Training runtime is for one global iteration
(including the communication for CBootstrap(·) and Aggregate
Phase). The Prediction runtime is for oblivious predictions (both
data and model are encrypted) on a batch of 256 samples (includ-
ing the communication for CKeySwitch(·) that changes the key
of the prediction result to the querier’s public key). The results
of this table can be used along with the scalability results (Sec-
tion 7.4) to estimate Rhode’s total training time for various RNNs.
For instance, Rhode can process 256K samples split among 10 data
holders with an RNN with 𝑏=256, 𝑑=4, ℎ=32,𝑇=4 (first table row),
over 100 global iterations, in ∼1.5 (∼2) hours with its optimized
(non-optimized, resp.) implementation. Moreover, as the Prediction
runtime is calculated for 256 samples, Rhode yields a prediction
throughput of ∼14.43 (∼9.31) samples per second with its optimized
(non-optimized, resp.) implementation, for the same RNN structure.

Effect of RNN Structures. We evaluate Rhode’s performance for
different RNN structures includingmany-to-one andmany-to-many.
Table 4 depicts the results of microbenchmarks for the forward pass
(FP) and backward pass (BP) per timestep without bootstrapping
and without optimization for different RNN structures. FP-𝑡𝑜 and
BP-𝑡𝑜 stand for the forward pass of the output-stage timestep and
the backward pass of the output-stage timestep, respectively. The
columns ‘FP Total’ and ‘BP Total’ show the total time required for
the execution of the FP and BP, respectively. For example, the first
row is a many-to-one RNN structure with𝑇=6 and 𝜅=1. This means
that the FP is calculated for 6−1=5 timesteps and FP-𝑡𝑜 is calculated
once. Similarly, for the second row with 𝑇=6 and 𝜅=2, the FP is
calculated for 6−2=4 timesteps, whereas FP-𝑡𝑜 is calculated for 2.
There is no FP and BP for the last row as 𝑇=𝜅=6. Overall, Table 4
shows that the FP and BP calculations of the output-stage timestep
(FP-𝑡𝑜 , BP-𝑡𝑜 ) are more costly than the usual FP and BP timesteps
(∼1.7×). This is due to the extra multiplication required in the FP
for calculating the prediction (Line 5, Algorithm 2), and the extra
subtraction and multiplication during the BP (Lines 11-12, Algo-
rithm 2) for the output error calculation. Recall that Algorithm 2

is presented for a many-to-many RNN structure with 𝜅=𝑇 out-
puts. The computations of Lines 5, 11, and 12, are executed 𝜅 times
for other structures with 𝜅≠𝑇 . Consequently, many-to-many RNN
structures are more expensive, and the runtime increase depends
on 𝜅. We here note that a Jordan network requires the calculation
of the output 𝑦𝑡 at every timestep (see Section 3). As a result, its
computation time is very similar to a many-to-many Elman RNN
with 𝑇 outputs and a modified matrix multiplication (y𝑡−1 ×W).
This results in roughly ∼1.5× slower execution per timestep com-
pared to an Elman network. For instance, for the parameters of the
first row in Table 4, a Jordan network requires 7.15s and 10.02s for
the 𝐹𝑃 and 𝐵𝑃 without bootstrapping (similar to FP-𝑡𝑜 and BP-𝑡𝑜 of
the line, resp.). Finally, note that the Jordan network requires one
extra CBootstrap(·) operation during the backward pass, resulting
in slightly higher communication than Elman networks.

7.6 Comparison with Prior Work

We first compare Rhode with prior work based on matrix multi-
plication as it is the dominant and expensive operation. Then, we
compare Rhode and the most similar system Poseidon [129].

Matrix Multiplication Benchmarks. We compare our multi
dimensional packing scheme with Jiang et al.’s [72] and Sav et
al.’s [129] packing approaches in Table 3 (timings) and Table 7
(memory ś Appendix I). We report the total and amortized time
(throughput) for #𝑀 parallel multiplications of 𝑛 ×𝑛-sized matrices.

We observe that our multi-dimensional packing approach and
Jiang et al.’s one perform identically when 𝑛=𝛿 , since Jiang et al.’s
approach is a special case of our packing with only one ciphertext.
For 𝑛>𝛿 , the multi-dimensional packing requires more time to com-
plete the multiplication but achieves a better amortized time than
Jiang et al’s. Due to memory limitations, we were not able to bench-
mark Jiang et al.’s approach for 𝑛=256 and 𝑛=512. The memory
overhead arises from the ring dimension (N ), the number of cipher-
texts, and the size of the evaluation keys. The first row of Table 7
shows that, with Jiang et al.’s method,N scales quadratically with 𝑛
while ours scale similarly with 𝛿 (or with the closest power of two
above 𝑛2 or 𝛿2). Thus, for larger matrices (e.g., when multiplying
two 128 × 128 matrices), Jiang et al.’s approach requires increasing
N (as the matrix does not fit into one ciphertext), whereas our
approach increases only the number of ciphertexts for a fixed 𝛿

(second row of Table 3). However, their approach also significantly
impacts the size of the evaluation keys. Indeed, as in their approach
N scales with O(𝑛2), increasing 𝑛 has the side effect of increasing
the evaluation keys’ size (third row of Table 3). Recall that Jiang
et al.’s method also requires O(𝑛) evaluation keys to perform the
multiplication, thus resulting in a O(𝑛3) memory complexity. In
contrast, our approach provides O(𝛿3) that is O(1) for a fixed 𝛿 . In
conclusion, our packing is at least equivalent to Jiang et al.’s [72]
and can provide a better throughput for larger matrices that do not
fit into one ciphertext. It also uses a constant memory for the evalu-
ation keys, regardless of 𝑛, thus enabling the multiplication of large
matrices, without the need for larger cryptographic parameters or
the re-generation of the evaluation keys.

Sav et al. [129] propose a system, Poseidon, for training feed-
forward neural networks under MHE using a packing scheme that
optimizes the learning over one sample (instead of a mini-batch)
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Dimension Jiang et al. [72] Poseidon [129] Multi-dimensional (𝛿=32)

𝑛 × 𝑛 Total | Amortized (s) #𝑀 logN Total | Amortized (s) #𝑀 logN Total | Amortized (s) #𝑀 logN
32 × 32 0.43 | 0.05 8 14 6.14 | 6.14 1 14 0.43 | 0.05 8 14
64 × 64 0.82 | 0.41 2 14 14.02 | 14.02 1 14 1.70 | 0.21 8 14
128 × 128 2.86 | 2.86 1 15 69.25 | 69.25 1 15 7.16 | 0.89 8 14
256 × 256 NA 1 17 NA 1 17 30.6 | 3.82 8 14
512 × 512 NA 1 19 NA 1 17 79.17 | 9.89 8 14

Table 3: Comparison between our multi-dimensional packing with Jiang et al.’s [72] and Sav et al.’s (Poseidon) [129] packing

approaches. We report the total and amortized runtime per matrix for the multiplication of #𝑀 matrices of size 𝑛 × 𝑛. logN is

the ring degree, and NA indicates that the memory was insufficient to carry out the evaluation.

Runtime (s)

Structure
(𝑏,𝑑 ,ℎ,𝑇 ,𝑜 ,𝜅) FP FP-𝑡𝑜 BP BP-𝑡𝑜 FP Total BP Total

(256, 64, 32, 6, 1, 1) 4.36 7.44 7.60 11.55 29.24 49.55
(256, 64, 32, 6, 1, 2) 4.42 7.39 7.62 11.47 32.46 53.42
(256, 64, 32, 6, 1, 4) 4.32 7.47 7.55 11.59 38.52 61.46
(256, 64, 32, 6, 1, 6) - 7.38 - 11.42 44.28 68.52

Table 4: Rhode microbenchmarks for the forward pass (FP)

and backward pass (BP) per timestep without optimization.

𝑡𝑜 represents the output-stage timestep.

with vector-matrix operations. Thus, with their scheme, a matrix
multiplication between two 𝑛 ×𝑛 matrices requires 𝑛 vector-matrix
multiplications using their one-cipher packing approach (yielding
same total and amortized time, see Table 3). With their approach a
vector-matrix multiplication requires O(log𝑛) inner sum rotations,
and repeating this 𝑛 times to achieve a matrix multiplication yields
a complexity of O(𝑛 log𝑛) for a fixedN . For example, for the multi-
plication of two 32 × 32 matrices, our multi-dimensional packing is
∼14× and ∼122× faster than Poseidon’s packing approach for total
and amortized times, respectively. The memory complexity of their
approach also depends on 𝑛 for configuring N , hence affecting the
size of the evaluation keys (see Table 7, Appendix I), whereas our
packing decouples the memory complexity from 𝑛.

Finally, we discuss another packing scheme similar to ours. Aha-
roni et al., improving on earlier work [3], propose a packing scheme
that leverages on the CKKS complex domain to enable dense pack-
ing [4]. Their approach is based on data structures that pack tensors,
e.g., matrices or hypercubes, in fixed sized chunks, for a natural use
of the SIMD capabilities. We observe that our multi-dimensional
packing differs in multiple ways. First, their packing density is less
optimal in terms of slot-usage as a ciphertext multiplication requires
inner sums to compute the product between tensors. Consequently,
the result will be sparsely packed compared to our technique that
fully-utilizes the ciphertext slots. Then, their approach is not format-
preserving thus requires pre- or post-processing, whereas our ap-
proach supports chaining multiplications without additional pro-
cessing. Thus, even though their approach consumes two levels
less than Jiang et al. [72] (on which our packing is based) for the
case of only one multiplication, the complexity of their scheme
remains asymptotically equivalent. Finally, our approach is sim-
pler to instantiate as its complexity depends only on 𝛿 , whereas
Aharoni et al.’s approach requires the configuration of many param-
eters for applications that require sequential operations, e.g., the

training of RNNs. As their work does not provide an open source
implementation, an experimental comparison is not possible.

Comparison with Poseidon [129]. We first note that a direct
comparison between Rhode and Poseidon is non-trivial as the
latter does not support RNN training and important mechanisms
such as gradient clipping. Moreover, Poseidon’s packing scheme
cannot handle RNN mini-batch training without introducing sev-
eral changes, e.g., an explicit transpose operation required when
the input batch is packed in one ciphertext, in its workflow. Yet,
we estimate the runtime of Poseidon based on the matrix multipli-
cation microbenchmarks (discussed earlier) and a naive-transpose
operation. To process a batch of 𝑏 samples, Poseidon’s one-sample
processing approach requires the repetition of the forward and back-
ward pass 𝑏 times, hence, it significantly increases computational
complexity due to the large number of homomorphic rotations and
vector-matrix multiplications that are required for the FP and BP
of the various timesteps. Moreover, to support mini-batch training,
Poseidon requires packing each sample to a different ciphertext,
which significantly increases the communication overhead due to
the required bootstrapping operations. For example, for a batch size
of 𝑏=256 and 𝑇=4 Poseidon requires 1,024 CBootstrap(·) opera-
tions compared to 12 for Rhode. Overall, we estimate that training
an RNN with 𝑑=32, ℎ=32, 𝑏=256, and 𝑇=4 using Poseidon would
be ∼25-32× slower compared to Rhode and its optimized version.

8 CONCLUSION

In this work, we presented Rhode, a novel system that enables
privacy-preserving training of and predictions on RNNs in a cross-
silo federated learning setting. Building on multi-party homomor-
phic encryption (MHE), Rhode preserves the confidentiality of
the training data, the model, and the prediction data, under a pas-
sive adversary model with collusions of up to 𝑁 − 1 parties. By
leveraging on a multi-dimensional packing scheme and polyno-
mial approximations, Rhode enables efficient mini-batch training
and addresses the problem of exploding/vanishing gradients that is
inherent in RNNs. Rhode scales sub-linearly with the number of
features and the number of data holders, linearly with the number
of timesteps and the batch size, and its accuracy is on par with non-
secure centralized and decentralized solutions. To the best of our
knowledge, Rhode is the first system providing the building blocks
for federated training of RNNs under encryption. As future work,
we plan to evaluate Rhode on more complex RNN architectures.
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A RHODE EXTENSIONS

Network Topology. As discussed in Section 4, Rhode relies on
a tree-structure for efficiently aggregating the data holders’ local
models in the FL protocol. Yet, it is worth mentioning that Rhode’s
underlying operations are decoupled from the network topology as
each party performs local RNN training under encryption. For in-
stance, switching to the traditional FL star topology (with a central
aggregation server) would require the server to add the 𝑁 models
received by the parties. Furthermore, the communication complex-
ity of the collective bootstrapping (𝐵𝑆𝑐 ) and the FL workflow (𝐹𝐿𝑐 )
(see Appendix F) would be affected proportionally to the number of
links between the server and the clients, i.e., with a star topology
the 𝑁 − 1 terms of both 𝐵𝑆𝑐 and 𝐹𝐿𝑐 (see Appendix F) would be 𝑁 .

Availability, Dropouts, and Asynchronous Learning. In this
work, we assume that all data holders are available (online) dur-
ing Rhode’s training and prediction workflows. As we rely on a
cross-silo federated learning setting, this assumption is realistic,
yet, prohibitive in terms of dropouts as the collective cryptographic
operations, e.g., CBootstrap(·) or CKeySwitch(·), require collabo-
ration among all the data holders. Thus, to support asynchronous
federated learning (driven by a time-threshold or by relying on a
subset of online data holders) or dropouts, Rhode can be deployed
with a threshold multi-party homomorphic encryption scheme
which enables a subset of 𝑡-out-of-𝑁 data holders to perform the
collective operations [110]. However, this cryptographic scheme
would introduce a relaxation in Rhode’s threat model (allowing
collusions of up to 𝑡 − 1 data holders instead of 𝑁 − 1).
Active Adversaries During Training. As discussed in Section 4,
Rhode assumes a passive-adversary threat model that tolerates
collusions between up to 𝑁 − 1 parties. Extending Rhode to ac-
tive adversaries requires primitives that enable the verification
of the tree-based aggregation and the local gradient descent op-
erations performed by each data holder. Such primitives can be
implemented with verifiable computation techniques, e.g., secure
multi-party computation [138] or zero-knowledge proofs [23, 165],
however, with a significant computational cost. Moreover, another
extension required to tolerate active adversaries during training
is to verify the correctness of the data holders’ inputs, e.g., us-
ing statistical tests [28] or proofs of authenticity on encrypted
data [24], as well as their consistency, e.g., using cryptographic
commitments [165]. While such techniques can reduce the risk
of poisoning attacks in federated learning [141], their elimination
remains an open research problem. Currently proposed defenses
rely on gradient inspection [8, 87, 142, 155, 161], thus, raising new
challenges for encrypted FL pipelines.

Attacks Against PaaS. As discussed in Section 4, by retaining
any information exchanged among the data holders and the final
model encrypted, Rhode mitigates inference attacks that target
the gradients/model updates exchanged during the FL training pro-
cess [64, 102, 113, 166]. Nonetheless, inference attacks, e.g., model
stealing [143] or membership inference [135], are also possible by
exploiting the outputs of the PaaS. This is particularly the case
for time-series applications (e.g., auto-regressive ones) where pre-
dictions (or queries) might be performed continuously over time.
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Rhode can minimize such leakage by feeding encrypted predic-
tions back to the RNN for further oblivious processing and decrypt
only an aggregated result (e.g., revealing only the time-series trend
over a coarse period instead of a more fine-grained one). Addi-
tionally, such inference attacks against PaaS can be mitigated with
mechanisms orthogonal to Rhode, e.g., by limiting the number of
predictions a querier can request and/or by integrating a mech-
anism that perturbs the prediction outputs to obtain differential
privacy guarantees.

B SECURITY ANALYSIS

We demonstrate that Rhode fulfills the data and model confiden-
tiality objectives (Section 4.1) by arguing that a computationally-
bounded adversary that controls up to 𝑁 − 1 data holders (i.e.,
yielding a collusion among 𝑁 − 1 data holders) cannot infer any
information about the honest data holder’s data or the trained
model. We first note that CKKS scheme is IND-CPA secure and
its semantic security is based on the hardness of the decisional
RLWE problem [29, 90, 97]. We rely on the proofs by Mouchet et
al. [111], which show that the MHE cryptographic protocols, i.e.,
CKeyGen(·) and CKeySwitch(·), are secure in a passive-adversary
model with up to 𝑁 − 1 collusions as long as the underlying RLWE
problem is hard. While their proofs are constructed for the BFV
scheme, they generalize to CKKS, since the two schemes rely on
the same computational assumptions. The security of the collective
bootstrapping operation, i.e., CBootstrap(·), is proven analogously
in earlier works employing CKKS-based MHE [48, 129].

Assume that any ciphertext communicated with Rhode is gen-
erated using the CKKS cryptosystem parameterized to ensure a
post-quantum security level of 𝜆. We rely on the real/ideal world
simulation paradigm [89] and consider a real-world simulator S
that simulates a computationally-bounded adversary corrupting
𝑁 − 1 data holders. During Rhode ’s training protocol, the model
parameters that are exchanged among data holders at the Aggregate
and Model Update Phases are encrypted with the collective public
key, while all other phases rely on the collective MHE operations
that are proven to be CPA-secure. The result of any computation
performed during the Local Computation Phase, following Lemmas
2, 3, and 4 of [29], is a valid encryption under CKKS, thus, achieves
a security level of 𝜆. Furthermore, the decryption of any ciphertext
requires collaboration among all the data holders that participated
inCKeyGen(·). To avoid leakage due to two consecutive broadcasts,
we rely on an existing countermeasure [111] that re-randomizes
any ciphertext before communicating it to the network. As a re-
sult, the sequential composition of all cryptographic computations
during the training phase of Rhode remains simulatable by S. Sim-
ilarly, during Rhode’s prediction phase, the data of the querier
is encrypted with the collective public key and the prediction re-
sult is re-encrypted with the querier’s public key; this is the only
entity that can decrypt thanks to the simulatable CKeySwitch(·)
functionality. Hence, S can simulate all of the encryptions commu-
nicated during Rhode’s training and prediction phase by generating
random ciphertexts with equivalent security parameters; the real
outputs cannot be distinguished from the ideal ones. Consequently,
Rhode protects the confidentiality of the honest data holder’s data
and the model (following analogous arguments).

C PARAMETER SELECTION

We now devise guidelines for choosing the parameters that play a
vital role for the efficient RNN training execution in Rhode. In par-
ticular, we discuss the cryptographic parameters and the sub-matrix
dimension 𝛿=𝑛/ℓ (see Section 5.1) that is crucial for the efficiency
of the multi-dimensional matrix multiplication (Algorithm 3). RNN-
related parameters, e.g., the dimension of the hidden matrix, depend
on the learning task and the characteristics of the input data, thus,
their configuration is out-of-the-scope of this work.

Cryptographic Parameters. These are linked to the depth of the
circuit under evaluation and the desired security level. The circuit
depth highly depends on the number of hidden layers and the ap-
proximation degree (𝔭) of the activation and clipping functions. A
higher circuit depth implies a higher number of initial level L and
𝑄 , for reducing the number of CBootstrap(·) yielding a require-
ment for bigger cryptographic parameters. To configure the security
level, Rhode follows the guidelines of the homomorphic encryption
standardization whitepaper for choosing the cyclotomic ring size
N (given the ciphertext modulus 𝑄) [7]. Configuring the crypto-
graphic parameters for the training of neural networks in general
is a non-trivial task due to the high number of other parameters
that affect this choice, e.g., the number of layers, the polynomial
approximation degree, the number of data holders, etc. We refer
the reader to [129] for additional details on how to configure the
cryptographic parameters based on other neural network learning
parameters and to [111] for an overview of these parameters.

Choosing 𝛿 . Recall that the complexity of the matrix multiplica-
tion described in Algorithm 3 amortizes to O(𝛿). In the extreme
case where 𝛿=1, there are no costly ciphertext operations, except
for arithmetic multiplications and additions (no linear transforma-
tions are needed). Thus, choosing 𝛿=1 minimizes the amortized
computational complexity and supports any dimension for the in-
put matrices. However, the memory complexity (in the number of
ciphertexts) becomes the number of elements in the input matri-
ces. Since batch sizes are usually in the range {64, 128, 256}, it is
unlikely that all the N/2 ciphertext slots will be used when set-
ting 𝛿=1. In fact, since the number of slots is usually in the range
of {213, 214, 215}, this approach would lead to a very low packing
density and inefficient memory usage. Instead, we choose a value
for 𝛿 that provides an acceptable trade-off between computational
cost and memory complexity. To maximize the packing density, the
batch size should be 𝑏= N

2∗𝛿 , thus we can derive that 𝛿= N
2∗𝑏 . Since

the batch size can be small due the learning task, we introduce
the ciphertext-utilization parameter 𝛼 that indicates the fraction
of the utilized ciphertext slots, to relax the utilization assumption
(e.g., 𝛼=1 and 𝛼=0.5 indicate full and half utilization, respectively).
Given that the batch size cannot be more than𝑚𝑎𝑥𝐵 and that the
ciphertext utilization is at least 𝛼 we have:

N ∗ 𝛼
2 ∗ 𝛿 ≤ 𝑏 ≤ 𝑚𝑎𝑥𝐵

which translates to:

𝛿 ≥ N ∗ 𝛼
2 ∗𝑚𝑎𝑥𝐵

.

For example, in our experiments (see Section 7), we choose N=214.
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Thus, for a full ciphertext utilization (𝛼=1) at 𝑏=256, we have:

𝛿 ≥ 214

2 ∗ 256 = 32.

For a ciphertext utilization of 𝛼=0.5, the batch size can be as small
as 𝑏=128 at the same 𝛿=32, following a similar calculation.

D APPROXIMATION OF THE PROPOSED
CLIPPING FUNCTIONS

Figure 3 displays the approximation and error curves of TanhClip(·)
and SoftClip(·) (compared to the baseline clipping function (Clip(·)))
by employing the Minimax method with degrees 𝔭=5 and 𝔭=15 in
the approximation interval [−30, 30] and for a clipping threshold of
|𝑚 |=5. Error curves are plotted in the range of [−32, 32] to observe
the behavior of the approximations out of the approximation inter-
val limits. 𝐸 in the plot legends indicates the average absolute error
of each function in the approximation interval [−30, 30]. We ob-
serve that both approximations yield similar shapes and their error
oscillation is alike. Yet, for smaller degrees, e.g., 𝔭=5, the average
error 𝐸 of TanhClip(·) is slightly smaller than SoftClip(·) (0.643
vs.0.706). For higher degrees (𝔭=15), however, SoftClip(·) achieves
a better approximation (i.e., 𝐸=0.089 vs. 𝐸=0.183 for TanhClip(·)).
Moreover, the divergence of SoftClip(·) near the limits of the ap-
proximation interval is slower than TanhClip(·) (see Figure 3c); this
is a desired characteristic for any approximation. As a consequence,
one should choose the approximation method based on the charac-
teristics of the dataset, the desired degree (or precision) required for
the polynomial approximation, and the aforementioned features of
these approximations.

E LOCAL COMPUTATION PHASE FOR GRUS

Algorithm 4 summarizes Rhode’s local computation phase, i.e., the
forward and backward pass, for training a GRU.

F DETAILED COMPLEXITY ANALYSIS

Herewe detail the analysis on Rhode’s memory cost per data holder,
its communication and computational costs for an Elman network
given in Section 7.1. We account for the Local Computation, Aggre-
gate, and Model-Update Phases. We exclude the Setup Phase, i.e.,
the generation of the cryptographic keys (𝑝𝑘 , [𝑒𝑘], etc.) and their
memory costs from our analysis; this is a one-time phase whose
communication cost predominantly depends on the generation of
the rotation and relinearization keys (see [111] for details).

Recall that the number of ciphertext slots is N/2, the input size
(number of features) is denoted as 𝑑 , the batch size as 𝑏, the hidden
dimension as ℎ, the sub-matrix dimension as 𝛿 , the output size as 𝑜 ,
and the number of data holders, local iterations, global iterations,
and timesteps as 𝑁 , 𝑙 , 𝑒 , and𝑇 , respectively. The maximum size of a
ciphertext is denoted by 𝑠 . We denote the number of plaintexts used
to pack a vector/matrix 𝑎 as |𝑎 |, and the number of ciphertexts with
bold-face 𝒂. To ease the presentation of our complexity analysis we
use the following configuration as an example:

Example Configuration: Assume a ring size ofN=214 and cipher-
texts with an initial level L=10. Then, assume that 𝑑=16, 𝑏=256,
ℎ=32, 𝛿=32, 𝜅=1 (many-to-one RNN), and 𝑜=1 (i.e., a regression

Algorithm 4 Local Computation Phase (GRU)

Inputs: U𝑧 ,U𝑟 ,U𝑛,W𝑧 ,W𝑟 ,W𝑛,V, b𝑦, b𝑧 , b𝑟 , b𝑛, hprev,

𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑡 ), 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑡 )
Outputs: ∇U𝑧 ,∇U𝑟 ,∇U𝑛,∇W𝑧 ,∇W𝑟 ,∇W𝑛,∇V,∇b𝑦,∇b𝑧 ,∇b𝑟 ,∇b𝑛
1: h0 ← hprev
2: for 𝑡 ← 1 : 𝑇 do ⊲ Forward Pass
3: zraw ← h𝑡−1 ×W𝑧 + 𝑥𝑡 × U𝑧 + b𝑧 ⊲ Z-Gate
4: z𝑡 ← 𝜚 (zraw)
5: rraw ← h𝑡−1 ×W𝑟 + 𝑥𝑡 × U𝑟 + b𝑟 ⊲ R-Gate
6: r𝑡 ← 𝜚 (rraw)
7: nraw ← (r𝑡 ⊙ h𝑡−1) ×W𝑛 + 𝑥𝑡 × U𝑛 + b𝑛 ⊲ N-Gate
8: n𝑡 ← 𝜑 (nraw)
9: h𝑡 ← z𝑡 ⊙ h𝑡−1 + (1 − z𝑡 ) ⊙ n𝑡 ⊲ Hidden State
10: p𝑡 ← h𝑡 × V + b𝑦 ⊲ Output Gate
11: end for

12: dhnxt = 0 ⊲
𝜕𝑙𝑜𝑠𝑠 [𝑇+1:∞]

𝜕h𝑡
13: ∇U𝑧 ,∇U𝑟 ,∇U𝑛,∇W𝑧 ,∇W𝑟 ,∇W𝑛,∇V,
∇b𝑦,∇b𝑧 ,∇b𝑟 ,∇b𝑛 = 0

14: for 𝑡 ← 𝑇 : 1 do ⊲ Backward Pass
15: dy← p𝑡 − 𝑦𝑡
16: dh← dy × V𝑇 + dhnxt
17: dn← (1 − z𝑡 ) ⊙ dh

18: dnraw ← 𝜑 ′(n𝑡 ) ⊙ dn = (1 − 𝑛2𝑡 ) ⊙ dn

19: dr← (dnraw ×W𝑇
𝑛 ) ⊙ h𝑡−1

20: drraw ← 𝜚 ′(r𝑡 ) ⊙ dr = r𝑡 ⊙ (1 − r𝑡 ) ⊙ dr

21: dz← (h𝑡−1 − n𝑡 ) ⊙ dh

22: dzraw ← 𝜚 ′(z𝑡 ) ⊙ dz = z𝑡 ⊙ (1 − z𝑡 ) ⊙ dz

23: dhℎ ← dh ⊗ z𝑡
24: dh𝑧 ← dzraw ×W𝑇

𝑧

25: dh𝑟 ← drraw ×W𝑇
𝑟

26: dh𝑛 ← r𝑡 ⊗ (dnraw ×W𝑇
𝑛 )

27: dhnxt ← dh𝑧 + dhℎ + dh𝑛 + dh𝑟
28: ∇V+ = h𝑡 ⊗ dy

29: ∇U𝑧+ = 𝑥𝑡 ⊗ dzraw
30: ∇U𝑟+ = 𝑥𝑡 ⊗ drraw
31: ∇U𝑛+ = 𝑥𝑡 ⊗ dnraw
32: ∇W𝑧+ = h𝑡−1 ⊗ dzraw
33: ∇W𝑟+ = h𝑡−1 ⊗ drraw
34: ∇W𝑛+ = r𝑡 ⊙ (h𝑡−1 ⊗ dnraw)
35: ∇b𝑦+ = dy

36: ∇b𝑧+ = dzraw
37: ∇b𝑟+ = drraw
38: ∇b𝑛+ = dnraw
39: end for

task). Finally, assume a degree 7 (𝔭=7) polynomial approximation
of the activation and clipping functions (these are parameters pri-
marily used in our experiments).

Memory Cost. We estimate the memory usage per data holder
based on the number of input plaintexts, activation ciphertexts
(e.g., h𝑡 in Algorithm 2), weight ciphertexts (e.g., U,V,W), and
gradient ciphertexts (e.g., ∇U,∇W,∇V). We denote the number of
plaintexts used to pack a vector/matrix 𝑎 as |𝑎 |, and the number
of ciphertexts with bold-face 𝒂. We first calculate the number of
matrix rows/columns that each ciphertext can pack. Since we rely
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(a) Approximation curves with 𝔭=5
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(b) Error curves with 𝔭=5
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(c) Approximation curves with 𝔭=15
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Figure 3: Approximation and error curves of TanhClip(·) and SoftClip(·) compared to baseline clipping function Clip(·) with

degrees 𝔭=5 and 𝔭=15 in the interval [−30, 30] for a clipping threshold |𝑚 |=5. Error curves are plotted in the range of [−32, 32]. 𝐸
in the legends of the plots indicates the average absolute error per approximation in the interval [−30, 30].

on row-based packing, the number of matrix rows per ciphertext

is
⌊
N
2∗𝛿

⌋
and the number of columns per ciphertext is 𝛿 , for any

matrix size. As we split the input batch over the third dimension
(i.e., the size of a ciphertext), the number of sub-matrix rows per

ciphertext is
⌈

𝑏
(N/2)/𝛿

⌉
=

⌈
2∗𝛿∗𝑏
N

⌉
and the number of sub-matrix

columns is
⌈
𝑐
𝛿

⌉
, for any column of size 𝑐 . These allow us to derive

the total number of plaintexts required for the input batch and
activation ciphertexts as:

|𝑥𝑡 | =
⌈
2 ∗ 𝛿 ∗ 𝑏
N

⌉
∗
⌈
𝑑

𝛿

⌉
(input plaintexts)

|z𝑡 | = |h𝑡 | =
⌈
2 ∗ 𝛿 ∗ 𝑏
N

⌉
∗
⌈
ℎ

𝛿

⌉
(hidden ciphertexts)

|p𝑡 | =
⌈
2 ∗ 𝛿 ∗ 𝑏
N

⌉
∗
⌈𝑜
𝛿

⌉
(output ciphertexts)

As we replicate the weight matrices for the sub-matrix operations
(see Section 5.1), for an 𝑛 ×𝑚 weight matrix, the number of sub-
matrix rows and columns per weight ciphertext is

⌈
𝑛
𝛿

⌉
and

⌈
𝑚
𝛿

⌉
,

respectively. Therefore, the total number of ciphertexts for the
weight matrices are:

|U| =
⌈
𝑑

𝛿

⌉
∗
⌈
ℎ

𝛿

⌉
(input-weight ciphertexts)

|W| =
⌈
ℎ

𝛿

⌉
∗
⌈
ℎ

𝛿

⌉
(hidden-weight ciphertexts)

|V| =
⌈
ℎ

𝛿

⌉
∗
⌈𝑜
𝛿

⌉
(output-weight ciphertexts)

Finally, the number of gradient ciphertexts per weight matrix is
the same as the number of ciphertexts for the respective activation
or weight matrix. The number of plaintexts and ciphertexts sets
an upper bound to the memory cost per data holder, per timestep
execution. Yet, not all computed values need to be stored during
the training. For example, when the activation function is Tanh,
dh ⊙ 𝜑 ′(z𝑡 ) (Line 13, Algorithm 2) is equivalent to dh ⊙ (1 − h2𝑡 )
as the derivative of Tanh(𝑥) is 1 − Tanh2 (𝑥). Thus, z𝑡 is computed
on-the-fly in the forward pass, and then discarded as it is not used in
the backward one. For the Example Configuration, Rhode requires
only one ciphertext for each activation, weight, and gradient matrix.

Communication Cost. Recall that the communication among
the data holders is triggered by: (a) the collective bootstrapping
(CBootstrap(·)) operation to refresh the ciphertexts, and (b) the
federated learning (FL) workflow, where data holders aggregate
their locally computed gradients (i.e., Aggregate Phase) before the
aggregation server updates the global model and broadcasts it (i.e.,
Model-Update Phase).
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Collective Bootstrapping. The total number of bootstrapping op-
erations depends on both the learning and the cryptographic pa-
rameters. For instance, the approximation degree of the activation
or clipping functions (𝔭) and the polynomial ring dimension (N )
have a direct effect on the depth of the circuit and thus, the number
of bootstraps. We refer the reader to [129] for the detailed esti-
mation of the number of bootstraps depending on the learning
and the cryptographic parameters. For the Example Configuration,
Rhode bootstraps h𝑡 (Line 4) and dz (Line 13) in the forward pass
of each local timestep iteration (Algorithm 2). After the execution
of all timesteps, the intermediate term I=h𝑡 ⊗ dy (Line 15) in the
backward pass is bootstrapped in the output stage, i.e., Rhode exe-
cutes one bootstrap for a one/many-to-one RNN structure and 𝜅
bootstraps for one/many-to-many structures on I where |I|=|dz|.
Rhode also bootstraps the weight ciphertexts U, V, andW, after the
Model-Update Phase to refresh them before the next training round.
Thus, the communication cost due to the collective bootstrapping
operation (𝐵𝑆𝑐 ) is:

𝐵𝑆𝑐 < 𝑒 ( |U| + |W| + |V| + 𝑙 |I|𝜅 +𝑇𝑙 ( |ht| + |dz|)) (𝑁 − 1)𝑠 .
Recall that 𝑠 sets an upper bound for the messages; the communica-
tion cost of the bootstrapping is lower in practise. For the Example
Configuration 𝐵𝑆𝑐=(4 + 2𝑇 ) (𝑁 − 1)𝑠 per local iteration.
FL Workflow. During a global training iteration, the data holders
collectively aggregate their locally computed gradients (i.e., ∇U,
∇W, ∇V, see Line 8, Algorithm 1) and the aggregation server up-
dates the global model and broadcasts its weights (i.e., U, W, V,
Line 4, Algorithm 1). In Rhode, data holders are organized in a
tree-structured network topology, thus, they collectively aggregate
their gradients by sending them to their parent in the tree. Then,
the aggregation server broadcasts the updated weights down the
tree. Given that this communication is incurred for every global
iteration, the total communication cost (𝐹𝐿𝑐 ) is:

𝐹𝐿𝑐 = ( |∇U| + |∇W| + |∇V| + |U| + |W| + |V|)𝑒 (𝑁 − 1)𝑠 .

Computational Cost. We remind that Rhode’s computational
cost per data holder and per local iteration depends on the dom-

inating terms, i.e., the number of CBootstrap(·) operations, the
degree 𝔭, and the cost of the linear transformations (i.e., 𝜎 , 𝜏 , 𝜓𝑖
and 𝜙𝑖 ) for the matrix multiplication. Note that bootstrapping
a ciphertext at a level L𝒄 (with an initial level L) has a com-
plexity of 𝐶 (𝐵𝑆)=N log2 (N)(L + 1) + N log2 (N)(L𝒄 + 1), homo-
morphic rotations have a complexity of 𝐶 (𝑅)=O(N log2 (N)L2

𝒄
),

and ciphertext-ciphertext multiplications have a complexity of
𝐶 (𝑀)=4𝑁 (L𝒄 + 1) +𝐶 (𝑅) [129].

The degree (𝔭) of the polynomial approximation affects the depth
of the circuit required for an activation function; computing 𝜑 (or
its derivative 𝜑 ′) consumes

⌈
log2 (𝔭)

⌉
(
⌈
log2 (𝔭 − 1)

⌉
, respectively)

levels. Thus, using a higher𝔭 for polynomial approximation has two
consequences to the computational cost: (i) it increases the depth
of the circuit, hence the number of bootstraps, and (ii) results in
more homomorphic multiplications. As discussed in Section 5.1, the
multi-dimensional matrix multiplication (Algorithm 3) consumes
3 levels and yields an amortized cost of O(𝛿) rotations per matrix
(depending on 𝛿 , see Appendix C). The Example Configuration
requires 6 matrix multiplications per timestep (8 for the output-
stage timestep due to the multiplications with V and V𝑇 which adds

a constant factor to the complexity), thus yielding a computation
complexity of O(6𝑇𝛿) rotations for a local iteration of 𝑇 timesteps
and per ciphertext. Recall that Rhode has the optimized execution
option for the matrix multiplication as one can pre-compute the the
linear transformations for the matrix multiplications per iteration
to re-use them for all timesteps. For the Example Configuration,
this reduces the cost to O(6𝛿) per local iteration, at a memory cost
of ×d per matrix.

G IMPLEMENTATION DETAILS

We implement Rhode in Go [55] and employ the Lattigo [85] lattice-
based (M)HE library. We rely on Onet [116] to build a decentralized
system and Mininet [103] to emulate a virtual network. Our experi-
ments are performed on 10 Linux servers with Intel Xeon E5-2680
v3 CPUs running at 2.5GHz with 24 threads on 12 cores and 256 GB
RAM emulating a virtual network with an average network delay
of 20ms and 1Gbps bandwidth.

H DETAILED DATASET DESCRIPTION

Hourly Energy Consumption (HEC): This dataset contains his-
torical hourly energy consumption (in MegaWatts) from 12 major
electricity distribution companies across the United States. The
data was collected by PJM Interconnection LLC’s website and is
publicly available on Kaggle [76]. The dataset contains 12 files, each
corresponding to a distribution company and to a specific time
period. Table 5 shows further details about the names of these 12
companies and the number of samples in each file. The total num-
ber of samples is 1, 090, 167. Note that for our experiments with
𝑁=10 data holders, we use the first 10 companies for the train-
ing, but we include samples from all companies in the test set. To
capture the seasonality in energy consumption (i.e., trends with
respect to daytime vs. nighttime, weekdays vs. weekends, winters
vs. summers etc.), we incorporate on top of the energy consumption
values 5 more features in the input space: hour, day-of-the-week,
day-of-the-month, month and year (𝑑=6). We also apply Min-Max
scaling on the data to minimize the risk of explosion on the ap-
proximated activation functions. Additionally, for every file, we
separately perform Min-Max scaling on the energy consumption
values. This allows for a realistic distribution of the data among the
multiple data holders (each data holder has one file, and does not
know the range of the energy consumption values of other data
holders). Finally, we process the dataset with a sequence of length
𝑇=[10, 20].
Stock Prices (Stock): This dataset contains historical daily stock
prices and statistics for 10 companies, and was collected by the
Yahoo! Finance website [36]. Similar to the HEC dataset, we per-
form Min-Max scaling on each file separately. Table 6 shows the
company name for each file, the data collection period, and the
number of samples per file. The total number of samples is 39,873.
To prepare the dataset for the forecasting task, we pre-process and
slice it using a sliding window of size 𝑇=5.

Inflation dataset (Inflation): This dataset contains quarterly in-
flation rate based on consumer price index from 1998-Q1 to 2022-Q1
with 97 timesteps for 40 different countries and was collected from
the Organisation for Economic Cooperation and Development [35].

520



Privacy-Preserving Federated Recurrent Neural Networks Proceedings on Privacy Enhancing Technologies 2023(4)

Company Name File Name [76] #Samples

American Electric Power [AEP_hourly.csv] 121,273
Commonwealth Edison [COMED_hourly.csv] 66,497
The Dayton Power and Light C. [DAYTON_hourly.csv] 121,275
Duke Energy Ohio/Kentucky [DEOK_hourly.csv] 57,739
Dominion Virginia Power [DOM_hourly.csv] 116,189
Duquesne Light Co. [DUQ_hourly.csv] 119,068
East Kentucky Power Cooperative [EKPC_hourly.csv] 45,334
FirstEnergy [FE_hourly.csv] 62,874
Northern Illinois Hub [NI_hourly.csv] 58,450
PJM East Region [PJME_hourly.csv] 145,366
PJM West Region [PJMW_hourly.csv] 143,206
PJM Load [PJM_Load_hourly.csv] 32,896

Table 5: Detailed description of the HEC dataset.

Company Name File Name [36] From To #Samples

Apple Inc. [AAPL.csv] 1980-12-12 2017-08-11 9,247
Amazon.com, Inc. [AMZN.csv] 1997-05-15 2022-05-19 6,296
Alibaba G.H.L. [BABA.csv] 2014-09-19 2022-05-19 1,931
Facebook [FB.csv] 2012-05-18 2022-05-19 2,518
Alphabet Inc. [GOOG.csv] 2004-08-19 2022-05-19 4,470
Alphabet Inc. [GOOGL.csv] 2004-08-19 2022-05-19 4,470
Netflix Inc. [NFLX.csv] 2002-05-23 2022-05-19 5,034
Tesla, Inc. [TSLA.csv] 2010-06-29 2022-05-19 2,995
Twitter, Inc. [TWTR.csv] 2013-11-07 2022-05-19 2,148
Uber Tech., Inc. [UBER.csv] 2019-05-10 2022-05-19 764

Table 6: Detailed description of the Stock dataset.

We split the data into 40 different files for a realistic distribution.
Each data holder receives 4 files (imbalanced setting) or the aggre-
gate data is distributed evenly to the data holders (even setting).
We perform Min-Max scaling on each file separately. Each file is
processed with a sequence of length 8.

Breast Cancer Wisconsin (BCW): This dataset [126] contains
benign and malignant breast cancer samples. As the original dataset
is centralized with 699 samples (576 training and 123 test samples),
we randomly distribute the data among 𝑁=10 data holders each
having 57-58 training samples for the even setting. For the imbal-
anced setting, one party has half of the training data and we evenly
distribute the other half to the remaining parties. We perform Min-
Max scaling on each file separately. BCW has 9 features that we
treat as timesteps, i.e., 𝑇=9 (we also experimentally evaluated 𝑇=1
and 𝑑=9 but did not observe a significant difference in classification
accuracy).

I MEMORY COMPLEXITY

Table 7 displays the memory complexity of our multi-dimensional
packing, as well as Jiang et al.’s [72] and Sav et al.’s [129] packing
approaches.

[72] [129] Multi-dimensional

N O(𝑛2) O (𝑛2) O (𝛿2)
#Ciphertexts O(1) O (1) O (𝑛2/𝛿2)

Evaluation Keys (Size) O(𝑛3) O (𝑛2 log𝑛) O (𝛿3)
Table 7: Comparison of the memory complexity between our

multi-dimensional packing to Jiang et al.’s [72] and Sav et

al.’s (Poseidon) [129] approaches, with respect to the matrix

and sub-matrix dimensions 𝑛 and 𝛿 .
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