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ABSTRACT
This work studies compilation of honest-majority semi-honest se-

cure multi-party protocols secure up to additive attacks to mali-

ciously secure computation with abort. Prior work concentrated

on arithmetic circuits composed of addition and multiplication

gates, while many practical protocols rely on additional types of

elementary operations or gates to achieve good performance. In

this work we revisit the notion of security up to additive attacks in

the presence of additional gates such as random element generation

and opening. This requires re-evaluation of functions that can be

securely evaluated, extending the notion of protocols secure up to

additive attacks, and re-visiting the notion of delayed verification

that points to weaknesses in its prior use and designing a mitigation

strategy. We transform the computation using dual execution to

achieve security in the malicious model with abort and experimen-

tally evaluate the difference in performance of semi-honest and

malicious protocols to demonstrate the low cost.

KEYWORDS
secure multi-party computation, secret sharing, active security,

extended set of gates

1 INTRODUCTION
Secure multi-party computation techniques have experienced sig-

nificant performance improvements in recent years and are now

suitable for performing complex computation on large data sets.

Historically, there has been a significant performance gap between

techniques designed for the semi-honest (or passive) setting and

the stronger malicious (or active) setting. A recent line of work [9,

21, 34] capitalizes on the notion of semi-honest protocols for arith-

metic circuits secure up to additive attacks in the malicious model.

Informally, security up to additive attacks means that corrupt par-

ticipants are able to tamper with the computation of a gate only

by adding some value to it. This property was utilized to build effi-

cient protocols for arithmetic circuits in the honest majority setting

secure against malicious adversaries with abort from semi-honest

building blocks secure up to additive attacks. The result is efficient

protocols in the malicious model (with abort) only slower by a small

factor compared to the semi-honest version. Security with abort
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permits detecting misbehavior and terminating the computation,

but not recovering from it. Fairness and guaranteed output delivery

were also consequently considered [27, 35].

To this date, this line of work considered arithmetic circuits

based on linear secret sharing. However, in practice many efficient

protocols for implementing common operations such as compar-

isons in this setting are not arithmetic circuits consisting of only

addition and multiplication gates. Instead, they rely on an extended

set of elementary building blocks which, in addition to addition and

multiplication gates, often uses simple operations such as opening

a secret-shared value and generating a secret-shared random ele-

ment. Let us use less-than comparisons as an illustrative example.

All implementations of this operation based on secret sharing we

are aware of in different tools and compilers (e.g., Sharemind [6],

PICCO [40], SPDZ [18], and SCALE-MAMBA [36, 37]) are based

on an extended set of elementary operations. Furthermore, we are

not aware of a way to build an arithmetic circuit for this operation

unless the operands are secret shared one bit at a time or a way

perform bit decomposition to bit-decompose the inputs to compari-

son operations. This leaves us with running the entire computation

on shares of individual bits if the computation includes compar-

isons, which can present significantly larger performance overhead

compared to other known techniques.

As a simple example consider proximity testing which deter-

mines whether a squared Euclidean distance between two two-

dimensional points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is above a certain threshold,
i.e., (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 > 𝑡 . When using an extended set of

elementary operations for the comparison, the above function can

be evaluated using 3ℓ interactive operations in 6 rounds, where ℓ

is the bitlength of the operands in the comparison [8]. However, if

we are constrained to the use of addition and multiplication gates

and execute the entire computation on bit-decomposed values, the

cost of multiplications becomes quadratic in the bitlength of the

operands and the computation associated with additions and sub-

tractions is no longer local. Furthermore, constant-round protocols

for realizing many operations (such as comparisons, bit-wise addi-

tions or subtractions, etc.) also require tools beyond additions and

multiplications. Thus, by constraining a protocol to arithmetic gates

only we are paying a substantially higher price in terms of both

the number of interactive operations and the number of rounds.

Summary of results. In this work we introduce new fundamental

building blocks to the framework of Genkin et al. [21] that studied

arithmetic circuits composed of addition and multiplication gates

over a finite field F in the honest majority setting. In particular, we

consider five additional protocols and use notation [𝑥] to denote
that 𝑥 is secret-shared among the participants:
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• 𝑥 ← Open( [𝑥]) reconstructs the value of its argument to

the participants;

• [𝑥] ← RandFld() generates a secret-shared (pseudo) ran-

dom field element;

• [𝑥] ← RandInt(𝑘) generates a secret-shared (pseudo) ran-

dom unsigned integer of at least 𝑘 bits long;

• 𝑧 ← MulPub( [𝑥], [𝑦]) reconstructs the value of 𝑥 · 𝑦;
• [𝑧] ← DotProd(⟨[𝑥1], . . . , [𝑥ℓ ]⟩, ⟨[𝑦1], . . . , [𝑦ℓ ]⟩) computes

dot product [𝑧] = ∑ℓ
𝑖=1 [𝑥𝑖 ] · [𝑦𝑖 ].

If we want to use this extended set of gates, first notice that it is no

longer possible to securely evaluate arbitrary functions 𝑓 . This is

because two of the elementary gates (namely, Open andMulPub)
disclose intermediate results of the computation. Therefore, our

first step is to determine what functions can be securely evaluated

in this framework by placing constraints on the use of these special

gates. We are not aware of this types of analysis to be conducted

in prior literature for general functions and provide conditions for

when input-dependent values are properly protected to be disclosed

as part of secure evaluation. In particular, input-dependent values

can be protected by means of perfect or statistical hiding and the

computation can also reconstruct values the computation of which

did not involve inputs (e.g., randomly generated elements).

The next step is to show our new building blocks secure up to

additive attacks if we would like to be able to apply the logic of

efficient compilers developed for arithmetic circuits with this prop-

erty. The framework of [21] permits only the entire computation,

consisting of all necessary protocols, to be shown secure up to

additive attacks and not a specific protocol on its own. We thus

extend the framework of [21] to cover additional types of gates. In

doing so, we need to extend the definition of linear-based protocols

and prove its instantiation weakly secure, which according to the

logic in [21] results in security up to additive attacks. A crucial

component of this framework is that the underlying secret sharing

scheme is dense and redundant. This permits extraction of a secret-

shared value from the shares of honest parties in the presence of

honest majority and a consistent view of the honest parties is neces-

sary for showing security. However, this property no longer holds

for semi-honest protocols with share reconstruction such as Open
where an adversary can force the honest parties to reconstruct

different values and diverge their views. Replacing building blocks

that perform reconstruction with maliciously secure variants is also

not permissible because the computation is restricted to a linear

combination of input-dependent messages. As a result, we extend

the set of building blocks secure up to additive attacks with gates

that do not perform reconstruction, namely, randomization gates

and the dot product. The gates that perform reconstruction are later

directly instantiated with maliciously secure variants which have

efficient realizations.

The high-level structure of the conversion from semi-honest

building blocks secure up to additive attacks to maliciously secure

computation (for large fields) follows the idea of dual circuit exe-

cution on the original and randomized inputs and checking them

for consistency as used in [9] and earlier work. That is, the parties

generate a random field element [𝑟 ], execute the function on the

inputs as before and in parallel execute the function on randomized

values, where for each wire with value [𝑥] in the first circuit, the

second circuit contains value [𝑟 · 𝑥]. Then prior to opening the

results of the computation, the parties check the output of each

tamperable gate in the two executions for consistency and abort if

a difference is detected. We note that more recent results such as

[26, 27] permit verification of multiplication gates without having

to execute the computation the second time and thus result in a

more efficient solution. We anticipate that those techniques might

be applicable to our setting as well and leave it as a direction of

future work. Note that the only gates that require verification in

our instantiation are multiplication and dot product gates.

The introduction of reconstruction gates such as Open presents

challenges, one of which is that we cannot disclose the recon-

structed value 𝑥 together with its randomized version 𝑟 · 𝑥 (which

would disclose 𝑟 ) and thus we only reconstruct 𝑥 (which typically

re-enters the computation as a constant). More fundamentally, the

presence of gates that generate randomness such as RandFld and

RandInt makes it possible to reconstruct a secret-shared value (via

a call to Open) generated according a distribution that spans a

subset of the field F instead of the entire field. For example, the

computation might generate a random bit (which is typically done

by squaring a random element and using its smaller square root

to determine the outcome with 50% probability), XOR it with an

input-dependent bit 𝑏 to achieve perfect hiding, and reconstruct the

result. While this type of computation complies with the security

requirements in the semi-honest model, it becomes problematic for

any framework that uses delayed verification. That is, if the bit 𝑏

is the result of prior computation which is subject to adversarial

tampering, its value may not correspond to a bit and XOR will no

longer protect the value from disclosure. The implication is that

in the presence of an extended set of gates, it is no longer safe to

universally delay verification to the end of the computation.

Our solution is to determine a conservative condition when

it would be safe to proceed with Open without verifying correct

execution of all prior gates and mark all Open gates in a circuit

not compiling with this condition as having to trigger verification

prior to performing the reconstruction. Our condition requires

protecting input-dependent values with a correctly generated (i.e.,

not tamperable) random field element, where the protected value is

also distributed over the entire field (i.e., addition can be used, but

not multiplication). We then design an algorithm for traversing the

circuit and using gate and function information to mark each Open
gate as having to trigger verification prior to the opening or not.

The requirements above inform our transformation from build-

ing blocks secure up to additive attacks to an execution secure in

the malicious model. We start with the structure from [9] that uses a

hybrid model, introduce additional ideal functionalities correspond-

ing to computation of different gates, and provide the compiler

itself. We show security in the large field setting and describe how

to adopt the construction to a smaller field.

We implement the compiler and present experimental results that

show the runtime of semi-honest functionalities and the correspond-

ing maliciously secure variants produced using our framework. Our

empirical evaluation shows that maliciously secure functionalities

are slower by a small multiplicative factor, typically 3–4. We also

show that the presence of the extended set of gates can improve

performance by up to 3 orders of magnitude for some functionali-

ties.
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Our compiler is applicable to any framework that implements

secure multi-party protocols over a finite field in the semi-honest

setting with honest majority and uses the extended set of elemen-

tary operations outlined above. This includes protocols based on

the work of Catrina and de Hoogh [8] and follow-up work, which

were implemented in PICCO [40], in SCALE-MAMBA [37], and

were adopted to the dishonest majority setting in SPDZ implemen-

tation. Furthermore, certain components of this work, namely, the

conditions for when function 𝑓 can be securely evaluated in the

presence of the extended set of elementary gates, are also applicable

to both honest majority and dishonest majority settings. Lastly, our

next immediate goal is to extend the techniques to computation

over a ring Z
2
𝑘 as well.

To summarize, our contributions are as follows:

• We extend the framework of Genkin et al. [21] of protocols

secure up to additive attacks composed of two types of arith-

metic gates to support fundamentally different types of gates

that permit randomization and opening of protected inter-

mediate results. This involves generalization of the notion

of linear protocols, linear-based protocols, and providing

corresponding rigorous security proofs.

• The presence of open gates has a profound impact on secure

function evaluation of circuits and it is no longer safe to

evaluate arbitrary circuits. Thus, we formulate conditions on

the circuit structure under which it is safe to perform secure

function evaluation.

• To use the extended framework of protocols secure up to

additive attacks, we instantiate all gates with specific proto-

cols and prove that the resulting construction satisfies the

necessary properties.

• To transform protocols secure up to additive attacks to pro-

tocols secure in the malicious model, the notion of delayed

verification is often used. In this work we show that it is

not always safe to delay verification of extended circuits

until the end of the computation (pointing to weakness in

prior implementations), formulate conservative conditions

for when it is safe to do so, and present an algorithm that

analyzes a circuit and triggers verification according to the

circuit structure to preserve security.

• Lastly, we combine all of the above results in a compiler

that transforms a protocol secure up to additive attacks com-

posed of the extended set of gates to a protocol secure in the

malicious model and prove its security. Our compiler is an

extension of the transformation used in [9].

• We implement the protocols for sample functionalities be-

fore and after the transformation and show the the cost of

achieving active security from passively secure protocols is

low. We also draw a comparison with alternative solutions.

Related work. Genkin et al. [21] extend a previous work by

Cramer et al. [12] to protect computation within arithmetic cir-

cuits against attacks by malicious parties which are equivalent to

the addition of a value, predetermined by an adversary, to any

wire within the circuit during protocol execution. This general con-

struction was realized with efficient batched verification in work

by Lindell and Nof [34] along with performance evaluations, and

improved upon by Chida et al. [9]. Additional newer results include

[7, 25–27] that further lower the cost of verification and achieve

low communication complexity, on par to that in the semi-honest

model. All of them work with arithmetic circuits consisting of two

types of gates. Furukawa and Lindell [20] develop a solution that

assumes a 2/3 honest majority. Genkin et al. [23] developed a frame-

work to extend [21] into the realm of boolean circuits. Hazay et

al. [29] proved the BMR garbling construction in [4] to be secure

up to additive attack, and observed that the parallel functionality

can be optimized in certain cases to be of lower overhead than the

original circuit. They built these observations into a compiler for

boolean circuits which are secure in the 1-bit paradigm. Hazay et al.

produced another work [30] which uses oblivious transfer (OT) or

oblivious linear function evaluation (OLE) in a compiler that works

for boolean or arithmetic circuits, respectively.

Another line of research was initiated by SPDZ [18]. In this

setting, secret shared values are protected via shared MACs. This

framework is aided by somewhat homomorphic encryption and

preprocessing, and is able to tolerate dishonest majority. The work

was consequently extended to support computation over ring Z
2
𝑘

[10, 14]. That setting is also relevant to our context: while statistical

hiding (and invocation of RandInt gate) is normally not used with

computation modulo 2
𝑘
, an unconstrained combination of other

gates can still lead to information disclosure, as we demonstrate

in section 5.1. To that extent, our next immediate goal is to apply

the results of this work to the setting of rings Z
2
𝑘 . That is, Abspoel

et al. [1] is a follow-up work on Chida et al.’s compiler that builds

underlying tools for the transformation to support computation

over rings. While that work still only supports pure arithmetic

circuits, we can use it as the basis for expanding supported circuits

with additional types of gates.

Escudero et al. [19] provide efficient generation of shares of

random bits over Z2 and their corresponding integer value in a

larger field or ring for use in mixed boolean-arithmetic circuits. The

technique, edaBits, instructs a party to enter related inputs into the

computation and correctness in the malicious setting is achieved

using a new variant of a cut-and-choose technique. The techniques

reduce the cost of random bit generation and use in non-linear

operations, but does not treat the topic of delayed verification in

the presence of calls to open as we do. We comment on relative

performance of the techniques in section 6. Lastly, Dalskov et al. [13]

provide a dot product protocol in the malicious model similar to

the treatment of our dot product gate; however, we were unable

to find its (security) analysis. Our similarity to Chida et al. [9] (on

which we build) is limited to section 5.2, where our Construction 2

extends their transformation with four new types of gates, has a

modified verification phase, and requires separate security analysis.

2 SETUP
Secret sharing is a fundamental technique that allows a dealer to

produce 𝑛 shares of a secret so that any ≤ 𝑡 shares reveal no infor-

mation about the secret, while any subset that contains 𝑡 +1 or more

shares allows for efficient reconstruction of the secret. We refer

to 𝑡 as the threshold and in this work we assume the setting with

honest majority, namely, that 𝑡 < 𝑛/2. Of particular importance for

secure multi-party computation are linear secret-sharing schemes,

which enable local computation of a linear combination of secret
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shared values. Throughout this work we assume that secret sharing

is set up over a finite field F.
We use the notation [𝑥] to represent a secret-shared 𝑥 using a

linear secret sharing scheme, where [𝑥]𝑖 corresponds to the share

of 𝑥 held by party 𝑖 . We require that the (𝑛, 𝑡) secret sharing scheme

we employ over F supports the following functions:

• share(𝑥): On input private 𝑥 ∈ F, this function generates 𝑛

shares {[𝑥]1, [𝑥]2, . . . , [𝑥]𝑛}, where [𝑥]𝑖 denotes the share
intended for party 𝑃𝑖 .

• share(𝑥, [𝑥] 𝐽 ): Given a subset 𝐽 of the parties of size |𝐽 | ≤ 𝑡 ,

this function takes as input |𝐽 | shares, [𝑥] 𝐽 ∈ F | 𝐽 | and private
𝑥 ∈ F and generates the remaining shares according to the

input. Note that when |𝐽 | = 𝑡 , [𝑥] 𝐽 uniquely determines the

output shares.

• reconstruct( [𝑥] 𝐽 ): Given exactly |𝐽 | = 𝑡 + 1 shares [𝑥] 𝐽 , this
function reconstructs the secret and outputs 𝑥 .

The functions above are algorithms that specify how to create

shares of a secret and reconstruct a secret from its shares. They are

not intended to be resilient to malicious behavior and additional

mechanisms are needed to strengthen them for achieving equivalent

functionalities in the presence of malicious players.

Our main construction in Section 5 that transforms computa-

tion with building blocks secure up to additive attacks to secure

computation with abort in the presence of malicious adversaries

can be instantiated using any suitable secret sharing scheme over

finite field F such as Shamir secret sharing [39] or replicated secret

sharing [32], as long as the expectations for the sub-functionalities

are met. The instantiation of the sub-functionalities that we provide

in this work in Section 4 is based on Shamir secret sharing (and

some components of the protocols make use of replicated secret

sharing for performance reasons). Therefore, notation [𝑥] refers to
the main secret sharing scheme, which in Section 4 is instantiated

with Shamir secret sharing.

To permit non-interactive share generation, e.g., generation of

a random field element by RandFld, we utilize replicated secret

sharing (RSS) [32] with the same access structure and threshold

𝑡 . It is an additive secret sharing scheme with each party holding

multiple shares and we denote 𝑥 secret-shared using RSS by J𝑥K.
Our use of RSS is limited to the following high-level idea: the parties

hold JkeyK, use shares of key as seeds into a pseudo-random gener-

ator (PRG) to non-interactively obtain shares of a pseudo-random

element, and locally convert their computed shares into Shamir

shares of the desired value. This approach is used to realize gates

RandFld, RandInt(𝑘), and generation of fresh Shamir shares of 0

with threshold 2𝑡 . We consequently denote Shamir shares of 𝑥 with

threshold 2𝑡 by ⟨𝑥⟩. With (𝑛, 𝑡) Shamir secret sharing, a secret 𝑥

is represented by a random polynomial of degree 𝑡 with the free

coefficient set to 𝑥 . Each party’s share corresponds to evaluation

of the polynomial on a unique non-zero point and, given 𝑡 + 1 or
more shares, a secret is reconstructed via Lagrange interpolation.

Let Γ be an access structure which in our context permits access

for any subset of 𝑡 + 1 or more parties and let T be the union of

all maximal unqualified set of Γ, i.e., subsets of parties of size 𝑡 .
Then party 𝑃𝑖 holds RSS shares 𝑥𝑇 ∈ J𝑥K𝑖 for each𝑇 ∈ T such that

𝑃𝑖 ∉ 𝑇 . At the setup time, the parties generate JkeyK. We use PRG

FPRG that outputs field elements and PRG ZPRG𝑘 that outputs 𝑘-

bit integers. When we make a call to a PRG in a protocol, it should

be understood that it returns the next element in the sequence.

Notation [𝑎, 𝑏] defines the range 𝑎, . . . , 𝑏.

3 FUNCTION REQUIREMENTS
Before we can present our compiler from building blocks secure

up to additive attacks to function evaluation secure in the pres-

ence of malicious participants with abort, we must determine what

constraints should be placed on functions we are evaluating. The

rationale is that in the presence of Open (andMulPub) gates a func-
tion can disclose private data during the computation and we would

like to eliminate from consideration functions that leak information.

Opening (randomly generated or properly protected) interme-

diate results is common in protocols for specific operations and

does not compromise security guarantees. For example, the use of

Open appeared in 1989 for secure computation of the inverse of a

field element and unbounded fan-in multiplication [2], is widely

used in multiplication protocols based on triple generation starting

from [3], is common in more complex protocols, e.g., in [8, 15] and

others.MulPub was introduced as an optimization that combines

multiplication followed by Open (used in [8] and after) and is ex-

tensively used in many protocols such as random bit generation, all

types of comparisons, etc. While each individual protocol among

these examples that reconstructs an intermediate result (by means

of Open orMulPub) can be shown to be secure, we are not aware

of any general analysis of requirements which function 𝑓 must

satisfy in the presence of Open gates to be able to maintain the

expected level of security. Our analysis led us to formulating the

requirements that a function 𝑓 that uses share reconstruction prior

to the output recovery must satisfy to meet the requirement of no

information leakage in the way specified below. Throughout this

work, we let𝑀 denote the number of inputs into function 𝑓 , each

represented as an element of field F, and use notation 𝑣𝑖 to denote

the 𝑖th input. Each party contributing input into the computation

can supply multiple elements 𝑣𝑖 .

Definition 3.1. Function 𝑓 being evaluated must satisfy the re-

quirements that for any variable opened during the computation

one of the following conditions hold:

(1) the variable has a known distribution over a known sub-

set 𝐵 ⊆ F independent of all inputs 𝑣1, . . . , 𝑣𝑀 , i.e., perfect

secrecy is achieved, or

(2) the distribution of the variable is statistically close to the

distribution of a random variable with a known distribu-

tion over known subset 𝐵 ⊂ F independent of all inputs
𝑣1, . . . , 𝑣𝑀 , i.e., statistical secrecy is achieved, or

(3) the variable was not computed as a function of any of the

inputs 𝑣1, . . . , 𝑣𝑀 and has an arbitrary distribution over a

known subset 𝐵 ⊆ F.

This definition states that if a value was produced without using

any of the private inputs or any information derived from the in-

puts (condition 3), disclosing the value does not reveal any sensitive

information and therefore is safe. It is also safe to disclose a value if

it was computed using one or more inputs or information derived

from them, but input-dependent information is perfectly protected
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(condition 1) or statistically protected (condition 2). Computation-

ally secure protection mechanisms are not useful as elementary

building blocks for protocol design and do not apply when the

field size is not sufficiently large (which is the case for information-

theoretic techniques).

This definition suggests that if a value is generated without

using any inputs or intermediate results that depend on the inputs,

it can be from any subset of F and any distribution we can sample

from. For instance, the computation can generate a random bit and

consequently open it. If the value being opened was computed as

a function of the inputs, there are two common ways to protect a

private intermediate result in F: by multiplication or by addition

with a random element. In particular, if 𝑟 is an element drawn

uniformly at random from F and 𝑎 is input dependent, it is safe

to open 𝑟 + 𝑎 (i.e., both result in uniform distributions). We could

also achieve statistical security by opening 𝑟 + 𝑎 if 𝑎 is an input-

dependent value of bitlength 𝑘 and 𝑟 is a value drawn uniformly

at random from the set of integers of bitlength 𝑘 + 𝜅 (or larger

space), with 𝜅 being a statistical security parameter. In addition, if

𝑎 is input-dependent non-zero element of the field and 𝑟 is drawn

uniformly at random from F (or F \ {0}), it is safe to open 𝑟 · 𝑎.
The above implies that, if 𝑓 uses any MulPub gates, either both

inputs to that gate must be computed without using 𝑓 ’s inputs (and

in that case MulPub’s inputs can be sampled from any space) or

one of the MulPub inputs is not a function of 𝑓 ’s inputs and is

sampled uniformly at random from the entire field and the other

MulPub’s input is guaranteed to be non-zero. Also, if a randomly

sampled value was opened once as part of 𝑓 , it cannot be used

for protection of input-dependent variables again because input-

independent distribution is not achievable.

Wewould like to use sample functionalities RandBit and Trunc to
illustrate how the constraints of definition 3.1 are satisfied in typical

protocol designs. The goal of RandBit is to let the participants

generate a private random bit on no input. Its realization from [8]

starts by generating a private random field element 𝑐 ∈ Z𝑝 (where 𝑝

is prime such that 𝑝 mod 4 = 3), squaring it, and reconstructing the

square. This behavior falls into the third category of definition 3.1:

the disclosed value is not a function of private inputs and subset 𝐵

consists of quadratic residues modulo 𝑞 and 0.

Another example is truncation Trunc and various forms of com-

parisons, which start by generating a private random integer at

least 𝜅 bits longer than their private input, where 𝜅 is a statistical

security parameter, adding the input to the generated integer, and

disclosing the sum to the participants. This falls in category 2 of

definition 3.1, where once again 𝐵 is known and determined by the

algorithm and the distribution is uniform.

To prove evaluation of functions specified in Definition 3.1 se-

cure, we would need that for each opened variable distributed over

some 𝐵 ⊆ F, an element of 𝐵 is efficiently (probabilistic polyno-

mial time in a security parameter) sampleable according to the

distribution used in 𝑓 . This is straightforward to do for all cases

of Definition 3.1 because sampling for all (PPT) functions 𝑓 can be

achieved by simply performing the computation the way 𝑓 does

(recall that the distributions are required to be input independent).

4 TOWARD FUNCTION EVALUATION SECURE
UP TO ADDITIVE ATTACKS

To be able to build our compiler, we first need to demonstrate

security up to additive attacks of secure function evaluation using

our building blocks. The framework of Genkin et al. [21, 22] states

that if a linear-based protocol (as defined in [22]) is weakly private

against active adversary A controlling at most 𝑡 computational

parties, it is actively secure up to additive attacks. This means that

showing security up to additive attacks is performed by showing

that a linear-based protocol is weakly private.

4.1 Extended Linear-Based Protocols
Upon closer examination, we determined that prior to using this

logic to demonstrate security up to additive attacks we need to

revisit the notion of linear-based protocols. In particular, a linear-

based protocol was defined in [22] for a redundant dense linear

secret sharing scheme (e.g., Shamir secret sharing) characterized

by share and reconstruct functions as consisting of a setup, ran-

domness generation, input sharing, circuit evaluation, and output

recovery phases. The important component is that each gate com-

puted as part of circuit evaluation must correspond to a linear

protocol. Informally, each participant in a linear protocol is permit-

ted to locally compute any function of its inputs and send messages

to other participants, but once messages from other participants are

received, the output can only be computed as a linear combination

of the incoming messages [22].

Because we are expanding the set of gates that secure function

evaluation executes, in our context it is necessary to expand the def-

inition of a linear-based protocol with new types of gates, namely

opening, randomness generation, opened multiplication, and dot

product. In doing so, we first re-structure the definition of a linear

protocol and consequently use it in defining a linear-based pro-

tocol. Specifically, circuit evaluation in Genkin et al.’s framework

involved only one type of non-trivial gate (i.e., multiplication) and

any input-independent pre-computation associated with evaluation

of that gate (e.g., triple or randomness generation) was incorpo-

rated into the setup phase. In our context, different gates may rely

on different types of pre-computation and, instead of executing

each pre-computation a necessary number of times in the setup

phase, we permit the gate evaluation itself to be split into input-

independent pre-computation and the main computation, while

preserving the same restrictions as before. This allows for added

flexibility without changing the essence of the definition. We obtain

the following definition of a linear protocol:

Definition 4.1 (Linear protocol). An 𝑛-party protocol Π is a linear

protocol over some finite field F if it is specified as follows:

(1) Input. The input of every party 𝑃𝑖 consists of values dis-

tributed at the setup phase (of arbitrary type) and inputs into

the protocols specified as a vector of elements from F. The
former are called setup-based inputs and the latter are main

inputs.

(2) Pre-computation. The parties engage in a linear protocol

𝜋precomp using setup-based inputs as the main inputs (and

no other inputs). The result consists of each party obtaining

a vector of field elements, which are called auxiliary inputs.
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(3) Messages. Every message in Π is a vector of field elements. A

message ®𝑚 sent by some party 𝑃𝑖 (possibly to itself) belongs

to one of the two categories:

(a) ®𝑚 is some fixed arbitrary function of 𝑃𝑖 ’s main inputs

(and is independent of its auxiliary inputs). We refer to

this as a Type A message.

(b) every element of ®𝑚 is generated as some fixed linear com-

bination of 𝑃𝑖 ’s auxiliary inputs and elements of previous

messages received by 𝑃𝑖 (including of Type A above). We

refer to this as a Type B message.

(4) Output. The output of every party 𝑃𝑖 is a linear function of

its incoming messages.

We can now formulate an extended linear-based protocol. Following

prior work, it is formulated as 𝑛-party computation with the inputs

provided by𝑚 clients (i.e., the inputs can come from participants

other than the computational parties) and a single output.

Using the current framework, we were unable to prove a semi-

honest version of Open to be secure up to additive attacks because

the honest parties are not guaranteed to possess the same opened

value at the end of Open due to the adversary’s ability to com-

municate inconsistent values to other parties. On the other hand,

a malicious version of Open where honest parties perform cross-

checking to validate the result would not comply with with the

definition of a linear protocol above. For that reason, we exclude

gates that perform reconstruction from shares from our formula-

tion of extended linear-based protocol and will directly utilize a

maliciously secure realization of Open in our final solution.

Throughout this work, we formulate RandInt gate as, on input

𝑘 , drawing an integer from the range 0–𝑐2𝑘 , where 𝑐 ≥ 1 is a

fixed constant. This formulation preserves the necessary security

properties while supporting efficient realizations of this gate.

Definition 4.2 (Extended linear-based protocol). Let SS = (share,
recover) be a redundant dense linear secret sharing scheme. An

𝑛-party𝑚-client protocol Π for computing a single-output function

𝑓 : F𝐼1 × · · · × F𝐼𝑚 → F𝑂1
with 𝑛 = 2𝑡 + 1 is linear-based with

respect to SS if Π has the following structure:

(1) Setup phase. The computational parties perform 𝜋setup, a

one-time setup protocol (such as key distribution) based on

the properties of the computation.

(2) Input sharing phase. 𝑃𝑖 shares its input 𝑣𝑖 using the share()
functionality of SS.

(3) Circuit evaluation phase. Π computes the circuit by eval-

uating each gate in some topological order. After honest

execution of gate 𝑖 that produces shares, the parties hold

shares of the gate’s output a distribution induced by share.
The evaluation of each gate is performed as follows:

(a) For any addition (or subtraction) gate 𝑖 with inputs from

gates 𝑗 and 𝑘 , Π evaluates gate 𝑖 by having each party add

(resp., subtract) its shares corresponding to the outputs of

gates 𝑗 and 𝑘 .

(b) For any gate 𝑖 that performs multiplication of one input

from gate 𝑗 and a constant field element, Π evaluates gate

𝑖 by having each party multiply its share of gate 𝑗 ’s output

by the specified constant.

(c) For any multiplication gate 𝑖 with inputs from gates 𝑗 and

𝑘 , Π evaluates gate 𝑖 using some 𝑛-party linear protocol

𝜋mult, where each party uses its shares of gates 𝑗 and 𝑘’s

outputs as the inputs to 𝜋mult.

(d) For any dot product gate 𝑖 with inputs from gates 𝑗1, . . . , 𝑗ℓ
and 𝑘1, . . . , 𝑘ℓ ,Π evaluates gate 𝑖 using some𝑛-party linear

protocol 𝜋dotprod, where each party uses its shares corre-

sponding to the outputs of gates 𝑗1, . . . , 𝑗ℓ and 𝑘1, . . . , 𝑘ℓ
as the inputs to 𝜋dotprod.

(e) For any random field generation gate 𝑖 , Π evaluates gate

𝑖 using some 𝑛-party linear protocol 𝜋randfld that does not

take inputs from any other gate.

(f) For any random integer generation gate 𝑖 , Π evaluates

gate 𝑖 using some𝑛-party linear protocol 𝜋randint that does

not take inputs from any other gate.

(4) Output recovery phase. During output recovery of Π, the
first 𝑡 + 1 parties send their shares of each output gate to the

output recipient, who consequently recovers each output

using recover.

Given a specification of a linear-based protocol, security of a spe-

cific instantiation of that protocol interface up to additive attacks

is shown in two steps, using the notion of so-called weakly-private

protocols. In particular, the notion of weak privacy considers a

truncated protocol view, without the last communication round in

which outputs are disclosed, and is defined below. Then a specific

instance of a protocol for circuit evaluation first needs to be shown

to be linear-based and weakly-private. Second, it needs to be shown

that a protocol which is both weakly-private and linear-based is

a protocol secure up to additive attacks in the presence of active

adversaries. The latter was shown in [22] for a formulation of a

linear-based protocol evaluating an arithmetic circuit consisting

of two types of gates, while we prove the same property for our

formulation of an extended linear-based protocol evaluating a cir-

cuit consisting of an extended set of gates in Appendix E. Thus,

the next step will be to instantiate all components of our extended

linear-based protocol with concrete sub-protocols and show that the

resulting construction is linear-based and achieves weak privacy.

4.2 Weakly-Private Protocols
We start by defining the notion of weakly-private protocols:

Definition 4.3 (Weakly-private protocol; adopted from [22]). Let
𝜋 be an 𝑛-party protocol for computing functionality 𝑓 : F𝐼1 ×
· · · × F𝐼𝑚 → F𝑂1

and let A be an adversary controlling at most

𝑡 computational parties. Also let view𝜋,trunc
A ( ®𝑥) denote the view

of adversary A excluding the last communication round during a

real execution of protocol 𝜋 on inputs ®𝑥 . We say that 𝜋 is weakly-

private against A if there exists a simulator S such that for every

input ®𝑥 the real and simulated views are indistinguishable, i.e.,

view𝜋,trunc
A ( ®𝑥) ≡ S(®𝑥𝐶 ).

As before, the function 𝑓 being evaluated needs to comply with

the requirements of Definition 3.1. The computation and the corre-

sponding protocols are specified as Construction 1.

Recall that the computation in RandFld and RandInt uses RSS
with a previously set up secret JkeyK and consecutive share conver-
sion to Shamir secret sharing. For a secret-shared J𝑥K, let notation
𝑥𝑄 represent a share given to all parties in𝑄 , i.e., 𝑃𝑖 ∈ 𝑄 = [1, 𝑛] \𝑇
for each 𝑇 ∈ T , and let Q be the set of all 𝑄s, i.e., Q is all subsets
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of [1, 𝑛] of size 𝑛 − 𝑡 . RandFld and RandInt from [11, 17] then use

unique polynomials 𝜆𝑄 of degree 𝑡 for each 𝑄 such that 𝜆𝑄 (0) = 1

and 𝜆𝑄 (𝑖) = 0 for all 𝑃𝑖 ∉ 𝑄 .

We present two multiplication protocols: one is based on GRR

multiplication [24] with changes from [5] to reduce communication

and the second is based on DN multiplication [16] with communi-

cation reduction from [5]. We refer to the former as a single-round

and to the latter as a linear-communication protocol. The former is

beneficial for the common case of three parties (lower communica-

tion and rounds), while the latter lowers communication when the

number of computational parties grows and uses two rounds. As a

result, we obtain low communication of 1 field element per party

in the three-party setting (single round) and ≲ 2 field elements per

party on average with larger 𝑛 (two rounds). This communication

matches the state of the art semi-honest communication of mul-

tiplication in [25] which continues the line of work on compiling

semi-honest arithmetic circuits into maliciously secure protocols.

The linear-communication multiplication relies on

non-interactive generation of pseudo-random sharing of zero (PRZS)

⟨0⟩ from [11]. PRZS computation is input-independent. Because

arbitrary computation is permitted in the pre-computation phase

of a linear protocol, the details of PRZS are not essential and can

be found in [11]. We denote this protocol by PRZS. DN multiplica-

tion [16] dedicates one party as the king and uses a fixed (constant)

representation of a sharing of 1, [1].
The single-round multiplication uses interpolation constants 𝛼𝑖

for party 𝑃𝑖 as defined in [24]. In addition, party 𝑃𝑖 shares a key

for pseudo-random number generation with each of other 𝑡 parties.

For simplicity and without loss of generality, we use a symmetric

setup in which 𝑃𝑖 shares individual keys 𝑘𝑖, 𝑗 with parties 𝑃 𝑗 for

𝑗 = (𝑖 + 1) mod 𝑛, . . . , (𝑖 + 𝑡 + 1) mod 𝑛. This establishes PRG keys

between each pair of parties 𝑃𝑖 and 𝑃 𝑗 .

Construction 1. Building Blocks Secure Up to Additive Attacks.
(1) Input sharing: Each input owner calls share(𝑥) on its input 𝑥

and sends share [𝑥]𝑖 to party 𝑃𝑖 .
(2) Function evaluation: Evaluate each gate in the given topologi-

cal order as follows:
(a) RandFld gate: Each party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], calculates:

[𝑥]𝑖 =
∑︁

𝑄 ∈Q,𝑖∈𝑄 FPRG(key𝑄 ) · 𝜆𝑄 (𝑖)

(b) RandInt gate: On input 𝑘 , each 𝑃𝑖 calculates:

[𝑥]𝑖 =
∑︁

𝑄 ∈Q,𝑖∈𝑄 ZPRG𝑘 (key𝑄 ) · 𝜆𝑄 (𝑖)

(c) Addition gate: On input [𝑥] and [𝑦], each 𝑃𝑖 calculates
[𝑧]𝑖 = [𝑥]𝑖 + [𝑦]𝑖 .

(d) Multiplication by a known field element: On input [𝑥] and
𝑦 ∈ F, each 𝑃𝑖 calculates [𝑧]𝑖 = [𝑥]𝑖 · 𝑦.

(e) Multiplication gate (linear comm.): Pre-computation: Ex-
ecute ⟨0⟩ ← PRZS() and [𝑤] ← RandFld() and each 𝑃𝑖
computes ⟨𝑢⟩𝑖 = [𝑤]𝑖 · [1]𝑖 + ⟨0⟩𝑖 .
Input-dependent computation:
(i) On input [𝑥] and [𝑦], each 𝑃𝑖 computes ⟨𝑧⟩𝑖 = [𝑥]𝑖 · [𝑦]𝑖 ,
⟨𝑣⟩𝑖 = ⟨𝑧⟩𝑖 + ⟨𝑢⟩𝑖 and sends ⟨𝑣⟩𝑖 to the king.

(ii) The king reconstructs 𝑣 from 2𝑡 +1 shares ⟨𝑣𝑖 ⟩ and sends
it to each party.

(iii) Each 𝑃𝑖 computes [𝑧]𝑖 = 𝑣 − [𝑤]𝑖 .

(f) Multiplication gate (single round):
Pre-computation: Each 𝑃𝑖 sets [𝑑𝑖 ] 𝑗 = FPRG(𝑘 𝑗,𝑖 ) for 𝑗 =
1 + (𝑖 mod 𝑛), . . . , 1 + ((𝑖 + 𝑡) mod 𝑛).
Input-dependent computation:
(i) On input [𝑥] and [𝑦], each 𝑃𝑖 computes ⟨𝑧⟩𝑖 = [𝑥]𝑖 · [𝑦]𝑖
and sets [𝑑𝑖 ]0 = ⟨𝑧⟩𝑖 .

(ii) Each 𝑃𝑖 reconstructs polynomial 𝑓⟨𝑧 ⟩𝑖 from 𝑡 + 1 [𝑑𝑖 ] 𝑗 s.
(iii) Each 𝑃𝑖 evaluates and sends [𝑑𝑖 ] 𝑗 = 𝑓⟨𝑧 ⟩𝑖 ( 𝑗) to 𝑃 𝑗 for

𝑗 = 1 + ((𝑖 + 𝑡 + 1) mod 𝑛), . . . , 1 + ((𝑖 + 𝑛 − 2) mod 𝑛).
(iv) Each 𝑃𝑖 computes [𝑧]𝑖 =

∑𝑛
𝑗=1 𝛼 𝑗 [𝑑 𝑗 ]𝑖 .

(g) Dot product gate: The computation is the same as in one
of the multiplication gates above except that the inputs are
( [𝑥1], [𝑥2], . . . , [𝑥ℓ ]) and ( [𝑦1], [𝑦2], . . ., [𝑦ℓ ]) and each 𝑃𝑖
computes ⟨𝑧⟩𝑖 as ⟨𝑧⟩𝑖 =

∑ℓ
𝑗=1 [𝑥 𝑗 ]𝑖 · [𝑦 𝑗 ]𝑖 .

Here, RandInt from [11] produces an integer from the range 0–

𝜈2𝑘 , where 𝜈 is the number of shares. As discussed before, this

is suitable for its use in protocols with statistical hiding. This is

reflected in our analysis and the corresponding ideal functionality.

All of these building blocks either follow from the properties of

the secret sharing scheme (i.e., addition and multiplication by a

known field element) or were presented and analyzed in prior work

(i.e., RandFld and RandInt from [11], multiplication protocols from

[5], and the dot product follows from the properties of the secret

sharing scheme and multiplication protocols). For that reason, their

correctness and security (in the semi-honest model) follow from

prior work, but for completeness we examine correctness in more

detail in Appendix A. These building blocks (or their older variants)

have also been used in general-purpose (secret sharing based) secure

multi-party computation compilers such as PICCO [40] and SCALE-

MAMBA [37]. In this work, we take one step further: we prove

stronger security properties which permit their use in an efficient

transformation to a maliciously secure protocol.

To achieve our goal, we first need to show that Construction 1

achieves weak privacy, which we state as follows:

Theorem 4.4. Construction 1 for evaluating a function 𝑓 satisfying
the constraints in Definition 3.1 is weakly-private in the presence of
an active adversary A controlling at most 𝑡 computational parties.

The proof that constructs a simulator and shows indistinguisha-

bility is given in Appendix A. Throughout the rest of this work,

we let 𝐶 denote the set of corrupt parties, 𝐻 be the set of honest

parties, and [𝑥]𝐶 and [𝑥]𝐻 represent the union of shares held by

the corrupt and honest parties, respectively.

To show the computation in Construction 1 secure up to additive

attacks, what is remaining to demonstrate that the building blocks

are linear protocols according to Definition 4.1. This, together with

the logic described above (and information provided in Appendix E)

will give us the following result:

Lemma 4.5. Construction 1 is secure up to additive attacks.

The proof which primarily shows compliance with Definition 4.1

is provided in Appendix A.

Before we continue, we would like to discuss the difference

between Open protocols (not included in the specification of a

linear-based protocol) and DN-style linear multiplication which

internally reconstructs a secret-shared value, similar to the com-

putation an Open protocol would. The difference comes from the
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input-output interface of Open (and the requirement for it to be

a linear protocol). In particular, showing that a construction is a

linear-based protocol requires that each sub-protocol (such as mul-

tiplication) produces a value that a simulator can extract from the

outputs of honest parties (see Appendix E for more detail). In the

case of sub-protocols that generate a shared value, we discard out-

puts of malicious parties and can reconstruct a field element from

the shares of the honest parties, which is always possible because

the secret sharing scheme is dense and redundant. This also means

that shares across all parties can be inconsistent, but this does not

prevent the logic of the proof from proceeding. However, in the

case of Open, a malicious participant can cause the honest parties

to produce different outputs. In that case, it is not possible for the

simulator to use a single value as the output of that sub-protocol.

Furthermore, if we strengthen our realization of Open to perform

verification and eliminate inconsistencies, the computation is no

longer linear.

However, because a malicious adversary is permitted to deviate

from the protocol in an arbitrary way, a malicious king can, for

example, send 2𝑣 instead of 𝑣 in the multiplication protocol. This

would result in the parties computing 2𝑣 −𝑤 = 2𝑎 · 𝑏 +𝑤 . Because

additive attacks introduce errors independent of the wires, this

would be treated as going beyond additive attacks. However, the

fact that DN multiplication was shown to be secure up to additive

attacks as part of a larger construction in [22] points out to an

inconsistency in prior work and the need to treat Open operations

with care.

5 MAIN CONSTRUCTION
Having developed the necessary building blocks secure up to ad-

ditive attacks, we next build a compiler for producing execution

resilient to active attacks. Note that we incorporate an Open gate

directly instantiated with a maliciously secure protocol, which can

be efficiently realized in the same way as in prior work, e.g., [9]. In

particular, to reconstruct an element from shares, the parties com-

municate their own share to all other participants and reconstruct

from all subsets of 𝑡 + 1 shares checking for consistency. Adding a

MulPub gate will also require a maliciously secure version, which

unlike the semi-honest setting does not lead to efficiency improve-

ments of combining multiplication and Open into a single gate. For

that reason, we do not include an explicitMulPub gate.

Before we proceeding with the compiler, we need to analyze the

impact of delayed verification on security in the presence of Open
and randomization gates and show in what circumstances it is safe

to delay verification andwhen opening a potentially tampered value

can lead to information disclosure. In our attacks we conservatively

assume that only multiplication (or dot product) gates can be tam-

pered with. This is because instantiations of several building blocks

in Construction 1 are non-interactive and therefore are resilient

to malicious behavior. In particular, all of addition, multiplication

by a known element, generation of a random field element and a

random integer are non-interactive. An instantiation of Open will

also have resilience to malicious behavior. This means that if de-

layed verification is not safe by tampering with only multiplication

(or dot product) gates, a modification to the strategy of delaying

verification until the end of the computation is necessary.

5.1 On Delayed Verification
Delayed verification is a commonmechanism for achieving security

in the presence of active adversaries including SPDZ [18] and its

follow-up work with dishonest majority and more recent solutions

[9, 34] that assume honest majority. These solutions treat computa-

tion expressed as an arithmetic circuit and delay verification of the

computation until the end, i.e., right before disclosing the output.

In this work we find that the ability to reconstruct values during

function evaluation introduces a possibility to learn information

about private inputs if verification is performed at the end of the

computation, which might require changes to prior solutions. It is

informative to consider reconstruction of different types of values.

SPDZ [18] (which is not constrained to additive attacks) uses

calls to Open during evaluation of multiplication gates. In partic-

ular, to multiply [𝑥] and [𝑦], the parties utilize a pre-generated

multiplication triple ( [𝑎], [𝑏], [𝑐 = 𝑎𝑏]) and open 𝑥 − 𝑎 and 𝑦 − 𝑏
(in F). In this case, because 𝑎 and 𝑏 are random field elements and

because the triple is verified to be well formed, the opened values

information-theoretically protect 𝑥 and 𝑦 regardless of what values

𝑥 and 𝑦 might take.

However, if we look at other uses of Open operation in typical

protocols, the situation changes. For example, as previously men-

tioned, truncation and comparison protocols use statistical hiding

and execute computation of the form

𝑐 ← Open( [𝑥] + [𝑟 ]);

where 𝑟 is a random integer at least 𝜅 bits longer than the value

𝑥 it protects and, as before, 𝜅 is a statistical security parameter.

For the sake of this example, let 𝑥 be a 𝑘-bit integer when the

computation is performed correctly, which means that 𝑟 is at least

𝜅 + 𝑘 bits long. Now notice that 𝑥 here can be a result of prior

computation that includes multiplication operations susceptible

to additive attacks. For example, if 𝑥 was computed using two

multiplications, e.g., as 𝑥 = 𝑎𝑏𝑐 using private 𝑎, 𝑏, and 𝑐 , it is easy

for the adversary to make 𝑥 exceed 𝑘-bit length through additive

attacks and lead to information disclosure about a private value.

That is, after multiplication 𝑎 · 𝑏 we can have 𝑎𝑏 + 𝛿 , which results

in 𝑥 being computed as 𝑎𝑏𝑐 + 𝛿𝑐 . If the value of 𝛿 is large enough,

i.e., exceeds 𝜅 bits, it is possible for 𝑥 to become longer than 𝑟 and

the value of 𝑐 be disclosed without protection.

Operations that use the above statistical protection mechanism

were implemented as part of SCALE-MAMBA [36] using SPDZ-

style computation. Keller et al. [33] report performance of these

and other operations in the malicious model with dishonest major-

ity using SPDZ family of protocols, but we were unable to find a

separate security analysis of these operations. Note that it is easy

to mount additive attacks within SPDZ framework at any point of

the computation, i.e., not necessarily during a multiplication, due

to the use of additive secret sharing.

As another example, consider generation of a random bit 𝑟 , using

it to protect a private bit 𝑏 via XOR, and opening 𝑟 ⊕ 𝑏 during the

computation. This protection mechanism achieves perfect secrecy

and the disclosure is permitted falling into the first category of

functions in Definition 3.1. Using a typical mechanism for random

bit generation [8], this computation will result in the following

sequence of steps:
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(1) [𝑥] ← RandFld();
(2) 𝑐 ← Open( [𝑥] · [𝑥]); (if 𝑐 = 0, restart)

(3) compute 𝑒 , the smaller square root of 𝑐 , and its inverse 𝑒−1;
(4) [𝑟 ] ← ([𝑥]𝑒−1 + 1)2−1;
(5) 𝑦 ← Open( [𝑟 ] + [𝑏] − 2[𝑟 ] · [𝑏]);

The first 4 lines above compute a random bit [𝑟 ] and the last line

computes and opens 𝑟 ⊕ 𝑏. Similar to the statistical hiding example

above, 𝑏 can be a result of prior computation and be of the form

𝑏orig + 𝛿 , where 𝑏orig is the true bit value. Then executing line 5

discloses the value of bit 𝑏orig to the adversary. In particular, the

possibilities for the observed 𝑦 when 𝑏orig = 0 differ from those

when𝑏orig = 1 regardless of private bit 𝑟 when 𝛿 > 0. The adversary

is also able to mount an additive attack on multiplication on line

2, where the resulting value 𝑐 can still be a square and thus the

computation continues, but the computed 𝑟 is no longer a bit.

The logic of random bit generation above (i.e., the first 4 lines),

modified to work in a ring Z
2
𝑘 , was shown to be secure in the

context of SPDZ
2
𝑘 in [14]. Opening of a tampered value on line 2

does not lead to information disclosure because no private inputs

are used. However, opening of a private bit protected by a random

bit 𝑟 ⊕ 𝑏 as in the above example is common and thus delaying

verification until the end of the evaluation can lead to unintended

information disclosure. What is important is that computation over

Z
2
𝑘 is also vulnerable and attacks are not limited to statistically

protected data.

We believe that our analysis has implications on existing imple-

mentations and in particular on those that use SPDZ-style delayed

verification. Furthermore, this indicates that it may be problematic

to separately consider security of building blocks and expect that

their composition will remain secure in the presence of delayed

verification and calls to Open.
Beforewe proceed further, we formulate a conservative condition

when it is safe to delay verification prior to evaluating an Open
gate, which we will use to mark gates which need verification in

a preprocessing step. Succinctly, we do not mark gates as needing

verification only if they are guaranteed to not reveal any input-

dependent information.

Definition 5.1. We refer to any gate, evaluation of which is not

secure in the malicious model, as an attackable gate. We say that a

value is well-formed if its computation used no attackable gates.

In the context of this work and based on protocol instantiations in

Construction 1, only multiplication and dot product gates are attack-

able. Based on our analysis, we obtain the following formulation of

conditions for delayed verification:

Definition 5.2. An Open gate is guaranteed to be safe without

verification of prior computation if (1) the input into the gate is

not a function of inputs into the computation 𝑓 or (2) an input-

dependent value is protected via addition with a uniformly random

well-formed (per Definition 5.1) field element right before opening.

Clearly, any computation that does not use input-dependent

values cannot lead to information leakage (until the computation

merges with input-dependent values), which corresponds to case 1.

In addition, statistical or perfectly secret protection mechanisms

with a one-time pad (i.e. encryption key) drawn from 𝐵 ⊂ F were
shown to be vulnerable to leakage attacks as demonstrated above.

For that reason, we can only consider protection mechanisms with

perfect secrecy and 𝐵 = F as not being vulnerable. Furthermore,

achieving perfect secrecy with ciphertext space C = F when the

message being protected is potentially tampered and is not guar-

anteed to be contained in a subspace of F imposes uniformly dis-

tributed keys with key spaceK = F and addition in F as the encryp-
tion operation. Furthermore, we must require that the one-time key

is generated according to the specification (i.e., attackable gates

were not used) as otherwise it is not guaranteed to be from the

desired distribution.

We note that the conditions in Definition 5.2 are sufficient for a

safe delay of verification at the time of Open, but they do not neces-
sarily correspond to necessary conditions. In particular, the ability

to leak information is influenced by the presence of attackable gates

such as multiplications in computing the intermediate result we

want to protect as demonstrated in our attacks. This means that

attacks are easier for certain types of computation. We leave the

question of determining precise bounds as an open problem.

With this in mind, we present Algorithm 1 which marks each

open gate with a boolean value𝑉 which is 1 if and only if the value

to be opened needs verification per Definition 5.2. This algorithm is

based on breadth first search and as such has complexity𝑂 ( |𝑉 |+|𝐸 |)
where the vertex set and edge set correspond to the gates and wires

respectively. Given a circuit graph 𝐺 , we let each gate 𝑔 store the

following attributes, where the first four are based on 𝐺 and the

gate type, while the last two are computed by the algorithm:

(1) Gate in-degree 𝐷 .

(2) If 𝑔 is an open gate, output set 𝐵 ⊆ F (as per Definition 3.1,

and based on function 𝑓 being computed).

(3) Binary value 𝐴, which denotes attackability, as per Defini-

tion 5.1.

(4) Binary value 𝑅, which is 1 if and only if the gate introduces

value into the circuit which is not any parties’ protected

input (i.e., RandFld, RandInt, or constant gates).
(5) Binary value 𝐼 , which is 1 if and only if the gate takes input

which is dependent on some parties’ input.

(6) Binary value 𝑉 , which denotes whether or not verification

needs to take place upon opening.

(7) Each wire𝑤 in𝐺 will also have a value𝑉 , which will match

the value 𝑔.𝑉 associated to the gate for which𝑤 is an output

wire (this will aid efficiency of Algorithm 1).

Treating the computation circuit 𝐺 as a directed acyclic graph,

this algorithm is comprised of two sequential partial breadth first

searches (BFS), which cover 𝐺 and are mainly disjoint (and hence

taken together require only slightly more work than one BFS on𝐺).

Thus, the complexity is linear in the number of nodes (gates) and

edges. Given that each gate has the fan-out of 1, the complexity is

linear in the number of inputs and gates.

The first BFS (lines 2–5) starts at the computation inputs and

marks all downstream gates as input-dependent (𝐼 = 1) and poten-

tially requiring verification (𝑉 = 1). Then the second BFS (lines

7–20) starts disjoint from the first with gates that contribute input-

independent values, i.e., 𝑅 = 1. It runs until any gate marked in

the first BFS is encountered, with the goal of identifying input-

dependent open gates which use well-formed randomness for pro-

tection and re-setting 𝑉 = 0 in such cases.
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Algorithm 1 Open Gate Categorization Algorithm

Input: Graph representation of circuit𝐺 with gates as vertices and

wires as edges, with associated values 𝐷 , 𝐴, 𝐵, and 𝑅.

Output: Binary value 𝑉 for each open gate 𝑔 that denotes whether

verification needs to take place prior to opening.

Protocol steps:
1: For each gate 𝑔 and wire𝑤 , set 𝑔.𝑉 = 0 and𝑤.𝑉 = 0

2: Create dummy gate 𝑔0 that outputs to each input wire in 𝐺

3: Run a BFS starting at 𝑔0
4: where
5: When visiting gate 𝑔 via wire𝑤 , set 𝑔.𝐼 = 𝑔.𝑉 = 𝑤.𝑉 := 1

6: Set O𝑖 = {} and O𝑟 = {}
7: Create dummy gate 𝑔𝑟 that outputs to each gate 𝑔 with 𝑔.𝑅 = 1

8: Run a BFS starting at 𝑔𝑟
9: where for each gate 𝑔, discovered via wire𝑤in,

10: if 𝑔 is an addition gate, not marked as finished, with input

wires𝑤𝑎 and𝑤𝑏 and 𝑔.𝐼 = 1 then
11: if 𝑔 outputs via wire𝑤𝑐 into open gate ℎ then
12: Add (𝑤𝑎,𝑤𝑏 , 𝑔,𝑤𝑐 , ℎ) to O𝑖
13: else
14: if 𝑔 is an open gate with 𝑔.𝐼 = 0 then
15: Add 𝑔 to O𝑟
16: Set 𝑔.𝑉 = (𝑔.𝑉 or 𝑔.𝐴 or𝑤in .𝑉 )
17: Decrement 𝑔.𝐷

18: if (𝑔.𝐷 = 0) or (𝑔.𝑉 = 1) then
19: Set 𝑤out .𝑉 = 𝑔.𝑉 for all 𝑤out which are (directly con-

nected to) output of 𝑔

20: Mark 𝑔 as finished, set 𝑔.𝐷 = 0, and if 𝑔.𝐼 = 0, then

process its downstream neighbors

21: for each (𝑤𝑎,𝑤𝑏 , 𝑔,𝑤𝑐 , ℎ) ∈ O𝑖 do
22: ℎ.𝑉 := (𝑤𝑎 .𝑉 and𝑤𝑏 .𝑉 ) or (ℎ.𝐵

?

≠ F)
23: for each 𝑔 ∈ O𝑟 do
24: 𝑔.𝑉 := 0

During the second BFS, whenever an input-dependent addition

gate is found to output into an open gate, the pair of gates is added

along with wires as an atomic unit to a list O𝑖 (lines 10–12). This is a
list of potential input-dependent open gates which are safe to open,

per condition (2) of Definition 5.2. We create the list O𝑖 in order to

defer evaluation until all upstream gates have been considered.

Any open gate not downstream of input is added to another list

O𝑟 (lines 14–15), which maintains the list of all input-independent

open gates. The gates in this category do not require verification

(per condition (1) of Definition 5.2), but may be temporarily marked

by the algorithm as needing verification in order to correctly process

condition 2, i.e., determine if a random pad using such value is well-

formed. The need-to-verify property of each gate is assigned on

line 16, inclusive of 𝑔’s attackability, as well as all upstream and

local need-to-verify properties. Consequently, the assignment on

line 19 propagates this flag downstream.

In the final step, this flag is cleared (i.e., set 𝑉 = 0) for all input-

independent open gates in O𝑟 (lines 23–24), as well as any-input
dependent open gate in O𝑖 which has been padded by a well-formed

uniform random element of F immediately prior to opening (lines

21–22). The former corresponds to condition (1) of Definition 5.2

and the latter corresponds to condition (2).

Lemma 5.3 states correctness, with the proof in Appendix B.

Lemma 5.3. For a given circuit 𝐺 and open gate ℎ, Algorithm 1
labels ℎ as safe to open without verification if and only if it conforms
to Definition 5.2.

5.2 From Security up to Additive Attacks to
Security with Abort

Following [9], our transformation of building blocks secure up to

additive attacks into an actively secure construction is given in the

hybrid model. For that reason we need to define a number of ideal

functionalities (and have protocols that realize the ideal functional-

ities). A number of them, F
mult

, F
dotprod

, F
randfld

, F
randint

(𝑘), and
Fopen, correspond to sub-protocols for different types of gates, with
the adversary being able to introduce an additive error in F

mult
and

F
dotprod

and others being resilient to malicious behavior. There are

also functionalities for entering input into the computation, Finput,
and delivering output to a party, Foutput, together with two supple-

mental functionalities F
randfldpub

and F
zerocheck

modeled similar

to [9]. F
randfldpub

generates a publicly known random field element

and is instantiated by calling F
randfld

and Fopen; and Fzerocheck
checks whether a private value equals to 0 and is instantiated by

randomizing the argument (calling F
randfld

and F
mult

), opening it

(using Fopen) and comparing the opened value to 0. The details of

the ideal functionalities are given in Appendix C.

Our main compiler that converts components secure up to ad-

ditive attacks into a construction secure in the presence of active

adversaries is Construction 2. The computation is carried out by 𝑛

participants, and as before there are𝑚 inputs for any𝑚. It assumes

a large field, i.e., |F| is on the order of 2
𝜅
for a security parameter

𝜅. (The solution can be generalized to work with smaller fields as

shown later.) With sufficiently large fields, there are two parallel

branches of computation: (1) the regular computation and (2) a ran-

domized computation, where all values are multiplied by a random

field element 𝑟 not known to the parties during the computation.

When the current gate prescribes opening, we open the value only

in the regular (non-randomized) branch. When a gate generates

random value [𝑧], we create the corresponding value [𝑟 · 𝑧] for the
second execution. Every time verification is triggered (prior to an

opening marked as requiring verification or prior to reconstructing

the output), we verify consistent execution of all attackable gates

(multiplication and dot product) since the last verification operation.

If verification succeeds, the parties continue.

Additionally, when opening values which are not a function

of any parties’ input on some proper subset 𝐵 ⊂ F, we allow for

parties to perform checking that the opened value is in 𝐵 and abort

if necessary, provided an efficient checking algorithm is known

to the parties. This is not necessary to uphold security since no

sensitive data was leaked and the adversary has not obtained any

more information relative to the honest parties’ view than they

would when tampering an unopened shared value. Moreover it does

not guarantee that there is no tampering since there is always a

chance an additive attack maps to another value in 𝐵. Nevertheless,

this can with some likelihood provide a relatively efficient way to

detect misbehavior prior to scheduled verification.
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Construction 2. Secure Function Evaluation Over Large Fields.
If any participant receives ⊥ from any sub-functionality throughout
the protocol execution (e.g., Finput, Fmult

, etc.), it sends ⊥ to all other
parties, outputs ⊥, and terminates.

(1) Input sharing: Each input owner sends its input 𝑣 to Finput,
which results in party 𝑃𝑖 learning its share [𝑣]𝑖 .

(2) Generation of circuit randomization: The parties call F
randfld

and receive [𝑟 ]. Each party initializes a verification buffer to
hold values for Step 4h.

(3) Randomization of inputs: For each input [𝑣], the parties call
F
mult

on inputs [𝑟 ] and [𝑣] and obtain [𝑟𝑣]. The parties store
( [𝑣], [𝑟𝑣]) and add the tuple to the verification buffer.

(4) Function evaluation: The parties are given the function as a
sequence of gates in a predetermined topological order and
evaluate it as follows based on the type of the gate:
(a) Addition: on input ( [𝑥], [𝑟𝑥]) and ( [𝑦], [𝑟𝑦]), each par-
ticipant locally computes [𝑧] = [𝑥 + 𝑦], [𝑟𝑧] = [𝑟𝑥] + [𝑟𝑦]
using its shares and stores ( [𝑧], [𝑟𝑧]).

(b) Multiplication by a known field element: on input
( [𝑥], [𝑟𝑥]) and 𝑦 ∈ F, each party locally computes [𝑧] =
𝑦 · [𝑥] = [𝑥𝑦], [𝑟𝑧] = 𝑦 · [𝑟𝑥] = [𝑟𝑥𝑦] using its shares and
stores ( [𝑧], [𝑟𝑧]).

(c) Multiplication: on input ( [𝑥], [𝑟𝑥]) and ( [𝑦], [𝑟𝑦]), the
parties call F

mult
on [𝑥] and [𝑦] to obtain [𝑧] = [𝑥𝑦] and on

[𝑟𝑥] and [𝑦] to obtain [𝑟𝑧] = [𝑟𝑥𝑦]. They store ( [𝑧], [𝑟𝑧])
and add the tuple to the verification buffer.

(d) Dot product: on input {([𝑥𝑖 ], [𝑟𝑥𝑖 ])}ℓ𝑖=1 and
{([𝑦𝑖 ], [𝑟𝑦𝑖 ])}ℓ𝑖=1, the parties call Fdotprod on {[𝑥𝑖 ]} and
{[𝑦𝑖 ]} to obtain [𝑧] =

∑
𝑖 [𝑥𝑖𝑦𝑖 ] and also on {[𝑟𝑥𝑖 ]} and

{[𝑦𝑖 ]} to obtain [𝑟𝑧] =
∑
𝑖 [𝑟𝑥𝑖𝑦𝑖 ]. The parties store

( [𝑧], [𝑟𝑧]) and add the tuple to the verification buffer.
(e) RandFld gate: the parties call F

randfld
to obtain [𝑤], then

call F
mult

on [𝑟 ] and [𝑤] to obtain [𝑟𝑤], store ( [𝑤], [𝑟𝑤]),
and add the tuple to the verification buffer.

(f) RandInt gate: the parties call F
randint

to obtain [𝑤], then
call F

mult
on [𝑟 ] and [𝑤] to obtain [𝑟𝑤], store ( [𝑤], [𝑟𝑤]),

and add the tuple to the verification buffer.
(g) Opening: if the gate is marked by Algorithm 1 as needing
verification, the parties proceed to verification in Step 4h. If
the verification did not abort or if the gate is not marked
as needing verification, the parties use input ( [𝑥], [𝑟𝑥])
and call Fopen on [𝑥] to receive 𝑥 . If efficient testing of
membership in 𝐵 exists and the parties find that 𝑥 ∉ 𝐵, the
parties abort. If no abort has occurred, the parties store 𝑥 .

(h) Verification of evaluation: Let pairs ( [𝑥𝑖 ], [𝑟𝑥𝑖 ])𝑀𝑖=1 denote
values currently stored in the verification buffer. Verification
proceeds as follows:
(i) If𝑀 > 1, the participants call F

randfldpub
to generate a

random seed 𝑠 and make𝑀 calls to FPRG(𝑠) to determine
pseudo-random 𝛼1, . . . , 𝛼𝑀 . Otherwise, set 𝛼1 = 1.

(ii) Each party locally computes on its shares [𝑢1] =
∑𝑀
𝑖=1 𝛼𝑖 ·

[𝑟𝑥𝑖 ] and [𝑢2] =
∑𝑀
𝑖=1 𝛼𝑖 · [𝑥𝑖 ]

(iii) The parties call F
mult

to obtain [𝑟 ] · [𝑢2] and compute
[𝑇 ] = [𝑢1] − [𝑟 ] · [𝑢2].

(iv) The participants call F
zerocheck

on [𝑇 ]; if F
zerocheck

outputs reject, the parties output ⊥ and terminate (and

otherwise F
zerocheck

outputs accept and the parties con-
tinue).

(v) If no abort occurred, the parties flush the verification
buffer.

(5) Output reconstruction: The parties run one final round of ver-
ification as per Step 4h. If no abort occurred, the parties call
Foutput to reconstruct each outputs 𝑥 to the party receiving it.

To demonstrate security, as the first step we prove that if an

adversary misbehaves during the computation of anymultiplication

or dot product, then the probability that the verification step does

not detect this is negligible in the security parameter.

Theorem 5.4. If during a call to any F
mult

or F
dotprod

in Con-
struction 2 the adversary introduces additive error 𝑑 ≠ 0, then 𝑇

equals 0 with probability less than 2/|F|.

The proof is deferred to Appendix C. Now, we state overall security

of Construction 2 as follows:

Theorem 5.5. Let F be a large finite field such that 1/|F| is neg-
ligible in statistical security parameter 𝜅. Then for any function 𝑓

over F complying with Definition 3.1, Construction 2 securely eval-
uates 𝑓 with abort in the presence of malicious adversaries con-
trolling at most 𝑡 < 𝑛/2 participants in the (Finput, Foutput, Fopen,
F
randfld

, F
randint

, F
randfldpub

, F
mult

, F
dotprod

, F
zerocheck

)
-hybrid model. In the absence of malicious behavior the computation
always produces the correct result, while in the case of tampering
with the computation, if the computation successfully terminates, the
output is incorrect with at most negligible probability in 𝜅.

The proof is provided in Appendix C. We also discuss modifying

the solution to work with smaller fields (by performing a number

of randomized executions) in Appendix D.

6 PERFORMANCE
We implemented our protocols

1
and evaluate their performance in

a three-party setting. All experiments use identical 2.4GHz virtual

machines with 26GB of RAM. They were connected via 10Gbps

Ethernet links, which we throttled to 1Gbps using the tc command.

Two-way latency was measured to be 0.106 ms. All experiments

are single threaded.

We evaluate performance of different functionalities in both semi-

honest and malicious models. We are not aware of prior work along

this line of research drawing an empirical comparison between semi-

honest and transformed malicious variants. Inevitably, the added

cost of maliciously secure protocols would differ depending on the

function being evaluated because of additional work associated

with each input and the gates of the computation themselves.

We run both micro-benchmarks with individual operations as

well as offer evaluation of a more complex function, namely over-

the-threshold Euclidean distance, as listed in Table 1.

Micro-benchmarks include addition Add (which is a special case

and the reason for its inclusion is discussed later), multiplication

Mult, equality EQ as specified in [8], and less than LT, also from [8].

As we strive to measure the difference in performance when we

enhance security from the semi-honest to the malicious model, we

1
The implementation is available at https://github.com/applied-crypto-lab/mal-ext-

circuits.
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Protocol Setup

Field Runtime of different batch sizes (in ms) Communication

size 1 10 10
2

10
3

10
4

10
5

per party (in elem)

Add
SH 32 0.001 0.001 0.004 0.041 0.371 3.35 0

M

48

0.000 0.01 0.008 0.088 0.859 8.14 0

VC 0% 0% 0% 0% 0% 0%

Mult
SH 32 0.069 0.074 0.186 1.32 10.8 104 1 per op.

M

48

0.264 0.943 1.22 4.28 32.98 335 2 per op. + 6

VC 75.9% 89.8% 73.6% 37.2% 19.6% 17.7%

LT
SH 80 0.515 2.78 21.8 226 2,292 23,014 220 per op.

M

80

3.95 17.7 143 1,349 13,418 N/A 536 per op. + 18

VC 53.3% 27.0% 14.7% 12.6% 12.2% N/A

EQ
SH 80 0.444 1.80 13.6 125 1,283 12,867 100 per op.

M

80

3.11 11.2 69.7 694 6,576 65,165 249 per op. + 12

VC 59.3% 28.8% 14.8% 12.3% 11.4% 11.3%

Over-the-thres- SH 80 1.03 1.08 1.10 1.22 1.73 10.8 221

hold Euclidean M

80

3.98 4.00 4.01 4.57 6.16 23.4 554

distance VC 52.1% 52.2% 52.1% 50.2% 36.6% 10.0%

Table 1: Performance of different functionalities implemented as extended circuits.

implemented the computation in both models using PICCO [40]

that implements multiplication [5] that Construction 1 uses.

In Table 1, notation SH stands for “semi-honest,” M for “mali-

cious,” and VC for “verification cost” as a percentage of execution

time in the malicious model. All functionalities use 32-bit inte-

ger inputs. Field size denotes the bitlength of each field element

throughout the computation. Certain operations such as compar-

isons involve statistical hiding and increase the bitlength of field

elements by a statistical parameter. We set all statistical security

parameters to 48. Computation size in individual operations de-

notes how many operations were executed at the same time in a

single batch, while it means the size of the input for more involved

functions. In addition, we report the fraction of the time spent on

verification in maliciously secure protocols. Input randomization

in the malicious model is excluded as it is a one-time cost and has

small impact on individual operations. Communication is measured

as the number of field elements sent by each party. For example, the

cost of performing 10
3
multiplications in Table 1 is 1,000 elements

or 4,000B per party in the semi-honest setting and 2,006 elements

or 12,036B per party in the malicious model.

Overall, the runtime of malicious experiments for our compu-

tation is often 3–4 times slower compared to the corresponding

experiment in the semi-honest model. The difference is higher for a

single operation, where the added round complexity of verification

dominates the cost and decreases as the computation size increases.

The main factor that introduces the extra cost in the malicious

experiments for non-tiny computations is the randomized branch,

which doubles communication and computation. Communication

can increase beyond the factor of two because some gates (e.g.,

RandFld) are local prior to transformation, but their output needs

to be randomized, which uses communication. The time can also

increase for functionalities that move to a larger field size after the

transformation.

An invocation of the verification procedure in the malicious

experiments normally involves three rounds of communication. It

is invoked (according to Algorithm 1) once in Mult experiments,

twice in EQ experiments, and three times in LT experiments. (“VC”

corresponds to the aggregate time of all calls.)

It is also informative to compare the cost of semi-honest to

malicious security transformation to that in other publications.

While the differences in the hardware and implementation choices

prevent a direct comparison of previously published runtimes, we

examine communication cost. In [19], Escudero et al. implement an

edaBit-based LT solution, which in a comparable setting uses 1.4Kb

per operation in the semi-honest model, which rises to 19.9Kb in

the malicious setting. Our implementation starts with 17.8Kb in

the semi-honest model and rises to 45.4Kb in the malicious model.

This points to the opportunity of the two works to complement

each other: our work can benefit from integration of more efficient

random bit generation, while [19] and other publications that rely

on delayed verification to achieve malicious security can use our

work to determine when it is safe to open intermediate results in a

protocol without triggering verification.

To develop a better understanding of the benefits of using ex-

tended circuits compared to pure arithmetic circuits composed of

addition and multiplication gates, we also implement a semi-honest

and its transformed malicious protocol composed of strictly arith-

metic gates on the example of the over-the-threshold Euclidean

distance (as described in the beginning of this work). This compu-

tation uses additions and multiplications followed by a comparison

operation. As discussed in the beginning of the paper, the presence

of non-arithmetic operations such as equality and greater-than

comparisons requires the entire computation to be carried out in

the bit-decomposed form on Boolean values when the circuit is

composed of two types of arithmetic gates (and significantly in-

creases the cost of integer additions and multiplications). Thus, we

implement Add,Mult, EQ , LT, and the entire over-the-threshold Eu-
clidean distance on bit-decomposed (binary) values using Boolean

gates and report performance on 32-bit inputs in Table 2.
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Protocol

Mult. gates

Setup

Field Runtime of dif. batch sizes (in ms) Communication

per op. size 1 10 10
2

10
3

per party (in elem)

Add 192

SH 3 0.556 2.90 23.4 267 192 per op.

M

48

1.78 8.17 58.1 661 384 per op. + 6

VC 50.9% 26.6% 18.4% 15.5%

Mult 3695

SH 3 7.04 50.3 555 5,429 3695 per op.

M

48

16.4 123 1,321 13,245 7390 per op. + 6

VC 19.8% 16.0% 15.0% 13.7%

LT 94

SH 3 0.471 1.64 12.2 128 94 per op.

M

48

1.47 4.74 32.7 324 188 per op. + 6

VC 57.9% 31.9% 18.3% 15.2%

EQ 63

SH 3 0.435 1.29 8.77 84.8 63 per op.

M

48

1.40 3.58 23.1 228 126 per op. + 6

VC 61.3% 33.9% 19.7% 14.6%

Over-the-thres-

4270ℓ − 98
SH 3 8.52 59.9 623 6,315 4270ℓ − 98

hold Euclidean M

48

19.5 153 1,524 15,299 8540ℓ − 92
distance VC 17.0% 15.4% 15.0% 13.5%

Table 2: Performance of different functionalities implemented using strict arithmetic circuits (bitwise computation). ℓ denotes
the size of the input sequences in the case of over-the-threshold Euclidean distance.

We used optimized implementations of integer operations over

field F = Z5 in the semi-honest model.
2
The bitwise (binary) circuits

for addition, EQ , and LT have logarithmic in the length of the

arguments number of communication rounds, comparisons (LT
and EQ) have linear complexity, while addition has complexity

𝑂 (𝑘 log𝑘). The bitwise addition and LT protocols can be found

in [38]. For 32-bit operands, a logarithmic number of rounds is

comparable to the number of rounds in constant-round comparison

protocols.

We also implemented efficient bitwise multiplication and sum-

mation which each call this optimized bitwise addition in a number

of rounds logarithmic in the argument bit length. Both algorithms

fan in as many pairs as possible each round while maximizing

the number of values which can be passed though on each round

(i.e., minimizing the operand length). We note that overall these

algorithms have log squared round complexity in the length of the

arguments. Bitwise multiplication is used for theMult experiments

as well as the batch multiplication as part of the over-the-threshold

Euclidean distance in Table 2, while the bitwise summation is used

to sum over the resulting products in the latter computation.

If we look at individual operations, bitwise comparisons in Ta-

ble 2 are faster than comparisons in Table 1, while bitwise addition

and multiplication in Table 2 are, as expected, substantially slower

than the corresponding operations in Table 1 that do not require

computation in a bit-decomposed form. (Local) addition Add was

added to Table 1 to show the difference in performance between

the two variants (note that because Add experiments in Table 1 do

not include any attackable gates, verification is not used).

When we combine the building blocks to implement the over-

the-threshold Euclidean distance, we observe that bitwise variants

(strict arithmetic circuit) are one or more orders of magnitude

slower than the variants that use the extended set of gates. A similar

2
The secret sharing scheme requires that the field contains at least 𝑛 + 1 elements,

which prevents the use of Z2 .

performance difference is expected for certain types of popular

computations such as privacy-preserving neural network inference

that makes a heavy use of multiplications and comparisons.

7 CONCLUSIONS
In this work we study extending the notion of semi-honest pro-

tocols secure up to additive attacks to cover an extended set of

elementary gates beyond conventional arithmetic circuits com-

posed of additions and multiplications. The extended set includes

randomization and reconstruction gates which create challenges

when working on this problem. We first define constraints on func-

tions, evaluation of which can be simulated in the presence of open

gates. We then proceed with extending the notion of security up

to additive attacks to cover the additional gates which, according

to the requirements of the framework, cannot contain open gates.

Our consequent analysis shows that delayed verification is not al-

ways safe in the presence of open gates and devise an algorithm for

triggering verification early when opening a potentially tampered

value is not considered safe. Our final result is transformation to

achieve security in the malicious model with abort and empirically

demonstrate that the difference in performance of semi-honest and

malicious variants is low. Furthermore, for certain functions the

computation is significantly more efficient than using conventional

arithmetic circuits.
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A WEAKLY PRIVATE BUILDING BLOCKS
Lemma A.1. The protocol instantiations for each gate in Construc-

tion 1 correctly realize the corresponding functionalities.

Proof. We examine each gate in turn:

• RandFld gate: During evaluation of this gate, each party 𝑃𝑖 ,

𝑖 ∈ [1, 𝑛], locally computes:

[𝑥]𝑖 =
∑︁

𝑄 ∈Q,𝑖∈𝑄 FPRG(key𝑄 ) · 𝜆𝑄 (𝑖) (1)

Recall that for each maximal unqualified set 𝑇 of the thresh-

old access structure (|𝑇 | = 𝑡 ), 𝑄 = [1, 𝑛] \𝑇 and the corre-

sponding share of 𝑥 , 𝑥𝑄 , is given to each party in 𝑄 . Also

recall that 𝜆𝑄 was defined as a unique polynomial of degree

𝑡 such that 𝜆𝑄 (0) = 1 and 𝜆𝑄 (𝑖) = 0 for each 𝑃𝑖 ∉ 𝑄 . This

means that shares of all parties not in 𝑄 in equation 1 will

be equal to 0 and cannot contribute. As explained in [11], we

can express the result of this operation as

𝑥 =
∑︁

𝑄⊂[1,𝑛], |𝑄 |=𝑛−𝑡
FPRG(key𝑄 ),

which is a pseudo-random element of the field. Then the

polynomial

𝑓 =
∑︁

𝑄⊂[1,𝑛], |𝑄 |=𝑛−𝑡
FPRF(key𝑄 ) · 𝜆𝑄 (𝑖)

has degree 𝑡 , 𝑓 (0) = 𝑥 , and 𝑓 (𝑖) = [𝑥]𝑖 as desired.
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• RandInt gate: During evaluation of this gate on parameter 𝑘 ,

the computation performed by party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], is defined
as:

[𝑥]𝑖 =
∑︁

𝑄 ∈Q,𝑖∈𝑄 FPRG(key𝑄 ) · 𝜆𝑄 (𝑖)

Similar to the case of RandFld gate, secret shared 𝑥 now

corresponds to the sum of pseudo-random integers

𝑥 =
∑︁

𝑄⊂[1,𝑛], |𝑄 |=𝑛−𝑡
ZPRG𝑘 (key𝑄 ),

but unlike RandFld, the sum combines 𝑘-bit integers and the

result is 𝑘 + log(𝜈) bits long, where 𝜈 =
(𝑛
𝑡

)
is the number of

shares.

• Addition gate: Correctness of local addition of shares follows

from the linear property of the secret sharing scheme.

• Multiplication by a known field element gate: Correctness

of a local multiplication of shares by a known field element

follows from the linear property of the secret sharing scheme.

• Multiplication gate (linear communication): During the pro-

tocol, the parties first compute ⟨𝑣⟩ and open the value. The

result is consequently set to [𝑧] = 𝑣 − [𝑤] and we want to

show that 𝑧 = 𝑎 · 𝑏.
The rationale behind the protocol is that computing the

product locally using shares raises the polynomial degree and

degree reduction is performed via generating a pair [𝑤], ⟨𝑢⟩
that correspond to the same value (𝑤 = 𝑢), but are encoded as

degree-𝑡 and degree-2𝑡 polynomials, respectively. Thus, the

parties compute ⟨𝑣⟩ as a sum of a pseudo-random𝑤 and the

product 𝑎 ·𝑏, represented as a polynomial of degree 2𝑡 . Thus,

after reconstructing 𝑣 , we obtain 𝑧 = 𝑣−𝑤 = 𝑤+𝑎·𝑏−𝑤 = 𝑎·𝑏
as desired.

• Multiplication gate (single round): As in the case of the pre-

vious multiplication protocol, each party locally computes

⟨𝑧⟩𝑖 = [𝑎]𝑖 [𝑏]𝑖 , but the degree reduction, or re-sharing,

mechanism to obtain [𝑧] is different. Each 𝑃𝑖 re-shares its

⟨𝑧⟩𝑖 as a degree 𝑡 and polynomial interpolation constants 𝛼 𝑗 s

are used to combine the shares and obtain degree-𝑡 shares

of 𝑧. The constants 𝛼 𝑗 s are designed in [24] to reconstruct

the shares of the product 𝑧 = 𝑎 · 𝑏 as [𝑧]𝑖 =
∑𝑛

𝑗=1 𝛼 𝑗 [𝑑 𝑗 ]𝑖 ,
where [𝑑 𝑗 ]𝑖 denotes party 𝑃𝑖 ’s share of ⟨𝑧⟩𝑗 . This is the same

reconstruction as what our protocol uses.

However, instead of setting the coefficients of the polynomial

𝑓 that represents secret sharing of ⟨𝑧⟩𝑖 , denoted as 𝑓⟨𝑧 ⟩𝑖 ,
at random (with the requirement that 𝑓⟨𝑧 ⟩𝑖 (0) = ⟨𝑧⟩𝑖 ), 𝑃𝑖
uses 𝑡 pseudo-random values from which the polynomial

is reconstructed (together with the value 𝑓⟨𝑧 ⟩𝑖 (0) = ⟨𝑧⟩𝑖 ) as
originally described in [5]. This does not change the fact that

𝑓⟨𝑧 ⟩𝑖 corresponds to a valid representation of sharing of ⟨𝑧⟩𝑖 ,
but only lowers communication overhead that reduces the

number of shares that need to be communicated to other

parties from 𝑛 − 1 to 𝑛 − 𝑡 − 1. Thus, this does not impact

correctness.

• Dot product gate: The reasoning behind the dot product

protocols is similar to that of multiplication gates above.

The only difference is that instead of computing (degree-2𝑡 )

shares of the product ⟨𝑧⟩𝑖 = [𝑥]𝑖 [𝑦]𝑖 , each party 𝑃𝑖 computes

share ⟨𝑧⟩𝑖 =
∑ℓ

𝑗=1 [𝑥 𝑗 ]𝑖 · [𝑦 𝑗 ]𝑖 , which also corresponds to

a polynomial of degree 2𝑡 . The rest of the computation is

unchanged and correctness follows.

□

Proof of Theorem 4.4. Given simulator S and adversary A
which controls the set of corrupt parties 𝐶 , the construction is

simulated as described next. Since there is no cause for honest

parties to abort during the course of Construction 1, we do not

need S to maintain a complete view of computation, and instead

will focus only on protocols where communication would occur.

(1) Input secret sharing: S calls share(0) for each element of 𝑃𝑖 ’s

input 𝑥𝑖 , where 𝑃𝑖 ∈ 𝐻 , and distributes them according to

the construction. It also receives shares received from the

malicious parties.

(2) Function evaluation: For each gate 𝑔 of the following type, in

the given topological order,

• Multiplication gate (linear communication):
(a) For each honest party 𝑃𝑖 ∈ 𝐻 , S defines a sharing [𝑟 ]
by generating random shares using RSS, and similarly

generates a fresh ⟨0⟩.
(b) For each honest party 𝑃𝑖 ∈ 𝐻 , S computes ⟨𝑢⟩𝑖 =

[𝑟 ]𝑖 · [1]𝑖 + ⟨0⟩𝑖 .
(c) For each honest party 𝑃𝑖 ∈ 𝐻 , S computes ⟨𝐷⟩𝑖 =

[𝑥]𝑖 · [𝑦]𝑖 + ⟨𝑅⟩𝑖 ;
(d) If the king is honest:

(i) Acting as the king, S receives ⟨𝐷⟩𝑗 from each cor-

rupt party 𝑃 𝑗 .

(ii) Acting as the king, S reconstructs 𝐷 and sends 𝐷

to the corrupted parties.

Otherwise, if the king is corrupt:

(i) For each honest party 𝑃𝑖 ∈ 𝐻 , S sends ⟨𝐷⟩𝑖 to the

corrupt king;

(ii) For each honest party 𝑃𝑖 ∈ 𝐻 , S receives 𝐷 from

the corrupt king;

• Multiplication gate (single round):
(a) For each honest party 𝑃𝑖 ∈ 𝐻 and for each 𝑗 = 1 +
(𝑖 mod 𝑛), . . . , 1 + ((𝑖 + 𝑡) mod 𝑛), S computes [𝑑𝑖 ] 𝑗 =
FPRG(𝑘 𝑗,𝑖 ).

(b) For each honest party 𝑃𝑖 ∈ 𝐻 , S computes ⟨𝑧⟩𝑖 =

[𝑥]𝑖 · [𝑦]𝑖 and sets [𝑑𝑖 ]0 = ⟨𝑧⟩𝑖 .
(c) For each honest party 𝑃𝑖 ∈ 𝐻 , S reconstructs the poly-

nomial 𝑓⟨𝑧 ⟩𝑖 from the 𝑡 + 1 shares.
(d) For each honest party 𝑃𝑖 ∈ 𝐻 , S evaluates and sends

[𝑑𝑖 ] 𝑗 = 𝑓⟨𝑧 ⟩𝑖 ( 𝑗) to 𝑃 𝑗 for 𝑃 𝑗 ∈ 𝐶 such that 𝑗 = 1 + ((𝑖 +
𝑡 + 1) mod 𝑛), . . . , 1 + ((𝑖 + 𝑛 − 2) mod 𝑛)

• Dot product gate: For each honest party 𝑃𝑖 ∈ 𝐻 , S com-

putes ⟨𝑐⟩𝑖 =
∑ℓ

𝑗=1 [𝑥 𝑗 ] · [𝑦 𝑗 ] and either

– Stores ⟨𝑧⟩𝑖 = ⟨𝑐⟩𝑖 and proceeds with single round mul-

tiplication in Step 2c using this value.

– Stores [𝑥]𝑖 · [𝑦]𝑖 = ⟨𝑐⟩𝑖 and depending on the honesty

of the king, proceeds with linear communication multi-

plication in Step 2(d)i of the relevant branch using this

value.

Next, we prove the indistinguishability of the real and simulated

views. Note that the only difference between a real-world execution

and a simulation is that we let S take zeros as honest parties’ input.
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But due to the properties of the underlying secret sharing scheme, a

dishonest minority cannot learn any information about input values

shared by any party or intermediate shares that depend on those

values. This is independent of the party performing the sharing,

including any simulator on behalf of honest parties.

Now we consider building blocks that involve interactive oper-

ations. For these, A can tamper with operations by engaging in

different types of misbehavior. These include

• Modifying intermediate results (which can influence the

values sent to honest parties).

• Create shared values using an incorrect threshold (i.e., create

polynomials of a wrong degree).

• Sending different values to different honest parties when the

protocol calls for broadcasting the same value of a number

of participants.

The first place that A can tamper with is input sharing phase,

where the corrupt parties may send shares with wrong degree

to S. We argue that incorrect degree sharing can only affect the

correctness, and not privacy. To that end, note that because inputs

have to go though some arithmetic gates before being opened, if

inputs are shared by some corrupt parties with degree lower than 𝑡 ,

then the degree will become 𝑡 in the next arithmetic gate that the

shares combine with any other inputs or randomness. If instead

some corrupt parties share input with degree greater than 𝑡 , then

the degree will become 𝑡 in the next multiplication gate. Hence,

there will be no distinguishable difference between the real and

simulated views if A improperly shares values.

In the simulation of the single round multiplication gate, only

simulation step 2d involves interactive operations. A may tamper

with this protocol by sending honest parties incorrect shares. Note

that the above discussion on incorrect degree applies to this situ-

ation. Otherwise, sending incorrect shares of correct degree can

only affect output correctness, and not privacy. Hence, the real and

simulated views remain indistinguishable.

In the simulation of the linear communication multiplication

gate, we consider two cases. If the king is honest, thenA may send

wrong shares to S in step 2(d)i. As previously noted, this manner

of misbehavior will not cause a distinguishable difference between

the real and simulated views. If instead the king is corrupt, A may

broadcast an incorrect value 𝐷 or inconsistent values to different

honest parties in step 2(d)ii. Again, in both cases only share value

correctness may be affected and real and simulated views remain

indistinguishable.

Finally, in the simulation of the dot product gate, we note that

interaction only occurs exactly as it would during the degree rec-

onciliation phase of either type of multiplication gate. But this is

precisely where (and only where) interaction occurs in those gates.

Thus, indistinguishability between the real and simulated views of

dot product gates follows from the preceding arguments for single

round multiplication and linear communication multiplication.

Thus, the simulated view of Construction 1 is indistinguishable

from real execution to A. □

Proof of Lemma 4.5. Recall that to prove this, we need to show

that extended linear-based protocols which are weakly private are

secure up to additive attack (i.e. that the validity of this fact for

(non-extended) linear based protocols, proved in [22], holds in light

of these modifications). These details are treated in Appendix E.

In order for this to be meaningful, we first need to show that the

interactive building blocks we use in Construction 1 are linear as per

Definition 4.1. To that end, note that each of the following protocols

take setup based input in the form of any necessary encryption

keys and randomness seeds. Moreover, the output of any of these

building blocks is a linear combination of incoming messages, and

thus by definition, constitutes a message of Type B in accordance

with Definition 4.1. Otherwise, consider the following:

• share( [𝑥]): given that we instantiate secret sharing in this

section with Shamir secret sharing, note that

pre-computation involves sampling 𝑡 random polynomial

coefficients. Let 𝑃𝑖 be the sharing party. 𝑃𝑖 uses these to

set vector 𝑅 = (𝑟1, 𝑟2, . . . , 𝑟𝑡 ). 𝑃𝑖 then sends the matrix 𝐽 =

(1, 𝑗, 𝑗2, . . . , 𝑗𝑡 )1≤ 𝑗≤𝑛 together with their main input value

𝑥 to themselves as a Type A message as described in Defini-

tion 4.1. Next, 𝑃𝑖 computes [𝑥] 𝑗 = 𝑅𝑇 · 𝐽 [ 𝑗] for 1 ≤ 𝑗 ≤ 𝑛.

Note that these values each conform to the definition of a

Type B message as described in Definition 4.1. Moreover,

this shows that when holding a polynomial coefficient vec-

tor with element-0 as private input and all other elements

as auxiliary input, parties can execute polynomial evalua-

tion at any fixed point to obtain a Type B message. Finally,

𝑃𝑖 sends [𝑥] 𝑗 to each party 𝑃 𝑗 (including themselves). Each

party takes this vector to be their share and outputs it (which

is trivially linear).

• reconstruct( [𝑥] 𝐽 ): as described in Section 2, assumes a qual-

ified subset 𝐽 of parties (i.e. where |𝐽 | ≥ 𝑡 +1). A party 𝑃𝑖 ∈ 𝐽

in the Shamir setting, cooperating to reconstruct [𝑥], pro-
ceeds as follows: 𝑃𝑖 sends [𝑥]𝑖 to each other 𝑃 𝑗 ∈ 𝐽 . Given

that all intervening computation from initial share() to this

point has involved either local operations or one of the inter-

active sub-protocols discussed below (which we show to be

linear), it follows inductively that [𝑥]𝑖 is a linear combina-

tion of previous messages, and hence sending this constitutes

a Type B message. 𝑃𝑖 then computes (as all others in 𝐽 do

similarly) 𝑥 =
∑

𝑗 ∈𝐽 [𝑥] 𝑗 · 𝛼 𝐽 ( 𝑗) where 𝛼 𝐽 ( 𝑗) =
∏

𝑘∈𝐽
𝑘≠𝑗

𝑘
𝑘−𝑗 ,

and outputs 𝑥 , which as required is a linear combination of

their incoming messages.

• RandFld gate: Pre-computation for party 𝑃𝑖 involves using

setup based inputs to generate

{FPRG(key𝑄 )}𝑄 ∈Q,𝑖∈𝑄 . An (input-independent) linear com-

bination of these values constitute share [𝑥]𝑖 , which is 𝑃𝑖 ’s

output.

• RandInt gate: Pre-computation for party 𝑃𝑖 involves using

setup based inputs to generate

{ZPRG(key𝑄 )}𝑄 ∈Q,𝑖∈𝑄 . An (input-independent) linear com-

bination of these values constitute share [𝑥]𝑖 , which is 𝑃𝑖 ’s

output.

• Addition gate: On input [𝑥] and [𝑦]𝑖 , 𝑃𝑖 sends to themselves

as a Type A message, the shares [𝑥]𝑖 and [𝑦]𝑖 and output

the linear combination [𝑧]𝑖 = [𝑥]𝑖 + [𝑦]𝑖 .
• Multiplication by a known field element: On input [𝑥] and
𝑦 ∈ F, 𝑃𝑖 sends to themselves as a Type A message the share

[𝑥]𝑖 . 𝑃𝑖 then outputs linear combination [𝑧]𝑖 = 𝑦 · [𝑥]𝑖 .
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• Multiplication gate (linear communication): As noted in Con-

struction 1, pre-computation for party 𝑃𝑖 involves using

setup based inputs to generate ⟨0⟩𝑖 and [𝑤]𝑖 . Next on input

[𝑥] and [𝑦]𝑖 , 𝑃𝑖 sends to themselves, as a Type A message,

the value ⟨𝑧⟩𝑖 = [𝑥]𝑖 · [𝑦]𝑖 together with the constant share

[1]𝑖 . Next, 𝑃𝑖 sends ⟨𝑣⟩𝑖 = ⟨𝑧⟩𝑖 + ⟨𝑢⟩𝑖 to the king. Note that

this is a linear combination of the previous message and

auxiliary input, forming a Type B message. After the king

(linearly) reconstructs 𝑣 and broadcasts this value as a Type

B message, 𝑃𝑖 outputs [𝑧]𝑖 = 𝑣 − [𝑤]𝑖 , which as required is

a linear combination of their incoming messages.

• Multiplication gate (single round): For party 𝑃𝑖 , let 𝐽 = { 𝑗 :
𝑖 mod 𝑛 ≤ 𝑗−1 ≤ (𝑖+𝑡) mod 𝑛}. As noted in Construction 1,
pre-computation for party 𝑃 𝑗 involves using setup based

inputs to generate ( [𝑑𝑖 ] 𝑗 ) 𝑗 ∈𝐽 , 𝑗≠𝑖 . Next on input [𝑥] and [𝑦]𝑖 ,
𝑃𝑖 sends to themselves, as a Type Amessage, the value ⟨𝑧⟩𝑖 =
[𝑥]𝑖 · [𝑦]𝑖 , which they define as [𝑑𝑖 ]0. 𝑃 𝑗 then reconstructs

polynomial 𝑓⟨𝑧 ⟩𝑖 from any 𝑡 + 1 [𝑑𝑖 ] 𝑗 s (a linear combination

of previous messages) and evaluates 𝑓⟨𝑧 ⟩𝑖 for each 𝑗 ∈ 𝐽 ,

which as we showed above results in a Type B message.

Each such [𝑑𝑖 ] 𝑗 is sent as such a message to each respective

𝑃 𝑗 ∈ 𝐽 . Finally, 𝑃𝑖 outputs [𝑧]𝑖 =
∑𝑛

𝑗=1 𝛼 𝑗 [𝑑 𝑗 ]𝑖 , which as

required is a linear combination of their incoming messages.

• Dot product gate: The only difference between dot product

and either respective above multiplication is that the Type

A message from each party to themselves includes ⟨𝑧⟩𝑖 =∑ℓ
𝑗=1 [𝑥 𝑗 ]𝑖 · [𝑦 𝑗 ]𝑖 rather than ⟨𝑧⟩𝑖 = [𝑥]𝑖 · [𝑦]𝑖 . This is still

a valid function of primary inputs for such a message, and

further analysis proceeds as in the respective multiplication

gate.

□

B DELAYED VERIFICATION
Proof of Lemma 5.3. First notice that any gate which is down-

stream in 𝐺 of some parties’ input will be initially marked as need-

ing verification during the first BFS (Line 3). Such gates are not

reconsidered until Line 22, and hence this property holds at least

until then. Moreover, any gate which is not downstream of any

parties’ input, but which is downstream of an attackable gate will

be marked as needing verification in Line 16. Since this inclusive-or

statement iteratively evaluates all incoming wires to a gate until

either the needs-verification bit is set, or all incoming wires have

been evaluated (per Line 18), then this property also holds until at

least Line 22.

This shows that until Line 22, needing verification is a down-

stream monotone property within 𝐺 whenever the value to be

opened is a function of some parties’ input, or is downstream of

some attackable gate. Meanwhile, Line 22 is executed for each el-

ement of O𝑖 , which contains an input-dependent addition gate

followed by an open gate (together with input and output wires),

as per Line 12.

Since the second BFS begins connected to all gates 𝑔 where

𝑔.𝑅 = 1 and terminates propagation whenever it encounters a gate

marked in the first BFS (in Line 20), then Line 22 only evaluates

open gates with input values which are a function of some parties’

input and have immediately preceding had added some random

value which is not a function of any parties’ input.

Notice that the last element in any tuple in O𝑖 is an open gate,

ℎ where ℎ.𝐼 = 1. Then the tuple contains all wires and gates asso-

ciated with an additive random pad of some parties input. And if

either input into the included addition gate is marked as not need-

ing verification, and the range associated to ℎ is F, then Line 22

will mark the open gate as not needing verification. Note that by

the invariance of marking input-dependent values as needing ver-

ification, the wire marked safe must be the random additive pad,

and was marked safe precisely because it is well formed as per

Definition 5.1 and meets the requirements of Definition 5.2.

Otherwise, all tuples in O𝑟 contain only open gates ℎ where

ℎ.𝐼 = 0, and these are reset to ℎ.𝑉 = 0 in Line 24, as Definition 5.2

requires. □

C SUPPLEMENTAL INFORMATION FOR THE
MAIN CONSTRUCTION

The ideal functionalities used in Construction 2 are given in Fig-

ures 1 and 2. A number of these functionalities (e.g., Finput, Fmult
,

F
randfld

, and F
zerocheck

) are modeled similar to their formulation

in [9], and we introduce additional similarly formulated functionali-

ties (e.g.,F
dotprod

,F
randint

) to support the extended set of operations

in this work. Note that F
mult

and F
dotprod

permit the adversary to

introduce an additive error into the computation, while compu-

tation associated with other gates such as F
randfld

, F
randint

and

Fopen is not attackable. We also note that in our instantiation of

F
randint

, as given in Construction 1, 𝜈 =
(𝑛
𝑡

)
and the element is

drawn from the distribution corresponding to the sum of 𝜈 identical

uniform variables over Z
2
𝑘 , i.e., the Irwin-Hall or uniform sum

distribution [28, 31].

Proof of Theorem 5.4. These two types of gates are attackable

and the adversary can submit errors to each gate (as per Defini-

tion 5.1 and the corresponding ideal functionalities). If such an

attack occurs, then since such gates compute either a multiplica-

tion of single shares or a dot product of shares, we can say [𝑧𝑖 ] =
𝑑𝑖 +

∑ℎ𝑖
𝑗=1
( [𝑥 𝑗 ] · [𝑦 𝑗 ]), where {[𝑥 𝑗 ]} 𝑗 ∈[1..ℎ𝑖 ] and {[𝑦 𝑗 ]} 𝑗 ∈[1..ℎ𝑖 ] are

the input shares, [𝑧𝑖 ] the output, and𝑑𝑖 the value the adversary adds
to gate 𝑖 . Note that there is a distinct vector size ℎ𝑖 for each gate 𝑖 ,

and in particular, multiplication of single shares is a special case of

dot product. That is, if gate 𝑖 is multiplication of individual shares,

then ℎ𝑖 = 1 and {𝑥 𝑗 } 𝑗 ∈[1..ℎ𝑖 ] = {𝑥𝑖 } and {𝑦 𝑗 } 𝑗 ∈[1..ℎ] = {𝑦𝑖 }. In any

event, only one 𝑑𝑖 is added because all such protocols involve a sin-

gle round of interaction. Similarly, on the randomized branch of the

circuit, we have output share [𝑟 ·𝑧𝑖 ] = 𝑓𝑖 +
∑ℎ𝑖

𝑗=1
[(𝑟 ·𝑥 𝑗 +𝑒 𝑗 )] · [𝑦 𝑗 ].

Here, the errors {𝑒 𝑗 } 𝑗 ∈[1..ℎ𝑖 ] are accumulated from previous calls

to and attacks on attackable gates, and 𝑓𝑖 is the error added by the

adversary to the output of gate 𝑖 on the randomized branch. Again,

while there may be multiple upstream errors 𝑒 𝑗 , there is only a

single attack 𝑓𝑖 possible for gate 𝑖 . We additionally denote additive

attack error on the randomized input into the circuit by 𝑟 · [𝑣𝑖 ] +𝑔𝑖 ,
and the additive attack error on the multiplication gate during the

verification phase by [𝑟 ] · [𝑢2] + 𝑘 . We use 𝐿 to denote the number

of inputs, and say 𝑖0 is the first gate the adversary tampers with. In
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Functionality Finput
(1) Finput receives input 𝑣 ∈ F from the party who owns that

input and also receives from the adversary shares [𝑣]𝐶 of

the corrupted parties.

(2) Finput computes all shares of 𝑣 as ( [𝑣]1, . . . , [𝑣]𝑛) =

share(𝑣, [𝑣]𝐶 ) and sends to each party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], its out-
put share [𝑣]𝑖 .

Functionality F
randfld

(1) F
randfld

receives shares [𝑠]𝐶 from the adversary.

(2) F
randfld

chooses a random element 𝑤 ∈ F, lets [𝑤] 𝑗 =

[𝑠] 𝑗 for each 𝑝 𝑗 ∈ 𝐶 , and executes ( [𝑤]1, . . . , [𝑤]𝑛) =

share(𝑤, [𝑤]𝐶 ).
(3) F

randfld
sends to each honest party 𝑃𝑖 its share [𝑤]𝑖 .

Functionality F
randint

(𝑘)
(1) F

randint
receives shares [𝑠]𝐶 from the adversary.

(2) F
randint

chooses random 𝑤 ∈ Z
2
𝑘 ·𝜈 , where 𝜈 and the dis-

tribution to draw 𝑤 from depend on the protocol instan-

tiation, lets [𝑤] 𝑗 = [𝑠] 𝑗 for each 𝑝 𝑗 ∈ 𝐶 , and executes

( [𝑤]1, . . . , [𝑤]𝑛) = share(𝑤, [𝑤]𝐶 ).
(3) F

randint
sends to each honest party 𝑝 𝑗 its share [𝑤] 𝑗 .

Functionality F
mult

(1) F
mult

receives shares [𝑥]𝐻 and [𝑦]𝐻 from the honest

parties and computes 𝑥 = reconstruct( [𝑥]𝐻 ) and 𝑦 =

reconstruct( [𝑦]𝐻 ).
(2) F

mult
computes the corrupt parties shares [𝑥]𝐶 and [𝑦]𝐶

and communicates them to the adversary.

(3) Upon receipt of value 𝑑 and corrupt parties’ shares [𝑧]𝐶
from the adversary, F

mult
defines 𝑧 = 𝑥𝑦 + 𝑑 and computes

( [𝑧]1, . . . , [𝑧]𝑛) = share(𝑧, [𝑧]𝐶 ).
(4) F

mult
sends [𝑧]𝑖 to each honest party 𝑃𝑖 .

Functionality F
dotprod

(1) F
mult

receives shares {[𝑥𝑖 ]𝐻 }ℓ𝑖=1 and {[𝑦𝑖 ]𝐻 }
ℓ
𝑖=1

from the

honest parties and computes 𝑥𝑖 = reconstruct( [𝑥𝑖 ]𝐻 ) and
𝑦𝑖 = reconstruct( [𝑦𝑖 ]𝐻 ) for 𝑖 ∈ [1, ℓ].

(2) F
mult

computes the corrupt parties shares [𝑥𝑖 ]𝐶 and [𝑦𝑖 ]𝐶
for 𝑖 ∈ [1, ℓ] and communicates them to the adversary.

(3) Upon receipt of value𝑑 and corrupt parties’ shares [𝑧]𝐶 from

the adversary, F
mult

defines 𝑧 = 𝑑 +∑ℓ
𝑖=1 𝑥𝑖𝑦𝑖 and computes

( [𝑧]1, . . . , [𝑧]𝑛) = share(𝑧, [𝑧]𝐶 ).
(4) F

mult
sends [𝑧]𝑖 to each honest party 𝑃𝑖 .

Figure 1: Ideal functionalities.

sum, we have:

[𝑢1] =
∑︁𝐿

𝑖=1
𝛼𝑖 · [𝑟 ·𝑣𝑖+𝑔𝑖 ]+

∑︁𝑀

𝑖=𝐿+1 𝛼𝑖 ·
(
𝑓𝑖+

∑︁ℎ𝑖

𝑗=1
[(𝑟 ·𝑥 𝑗+𝑒 𝑗 ) ·𝑦 𝑗 ]

)

[𝑢2] =
∑︁𝐿

𝑖=1
𝛼𝑖 · [𝑣𝑖 ] +

∑︁𝑀

𝑖=𝐿+1 𝛼𝑖 ·
(
𝑑𝑖 +

∑︁ℎ𝑖

𝑗=1
[𝑥 𝑗 · 𝑦 𝑗 ]

)

Functionality Fopen
(1) Fopen collects shares [𝑥]𝑖 from each party.

(2) Fopen calls reconstruct( [𝑥] 𝐽 ) on each unique set of 𝑡 + 1
shares [𝑥]𝑖 .

(3) If all reconstructions produce the same value 𝑥 , then Fopen
broadcasts 𝑥 to all parties. Otherwise, Fopen signals abort.

Functionality Foutput
(1) Foutput collects shares [𝑥]𝑖 from each party.

(2) Foutput calls reconstruct( [𝑥] 𝐽 ) on each unique set of 𝑡 + 1
shares [𝑥]𝑖 .

(3) If all reconstructions produce the same value 𝑥 , then Foutput
sends 𝑥 to party 𝑃𝑖 . Otherwise Foutput signals abort.

Functionality F
randfldpub

(1) F
randfldpub

receives shares [𝑠]𝐶 from the adversary.

(2) F
randfld

chooses a random element𝑤 ∈ F and sends it to all

parties.

Functionality F
zerocheck

(1) F
zerocheck

receives shares [𝑣]𝐻 from the honest parties and

computes 𝑣 = reconstruct( [𝑣]𝐻 ).
(2) If 𝑣 = 0, the adversary is given the opportunity to send accept

or reject, which F
zerocheck

conveys to the honest parties.

(3) If 𝑣 ≠ 0, F
zerocheck

sends accept to the honest parties with

probability
1

|F | and reject with probability 1 − 1

|F | .

Figure 2: Ideal functionalities (continued).

and further:

[𝑇 ] = 𝑘 + [𝑢1] − [𝑟 ] · [𝑢2]

= 𝑘 +
∑︁𝐿

𝑖=1
𝛼𝑖 · [𝑔𝑖 ] +

∑︁𝑀

𝑖=𝐿+1 𝛼𝑖 ·
(
𝑓𝑖 − 𝑟 · 𝑑𝑖 +

∑︁ℎ𝑖

𝑗=1
[𝑒 𝑗 · 𝑦 𝑗 ]

)
(2)

• Case 1: the adversary first cheats during input randomization

and does not cheat in the verification phase. Suppose 𝑔𝑖0 is

the first error added in the inputs. Then if [𝑇 ] = 0, we have

𝑔𝑖0 ·𝛼𝑖0 = −
∑︁𝐿

𝑖=𝑖0+1
𝛼𝑖 ·𝑔𝑖 −

∑︁𝑀

𝑖=𝐿+1 𝛼𝑖 ·
(
𝑓𝑖 −𝑟 ·𝑑𝑖 +

∑︁ℎ𝑖

𝑗=1
𝑒 𝑗 ·𝑦 𝑗

)
Given the uniform distribution and independence of 𝛼𝑖0 , the

probability of choosing the appropriate 𝑔𝑖0 in this case is

1/|F|.
• Case 2: the adversary first cheats in an attackable gate and

does not cheat in the verification phase. Let the first errors

be 𝑑𝑖0 and/or 𝑓𝑖0 . Note that in this case, 𝑒𝑖 = 0 for all 𝑖 ≤ 𝑖0
since this is the first error be introduced and thus no error is

accumulated from previous gates. So [𝑇 ] = 0 holds only if

𝛼𝑖0 · (𝑓𝑖0 − 𝑟 · 𝑑𝑖0 ) = −
∑︁𝑀

𝑖=𝑖0+1
𝛼𝑖 ·

(
𝑓𝑖 − 𝑟 · 𝑑𝑖 +

∑︁ℎ𝑖

𝑗=1
𝑒 𝑗 ·𝑦 𝑗

)
(3)

We first note that Pr[𝑓𝑖0 = 𝑟 · 𝑑𝑖0 ] = 1/|F|. This is because
the value of 𝑟 is uniformly random in F and unknown to

the adversary during the computation phase. If instead 𝑓𝑖0 ≠

𝑟 · 𝑑𝑖0 (which happens with probability 1 − 1/|F|), then the
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probability that Equation 3 holds is similarly 1/|F|, since 𝛼𝑖0
is randomly chosen over F independent of all other values,
and also unknown to the adversary at runtime. In sum, the

probability that Equation 3 holds is bounded above by

Pr[𝑓𝑖0 = 𝑟 · 𝑑𝑖0 ] + Pr[(𝑓𝑖0 ≠ 𝑟 ·𝑑𝑖0 ) ∧ ((3) holds)]

=
1

|F| +
1

|F|

(
1 − 1

|F|

)
<

2

|F|
Note that this bound is proper since the event {𝑓𝑖0−𝑟 ·𝑑𝑖0 = 0}
contains cases where Equation 3 does not hold.
Also note that although not provided a separate case, we can

treat additive attacks on the randomizing step for RandFld
and RandInt here as well. Note that this is similar to the

attack on input randomization in case 1 (as these values con-

ceptually are a different form of input), but can come after

tampering with other gates, and in a non-predictable way

with respect to timing and circuit topology. To do so, we note

that if the initial randomization of a random share [𝑤𝑖0 ] by
multiplication with [𝑟 ] marks the first misbehavior by the

adversary, then we can fix 𝑦𝑖0 = 1 on both branches of com-

putation for this gate, and the only difference in Equation 3

above is that 𝑑𝑖0 = 0, while 𝑓𝑖0 represents the additive attack

on the randomized branch. In this case, the probability of

successful tampering is 1/|F| by an identical argument to

case 1.

• Case 3: the adversary cheats during multiplication in the

verification phase. Then if [𝑇 ] = 0, we have

𝑘 = −
∑︁𝐿

𝑖=1
𝛼𝑖 · 𝑔𝑖 −

∑︁𝑀

𝑖=𝐿+1 𝛼𝑖 ·
(
𝑓𝑖 − 𝑟 · 𝑑𝑖 +

∑︁ℎ𝑖

𝑗=1
𝑒 𝑗 · 𝑦 𝑗

)
In this case, the adversary has the knowledge of all random-

ness (i.e., 𝛼1, . . ., 𝛼𝑀 ) and all previous errors. However, [𝑟 ]
is uniformly random in F and unknown to the adversary

throughout the computation. Concretely, let 𝑐1 = −
∑𝐿
𝑖=1 𝛼𝑖 ·

𝑔𝑖 , and 𝑐2 = −∑𝑀
𝑖=𝐿+1 𝛼𝑖 ·

(
𝑓𝑖 +

∑ℎ𝑖
𝑗=1

𝑒 𝑗 · 𝑦 𝑗
)
, and let 𝑐3 =∑𝑀

𝑖=𝐿+1 𝛼𝑖 · 𝑑𝑖 . Then we have

𝑘 = 𝑟𝑐3 + 𝑐1 + 𝑐2
Thus, the probability of an adversary choosing the appro-

priate 𝑘 to satisfy this equation while in possession of 𝑐1, 𝑐2,

and 𝑐3, is 1/|F|.
In all cases, the probability that adversary submits errors during a

call to any F
mult

and go undetected is at most 2/|F| as required. □

Proof of Theorem 5.5. Given simulator S, adversaryA which

controls the set of corrupt parties𝐶, and trusted partyTP computing

function 𝑓 , the protocols are simulated in the following manner:

(1) Input sharing: S collects from A each input 𝑣𝑖 owned by

a corrupt party, along with the corrupt parties’ shares on

these inputs. Then for each honest parties’ input, S calcu-

lates ( [𝑣𝑖 ]1, . . . , [𝑣𝑖 ]𝑛) = share(0, [𝑣𝑖 ]𝐶 ) and sends toA the

shares of corrupt parties [𝑣𝑖 ]𝐶 on all honest parties’ inputs.

S stores all values.

(2) Generation of randomization: S collects from A the corrupt

parties’ shares, [𝑟 ]𝐶 . Then S generates a random 𝑟 ∈ F

and computes the shares share(𝑟, [𝑟 ]𝐶 ) = ( [𝑟 ]1, . . . , [𝑟 ]𝑛).
S stores all values.

(3) Randomization of inputs: S simulates the ideal functionality

F
mult

in themultiplication of [𝑟 ] by input [𝑣𝑖 ] for 𝑖 = 1, ..., 𝑀.

For each input [𝑣𝑖 ], S gives shares [𝑣𝑖 ]𝐶 and [𝑟 ]𝐶 to A.

Next, A communicates to S the corrupt parties’ shares of

the product [𝑧𝑖 ]𝐶 and the additive value 𝑔𝑖 . S stores all the

values it received from A .

(4) Function evaluation: For each gate 𝑔 of the following type, in

the given topological order,

(a) Addition: S computes the sum of the shares correspond-

ing to each corrupt party 𝑝 𝑗 ∈ 𝐶 as in the protocol and

stores the results.

(b) Multiplication by a known field element: For given con-

stant 𝑐 ∈ F, S multiplies the share of each corrupt party

𝑝 𝑗 ∈ 𝐶 by 𝑐 and stores the result.

(c) Multiplication: S simulates two invocations of F
mult

. S
gives A the corrupt parties’ shares on the input wires

and consequently receives from A the corrupted parties

output shares along with additive values 𝑑𝑘 and 𝑓𝑘 on the

non-randomized and randomized circuits, respectively. S
stores these values.

(d) Dot product: S simulates two invocations of F
dotprod

. S
gives A the corrupt parties’ shares on the input wires

and consequently receives from A the corrupted parties

output shares along with additive values 𝑑𝑘 and 𝑓𝑘 on the

non-randomized and randomized circuits, respectively. S
stores these values.

(e) RandFld gate: S collects the shares fromA for 𝑔. S then

samples a random value 𝑤 according to 𝐵 and the dis-

tribution for 𝑔. Finally, S calculates ( [𝑤𝑖 ]1, . . ., [𝑤𝑖 ]𝑛) =
share(𝑤, [𝑤𝑖 ]𝐶 ) and stores all values.

(f) RandInt gate: S collects the shares from A for 𝑔. S then

samples a random value 𝑤 according to 𝐵 and the dis-

tribution for 𝑔. Finally, S calculates ( [𝑤𝑖 ]1, . . ., [𝑤𝑖 ]𝑛) =
share(𝑤, [𝑤𝑖 ]𝐶 ) and stores all values.

(g) Opening: If 𝑔 is marked by Algorithm 1 as needing ver-

ification, then S proceeds to simulate Step 4h. Provided

verification was successful, or if 𝑔 is not marked as need-

ing verification, S simulates Fopen based on the values it

has stored thus far, to receive value 𝑐 . If S finds inconsis-

tencies between values which would be opened, or if an

efficient membership testing exists for 𝐵 and S finds that

𝑐 ∉ 𝐵, then S signals abort to TP on behalf of all trusted

parties. Otherwise, S announces the value of 𝑐 to A.

(h) Verification of evaluation: S chooses random 𝛼1, . . . , 𝛼𝑀
and communicates these values to A. Then S plays the

role of the honest parties in simulating F
mult

to A and

receives fromA the corrupted parties output shares along

with additive values 𝑑𝑘 and 𝑓𝑘 on the non-randomized

and randomized circuits, respectively. Next, S simulates

F
zerocheck

. If any non-zero 𝑑𝑘 , or 𝑓𝑘 was provided to F
mult

by A in the simulation, then S simulates F
zerocheck

send-

ing reject, and then all honest parties sending ⊥, and sig-

nals abort to TP on behalf of all trusted parties. Otherwise,

S proceeds to output reconstruction.
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(5) Output reconstruction: S simulates one round of verification

as per Step 4h. Provided no abort occurred, S sends to TP
the input 𝑣𝑖 it received from A in Step 1. S then receives

from TP the output values for each corrupt party. Using

these values, S simulates the honest parties participation in

Foutput for all parties. If in this stage S receives values from

A which, based on the information it holds from the previous

steps, and the output values received from TP , S finds are

incorrect, then for all honest 𝑃 𝑗 which would receive such

value(s), S signals abort to TP on behalf of 𝑃 𝑗 , (and in such

a case 𝑃 𝑗 does not receive output). Otherwise, TP will send

output to all parties not signaling abort.

We will show that the view of the adversary is the same in

the actual protocol execution as it is in the simulation, up to a

probability of at most 3/|F|.
We first consider the case where some open (or output) gate 𝑔 is

marked by Algorithm 1 as needing verification. Note that in order

for there to be any deviation between real and ideal execution, then

at least one 𝑑𝑘 or 𝑓𝑘 is nonzero. Given this, S will, in simulation of

F
zerocheck

, always reject. However, during execution of the actual

protocol, F
zerocheck

may accept if either

• 𝑇 = 0, with probability at most 2/|F|, as in Theorem 5.4.

• 𝑇 ≠ 0 but F
zerocheck

accepts, with probability 1/|F|, as per
the definition of the functionality.

The probability with which this happens is bounded above by

Pr[𝑇 = 0] + Pr[(𝑇 ≠ 0)∧(F
zerocheck

accepts)]

<
2

|F| +
1

|F|

(
1 − 2

|F|

)
<

3

|F|

Note that even if successful tampering in one round of verifica-

tion implied success in future rounds, which is not at all clear, this

still would not increase the overall likelihood of successful tamper-

ing for A since verification rounds are atomic and sequential.

Then provided verification is successful with no abort being

triggered, any tampering must solely be the result of A sending

incorrect shares to S during simulation of Fopen. Because any 𝑡 + 1
shares uniquely identifies all shares and the shared value and since

this is the first tampering, the set of shares S computes on behalf of

the honest parties will be sufficient forS to discover tampering with

certainty, and in that case trigger abort. Note that this is identically

distributed to what A would expect to see in real execution.

Next we consider any (open or output) 𝑔 that is not marked

as needing verification by Algorithm 1. Note that in this case, if

A sends incorrect shares to S during Fopen, then as above they

would trigger abort with certainty as would be expected in real

computation. If not, then as shown in Lemma 5.3, this means that

the value to be opened either

• is not a function of any parties main input

• or has been padded by an untamperable uniform random

value drawn from F just prior to opening

In both above cases, note that A is aware of the function 𝑓 being

computed and the subset 𝐵 assigned to the open gate.

In the former case, note that S will select some uniform random

value from F in the randomness gate which was used (immediately

prior) to additively pad the sensitive value. This will cause the

opened value to also be uniformly distributed on F, which is the

expectation for such a gate in real execution.

In the latter case, notwithstanding incorrect shares, the only

other avenue for skewed view distribution would be when testing

membership in 𝐵, if one is being used. To that end, note that S
sampled all randomized values used in calculating the value at 𝑔

according to their associated subset 𝐵 and distribution. And by

design of the function 𝑓 being computed, and the fact that local

computation of randomness (as in Construction 2) is untamperable

on an per-gate basis, then the value opened in simulation will match

without error the subset and distribution prescribed for 𝑔, and A’s

view will identically distributed in simulation as it would be in

real execution. Thus, open or output gates not marked as needing

verification cannot skew the view distribution of A.

In total, the statistical difference between the distributions of

A’s view in the real and simulated executions is negligible in 𝜅. □

D EXTENSION TO SMALL FIELDS
As alluded to earlier, the construction for large fields can be viewed

as a special case of the more general construction as seen in [9]. In

the case of large (enough) fields, the probability of successful cheat-

ing is ensured to be negligible in 𝜅 by requiring that |F| ≥ 3 · (2𝜅 ).
In principle, and extension to smaller fields can be achieved by

requiring that |F| · 2𝛿 ≥ 3 · (2𝜅 ), where 𝛿 concurrent and inde-

pendently randomized branches of computation are executed (and

where 𝛿 = 1 corresponds to the case of Construction 2). Then in

the verification stage, if F
zerocheck

rejects for any of the 𝛿 branches,

then the protocol is aborted. The probability of successful adver-

sarial behavior is bound on each branch in the same manner as

above, and due to the independence of all randomly drawn values,

the overall probability of such success is bounded by the product

of these bounds, thus providing probability of successful cheating

negligible in 𝜅.

In order to realize this generalization, the necessary changes to

Construction 2 include:

(1) In Step 2, shares [𝑟𝑖 ] are generated for 1 ≤ 𝑖 ≤ 𝛿 .

(2) In Step 3 and every sub-step of Step 4, the parties compute

and store tuples ( [𝑧], [𝑟1𝑧], ..., [𝑟𝛿𝑧]).
(3) In Step 4h, the parties run 𝛿 branches of verification, includ-

ing:

(a) In Step 4(h)i, rather than obtaining public values 𝛼𝑖 , 𝛽𝑖 ,

and 𝛾𝑖 via calls to Frandfldpub and FPRG, the parties obtain
sets of shares

{[𝛼𝑖,1], ..., [𝛼𝑖,𝛿 ]}𝑀𝑖=1 via calls to Frandfld.
(b) Then, for each of the 𝛿 branches, Step 4(h)ii computation

of linear combinations is achieved via F
dotprod

in place of

local multiplication, followed by a call to F
mult

to calculate

[𝑇 ] and executing F
zerocheck

for that branch.

Regarding changes to Steps 4(h)i and 4(h)ii, the authors of [9]

point out that when 𝛿 ≥ 2, generalizing the simulation strategy used

in the proof of Theorem 5.5 will not suffice to prove the protocol

secure. This is because if these random verification tokens were to

be revealed, then any distinguisher with access to real execution

inputs would be able to determine precisely for which values 𝑖 it

holds that 𝑇𝑖 ≠ 0. Since this simulator would be unable to do this,

the tokens are instead kept as secret shares.
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E EXTENDED LINEAR-BASED PROTOCOLS
Integral to the work of Genkin et al. [22] is the concept of a linear
protocol (see Definition 4.1), where the output of each party is

necessarily a linear combination of their incoming messages to the

protocol, and the concept of a linear-based protocol, which compiles

sub-protocols which are themselves linear into a larger framework

under certain organizational constraints. We extend the definition

of linear-based protocol to capture the additional protocols that

we want to support to obtain Definition 4.2 (extended linear-based

protocol), but the essence of the definition remains unchanged

from that in [22]. In particular, instead of requiring that input-

independent computation (e.g., triple or randomness generation

for multiplication gates) takes place during the setup phase, we

allow this pre-computation to be part of each linear protocol, as

long as the input-independent pre-computation complies with the

definition of the linear protocol itself. Excepting these changes,

Definition 4.2 is a superset of linear-based protocol.

Genkin et al. define the output function a linear function (as per

Definition 4.1), as follows:

Definition E.1 (Output function of a linear protocol). Let 𝜋 be a

linear protocol for computing a functionality 𝑓 and let𝑇 be a set of

parties. Let 𝑥 be a main input to 𝜋 , let 𝑦 be an auxiliary input to 𝜋

and let𝑚𝑖𝑛𝑝,𝑇 be the messages of type a in Definition 4.1 sent by

the parties in 𝑇 to themselves during an honest execution of 𝜋 on

(𝑥,𝑦). In addition, let𝑚
𝑇,𝑇

be the messages of type b sent by the

parties in𝑇 to the parties in𝑇 during an honest execution of 𝜋 . We

say that a function out𝑇 is the output function of 𝑇 in 𝜋 if for any

main input 𝑥 and auxiliary input 𝑦 it holds that

out𝑇 (𝑚𝑖𝑛𝑝,𝑇 , 𝑦,𝑚𝑇,𝑇
) = 𝑓𝑇 (𝑥,𝑦)

where 𝑓𝑇 is the restriction of 𝑓 to the outputs of the parties in 𝑇 .

They also hold that the output function of a linear protocol as

defined above is a linear function in the following sense: For any

𝑚1, 𝑦,𝑚2,𝑚
′
1
, 𝑦′,𝑚′

2
, it holds that

out𝑇 (𝑚1 +𝑚′1, 𝑦 + 𝑦
′,𝑚2 +𝑚′2)

= out𝑇 (𝑚1, 𝑦,𝑚2) + out𝑇 (𝑚′1, 𝑦
′,𝑚′

2
)

Genkin et al. prove security of their linear-based construction

by presenting a simulator (Construction 5.2 in [22]), which they

show to be secure against a malicious adversary controlling exactly

𝑡 servers (i.e. a maximal adversary in the honest-majority case, in

their Lemma 5.3). In a separate proof they show (their Lemma 5.2)

that more generally, any protocol secure against such a maximal

adversary is also secure against an adversary controlling at most 𝑡

servers. By combining these two proofs, they obtain a construction

which is secure against any malicious adversary in the honest-

majority case. This is their Theorem 5.2, and we state it here for

reference:

Theorem E.2. ([22], Theorem 5.2) Let Π be a protocol computing
a (possibly randomized)𝑚-client circuit 𝐺 : F𝐼1 × · · · × F𝐼𝑚 → F𝑂1

using 𝑛 = 2𝑡 + 1 servers that is linear-based with respect to some
redundant and dense linear secret sharing scheme and is weakly-
private against active adversaries controlling at most t servers and
an arbitrary number of clients. Then, Π is a t-secure protocol for

computing ˜𝑓𝐶 , the additively corruptible version of 𝐺 (as defined
below).

where the function
˜𝑓𝐶 is the one computed by a circuit which is

subject to additive attack, defined as follows:

Definition E.3. ([22], Definition 5.1 - additively corruptible ver-

sion of a circuit) Let𝐺 : F𝐼1 × · · · ×F𝐼𝑚 → F𝑂1
be an 𝑛-party circuit

containing 𝑤 wires. We define the additively corruptible version

of 𝐺 to be the 𝑛-party functionality
˜𝑓𝐶 : F𝐼1 × · · · × F𝐼𝑚 → F𝑂1

that takes additional input from the adversary which indicates an

additive corruption for every wire of 𝐺 . For all (𝑥,A), ˜𝑓𝐶 (𝑥,A)
outputs the result of the additively corrupted 𝐺 as specified by the

additive attack A (A is the simulators attack on 𝐺) when invoked

on the inputs 𝑥 .

Rather than state the simulator and proof in their entirety, we

will treat only those sections which we modify or introduce (as per

Definition 4.2) into the framework. As these changes only impact

their Claim 5.4, that will be our focus. In particular, input sharing

and output recovery remain unchanged, so we do not discuss these

sections of Theorem 5.2. Let S be a simulator interacting with

adversary A. We use the following conventions:

(1) Probabilistic random variables appear in this script: Z.
(2) Variables which represent specific instances taken from the

support of random variables appear in normal math lower-

case script, e.g. 𝑧.

(3) Variables which represent real-world computation are pre-

fixed with R, e.g. wire-value R𝑧.

(4) Variables which represent ideal-world computation are pre-

fixed with I, e.g. message I𝑚.

(5) Variables which represent the result of honest computation

(i.e. as part of output from some ideal functionality 𝜋𝑓 𝑢𝑛𝑐 )

are prefixed withH, e.g. messageH𝑚.

We now proceed to describe the simulator which will be featured

in the proof of Lemma E.5 below, which is our extended version of

Claim 5.4 in [22]:

(1) Setup phase. Note that 𝜋setup gets no auxiliary inputs.

(a) S receives from A the messages I𝑚rcvd,𝑐
A→𝐻

sent by the

adversary to the honest servers during the execution of

𝜋setup.

(b) S simulates the behavior of the corrupt servers given

their truncated view I𝑢 and computes the messages

H𝑚
sim,𝑐
A→𝐻

that should have been sent by the corrupt servers

to the honest servers during the execution of 𝜋setup. In

addition, for every corrupt 𝑃𝑖 ∈ A and every gate 𝑐 , S
computes the vector H𝑔

sim,𝑐
𝑖

that is a part of the output

of 𝑃𝑖 after an honest execution of 𝜋setup.

(c) S computes

(𝛽𝑐
𝐻
) ← out𝐻,𝜋setup

(0,⊥, I𝑚rcvd,𝑐
A→𝐻

−H𝑚
𝑐,sim
A→𝐻

).
(2) Pre-computation. Note that 𝜋precomp gets no auxiliary in-

puts.

(a) S receives fromA the messages (I𝑚rcvd,𝑐
A→𝐻

)
1≤𝑐≤ |C | sent

by the adversary to the honest servers during the execu-

tion of 𝜋precomp across all gates 𝑐 .

(b) S simulates the behavior of the corrupt servers given

their truncated view I𝑢 and computes the messages
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H𝑚
sim,𝑐
A→𝐻

that should have been sent by the corrupt servers

to the honest servers during the execution of 𝜋precomp. In

addition, for every corrupt 𝑃𝑖 ∈ A and every gate 𝑐 , S
computes the vector H𝑔

sim,𝑐
𝑖

that is a part of the output

of 𝑃𝑖 after an honest execution of 𝜋precomp.

(c) S computes (𝛾𝑐
𝐻
)
1≤𝑐≤ |C | ← out𝐻,𝜋precomp

((𝛽𝑐
𝐻
),⊥,

I𝑚rcvd,𝑐
A→𝐻

−H𝑚
𝑐,sim
A→𝐻

). Note that it is implicit thatH𝑔
sim,𝑐
𝑖

=

𝛾𝑐
𝐻

=⊥ for non-interactive gates 𝑐 .

(3) Multiplication by a known field element. Note that in
this case no communication takes place. Thus, on main input

[I𝑥]𝑐
𝑖
and public constant value 𝑦, S computes [I𝑧]𝑐

𝑖
= 𝑦 ·

[I𝑥]𝑐
𝑖
for 𝑃𝑖 ∈ A, and saves {[I𝑧]𝑐

𝑖
}𝑃𝑖 ∈A for later use.

(4) Dot product gate:
(a) S obtains from A the messages I𝑚rcvd,𝑐

A→𝐻
sent by the

adversary to the honest servers during the execution of

𝜋dotprod.

(b) S simulates the behavior of the corrupt servers on main

inputs

{[I𝑧 𝑗 ]𝑎𝑖 , [I𝑧 𝑗 ]
𝑏
𝑖
}𝑃𝑖 ∈A, 𝑗 ∈[1,ℓ ] , auxiliary inputs𝑔

𝑐
A , and from

the truncated viewI𝑢, incomingmessagesH𝑚
sim,𝑐
𝐻→A from

the honest servers. S then computes the messages

H𝑚
sim,𝑐
A→𝐻

that should have been sent by the corrupt servers

to the honest servers during the execution of 𝜋dotprod. In

addition, S computes the shares {[H𝑧]sim,𝑐
𝑖
}𝑃𝑖 ∈A that

represent the output of corrupt 𝑃𝑖 after an honest execu-

tion of 𝜋dotprod.

(c) S computes

𝛿𝑐
𝐻
← out𝐻,𝜋mult (0, 𝛾𝑐𝐻 , I𝑚

rcvd,𝑐
A→𝐻

−H𝑚
sim,𝑐
A→𝐻

) where 𝛾𝑐
𝐻

are the part of 𝛾𝐻 corresponding to the gate 𝑐 .

(d) Since 𝑆𝑆 is dense and redundant, S computes 𝛼𝑐 ←
rec(𝛿𝑐

𝐻
, 𝐻 ), for every gate𝑑 connected to 𝑐 , sets𝐴𝑐,𝑑 ← 𝛼𝑐 ,

and computes the shares {𝛿𝑐
𝑖
}𝑃𝑖 ∈A for the corrupt servers

that are compatible with 𝛿𝑐
𝐻
.

(e) S computes [I𝑧]𝑐
𝑖
← [H𝑧]sim,𝑐

𝑖
+ 𝛿𝑐

𝑖
for 𝑃𝑖 ∈ A, and

saves {[I𝑧]𝑐
𝑖
}𝑃𝑖 ∈A for later use.

(5) RandFld gate:
(a) S receives from A the messages I𝑚rcvd,𝑐

A→𝐻
sent by the

adversary to the honest servers during the execution of

𝜋randfld.

(b) S simulates the behavior of the corrupt servers on auxil-

iary inputs 𝑔𝑐A , and from the truncated view I𝑢, incoming

messages H𝑚
sim,𝑐
𝐻→A from the honest servers. S then com-

putes the messages H𝑚
sim,𝑐
A→𝐻

that should have been sent

by the corrupt servers to the honest servers during the

execution of 𝜋randfld. In addition, S computes the shares

{[H𝑧]sim,𝑐
𝑖
}𝑃𝑖 ∈A that represent the output of corrupt 𝑃𝑖

after an honest execution of 𝜋randfld.

(c) S computes 𝛿𝑐
𝐻
← out𝐻,𝜋randfld (0, 𝛾𝑐𝐻 , I𝑚

rcvd,𝑐
A→𝐻

−H𝑚
sim,𝑐
A→𝐻

) where 𝛾𝑐
𝐻
are the part of 𝛾𝐻 corresponding

to the gate 𝑐 .

(d) Since 𝛿𝑐
𝐻

forms a valid sharing of some value, S com-

putes 𝛼𝑐 ← rec(𝛿𝑐
𝐻
, 𝐻 ) and for every gate 𝑑 connected

to 𝑐 , sets 𝐴𝑐,𝑑 ← 𝛼𝑐 . Since 𝑆𝑆 is redundant, S is able to

compute the shares {𝛿𝑐
𝑖
}𝑃𝑖 ∈A for the corrupt servers that

are compatible with 𝛿𝑐
𝐻
.

(e) S computes [I𝑧]𝑐
𝑖
← [H𝑧]sim,𝑐

𝑖
+ 𝛿𝑐

𝑖
for 𝑃𝑖 ∈ A, and

saves {[I𝑧]𝑐
𝑖
}𝑃𝑖 ∈A for later use.

(6) RandInt gate:
(a) S receives from A the messages I𝑚rcvd,𝑐

A→𝐻
sent by the

adversary to the honest servers during the execution of

𝜋randint.

(b) S simulates the behavior of the corrupt servers on auxil-

iary inputs 𝑔𝑐A , and from the truncated view I𝑢, incoming

messages H𝑚
sim,𝑐
𝐻→A from the honest servers. S then com-

putes the messages H𝑚
sim,𝑐
A→𝐻

that should have been sent

by the corrupt servers to the honest servers during the

execution of 𝜋randint. In addition, S computes the shares

{[H𝑧]sim,𝑐
𝑖
}𝑃𝑖 ∈A that represent the output of corrupt 𝑃𝑖

after an honest execution of 𝜋randint.

(c) S computes

𝛿𝑐
𝐻
← out𝐻,𝜋randint (0, 𝛾𝑐𝐻 , I𝑚

rcvd,𝑐
A→𝐻

−H𝑚
sim,𝑐
A→𝐻

) where 𝛾𝑐
𝐻

are the part of 𝛾𝐻 corresponding to the gate 𝑐 .

(d) Since 𝛿𝑐
𝐻

forms a valid sharing of some value, S com-

putes 𝛼𝑐 ← rec(𝛿𝑐
𝐻
, 𝐻 ) and for every gate 𝑑 connected

to 𝑐 , sets 𝐴𝑐,𝑑 ← 𝛼𝑐 . Since 𝑆𝑆 is redundant, S is able to

compute the shares {𝛿𝑐
𝑖
}𝑃𝑖 ∈A for the corrupt servers that

are compatible with 𝛿𝑐
𝐻
.

(e) S computes [I𝑧]𝑐
𝑖
← [H𝑧]sim,𝑐

𝑖
+ 𝛿𝑐

𝑖
for 𝑃𝑖 ∈ A, and

saves {[I𝑧]𝑐
𝑖
}𝑃𝑖 ∈A for later use.

The following claim appears and is proved in [22], and we state

it here for reference. It proves that any adversarial misbehavior in

the setup phase induces an additive attack into the computation.

Lemma E.4. ([22], Claim 5.2) For any truncated view R𝑢 in the
support of RUA , it holds that RG𝑐𝐻,R𝑢

≡ HG𝑐
𝐻,R𝑢

+ 𝛾𝑐
𝐻
.

The following lemma appears for (non-extended) linear-based

protocols as Claim 5.4 in [22]. This claim asserts that the honest

shares held by servers at the end of protocol execution and before

reconstruction, correspond to a simulatable additive attack on the

set of wires in the corresponding computation circuit. Afterwards,

we prove that the claim still holds given the added functionality we

have introduced under Definition 4.2. Recall that since the input

sharing and output reconstruction is identical here, proof of this

extended version of this claim suffices for proof of security of the

extensions pursuant to Theorem 5.2 in [22]. Also note that in order

to simplify notation, whenever the associated ideal functionality is

understood (e.g. out𝐻,𝜋dotproduct () and IM𝐴,𝜋dotproduct ()), it is omitted.

Lemma E.5. For any truncated view R𝑢 in the support of RUA , it

holds that
(
Z1𝑢 + A1𝑢 , . . . ,Z

|C |
𝑢 + A |C |𝑢

)
≡

(
rec𝐻∪A ( [RZ]1𝐻 , [I𝑧]

1

A ),

. . . , rec𝐻∪A ( [RZ] |C |𝐻
, [I𝑧] |C |A )

)
.

Proof. Fix a truncated view R𝑢 from the support of RUA . We

now proceed to analyze the input sharing and circuit evaluation

phases of S conditioned on RUA = R𝑢. The proof is by induction

on the structure of circuit C starting from the input gated and

proceeding to the output gates.
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Basis. If an input gate 𝑐 belongs to a honest server then the claim
is immediate since we have additive attack A𝑐 = 0. Similarly, if

input gate 𝑐 belongs to a corrupted server 𝑃𝑖 , let 𝑥
𝑐
be the input of

𝑃𝑖 to gate 𝑐 . By construction of A𝑐 , we have that

rec𝐻∪A ( [R𝑣]𝑐𝐻 , [I𝑣]
𝑐
A ) ≡ 𝑥𝑐 + A𝑐𝑢 ≡ Z𝑐𝑢 + A𝑐𝑢

For a RandFld or RandInt gate 𝑐 , the intuition is thatA can only

tamper in the pre-computation phase, which necessarily constitutes

an additive attack. More concretely, (using RandFld as a basis, with

RandInt similar):

rec𝐻
(
[R𝑧]𝑐𝐻 , [I𝑧]

𝑐
A

)
= rec𝐻

(
out𝐻

(
0,R𝑔𝐻,R𝑢 , I𝑚

rcvd,𝑐
A→𝐻

))
= rec𝐻

(
out𝐻

(
0,R𝑔𝐻,R𝑢 + 𝛾𝑐𝐻 − 𝛾

𝑐
𝐻 ,

H𝑚
sim,𝑐
A→𝐻

+ I𝑚rcvd,𝑐
A→𝐻

−H𝑚
sim,𝑐
A→𝐻

))
= rec𝐻

(
out𝐻

(
0,R𝑔𝐻,R𝑢 − 𝛾𝑐𝐻 ,H𝑚

sim,𝑐
A→𝐻

))
+ rec𝐻

(
out𝐻

(
0, 𝛾𝑐𝐻 , I𝑚

rcvd,𝑐
A→𝐻

−H𝑚
sim,𝑐
A→𝐻

))
(4)

= rec𝐻
(
out𝐻

(
0,H𝑔𝐻,R𝑢 ,H𝑚

sim,𝑐
A→𝐻

))
+ 𝛿𝑐𝐻 (5)

≡ Z𝑐𝑢 + A𝑐𝑢
where 𝛿𝑐 are the value(s) computed in simulator Steps 5c and 5d,

and 𝛿𝑐
𝐻
and 𝛿𝑐

𝐶
the restrictions of 𝛿𝑐 to, respectively, the honest and

corrupt servers. Note that the transition in Equation 4 follows from

the linearity of out, 𝜋randfld, and SS, and Equation 5 follows from

Lemma E.4 and Step 5c of the simulator. Denote by [H𝑧]sim,𝑐
A the

shares obtained during simulator Step 5b. Notice that these shares

are completely determined by the truncated view R𝑢 and A, and

that by construction of [H𝑧]sim,𝑐
A we have

rec𝐻∪A
(
[R𝑧]𝑐𝐻 − 𝛿

𝑐
𝐻 , [H𝑧]sim,𝑐

A

)
= rec𝐻

(
[R𝑧]𝑐𝐻 − 𝛿

𝑐
𝐻

)
≡ Z𝑐𝑢 .

Since we also have that [H𝑧]sim,𝑐
A + 𝛿𝑐A = [I𝑧]𝑐A , then by the

linearity of SS we obtain

rec𝐻∪A
(
[R𝑧]𝑐𝐻 , [I𝑧]

𝑐
A

)
= rec𝐻∪A

(
[R𝑧]𝑐𝐻 , [I𝑧]

𝑐
A

)
− rec𝐻∪A

(
𝛿𝑐
)
+ rec𝐻∪A

(
𝛿𝑐
)

= rec𝐻∪A
(
[R𝑧]𝑐𝐻 − 𝛿

𝑐
𝐻 , [I𝑧]

𝑐
A − 𝛿

𝑐
A

)
+ rec𝐻∪A

(
𝛿𝑐
)

= rec𝐻∪A
(
[R𝑧]𝑐𝐻 − 𝛿

𝑐
𝐻 , [H𝑧]sim,𝑐

A

)
+ rec𝐻∪A

(
𝛿𝑐
)

≡ Z𝑐𝑢 + A𝑐𝑢
Induction hypothesis. Assume that for any 1 ≤ 𝑐 ≤ |C| it

holds that

(
Z1𝑢 + A1𝑢 , . . . ,Z𝑐−1𝑢 + A𝑐−1𝑢

)
≡
(
rec𝐻∪A ( [RZ]1𝐻 , [I𝑧]

1

A ),
. . . , rec𝐻∪A ( [RZ]𝑐−1𝐻

, [I𝑧]𝑐−1A )
)
.

Induction step. Let 𝑐 be a gate inside C with inputs 𝑎 and 𝑏

such that 𝑐 > 𝑎 and 𝑐 > 𝑏. Assume without loss of generality

that 𝑏 > 𝑎 and fix values ( [R𝑧]1
𝐻
, ..., [R𝑧]𝑏

𝐻
) from the support of

( [RZ]1
𝐻
, ..., [RZ]𝑏

𝐻
), and (𝑧1, ..., 𝑧𝑏 ) from the support of (Z1, ...,Z𝑏 ).

We now claim that conditioned on the above selection it holds that

Z𝑐𝑢 + A𝑐𝑢 ≡ rec𝐻∪A ( [RZ]𝑐𝐻 , [I𝑧]
𝑐
A ).

From the induction hypothesis we have that,

𝑧𝑎𝑢 + A𝑎𝑢 ≡ rec𝐻∪A ( [R𝑧]𝑎𝐻 , [I𝑧]
𝑎
A )

and

𝑧𝑏𝑢 + A𝑏𝑢 ≡ rec𝐻∪A ( [R𝑧]𝑏𝐻 , [I𝑧]
𝑏
A )

Notice that the random variable Z𝑐𝑢 conditioned on the above selec-

tion of ( [R𝑧]1
𝐻
, ..., [R𝑧]𝑏

𝐻
) and (𝑧1

𝐻
, ..., 𝑧𝑏

𝐻
) is uniquely determined

by the fixed 𝑧𝑎𝑢 + A𝑎𝑢 and 𝑧𝑏𝑢 + A𝑏𝑢 .
Handling dot product gates. If 𝑐 is a dot product gate, then

notice that by the definition of
˜𝑓𝐶 , by the linearity of SS, and by

the induction hypothesis it holds that

Z𝑐𝑢 ≡ (𝑧𝑎𝑢 + A𝑎𝑢 ) · (𝑧𝑏𝑢 + A𝑏𝑢 ) ≡
ℓ∑︁

𝑖=1

(𝑧𝑎𝑖𝑢 + A𝑎𝑖𝑢 ) (𝑧𝑏𝑖𝑢 + A𝑏𝑖𝑢 )

≡
ℓ∑︁

𝑖=1

(rec𝐻∪A ( [R𝑧]𝑎𝐻 , [I𝑧]
𝑎
A )) (rec𝐻∪A ( [R𝑧]

𝑏
𝐻 , [I𝑧]

𝑏
A ))

Next, denote by IMrcvd,𝑐
A→𝐻

the messages obtained by S in simulator

Step 4a and denote by RM𝑐
A→𝐻

the messages obtained by the

honest servers corresponding to the output of gate 𝑐 during a real

execution of the protocol. Since we have that IUA ≡ RUA , it holds

that

(
IUA , IM

rcvd,𝑐
A→𝐻

)
≡
(
RUA ,RM𝑐

A→𝐻

)
.

Notice that the truncated view R𝑢 and A completely determine

both IMrcvd,𝑐
A→𝐻

and RM𝑐
A→𝐻

as well as the messages H𝑚
sim,𝑐
A→𝐻

obtained by the simulator in simulator Step 4b. Thus, denote by

(R ∪ I)𝑚rcvd,𝑐
A→𝐻

the value of both IMrcvd,𝑐
A→𝐻

and RM𝑐
A→𝐻

as deter-

mined by R𝑢.

For any set of servers 𝑇 denote by IM𝑇,𝜋dotprod (𝑥𝑇 ) the nonde-
terministic functionality that computes the values of the input-

dependent messages that the servers in 𝑇 send to all the servers

given their deterministic inputs 𝑥𝑇 and using fresh randomness.

By Lemma E.4 we have that RG𝑐
𝐻,R𝑢

− 𝛾𝑐
𝐻
≡ HG𝑐

𝐻,R𝑢
Thus it

holds that

rec𝐻
(
out𝐻

(
IMA

(∑ℓ
𝑖=1 [R𝑧]𝑎𝐻 ,

∑ℓ
𝑖=1 [R𝑧]𝑏𝐻

)
,

RG𝑐
𝐻,R𝑢

− 𝛾𝑐𝐻 ,H𝑚
sim,𝑐
A→𝐻

))
(6)

≡ rec𝐻
(
out𝐻

(
IMA

(∑ℓ
𝑖=1 [R𝑧]𝑎𝐻 ,

∑ℓ
𝑖=1 [R𝑧]𝑏𝐻

)
,

HG𝑐
𝐻,R𝑢

,H𝑚
sim,𝑐
A→𝐻

))
=

ℓ∑︁
𝑖=1

(
rec𝐻∪A

(
[R𝑧]𝑎𝐻 , [H𝑧]𝑎A

))
(rec𝐻∪A ( [R𝑧]𝑏𝐻 , [H𝑧]𝑏A ))

≡
ℓ∑︁

𝑖=1

(𝑧𝑎𝑢 + A𝑎𝑢 ) (𝑧𝑏𝑢 + A𝑏𝑢 ) = Z𝑐𝑢
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Second, notice that

rec𝐻
(
[RZ]𝑐𝐻

)
= rec𝐻

(
out𝐻

(
IMA

(∑ℓ
𝑖=1 [R𝑧]𝑎𝐻 ,

∑ℓ
𝑖=1 [R𝑧]𝑏𝐻

)
,

R𝑔𝐻,R𝑢 , (R ∪ I)𝑚rcvd,𝑐
A→𝐻

))
= rec𝐻

(
out𝐻

(
IMA

(∑ℓ
𝑖=1 [R𝑧]𝑎𝐻 ,

∑ℓ
𝑖=1 [R𝑧]𝑏𝐻

)
,

R𝑔𝐻,R𝑢 + 𝛾𝑐𝐻 − 𝛾
𝑐
𝐻 ,H𝑚

sim,𝑐
A→𝐻

+ (R ∪ I)𝑚rcvd,𝑐
A→𝐻

−H𝑚
sim,𝑐
A→𝐻

))
= rec𝐻

(
out𝐻

(
IMA

(∑ℓ
𝑖=1 [R𝑧]𝑎𝐻 ,

∑ℓ
𝑖=1 [R𝑧]𝑏𝐻

)
,

R𝑔𝐻,R𝑢 − 𝛾𝑐𝐻 ,H𝑚
sim,𝑐
A→𝐻

))
(7)

+ rec𝐻
(
out𝐻

(
0, 𝛾𝑐𝐻 , (R ∪ I)𝑚

rcvd,𝑐
A→𝐻

−H𝑚
sim,𝑐
A→𝐻

))
≡ Z𝑐𝑢 + A𝑐𝑢 (8)

where the transition in Equation 7 follows the linearity of out,
𝜋dotprod, and SS, and Equation 8 follows from Equation 6 and the

construction of A. Thus, we have proved that rec𝐻
(
[RZ]𝑐

𝐻

)
=

Z𝑐𝑢 +A𝑐𝑢 . Denote by [H𝑧]sim,𝑐
A the shares obtained during simulator

Step 4b. Notice that these shares are completely determined by the

truncated view 𝑢 andA. In addition, let 𝛿𝑐 be the values computed

in simulator Steps 4c and 4d, and 𝛿𝑐
𝐻
and 𝛿𝑐

𝐶
the restrictions of 𝛿𝑐

to, respectively, the honest and corrupt servers. Notice that these

values are also completely determined by R𝑢 and A. Notice that

by construction we have that rec𝐻∪A (𝛿𝑐 ) = A𝑐𝑢 , and thus by the

linearity of SS it holds that

rec𝐻
(
[RZ]𝑐𝐻 − 𝛿

𝑐
𝐻

)
≡ Z𝑐𝑢

Next, notice that since rec𝐻∪A
(
[R𝑧]𝑎

𝐻
, [I𝑧]𝑎A

)
≠⊥ and

rec𝐻∪A
(
[R𝑧]𝑏

𝐻
, [I𝑧]𝑏A

)
≠⊥, then by the construction of [H𝑧]sim,𝑐

A
we have that

rec𝐻∪A
(
[RZ]𝑐𝐻 − 𝛿

𝑐
𝐻 , [H𝑧]sim,𝑐

A

)
= rec𝐻

(
[RZ]𝑐𝐻 − 𝛿

𝑐
𝐻

)
≡ Z𝑐𝑢

Finally, since by construction we have that [H𝑧]sim,𝑐
A + 𝛿𝑐A =

[I𝑧]𝑐A , then by the linearity of SS we obtain

rec𝐻∪A
(
[RZ]𝑐𝐻 , [I𝑧]

𝑐
A

)
= rec𝐻∪A

(
[RZ]𝑐𝐻 , [I𝑧]

𝑐
A

)
− rec𝐻∪A

(
𝛿𝑐
)
+ rec𝐻∪A

(
𝛿𝑐
)

= rec𝐻∪A
(
[RZ]𝑐𝐻 − 𝛿

𝑐
𝐻 , [I𝑧]

𝑐
A − 𝛿

𝑐
A

)
+ rec𝐻∪A

(
𝛿𝑐
)

= rec𝐻∪A
(
[RZ]𝑐𝐻 − 𝛿

𝑐
𝐻 , [H𝑧]sim,𝑐

A

)
+ rec𝐻∪A

(
𝛿𝑐
)

≡ Z𝑐𝑢 + A𝑐𝑢
Thus we have proved that

rec𝐻∪A
(
[RZ]𝑐𝐻 , [I𝑧]

𝑐
A

)
= rec𝐻

(
[RZ]𝑐𝐻

)
= Z𝑐𝑢 + A𝑐𝑢

Therefore, for any 1 ≤ 𝑐 ≤ |C|, it holds that(
Z1𝑢 + A1𝑢 , ...,Z𝑐𝑢 + A𝑐𝑢

)
≡
(
rec𝐻∪A ( [RZ]1𝐻 , [I𝑧]

1

A ), ..., rec𝐻∪A ( [RZ]
𝑐
𝐻 , [I𝑧]

𝑐
A )

)
and the claim follows. □
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