
DeTorrent: An Adversarial Padding-only Traffic Analysis Defense
James K Holland

University of Minnesota
Minneapolis, USA
holla556@umn.edu

Jason Carpenter
University of Minnesota

Minneapolis, USA
carpe415@umn.edu

Se Eun Oh
Ewha Womans University

Seoul, South Korea
seoh@ewha.ac.kr

Nicholas Hopper
University of Minnesota

Minneapolis, USA
hoppernj@umn.edu

ABSTRACT
While anonymity networks like Tor aim to protect the privacy of
their users, they are vulnerable to traffic analysis attacks such as
Website Fingerprinting (WF) and Flow Correlation (FC). Recent
implementations of WF and FC attacks, such as Tik-Tok and Deep-
CoFFEA, have shown that the attacks can be effectively carried out,
threatening user privacy. Consequently, there is a need for effective
traffic analysis defense.

There are a variety of existing defenses, but most are either
ineffective, incur high latency and bandwidth overhead, or require
additional infrastructure. As a result, we aim to design a traffic
analysis defense that is efficient and highly resistant to bothWF and
FC attacks. We propose DeTorrent, which uses competing neural
networks to generate and evaluate traffic analysis defenses that
insert ‘dummy’ traffic into real traffic flows. DeTorrent operates
with moderate overhead and without delaying traffic. In a closed-
world WF setting, it reduces an attacker’s accuracy by 61.5%, a
reduction 10.5% better than the next-best padding-only defense.
Against the state-of-the-art FC attacker, DeTorrent reduces the true
positive rate for a 10−5 false positive rate to about .12, which is
less than half that of the next-best defense. We also demonstrate
DeTorrent’s practicality by deploying it alongside the Tor network
and find that it maintains its performance when applied to live
traffic.

KEYWORDS
website fingerprinting, traffic analysis, deep learning

1 INTRODUCTION
As people’s personal and professional lives increasingly depend on
the Internet, the threat of network surveillance has become par-
ticularly salient. To combat this threat, many users utilize privacy-
enhancing tools such as Tor to protect themselves. Accordingly,
Tor has surged in popularity, recording millions of users each day
[39, 55]. Tor operates by encrypting traffic and routing it through a
series of volunteer-run relays, ensuring that no single entity can
1James K Holland and Se Eun Oh are the corresponding authors.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(1), 98–115
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0007

observe both entry and exit traffic [14]. The encryption strategy,
known as onion routing, is characterized by messages encapsulated
by multiple layers of encryption. Each successive Tor relay then
strips a layer of encryption from the message and forwards it to
the revealed destination [63].

While data sent through Tor may be secure, the frequency and
timing of the associated network traffic may be used by traffic anal-
ysis techniques. These techniques include website fingerprinting
[1, 7, 10, 22, 24, 47, 50, 51, 61, 65, 69, 70, 75–77] and end-to-end flow
correlation [37, 42, 48, 62, 68, 73, 84], which have been thoroughly
discussed in past literature. Researchers have demonstrated that
both can be carried out effectively.

In a website fingerprinting (WF) attack, an adversary between
the user and the first Tor relay records the timing and volume infor-
mation of the Tor traffic and determines which website the user is
visiting. Because this attack requires only a passive, local adversary,
it is particularly threatening to user privacy. Alternatively, in the
flow correlation (FC) attack setting, the adversary records traffic
metadata as it both enters and exits the Tor network. Then, the
adversary attempts to correlate associated entry and exit flows to
determine both the origin and destination of the traffic. This attack
is explicitly mentioned in early literature; however, security against
end-to-end attacks is difficult for low-latency anonymity networks
and an explicit non-goal of the original Tor design [14].

A variety of traffic analysis defenses have been proposed to pre-
vent website fingerprinting and flow correlation [10, 11, 18, 20, 27,
33, 38, 43, 58, 66, 78, 82]. These defenses typically operate by either
delaying traffic or by padding with ‘dummy’ traffic, obfuscating the
relationship between the defended traffic and the associated flow.
However, many defenses require either additional infrastructure
or a prohibitive amount of latency or bandwidth overhead. While
padding-only defenses may still incur some delay when widely
deployed on Tor [81], we avoid explicitly delaying packets, as ex-
cessively increasing Tor latency is discouraged by Tor developers
[52]. Accordingly, we aim to design an effective website fingerprint-
ing and flow correlation defense that uses only dummy traffic.

The most recent and effective website fingerprinting and flow
correlation attacks use deep neural networks (DNNs) to classify
and link Tor traffic. DNNs are vulnerable to adversarial examples
[83], which are intentionally crafted inputs that ‘trick’ a DNN into
misclassifying that input. As a result, it may appear that adversarial
techniques could be used to design a traffic analysis defense. How-
ever, adapting adversarial techniques for traffic analysis is not as
straightforward as it may initially appear. First, the defense must

98

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0007

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

operate while the traffic is being sent and without knowledge of fu-
ture traffic, while the attacker can collect the relevant data for later
analysis. Second, the attacker will likely have access to the defense
and can re-train the attack on a representative ‘defended’ dataset.
In other words, the attacker model is not a static model targetable
by adversarial perturbations; instead, it can adapt and retrain based
on Tor’s choice of traffic analysis defense. Thus, the defense must
act in an unpredictable manner that resists adversarial retraining.
Previous work on using adversarial methods for traffic analysis
defense has achieved a degree of success [20, 43, 60]. However,
these defenses either require knowledge of future traffic, struggle
to prevent adversarial retraining, or delay traffic. Finally, the de-
fense needs to be attack model-agnostic. For example, a defense
model tailored to resist DNN-based attacks may not remain robust
against alternate approaches, such as support vector machines.

To overcome these challenges, we present a novel approach,
DeTorrent, to generate traffic padding strategies that defend Tor
traffic. Inspired by generative adversarial networks (GANs) [21], the
core of the defense consists of a pair of competing neural networks
that aim to either disguise or identify Tor traffic. More specifically,
the ‘generator’ takes random noise as input and then schedules
when and how many dummy packets should be sent. Then, the
‘discriminator’ (or attacker) attempts to demonstrate that it can
accurately identify the defended Tor traffic. Because the genera-
tor’s loss function is minimized when preventing the attacker from
being able to identify the traffic, it is incentivized to generate ef-
fective padding strategies. Most importantly, those strategies are
designed for resistance to adversarial retraining, as the generator
and discriminator are trained in tandem.

Furthermore, to simulate the generator’s real-time decision-
making, we implement the generator as a long short-term memory
(LSTM) neural network [26]. An LSTM is a type of recurrent neural
network (RNN) that can be used to make repeated decisions while
maintaining a state to store historical information. In the defense,
the LSTM outputs how many dummy packets should be sent at
each time step. Because the LSTM has feedback connections, it
can generate this padding pattern while considering the previously
monitored traffic. Once the generator is trained, it can be used to
make effective real-time dummy padding insertion strategies.

To test the DeTorrent defense, we evaluate its ability to reduce
the accuracy of state-of-the-art website fingerprinting and flow
correlation attacks.We find that it outperforms comparable defenses
in both types of attacks while using similar bandwidth overhead. To
illustrate, DeTorrent reduced closed-world Tik-Tok attack accuracy
from 93.4% to 31.9%, which is 10.5% better than the next best defense.
Additionally, DeTorrent reduces DeepCoFFEA’s true positive rate
to .12 for a 10−5 false positive rate, which is less than half of Decaf’s
TPR at .29. It does this while adding a bandwidth overhead of 98.9%
in the WF setting and 97.3% in the FC setting.

To make our approach deployable, we provide a full implemen-
tation of the DeTorrent defense as a Tor pluggable transport and
evaluate its performance against Tor live traffic. We further show
the transferability of DeTorrent’s padding strategies by training on
one dataset partition and testing on another, leading to a minimal
drop in performance of only .7%. Overall, DeTorrent demonstrates
that a reasonable degree of traffic analysis defense can be achieved
while only adding dummy traffic.

Client
Guard

Middle

Exit
Website

Adversary
Database Model

Prediction

Figure 1: Attacker position and model creation for a WF
attack on Tor. The adversary creates a database of down-
load traces for multiple sites and uses them to train a model,
which is applied to observed traces between a client and guard
relay to predict the downloaded site.

ISP

Malicious
 ISP

Relay

Malicious
 Relay

Figure 2: Attacker positioning for a FC attack on Tor. The
attacker must collect traffic at both the entry and exit sides
of the network, though there are multiple possible vantage
points, including the ISPs and malicious relays.

2 BACKGROUND AND RELATEDWORK
2.1 Website Fingerprinting
2.1.1 Threat Model. In the WF attack model, shown in Figure 1,
we assume that the adversary is a passive eavesdropper local to the
client. Accordingly, this adversary can observe traffic between the
Tor client and the entry node but does not modify that traffic. We
also assume that this adversary knows the IP address of the user
and is trying to determine which website the user is visiting.

2.1.2 Attacks. While data sent through Tor is encrypted, traffic
metadata such as packet timing and direction may indicate the des-
tination of a user’s traffic. Hintz et al. were the first to demonstrate
the risk of WF attacks using file transfer sizes to distinguish web
pages [25]. Tor was initially thought to be WF-resistant due to its
use of constant-sized cells and inherent network delays. However,
researchers later began using packet volume and timingmetadata to
conduct the attack against Tor traffic [11, 51]. Later improvements
came in the form of dataset collection and feature engineering [76],

99

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

the use of more effective machine learning techniques such as k-
nearest neighbors and random forests [22, 75], and the use of the
cumulative representation of the traces [50].

More recent techniques leveraged deep neural networks to sub-
stantially increase WF attack performance [47, 61, 69, 70]. Most
importantly, Deep Fingerprinting by Sirinam et al. [69] managed
to defeat the WTF-PAD defense while pushing closed-world accu-
racy above 98%. Then, Rahman et al. [61] added timing information
to the Deep Fingerprinting architecture to develop the Tik-Tok
attack, further increasing performance with especially strong re-
sults against the Walkie-Talkie defense [61]. Due to the success
of the convolutional neural network architecture used by Deep
Fingerprinting, we use it as the basis of DeTorrent’s embedder and
discriminator, with some modifications described in Appendix A.1.
While some recent attacks focused on outside sources of informa-
tion to reduce false positives [59] or training WF attacks in more
challenging and data-limited settings [46, 70], we use the Deep
Fingerprinting and Tik-Tok attacks to benchmark our defenses as
they represent versatile state-of-the-art attacks that have proven to
be effective against WF defenses.

2.1.3 Defenses. WF defenses alter web traffic to reduce the at-
tacker’s ability to identify the website a user is visiting. Some early
defense designs, such as BuFLO and Tamaraw, operate by sending
packets at a set rate and inserting dummy packets when no real data
is available, making traffic associated with different websites look
identical [9, 10, 15]. However, these defenses incur prohibitively
high latency and bandwidth overheads. Another defense, RegulaTor
[27], also aims to regularize traffic to prevent accurate classification.
However, it operates with a more reasonable overhead by sending
real traffic ‘surges’ in standardized bursts, decreasing the amount
of information leaked. Because these defenses delay traffic, they
are not used for comparison in this paper.

Other defenses operate by transforming traffic such that it ap-
pears to be associated with a different website or groups of websites,
thus tricking theWF attacker. These techniques include TrafficMor-
phing [82], Decoy pages [51], Supersequence [75], and Glove [45].
Additionally, the Walkie-Talkie defense [78] modifies the browser
to operate in half-duplex mode while modifying burst sequences.
These defenses have either been broken by WF attacks or require
additional infrastructure or information about traffic associated
with other web pages, so we do not evaluate them in this paper.

Additional latency overhead is harmful to the user experience,
so some defenses have taken the approach of avoiding traffic delays.
WTF-PAD [33] uses adaptive padding and distributions of typical
inter-packet delays to fill the large gaps in traffic that may leak
information about the trace destination. FRONT [18], on the other
hand, focuses dummy padding on the beginning of the trace while
randomizing dummy packet volume and timing information. Addi-
tionally, the Spring and Interspace [58] defenses operate using the
Tor circuit padding framework [52], which defines state machines
controlling when dummy traffic should be inserted. The state ma-
chines are designed using genetic algorithms with a fitness function
based on the defense’s ability to defend against the Deep Finger-
printing attack. Because these defenses have reasonable overhead
with no added latency, we directly compare them to DeTorrent.

Some defenses use adversarial techniques to defend traffic. Mock-
ingbird [60] generates adversarial traces that aim to reduce the at-
tacker’s adversarial retraining accuracy by randomly perturbing in
the space of viable traces. While this approach appears promising,
it cannot be implemented live, as it requires knowledge of future
traffic. Shan et al. [66] designed a defense, Dolos, that precomputed
input-agnostic ‘adversarial patches’ that could be used to disrupt
deep learning-based attacks in real-time. Nasr et al. [43] proposed
a technique using blind adversarial perturbations (BAP) to defeat
DNN-based traffic analysis. Essentially, the approach trained DNN
adversarial traffic generators that aimed to reduce the performance
of WF and FC attacks. While BAP is quite effective against a WF or
FC adversary using a static DNN model, we assume in this paper
that the attacker will be able to retrain their models once traffic is
defended. Accordingly, our BAP implementation in this paper will
likely appear less effective than expected. Still, BAP’s use of a DNN
traffic perturbation generator was influential to DeTorrent’s devel-
opment. Surakav [20] uses aWasserstein GAN [4] to generate traffic
burst volumes for a trace, where a burst is defined as a series of
packets going in the same direction. Then, Surakav shapes the real
traffic bursts to match that of the generated traffic. While Surakav
appears effective, it delays packets while shaping the bursts, so it is
not included in our analysis.

The TrafficSliver [13] and Multihoming [23] defenses split traffic
among different guard nodes such that the individual sub-traces
are difficult for a WF attacker to classify. Specifically, Multihoming
users connect through different access points (such as Wi-Fi and a
cellular network) and merge the traffic at a multipath-compatible
Tor bridge. Alternatively, TrafficSliver either splits traffic over mul-
tiple entry relays and merges traffic at the middle relay or creates
multiple circuits and requests different HTTP objects over the cir-
cuits. While these defenses appear effective, they do not guard
against all attacker types considered in this paper. For example,
TrafficSliver does not defend against local attackers who can see
outgoing traffic before it is split. Furthermore,Multihoming requires
additional infrastructure to function. As a result, traffic-splitting
defenses are not used for comparison in this paper.

2.2 Flow Correlation
Early discussion of security concerns in low-latency anonymity
networks acknowledged the possibility of timing analysis to corre-
late flows, determine if two mixes are on the same path, or simply
confirm that two users are online at the same time [14, 37, 41, 49, 62,
79]. While initial attack formulations included techniques such as
‘packet counting’ [62], later approaches turned to statistical corre-
lation metrics such as the cross-correlation between binned packet
volumes [37, 68], distance functions using mutual information and
frequency analysis [84], or Spearman’s rank correlation coefficient
[73]. Defensive techniques proposed in response include defensive
dropping [37], adaptive padding [68], and constant-rate sending
[37]. However, constant-rate sending is costly in terms of band-
width and latency overhead, while defensive dropping has been
proven ineffective [68]. Still, we test the performance of an adaptive
padding approach in the flow correlation setting later in this paper.

The original Tor design admits vulnerability to end-to-end tim-
ing correlation, though the attacker must watch traffic at both the

100

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

initiator and responder to carry this out [14]. Later work introduced
the concept of an autonomous system (AS) level adversary [17].
While these adversaries have a more limited view of the network,
it is still quite possible for multiple nodes to be part of the same
administrative domain. This risk is then exacerbated by the exis-
tence of Internet exchange points (IXPs), which allow the exchange
of traffic between autonomous systems, as well as the possibility
of IXP coalitions [31]. AS-level adversaries may also be able to
increase their chances of intercepting traffic through active attacks,
such as BGP hijacks and BGP interception [73, 74]. As a result,
reducing the chance that an adversary is positioned to capture both
entry and exit flows is a concern for Tor researchers and develop-
ers. In response, several research efforts address these problems by
improving Tor’s guard and relay selection [2, 6, 16, 35, 45, 72].

A related threat model is the possibility of an adversary run-
ning multiple Tor relays with the expectation that a targeted client
will eventually use a controlled relay as both the entry and exit.
This adversary may improve their odds by preventing the creation
of circuits that they’re a part of, but cannot yet compromise [8].
Currently, the Tor Project’s response is to have users re-use en-
try guards for a set time period to reduce the cumulative risk of
eventually choosing a compromised circuit [5]. See Figure 2 for an
illustration of a flow correlation attack that can make use of either
relays or internet infrastructure.

Even if an adversary can capture entry and exit flows, correlating
them is nontrivial due to Tor’s use of fixed-sized cells and varying
circuit conditions that may alter flow characteristics. Furthermore,
the base rate fallacy is a concern while carrying out a flow correla-
tion attack due to the number of potential flow combinations: to
deanonymize a set of 𝑁 entry and exit flows, 𝑁 2 possible combi-
nations of flows must be evaluated. This is both computationally
and practically difficult, as the number of false positive correlations
will likely outnumber the number of true correlations unless the
false positive rate is relatively low.

However, these challenges have been overcome by recent work
by Nasr et al. and Oh et al. with their DeepCorr and DeepCoF-
FEA attacks [42, 48]. DeepCorr first used a deep neural network
to learn how Tor circuits transform traffic, correlating flows with
a lower false positive rate while using less data than previous at-
tacks. DeepCoFFEA provides further improvements by training
feature embedding networks to represent the entry and exit flows
in a low-dimensional space such that correlated flows are close to
one another. DeepCoFFEA also further reduces the false positive
rate by dividing flows into windows and voting across the win-
dows where the window embeddings are similar. These attacks
essentially demonstrate that flow correlation is quite feasible for
attackers to effectively carry out given the ability to intercept entry
and exit flows. Given that DeepCoFFEA is a state-of-the-art flow
correlation attack, we use it in this paper to test the performance of
various potential flow correlation defenses. We also implemented
the flow correlation defense Decaf, which was presented alongside
the DeepCoFFEA attack. It operates by recording windows of traffic
from other traffic flows, and then using the packet timing from a
randomly selected window to defend a window of real traffic. This
way, the window of real traffic is more difficult to embed accurately.

2.3 LSTMs
Recurrent neural networks are a class of artificial neural networks
designed for processing sequential data. Unlike traditional feedfor-
ward networks, RNNs have internal loops that allow information
to persist, enabling them to use previous steps’ outputs as inputs
for the current step. While RNNs can theoretically consider longer-
term input dependencies in sequential data, they suffer from the
‘vanishing gradient’ problem, where back-propagated gradients
tend to either zero or infinity. To address this, LSTMs add a set
of ‘gates,’ called the input, output, and forget gates, that regulate
information across cell states. Consequently, the LSTM is better
able to consider long-term dependencies, giving it a ‘long short-
term memory.’ LSTMs also support the use of irregularly-spaced
time series of variable length, as they can make repeated decisions
throughout the time series. As a result, an LSTM can make a series
of decisions regarding inserting dummy packets into a traffic flow
while the traffic is being sent.

3 DETORRENT DESIGN
3.1 Motivation
A major difficulty faced by website fingerprinting defenses is that
the attacker likely has access to the defense and defended traffic.
Consequently, they can retrain their models or improve their ap-
proach to undermine the defense more effectively. To defeat this
adversarial training, the most effective defenses have utilized the
padding strategies based on a high degree of randomness as demon-
strated by FRONT [18], Surakav [20], and Mockingbird [60].

As a result, it may seem intuitive to use an approach similar to
that of a Generative Adversarial Network (GAN) to generate the
defended traces and make adversarial retraining less effective. In
this setup, the generator is fed random noise as input and trained to
maximize the discriminator’s loss. This way, the generator learns to
insert dummy traffic in a manner that minimizes the discriminator’s
ability to identify the underlying traffic. However, this approach
yields three challenges: representing the trace in a manner that
can be used by neural networks, training the generator to make
decisions about scheduling dummy traffic, and providing a notion
of howwell the discriminator can identify the trace. Our approaches
for the FC and WF settings vary somewhat, so we now refer to the
website fingerprinting version of DeTorrent as WF-DeTorrent and
the flow correlation version as FC-DeTorrent.

3.2 Trace Representation
Representing the trace as a tensor is difficult given that the repre-
sentations must support being ‘added’ to one another while serving
as the output of one neural network and the input of another. This
problem is further complicated by the fact that the LSTM generator
must output the dummy padding pattern through a series of time
steps. Also, because the generator’s loss function is written in terms
of minimizing the discriminator’s performance, it must alter the
traffic representation in a differentiable manner in order to use
backpropagation to update its weights. In other words, we must be
able to backpropagate through the discriminator’s output and back
to the generator’s weights. This prevents us from representing the

101

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

traffic as a series of packet directions or timestamps, as shown in
existing WF attacks such as Deep Fingerprinting [69].

We find the best approach to account for these difficulties is to
bin the packets of the trace such that the value of each bin is the
volume of download packets sent during a designated time period.
This way, the traces can be ‘defended’ by simply adding the ten-
sors together. This representation only considers download packets
because the upload traffic is generally both smaller in volume and
distributed similarly compared to the download traffic, as discussed
in past work [27]. Thus, the upload padding is handled based on
observed download traffic, as discussed in Section 3.5. Because a
majority of traffic is sent soon after a web page is loaded, the bins
are spaced evenly on a logarithmic scale using the NumPy func-
tion ‘geomspace’ [64], allowing for more fine-grained distinction
between early traffic bursts. However, the bins are only fit to the
data in the sense that they span 50 seconds, which is enough to
contain the traffic in nearly all web page loads. The timing for each
bin is also consistent for all traces. As a result, bin spacing will most
likely not need to be re-tuned even if web browsing traffic patterns
change.

While a binned representation loses some fine-grained informa-
tion about the traces, this appears to be minimal compared to the
amount of information leaked by the overall distribution and vol-
ume of traffic. We test this by running a closed-world WF classifica-
tion attack on the DF dataset using only the binned representations
and find that accuracy remains high at over 90%. This is further
suggested by the success of WF attack CUMUL [50], which uses the
cumulative distribution traces, and the relative success of WF de-
fenses, such as FRONT, RegulaTor, and Surakav, that primarily alter
the volume and distribution of traffic [18, 20, 27]. Furthermore, the
success of the recent Robust Fingerprinting attack, which uses time
slots, or bins, to create a ‘robust’ traffic representation, is further
evidence of the usefulness of this representation [67].

Another potential limitation of the binning is that the DeTorrent
generator is unable to learn the precise timing of dummy traffic and
instead must rely on heuristic strategies, as described in Section 3.5.
However, a more fine-grained version of DeTorrent would likely
also struggle to respond to observed real traffic quickly enough
to be effective, as this would require much more frequent LSTM
evaluations. Having smaller bins that the beginning of traces also
helps to mitigate this somewhat.

To preprocess the data, we first shift the traffic so that the binning
starts with the 10th packet, as the time for the website to begin
loading is variable. However, we can prevent this variability from
impacting the trace representations by ‘subtracting out’ the time
it takes for the circuit to be constructed and for the web page to
begin loading. When DeTorrent is applied to real traffic, it sends
additional dummy traffic with inter-packet delays drawn from an
exponential distribution with a mean delay of one-tenth of a second.
This obfuscates the circuit setup and initial communication with
the website while allowing the real traffic to be sent without delay.

3.3 Trace Embedding
A naive implementation of WF-DeTorrent would create loss func-
tions based on the discriminator’s ability to classify traces (or corre-
late flows) and the generator’s ability to increase the discriminator’s

loss. However, this style of training does not lead to an effective de-
fense in theWF setting. This is because the generator is incentivized
to defend the traffic in a manner that does not resist retraining, as it
is easy to move the trace representation just across the WF discrim-
inator’s decision boundary and cause it to misclassify. However,
the discriminator can retrain to account for the generator’s minor
perturbations. To provide a better metric for discriminator and gen-
erator performance in the WF setting, we chose an approach used
by DeepCoFFEA [48] and trained an embedder to map traces to a
low-dimensional space where trace similarity is measured using
Euclidean distance.

To train the embedder to provide a useful notion of distance
between traces, we use triplet loss, which compares an ‘anchor’
(A) input of a given class to both a ‘positive’ (P) input of the same
class and a ‘negative’ (N) input from another class. Triplet loss is
minimized when the distance between the anchor and positive em-
beddings is at least 𝛼 smaller than the distance between the anchor
and negative embeddings, where 𝛼 is a set slack value.

L(𝐴, 𝑃, 𝑁) =𝑚𝑎𝑥 (| |𝑓 (𝐴) − 𝑓 (𝑃) | |2 − ||𝑓 (𝐴) − 𝑓 (𝑁) | |2 + 𝛼, 0)

Once the embedder is trained, the discriminator guesses the embed-
ding of the original traffic while the generator defends the traffic
to prevent this. By making accurate guesses, the discriminator in-
dicates that it has enough information to identify the traffic. As
discussed later, we find that an embedding dimension of 256 works
best when considering defense performance and computational
overhead. In the flow correlation setting, the discriminator iden-
tifies whether the flow pairs are matched or not. Because this is
a binary classification, the problem of short-sighted optimization
does not occur, so embedding is not needed.

3.4 Real-Time Decisions
While a WF or FC defense could pre-generate padding strategies, it
would likely underperform compared to a similar defense that takes
into account traffic already sent or received during page load. For
example, a real-time defense might decide to extend packet bursts
or add fake traffic to traces with low packet volume. Similarly, the
generator cannot take the entire trace as input, as the real-world
implementation lacks knowledge of traffic that has not yet been sent.
To train a generator to make these types of decisions, we implement
it as an LSTMwhere each bin in the trace representation is matched
to a time step of the LSTM. As a result, the number of decisions the
LSTMmakes is tied to the length of the trace representation, though
this representation is of variable length. This way, the recurrent
nature of the LSTM can be used to make repeated decisions while
taking into account past traffic and padding decisions.

Considering that each bin is associated with a set time period,
the LSTM can take as input random noise and the number of real
packets in the associated previous bin at each time step, then output
the number of dummy packets that should be sent at the next time
step. This process is shown in Figure 3. While defense performance
would be higher given the possibility to consider the number of real
packets in the current bin of the trace representation, this cannot
be known until the end of the associated time period, so the LSTM
may only consider previous bins. Once bin 256 has been reached,

102

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

LSTM

random noise time

Fully Connected
Batch Normalization

Leaky ReLU

Fully Connected
Batch Normalization

ReLU

output padding 1

bin 1

LSTM

random noise time

Fully Connected
Batch Normalization

Leaky ReLU

Fully Connected
Batch Normalization

ReLU

output padding 256

bin 256

Figure 3: Unrolled LSTM generator outputting the dummy
traffic volume at each step. Note that the volume in the previ-
ous bin, the time since the start of the defense, and random
noise are used as LSTM input at each step.

padding stops until enough download traffic is sent to signal the
loading of a new web page. Then, the defense restarts. The trace
representation already ignores the first 9 packets of a page load,
as described in Section 3.2, so we set this threshold to 9. Because
the generator does not determine the amount of traffic in the first
bin, this value is determined by randomly choosing a value from a
uniform distribution ranging from 0 to 10.

3.5 Packet Timing
3.5.1 Download padding. While the generator output specifies
how many dummy packets to send in each interval, DeTorrent
must still specify the exact timing. Web browsing traffic is often
burst-heavy with occasional long gaps between bursts [12, 30], so
we choose inter-packet delays from the exponential distribution, as
done in some previous works [28, 44]. The rate, 𝜆, of the distribution
is chosen such that the dummy traffic will on average fill the set
bin (e.g. 𝜆 is set such that the average inter-packet delay will be
1/10th of a second given 10 dummy packets and a bin length of one
second). The beginning of the burst is randomly offset according to
a uniform distribution within the bin to prevent an attacker from
identifying dummy traffic based on bin timing.

3.5.2 Upload padding. As mentioned earlier, Tor upload traffic
tends to be distributed similarly in terms of when traffic bursts are
sent, but at much lower volumes. As a result, DeTorrent’s strat-
egy is to simply add dummy traffic to maintain a set average of
download-upload traffic. This achieves two goals: obfuscating much
of the upload traffic and preventing the specific interleaving of the
upload and download packets from leaking as much information.
To be specific, DeTorrent sends dummy upload packets such that
there is, on average, one upload packet for every five download
packets. We chose this value for the parameter because, across all
of the datasets used in this paper, few flows had a higher ratio of
upload to download packets. This allows for DeTorrent to make
nearly all the defended traces have the same download-packet ra-
tio. To determine how many upload packets need to be added to
achieve a given download-upload ratio, we must be able to create

frequently updated estimates of the rate at which packets are sent
or received. However, this is challenging due to the irregularity of
internet traffic and the need for the method to be computationally
inexpensive. As a result, we implemented a traffic volume estimator
that weights recently sent traffic more heavily, making the estimate
highly responsive to traffic bursts. For a more in-depth explanation
of our method of estimating traffic rate, see the appendix Section B.

Using the frequently updated estimates, DeTorrent sends an
upload packet whenever the upload traffic rate falls below one-fifth
of the download traffic rate. If the upload traffic rate is larger than
one-fifth of the download traffic rate, then no dummy traffic is sent.

4 DETORRENT TRAINING
4.1 WF-DeTorrent Training
In the WF setting, the discriminator and embedder are both ini-
tialized as convolutional neural networks that take a trace repre-
sentation as input and output an embedding. The training process,
described in Algorithm 1 and illustrated in Figure 4, starts by train-
ing the embedder using the previously described triplet loss method
with Euclidean distance. Then, after a random trace is sampled, the
generator is fed a tensor containing random noise and the number
of real packets sent at that time step. Next, the generator outputs
the proportion of the padding budget, 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 , to be sent at
that time step. Once the final dummy padding volumes are cal-
culated, they are added to the original trace to create a defended
trace. Using the defended trace as input, the discriminator outputs
a prediction of the embedding of the original trace, indicating that
it can accurately identify it. The discriminator’s loss is computed
as the distance between its prediction and the true embedding of
the original trace. So, given original trace 𝑥 and noise 𝑧:

𝑙𝑑 (𝑥, 𝑧) = −𝑙𝑔 (𝑥, 𝑧) = | |𝐷 (𝑥 +𝐺 (𝑧 | |𝑥)) − 𝐸 (𝑥) | |

Note that the generator only uses the traffic volume information
of the current bin at each time step, and that ‘+’ indicates a bin-
wise addition of the traces. Also, we can use the 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 value
to tune the amount of overhead DeTorrent uses. In the training
loop, once the loss is computed and the discriminator’s weights are
updated, the noise is re-sampled and the same trace is defended
again by the generator. This time the process is similar, but the
generator’s loss is computed as the negative of the discriminator’s
loss. Re-sampling the noise and running the generator again appears
to aid convergence, likely because it discourages the generator
and discriminator from overfitting on the most recent set of noise
vectors. We also experimented with training the discriminator or
generator for multiple batches at a time but found that training
each for one batch led to the highest defense performance.

We use the standard Gaussian to generate noise both because it
is conventional with GANs and because the central limit theorem
states that the sum of a large number of independent and identically
distributed random variables is approximately normally distributed,
regardless of the original distribution of the variables. Given the
apparent universality to the Gaussian distribution, we hesitantly
state that it is a reasonable default choice.

Note that the goal of the generator is to pad the traffic so that the
discriminator is unable to provide an accurate embedding. While it

103

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

Discriminator

Embedding

prediction Prediction
error

Generator

Random
noise

Real traffic
volume at
time step

Current time

Binned
real

traffic

Binned
dummy
traffic

Binned
defended

traffic

Embedder
Real traffic embedding

Minimize
error

Maximize
error

Figure 4: WF-DeTorrent training, where the generator min-
imizes the discriminator’s ability to provide accurate em-
bedding predictions. The binned real traffic and the binned
dummy traffic are added to one another to create the defended
trace, and the embeddings are computed using a pre-trained
embedder.

Discriminator

Predicts if

flows are

matched Prediction
error

Generator

Random
noise

Real traffic
volume at
time step

Current time

Binned
entry
traffic

Binned
dummy
traffic

Defended
entry
traffic

Minimize
error

Maximize Error

Potentially
matched

exit trafffic

Figure 5: FC-DeTorrent Training, where the generator is
trained to reduce the discriminator’s ability to predict which
flows are matched. The discriminator is trained to determine
which flow pairs are associated with the same connection,
and the generator is trained to defend the traffic to prevent
this.

might seem more natural to have the generator try to thwart a WF
classifier, consider that accurately embedding a trace is equivalent
to classification in the sense that this embedding could be used as
input for a simple classifier. Accordingly, we find that this setup
is an effective proxy for defending traffic to resist classification
by a WF adversary and solves the traffic representation problem
discussed in Section 3.3.

4.2 FC-DeTorrent Training
The setup for FC-DeTorrent is similar in the sense that it consists of
an LSTM generator ‘defending’ traffic, which is then used as input to
a CNNdiscriminator, as shown in Figure 5. However, here there is no
embedder, as the generator directly minimizes the discriminator’s
ability to determine whether a given pair of flows is matched.

As described in Algorithm 2, the training process starts by sam-
pling entry and exit pairs. 50% of the pairs are matched, as they
may represent the entry and exit flows for the same traffic. Oth-
erwise, they are unmatched. Then noise is sampled randomly and
fed into the generator along with the number of real packets at
each time step for the entry flow. Once the generator has output
the proportion of the dummy download traffic to send at each time
step and multiplied it by 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 , it is added to the original entry
flow traffic. This traffic is used as input to the discriminator, which
tries to predict whether the defended entry and original exit are
matched. Note that the entry is defended because dummy traffic
can only be sent between the client and a relay in the Tor network.

After making a batch of predictions, the discriminator’s binary
cross entropy loss is computed and its weights are updated. For
entry flow e, exit flow x, true label y, and noise 𝑧:

𝑙𝑑 (𝑒, 𝑥,𝑦, 𝑧) = 𝑦 log𝐷 (𝑒 + 𝐺 (𝑧 | |𝑒), 𝑥) + (1 − 𝑦) log(1 − 𝐷 (𝑒 +
𝐺 (𝑧 | |𝑒), 𝑥))

Next, the noise is re-sampled and the generator again outputs
a padding defense which is added to the real traffic to create a
defended trace. The discriminator then takes the defended trace
and original exit trace and predicts if they are matched. This time,
however, the weights of the generator are updated to maximize
the discriminator’s loss, thus incentivizing strategies that make it
more difficult to correlate the matched entry and exit pairs. Like in
the WF setting, the generator only has access to the current traffic
volume at each step, and the generator’s output is scaled to achieve
a specific bandwidth overhead.

5 EXPERIMENT DETAILS
5.1 Datasets
The BigEnough dataset, referred to here as ‘BE,’ was collected for
a Systemization of Knowledge paper on website fingerprinting
defenses [40] byMatthews et al. The BE collectionmethodologywas
based on that of Pulls for the GoodEnough dataset [58] and contains
three modes based on the Tor Browser security configurations:
Standard, Safer, and Safest, though we only use the default standard
mode in this paper. Most importantly, the BE dataset considers
95 websites represented by 10 subpages which are each crawled
20 times, resulting in 19,000 traces. Including subpages increases
the realism of the dataset compared to past datasets, which model
traffic as always visiting the home page of a given website. The
Open PageRank Initiative [29] top website list was used to select
the most popular websites. The BigEnough dataset also includes
Tor log information needed to simulate the Spring and Interspace

104

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

Algorithm 1WF-DeTorrent Training
𝐸 ← embedder model
𝐺 ← generator model
𝐷 ← discriminator model
𝐷𝑡𝑟𝑎𝑖𝑛 ← training data
L𝑒 ← embedder loss
L𝑔 ← generator loss
L𝑑 ← discriminator loss
𝑁𝑒 ← number of epochs to train the embedder
𝑁𝑎𝑑𝑣 ← number of epochs to train the generator and discrimi-
nator
𝑚 ← size of the generator input vector

for all epoch in 𝑁𝑒 do
for all batch 𝑏𝑖 in 𝐷𝑡𝑟𝑎𝑖𝑛 do
sample anchors, positives from selected classes
sample negatives from different classes
anchor_emb← 𝐸 (anchor)
positive_emb← 𝐸 (positive)
negative_emb← 𝐸 (negative)
L𝑒 ← 1

|𝑏𝑖 |
∑
𝐴,𝑃,𝑁 ∈𝑏𝑖 𝑚𝑎𝑥 (| |𝐸 (𝐴) − 𝐸 (𝑃) | |2 − ||𝐸 (𝐴) −

𝐸 (𝑁) | |2 + 𝛼, 0)
update 𝐸 (𝑥) weights to minimize L𝑒

end for
end for

for all epoch in 𝑁𝑎𝑑𝑣 do
for all batch 𝑏𝑖 in 𝐷𝑡𝑟𝑎𝑖𝑛 do
sample trace from 𝐷𝑡𝑟𝑎𝑖𝑛

sample noise 𝑧0, ..., 𝑧𝑚−1 from N(0, 1)
L𝑑 = 1

|𝑏𝑖 |
∑
𝑥 ∈𝑏𝑖 | |𝐷 (𝑥 +𝐺 (𝑧0, ..., 𝑧𝑚−1 | |𝑥)) − 𝐸 (𝑥) | |

update 𝐷 to minimize L𝑑

sample noise 𝑧0, ..., 𝑧𝑚−1 from N(0, 1)
L𝑔 ← − 1

|𝑏𝑖 |
∑
𝑥 ∈𝑏𝑖 | |𝐷 (𝑥 +𝐺 (𝑧0, ..., 𝑧𝑚−1 | |𝑥)) − 𝐸 (𝑥) | |

update 𝐺 to minimize L𝑔
end for

end for

defenses for comparison; unlike other datasets, it also records the
timing of Tor cells rather than that of the associated packets.

We use the website fingerprinting dataset by Sirinam et al., orig-
inally collected to demonstrate the Deep Fingerprinting attack [69],
to evaluate defense performance against an attacker able to compile
a large and robust dataset. The dataset was collected by visiting the
home pages of the Alexa top 100 websites 1,250 times each using ten
local machines. The crawl was done in batches to account for both
long and short-term variance following the methodology described
by Wang et al. [76]. After filtering, we are left with a dataset with
1000 instances of 95 websites, which we refer to as ‘DF.’

To test the flow correlation defense performance, we use the
dataset collected by Oh et al., referred to here as ‘DCF,’ to demon-
strate the effectiveness of theDeepCoFFEA attack [48]. Their dataset
collection methodology was based on that of the DeepCorr tech-
nique by Nasr et al. [42], though with some changes. Specifically,

Algorithm 2 FC-DeTorrent Training
𝐺 ← generator model
𝐷 ← discriminator model
𝐷𝑡𝑟𝑎𝑖𝑛 ← training data
L𝑔 ← generator loss
L𝑑 ← discriminator loss
𝑁𝑎𝑑𝑣 ← number of epochs to train the generator and discrimi-
nator
𝑚 ← size of the generator input vector

for all epoch in 𝑁𝑎𝑑𝑣 do
for all batch 𝑏𝑖 in 𝐷𝑡𝑟𝑎𝑖𝑛 do
sample 𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡 pairs from 𝐷𝑡𝑟𝑎𝑖𝑛

sample noise 𝑧0, ..., 𝑧𝑚−1 from N(0, 1)
L𝑑 = 1

|𝑏𝑖 |
∑
𝑒𝑛𝑡𝑟𝑦,𝑒𝑥𝑖𝑡 ∈𝐷𝑡𝑟𝑎𝑖𝑛

𝑙𝑑 (𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡, 𝑧0, ..., 𝑧𝑚−1)
Update 𝐷 to minimize L𝑑

sample noise 𝑧0, ..., 𝑧𝑚−1 from N(0, 1)
L𝑔 = − 1

|𝑏𝑖 |
∑
𝑒𝑛𝑡𝑟𝑦,𝑒𝑥𝑖𝑡 ∈𝐷𝑡𝑟𝑎𝑖𝑛

𝑙𝑑 (𝑒𝑛𝑡𝑟𝑦, 𝑒𝑥𝑖𝑡, 𝑧0, ..., 𝑧𝑚−1)
update 𝐺 to minimize L𝑔

end for
end for

they used a web crawler along with a physical machine to collect
the entry flows and a proxy server to collect the exit flows. Over
60,000 Alexa websites were crawled in over 1,000 batches with
the first 60 seconds of each flow being recorded. The DCF dataset
removes flows with less than 70 packets total or with a window
packet count of less than 10. While the original dataset includes
42,489 flow pairs, we randomly selected 20,000 in our experiments.

To evaluate the DeTorrent pluggable transport defense, we vis-
ited each website in the Alexa top 250 [3] 100 times over two weeks
in September 2022. To collect the dataset, we used a fork of Tor
Browser Crawler [80] updated to work with more recent libraries
and Tor Browser version 11.0.15. The crawler then uses the DeTor-
rent pluggable transport, described in Section 5.4, to transform
traffic between it and the bridge. We ran two separate instances of
the crawler, each in its own virtual machine, and connected to one
of two Tor bridges. We hosted the bridges using Amazon Lightsail
and used Tor version 0.4.7.8. In this paper, we refer to this dataset
as ‘PT.’

5.2 WF Attack Details
We used open-source code associated with WTF-PAD [34], Inter-
space [57], Spring [57], FRONT [19], and BAP [71] to generate the
defended datasets for each defense. Then, to test the robustness of
WF-DeTorrent and comparable defenses, we test the defense’s abil-
ity to resist state-of-the-art attacks. For the website fingerprinting
setting, we use the Tik-Tok and Deep Fingerprinting attacks. These
attacks are based on the same CNN architecture, though Tik-Tok
uses packet timing information, allowing it to achieve somewhat
higher accuracy. We use the default parameters with the exception
that we run the Tik-Tok and Deep Fingerprinting attacks for 100
epochs with a patience value of 10. This ensures that training does
not stop early on the BE dataset, which is much smaller than the DF

105

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

dataset and thus has much smaller epochs. We also increased the
attack input size from 5,000 to 10,000 to account for the increased
traffic volume observed in the BE, DCF, and PT datasets (compared
to the DF dataset). For both Tik-Tok and Deep Fingerprinting, we
use 5-fold cross-validation to estimate attack performance.

To fairly compareWF-DeTorrent to defenses such as FRONT and
WTF-PAD, we scale the bandwidth overhead to match the overhead
used by WF-DeTorrent. To scale FRONT, we increase the upload
and download volume parameters 𝑁𝑠 and 𝑁𝑐 . To scale WTF-PAD
using the distributions released in the original paper, we scale the
timestamps of the datasets, use the WTF-PAD simulator to insert
the dummy padding, and then re-scale the timestamps to match the
original trace lengths. This strategy is used in past literature [58]
and is necessary due to the smaller inter-packet delays seen in more
recently collected datasets. To simulate BAP, we train the timing
and direction perturbation attacks against Var-CNN as indicated by
the source code shared by the authors. We also set the 𝛼 parameter
to tune the volume of the perturbations. The specific overheads and
defense parameters are shown in Table 1 and Table 2. Also, it should
be noted that a low but measurable amount of added latency may
be incurred by a full deployment of these ‘zero-delay’ defenses, as
shown in past work [81]. However, the exact amount of additional
latency is difficult to estimate without a larger-scale Tor simulation.

The default Spring and Interspace defenses use a comparable
amount of bandwidth overhead. Because the output of the circuit
padding simulator [57] contains unrealistically precise timing in-
formation, we round the timestamps of the defended dataset to
the nearest hundredth of a second. We only simulate Spring and
Interspace on the BigEnough dataset, as their simulator requires
Tor logs that are not present in the DF dataset.

To simulate WF-DeTorrent on a dataset, we must take steps to
prevent it from being able to defend traces that it witnesses during
training: this might allow it to memorize effective defense strategies
and perform unrealistically well. So, we partition each dataset 𝑛-
ways, where 𝑛 − 2 partitions are used for training, one is used for
validation, and the other is used to simulate WF-DeTorrent and
output the defended traces. Then, we rotate which partitions are
used for training, evaluation, and output so that each partition is
a test set exactly once, creating the defended dataset. While we
do scale 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 based on the choice of dataset, we do not do
extensive hyperparameter optimization to tune DeTorrent, as it
takes several hours to train in this manner.

To make clear comparisons between the website fingerprinting
defenses, we test them in the closed-world setting where the at-
tacker simply needs to determinewhichwebsite a trace is associated
with. While this setting is less realistic than the open-world setting,
we prefer to test the defenses in a setting more advantageous to the
attacker, as we can be certain that defense performance is not likely
due to the experimental design. Furthermore, we make assumptions
about the adversary’s ability. These include that the adversary can
determine the beginning and end of the page load, that the user
visits the home page of each website, and that the adversary can
create a dataset that accurately represents the target’s unique net-
work conditions. Again, these assumptions favor the attacker, so we
expect real-world website fingerprinting to be at least as difficult
as our results would indicate.

5.3 FC Attack Details
In the flow correlation setting, we use the DCF dataset and the
DeepCoFFEA attack with default parameters to test the defenses.
10,000 flows from the dataset are used for training and 10,000 are
used for testing. We train DeepCoFFEA for 1,500 epochs, as this
tends to lead to the highest attack performance.

To simulate BAP in the FC setting, we train it to generate per-
turbations using the DeepCorr attack provided in the open-source
BAP implementation [43]. We also set the 𝛼 parameter to determine
the volume of the traffic perturbations. For FRONT, we set the 𝑁𝑠

and 𝑁𝑐 parameters to achieve a comparable level of bandwidth
overhead. To set the WTF-PAD overhead, we scale the timestamps
of the DCF dataset, use the normal_rcv distributions as specified
in the original paper, and then re-scale the timestamps to match
the original. The specific parameter and bandwidth overhead value
for the defenses are shown in Table 5. We don’t use the Spring
or Interspace defenses in the FC setting, as they require Tor log
information that the DCF dataset does not contain. To implement
the Decaf defense, we randomly selected windows of traffic from
dummy traces in the DeepCorr dataset [42] and used them to pad
the real traffic traces, as described in the original ‘Decaf-DC’ im-
plementation. To roughly match the volume of dummy traffic used
by other defenses, we choose to apply the defense to all of the real
traffic windows, rather than randomly selecting them.

To prevent FC-DeTorrent from having the unfair advantage of
being able to train the generator and discriminator on the same
dataset that it defends, we use the dataset partitioning method de-
scribed in Section 5.2. We again refrain from doing hyperparameter
optimization to tune FC-DeTorrent’s training and implementation.

5.4 Real-world Implementation Details
To demonstrate the practicality of the DeTorrent defense, we im-
plement it as a pluggable transport [56]. Pluggable transports (PTs)
transform traffic between the client and a Tor bridge [54], which is
a Tor relay that is not publicly listed. PTs are frequently used for
censorship circumvention due to their ability to obfuscate traffic
characteristics. We implemented DeTorrent on top of the WFPad-
Tools framework [32], which extends the Obfsproxy PT [53] while
adding functionality for common anti-traffic analysis strategies.
The DeTorrent PT uses a private Tor bridge, which we run us-
ing Amazon Lightsail. Even though DeTorrent requires the LSTM
generator to be repeatedly evaluated, we are able to defend five
connections simultaneously with a modest virtual private server
with 4GB RAM and 2 virtual CPUs running at less than 50% capacity.
Thus, DeTorrent is not too computationally intensive for real-time
use and does not require a GPU for implementation.

6 WEBSITE FINGERPRINTING RESULTS
6.1 Simulated Defense Results
Defense performance on the BE dataset is shown in Table 4. On the
BE dataset, we find thatWF-DeTorrent reduces both the Tik-Tok and
DF attacks to the lowest accuracy at 31.9% and 30.0% respectively.
Because WF-DeTorrent is trained to ‘trick’ the discriminator into
outputting inaccurate embeddings of the target traffic by making
traffic from different web pages indistinguishable, we believe it

106

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

Defenses Bandwidth OH Parameters
WTF-PAD 86.1% normal_rcv, scaled 2x
FRONT 90.2% 𝑁𝑠 = 𝑁𝑐 = 1700,𝑊𝑚𝑖𝑛 = 1,𝑊𝑚𝑎𝑥 = 14
BAP 90.2% 𝛼 = 2000, 𝜎 = 0, 𝜇 = 0
WF-DeTorrent 88.8% 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = 1500

Table 1: Defense Overheads and Parameters on DF

Defenses Bandwidth OH Parameters
WTF-PAD 86.8% normal_rcv, scaled 6x
BAP 94.4% 𝛼 = 5000, 𝜎 = 0, 𝜇 = 0
Spring 102.7% see [58]
Interspace 96.7% see [58]
FRONT 95.0% 𝑁𝑠 = 𝑁𝑐 = 4000,𝑊𝑚𝑖𝑛 = 1,𝑊𝑚𝑎𝑥 = 14
WF-DeTorrent 98.9% 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = 3000

Table 2: Defense Overheads and Parameters on BE

Defenses Tik-Tok DF
Undefended 97.7% 98.1%
BAP 94.4% 86.8%
WTF-PAD 92.1% 90.3%
FRONT 85.2% 79.7%
WF-DeTorrent 79.5% 74.5%

Table 3: Closed-World Accuracy on DF

Defenses Tik-Tok DF
Undefended 93.4% 94.3%
BAP 92.4% 94.3%
WTF-PAD 62.4% 59.7%
Spring 51.4% 46.8%
Interspace 44.9% 38.1%
FRONT 42.4% 41.2%
WF-DeTorrent 31.9% 30.0%

Table 4: Closed-World Accuracy on BE

Defenses Bandwidth OH Parameters
WTF-PAD 98.6% normal_rcv, scaled 3.2x
BAP 96.6% 𝛼 = 4000, 𝜎 = 0, 𝜇 = 0
FRONT 97.9% 𝑁𝑠 = 𝑁𝑐 = 3400,𝑊𝑚𝑖𝑛 = 1,𝑊𝑚𝑎𝑥 = 14
Decaf 79.6% 𝜔 = 5, 𝑣

𝑘
= 1

FC-DeTorrent 97.3% 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = 3200

Table 5: Defense Overheads on DCF

is able to effectively mask the differences between many of the
subpages. Thus, the WF attacks are usually unable to uniquely
identify a given subpage in the BE dataset.

FRONT is the next-best performing defense with Tik-Tok and DF
accuracies of 42.4% and 41.2% respectively. FRONT likely performs
well because the inherent randomness in the shape and volume
of the dummy packet distribution makes training the WF attacks
more difficult. This effect appears exacerbated by the fact that the
BE dataset is relatively small and distributes the instances for each
website across ten subpages.

WTF-PAD provides a moderate amount of defense by masking
the large inter-packet delays, which allows for the traces to be more
easily identified. However, WTF-PAD defends in a fairly consistent
manner without much obfuscation of the volume of quick bursts of
traffic. Thus, many of the traces can still be correctly classified.

The Spring defense outperforms WTF-PAD, showing that an
‘evolved’ circuit padding defense can be somewhat effective. How-
ever, the Spring defense strategy is relatively consistent across
traces, allowing for a DNN to effectively learn how to classify the

defended traces. The Interspace defense, on the other hand, is ‘prob-
abilistically defined,’ in the sense that it is initialized with one of a
set of possible padding strategies at the client and relay. Interspace
also randomizes the parameters for the length and inter-arrival time
distributions. As a result, Interspace is significantly more effective
than its Spring counterpart. BAP, however, provides little defense
against the Tik-Tok and DF attacks. This is likely because the BAP
perturbation generator is trained to reduce the accuracy of a static
attacker that cannot retrain. In this setting, the WF attacks can be
retrained so that they are mostly unaffected by the BAP defense.

Defense results on the DF dataset are shown in Table 3. In terms
of performance, the order of defenses is the same except that we are
unable to evaluate Spring and Interspace, which require Tor logs to
simulate. In general, the defenses did not reduce the accuracy nearly
as much. However, this is likely due to the inherent difficulty of
defending the DF dataset, which has 1,000 instances for each class,
allowing for the deep learning-basedWF attacks to better generalize.
The DF dataset also uses only the home pages of the websites,
meaning there is less intra-class variety. This especially reduces the

107

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Bandwidth Overhead

0.20

0.25

0.30

0.35

0.40

0.45

0.50

T
ik

-T
o

k
 C

lo
se

d
-w

o
rl

d
 A

cc
u

ra
cy

Figure 6: DeTorrent Overhead vs. Performance

effectiveness of defenses that utilize randomized dummy packet
distributions, such as DeTorrent and FRONT. We believe that this
is because this makes it much less likely that the defended trace for
one class will be ‘confused’ with the trace of another class.

6.2 Trade-off Between Overhead and
Performance

In order to fully evaluate the relationship between DeTorrent’s
performance and bandwidth overhead, we tested its ability to defend
traffic in the BE dataset against the Tik-Tok attack for a variety
of download volume (𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑) parameter choices. We varied
𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 from 1,000 to 7,000 while keeping the upload traffic
ratio constant, resulting in overhead that varied from about 40%
to about 210%, as shown in Figure 6. Tik-Tok attack accuracy was
52.8% for the lowest bandwidth setting and was reduced to 20.8%.
We also find that increasing DeTorrent’s bandwidth budget initially
improves its performance, but is later subject to decreasing returns.
To be specific, increasing 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 from 1000 to 3000 decreases
Tik-Tok performance by about 19.1%, while increasing 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑

from 5000 to 7000 only further decreases it by 4.9%. This is likely due
to the difficulty of defending particularly unique and high-volume
traces.

Additionally, for comparison to the next-best non-scaled WF
defense, we simulate FRONT on the BE dataset while using the
original, non-scaled parameters. We find that this version of FRONT
incurs a 59.5% bandwidth overhead while reducing Tik-Tok attack
accuracy to 54.3%. For comparison, WF-DeTorrent with parameter
𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = 1500 defends BE with an overhead of 54.3% while
reducing Tik-Tok attack accuracy to just 43.8%.

6.3 Trace Representation Tuning
Because the choice of trace representation can significantly im-
pact performance, we evaluate WF-DeTorrent’s performance for
different representation lengths and binning strategies. As shown
in Figure 7, we find that the performance increases for larger trace

representations until about length 512, likely because the granular-
ity of the representation allows for WF-DeTorrent to make more
fine-tuned strategies. However, WF-DeTorrent performance begins
to decrease for larger representation sizes. We believe that this
is due to the difficulty of accurately embedding the traces when
bins are very small, as slight timing differences begin to change
traffic representation significantly. As a result, we choose to use
a trace representation of length 256, as it is associated with high
performance while being less computationally intensive to train
and implement compared to larger representations.

We also test a representation that spaces the bins evenly on a
linear scale rather than on a logarithmic scale and find that this
significantly decreases defense performance, reducing Tik-Tok to
43.2% rather than 31.9%. This decrease is likely because the linear
scale does not as effectively differentiate between the frequent
bursts of packets often seen early in a trace.

6.4 Defense Countermeasures
Since adversarial training allows the discriminator to adapt to the
generator’s strategy, we don’t expect straightforward improve-
ments to attacks based only on knowledge of the use of DeTorrent.
Still, an attacker aware of the DeTorrent defense in use may use
hyperparameter tuning to increase attack accuracy. During our
WF defense evaluation, we modified the epoch number, input di-
mension, early stopping parameters, learning rate, and optimizer
type. We find that the attack accuracy is highest when setting the
number of epochs to 100, increasing the input dimension to 10,000,
and setting the early stopping patience value to 10. Similarly, we
modify the number of epochs used in the DCF attack to 1,500 and
check validation accuracy to best improve performance. However,
changing the other hyperparameters in the WF and FC settings did
not significantly change performance.

However, one countermeasure that an attacker can use to better
evade a defense is to generate multiple defended traces for every
real trace in the dataset, as demonstrated in an evaluation of a vari-
ety of WF defenses by Matthews et al. [40]. This works particularly
well when using small datasets and against defenses that use ran-
domization, likely because it aids attacker model generalization and
provides a better view of the variety of ways in which traffic may
be defended. To test this, we generate a ‘10x’ dataset where each
trace in the training set is defended 10 times each (with re-sampled
noise) to create a much larger training set. We find that this im-
proves Tik-Tok attack performance from 31.9% to 48.2%. Thus, a
motivated attacker would likely use this countermeasure to best
attack DeTorrent (as well as comparable defenses such as FRONT).

6.5 Real-World Implementation Results
Then, we crawl a set of popular websites through the pluggable
transport to test current website fingerprinting defenses against
the collected packet traces. To test the transferability of the defense,
the DeTorrent download padding distribution is determined using
a generator trained using the BE dataset and scaled to achieve
a similar bandwidth overhead. As a result, the generator is not
fine-tuned to current internet traffic. However, since DeTorrent’s
defense performance transfers well to different settings and sets of

108

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

200 400 600 800 1000
Trace Representat ion Size

31

32

33

34

35

36

37

T
ik

-T
o

k
 C

lo
se

d
-W

o
rl

d
 A

cc
u

ra
cy

Figure 7: DeTorrent Performance vs. Representation Length

Figure 8: Flow correlation defense performance against Deep-
CoFFEA. Note that lower TPR implies a better defense.

websites, we find that defense performance remains high, reducing
Tik-Tok to a 21.5% accuracy with an 88.8% bandwidth overhead.

7 FLOW CORRELATION RESULTS
To ensure a fair comparison between the chosen defenses, we scale
them to operate with comparable bandwidth overhead, as shown
in Table 5. Also, one of the main challenges of the flow correlation
setting is achieving a high enough true positive rate without allow-
ing the number of false positives to outnumber the true positives.
As a result, it is most sensible to evaluate flow correlation defenses
by comparing their true positive and false positive rates at various
DeepCoFFEA correlation thresholds; this is illustrated in Figure 8.

In terms of reducing DeepCoFFEA’s performance, FC-DeTorrent
far outperforms the compared defenses, as shown in Figure 8. While

other defenses allow a high true positive rate for associated false
positive rates of as little as 10−3, FC-DeTorrent noticeably reduces
DeepCoFFEA’s true positive rate for all but the highest false positive
rates. For a 10−4 false positive rate, FC-DeTorrent reduced DeepCoF-
FEA’s true positive rate to .30, compared to about .54 for Decaf and
.63 for FRONT. For a 10−5 false positive rate, the true positive rates
are about .13 for FC-DeTorrent, .30 for Decaf, .34 for FRONT, and .42
for WTF-PAD. FC-DeTorrent performance is likely due to its ability
to learn how to pad entry flows such that they are easily confused
with non-associated entry flows, thus confusing the discrimina-
tor. Also, FC-DeTorrent’s defense advantage over the alternate FC
defenses is significantly larger than WF-DeTorrent’s advantage in
the WF setting: we believe that this is because FC-DeTorrent can
directly train against the discriminator, while WF-DeTorrent must
rely on the embedder to estimate descriminator performance.

FRONT provides a reasonable degree of FC defense, likely be-
cause it’s randomized and because it sends traffic according to the
Rayleigh distribution, which mimics the distribution of real traffic.
As a result, the defended entry traffic associated with a given exit
flow is likely to look similar to other defended entry flows. The
same can be said of Decaf, which defends the real traffic using traffic
patterns found in previously collected traffic. However, FRONT’s
use of the Rayleigh distribution makes the padding somewhat pre-
dictable, as the amount of padding will always increase until it
peaks and will then slowly taper off. As a result, DeepCoFFEA is
able to learn how to effectively ignore much of the padding. De-
caf, on the other hand, avoids this problem by using more realistic
traffic patterns and therefore is a more performant defense.

WTF-PAD obfuscated some of the inter-packet delays that Deep-
CoFFEA uses to identify traffic; as a result, it provides some defense
as well. Still, WTF-PAD does not place much emphasis on the more
coarse features of the traffic, such as the sizes of the largest traffic
bursts. As a result, DeepCoFFEA is still able to correlate many of the
flows defended by WTF-PAD. Because BAP was trained to provide
adversarial perturbations against a static model, DeepCoFFEA’s
feature embedders can retrain against the BAP-defended dataset.
As a result, BAP’s performance is lower than that of other defenses.

8 DISCUSSION
8.1 Transferability
8.1.1 Across Different Datasets. It is important to ensure that DeTor-
rent is able to effectively defend traffic with different characteristics
than traffic in the training datasets. Otherwise, DeTorrent’s per-
formance may degrade rapidly over time or while defending new
websites. Accordingly, we test DeTorrent’s transferability by con-
ducting an experiment where we train WF-DeTorrent on traces
associated with one set of websites while testing the defense on
traces associated with a different set.

More specifically, we partition the BE dataset so that the first
partition contains 20 instances of 10 subpages of 50 of the websites,
while the second partition contains the same number of instances of
the other 45 websites. We refer to the first partition as BE-1 and the
second partition as BE-2. Then, we train the WF-DeTorrent defense
using only the BE-1 dataset and simulate the defense on BE-2 (which
does not contain any traces or websites that WF-DeTorrent was
trained on) with 𝑁𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 = 3000. We find that the defense drops

109

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

Tik-Tok’s accuracy to 40.3%, showing that it was effective. Also,
note that the higher attack accuracy is likely because the attacker
is only choosing from 50 websites, rather than 95.

To set a baseline for how well WF-DeTorrent performs when
training and testing on the same dataset, we both train and test it on
BE-2 with the same amount of overhead. We find that it decreases
Tik-Tok’s performance to 39.6%. Because this accuracy is only .7%
lower than the accuracy found when WF-DeTorrent was trained on
BE-1, we conclude that the WF-DeTorrent framework generalizes
well and does not simply memorize fine-grained patterns in the
training data. Accordingly, we expect the defense provided by WF-
DeTorrent to be highly transferable.

8.1.2 Against Different Attacks. In this paper, we describe two
different training frameworks with one defending against website
fingerprinting and the other defending against flow correlation.
However, one might like to defend against both types of attacks.
To test how DeTorrent’s performance against one attack transfers
to the other, we test how well WF-DeTorrent functions in the FC
setting and vice versa. To train theWF and FCDeTorrent models, we
use the BE and DCF datasets respectively. Note that WF-DeTorrent
and FC-DeTorrent are trained on entirely different datasets collected
using different methodologies and at different points in time. As
a result, the models used in these experiments are unlikely to be
fine-tuned in terms of defense performance, and the above results
should be taken as a lower bound of what performance is possible.

We find that FC-DeTorrent provides some defense in the WF set-
ting, though its performance is degraded. To be specific, it reduces
Tik-Tok performance on the BE dataset to 45.8%. This represents a
12.9% increase in Tik-Tok accuracy, putting it behind Decaf, FRONT,
and Interspace in terms of performance, though it still outperforms
BAP, WTF-PAD, and Spring.

On the other hand, WF-DeTorrent performs only slightly worse
than the FC setting, with a TPR of about .32 for a FPR of 10−4 and a
TPR of about .58 for a 10−3 FPR, compared to FC-DeTorrent’s TPRs
of .30 and .57 respectively. Therefore, we find that WF-DeTorrent is
transferable in the sense that it functions as an effective defense in
both the WF and FC settings; accordingly, it may be a reasonable
choice for users concerned about both types of attacks.

8.2 Overhead
While DeTorrent doesn’t add any latency of its own, past work
by Witwer et al. on network-wide Tor simulation [81] has demon-
strated that even zero-delay defenses likely strain the Tor network
and incur latency. Their study used a ‘time-to-nth-byte’ metric,
finding that defenses Spring and Interspace had median latency
overheads of 1.6% and 7.8% for 1MiB downloads compared to unde-
fended downloads. Since the Spring and Interspace defenses avoid
delaying traffic and incur similar bandwidth overhead compared to
DeTorrent, as shown in Tables 1 and 2, we might expect that DeTor-
rent would have similar results, though low observed bandwidth
overhead and high failure rates in the experiments make precise es-
timation difficult. Still, it’s quite possible that widespread adoption
of DeTorrent would lead to non-negligible latency overhead.

8.3 Implementation Framework
While the PT system is convenient due to its relative flexibility in
terms of supporting various traffic analysis defenses [56], it only
obfuscates the traffic between the client and the bridge. While this
protects against local eavesdroppers, it leaves the user vulnerable
to malicious bridges.

Tor has implemented a circuit padding framework [52], which
adds dummy cells into circuit traffic to protect against WF attacks.
Because the padding can be sent between the client and any re-
lay in the circuit, it can be configured to stop at a middle node
and thus protect against a malicious guard. However, the circuit
padding framework is limited as it cannot delay traffic and must
add dummy traffic based on pre-defined state machines. As a result,
it is inflexible in terms of defense implementation and does not na-
tively support randomized padding or complex pattern recognition,
preventing it from being able to support DeTorrent.

9 CONCLUSION AND FUTUREWORK
In this paper, we present the padding-only traffic analysis defense
DeTorrent, which uses competing neural networks to generate
defense strategies resistant to adversarial retraining. To train the
defense generator to make real-time decisions, we implement it as
an LSTM that takes into account live traffic patterns. We describe
how we represent the trace as a tensor and use an embedder to
create a useful notion of distance between traces, allowing for more
effective training in the WF setting.

To test WF-DeTorrent’s defense performance, we compare it
to other padding-only defenses scaled to use similar bandwidth
overhead. In the closed-world WF attack on the BE dataset, we
find that it outperforms comparable defenses with a 10.5% larger
accuracy reduction than the next best defense. It also reduces the
accuracy by 61.5% compared to the undefended traffic, indicating
its ability to defend against state-of-the-art WF attacks. Similarly,
we find that FC-DeTorrent reduces the true positive rate of the
flow correlation attack DeepCoFFEA at the 10−4 false positive rate
threshold to just .30 compared to about .54 for the next best defense.
Furthermore, we test the real-world DeTorrent implementation
against live traffic and find that it achieves similar success, reducing
Tik-Tok attack performance against the PT dataset to just 21.5%.
Overall, the results show that DeTorrent can both defend against
traffic analysis attacks and be deployed practically. Future workmay
include experimenting with alternate neural network architectures
or testing how delaying packets improves defense performance.

10 APPENDICES
ACKNOWLEDGMENTS
We’d like to thankNateMatthews for sharing the BigEnough dataset
and for his work on tor-crawler-pluggable, which we used to collect
the PT dataset. This work was funded by a 3M fellowship and NSF
grants 1814753 and 1815757. It was also supported by the National
Research Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (No. RS-2022-00166669, RS-2023-00222385) and
Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korean government (MSIT)

110

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

(No. RS-2022-00155966, Artificial Intelligence Convergence Innova-
tion Human Resources Development (Ewha Womans University)).

This project was partially sponsored by the National Security
Agency under Grant H98230-22-1-0302. The United States Govern-
ment is authorized to reproduce and distribute reprints notwith-
standing any copyright notation herein. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Security Agency.

REFERENCES
[1] Kota Abe and Shigeki Goto. 2016. Fingerprinting Attack on Tor Anonymity using

Deep Learning. Proceedings of the Asia-Pacific Advanced Network 42, 0 (2016),
15–20.

[2] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. 2014. LASTor: A Low-
Latency AS-Aware Tor Client. IEEE/ACM Trans. Netw. 22, 6 (dec 2014), 1742–1755.
https://doi.org/10.1109/TNET.2013.2291242

[3] Amazon. 2022. Alexa top 1m. http://s3.amazonaws.com/alexa-static/top-1m.csv.
zip. Accessed: 2022-08-01.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Gener-
ative Adversarial Networks. In Proceedings of the 34th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 70), Doina
Precup and Yee Whye Teh (Eds.). PMLR, 214–223. https://proceedings.mlr.press/
v70/arjovsky17a.html

[5] arma. 2011. Research problem: better guard rotation parameters. https://blog.
torproject.org/research-problem-better-guard-rotation-parameters/ Accessed:
2022-7-14.

[6] Armon Barton and Matthew Wright. 2016. DeNASA: Destination-Naive AS-
Awareness in Anonymous Communications. Proceedings on Privacy Enhancing
Technologies 2016 (02 2016). https://doi.org/10.1515/popets-2016-0044

[7] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2019. Var-CNN: AData-
Efficient Website Fingerprinting Attack Based on Deep Learning. Proceedings on
Privacy Enhancing Technologies 2019, 4 (oct 2019), 292–310. https://doi.org/10.
2478/popets-2019-0070

[8] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. 2007. Denial
of Service or Denial of Security? How Attacks on Reliability can Compromise
Anonymity. In Proceedings of CCS 2007.

[9] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. CS-BuFLO: A Congestion
Sensitive Website Fingerprinting Defense. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society (Scottsdale, Arizona, USA) (WPES ’14). Association
for Computing Machinery, New York, NY, USA, 121–130. https://doi.org/10.
1145/2665943.2665949

[10] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A systematic approach to developing and evaluating website fingerprinting
defenses. In Proceedings of the ACM Conference on Computer and Communications
Security. Association for Computing Machinery, 227–238. https://doi.org/10.
1145/2660267.2660362

[11] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching
from a Distance: Website Fingerprinting Attacks and Defenses. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security (Raleigh,
North Carolina, USA) (CCS ’12). Association for Computing Machinery, New
York, NY, USA, 605–616. https://doi.org/10.1145/2382196.2382260

[12] M.E. Crovella and A. Bestavros. 1997. Self-similarity in World Wide Web traffic:
evidence and possible causes. IEEE/ACM Transactions on Networking 5, 6 (1997),
835–846. https://doi.org/10.1109/90.650143

[13] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian
Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2020.
TrafficSliver: Fighting Website Fingerprinting Attacks with Traffic Splitting. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, USA) (CCS ’20). Association for Computing Machinery,
New York, NY, USA, 1971–1985. https://doi.org/10.1145/3372297.3423351

[14] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In 13th USENIX Security Symposium (USENIX Security
04). USENIX Association, San Diego, CA. https://www.usenix.org/conference/
13th-usenix-security-symposium/tor-second-generation-onion-router

[15] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
In 2012 IEEE Symposium on Security and Privacy. 332–346. https://doi.org/10.
1109/SP.2012.28

[16] Matthew Edman and Paul Syverson. 2009. As-Awareness in Tor Path Selection.
In Proceedings of the 16th ACM Conference on Computer and Communications
Security (Chicago, Illinois, USA) (CCS ’09). Association for Computing Machinery,
New York, NY, USA, 380–389. https://doi.org/10.1145/1653662.1653708

[17] Nick Feamster and Roger Dingledine. 2004. Location Diversity in Anonymity
Networks. In Proceedings of the 2004 ACM Workshop on Privacy in the Electronic
Society (Washington DC, USA) (WPES ’04). Association for ComputingMachinery,
New York, NY, USA, 66–76. https://doi.org/10.1145/1029179.1029199

[18] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against
Website Fingerprinting. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 717–734. https://www.usenix.org/conference/
usenixsecurity20/presentation/gong

[19] Jiajun Gong and Tao Wang. 2022. WebsiteFingerprinting. https://github.com/
websitefingerprinting/WebsiteFingerprinting. Accessed: 2022-7-14.

[20] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav:
Generating Realistic Traces for a Strong Website Fingerprinting Defense. In
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1558–1573. https:
//doi.org/10.1109/SP46214.2022.9833722

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversar-
ial Nets. In Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.), Vol. 27. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[22] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 1187–1203. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/hayes

[23] Sébastien Henri, Gines Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran. 2020.
Protecting against Website Fingerprinting with Multihoming. Proceedings on
Privacy Enhancing Technologies 2020 (2020), 89 – 110.

[24] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website
Fingerprinting: Attacking Popular Privacy Enhancing Technologies with the
Multinomial Naïve-Bayes Classifier. In Proceedings of the 2009 ACM Workshop
on Cloud Computing Security (Chicago, Illinois, USA) (CCSW ’09). Association
for Computing Machinery, New York, NY, USA, 31–42. https://doi.org/10.1145/
1655008.1655013

[25] Andrew Hintz. 2002. Fingerprinting Websites Using Traffic Analysis. In Proceed-
ings of the 2nd International Conference on Privacy Enhancing Technologies (San
Francisco, CA, USA) (PET’02). Springer-Verlag, Berlin, Heidelberg, 171–178.

[26] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural Computation 9, 8 (11 1997), 1735–1780. https:
//doi.org/10.1162/neco.1997.9.8.1735 arXiv:https://direct.mit.edu/neco/article-
pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf

[27] James K Holland and Nicholas Hopper. 2022. RegulaTor: A Straightforward
Website Fingerprinting Defense. Proceedings on Privacy Enhancing Technologies
2022 (2022). https://petsymposium.org/popets/2022/popets-2022-0049.pdf

[28] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. 2012. Non-Blind Water-
marking of Network Flows. IEEE/ACM Transactions on Networking 22 (03 2012).
https://doi.org/10.1109/TNET.2013.2272740

[29] Open PageRank Initiative. 2022. What is Open PageRank? https://www.domcop.
com/openpagerank/what-is-openpagerank. Accessed: 2022-08-01.

[30] Hao Jiang and Constantinos Dovrolis. 2005. Why is the Internet Traffic Bursty
in Short Time Scales? SIGMETRICS Perform. Eval. Rev. 33, 1 (jun 2005), 241–252.
https://doi.org/10.1145/1071690.1064240

[31] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. 2013.
Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer and Communications
Security (Berlin, Germany) (CCS ’13). Association for Computing Machinery, New
York, NY, USA, 337–348. https://doi.org/10.1145/2508859.2516651

[32] Marc Juarez. 2015. WFPadTools. https://github.com/mjuarezm/wfpadtools. Ac-
cessed: 2021-5-21.

[33] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2015. WTF-PAD: Toward an Efficient Website Fingerprinting Defense for Tor.
Computing Research Repository (CoRR) abs/1512.0 (2015). arXiv:1512.00524 http:
//arxiv.org/abs/1512.00524

[34] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. 2022. WTF-PAD. https:
//github.com/wtfpad/wtfpad Accessed: 2022-7-14.

[35] Joshua Juen, Anupam Das, Aaron Johnson, Nikita Borisov, and Matthew Caesar.
2014. Defending Tor from Network Adversaries: A Case Study of Network Path
Prediction. CoRR abs/1410.1823 (2014). arXiv:1410.1823 http://arxiv.org/abs/
1410.1823

[36] Ilmari Karonen. 2014. Estimating rate of occurrence of an event with exponential
smoothing and irregular events. https://stackoverflow.com/questions/23615974/
estimating-rate-of-occurrence-of-an-event-with-exponential-smoothing-and-
irregul?noredirect=1&lq=1 Accessed: 2022-8-13.

[37] Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew Wright. 2004.
Timing Attacks in Low-Latency Mix Systems. In Financial Cryptography, Ari
Juels (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 251–265.

[38] Xiapu Luo, Peng Zhou, Edmond W W Chan, Wenke Lee, Rocky K C Chang, and
Roberto Perdisci. 2011. HTTPOS: Sealing Information Leaks with Browser-side
Obfuscation of Encrypted Flows. Technical Report.

111

https://doi.org/10.1109/TNET.2013.2291242
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://blog.torproject.org/research-problem-better-guard-rotation-parameters/
https://blog.torproject.org/research-problem-better-guard-rotation-parameters/
https://doi.org/10.1515/popets-2016-0044
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.1145/2665943.2665949
https://doi.org/10.1145/2665943.2665949
https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1145/2382196.2382260
https://doi.org/10.1109/90.650143
https://doi.org/10.1145/3372297.3423351
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://doi.org/10.1109/SP.2012.28
https://doi.org/10.1109/SP.2012.28
https://doi.org/10.1145/1653662.1653708
https://doi.org/10.1145/1029179.1029199
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://www.usenix.org/conference/usenixsecurity20/presentation/gong
https://github.com/websitefingerprinting/WebsiteFingerprinting
https://github.com/websitefingerprinting/WebsiteFingerprinting
https://doi.org/10.1109/SP46214.2022.9833722
https://doi.org/10.1109/SP46214.2022.9833722
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.1145/1655008.1655013
https://doi.org/10.1145/1655008.1655013
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://petsymposium.org/popets/2022/popets-2022-0049.pdf
https://doi.org/10.1109/TNET.2013.2272740
https://www.domcop.com/openpagerank/what-is-openpagerank
https://www.domcop.com/openpagerank/what-is-openpagerank
https://doi.org/10.1145/1071690.1064240
https://doi.org/10.1145/2508859.2516651
https://github.com/mjuarezm/wfpadtools
https://arxiv.org/abs/1512.00524
http://arxiv.org/abs/1512.00524
http://arxiv.org/abs/1512.00524
https://github.com/wtfpad/wtfpad
https://github.com/wtfpad/wtfpad
https://arxiv.org/abs/1410.1823
http://arxiv.org/abs/1410.1823
http://arxiv.org/abs/1410.1823
https://stackoverflow.com/questions/23615974/estimating-rate-of-occurrence-of-an-event-with-exponential-smoothing-and-irregul?noredirect=1&lq=1
https://stackoverflow.com/questions/23615974/estimating-rate-of-occurrence-of-an-event-with-exponential-smoothing-and-irregul?noredirect=1&lq=1
https://stackoverflow.com/questions/23615974/estimating-rate-of-occurrence-of-an-event-with-exponential-smoothing-and-irregul?noredirect=1&lq=1

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

[39] Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah Sherr.
2018. Understanding Tor Usage with Privacy-Preserving Measurement. In
Proceedings of the Internet Measurement Conference 2018 (Boston, MA, USA)
(IMC ’18). Association for Computing Machinery, New York, NY, USA, 175–187.
https://doi.org/10.1145/3278532.3278549

[40] Nate Matthews, James Holland, Se Eun Oh, Mohammad Saidur Rahman, Matthew
Wright, and Nicholas Hopper. 2023. SoK: ACritical Evaluation of EfficientWebsite
Fingerprinting Defenses. In 2023 IEEE Symposium on Security and Privacy. IEEE.

[41] S.J. Murdoch and G. Danezis. 2005. Low-cost traffic analysis of Tor. In 2005 IEEE
Symposium on Security and Privacy (S&P’05). 183–195. https://doi.org/10.1109/
SP.2005.12

[42] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. DeepCorr. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM. https://doi.org/10.1145/3243734.3243824

[43] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2021. Defeating DNN-
Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturba-
tions. In 30th USENIX Security Symposium (USENIX Security 21). USENIX As-
sociation, 2705–2722. https://www.usenix.org/conference/usenixsecurity21/
presentation/nasr

[44] Milad Nasr, Amir Houmansadr, and Arya Mazumdar. 2017. Compressive Traffic
Analysis: A New Paradigm for Scalable Traffic Analysis. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas,
Texas, USA) (CCS ’17). Association for Computing Machinery, New York, NY,
USA, 2053–2069. https://doi.org/10.1145/3133956.3134074

[45] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A bespoke website
fingerprinting defense. In Proceedings of the ACM Conference on Computer and
Communications Security. Association for Computing Machinery, 131–134. https:
//doi.org/10.1145/2665943.2665950

[46] SeOh, NateMathews,Mohammad Saidur Rahman,MatthewWright, andNicholas
Hopper. 2020. GANDaLF: GAN for Data-Limited Fingerprinting. Proceedings on
Privacy Enhancing Technologies 2021. https://doi.org/10.2478/popets-2021-0029

[47] Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper. 2019. p1-FP: Extrac-
tion, Classification, and Prediction of Website Fingerprints with Deep Learn-
ing. Proceedings on Privacy Enhancing Technologies 2019, 3 (2019), 191–209.
https://doi.org/10.2478/popets-2019-0043 arXiv:arXiv:1711.03656v2

[48] Se Eun Oh, Taiji Yang, Nate Mathews, James K Holland, Mohammad Saidur
Rahman, Nicholas Hopper, and Matthew Wright. 2022. DeepCoFFEA: Improved
flow correlation attacks on Tor via metric learning and amplification. In 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 1915–1932.

[49] L. Overlier and P. Syverson. 2006. Locating hidden servers. In 2006 IEEE Sympo-
sium on Security and Privacy (S&P’06). 15 pp.–114. https://doi.org/10.1109/SP.
2006.24

[50] Andriy Panchenko, Fabian Lanze, Andreas Zinnen,Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. 2017. Website Fingerprinting at Internet Scale.
February (2017), 21–24. https://doi.org/10.14722/ndss.2016.23477

[51] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website Fingerprinting in Onion Routing Based Anonymization Networks. In
Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society
(Chicago, Illinois, USA) (WPES ’11). Association for Computing Machinery, New
York, NY, USA, 103–114. https://doi.org/10.1145/2046556.2046570

[52] Mike Perry and George Kadianakis. 2021. Circuit Padding Developer Doc-
umentation. https://github.com/torproject/tor/blob/master/doc/HACKING/
CircuitPaddingDevelopment.md. Accessed: 2022-09-17.

[53] Tor Project. 2014. Pluggable transport for obfuscated traffic. https://gitweb.
torproject.org/pluggable-transports/obfsproxy.git. Accessed: 2022-7-21.

[54] Tor Project. 2022. Get Bridges for Tor. https://bridges.torproject.org/ Accessed:
2022-7-28.

[55] Tor Project. 2022. Tor Metrics. https://metrics.torproject.org/userstats-relay-
country.html. Accessed: 2022-09-20.

[56] Tor Project. 2022. Tor: Pluggable Transports. https://2019.www.torproject.org/
docs/pluggable-transports.html.en. Accessed: 2022-5-21.

[57] Tobias Pulls. 2019. Tor Circuit Padding Simulator. https://github.com/pylls/
circpad-sim Accessed: 2022-7-14.

[58] Tobias Pulls. 2022. Towards Effective and Efficient Padding Machines for Tor.
(2022). https://arxiv.org/pdf/2011.13471.pdf

[59] Tobias Pulls and Rasmus Dahlberg. 2020. Website Fingerprinting with Website
Oracles. Proceedings on Privacy Enhancing Technologies 2020 (01 2020), 235–255.
https://doi.org/10.2478/popets-2020-0013

[60] Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and Matthew K.
Wright. 2021. Mockingbird: Defending Against Deep-Learning-Based Website
Fingerprinting AttacksWith Adversarial Traces. IEEE Transactions on Information
Forensics and Security 16 (2021), 1594–1609.

[61] Mohammad Saidur Rahman, Payap Sirinam, Nate Matthews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. Tik-Tok: The Utility of Packet Timing in
Website Fingerprinting Attacks. Proceedings of Privacy Enhancing Technologies
(2020). https://petsymposium.org/popets/2020/popets-2020-0043.pdf

[62] Jean-François Raymond. 2001. Traffic Analysis: Protocols, Attacks, Design Issues,
and Open Problems. Springer Berlin Heidelberg, Berlin, Heidelberg, 10–29. https:

//doi.org/10.1007/3-540-44702-4_2
[63] M.G. Reed, P.F. Syverson, and D.M. Goldschlag. 1998. Anonymous connections

and onion routing. IEEE Journal on Selected Areas in Communications 16, 4 (1998),
482–494. https://doi.org/10.1109/49.668972

[64] NumPy Reference. 2023. numpy.geomspace. https://numpy.org/doc/stable/
reference/generated/numpy.geomspace.html Accessed: 2023-7-07.

[65] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. (2018).
https://doi.org/10.14722/ndss.2018.23105

[66] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y. Zhao. 2021. Patch-
Based Defenses against Web Fingerprinting Attacks. In Proceedings of the 14th
ACM Workshop on Artificial Intelligence and Security (Virtual Event, Republic of
Korea) (AISec ’21). Association for Computing Machinery, New York, NY, USA,
97–109. https://doi.org/10.1145/3474369.3486875

[67] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Sub-
verting Website Fingerprinting Defenses with Robust Traffic Representation. In
32th USENIX Security Symposium (USENIX Security 23). USENIX Association.
https://www.usenix.org/conference/usenixsecurity23/presentation/shenmeng

[68] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing Analysis in Low-Latency
Mix Networks: Attacks andDefenses. InComputer Security – ESORICS 2006, Dieter
Gollmann, Jan Meier, and Andrei Sabelfeld (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 18–33.

[69] Payap Sirinam, Marc Juarez, Mohsen Imani, and Matthew Wright. 2018. Deep
fingerprinting: Undermining website fingerprinting defenses with deep learning.
Proceedings of the ACM Conference on Computer and Communications Security
(2018), 1928–1943. https://doi.org/10.1145/3243734.3243768

[70] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and MatthewWright.
2019. Triplet Fingerprinting: More Practical and Portable Website Fingerprinting
with N-Shot Learning. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (London, United Kingdom) (CCS ’19).
Association for Computing Machinery, New York, NY, USA, 1131–1148. https:
//doi.org/10.1145/3319535.3354217

[71] SPIN-UMass. 2022. BLANKET. https://github.com/SPIN-UMass/BLANKET
Accessed: 2022-7-14.

[72] Y. Sun, A. Edmundson, N. Feamster, M. Chiang, and P. Mittal. 2017. Counter-
RAPTOR: Safeguarding Tor Against Active Routing Attacks. In 2017 IEEE Sym-
posium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA,
USA, 977–992. https://doi.org/10.1109/SP.2017.34

[73] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford,
Mung Chiang, and Prateek Mittal. 2015. RAPTOR: Routing Attacks on Pri-
vacy in Tor. In 24th USENIX Security Symposium (USENIX Security 15). USENIX
Association, Washington, D.C., 271–286. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/sun

[74] Henry Tan, Michael E. Sherr, and Wenchao Zhou. 2016. Data-plane Defenses
against Routing Attacks on Tor. Proceedings on Privacy Enhancing Technologies
2016 (2016), 276 – 293.

[75] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. 23rd USENIX
Security Symposium (USENIX Security 14) (2014), 143–157. https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao

[76] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting on Tor.
Proceedings of the ACM Conference on Computer and Communications Security
(2013), 201–212. https://doi.org/10.1145/2517840.2517851

[77] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. Proceedings on Privacy Enhancing Technologies 2016, 4 (2016),
21–36. https://doi.org/10.1515/popets-2016-0027

[78] Tao Wang and Ian Goldberg. 2017. Walkie-Talkie: An Efficient Defense against
Passive Website Fingerprinting Attacks. In Proceedings of the 26th USENIX Con-
ference on Security Symposium (Vancouver, BC, Canada) (SEC’17). USENIX Asso-
ciation, USA, 1375–1390.

[79] Xinyuan Wang, Douglas S. Reeves, and S. Felix Wu. 2002. Inter-Packet Delay
Based Correlation for Tracing Encrypted Connections through Stepping Stones.
In Computer Security — ESORICS 2002, Dieter Gollmann, Günther Karjoth, and
Michael Waidner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 244–263.

[80] webfp. 2017. Tor Browser Crawler. https://github.com/webfp/tor-browser-
crawler. Accessed: 2021-11-17.

[81] Ethan Witwer, James K. Holland, and Nicholas Hopper. 2022. Padding-Only
Defenses Add Delay in Tor. In Proceedings of the 21st Workshop on Privacy in the
Electronic Society (Los Angeles, CA, USA) (WPES’22). Association for Computing
Machinery, New York, NY, USA, 29–33. https://doi.org/10.1145/3559613.3563207

[82] Charles V Wright, Scott E Coull, and Fabian Monrose. 2009. Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis. Technical Report.

[83] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial Examples:
Attacks and Defenses for Deep Learning. IEEE Transactions on Neural Networks
and Learning Systems 30, 9 (2019), 2805–2824. https://doi.org/10.1109/TNNLS.
2018.2886017

[84] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. 2005. On
Flow Correlation Attacks and Countermeasures in Mix Networks. In Privacy

112

https://doi.org/10.1145/3278532.3278549
https://doi.org/10.1109/SP.2005.12
https://doi.org/10.1109/SP.2005.12
https://doi.org/10.1145/3243734.3243824
https://www.usenix.org/conference/usenixsecurity21/presentation/nasr
https://www.usenix.org/conference/usenixsecurity21/presentation/nasr
https://doi.org/10.1145/3133956.3134074
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.2478/popets-2021-0029
https://doi.org/10.2478/popets-2019-0043
https://arxiv.org/abs/arXiv:1711.03656v2
https://doi.org/10.1109/SP.2006.24
https://doi.org/10.1109/SP.2006.24
https://doi.org/10.14722/ndss.2016.23477
https://doi.org/10.1145/2046556.2046570
https://github.com/torproject/tor/blob/master/doc/HACKING/CircuitPaddingDevelopment.md
https://github.com/torproject/tor/blob/master/doc/HACKING/CircuitPaddingDevelopment.md
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git
https://bridges.torproject.org/
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://github.com/pylls/circpad-sim
https://github.com/pylls/circpad-sim
https://arxiv.org/pdf/2011.13471.pdf
https://doi.org/10.2478/popets-2020-0013
https://petsymposium.org/popets/2020/popets-2020-0043.pdf
https://doi.org/10.1007/3-540-44702-4_2
https://doi.org/10.1007/3-540-44702-4_2
https://doi.org/10.1109/49.668972
https://numpy.org/doc/stable/reference/generated/numpy.geomspace.html
https://numpy.org/doc/stable/reference/generated/numpy.geomspace.html
https://doi.org/10.14722/ndss.2018.23105
https://doi.org/10.1145/3474369.3486875
https://www.usenix.org/conference/usenixsecurity23/presentation/shenmeng
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3319535.3354217
https://doi.org/10.1145/3319535.3354217
https://github.com/SPIN-UMass/BLANKET
https://doi.org/10.1109/SP.2017.34
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/sun
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/sun
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://doi.org/10.1145/2517840.2517851
https://doi.org/10.1515/popets-2016-0027
https://github.com/webfp/tor-browser-crawler
https://github.com/webfp/tor-browser-crawler
https://doi.org/10.1145/3559613.3563207
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.1109/TNNLS.2018.2886017

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

Enhancing Technologies, David Martin and Andrei Serjantov (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 207–225.

A IMPLEMENTATION DETAILS
A.1 Model Architecture
The discriminator and embedder in the WF setting use the architec-
ture shown in Figure 9. This CNN architecture is based on the Deep
Fingerprinting architecture with alterations so that it uses a tensor
of size 256 as input and output.We also find that model performance
is improved with Leaky ReLU rather than ReLU activation.

The discriminator in the FC setting is shown in Figure 10. Note
that the outputs after initially processing the two flows are con-
catenated and then passed to the final layers. The output of the
network is a prediction about whether the two flows are correlated
where an output greater than .5 predicts correlation.

Note that the input of the generator, shown in Figure 3, is the
concatenation of random noise and the volume of real traffic binned
at that time step, and that the hidden state at each time step is used
as the input to the fully connected layer. The generator LSTM has
a hidden size of 128, an input size of 32, and is made up of a single
layer.

A.2 Training and Model Distribution
In theWF setting, we train the embedder, discriminator, and genera-
tor using the Adam optimizer with a learning rate of .0001. The em-
bedder uses PyTorch’s learning rate scheduler ReduceLROnPlateau
with minimum a learning rate of .000001. The dimensionality of the
trace embeddings is 256 and the batch size is 40. The embedder’s
triplet loss uses Euclidean distance with a margin of 1. We train the
discriminator-generator pair for 90 epochs.

The FC setting uses the same batch size and optimizer settings
but trains the discriminator-generator pair for 60 epochs.We trained
the models on an Nvidia GeForce RTX 3090 and find that it takes
about an hour to train WF-DeTorrent and FC-DeTorrent. However,
simulating DeTorrent on the chosen dataset and evaluating defense
performance generally takes 3 to 4 more hours, making hyperpa-
rameter optimization prohibitively time-consuming. While using a
dataset of 19,000 traces, the training process uses a maximum of 3
GiB of GPU memory.

With the trained models, we are able to use the GPU to generate
a defended trace in about 140ms, making it possible to generate a
defended dataset relatively quickly. The saved defense generator
model is quite small at only 358 KiB as it has only about 86,400
trainable parameters.

One implementation challenge for DeTorrent is distributing the
models. Because the upload padding is quite simple, only the gen-
erator needs to be distributed to bridges or relays. Our proposal for
model distribution is similar to the one presented for the Surakav
defense [20], which is that the semi-trusted Tor directory servers
train, distribute, and occasionally update the defense generators.
Given the small size of the DeTorrent generator, we don’t expect the
additional bandwidth to excessively burden the directory servers.

B ESTIMATING TRAFFIC RATE
To determine the number of dummy upload packets to send so that
the total upload rate is one-fifth of the download packet rate, we

Figure 9

Input

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool

 out_channels = 64, kernel_size = 4

channels = 64

negative_slope = .2

out channels = 64, kernel_size = 4

channels = 64

negative_slope = .2

kernel_size = 4, stride = 2, padding = 2

Dropout rate = .1

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool

channels = 64

negative_slope = .2

channels = 64

negative_slope = .2

Dropout rate = .1

out_channels = 64, kernel_size = 4

out channels = 64, kernel_size = 4

kernel_size = 4, stride = 2, padding = 2

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool

channels = 128

negative_slope = .2

channels = 128

negative_slope = .2

Dropout rate = .1

out_channels = 128, kernel_size = 4

out channels = 128, kernel_size = 4

kernel_size = 4, stride = 2, padding = 0

Fully Connected
Batch Normalization

Leaky ReLU
Dropout

Fully Connected
Batch Normalization

Leaky ReLU
Dropout

Fully Connected

hidden_units = 2048

hidden_units = 512

output_dimension = 256

channels = 2048

channels = 512

negative_slope = .2

negative_slope = .2

rate = .5

rate = .5

batch_size = 40, input_size = 256

need to maintain accurate and frequently updated rate estimations
for the rates of real upload and download traffic. However, this

113

Proceedings on Privacy Enhancing Technologies 2024(1) Holland et al.

Figure 10

Exit Flow

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool

 out_channels = 32, kernel_size = 4

channels = 32

negative_slope = .2

out channels = 32, kernel_size = 4

channels = 32

negative_slope = .2

kernel_size = 4, stride = 2, padding = 2

Dropout rate = .1

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool

channels = 64

negative_slope = .2

channels = 64

negative_slope = .2

Dropout rate = .1

out_channels = 64, kernel_size = 4

out channels = 64, kernel_size = 4

kernel_size = 4, stride = 2, padding = 2

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool

channels = 128

negative_slope = .2

channels = 128

negative_slope = .2

Dropout rate = .1

out_channels = 128, kernel_size = 4

out channels = 128, kernel_size = 4

kernel_size = 4, stride = 2, padding = 0

Fully Connected
Batch Normalization

Leaky ReLU
Dropout

Fully Connected
Batch Normalization

Leaky ReLU
Dropout

Fully Connected

hidden_units = 1024

hidden_units = 128

output_dimension = 1

channels = 1024

channels = 128

negative_slope = .2

negative_slope = .2

rate = .1

rate = .1

batch_size = 40, input_size = 256Entry Flow

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool
Dropout

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool
Dropout

1D Convolution
Batch Normalization

Leaky ReLU
1D Convolution

Batch Normalization
Leaky ReLU

MaxPool
Dropout

Sigmoid outputs prediction

114

DeTorrent: An Adversarial Padding-only Traffic Analysis Defense Proceedings on Privacy Enhancing Technologies 2024(1)

is nontrivial, as we’ll need to find the rate of occurrence of an
irregular event that is characterized by infrequent but large ‘bursts’
of activity. We also need responsive estimates in the sense that they
quickly update tomatch the sending rate of traffic (rather than being
lagging indicators) and we need to be able to compute an accurate
average between packets. In other words, if an upload packet hasn’t
been sent in a while, then we should take that into account while
computing an average. Lastly, for practical performance reasons,
we would like to avoid searching for or storing information about
previous traffic timing, as we’ll have to compute the packet sending
rate very frequently.

The approach described by Ilmari Karonen [36] first considers
that we can model the true frequency over the whole time period as
the integral of Dirac delta functions centered at the occurrence of
the event divided by an integral of a constant (1) over time where
𝜆𝑝𝑎𝑐𝑘𝑒𝑡_𝑟𝑎𝑡𝑒 represents the estimated packet sending rate:

𝜆𝑝𝑎𝑐𝑘𝑒𝑡_𝑟𝑎𝑡𝑒 =

∫
𝛿𝑠𝑒𝑛𝑡 (𝜏)𝑑𝜏∫

1𝑑𝜏
However, we want an estimate of the current packet sending rate

rather than the rate over the time period. So, we add a weighting
function to emphasize the more recent packet sending:

𝜆𝑟𝑒𝑐𝑒𝑛𝑡_𝑟𝑎𝑡𝑒 =

∫
𝛿𝑠𝑒𝑛𝑡 (𝜏)𝑤 (𝜏)𝑑𝜏∫

𝑤 (𝜏)𝑑𝜏
One reasonable choice of weighting function is to make it expo-

nential, such as𝑤 (𝜏) = 𝑒𝑘 (𝜏−𝑡) for a decay rate 𝑘 . This also allows
us to make the following simplification:

𝜆𝑟𝑒𝑐𝑒𝑛𝑡_𝑟𝑎𝑡𝑒 =
𝑘
∑𝑖=𝑁
𝑖=0 𝑒𝑘 (𝑡𝑖−𝑡)

1 − 𝑒𝑘 (𝑡0−𝑡)
≈ 𝑘

𝑖=𝑁∑︁
𝑖=0

𝑒𝑘 (𝑡𝑖−𝑡)

for large 𝑡 − 𝑡0

To avoid having to save all of the event times, we can simply
store the outcome of the most recent calculation and update it as
follows:

𝜆𝑟𝑒𝑐𝑒𝑛𝑡_𝑟𝑎𝑡𝑒 (𝑡) = 𝑒𝑘 (𝑡
′−𝑡)𝜆𝑟𝑒𝑐𝑒𝑛𝑡 (𝑡 ′)

where 𝑡 is the current time and 𝑡 ′ is the time of the previous rate
calculation.

When a new packet arrives, we’ll account for it by updating as
follows:

𝜆𝑟𝑒𝑐𝑒𝑛𝑡_𝑟𝑎𝑡𝑒 (𝑡) = 𝑘 + 𝑒𝑘 (𝑡
′−𝑡)𝜆𝑟𝑒𝑐𝑒𝑛𝑡 (𝑡 ′)

Thus, we have a method of calculating the sending rate that can
be tuned to be responsive to recent bursts, requires little information
storage or computation, can handle the irregular nature of internet
traffic, and allows us to accurately compute the rate both alongside
and between the networking events. While the choice of 𝑘 may
vary, we find that 𝑘 = 1 best fits the datasets used in this paper.

115

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Website Fingerprinting
	2.2 Flow Correlation
	2.3 LSTMs

	3 DeTorrent Design
	3.1 Motivation
	3.2 Trace Representation
	3.3 Trace Embedding
	3.4 Real-Time Decisions
	3.5 Packet Timing

	4 DeTorrent Training
	4.1 WF-DeTorrent Training
	4.2 FC-DeTorrent Training

	5 Experiment Details
	5.1 Datasets
	5.2 WF Attack Details
	5.3 FC Attack Details
	5.4 Real-world Implementation Details

	6 Website Fingerprinting Results
	6.1 Simulated Defense Results
	6.2 Trade-off Between Overhead and Performance
	6.3 Trace Representation Tuning
	6.4 Defense Countermeasures
	6.5 Real-World Implementation Results

	7 Flow Correlation Results
	8 Discussion
	8.1 Transferability
	8.2 Overhead
	8.3 Implementation Framework

	9 Conclusion and Future Work
	10 Appendices
	Acknowledgments
	References
	A Implementation Details
	A.1 Model Architecture
	A.2 Training and Model Distribution

	B Estimating Traffic Rate

