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ABSTRACT
Data protection regulations in many countries require IT systems
to implement baseline privacy requirements like purpose limita-
tion and consent as mandated by the GDPR. Such requirements are
often specified in the system’s privacy policy and are challenging
to implement as system developers must address them consistently
and in a cross-cutting manner. Moreover, without a formal connec-
tion between a system’s privacy policy and its implementation, the
system’s correctness and evolution are extremely difficult to attain.

We propose a model-driven development methodology that in-
corporates privacy policies into the system design. Namely, we de-
fine a system’s privacy model, which has precise semantics and is
used to specify privacy policies. We provide semantic-preserving
model transformations that generate system implementations that
enforce the given privacy policies by design. We implement two
such model transformations, targeting C# and Python system im-
plementations. We evaluate our methodology on three substantial
case studies and show the enforcement of privacy policies related to
purpose limitation and consent. Our evaluation also demonstrates
our approach’s generality, effectiveness, and modest overhead.
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1 INTRODUCTION
Motivation and problem statement. Modern IT systems imple-

ment a wide range of security and privacy requirements. The
sources of privacy requirements are manifold and include privacy
regulations, end-user concerns, self-imposed constraints, priori-
tized risk scenarios, best practices, and standards.

In this paper we focus on data protection, a particularly challeng-
ing class of privacy requirements. Data protection requires enforc-
ing users’ data ownership rights on data beyond the users’ actual
control or, dually, ensuring that any user’s personal data is treated
according to the user’s data-usage policy [56]. As users rarely ex-
plicitly specify their data-usage policies, data protection regulations,
like the EU’s General Data Protection Regulation (GDPR) [32], man-
date the enforcement of particular classes of baseline data-usage
policies. For example, personal data may be collected only for spec-
ified, explicit, and legitimate purposes (Art. 5 §1 (b) GDPR) and pro-
cessed for each purpose only when the owner has provided consent
(Art. 7 §1 GDPR). In practice, a user’s consent is often implicit. For
example, by using a website, a user tacitly agrees with the (often
hard to find) text of the website’s privacy policy [63]. Ideally, a user
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may consent only to parts of the privacy policy and therefore cre-
ate their data-usage policy, which should be enforced.

The question of how to support data protection during sys-
tem development and evolution naturally arises. While notions
like privacy-by-design have been advocated, we still lack effective
methodologies and tools to formally specify privacy and data-usage
policies, connect these policies with system implementations, and
keep them in sync during the systems’ evolution. In fact, the imple-
mentation of an enforcement mechanism and its synchronization
with the data-usage policies still requires manual developer inter-
vention in the system code, which is difficult and error-prone.

For security, model-driven development (MDD) [11, 20, 44] has
proven effective in tightly coupling system implementations with
security policies via design models that integrate security into the
system design process. The model semantics are defined as the al-
lowed system executions and MDD relies on semantic-preserving
model transformations to generate an enforcement mechanism that
prevents those system executions disallowed by the modeled policy.
Model transformations are parametrized by a specific implementa-
tion technology and can target popular technology-specific infras-
tructure (e.g., authorization frameworks like JAAS [47]). MDD was
shown to reduce system development time, and improve correct-
ness [31] and security [17] with respect to a system specification.

Prior work. Existing MDD approaches for privacy (Section 2) fo-
cus on automatically transforming architectural system designs [8]
(e.g., by adding access control mechanisms or integrity-protected
logger components), or reasoning about privacy properties of dif-
ferent designs [7]. However, a large gap remains between designs
and the concrete system implementations. In contrast, approaches
for enforcing data-usage policies [19, 62] focus on the enforcement
mechanism, making the policy statement implementation depen-
dent and hence not a design artifact. Finally, there are approaches
that do not propose any technical means for achieving privacy-
by-design, but rather report on experiences [39], analyze regula-
tions [6], or exclusively work with system design models [5].

Previously, Basin et al. [16] have specialized MDD to model-
driven security, where they additionally model and enforce security
requirements (Section 3). In particular, they focus on fine-grained
access control policies that combine declarative and programmatic
access control policies. In model-driven security, a software engi-
neer first creates a design model in a design modeling language (e.g.,
a UML class diagram). Next, a security engineer creates a security
model in a security modeling language (e.g., like SecureUML [51]).
Using model transformations, a secure-by-design implementation
is then obtained from the two models. The associated threat model
is that system designers provide correct system specifications via
design models, whereas developers may unintentionally make im-
plementation errors. Relying on model transformations for security
therefore reduces the risk of critical implementation errors.
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Our approach. In this paper, we extend model-driven security
with support for privacy by proposing a new privacy model (Sec-
tion 4) that captures the GDPR’s notions of purpose-limitation and
consent. As an additional design step in our new methodology (Sec-
tion 5), privacy engineers define the system’s privacy model, which
formalizes its privacy policy. We rely on UML as a modeling lan-
guage for presenting models, but define our models more generally.
We define the privacy model’s set-theoretic semantics (Section 6),
and present two semantic-preserving model transformations that
generate ASP.NET C# and Flask Python web applications, respec-
tively (Section 7). An application generated using our approach
allows users to explicitly and selectively consent to (parts of) the
application’s privacy policy and the generated implementation au-
tomatically respects the user-provided consent (i.e., enforces the
users’ data-usage policies). In particular, whenever a user’s per-
sonal data will be manipulated for a purpose not declared by the
privacy policy or not consented to by the user, the attempted oper-
ation is prevented by the generated enforcement mechanism. By
leveraging model transformations that systematically enforce poli-
cies in a cross-cutting manner, we can prevent policy violations re-
sulting from developers’ mistakes under the same threat model as
in model-driven security [16]. Finally, we use our approach to im-
plement three case study applications (Section 8). Our models sim-
plify reasoning about the correctness of the generated applications,
facilitate policy evolution, and generate enforcement mechanisms
that operate efficiently, with low overhead.

In summary, we make the following contributions:
• We propose a privacymodel that can express privacy policies
incorporating purpose-limitation and consent.

• We extend model-driven development to support privacy.
• We propose two model transformations that generate com-
plete, configured, enforcement infrastructures for privacy.
One generates ASP.NET C# web applications, whereas the
other generates Flask Python web applications.

• We evaluate our approach on three case studies demonstrat-
ing its generality, effectiveness, and modest overhead.

To our knowledge, this is the first approach proposing an MDD
methodology for privacy with all technical means for obtaining
configured enforcement infrastructure for typical privacy policies.

Scope and limitations. Privacy can be understood in a very broad
and general sense. We focus on a particular privacy aspect: enforc-
ing purpose-limitation and consent data protection requirements as
typically specified in privacy policies. Therefore, for the purposes of
this paper, we interpret privacy and the legal obligation of data pro-
tection as the enforcement of the appropriate data-usage policies.

While we focus on controlling the usage of collected personal
data, more work remains to fully address data protection require-
ments. In particular, designing systems that minimize collected per-
sonal data (Art. 5 §1 (c) GDPR), and enforce a combination of access
control and information-flow policies. The latter are needed to pre-
vent subtle inference attacks. Finally, our privacy model reflects a
simplified interpretation of GDPR; incorporating a more elaborate
formalization of this law [59] is future work (Section 9).

2 RELATEDWORK
We split related work into three parts: privacy specification, privacy
enforcement, and model-driven development (MDD) for privacy.

Privacy specification. Privacy policies [63] are security policies [60]
that encode the privacy rights of users of software systems. Such
policies are now heavily anchored in national and international law.
They can be domain-specific, like the Health Insurance Portability
and Accountability Act (HIPAA) [41] and Gramm-Leach-Bliley Act
(GLBA) [35]. Alternatively, they can be domain independent, like
the General Data Protection Regulation (GDPR) [32], the Califor-
nia Consumer Privacy Act [24], and the Digital Charter Implemen-
tation Act [29]. Privacy policies must be both understandable to
end users and precise. Precision is achieved by defining a formal
semantics for the policy specification language, which is essential
if policies are used to generate an enforcement mechanism.

Lam et al. [48] formalize certain HIPAA regulations that focus on
access control rules for the use and disclosure of protected health
information, including treatment information, healthcare opera-
tions, and payment. They implement their formalization using a
fragment of the Datalog logic programming language and demon-
strate its usability in a prototype hospital system.

Similarly, May et al. [52] extend the classical Harrison, Ruzzo,
and Ullman access control model [40] to formally analyze and
audit HIPAA regulations. They formalize the target regulations and
automatically translate it into a Promela model for model checking.

DeYoung et al. [30] go beyond the aforementioned HIPAA regula-
tions and formalize regulations on the protection of customer infor-
mation under the GLBA, which they also automatically audit [25].

Various languages have been proposed [49] to specify privacy
policies [63]. The, now obsolete, P3P [26, 27] and EPAL [10] lan-
guages have been proposed to declare the purposes for data pro-
cessing in a machine readable form. With P3P, users can set their
preferences, which the browser would than match against the web-
sites’ declared purposes, notifying the user about any mismatch.
EPAL goes further by allowing enterprises to declare internal ac-
cess control policies needed to enforce the declared privacy policies
within the system. As they lack a formal semantics, P3P and EPAL
policies only amount to machine readable documentation.

The Ponder language [28, 65] is an access control specification
language. It can specify obligations, which is relevant for some
common privacy requirements, like data minimization.

The PrimeLife Policy Language (PPL) [9] and its extensions [13]
are based on the eXtensible Access Control Markup Language
(XACML) with custom notions of purpose and obligation. It reuses
existing XACML implementations, but it inherits its complexity.

Recently, Pilot [54] and the policy language by Baramashetru
et al. [14] have been proposed to capture GDPR-specific privacy
requirements. Besides purpose-limitation and consent, the former
can also specify to whom private data may be transferred, while the
latter can specify data retention and location-specific processing.

Our privacy model focuses on the most important aspect of
GDPR: purpose limitation and consent. Unlike existing policy lan-
guages, the formal semantics of our privacy model (Section 6) can
be used to generate the enforcement mechanisms.

Privacy enforcement. Guerriero et al. [38] propose a privacy pol-
icy language and an enforcement mechanism tailored for data-
intensive applications. Application users can specify privacy poli-
cies in a fragment of past-time metric temporal logic. A policy is
enforced by removing from the data streams all the user-owned
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data items that violate the user’s policy. While the approach can
specify purpose limitation, consent is not accounted for and the
approach is specialized for data-intensive applications.

Byun et al. [21, 22] model purpose hierarchies and distinguish
between the intended purpose defined for each data item and the
access purpose, which is the purpose for which the data item is ac-
cessed. Assuming that the latter is accurately stated by a user, their
enforcement of purpose limitation amounts to checking whether
this purpose conforms to the data item’s intended purpose, where
both may be complex objects. However, the above assumption is a
strong limitation of this approach and, with the exception of our
work and Karami et al. [43], of all other approaches in this section.

Karami et al. [43] propose Data Protection Language (DPL), a
programing language with explicit constructs for purpose and con-
sent. DPL’s semantics guarantees the enforcement of purpose, con-
sent, and storage limitation. While having these constructs avail-
able in the implementation language improves privacy, it imposes
a significant technological restriction on the developer to use DPL
when implementing both privacy policies and the business logic. In
contrast, MDD targets multiple implementation technologies and
hence developers can choose a model transformation for the tech-
nology best-suited for implementing the business logic.

MDD for privacy. Privacy by design [23] posits that privacy must
be accounted for throughout the whole engineering process. In
particular, software must be developed to ensure privacy policy
enforcement. MDD supports this aspect of privacy by design by
introducing privacy policies in the software design models.

Antignac et al. [8] propose an automatic transformation of a
high-level architectural system design into a privacy preserving de-
sign. Their transformation takes a data-flow diagram (DFD) (i.e., the
initial architectural design), and a privacy policy. The privacy pol-
icy classifies each DFD’s data-flow based on the data subject whose
data flows through it, the purpose of the flow, and the data’s reten-
tion time. The model transformation enhances the input DFD with
additional processes that check privacy policies before data is used
(e.g., checking purpose and the existence of user’s consent before
data processing). These added processes are abstract and a large gap
remains between designs and the concrete system implementation.

Antignac et al. [7] also support the thesis that privacy should
be addressed at the architectural level and they specifically focus
on data minimization policies. They propose two languages: a for-
mal language for modeling architectures for data minimization and
a logic for reasoning about the correctness of such architectures.
The latter, called privacy logic, is a variant of epistemic logic with
a proof system to reason about the knowledge and beliefs of differ-
ent architectural components. Unfortunately, their privacy archi-
tectures are modeled at a very high level, and obtaining a concrete
implementation requires a highly non-trivial manual refinement.

Privacy policies modeled in ModelSec [57] do not consider pur-
pose or consent. According to the authors, privacy policies ensure
that information only can be read by those who are allowed, which
coincides with the standard notion of confidentiality.

3 PRELIMINARIES
We start by introducing an example application and its (functional,
security, and privacy) requirements. We will use it as a running

example to illustrate the concepts discussed throughout this paper.
We rely on some software engineering and modeling concepts [36],
such as UML notation, without introducing them.

Example 1. Consider a simple conference management system
used by researchers to publish and review papers. A researcher can be
a conference chair, a committee member, or a normal user.

Any researcher can publish papers as well as receive paper recom-
mendations based on their personal data. To publish a paper, theymust
first create and initialize the object representing it. Then they must
associate the object with themselves and their coauthors. Such papers
are considered unpublished until the review process is completed. Re-
searchers who are committee members can additionally review pa-
pers and possibly delegate reviews to other researchers. Finally, a re-
searcher who is a conference chair can accept papers for publication.

Additionally, a researcher assigned to review a paper must not
have any conflicts with the paper’s authors, i.e., be in a direct advisor
relationship or have co-authored a paper in the last two years.

We now introduce a model-driven security methodology [16],
which we extend in this paper. Tomodel the above application using
the model-driven security methodology, we need to recap data
and security models. The data model defines the structure of well-
formed states of an application and it is designed by the software
engineers. The security model represents application’s fine-grained
access control (FGAC) permissions, which security engineers define
based on the actions allowed on data specified by the data model.

For ease of presentation, we use UML syntax for visualizing
data models. Nevertheless, the ideas presented in this paper are
independent from UML’s particular syntax. Hence, we introduce a
straightforward set-theoretic representation of our models.

Let ID be a countable set of names and S ⊂ ID a set of sorts. Sorts
can be primitive sorts from PS ⊂ S, consisting of natural numbers
(N), integers (Z), floats (F), strings (String), and Booleans (B), or
custom (i.e., defined by a data model).

We use ×, +,→, and ⇁ to denote type constructors for product,
sum, function, and partial function, respectively. We write 𝐴∗ (𝐴+)
for a finite (nonempty) sequence of𝐴 and () as the empty sequence.
Starting from a set of sorts, we use these operations to build more
complex types. The sets dom(𝑓 ) and rng(𝑓 ) are the domain and
the range of the function 𝑓 . We write 𝑎 ↦→ 𝑏 for a pair (𝑎, 𝑏) that
belongs to a function.

A data model is a formalization of a UML class diagram.

Definition 1. A data model D = (CS, ⪯D , attr,meth, asc) has
a finite set of sorts CS, a partial order ⪯D on CS, and the functions:
attr : CS → ID ⇁ S, meth : CS → ID ⇁ CS × S∗ → S, and
asc : ID ⇁ (ID × CS) × (ID × CS).

For each sort 𝑐 ∈ CS, attr(𝑐) returns a function from attribute
names to their types, and meth(𝑐) returns a function from method
names to their types. Every method name has a function type with at
least one argument, which is its owning sort. A (binary) association
name 𝑎 ∈ dom(asc), relates an association end name and its sort to
another association name and its sort, as returned by asc(𝑎).

Intuitively, sorts in CS correspond to UML classes and ⪯D de-
fines the classes’ inheritance relationship. The remaining functions
in D are a straightforward encoding of the classes’ structure and
their associations. For simplicity and without loss of generality, we
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consider only binary associations. We say that a relation is asc(𝑛)-
typed with asc(𝑛) = ((a,A), (b,B)) if it has type A × B.

Example 2. Consider the class diagram in Figure 1 (left) modeling
the well-formed states of the system from Example 1. It corresponds
to the data model ({Paper,Researcher}, ∅, attr,meth, asc) where

attr(Paper) = {title ↦→ String, year ↦→ Z, published ↦→ B}
attr(Researcher) = {name ↦→ String, student ↦→ B}

meth(Paper) = {publish ↦→ Paper → (),
assignReviewer ↦→ Paper × Researcher → () }

meth(Researcher) = {recommendPapers ↦→ Researcher → Papers∗ };
asc(authorship) = ( (authors,Researcher), (papers, Paper))

asc(reviewership) = ( (reviewers,Researcher), (reviews, Paper))
asc(advisorship) = ( (students,Researcher), (advisers,Researcher)) .

An instance of a data model is an object model, which interprets
sorts with finite sets of objects, and associations as relations on the
objects. An object interprets all the attributes of the sort, whereas
methods have a fixed interpretation for every object of a sort. Two
objects are (structurally) equal if they interpret attributes equally.
To distinguish structurally equal objects, each object has a unique
name 𝑜 ∈ ID. Hence, an object of a sort 𝑐 is a pair (𝑜 ↦→ (𝑐, 𝑎𝑡𝑠)),
where 𝑎𝑡𝑠 is a set of attribute values. In other words, an object binds
its name 𝑜 to an interpretation 𝑎𝑡𝑠 of the attributes of the sort 𝑐 .
Since object names are unique, a finite collection of objects yields a
(partial) function from object names to their interpretations.

Intuitively, an object model formalizes a UML object diagram
used to model a state of a system.

Definition 2. Objectmodel of a datamodelD is a triple (O,M,R),
where O is a finite set of objects, M maps each method name 𝑛 ∈
dom(meth) to a meth(𝑛)-typed function, and R maps each associa-
tion name 𝑛 ∈ dom(asc) to a asc(𝑛)-typed relation over objects O.

Example 3. Consider the object diagram shown in Figure 1 (right)
for the corresponding class diagram in the same figure. It shows three
researchers, with names r1, r2, and r3 representing two students and
their adviser. They have authored a paper p, which is neither published
nor reviewed yet. The corresponding object model (O,M,R) is

O(Researcher) = {r1 ↦→ (Researcher, (”Peter”,⊤)),
r2 ↦→ (Researcher, (”Mark”,⊤)),
r3 ↦→ (Researcher, (”David”,⊥)) }

O(Paper) = {p ↦→ (Paper, (”UML, Formally”, 2024,⊥)) };
R(advisorship) = {(r1, r3), (r2, r3) }
R(reviewership) = {}
R(authorship) = {(r1, p), (r2, p), (r3, p) }
M(publish) =𝜆𝑝. 𝑓1

M(assignReviewer) =𝜆 (𝑝, 𝑟 ) . 𝑓2
M(recommendPapers) =𝜆𝑟 . 𝑓3,

where 𝑓1, 𝑓2, and 𝑓3 are method implementations returning (), (), and
Papers∗, respectively. For conciseness, we use object names instead of
the objects themselves in R.

Given a data model, the set of actions A that a user may take is

{create(𝐶), delete(𝐶) |𝐶 ∈ CS} ∪
{read(𝐶,𝑛), update(𝐶,𝑛) |𝑛 ∈ dom(attr(𝐶)), 𝐶 ∈ CS} ∪
{read(𝐶,𝑛), add(𝐶,𝑛), remove(𝐶,𝑛) | ∃𝑎 ∈dom(asc), 𝑛′ ∈ ID,𝐶′ ∈CS.
asc(𝑎) = ( (𝑛,𝐶′), (𝑛′,𝐶)) or asc(𝑎) = ( (𝑛′,𝐶), (𝑛,𝐶′)) } ∪

{execute(𝐶,𝑛) | 𝑛 ∈ dom(meth(𝐶)), 𝐶 ∈ CS}.

Figure 1: UML class (left) and UML object (right) diagrams of
the conference management system from Example 1.

These consist of creating or deleting objects, reading or updating
attributes or associations, and executing methods.

The object constraint language (OCL) [37] is an order-sorted first-
order logic used to query object models or define properties of data
models. OCL syntax has a pre-defined part used with primitive
sorts (e.g., integer addition or string concatenation) and collections
(e.g., forall, exists, select, size, and excludes), and a variable part,
which is defined by a specific data model. OCL is strongly typed
and every OCL expression evaluates to a value of some sort. We
denote by 𝜃𝑡 all OCL expressions that evaluate to values of sort 𝑡 .
Expressions 𝜃B are called OCL constraints.

OCL’s dot-operator is used to access an object’s attribute (e.g.,
r1 .name), or an association end, i.e., the collection of objects linked
with the object via an association (e.g., r1 .advisers). Collection func-
tions are called using an arrow notation (e.g., r1 .advisers→size()).
When used with collections, the dot-operator maps over them. OCL
expressions can be written in the context of an object, and such
objects can be referred to using the keyword self .

Example 4. If the OCL constraint self .title.size() > 0 is given as
an invariant of the Paper sort, it would restrict the possible object
models to those whose objects have non-empty paper titles.

The set of free variables of an OCL expression 𝜙 is fv(𝜙), e.g.,
fv(self .papers→forall(𝑏 | 𝑎.concat(𝑏.title) .size() < 𝑐)) = {𝑎String,
𝑐Z}. Here variable 𝑏Paper is bound by the forall function. Note that
we subscript variables with their sorts for clarity.

Given 𝑥𝑠 ∈ fv(𝜙) and an OCL expression 𝑡 ∈ 𝜃𝑠 , 𝜙 [𝑥𝑠/𝑡] is
obtained from 𝜙 by substituting all occurrences of 𝑥𝑠 with 𝑡 .

A security model defines which actions can be carried out on an
object model by users in different roles, i.e., fine-grained access con-
trol (FGAC) policies. Our definition here corresponds to a simplified
version of SecureUML [51] without action and user hierarchies.

Let R be a set of sorts, each representing a role and ⪯R a partial
order on R. For example, R = {Normal,Committee,Chair} and
Normal ⪯R Committee ⪯R Chair. Intuitively, if a role 𝑟1 is larger
than a role 𝑟2 (denoted 𝑟2 ⪯R 𝑟1) then 𝑟1 has all of 𝑟2’s permissions.

Given a data model D, let D ′ extend it with a sort User repre-
senting the application’s users with attr(User) = {role ↦→ R}. Also
⪯D′ may extend ⪯D with (User,𝐶) for any sort𝐶 that already rep-
resents application users (e.g., Researcher in Figure 1).

Authorization constraints are OCL constraints that express con-
ditions under which a user (e.g., Alice) in some role (e.g., Chair) may
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take some action (e.g., read the year attribute) of some resource
(e.g., an object of the Paper sort). A constraint is written in the con-
text of the object representing the resource, hence the self OCL ex-
pression evaluates to the object. The user object is represented as a
free variable callerUser in the constraint. Depending on the action,
other factors may need to be account for when making the autho-
rization decision. For example, when updating an attribute or an as-
sociation end, the intended new value of some sort 𝐶 can influence
the decision, which is captured by the free variable value𝐶 . Given
a variables’ valuation, the OCL constraint evaluates to a Boolean
that encodes whether the user can carry out the action.

GivenD ′, letCon(𝑉 ) = {𝑒 | 𝑒 ∈ 𝜃B, fv(𝑒) ⊆ 𝑉 } be the set of OCL
constraints containing all free variables in𝑉 . Given an action 𝑎 ∈ A,
the set of authorization constraints C(𝑎) is defined as follows:

Con({callerUser}), if 𝑎 is a create, delete, read, or execute;
Con({callerUser, valueattr(𝐶) (𝑛) }), if 𝑎 is update(𝐶,𝑛); and
Con({callerUser, value𝐶′}), if ((𝑛,𝐶 ′), (𝑛′,𝐶)) or ((𝑛′,𝐶), (𝑛,𝐶 ′))

are in asc, and 𝑎 is add(𝐶,𝑛) or remove(𝐶,𝑛) .

Now we define the security model that models FGAC policies.

Definition 3. Given a data model D, a security model is a 4-
tuple (D ′,R, ⪯R ,PA), wherePA is a set of permission assignments:

PA ⊆
⋃
𝑎∈A

R × {𝑎} × C(𝑎).

Intuitively, an action by a user is allowed if it is associated with a
permission containing a satisfied authorization constraint, and the
user’s role is larger than the role in the permission. More precisely,
a security model allows a user 𝑢 to take an action 𝑎 on an object
𝑐 and (possibly) update the object with the value 𝑣 iff there exists
a (𝑟, 𝑎, 𝜙) ∈ PA such that 𝑟 ⪯R 𝑢.role and 𝜙 [caller/𝑢] [value/𝑣]
evaluates to true in the context of 𝑐 .

Example 5. Consider the requirements from Example 1 and the
data model D from Example 2, which we extend to D ′ with the User
entity such that ⪯D′ is the same as ⪯D except that Researcher ⪯D′

User. There are three roles R = {Normal,Committee,Chair} with
Normal ⪯R Committee ⪯R Chair. In addition, the security model
expresses the following security requirement from Example 1: A user
with role Normal can read an unpublished paper’s title only if the
user has no conflict with any of the paper’s authors.

The triple (Normal, read(Paper, title), 𝜑) ∈ PA models the above
requirement, where 𝜑 is the following authorization constraint:

self .published or self .authors→ forall(𝑎 |
caller.advisers→excludes(𝑎) and𝑎.papers→ forall(𝑝 |
not𝑝 = self and 2024 − 𝑝.year < 2 implies
𝑝.authors→excludes(caller))) .

4 MODELING PURPOSE AND CONSENT
Purpose limitation is the most prominent privacy requirement man-
dated by the GDPR. It states that personal data (namely, the data
provided by the application’s users) can only be used for the pur-
poses that the data owners have consented to. Here one can dis-
tinguish between different semantics for data usage. Access con-
trol semantics considers only the initial access to the data as usage.
Dataflow semantics additionally considers as usage any access to

data explicitly derived (e.g., by assignment) from the initially ac-
cessed personal data. Finally, information-flow semantics further
considers as usage any access to data implicitly derived (e.g., by
branching on private data, or via other implicit or explicit flows)
from the initially accessed personal data. We opt for an access con-
trol semantics as the other more draconian semantics substantially
complicate the creation of usable applications.

We first must distinguish which sorts model personal data, so let
CSP ⊆ CS be the set of such sorts. Only the actions on these sorts
are subject to purpose limitation. Hence, let AP ⊆ A be the set of
actions on sorts in CSP . Note that this is without loss of generality,
as one can mark personal data at a more fine-grained level (e.g., a
single attribute, or an association end) by modeling them as explicit
sorts in the data model. Note that, for simplicity and to focus on the
enforcement aspects of data protection, we here consider personal
data as the subset of the data model sorts fixed at the design phase.
Fine-grained and dynamic personal data definition is future work.

Let P be a set of basic purpose sorts, which induces the lattice
(2P , ⊆) of complex purposes (i.e., sets of basic purposes). For ex-
ample, any purpose is the set P, no purpose is ∅, and marketing
purpose is {TargetedMarketing,MassMarketing}. As in some pre-
vious work [21], we shall distinguish two general types of purposes:
declared purpose and actual purpose.

A declared purpose is a purpose presented to the user in the form
of the privacy policy. It is intended to be enforced during the ap-
plication’s execution, i.e., any access to the private data must be
checked with respect to the declared purposes. In fact, declared pur-
poses, the privacy policy, and the enforcement mechanism must
always be synchronized. Therefore, in our model-driven approach,
it is sufficient to specify the declared purposes, whereby the other
two are then automatically generated. Furthermore, whenever the
declared purposes change, users can receive an updated version of
the correspondingly (re-)generated privacy policy, and the enforce-
ment mechanism consistently changes to enforce the new policy.

To model declared purposes, we emulate the permission assign-
ment relation from FGAC (Section 3):

PAP ⊆
⋃

𝑎∈AP

P × {𝑎} × C(𝑎) .

The relation PAP replaces the role notion in PA with the purpose.

Example 6. Let the basic purposes of the conference management
system beP = {PublishPaper,AssignReviewer,RecommendPapers}.
Consider the following privacy policy from Example 1: If you are a stu-
dent, we will use your list of authored papers to recommend to you
papers. A declared purpose modeling the privacy policy is the tuple
(RecommendPapers, read(Researcher, papers), self .student).

A natural question arises: how should an enforcement mecha-
nism decide whether some data access conforms to the declared
purpose? In contract to the declared purpose, an actual purpose de-
scribes how data is actually being used. It is difficult to determine
the actual purpose automatically by analyzing the design models
we have seen so far. It must therefore be specified by annotating
some of the methods in the data model with complex purposes.
If a data access occurs as a part of an execution of a method, the
method’s annotation is the actual purpose for the data access. Given
a data model D, we explicitly define the application’s interface as
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Design steps Provide inputs to Generated artifacts

(1) Create the data model
(2) Create the security model

(a) Identify the User sort in the data model
(b) Define roles and their hierarchy
(c) Define the permission assignment

(3) Create the privacy model
(a) Determine basic purposes
(b) Identify sorts containing personal data
(c) Define the declared purposes
(d) Annotate the actual purposes

Extended data model Classes and method stubs

Authentication

EM for Security

Privacy Policy
EM for Privacy

Consent Collection
Purpose Tracking

Figure 2: Model-driven privacy methodology (EM = enforcement mechanism)

a subset of methods I ⊆ ⋃
𝑐∈CS dom(meth(𝑐)), and consider the

function annotate : I → 2P annotating the interface methods
with (complex) purposes. We can extend the annotate function to
all methods, by associating no purpose ∅ to methods outside of I.

Example 7. Suppose that each method in the data model from
Example 2 is an interface method, i.e., I = {publish, assignReviewer,
recommendPapers}. The actual purposes can be the following:

annotate(publish) = {PublishPaper},
annotate(assignReviewer) = {AssignReviewer}, and
annotate(recommendPapers) = {RecommendPapers}.

Even if declared purposes are presented to the user and enforced
in the application, the GDPR further requires that personal data is
only processed when the owner has provided consent. In practice,
a user’s consent is implicit. Typically by using a website, the user
tacitly agrees with the text of the website’s privacy policy. We aim
to make this consent collection step explicit.

In general, users can (partially) consent to or even reject all the
declared purposes. The lack of consent is treated as a rejection of
that part of the privacy policy. Consent can be provided lazily (e.g.,
when a user performs an action) and can be revoked at any time.

To model consent, we must capture the relationship between
a user, their personal data of some sort 𝐶 , and a purpose 𝑝 for
each tuple (𝑝, 𝑎, 𝑒) in the PAP relation, where the action 𝑎 is
taken on an object of sort 𝐶 . Hence we can model consent as a
relation over User × CSP × P that relates a user and a sort of
personal data to a purpose that the user has consented to. For
example, (Alice,Researcher,RecommendPapers) means that Alice
consents that her information in the Researcher object can be used
to recommend papers to her. Since collecting consent happens
only once the application is running, the relation above must be
maintained dynamically as a part of the data model.

Given a data model D ′ (from the security model) with identified
sorts CSP containing personal data. The data model D ′′ extends
D ′ with a sort Consent such that attr(Consent) (purposes) = 2P ,
attr(Consent) (user) = User, and attr(Consent) (data) = CSP . A
Consent object relates a user, a personal data type, and a set of
purposes. Such an object exists only if the user has consented that
their personal data with the appropriate type can be used for the
set of purposes. The extended model also requires that every sort
𝑝 ∈ CSP has the owner attribute, attr(𝑝) (owner) = User, relating
every instance of sort 𝑝 to the user who owns it. We only model

single data owners, as the treatment of shared personal data is still
an open problem in GDPR [46, Problem 6]. We now combine the
above notions into a privacy model.

Definition 4. Given a data model D, the privacy model is the
tuple (D ′′,P,CSP ,PAP , annotate).

Intuitively, an enforcement mechanism for a privacy model en-
sures that actual purpose always conforms to the declared purpose
and that all users that own the personal data have consented to ev-
ery actual purpose. More precisely, it allows a user𝑢’s action 𝑎 to ex-
ecute on private data𝑑 of sortD that (possibly) updates𝑑 with value
𝑣 as part of the method𝑚’s execution iff annotate(𝑚) is a subset of
all declared purposes {𝑝 | (𝑝, 𝑎, 𝜙) ∈ PAP , 𝜙 [caller/𝑢, value/𝑣] in
the context of 𝑑} and there exists a Consent object 𝑐 such that
𝑐.user = 𝑑.owner, 𝑐.data = D and annotate(𝑚) ⊆ 𝑐.purposes.

5 METHODOLOGY
We now put all the above notions together into a model-driven
methodology for developing applications that enforce privacy. Over-
all, an application’s design is given by three models: a data model,
a security model, and a privacy model. We describe each step of
our methodology in detail and explain how some of the design de-
cisions can be made. Then we show what model transformations
can generate from the models. Figure 2 summarizes the methodol-
ogy’s design steps (left) and the outputs of the model transforma-
tions (right). Dashed arrows denote model-to-model transforma-
tions, solid arrows denote model-to-code transformations, and the
dotted arrow denotes a model-to-text transformation [18].

As a first step, software engineers create a data model D focus-
ing solely on the application’s business logic. The data model cap-
tures the well-formed states of the application. In the next step, se-
curity engineers define the application’s security model based on
the data model D. This consists of multiple sub-steps. They first
pave the way for extending the data model by identifying the sort
representing users of the system. They then define roles (R), role
hierarchy (⪯R ), and use them to define the permission assignment
(PA), which models FGAC policies for the data in the data model.

Finally, privacy engineers define the privacy model. They first
determine the basic purposes (P), which depend on the applica-
tion’s domain. One can, however, consider a taxonomy of com-
monly used purposes as a starting point [50]. Next, they declare
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Figure 3: UML Activity diagram of the conference manage-
ment system

sorts that model personal data (CSP ). Once both purposes and per-
sonal data have been identified, privacy engineers can define the
declared purposes (PAP ). As a final step in defining the privacy
model, they specify the actual purposes by annotating methods in
the data model (annotate).

The annotated methods have a special role: they are the applica-
tion’s interface providing different business logic services. Choos-
ing the right annotations is a creative process. One can trivially
choose one basic purpose for each method in the data model. Alter-
natively, more precise annotations can be chosen. In general, the
interface methods should correspond to the application’s different
business processes as modeled by a UML activity diagram [15]. In
the most general case, they may call each other (in which case their
actual purpose is combined in a more complex purpose), or some
processes may not be annotated. For example, a general method
for sorting lists is typically used as an auxiliary process and its ac-
tual purpose depends on the interface methods whose execution re-
quires sorting. Both declared and actual purpose can be obtained by
analyzing business processes, which we exemplify in the following.

Example 8. Suppose we have access to a UML activity diagram
(Figure 3) describing the business processes implemented by the meth-
ods of the conference management system described in Example 1.

The diagram consists of three activities (shown as vertical lanes)
each with input actions ( symbol), process actions ( symbol),
and output actions ( symbol) connected with directed edges de-
scribing the activities’ control flow. Objects ( symbol) represent-
ing different sorts from the data model are shown outside of the activ-
ities’ lanes. We abuse the notation and mark in grey the sorts from
CSP . Directed edges involving objects describe the data flow within
the activities. Note that some objects in the activity diagram do not cor-
respond to sorts in the data model. This can be achieved by modeling
associations as explicit sorts and including them in CSP (Section 4).

Actual purposes can be derived from the diagram by observing
which methods are used exclusively by other methods, as opposed to
the methods that are additionally used as part of the application’s
interface. For the conference management system, each method is only
used as an interface method and has its own actual purpose.

Figure 4: UML Class diagram corresponding to the extended
data model of the conference management system

Declared purposes can be derived by observing the data flows from
objects to process actions. For instance, the privacy policy from Ex-
ample 6 is inspired by the edge that connects the Author object to an
action in the recommend papers activity.

Identifying the purposes of a piece of code is a difficult task
that cannot be readily automated. Hence, having additional manual
model validation steps (either by developers, or by external privacy
auditors) would help to ensure correct privacy enforcement.

Now let us considerwhat can be generated from the threemodels.
The initial data model is first updated to account for extensions
required by the security and privacy models. It is sufficient for
the security engineer to identify the sort representing users by
specifying its name in the security model. The data model can be
automatically extended based on that information: the selected sort
is declared as a subsort of the User sort. The roles and purposes can
be encoded as enumerations (i.e., by using the + type constructor).
A role is assigned to each user via the role attribute in the User sort,
i.e., attr(User) (role) = Role. Purposes are similarly declared (as
enumerations) and associated to the Consent sort via an attribute.
Distinguishing personal data sorts (CSP ) from the other sorts can
be achieved by declaring them as subsorts of the sort PersonalData
that has the owner attribute of type User.

Example 9. Suppose that based on the data model from Figure 1
security and privacy engineers have identified that sort Researcher
represents both users of the system and contains personal data. Then
the extended data model generated by our approach is shown in Fig-
ure 4. Namely, the diagram contains three additional classes. The
User class identifies Researcher as a sort representing users and de-
clares additional attributes and methods useful for the subsequent
generation of authentication code. The PersonalData class identifies
Researcher as the only sort containing personal data and declares the
additional attribute owner. Finally, the Consent class captures the
existing consents that users provided by declaring the attributes user,
data, and purposes. In the diagram, attributes that refer to classes in
the diagram are shown as unnamed associations.

Once the extended model is generated, it can be used to further
generate code for classes and method stubs, which still must be

320



Model-driven Privacy Proceedings on Privacy Enhancing Technologies 2024(1)

implemented. Using the existing object-relational mappers, each
class is also generated with persistence support defining the appli-
cation’s data-tier. It is also possible to use existing authentication
libraries (like ASP.NET Core Identity [4] for C#, or Flask-User [2]
for Python) to generate an authentication mechanism given the
identified User sort. We use such a library with default settings for
password-based authentication, which can further be configured.

The permission assignment (PA) in the security model is used
to generate an enforcement mechanism for the specified FGAC
policies. Namely, the mechanism is called each time an attempt is
made to execute any of the action from A.

The privacy model is used to generate multiple artifacts. Firstly,
privacy policy text presented to the user can be generated from the
declared purposes. For example, the tuple (𝑝, read(𝐶,𝑑), 𝜙) ∈ PAP

can be presented as the policy: If 𝜙 , then we will read 𝑑 of your
personal data 𝐶 for the purpose 𝑝 . In our concrete implementation,
we provide a description field for every OCL constraint in our
models, which are used when generating the privacy policy. If
multiple tuples have the same action and constraint, their text can
be combined and the corresponding complex purpose shown.

Similarly, the enforcement mechanism checking purpose limita-
tion and consent is generated based on the specified declared and
actual purposes and it is called whenever any of the action from
AP was attempted. In addition, the consent collection mechanism
that prompts users (either upon a change of declared purposes, or
lazily when user data is used upon the user’s request) can also be
generated automatically based on the declared purposes.

Finally, a purpose tracking mechanism can be generated to track
the actual purpose during the execution. It simply needs to main-
tain one (current) complex purpose per execution thread of the ap-
plication. Whenever an interface method is invoked, the tracking
mechanism adds the method’s actual purpose to the current com-
plex purpose and removes it once the method returns.

The generation process described here is technology-agnostic. In
Section 7 we will describe two model transformations that we have
implemented: one for ASP .NET web application and the other for
Python/Flask web applications. Clearly based on the three models,
only method stubs can be generated for the methods implementing
custom business logic. Nevertheless, other methods that implement
cross-cutting functionality like security and privacy policy enforce-
ment, and authentication are fully implemented.

If the models’ semantics allow it, the developers’ implementa-
tions of the method stubs will execute successfully. Otherwise, they
will throw a runtime exception. In fact, the generated enforcement
mechanism would consistently throw exceptions whenever actions
violate the specified models. This eliminates the risk of developers
introducing implementation errors that violate users’ privacy.

6 FORMAL SEMANTICS
We now provide a formal semantics for our models. Conceptually,
the models formalize access control decisions of two types [16]: (1)
declarative access control decisions, which depend only on static
information defined in the models (e.g., roles in the permission as-
signment); and (2) programmatic access control decisions, which de-
pend on the dynamic information captured by the current system’s
state (e.g., authorization constraint satisfaction). We extend both

types of decisions to be purpose-based, namely, to depend on the
privacy model (e.g., purposes in the declared purposes) and on the
extended state of the system (e.g., existence of a Consent object).

We use first-order logic (FOL) [53] to formalize the semantics of
our security and privacy models. FOL’s syntax consists of logical
symbols (e.g., ¬, ∧, ∃), as well as non-logical ones (e.g., predicate,
function, or constant symbols) defined by a signature. FOL’s seman-
tics is defined with respect to a valuation 𝜈 of its free variables and
a first-order structure 𝜎 consisting of a carrier set and interpretation
functions mapping non-logical symbols to predicates, functions,
and constants, respectively. We write 𝜎, 𝜈 |= 𝜙 if FOL formula 𝜙 is
satisfied by structure 𝜎 and valuation 𝑣 . Instead of having a single
homogeneous carrier set, order-sorted FOL extends FOL by consider-
ing multiple carrier sets each containing elements of the same sort.

Static information (e.g., the relations PA and PAP ) are formal-
ized as relations in a first-order structure 𝜎𝑠 The dynamic informa-
tion is the content of a system state (i.e., an object model of the
extended data model D ′′), which we also formalize as a first-order
structure 𝜎𝑑 . The semantics of our security and privacy models is
formalized by order-sorted FOL formulas 𝜑𝑠 and 𝜑𝑝 . An overall sys-
tem state combines both static and dynamic information into a com-
posite structure (𝜎𝑠 , 𝜎𝑑 ) obtained by combining 𝜎𝑠 and 𝜎𝑑 . Given a
composite structure the decision to allow an action is equivalent to
checking if (𝜎𝑠 , 𝜎𝑑 ), 𝜈 |= 𝜑𝑠 ∧ 𝜑𝑝 for some 𝜈 .

To define the two structures and the two formulas, we first define
the respective signature Σ, partitioned into two parts Σ𝑠 and Σ𝑑 ,
representing static and dynamic information, respectively.

Signatures. Let the order-sorted signature for static information
be Σ𝑠 = (R ∪ P, ⪯R , ∅, {PA, PAP}), which contains a sort for each
role (in R) and purpose (in P), role hierarchy (⪯R ) as an order
on the sorts, no function symbols, and two relation symbols (PA
and PAP). Intuitively, these sorts and relation symbols will be in-
terpreted by the roles, purposes, and the (permission assignment
and declared purposes) relations from our security (Section 3) and
privacy (Section 4) models.

The signature for dynamic information Σ𝑑 is built from a data
model, which naturally induces an order-sorted signature with
typed function and relation symbols [16]. For clarity, we further
split this signature into two parts: the primitive signature Σ𝑃 and
the data model signature ΣD . The primitive signature is fixed and
independent of any particular data model. Let Σ𝑃 = (PS, ⪯𝑃 ,Ω𝑃 , ∅)
be an order-sorted signature where the set PS contains the five
primitive sorts (Section 3). The relation ⪯𝑃 is a partial order on PS
such that N ⪯𝑃 Z ⪯𝑃 F. The set Ω𝑃 contains common function
symbols on the primitive sorts, like conjunction (and : B × B → B),
addition (+ : F × F → F), string length (size : String → N), etc. The
signature has no relation symbols.

Given a finite set of sorts CS ⊆ ID, where CS ∩ PS = ∅, the set
of all sorts is the smallest set S such that Any ∈ S, CS ∪ PS ⊆ S,
and if 𝑠 ∈ S then Set(𝑠),Bag(𝑠), Sequence(𝑠),Collection(𝑠) ∈ S.1

AdatamodelD = (CS, ⪯D , attr,meth, asc) induces a datamodel
signature ΣD = (CS, ⪯D ,ΩD , asc) by considering all attributes
andmethods as function symbols (ΩD =

⋃
𝑐∈CS (attr(𝑐) ∪meth(𝑐))),

and associations as relation symbols. Finally the signature Σ𝑑 =

1For simplicity, OCL types Set(𝑇 ),Bag(𝑇 ) , and Sequence(𝑇 ) can be encoded as
𝑇 → B,𝑇 → N, and𝑇 ∗ types, respectively.
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(S, ⪯,Ω𝑃 ∪ ΩD , asc) combines the primitive signature Σ𝑃 and the
signature ΣD induced by D. The set S is the set of all sorts. The or-
der 𝑥 ⪯ 𝑦 on S is defined as 𝑥 ⪯𝑃 𝑦 ∨ 𝑥 ⪯D 𝑦 ∨ 𝑦 = Any ∨ ∃𝑠 . 𝑦 =

Collection(𝑠) ∧ 𝑥 ∈ {Set(𝑠),Bag(𝑠), Sequence(𝑠)}. Intuitively, it
combines the sort orders from primitive and data model signatures,
and introduces the (maximal) Any sort and Collection sorts.

Structures. A first-order structure 𝜎 = (J·K, {{·}}, ⟨⟨·⟩⟩) over a sig-
nature Σ consists of three interpretation functions that interpret
the signature’s sorts, function symbols, and relation symbols. These
functions map sorts, function symbols, and relation symbols to car-
rier sets, functions, and relations, respectively such that:

(1) unordered sorts have disjoint carrier sets, i.e.,

∀𝑥,𝑦 ∈ S. 𝑥 ⪯̸ 𝑦 ∧ 𝑦 ⪯̸ 𝑥 ↔ J𝑥K ∩ J𝑦K = ∅;
(2) the interpretations of ordered sorts are subsets, i.e.,

∀𝑥,𝑦 ∈ S. 𝑥 ⪯ 𝑦 ↔ J𝑥K ⊆ J𝑦K;

(3) {{·}} and ⟨⟨·⟩⟩ map to well-typed functions and relations, i.e.,

∀𝑓 : 𝐹 ∈ Ω. ∀𝑟 : 𝑅 ∈ 𝜌. {{𝑓 }} ∈ J𝐹K ∧ ⟨⟨𝑟 ⟩⟩ ∈ J𝑅K.

As indicated above, the structure with static information 𝜎𝑠 maps
each role (and purpose) sort in Σ𝑠 to a set of strings such that the
sets respect ⪯R . The relation symbols in Σ𝑠 are interpreted by the
permission assignment relation (⟨⟨PA⟩⟩ = PA) and the declared
purpose relation (⟨⟨PAP⟩⟩ = PAP ), respectively.

Regarding the structure with dynamic information 𝜎𝑑 , we start
by interpreting the primitive sorts, and then the sorts defined by
the data model. Conceptually, an object model induces a first-order
structure that interprets the sorts defined by the data model. The
primitive sorts are interpreted by the positive 64-bit integers (JNK =
N), 64-bit integers (JZK = Z), IEEE-754 floating-point numbers
(JFK = F), ASCII 8-bit character strings (JStringK = S), and set
of Booleans (JBK = B = {⊤,⊥}), respectively. The interpretation
of sorts is lifted to types, (i.e., J𝐴 × 𝐵K = J𝐴K × J𝐵K, J𝐴 + 𝐵K =

J𝐴K ∪ J𝐵K, J𝐴 → 𝐵K = J𝐵KJ𝐴K, and J𝐴 ⇁ 𝐵K =
⋃

𝑎⊆𝐴J𝐵KJ𝑎K) and
the interpretation of function symbols in Ω𝑃 is as expected.

We now formally define carrier sets for sorts defined by the data
model, which contain elements called objects. Recall from Section 3
that an object of a sort 𝑐 ∈ CS is a pair (𝑜 ↦→ (𝑐, 𝑎𝑡𝑠)). Since
attributes are just function symbols,𝑎𝑡𝑠 is formally a set of functions
{{{𝑛}} | 𝑛 ∈ dom(attr(𝑐))} interpreting the function symbols. Since
object names are unique, a finite set of objects forms a (partial)
function from object names to their interpretations. Hence the
carrier set J𝑐K of a sort 𝑐 ∈ CS is the set of all partial functions from
object names to all possible attribute interpretations, i.e.,

{{ID ⇁ ({𝑐} ×
∏

𝑛∈dom(attr(𝑐))
Jattr(𝑐) (𝑛)K)}}.

An object model (O,M,R) of a data model D induces a first-
order structure whereO defines carrier sets forD’s sorts,M defines
functions for D’s methods, and R defines relations for D’s associa-
tions. Otherwise, the interpretation functions are as defined above.

Model semantics. To capture the formal semantics of our models,
we use the standard order-sorted FOL syntax over the signature
Σ = Σ𝑠 ∪ Σ𝑑 additionally extended with the unary relation symbol
CAP : P modeling the current actual purposes. Since our semantics
depends on authorization constraints expressed in OCL, we abuse

the notation and use the OCL constraints as subformulas in FOL
formula. This is fine as OCL is itself a FOL, only with a specialized
concrete syntax. For clarity, we provide OCL’s syntax and semantics
in Appendix A.

The structure 𝜎 on which we evaluate the formula combines the
structures 𝜎𝑠 and 𝜎𝑑 . Moreover, it is further extended to interpret
the unary relation symbol CAP : P with the set of current actual
purposes, which is an abstraction representing the state of our pur-
pose tracking mechanism. The exact content of this relation de-
pends on the execution history of the system and it will be speci-
fied later in this section. The semantics of our models are specified
for any interpretation of the CAP relation symbol.

Given a valuation 𝜈 defining a user𝑢 executing an action 𝑎 on an
object 𝑐 (possibly) with an update value 𝑣 , the formal semantics of
the security model is captured by the order-sorted FOL formula 𝜑𝑠 :

∃𝑟 ′. PA(𝑟 ′, 𝑎, 𝜙) ∧ 𝑟 ′ ⪯R role(𝑢) ∧ 𝜙 [caller/𝑢, value/𝑣],

where the OCL expression self evaluates to the object 𝑐 .
Given a valuation 𝜈 defining a user 𝑢 executing an action 𝑎 on a

personal data object 𝑑 of a sort 𝐷 (possibly) with an update value 𝑣 ,
the formal semantics of the privacy model is captured by the order-
sorted FOL formula 𝜑𝑝 :

(∀𝑝. CAP(𝑝) → PAP (𝑝, 𝑎, 𝜙) ∧ 𝜙 [caller/𝑢, value/𝑣]) ∧
∃𝑐. user(𝑐) = owner(𝑑) ∧ data(𝑑) = 𝐷 ∧

∀𝑝. CAP(𝑝) → 𝑝 ∈ purposes(𝑐),
where the OCL expression self again evaluates to the object 𝑑 .

The access control decisions can be specified based on the cur-
rent system state. In contrast, the behavior of the purpose track-
ing mechanism (modeled by the CAP relation) depends on both
the current and previous system states. Therefore, we model any
system as a labeled transition system (LTS) Δ = (𝑄,A ′, 𝛿), where
the set of nodes 𝑄 contains all possible composite structures 𝜎 ,
edges are labeled by the actions extended with the actions corre-
sponding to the method returns (i.e., A ′ = A ∪ {return(𝐶,𝑛) | 𝑛 ∈
dom(meth(𝐶)), 𝐶 ∈ CS}), and 𝛿 ⊆ 𝑄 × A ′ × 𝑄 is transition re-
lation. The transition relation allows only authorized actions and
relates two structures based on the action taken as expected. For
example, for an authorized update action, the new structure is the
same as the old structure except that the new updated value is as-
signed, see Appendix B. The transition relation also updates the
current actual purpose appropriately, i.e., 𝛿 contains:

{(𝑞, execute(𝐶,𝑛), 𝑞′) | 𝑞′ = 𝑞 [⟨⟨CAP⟩⟩ ↦→ ⟨⟨CAP⟩⟩ ∪ annotate(𝑛)]
if 𝑞, 𝜈 |= 𝜑𝑠 ∧ 𝜑𝑝 } ∪

{(𝑞, return(𝐶,𝑛), 𝑞′) | 𝑞′ = 𝑞 [⟨⟨CAP⟩⟩ ↦→ ⟨⟨CAP⟩⟩ \ annotate(𝑛)]}.
Intuitively, whenever an authorized method is executed, its actual
purpose is added to the set of current actual purposes. When the
method returns, the actual purpose is removed.

7 IMPLEMENTATION
In this section we describe two model transformations that imple-
ment our model-based methodology in two popular programming
languages, C# and Python. In this section, we describe the code-
generation process and design choices for both transformations.

Based on the three models, our model transformations create
either an ASP.NET web application in C# or a Flask web application
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in Python. From the extended data model, they generate a set of
Entity Framework Core classes [3] in C# or SQLAlchemy [1] model
classes in Python. This set of classes will be automatically mapped
into an appropriate SQL database schema by the two libraries.

To handle the concept of users, roles, and the authentication pro-
cess, we rely on the ASP.NET Core Identity [4] and Flask-User [2]
library. We generate the user class extended with the authentica-
tion library’s user class (IdentityUser or UserMixin class, respec-
tively). Since the libraries do not support role hierarchies, we have
encoded them manually in the authorization checks.

A class and the corresponding associations are also created for
the purpose, personal data, and consent sorts. We configure the ap-
plication such that the purposes defined in the privacy model are
inserted into the database table corresponding to the purpose class
whenever the database is initialized. Furthermore, a fully functional
web page for collecting consent is generated in both our ASP.NET
and Flask applications. The page contains the automatically gener-
ated text of the application’s privacy policy and allows the user to
consent to each declared purpose individually.

Each action in A is mapped to an existing method provided by
the generated classes, e.g., for every sort 𝐶 ∈ CS and attribute 𝑛 ∈
dom(attr(𝐶)), getter and setter methods for the property 𝑛 in the
class 𝐶 correspond to actions read(𝐶,𝑛) and update(𝐶,𝑛), respec-
tively. To enforce security and privacy policies, these methods need
to be instrumented to call the enforcement mechanisms that imple-
ment the respective models’ semantics. Such instrumentation can
be achieved using different technologies. In C#, we annotate these
methods with the [Secured] label, whose definition relies on the
PostSharp C# aspect-oriented programming (AOP) library [55] to
call the enforcement mechanisms. In Python, we instrument meth-
ods via a function decorator @secured that calls the enforcement
mechanisms directly. If an action is permitted, according to both the
security and privacy models, then the system executes it; otherwise,
an enforcement mechanism raises an exception. If the developers
do not handle the raised exception, the generated default exception
handler is called that displays which permission was disallowed.

To enable the purpose tracking mechanism to track the current
actual purposes, we extend the label (decorator) to include the
labeled (decorated) method’s actual purpose as a parameter. The
parameter is a constant specified during the code generation. The
definition of the label and decorator additionally includes code that
pushes the supplied parameter to a thread-local stack of purposes
when the interface method is called and pops it when the method
returns. The stack content corresponds to the content of the CAP
relation (Section 6).

Finally, our model transformations generate code for the secu-
rity and privacy enforcement mechanisms. The code directly imple-
ments the set-theoretic semantics presented in Section 6. To sup-
port security and privacy policy evolution, our model transforma-
tions can also generate just the enforcement mechanisms’ code,
while the application’s business logic remains unchanged.

Threat model and assumptions. Our approach makes as few as-
sumptions on the system as possible. In particular, for the designers
to specify an application’s privacy policies (i.e., to define a privacy
model), they must know the structure of the application’s state (i.e.,
the data model) and the application’s interface methods (i.e., the

domain of the annotate function). Having a data model of an appli-
cation at a design phase is a realistic assumption.

Our approach relies on application designers (i.e., software, secu-
rity, and privacy engineers) to correctly specify the application’s
well-formed states and its security and privacy requirements. The
problem of enforcing these requirements becomes extremely chal-
lenging if application designers or developers are malicious and
requires some form of trusted platform technology to ensure that
a correct version of enforcement mechanism code runs [56]. We
therefore consider application designers to be trustworthy. Addi-
tional design validation techniques, like model checking or manual
model inspection, can help justify this assumption.

In contrast, the application developers, while not malicious, may
unintentionally deviate from the design by making implementation
errors. Our methodology and tools aid well-intentioned developers
in systematically and consistently enforcing security and privacy
policies. As these policies have a cross-cutting effect on system ex-
ecution, generating enforcement mechanism code and instrument-
ing relevant actions effectively connects privacy-relevant design
and implementation artifacts thereby enabling privacy-by-design.

Overall, our approach helps organizations mitigate the risk of
GDPR violations caused by accidental implementation errors.

8 EVALUATION
We have evaluated our model-driven approach using the generators
described in Section 7. In particular, in our evaluation aims to
answer the following groups of research questions (RQ):

RQ1: Does our approach generalize across different implementa-
tion technologies and application domains?

RQ2: How much developer effort is required to use our model-
driven approach compared to a manual implementation?
What is the ratio between the generated and manually writ-
ten code?

RQ3: How much runtime overhead does our approach incur? How
does it compare to manual implementation and to state-of-
the-art approaches? How does it scale as the size of an appli-
cation’s input workload and state grow?

We answer the above questions by implementing three realis-
tic applications as case studies from different business domains
(RQ1): (i) a social networking site MiniTwit, (ii) a conference man-
agement system ConfMS, and (iii) a health record manager Hipaa.
Each application is implemented multiple times. ConfMS is imple-
mented using both of our model transformations targeting differ-
ent implementation technologies (RQ1). To assess the development
effort (RQ2), MiniTwit is implemented manually twice, in addition
to using our model transformation targeting Python. The first man-
ual implementation is the original MiniTwit implementation [61]
that does not enforce any security or privacy policy. This baseline
implementation allows us to assess the (worst case) runtime over-
head of our generated enforcement mechanisms (RQ3). To the best
of our knowledge, no state-of-the-art approach automatically en-
forces privacy policies. We still compare the overhead of our ap-
proach to a state-of-the-art framework Jacqueline [64] for security
policies (RQ3). The Hipaa application was chosen as it has an inde-
pendent implementation in Jacqueline.

323



Proceedings on Privacy Enhancing Technologies 2024(1) Krstić et al.

Table 1: Summary of the case study implementations

Name Description Application Developers

MiniTwit-baseline Baseline MiniTwit [61], Python
MiniTwit-secured Secure, manual MiniTwit Us, Python
MiniTwit-flask Secure, generated MiniTwit Us, Python
ConfMS-flask Secure, generated ConfMS Us, Python
ConfMS-asp Secure, generated ConfMS Us, C#
Hipaa-jacqueline Secure, Jacqueline Hipaa [64], Python
Hipaa-flask Secure, generated Hipaa Us, Python

Table 1 summarizes the names, descriptions, and developers of
all the implementations of the three applications. The code and the
deployment instructions for each of them can be found under the
respective subdirectory in our publicly available artifact [45].

We now describe each application in detail and afterwards we
present our evaluation results.

8.1 Case studies
Social networking site. MiniTwit is a Twitter clone with an open-

source implementation [61]. In short, registered users can write
new messages, follow or unfollow users, and view their own time-
line. Moreover, to assess privacy policy enforcement, we extend its
functionality to support in-application advertisements displayed
on users’ timelines.

We denote this implementation as MiniTwit-baseline as it
forgoes security and privacy policy enforcement and implements
only MiniTwit’s business logic. Next, we introduce MiniTwit’s
security and privacy policies.We denote by MiniTwit-secured and
MiniTwit-flask the two MiniTwit implementations that enforce
the security and privacy policies. The former extends the baseline
application with a manual implementation that directly enforces
the policies, while the latter follows our approach using our Python
model transformations (Table 1).

The MiniTwit application has only one role, the registered user
RegUser and the following FGAC policies:

(AC1) Users can create new messages, modeled as the permission
assignment tuple (RegUser, create(Message),⊤).

(AC2) Users can initialize themselves as an author of the message
and update the its publication date and text, modeled as
(RegUser, update(Message, author), 𝜑),
(RegUser, update(Message, pub_date), self .author = caller),
(RegUser, update(Message, text), self .author = caller).

(AC3) Users can follow and unfollow others, modeled as
(RegUser, add(User, follows), self = caller),
(RegUser, add(User, followers), value = caller),
(RegUser, remove(User, follows), self = caller),
(RegUser, remove(User, followers), value = caller).

(AC4) Users can read messages (including its author, publication date,
and text) posted by themselves, or by users that they follow,
modeled as
(RegUser, read(Message, author), self .author = caller),
(RegUser, read(Message, pub_date), self .author = caller),
(RegUser, read(Message, text), self .author = caller),
(RegUser, read(User, follows), self = caller).

Here 𝜑 is (self .author.oclIsUndefined() and value = caller).
We define personal data sorts CSP as {User, Follow}, i.e., the

set of users’s basic information (like their gender and age) and the
set of users they follow. The application has two purposes P =

{GenerateAds,DisplayPosts} and the following privacy policy:
(DP1) We will read your basic information, namely your age and

gender, to generate and display advertisements that you may
find interesting, modeled as the declared purpose tuples
(GenerateAds, read(User, age),⊤),
(GenerateAds, read(User, gender),⊤).

(DP2) We will read your followers to populate your timeline with
posts, modeled as (DisplayPosts, read(User, follows),⊤).

The following JSON snippet shows the definition of the security
policy for updating a message’s text (as in AC2), and the privacy
policy for reading the user’s age for the purpose of generating
advertisements (as in DP1). The concrete syntax used to define all
our models is JSON.
% Security policy, permission assignment from AC2
{

"role": "RegUser",
"action": "update",
"resource": {

"class": "Message",
"attribute": "text"

},
"constraint": "self.author = caller"

}

% Privacy policy, declared purpose from DP1
{

"purpose": "GenerateRelevantMarketingEntities",
"action": "read",
"resources": [

{
"class": "User",
"attribute": "age"

}
],
"constraint": {

"ocl": "true",
"desc": "true"

}
}

Observe that the JSON input to our model transformations is
isomorphic to the model definitions presented in Sections 3 and 4.

Conference management system. ConfMS is an extension of our
running example in this paper. As described in Example 1, a regis-
tered user in this application can have either a normal role, or be
on the program committee, or be the chair. Normal users can edit
their profile information, search and view accepted papers, and sub-
mit new papers. Program committee users can delegate the review
of a paper to some users. In addition, users with the chair role can
accept papers for publication.

We define our three models for this conference management
system. For space reasons, we omit the details. In a nutshell, the
data model consists of 2 classes and 3 associations (Figure 1), the
security model consists of 3 roles and 14 FGAC policies, and the
privacy model has 3 declared and 3 actual purposes as depicted in
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Examples 6, 7, and Figure 3. These models are input into our code-
generators to generate C# and Python applications with method
stubs. We straightforwardly implement the stubs’ business logic fol-
lowing the activities specified in Figure 3.We denote by ConfMS-asp
and ConfMS-flask the name of these two applications (Table 1).

Health record manager. Hipaa is a web application that allows
users with different roles to view personal medical records. We de-
fine three models correspond to the underlying database and im-
plementation of the similar case study conducted in Yang et al. [64]
and compare the performance result. Due to space limitations, we
only report on the sizes on the models, which are available within
our artifact [45]. Hipaa’s data model contains 10 classes and 13 as-
sociations, its security model contains one FGAC policy, and its
privacy model declares one declared and one actual purpose.

We denote by Hipaa-jacqueline the name of the HRM appli-
cation implemented by Yang et al. [64] and Hipaa-flask the name
of the Python application that is generated.

8.2 RQ1: Generality
To answer RQ1, we have showcased in Section 7 that our model-
driven approach can target multiple different programming lan-
guages, namely C# and Python. Furthermore, we claim that any
language can be targeted. Languages supporting the implementa-
tion of cross-cutting concerns like AOP [33, 34] or function decora-
tors [42] are particularly convenient for implementing the model
transformations, and such transformations produce code that is
easy to maintain and evolve. Existing support for authentication
and authorization also helps in this respect as the relevant libraries
can be directly targeted by model transformations. Finally, by im-
plementing the three case study applications, we show that our ap-
proach can be used in different application domains.

8.3 RQ2: Development effort
To answer RQ2, Table 2 provides statistics on the different imple-
mentations of the ConfMS application. At the top, the table shows
the size of our three models of the ConfMS application. A data
model’s size is determined by summing the number of defined sorts,
attributes, methods, and associations. A security model’s size is
the size of its permission assignment relation, whereas a privacy
model’s size is the sum of the number of declared and actual pur-
poses. Below the model sizes, our table shows the number of gen-
erated lines of code (# LoC) for ConfMS-flask (Python and HTML
code) and ConfMS-asp (C# and HTML code) implementations, as
well as the lines of code needed to implement the method stubs man-
ually. Developers need to write only 16% of the overall codebase
manually in Python and 15% in C# to obtain functional web applica-
tions. The absolute difference in the number of lines of code written
manually is only 202, whichmakes themanual effort across different
technologies comparable. The difference in the ratios of manual and
generated code between the two technologies is due to the Model-
View-Control architecture of ASP.NET web applications, which sig-
nificantly increases the codebase. We do not report numbers for the
generated authentication mechanism as it is handled by the respec-
tive libraries that require only a few configuration parameters. The
most significant part of the generated code is for the enforcement
mechanisms: 21% of the total Python code and 30% of total C# code.

Table 2: # LoC of the ConfMS (EM = enforcementmechanism)

ConfMS implementations # LoC Total

.json -

Data model 13 - 13
Security model 14 - 14
Privacy model 6 - 6

.cs .cshtml

ConfMS-asp 1842 456 2298
a) Generated artifacts 1662 292 1954

a.1) Classes & method stubs 302 0 302
a.2) Authentication - - -
a.3) EM for Security 672 0 672
a.4) EM for Privacy 10 0 10
a.5) Consent collection 54 137 191
a.6) Purpose tracking 207 0 207
a.7) Others 417 155 572

b) Manually implemented 180 164 344

.py .html

ConfMS-flask 689 184 873
a) Generated artifacts 632 99 731

a.1) Classes & method stubs 126 0 126
a.2) Authentication - - -
a.3) EM for Security 120 0 120
a.4) EM for Privacy 61 0 61
a.5) Consent collection 105 32 32
a.6) Purpose tracking 63 0 63
a.7) Others 157 67 224

b) Manually implemented 57 85 142

We also assess the overall effort when developing the MiniTwit
application manually (MiniTwit-secured) compared to using our
approach (MiniTwit-flask). The MiniTwit-secured application
consists of 202 lines of Python and 137 lines of HTML code, whereas
MiniTwit-flask is just 172 lines of Python and 119 lines of HTML
code. The remaining MiniTwit-flask code is generated from mod-
els with a total size of 29 (its data model size is 15, security model
size is 12, and privacy model size is 2). This provides evidence that
the combined effort of the designers and developers using our ap-
proach is significantly lower than the effort of developers manually
implementing the application. Furthermore, when the security or
privacy policies change, our model transformation would regener-
ate correct enforcement mechanisms automatically, whereas a man-
ually implemented application may require non-trivial changes.

8.4 RQ3: Runtime overhead and scalability
We deploy the three versions of the MiniTwit application and exe-
cute them to measure the overhead incurred by enforcing security
and privacy requirements using our methodology. We then deploy
the Hipaa implementations to compare our approach to the state-
of-the-art security web frameworks. We measure the time taken
between sending a request to the web application and receiving a
response back. The execution time is averaged over 10 executions.

In particular, as input to the applications we use the workload
where a registered user logs in and then views their own timeline (by
invoking the public_timeline method). Each MiniTwit instance
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Figure 5: Performance of different MiniTwit implementations

is deployed with 4 users and a variable number of messages in its
state. Message content is randomly sampled, and its assignment to
a user is randomly determined. One of the users is set to follow all
the other users and we generate the workload on behalf of that user.
The user’s followers are considered personal data. By controlling
the number of messages present in the state of the application we
can assess our approach’s scalability.

Figure 5 shows the execution time of the three MiniTwit imple-
mentations on the above workload. All the implementations scale
linearly with the number of messages. Our approach clearly adds
overhead as its linear factor is larger than both the baseline and the
manually secured implementation. The baseline implementation
does not implement any policy checks hence its execution time is
the lower bound for the other two implementations. The manually
secured implementation is more efficient as it performs only two
checks (one for security and one for privacy policy compliance) be-
fore outputting the list of messages to the public timeline. This is
prone to errors as it assumes that the subsequent code correctly
queries and outputs the right messages. In contrast, our approach
performs both checks whenever a message is accessed within the
public_timeline method’s implementation, ensuring that the de-
veloper only manipulates data in compliance with the policies.

Although the added overhead is comparatively high, it is unno-
ticeable from a user’s perspective. In particular, our implementa-
tion’s execution times are below one second for any number of
messages. This is ensured as MiniTwit implements a 30-item pag-
ination for all lists shown to the user. Therefore, our approach’s
performance stabilizes below 0.3 seconds for all executions involv-
ing more than 30 messages in the application’s state.

When running the Hipaa implementations (hipaa-jacqueline
and hipaa-flask), we initialize their state with a single doctor
and variable number of randomly sampled patients. We then run a
workload where the doctor logs in and opens the initial page of the
application (by invoking the index method), which shows all their
patients and the hospitals where they work. In this case, only the
patient information is considered personal data.
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Figure 6: Performance of different Hipaa implementations

Figure 6 shows the execution time of the two Hipaa implemen-
tations on the above workload. While our approach still scales lin-
early in the number of patients, Jacqueline’s performance is super-
linear. Both approaches perform well enough to be used with a
100-item pagination, which the Hipaa application does not imple-
ment. The significant difference in the performance between the
two approaches is caused by the performance-intensive faceted ex-
ecution [12] employed by Jacqueline. It is used to enforce stronger
information-flow security policies.

9 CONCLUSIONS
In data protection, a privacy policy is an informal legal document
describing how a system gathers, uses, discloses, and manages
personal data. We have introduced the well-known and widely-
mandated classes of privacy policies involving purpose-limitation
and consent into the system design phase. Namely, we propose a
privacy model that formalizes these classes of privacy policies. We
define the model’s semantics and implement model transformations
that can generate web applications in C# and Python with com-
plete, configured, enforcement infrastructure for their specified pri-
vacy polices. By generating this (often critical) enforcement code,
our approach reduces the risk of privacy policy violations due to
implementation errors. We evaluate our approach and demonstrate
its broad scope and applicability, as well as its modest overhead.

In the future, we plan to extend our methodology to incorporate
other data protection requirements such as data minimization (Art.
5 §1 (c) GDPR), storage limitation (Art. 5 §1 (e) GDPR), and account-
ability (Art. 5 §2 GDPR). We also plan extend our methodology to
enforce information-flow security policies on particularly sensitive
classes of personal data to prevent inference attacks. Models that
have formal semantics enable the analysis of both the models them-
selves and the transformation functions. We plan to carry out auto-
matic property checking of privacy models to detect and correct
design errors and provide feedback to developers during method
stub implementation. We also plan to fully verify the correctness
of our model transformation functions.
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A OBJECT CONSTRAINT LANGUAGE
The object constraint language (OCL) [58] is a formal language
used to query object models or describe properties (invariants) of
data models, e.g., in order to constrain their possible object models.
OCL resembles an order-sorted first-order logic (FOL) with 4 logical
values. Here we focus on its 2-valued variant for simplicity.

OCL is a pure language: OCL expressions do not have side effects,
i.e., the object model does not change as a consequence of evaluating
OCL expressions. Although OCL expressions can be used to specify
many aspects, here we focus on sort invariants, where such OCL

expressions are written in the context of an object of a specific sort
(referenced using the self OCL expression).

Syntax. Let a family of sets of variables 𝑉𝑠 indexed by a sort
𝑠 ∈ S be given. The following grammar 𝜃Σ𝑠 defines OCL expressions
that evaluate to an element of type 𝑠 over the signature Σ (possibly)
extended with nullary function symbols representing constants.
Below we fix the signature Σ and write just 𝜃𝑠 .

𝜃𝑠 ::= self
| 𝑥𝑠 if 𝑥𝑠 ∈ 𝑉𝑠
| 𝜔 (𝜃𝑠′1

, . . . , 𝜃𝑠′𝑛 ) if 𝜔 : 𝑠1 × . . . × 𝑠𝑛 → 𝑠 and 𝑠 ′
𝑖
⪯ 𝑠𝑖

| if 𝜃B then 𝜃𝑡 else 𝜃𝑒 fi if 𝑡 ⪯ 𝑠 and 𝑒 ⪯ 𝑠

| 𝜃𝑠′ as 𝑠 if 𝑠 ⪯ 𝑠 ′

| 𝜃Collection(𝑠′)→ iterate(𝑥𝑠′, 𝑥𝑠 : 𝜃𝑠 | 𝜃𝑠 ) if 𝑥𝑠 ∈ 𝑉𝑠 and 𝑥𝑠′ ∈ 𝑉𝑠′

Intuitively, the expression self refers to the object of sort 𝑠 that is
the context in which the OCL expressionwaswritten. Variables 𝑥𝑠 ∈
𝑉𝑠 stand for some element of the sort 𝑠 . Function application applies
the function symbol 𝜔 to a tuple of OCL expressions 𝜙1, . . . ,𝜙𝑛
with appropriate types. If 𝜙1 evaluates to a collection sort, then
OCL allows 𝜙1→ 𝜔 (𝜙2, . . . ,𝜙𝑛) as a syntactic sugar, otherwise
𝜙1 .𝜔 (𝜙2, . . . , 𝜙𝑛) can be used as syntactic sugar. The if-then-else
expression evaluates to either of the two alternative expressions of
a subsort of 𝑠 depending on the evaluation of the OCL constraint
𝜃B. The as expression casts an expression of sort 𝑠 ′ to 𝑠 , a subsort
of 𝑠 ′. Finally, the iterate expression is a fold on collection sorts,
where the variable 𝑥𝑠′ binds to every element of the collection, while
variable 𝑥𝑠 serves as an accumulator that is initially set to the value
of the first OCL expression 𝜃𝑠 and then iteratively updated for each
element of the collection, based on the second OCL expression 𝜃𝑠 .

Recall that fv(𝜙) ⊆ ⋃
𝑠∈S𝑉𝑠 is the set of free variables of the OCL

expression 𝜙 , each indexed by its sort. For 𝑥𝑠 ∈ fv(𝜙) and an OCL
expression 𝑡 ∈ 𝜃𝑠 , 𝜙 [𝑥𝑠/𝑡] is the OCL expression obtained from 𝜙

by substituting all instances of 𝑥𝑠 with 𝑡 in a capture-avoiding way.

Example 10. Consider the OCL constraint from Example 4 over
the signature Σ extended with the constant 0 of type () → Z. It is
desugared to the expression > (size(name(self)), 0) defined by the
above grammar.

Semantics. Let 𝜎 be the structure induced by some object model
interpreting the signature Σ. The valuation 𝑣 : 𝑉𝑠 → J𝑠K is a family
of variable assignments, each for variables of the appropriate sort.
The semantics of an OCL expression 𝜙 ∈ 𝜃𝑠 is defined with respect
to a valuation 𝑣 and a context object 𝑐 of the type 𝐶 ∈ S using a
function I : 𝜃𝑠 → 𝑉 ×𝐶 → J𝑠K, where 𝑉 is a set of all valuations.

I(self) (𝑣, 𝑐) = 𝑐

I(𝑥) (𝑣, 𝑐) = 𝑣 (𝑥)
I(𝜔 (𝜙1, . . . ,𝜙𝑛)) (𝑣, 𝑐) = {{𝜔 }}(I(𝜙1) (𝑣, 𝑐), . . . , I(𝜙𝑛) (𝑣, 𝑐))

I(if 𝜙 then 𝜙1 else 𝜙2 fi) (𝑣, 𝑐) = if I(𝜙) (𝑣, 𝑐) = ⊤
then I(𝜙1) (𝑣, 𝑐)
else I(𝜙2) (𝑣, 𝑐)

I(𝜙 as 𝑠) (𝑣, 𝑐) = I(𝜙) (𝑣, 𝑐) if I(𝜙) (𝑣, 𝑐) ∈ J𝑠K
I(𝜙→ iterate(𝑒, 𝑎 : 𝜙𝑎 | 𝜙𝑢)) (𝑣, 𝑐) = I(fold(𝜙, 𝜙𝑢 )) (𝑣 [𝑎/I(𝜙𝑎) (𝑣, 𝑐) ], 𝑐)
where I(fold( ∅, 𝜙𝑢 )) (𝑣, 𝑐) = I(𝑎) (𝑣, 𝑐)

I(fold(𝑓 · 𝜙, 𝜙𝑢 )) (𝑣, 𝑐) = I(fold(𝜙, 𝜙𝑢 )) (𝑣 [𝑎/I(𝜙𝑢 ) (𝑣 [𝑒/𝑓 ], 𝑐) ], 𝑐)
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Other more commonly used OCL expressions can be derived using
the iterate expression. For instance, the following are the expres-
sions the we use in this paper:

𝜙→ forall(𝑥 | 𝜙 ′) := 𝜙→ iterate(𝑥, 𝑎 : ⊤ | 𝑎 and 𝜙 ′),
𝜙→exists(𝑥 | 𝜙 ′) := 𝜙→ iterate(𝑥, 𝑎 : ⊥ | 𝑎 or 𝜙 ′),
𝜙→excludes(𝑥) := 𝜙→ forall(𝑥 ′ | not 𝑥 = 𝑥 ′),

𝜙→size() := 𝜙→ iterate(𝑥, 𝑎 : 0 | 𝑎 + 1).

B SYSTEM SEMANTICS
We model any system as a labeled transition system (LTS) Δ =

(𝑄,A ′, 𝛿), where the set of nodes 𝑄 contains all 𝜎 structures (Sec-
tion 6), and edges are labeled by the actionsA (Section 3) extended
with the actions corresponding to the method returns. In particular,
edges are labeledwith actionsA ′ defined byA∪{return(𝐶,𝑛) | 𝑛 ∈
dom(meth(𝐶)), 𝐶 ∈ CS}. The transition relation 𝛿 ⊆ 𝑄 × A ′ ×𝑄

allows only authorized actions and relates two structures based on
the action and is defined as follows:
{(𝑞, execute(𝐶,𝑛), 𝑞′) | 𝑞′ = 𝑞 [ ⟨⟨CAP⟩⟩ ↦→ ⟨⟨CAP⟩⟩ ∪ annotate(𝑛) ]

if 𝑞 |= 𝜑𝑠 ∧ 𝜑𝑝 } ∪
{(𝑞, return(𝐶,𝑛), 𝑞′) | 𝑞′ = 𝑞 [ ⟨⟨CAP⟩⟩ ↦→ ⟨⟨CAP⟩⟩ \ annotate(𝑛) ] } ∪
{(𝑞, read(𝐶,𝑛), 𝑞) | 𝑞′ = 𝑞 if 𝑞 |= 𝜑𝑠 ∧ 𝜑𝑝 } ∪
{(𝑞, update(𝐶,𝑛), 𝑞) | 𝑞′ = 𝑞 [ {{𝑛}} ↦→ {{𝑛}} [𝑐 ↦→ 𝑣 ] ] if 𝑞 |= 𝜑𝑠 ∧ 𝜑𝑝 } ∪
{(𝑞, add(𝐶,𝑛), 𝑞) | 𝑞′ = 𝑞 [ ⟨⟨𝑟 ⟩⟩ ↦→ ⟨⟨𝑟 ⟩⟩ ∪ (𝑐, 𝑣) ] if 𝑞 |= 𝜑𝑠 ∧ 𝜑𝑝 } ∪
{(𝑞, remove(𝐶,𝑛), 𝑞) | 𝑞′ = 𝑞 [ ⟨⟨𝑟 ⟩⟩ ↦→ ⟨⟨𝑟 ⟩⟩ \ (𝑐, 𝑣) ] if 𝑞 |= 𝜑𝑠 ∧ 𝜑𝑝 } ∪
{(𝑞, create(𝐶,𝑛), 𝑞) | 𝑞′ = 𝑞 [J𝐶K ↦→ J𝐶K ∪ 𝑐′] if 𝑞 |= 𝜑𝑠 ∧ 𝜑𝑝 } ∪
{(𝑞, delete(𝐶,𝑛), 𝑞) | 𝑞′ = 𝑞 [J𝐶K ↦→ J𝐶K \ 𝑐 ] if 𝑞 |= 𝜑𝑠 ∧ 𝜑𝑝 }.

Here 𝑐 ∈ J𝐶K is the object on which the action is executed, and 𝑣 is
the value assigned to an attribute or added to (or removed from) an
association 𝑟 .

Intuitively, whenever an authorized method is executed, its ac-
tual purpose is added to the set of current actual purposes. Once the
method returns, the actual purpose is removed. Read actions label
loop edges of the nodes where authorization constraints and privacy
policies hold. An authorized update action labels an edge from an
old structure to a new structure, which is the same as the old struc-
ture except that the new updated value is assigned to the attribute.
Similarly for an add (remove) action where the pair of objects is
added (removed) from the appropriate association. Create and delete
actions add and remove objects from the structure, respectively.
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