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ABSTRACT

Decision tree evaluation is extensively used in machine learning to
construct accurate classification models. Often in the cloud-assisted
communication paradigm cloud servers execute remote evalua-
tions of classification models using clients’ data. In this setting, the
need for private decision tree evaluation (PDTE) has emerged to
guarantee no leakage of information for the client’s input nor the
service provider’s trained model i.e., decision tree. In this paper, we
propose a private decision tree evaluation protocol based on the
three-party replicated secret sharing (RSS) scheme. This enables
us to securely classify inputs without any leakage of the provided
input or the trained decision tree model. Our protocol only requires
constant rounds of communication among servers, which is useful
in a network with longer delays.

Ma et al. (NDSS 2021) presented a lightweight PDTE protocol
with sublinear communication cost with linear round complexity
in the size of the input data. This protocol works well in the low
latency network such as LAN while its total execution time is
unfavourably increased in the WAN setting. In contrast, Tsuchida et
al. (ProvSec 2020) constructed a constant round PDTE protocol at
the cost of communication complexity, which works well in the
WAN setting. Although their construction still requires 25 rounds, it
showed a possible direction on how to make constant round PDTE
protocols. Ji et al. (IEEE Transactions on Dependable and Secure
Computing) presented a simplified PDTE with constant rounds
using the function secret sharing (FSS) at the cost of communication
complexity.

Our proposed protocol only requires five rounds among the em-
ployed three servers executing secret sharing schemes, which is
comparable to previously proposed protocols that are based on gar-
bled circuits and homomorphic encryption. To further demonstrate
the efficiency of our protocol, we evaluated it using real-world clas-
sification datasets. The evaluation results indicate that our protocol
provides better concrete performance in the WAN setting that has
a large network delay.
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1 INTRODUCTION
1.1 Background

Privacy-preserving machine learning (PPML) enables us to analyze
a large amount of data without revealing any sensitive information.
More precisely, PPML allows service providers to compute statis-
tics and learning models using sensitive datasets (e.g., healthcare
data or individual DNA information) and perform advanced data
analytics while providing high privacy guarantees to the involved
clients; making people feel safe and less hesitant to upload sensitive
information to access specific services. Thus, PPML can support
and allow large-scale data collection and advanced data analytics.
PPML mainly focuses on the design of privacy-preserving machine
learning models computed via deep neural networks (DNN), linear
regression, logistic regression, support vector machine classifica-
tion, as well as decision tree classification. One of the main chal-
lenges in PPML research is execution speed, so it is important to
construct a practical and efficient PPML scheme.

Research on PPML has received significant attention employing
different cryptographic primitives. Some of the most popular PPML
approaches are based on secure multi-party computation (MPC)
schemes such as fully homomorphic encryption (FHE) [24], gar-
bled circuits [51], secret sharing, or a combination thereof. Some
recent work in PPML includes privacy-preserving DNN such as
Chameleon [43], Gazelle [29], and SecureML [38] in the two-party
setting, ABY? [37], SecureNN [48], FALCON [49], and Adam in
Private [4] in the three-party setting, as well as FLASH [13] and
Trident [16] in the four-party setting. The main objective in this
line of research is secure prediction (evaluation) and their feasibility
has been demonstrated using small datasets such as the MNIST
dataset. Another line of research has focused on achieving privacy-
preserving and secure training [4, 13, 37, 38, 48].

The main focus of this paper is Private Decision Tree Evalua-
tion (PDTE), which is one of the main tasks of PPML. Decision
trees are widely used in machine learning and have many ap-
plications in medicine (e.g., remote diagnosis) or finance. In the
cloud-assisted communication paradigm, cloud servers allow re-
mote evaluations of classification models. In this setting, remote
evaluation requires that the model remains secret and known only
to the service provider, while the service provider should not find
out the client’s input data. Thus, the need for PDTE has emerged to
guarantee no information leakage for the client’s input and service
provider’s decision tree.

In this study, we adopt a secret-sharing-based MPC scheme as
the underlying system. Secret-sharing-based MPC allows efficient
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computation of various functions with a small amount of commu-
nication. For instance, there have been many privacy-preserving
protocols for basic operations such as less-than/equality check [14,
18, 20, 40, 41], division [8, 26, 39], shuffle [15], and database join [34],
just to name a few. Among this line of work, [20, 40, 41] provided
a constant-round less-than protocol over a field and [46] provided
a constant-round less-than protocol over a ring. These works have
shown that MPC can run at practical speeds since the main over-
head of secret-sharing-based MPC arises from the communication
delay depending on the number of communication rounds in many
cases.

1.2 Related Work

Existing private decision tree evaluation (PDTE) protocols rely on
homomorphic encryption (HE) and garbled circuits (GC) [6, 11, 44,
47, 50], secret sharing (SS) schemes [27, 36, 46] or a combination of
these primitives. The best choice depends on the environment be-
cause these primitives often have a trade-off regarding the required
computation cost, communication cost, the targeted computed cir-
cuit size and scalability of the threat models. We mainly consider
environments where communication delays are dominant, such as
WAN settings. An effective goal in such settings is to reduce the
number of communication rounds, preferably regardless of datasize.

Most of the existing PDTE protocols that achieve constant com-
munication rounds are based on HE or GC. However, instead of high
round complexity, these schemes often require high computation
costs, communication complexity, or the use of limited computation
settings. For instance, Wu et al. [50] only considered the two-party
client-server setting where the server holds a trained decision tree
and the client holds a feature vector as input. The scheme of Wu et
al. employs oblivious transfer (OT) and additive HE. Subsequently,
Tai et al. [44] have improved Wu et al. [50]’s scheme significantly
in the semi-honest setting, but the scheme still involves heavy
cryptographic primitives, additive HE and OT.

As opposed to the above approach, another line of research has
proposed PDTE protocols [27, 28, 36, 46] based on secret-sharing
(SS) schemes. The advantage of SS-based protocols is their low
computational cost and low communication volume, compared to
HE-based and GC-based protocols, which generally require heavy
computations. On the other hand, a general drawback of SS-based
protocols is the large number of communication rounds. For in-
stance, the PDTE protocols that were introduced in [27, 36] require
O(d) rounds for a decision tree with height d.

Recently, several SS-based constant-round PDTE protocols have
been proposed. Tsuchida et al. [46] have performed a significant
improvement in this line of research by proposing the first con-
stant communication round (25 rounds) PDTE protocol, where the
number of rounds is independent of the height of the tree model.
Their proposed protocol is defined over a residue ring (contrary
to all previous works relying on finite fields) providing important
improvements in computation and communication cost while rely-
ing on a secret sharing scheme and three-party computation. Ji et
al. [28] claimed that their PDTE protocol required only 4 commu-
nication rounds using a function secret sharing (FSS) technique.
However, the protocol has some drawbacks; (i) its comparison phase
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allows only one type of comparison operation, (ii) the PDTE proto-
col cannot be deployed directly as a subprotocol unless it executes
an additional share transformation operation since the final output
of the servers is not in the same secret sharing format as the input,
and (iii) it needs to store a lot of pre-computed randomness for
FSS (i.e., FSS keys). We highlight the difference with our proposed
protocol in more detail in Appendix B.

In this paper, we investigate the question of whether it is possible
to further improve the performance of a constant communication
round PDTE protocol that relies on secret sharing and is defined
over a residue ring. In particular, we aim to improve the communica-
tion complexity and computational cost compared to the SS-based
schemes of Tsuchida et al. [46] and Ji et al. [28].

1.3 Contribution

In this paper, we present a private decision tree evaluation (PDTE)
protocol that admits a five-round online phase. Our scheme works
with a 2-out-of-3 replicated secret sharing ((2, 3)-RSS) scheme over
a ring, so it does not rely on heavy cryptographic primitives such
as OT or HE. In particular, we focus on the outsourced setting, in
which the computing servers cannot know or use any sensitive
information about the input and output data. The outsourced setting
provides stronger security than the client-server setting and enables
a wider range of applications such as federated learning. For those
who are interested in the PDTE protocols in the non-outsourced
setting, please refer [21, 36].

Fig. 1 shows a possible scenario of the outsourced setting using
(2,3)-RSS. As shown in Table 1, the round complexity of our scheme
is 5 times more efficient than the current state-of-the-art constant-
round protocol [46].

Shared tree

=~
. inpu A
S 2 N

Tree owner

Computing servers

Clients

Figure 1: Possible scenario: The tree owner has a binary decision tree
as a trained model, while each client has an attribute vector as input to the
service. The computing servers only obtain shares of all values from the clients
and the tree (model) owner. The classification result obtained via the decision
tree can be seen only by the client who sent a query.

Our proposed PDTE protocol is secure in the presence of semi-
honest adversaries in the honest majority setting and is composed of
three novel sub-protocols: (i) a one-round feature selection protocol,
(ii) a two-round comparison protocol, and (iii) a two-round path
evaluation protocol. Table 1 shows an overview of our protocol and
highlights the difference with previous work.

1.3.1  Feature Selection Protocol. Our feature selection protocol
uses a randomize-then-reveal technique for a secret shared vector,
more specifically, a roulette-then-reveal technique, instead of using
relatively heavy public key cryptographic primitives such as FHE.

The same functionality as the feature selection protocol has
also been achieved by circuit-based constructions using general
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Table 1: Comparison of Outsourced PDTE Protocols

Required Operations
FeatSelect ! Col:n pare PathEval Round

) [35] No obliviousness pHE + p MT hu MT h+3
= [52] npy MT mu MT SS O(m+h)

[36] hx (1,n)-OT h GC hx (1,2)-0OT 2h
L 6] [ (22)85 (23)RSS | (23)RSS (2,3)-RSS 25
£ [28] FSS FSS FSS &

Ours (2,3)-RSS FSS, (2,3)-RSS |  (2,3)-RSS 5

* Ji et al. [28] does not achieve the same functionalities as in [46] and ours. A straightforward solution
requires two more rounds. See Appendix B for more details.

* h is the depth of a decision tree. y1 is the number of the inner nodes, i.e.,, = 2" — 1. n is the size
of a feature vector. ‘HE’ means a number of operations of homomorphic encryption, ‘MT’ means a
number of multiplication triples, ‘SS’ means secret sharing, ‘GC’ means a garbled circuit, and ‘OT
means an oblivious transfer. *(2, 2)-SS’ stands for 2-out-of-2 additive secret sharing and *(2, 3)-RSS’
stands for 2-out-of-3 replicated secret sharing. ‘FSS’ stands for function secret sharing. Note that
(2,3)-RSS helps us to remove the relatively heavy public key crypto techniques such as OT and
generation of MT.

MPC framework [7, 30, 33] and oblivious random access machines
(ORAM) [12, 23, 32].

Laud [33] presented a feature selection protocol using general
MPC, which achieved O(m) round offline phase and a constant
round online phase, where m is an array size. Blanton et al. [7] also
introduced a general construction of the feature selection proto-
col for any number of computing parties under the Shamir secret
sharing, which achieved constant online/offline rounds. Our result
will be put among these constructions as a special case of the three-
party setting that achieves a constant round online/offline phase.
Please see Table 2 for comparison.

Faber et al. [23] use a “data-rotation” operation, which is sim-
ilar to our roulette operation. However, their binary-tree ORAM
approach proceeds a layer by layer in a tree, which takes a loga-
rithmic order of communication rounds for an input size, while our
feature selection protocol only requires one (constant) communica-
tion round. Bunn et al. [12] improved such an ORAM approach to
obtain a constant round 3-party ORAM by using a distributed point
function (DPF). However, their construction requires the client to
generate input-dependent DPF keys, which we would like to avoid
because the input to the feature selection protocol is not always
from clients or other entities who know the input value itself. In
other words, the input to the feature selection can be a secret shared
value that nobody knows its original value.

Roulette To construct an efficient feature selection protocol, we
introduce the Roulette protocol that computes the circular shifted
value from input in the shared form in 3PC, i.e., an input ([xo]V,
TN, ... Peme1]Y) willbe ([xn ]V, [xnst ]V, - o [om—1 I, [o] N,
< s [xn=1]") for a shared randomness [n]~. Although a roulette
protocol in 2PC was introduced in [5], it was not trivial to achieve
the same functionality in the (2, 3)-RSS setting.

The key idea to construct it in the RSS setting is to generate ap-
propriate correlated randomness by Rouletteprep. Well-structured
randomness helps servers to reduce the number of communications
between each other by cancelling out an accumulated term. Both
Roulette and its offline sub-protocol Rouletteprep help to construct
an efficient feature selection protocol and are of independent inter-
est since they are related to applications such as a secure database
search or an oblivious array read.
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Note that Araki et al. [3] constructed an efficient secure shuffle
protocol, which can be seen as a general case of our roulette proto-
col. However, our roulette protocol takes the best advantage of its
simpler functionality than shuffle protocols and it only requires one
communication round while the secure shuffle protocol requires
two communication rounds.

1.3.2  Comparison Protocol. To construct an efficient comparison
protocol, we use the existing less-than protocol and equality check
protocol constructed in the 2 + 1 server function secret sharing
(FSS) setting [9]. These protocols cannot be smoothly adopted in
our setting because of the difference in a share type, where the FSS
setting uses a (2, 2)-secret sharing (SS) scheme, while ours uses a
(2,3)-RSS scheme.

SC-AND Thus, we introduce the SC-AND protocol that enables us
to execute share conversion from (2, 2)-SS to (2, 3)-RSS and execute
the AND protocol at the same time, which only requires 1 round.

1.3.3  Path Evaluation Protocol. We introduce a new MPC primitive
for randomizing tree models, oblivious tree shuffle, to achieve a two-
round protocol for path evaluation.

Oblivious Tree Shuffle. Oblivious tree shuffling takes a shared
tree as input and outputs a shared shuffled tree with node-wise
random flip, which preserves the relations between a parent node
and its child node. Thus, it allows us to use the shuffle-and-reveal
technique for a binary tree to obtain a required leaf value.

Our tree permutation technique is inspired by the “PermuteTree”
protocol that has a logarithmic round complexity by Ma et al. [36].
We improved it to realize a constant round tree permutation. Now,
we highlight the difference between our construction and Ma et
al’s.

First of all, Ma et al’s PermuteTree protocol prepares h random
bits to randomize a decision tree for the tree’s height h, where
we consider h ~ log N for a bit length of inputs, N. Using such
randomness, their PermuteTree randomizes all nodes in the same
layer using the same flip-bit. This technique is essentially the same
as the XOR permutation in [5]. In contrast, our tree permutation
prepares 2" random bits and every node is randomized indepen-
dently using a different random bit, which enables the algorithm
to execute within constant communication rounds. Although this
increases storage for pre-computed randomness, the reduction of
round complexity helps to shorten the execution time.

Secondly, a path evaluation protocol in [36] evaluates node labels
from a root node to a leaf node one by one. Thus, its communication
cost in terms of data amount is small but it requires O(h) rounds.
In such an algorithm, using XOR permutation is enough to hide
intermediate information. In contrast, our path evaluation protocol
executes a randomize-then-reveal for all node labels. In our setting,
an XOR permutation will not generate uniformly random labels.
Therefore, we invented the tree permutation that helps not to leak
any information even after revealing (randomized) labels.

1.3.4  Overview. We now give an overview of our results.

Constant Round Protocols in Secret Sharing. To the best of
our knowledge, Tsuchida et al. [46] introduced the first constant-
round PDTE protocol using a secret sharing scheme over a residue
ring. Our PDTE protocol requires only 5 online rounds, while [46]’s
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Table 2: Comparison of Feature Selection (One execution)

Round Communication [bits/all parties]
Protocol Share of Array Share of Index Online | Offline Online Offline
Laud et al. [33] (t+1,n)-SSSonFy | (t+1,n)-SSSonFp 2 m-—2 2n(n—1)logyp (m—=2)n(n—1)logp
Blanton et al. [7] in MPC || (t+1,n)-SSSonF, | (t+1,n)-SSSonF, 5 - (4mloglogm +logm+2)n(n—1)logp -
Blanton et al. [7] in 3PC (2,2)-ASS on Zyx (3,3)-ASS on Z, 2 - 4mk -
’ ’
Tsuchida ef al. [46] (23)-RSSonZy | (23)-RSSonZy | 11 2 ’3‘ (;5k3+]<(3k ~3logp+ ) +omk’+ | (G2 4k 1 2m - kK
mk +
Jiet al [28] (2,3)-RSS on Zyx (3,3)-ASS on Z;, 1 1 12m 6((m+1)A+2m+k)
Ours (Protocol 4) (2,3)-RSS on Zn (2,3)-RSSon Z, 1 2 4mk + 3k’ 10mk

*‘SSS’ means Shamir’s secret sharing, ‘ASS’ means Additive secret sharing, and ‘RSS’

means Replicated secret sharing.

n is the number of parties, p is the smallest prime number greater than k, and A is security parameter for FSS.

PDTE requires 25 online rounds. Table 5 shows a more detailed
comparison of the required round complexity.

Our feature selection protocol requires only 1 online round,
the comparison protocol requires 2 online rounds, and the path
evaluation protocol requires 2 online rounds. These make the total
required rounds to be equal to 5. Since all offline communication
can be done at once, the total number of offline rounds is equal to
2.

Compared to the state-of-the-art round-efficient scheme [28],

our scheme achieves an asymptotic improvement in terms of online
communication complexity. Our protocol does not have to fully
rely on functional secret sharing schemes as in Ji et al. [28]. Thus
we achieved less communication complexity and less storage cost
than [28].
Use Cases. We highlight the use cases where our protocol fits well.
We succeeded in reducing the round complexity at the expense of
the larger communication complexity compared to linear-round
protocols such as Ma et al. [36]. Our protocol is particularly advan-
tageous when used in a network with a significant delay, such as
real-world WAN. For BREAST dataset, we have a running time of
0.86 seconds in the WAN setting with 160 ms of network latency
while Ma et al. [36] requires approximately 3 seconds in the WAN
setting with a smaller network delay, 80 ms. See Sect. 4.2.

Our proposed protocol is designed to work well in the offline/online

paradigm. Compared to prior work [28], the online phase of our
scheme allows us to avoid some random generation operations
such as FSS key generation. This reduces online computational
complexity and allows larger decision-making models, such as
DIABETES-18, in constant round communication, as shown in Ta-
ble 7.
Experiment with Real-World Datasets. We ran experiments on
four classical real-world datasets; Wine, Linnerud, Breast cancer,
and Digits dataset from the UCI machine learning repository [22].
For each dataset, we obtained a decision tree as a trained model in
the clear and adjusted the decision tree to be a perfect binary tree by
adding a certain amount of dummy nodes. Then, we executed our
PDTE protocol for each model and measured the required execution
time. As shown in Table 7, our evaluation experiments demonstrate
that our secure protocol finishes the evaluation within a reasonably
short time. Thus, our PDTE protocol is not only based on a solid
theoretical foundation, but it is also very efficient and practical.
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Table 3: Notation Table

Secret Sharing
2-out-of-3 replicated secret sharing (RSS) over Zy
Server i’s share of value x € Zn

BN = (Y =0 115D
<IN = Cxivxie1)
[[uﬂf" = (0D, p(i+1)) Server i’s share of vector v € Zﬁ\l

(cf. v; is the i-th entry of vector v)

[x]™ 2-out-of-3 RSS over Zy,
[x]B 2-out-of-3 RSS over Z;
{x) 2-out-of-2 additive secret sharing over Zn
(x)B 2-out-of-2 additive secret sharing over Z;
() 2-out-of-3 RSS of permutation 7 € Sp,
Decision Tree
ZN The domain of each attribute and the class labels

k The bitlength of N, i.e., k = [log N
m The number of attributes
K The bitlength of m, i.e, k’ = [log m]
h The depth of decision tree
(idxj, 7j, cond;j) The label of decision node j € Tj,_;
valp The label of end node ¢ € Zyn

2 PRELIMINARIES

In this section, we describe the notation and the model we consider.
Frequently referred notation is listed in Table 3.

2.1 Notation

Let N be a positive number of power 2. We write Zy := Z/NZ. We
use bold symbols (e.g., v, y) to represent vectors, and let v; denote
the i-th entry of v. Let @ be an operation of XOR of bits. When it is
used with vectors, it denotes an element-wise XOR of vectors.

Let S, denote the symmetric group on a set of size n. We denote
by 73 - 11 € Sy, the composite of 71 and 2. That is, (72 - 711) (i) =
12 (1 (i)). For a vector v of length n, we write the permutation
application action as (v - 7); := v, (;). In particular, when consider-
ing circular shift permutations, we write the result as shift(o, r) if
(shift(v,7))i = 9;_r mod n-

For n € Zy, we let n|; denote the d-th digit of n. Here d starts
from the least significant bit as 0. For example, 6|p = 0, 6|1 = 1 and
6l =1.

Let T, denote the set of nodes in the complete binary tree of
height h. Concretely, we write Ty, := {(d,j) |0 < d < h0 < j <
29 _ 1}. Here, (d, j) represents the j-th node (from left) of depth
d. Accordingly, the parent node of (d, j) is (d — 1, L%J) We define
the function anc : {0,..., h} X Zyn — Ty, as anc(d, j) = (d, [Zﬂfdj),
which means that node anc(d, j) is the ancestor node at depth d
of the j-th leaf. Let C, := Zg”. Then Cj, can be seen as the set of
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assignments of a boolean label to each node in the complete binary
tree with height h. For ¢ € Cp,, we denote by ¢4 ; the label for node
(d, j).

Servers are represented by S1, Sz, and S3. Note that operations
occurring at indices in S indicate modular arithmetic, i.e., S;—; turns
to be S3 for i = 1, and S;4+1 turns to be Sq for i = 3.

2.2 Replicated Secret Sharing

Throughout this paper, we use three types of secret sharing schemes.

We mainly use a 2-out-of-3 replicated secret sharing scheme [2,
19] and we just mention it as ‘replicated secret sharing’ or ‘RSS’.
The RSS scheme is specified by the following functionalities:

[-]-Sharing Given an input x € Zy, this operation picks ran-
domness x1, x2,x3 € Zpn such that x = x1 + x + x3. Then, it sets
[x]N = ([[x]]{‘], [[x]]é‘], [[x]]é‘]) as a share of x, where [[xﬂfv = (x4, Xi41)
is for a server S;,i € {1, 2,3}. Note that x;+1 = x; when i = 3.

We denote by [[x]]N =( [[x]]f] , [[x]]IZV , [[xﬂé\] ) the share of a vector
x, where me\f = (x@, x(*D) for i € {1,2,3}. Note that we use
superscript notation @ to distinguish them from vector elements;
x = (x0,...,%t-1).

Reconstruct Servers can communicate with each other to recon-
struct the secret value x from a share of x. A naive reconstruction
algorithm in the semi-honest setting is that each S; sends x; to S;j4+1
simultaneously and obtains the sum of the received value and the
values in [[x]]fv . We write Reconst for this algorithm.

We would like to note that we define a boolean share [x]? in
a similar manner by using randomness x1, x2, x3 such that x =
X1 ® x2 ® x3 [2]. When considering two different domains, Zx and
Zm, of arithmetic shares, we will explicitly write [-]N and [-]™ for
shares over each domain. Also note that for any vector v, we simply
write [o] for a vector consisting of shares of all the entries in v.

(-)-Sharing As an adjunct to the RSS scheme, we also use the
2-out-of-2 additive secret sharing scheme. We will write {x) for an
additive share (between S; and S;) of x € Zy, which consists of
two random values (x;, xj) € ZIZV satisfying x = x; + x;. Here, S;
and S; hold {x); = x; and {x); = x;, respectively.

When considering sharing a permutation, we use the RSS scheme
for permutations. For = € S;, we will write (x) for a RSS share
of 7. Here, S;’s share is defined as (r); = (7, mj4+1) for random
permutations 1, 72 and 73 € Sy, satisfying 7 = 1 - 12 - 73, ie,
(i) = m1(mp(m3(i))) foralli € {0,...,n— 1}.

In these secret sharing schemes, we assume the following opera-
tions. Note that this paper counts the number of communication
rounds assuming a duplex network, so it does not necessarily mean
a “round trip“. If two-way communication is possible simultane-
ously, we count it as 1 round. If one is performed depending on the
other, we count it as two rounds, even if the directions differ.

Local operations Given [x]V, [y]", and a public value « € Zy,
the servers can compute shares of secure addition [x + y]~, mul-
tiplication with a public value [a - x|V, and an addition with a
public value [x + ]~ locally without any communication among
the servers [2].
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node (0,0)
condgp =1
(attrigx,y < 700)
node (1,0) node (1,1)
condyp =1 condy; =1
(attrigy, o < 710) (attrigy, ; < 711)
node (2,0) node (2,1) node (2,2) node (2,3)
condz =0 condy; =1 condy, =1 condy3 =0
(attrigx, o = 720) || (attriax,; < 721) || (attriax,, < 722) || (attriax, 5 = 723)
leaf 0||leaf 1||leaf 2||leaf 3||leaf 4||leaf 5||leaf 6||leaf 7

valy

valy val, vals valy vals valg

Figure 2: Example of a Decision Tree with Height 3.

Secure Equality Check and Comparison Given (x), (y), the

? ?
servers can compute {x = y)B and (x < y)® by using precomputed
correlated randomness. We write Equal and LessThan for these
functionalities. Each requires one communication round [9].

Share Conversion Given [x]V, any two of the three servers can
obtain (x} by local computation without communication [19]. We
write ShareConv for the conversion. We assume that the output
of ShareConv is uniformly random when viewed from the third
server. Conversely, the servers can also convert (x) given by any
two servers to [x], with one communication round. We will write
ShareConv™! for this inversion. Detailed definitions of our proto-
cols for these operations can be found in Appendix.

Oblivious Shuffle Given a share [x]~ of an n-degree vector and
a share () of & € Sy, the servers can compute a share [w] (or a
revealed vector w), where w is the vector obtained by applying 7 to
v. We write Shuffle (resp. ShuffleReveal) for the oblivious shuffling
operation. Both of these operations require two communication
rounds [17].

Random Share Generation When given a parameter N, the
servers can generate a share [r]), where r € Zy is picked uniformly
at random. We will denote by RndGen(N) the functionality for
generating random shares.

For the (2, 3)-RSS, there are two RndGen protocols depending
on the security requirements proposed in [2]. In the information-
theoretic security setting, RndGen is achieved with one-round com-
munication if each party S; picks a random value and sends it to
Si+1. In the computational security setting, RndGen can be achieved
without communication, assuming that S; and S;41 hold a common
secret key about which S;42 knows nothing.

2.3 Security

In this paper, we consider security for three-party computation
(3PC) protocols in the presence of a static semi-honest corruption
of at most one server with no collusion. Semi-honest security is
sufficient when the computing parties (servers) somewhat trust
each other or when all secure operations are embedded in each
server and are not tampered. We focus on semi-honest security
and leave the development of a malicious secure PDTE protocol for
future work.

For a three-party protocol IT among servers Sy, S, S3, the vari-
able viewlII (x1, x2, x3) denotes the view of the server S; during a real

execution of a protocol IT on input (x1, x2, x3). Here, viewgI (x1, x2, x3)
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consists of S;’s input x;, S;’s internal random coins, and all the
messages received by S;. The variable out!! (x1, x2, x3) denotes the
output of three servers from an execution of IT on input (x1, X2, x3).

Definition 1 (Correctness). Let ¥ : D1 X Do X D3 — Ry X Ry X R3
be a function with three inputs and three outputs for some sets
D1, Dy, D3, Ry, Rz, R3. Let I1 be a three-party protocol that computes
a functionality # by the servers Sy, Sg, S3.

We say that a protocol II is correct if for all x; € D1, x2 €
Dy, x3 € D3, the distribution of out!! (x1, x2, x3) is identical to the
distribution of F (x1, x2, x3).

Definition 2 (Semi-honest Security). We say that a protocol IT
perfectly realizes a functionality 7 in the presence of a static semi-
honest corruption if there exists a polynomial time simulator Sim
such thatforany i € {1,2,3} and any X = (x1,x2, x3) € D1XD3XDs3,
where |x1] = |x2| = |x3]:

(Sim(xi, i(®), fF)} = {(view?(f), outH()?))}.

Our proposed protocols are proven to be secure by using the
hybrid model, where servers execute a protocol with messages and
have access to a trusted party that computes a sub-functionality
for them.

2.4 Decision Tree

There are two aspects in a decision tree classification; one is a
training phase that creates a classification model and another is an
evaluation (inference) phase that predicts the class of input data by
using the model. Throughout this paper, we focus on the evaluation
phase and we assume that we already have a model in shared form.

To facilitate comprehension, we now introduce the model in the
plain setting and not in the secret shared setting. Let {attri}l'.’zlal
be an attribute vector that represents an input to be evaluated,
where m is the size of the attribute vector that is determined by
a trained model. We assume that the trained model is a complete
binary tree with height h, size of an attribute vector m, an index

vector {idx j} , a threshold vector {rj} , a condition vec-

J€Th-1 J€Th-1

. 2h_q ..
tor {cond]}jeTh_l, and a leaf value vector {val;};_; . A decision

tree model 7~ is defined as follows:

h
T ={hm, {idxj}jeT;H’ {Tj}jeT;H’ {condj}jeT}H, {val[}gz(;l}.
By abuse of notation, given an attribute vector A, 7 (A) represents

the result of the decision tree on A.

Fig 2 shows an example of a decision tree with height h = 3 and
m = 4, in which each inner node (d, j) contains an index idxd’ j>a
threshold 74 ; and a conditional value condg ;. Given an attribute
vector {attry, attry, attry, attrs} as input, the evaluation algorithm
starts at node (0, 0).

Given the conditional value condg = 1 at node (0, 0), it selects
a ‘less-than’ as a comparison operation and computes a proposi-
tion (attroo < 70,0). If the conditional value is 0 as in node (2,0),
condy o = 0, the algorithm selects an ‘equality check’ as a compari-
son operation and computes a proposition (attrzo = 72,0).

If a comparison operation outputs 0 (resp. a comparison opera-
tion outputs 1), then the algorithm indicates us to move onto the
left child node (1, 0) (resp. right child node (1, 1)). The above steps
are iterated until the algorithm reaches a leaf node. Once it reaches
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Figure 3: Overview of our PDTE protocol: Protocols in the dotted
box can be executed in the offline phase. The LessThan and Equal protocols
are executed by any two servers, while other sub-protocols are executed by
the three servers.

the leaf node, it outputs the corresponding leaf value as a decision
(classification result).

3 CONSTRUCTION

We construct a three-party scheme for private decision tree eval-
uation (PDTE). Our main focus is the outsourced setting: three
outsourced computing servers, a service provider (or tree owner)
with a trained decision tree model, and clients with an attribute
vector as input. The service provider generates shares of the deci-
sion tree model and distributes them to three computing servers.
Similarly, each client does the same with its own input attribute
vector. Since the computing servers only receive values in a shared
form, none of the servers can obtain any information about the
input data other than the data size. The computing servers cooper-
atively execute a PDTE protocol and return the shares of a decision
result to the client. Finally, the client can reconstruct the evaluation
result from the received shares.

Formally, we consider the ideal functionality of PDTE shown in
FuncTioNALITY 1. All inputs and outputs of the scheme are given
as shares in the 2-out-of-3 replicated secret sharing scheme. Note
that the scheme only allows at most one corruption, i.e., the honest
majority setting. PDTE takes as input a shared attribute vector,
and a shared decision tree model consisting of an index vector, a
threshold value vector and a conditional value vector with size
2" — 1 which corresponds to the inner nodes, and a shared leaf
value vector with size 2". PDTE outputs shares of the result of the
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(plaintext) decision tree evaluation procedure on the input private
values.

FUNCTIONALITY 1 (Fpate - PDTE).

Upon receiving a share of decision tree [7]N and an attribute vector
([attro ]V, [attr [N, .. ., [attrm—1 [N), Fodte reconstructs 7 and A =
(attro, attry, . . ., attrp,,—1), computes val < 7(A), generates shares
[val]N, and sends [val]¥ to S;.

Fig. 3 shows the overview of our protocol. Our protocol design
follows the framework proposed in [31]. In this framework, the
PDTE procedure is divided into three phases; feature selection phase,
comparison phase, and path evaluation phase. The feature selection
phase securely chooses a designated attribute from the attribute
vector for each inner node (2h —1nodes in total). In the comparison
phase, the resulting attributes are securely compared against thresh-
olds for all the inner nodes at the same time. The path evaluation
phase securely computes the certain leaf value as the final result us-
ing all the comparison results. We will give a detailed definition of
the ideal functionalities of the three phases in FUNCTIONALITY 2-4.

3.1 Feature Selection Phase

In this section, we introduce our feature selection protocol FeatSelect
(Protocol 4). FuNcTIONALITY 2 shows the ideal functionality of the

feature selection phase. The functionality takes a share of an index

and a shared attribute vector as input, and outputs a share of an

attribute that corresponds to the index.

FUNCTIONALITY 2 (Ffeatselect — Feature Selection).

Upon receiving a share of an index [idx]™ and an attribute vec-
tor ([attro]N, [attr; N, ..., [attrm—1]N), Freatselect reconstructs idx
and A = (attrg, attry, ..., attrp,—1), selects attrig, generates shares
[attrigy ], and sends [[attridx]]{\] to S;.

To achieve round-optimal feature selection, we first propose a
three-party variant of the two-party oblivious selection protocol
in [5]. This protocol requires preprocessing to generate correlated
randomness, which optimizes the round complexity of the online
phase. We construct a protocol Roulette (Protocol 3) and its offline
protocols PlainRoulette, Rouletteprep (Protocols 1 and 2).

3.1.1  Preprocessing for Roulette. We describe a preprocessing pro-
tocol for Roulette, which we call Rouletteprep. It aims to generate
correlated randomness that enables online-round-optimal execu-
tion of Roulette. More specifically, the protocol functionality takes
no input, and outputs a shared vector []V, a shared shifting value
[n]™, and random vectors a and b only given to S; and Sy, respec-
tively. Here []N holds a correlation such as & = —shift(a, n3) —
shift(b, ny) for [n]* = (ns, nj+1). We write Frouletteprep for the
functionality.

PlainRoulette The main challenge of Rouletteprep is to securely
compute the two shifted values, [shift(a, n3)]" and [shift(b, ny)]N.
We propose PlainRoulette protocol for oblivious circular shifting
in Protocol 1. The input of PlainRoulette protocol is a vector x
in the plain form (not the shared form) from the server S; and a
shifting value s from the server S; and S, that is also the plain form,
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where i, j,k € {1, 2,3} are all different. The protocol returns the
circular-shifted value in the shared form; [shift(x, s)]V.

PlainRoulette requires 2 communication rounds. The first round
(Steps 1,2 and 3) is a variant of the 3-party oblivious transfer proto-
col proposed in [37]. As in the OT protocol, S; and S; first sample a
random masking vector w using RndGen. The difference from the
OT protocol is that S j sends the entire circular-shifted vector of w to
Sk, rather than a single element in w. After that, the servers execute
a share conversion in the second round to obtain a replicated share
of shift(x, s).

Protocol 1 Plain Circular Shift (PlainRoulette)

Functionality: [y]N « PlainRoulette((x,S;), (s, S;), (s,Sk))
Input: Avector x from S; and a shifting value s from S ; and Sy for mutually
different i, j, k € {1,2,3}

Output: Arithmetic-shared circular-shifted vector [y, where y =
shift(x, s)

: Sj and S; generate a random vector w using RndGen

: S; computes m = x — w and sends it to Si

: S;j samples v, locally computes m’ = shift(w, s) — v and sends it to S

: Sk computes o’ = shift(m,s) + m’

: Servers invoke [y]" « ShareConv™!(v, o)

[ N I

Protocol 2 Preprocess of Roulette (Rouletteprep)

Functionality: ((a,[e]V, [n]7), (b, [@]Y, [n]7). ([a]Y. [n]7) «
Rouletteprep()
Input: L
Output: A random vector a only for Sy, a random vector b only for Sy, an
arithmetic shared random value [n]]™, and an arithmetic shared vector
[e]VN for & = —shift(a, n3) — shift(b, n;) where [n]7* = (i, niv1)
1: Servers collaboratively pick a random value [n]™ < RndGen(m)

2: Sy picks a random vector a and S, picks a random vector b

3: Servers collaboratively execute [o]N —
PlainRoulette((a, S1), (n3,S2), (n3,S3))
4: Servers collaboratively execute [w]™N —

PlainRoulette((b, Sz), (n1,S3), (n1,S1))

5: [a]N = ~[o]" - [w]¥

6: Sy returns (a, [e]V, [n]™), Sz returns (b, [e]Y, [n]7*), and S3 re-
turns ([«]¥, [n]7)

Rouletteprep Protocol 2 shows our Rouletteprep protocol. The
protocol consists of two parallel calls to PlainRoulette, so it takes 2
communication rounds in total. In the protocol, the shared random
value [n]™ is obtained by using the random generation algorithm
RndGen shown in Sect. 2.2. The random vector a is picked by S;
locally and the random vector b is picked by S» locally as well. [a]™V
is computed by secure negation done locally and by PlainRoulette.
Therefore, as long as PlainRoulette works properly, the value a
satisfies the required relation. Such a well-prepared randomness
[a]V is later used in Roulette together with another masking value
and random vectors.

Theorem 1. The protocol Rouletteprep for Frouletteprep iS per-
fectly semi-honest secure in the Frndgen-hybrid model.

Proof Sketch (Protocol 1 and 2). We first show the correctness and
semi-honest security of PlainRoulette. By definition, [y]" is a share
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of v+v’, which coincides with shift (x—w, s)+shift(w, s) = shift(x, s).
The security of the protocol is satisfied because the communication
is done with masking by a random vector v and w chosen by the
sender servers.

By the definition of Rouletteprep, it holds that v = shift(a, n3)
and w = shift(b, n1), so « is the desired output and correctness is
satisfied. Since a, b, n; and n3 are independent randomness known
only to the input servers of each PlainRoulette, the parallel two
calls to PlainRoulette leak no information.

3.1.2  Roulette Protocol. We next present an online protocol for
secure roulette (Protocol 3), which works with the RSS setting. Intu-
itively, the protocol randomly circular-shifts a given shared vector
like a roulette machine, while keeping the given vector and shifting
values secret from the servers. More precisely, Roulette takes as
input a shared vector [x], uses a shared shifting value [n]™ from
the output of Rouletteprep and outputs a share of circular-shifted
value [y]V that satisfies y = shift(x, n).

Here is an overview of the protocol: Sy (resp. Sy) first locally
computes 91 (resp. v2) by circular shifting by a random amount and
masking with a random vector, then sends it to the other servers.
The randomness consumed in computing v1 and vy is provided
as the output of Rouletteprep. In the next step, the servers locally
circularly shift the received messages so that every message is
shifted by n. The final step uses the randomness [a]N to cancel
mask vectors a and b, resulting in a share [y]N of the circular-
shifted value.

Our Roulette protocol only requires one communication round.
Note that Rouletteprep can be done in an offline phase since corre-
lated randomness is independent of input values. We write it as an
auxiliary input. In the online protocol, steps 1 and 2 can be done at
the same time, and the other steps require no communication.

Protocol 3 Oblivious Circular Shift (Roulette)

Functionality: ([y]", [n]™) « Roulette([x]V; aux)
Correlated Randomness: aux which are computed by Rouletteprep
Input: Arithmetic shared vector [x]V, where [x]N = (x(?, x(#+1)
Output: Arithmetic-shared circular-shifted value [y and an arithmetic-
shared value [n], where y = shift(x, n) and n is from aux
1: Sy locally computes o1 = shift (x(") + x(®), ny + ny) + a and sends it
to Sy and Ss, where ny, ny, and a are from aux
2: Sy locally computes 0@ = shift(x(S), ny + n3) + b and sends it to S3
and S1, where ny, n3, and b are from aux
3: Sy and S3 locally compute w® = shift (o)), n3)
4: S3 and S; locally compute wl) = shiﬁ(a(z), ny)
5: Servers set [w]N = (w,0), [w]) = (0, w®), and Wl =
(w®, WD)
6: Servers locally compute [y]N =

(Ty1™. [n1™)

[wIN + [«]N and return

Theorem 2. The protocol Roulette for Froyiette is perfectly semi-
honest secure in Frouletteprep-hybrid model.
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Proof Sketch. We first show the correctness of the protocol. By
construction,

w 1w = shiﬂ(v(l), n3) + shiﬁ(v(2>, ni)
= shift(shift(xV + x? ny + ny) + a, n3)
+ shift(shift(x®, ny + n3) + b, ny)
= shift(x(V + x® n) + shift(a, n3)
+ shift(x®, n) + shift(b, ny)
Thus, we obtain that
y=w V4w e = shift(x(V+x? n)+shift(x®), n) = shift(x, n),

which shows the correctness of the Roulette.

We next show the semi-honest security. Consider the case S3
is corrupted. The other cases are similar. Let («®), (1)) = [[a}]é\]
and (y(3), y(l)) = [[y}]é\] Observe that the above correctness proof
ensures that the distribution of [y]V is independent of a and
b. Since o) and »? are respectively masked by a and b, the
simulator should first pick () and o(?) randomly. Subsequently,
the simulator computes from S3’s input and output as aV) =
y(l) —shift(u(z), n1) and a® = y(3) —shiﬁ(u(l), n3), which gives
the same distribution as S3’s view viewgl([[x]]N ).

3.1.3  Feature Selection Protocol. We now construct our efficient
feature selection protocol FeatSelect (Protocol 4). The protocol aims
to select a designated attribute at each node using the given index,
as defined in FUNCTIONALITY 1.

This protocol is based on a variant of the shuffle-and-reveal
technique for circular shifting. First, the servers pick a share of the
random value by using RndGen, which is done offline since it is
independent of the protocol’s input. Second, using such a share
of randomness and given a shared attribute vector, the servers
cooperatively execute Roulette to output a share of circular-shifted
vector [y]V. Third, the servers locally compute an addition and
reveal the value s. Lastly, the servers output a share by using the
revealed value m and securely obtain the circular-shifted vector
[y]V.

The protocol takes 1 online communication round. This is be-
cause Steps 1 and 3 can be done in parallel. The offline computation
is only required for Step 1, and needs 2 communication rounds.

Protocol 4 Feature Selection (FeatSelect)

Functionality:
[attrig]N « FeatSelect([idx]™, {[attr;]™ }75; aux)

Correlated Randomness: aux which are computed by Rouletteprep

Input: Arithmetic shared index [idx]™ and arithmetic shared attributes
vector {[attr; N}

Output: Arithmetic shared idx-th attribute [attr;g, ]~

1: Servers  cooperatively  compute  ([y]V, [n]™)

Roulette ({[attr; [N ;go-l; aux)

2: Servers compute [s]" = [idx]™ + [n]™

3: Servers reveal s

4: Each server S; sets Jout]™N = [y ]V

Theorem 3. The protocol FeatSelect for Freatselect is perfectly
semi-honest secure in the (Froulettepreps Froulette)-hybrid model.
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Proof Sketch. By construction, y = shift({attri};'z’al, n),ie,y;j =
attr(j_p mod m) for all j € {0,...,m — 1}. On the other hand, we
have s = (idx + n mod m). Thus,

Ys = Y(idx+n mod m) = AT (idx+n—n mod m) = attridx
which shows the correctness of FeatSelect.
The semi-honest security of FeatSelect is derived from the shuffle-
and-reveal technique. We omit the details since it is similar to the
proof for the two-party oblivious selection protocol [5].

3.2 Comparison Phase

In this section, we introduce our protocol Compare (Protocol 6) for
the comparison phase. The comparison phase aims to identify if the
designated attribute at each node satisfies a certain relation with a
threshold, where either less-than or equality is computed. Assigned
condition values at each node decide which operation should be
used. The comparison is performed for each of the 2" — 1 inner
nodes. The ideal functionality of the comparison phase is shown
in FuncTIONALITY 3. The functionality takes as input shares of a
decision tree model and an input attribute vector and outputs the
comparison results in the shared form at all inner nodes. We focus
on the less than comparison and the equality check as comparison
operations in this paper and we leave other functionalities for future
work.

FUNCTIONALITY 3 (Fcompare — Comparison).

Upon receiving a share of attribute vector {[[attridxj |} jeTy,_,»athresh-
old vector {[[Tj]]N}jeThﬂ) a condition vector {[[condj]]N}jeT}H),
Feompare reconstructs {attridx ; }jeT}H, {7} jet,_, and {cond;}jer, .,
computes C; « (at'tridxj < 7j) if cond; = 1, computes C; «
(attrigy; = ;) if cond; = 0, generates shares [C;]3, and sends [C;]8
toS; for j € Tp,_4.

3.2.1 One Round Protocols for LessThan and Equal. We use the
LessThan and Equal protocols introduced in [9]. These protocols
execute 2 + 1 party computations constructed in the scheme ‘MPC
with preprocessing via function secret sharing (FSS)’ [10]. In this
scheme, only two servers join in the online computation. In contrast,
the third server needs to pre-generate and distribute FSS keys in
the offline phase to be consumed in the online computation. An
advantage of these protocols is the optimal online communication
complexity. In addition, recent studies have achieved an O(k¢)-bit
FSS key assuming PSG. Here, « is a security parameter. For more
details, see [9].

3.2.2  Comparison Protocol. Our Compare protocol is described
in Protocol 6. We provide an overview of the protocol here. In
the first step, the servers perform share conversion and two out
of the three servers obtain the corresponding 2-out-of-2 additive
shares. Then the protocol computes both LessThan and Equal in
parallel. Since these conditional values condg ; are given in the
shared form, the protocol should be data-oblivious with respect
to the shared condition values cond; s and must compute both
LessThan and Equal. The final step obliviously selects one of the
results according to the shared condition value condg ;. Note that
the oblivious selection can be achieved with a secure AND gate.
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We also propose a round-efficient protocol SC-AND for the final
step, as shown in Protocol 5. The purpose of the SC-AND protocol
is to evaluate an AND gate and share conversion at the same time. 1
round as in Protocol 5. The protocol is based on the (3-party) beaver
triple technique. Due to the parallelism, the protocol only requires
1 online communication round.

Protocol 5 AND with Share Conversion (SC-AND)

Functionality: [z]B « SC-AND({x)5, (y)®)
Input: (2,2)-SS boolean value {x )& and (y)B
Correlated Randomness: (2, 3)-RSS Beaver triple ([«]B, [8]Z, [y]B) st.
af=y
Output: (2,3)-RSS boolean value [[z]]B , where z = xy
1: Two servers locally obtain the following:
{a)®B « ShareConv([a]?)
{BYB « ShareConv([A]®)
2: Two servers reveal the following p and q (also to the third server):
p — Reconst({x)B @ (a)B)
q < Reconst({y)*® & (B)")
3: Three servers locally compute [z]B < pq @ p[B]® @ q[a]® & [y]®

The Compare protocol requires two online communication rounds.
The algorithm involves iterations for j € Tj,_;, but each iteration
step is independent and can run in parallel. For each node, the
protocol takes one round for parallel invocations of LessThan and
Equal, and another round for SC-AND.

Protocol 6 Comparison (Compare)

Functionality: {[[compj]]B }ieT,_,
Compare({ [[attridxj w, [[fjﬂN, [[condjﬂB }Yiet,_,)
Input: Arithmetic shared attribute vector {[[attridxj]]N }jeTy,_, » arithmetic
shared threshold value {[[TjﬂN }jeT,_,» and arithmetic shared condi-
tional flag {[cond]®}jer;, ,
Output: Arithmetic shared comparison result {[[compj]}N}jer,H
1: for j € Ty, do
2: {attrige; ) < ShareConv([[attride]]N)
3: (1j) « ShareConv([[fj]]N)
Servers cooperatively compute the following:
4: (a)B LessThan(((attridxj » ALz
5. (b)P — Equal((attrigs; ). {7;))
ShareConv™! ({b)B) ®

6: [[compj]]B -
SC-AND({cond; )B, (a)B @ (b)B)
7: end for

Theorem 4. The protocol Compare for Feompare is perfectly semi-
honest secure in (Flessthan, Fequal)-hybrid model.

Proof Sketch. By the composability of secure protocols, it is
sufficient to show that the SC-AND protocol is secure against semi-
honest adversaries. The security proof of the SC-AND protocol is
the same as for the standard Beaver-triple-based secure multiplica-
tion protocol except for the case where the third server is corrupted.
When S3 is the corrupted third server, the view of the third server
consists of the messages from S; and S at Step 2. Since ShareConv
guarantees that the outputs a and b are uniformly random, these
are uniformly random from Ss.
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3.3 Path Evaluation Phase

The final phase of PDTE is the path evaluation phase using the
comparison results at every inner node as input. We provide a path
evaluation protocol PathEval (Protocol 8) with just 2 rounds.

Let PathEval be the path evaluation functionality defined in
FUNCTIONALITY 4. PathEval takes, as input, shares of leaf values
and shares of comparison results at every inner node, and outputs
the corresponding leaf node that is indicated by the comparison
results. Here the tracing step chooses one of the leaf values, whose
position path({compj}jghil) is given as the unique integer j €
Zyn satistying jlp—g-1 = cOMpyne (4, j)-

FUNCTIONALITY 4 (Fpatheval — Path Evaluation).

2h—
=0

comparison result vector {[[compj]]B }jeTy,_;)s Fpatheval reconstructs

Upon receiving a share of a leaf value vector {[val ] ! and a

. , traces the comparison results from
J€lp—1
the node (0,0) to a leaf node to obtain the reached leaf value v :=

valpath({mmpj}j), generates shares [o]V, and sends [[n}]f\] to S;.

h
{val, }f,=0_1 and {compj}

To grasp the intuition of the tracing step in PathEval, let us
describe how (the plain-text version of) the algorithm will work
in the clear. Consider the decision tree in Fig. 2. Suppose that the
comparison result at node (0,0) is 1, that is, compg o = 1. Then,
you move to node (1,1) (a child node on the right) and see comp ;.
When comp; ; = 0, you move to node (2,2) (a child node on the
left) and see comp, ,. Let us suppose comp, , = 1. Then, you reach
the leaf node 5, and finally, you take vals as output.

3.3.1 Overview of our PathEval Protocol. To compute the tracing
step in a few communication rounds, we construct an oblivious tree
shuffle technique in this section. The purpose of this technique is
to shuffle a shared tree obliviously while sustaining the tree struc-
ture. The technique lets us detect the right trace path in constant
communication rounds by revealing the shuffled node values while
leaking no information on the input tree.

The high-level algorithm of our PathEval protocol can be viewed
as a tree-structured variant of the shuffle-and-reveal technique [25].
Our proposed tree shuffle aims to directly randomize node values
while preserving the tree structure, which can improve communi-
cation costs. To clarify this advantage, we highlight the difference
from the state-of-the-art protocol [46], which uses the original
shuffle-and-reveal technique as follows: The servers first convert
the binary tree values to a vector, reorder the obtained vector and
the leaf label vector using the same random permutation, and reveal
the node label vector to choose the desired leaf value. Note that
the vector obtained after the first conversion must require 2l h bits.
Our technique avoids such conversion and reduces the data size to
2" — 1 bits.

We note that the tree permutation we will define is inspired
by the technique proposed by Ma et al. [36], but our definition is
different from theirs as explained in Sect. 1.3.3. Our tree permutation
takes a shared tree as input and outputs a shared shuffled tree
with node-wise random flip. In our protocol, to make the round-
complexity constant, every random flip is executed independently
of the others, rather than using h random bits as in [36].

Nan Cheng, Naman Gupta, Aikaterini Mitrokotsa, Hiraku Morita, and Kazunari Tozawa
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3.3.2  Tree Permutation. We first define permutations based on
node swapping on a complete binary tree, which we call tree per-
mutation. Tree permutation is defined for the permutation group
derived from Cy,_;. Each node value specifies whether or not the two
sub-trees under the node are swapped. Tree permutation consists of
two operations; a permutation of leaf values and a transformation
of inner node values.

Definition. Let ¢ € Cj,_; and v be a vector of length 2k The tree
permutation of (¢, v) defined by r € Cj,_; is given as follows:

(¢,v) -t:=(cor,v-m),

where 7y € Sy, and (o) : Cp_q X Cp—y — Cp,_; are defined below.
First, we define the permutation derived from a tree label. For
t € Cp,_;, we define a function 7y : Zyr — Zyn such that

7t (N h=d=1 = jlh-d—1 ® Yanc(d,j)

for 0 < d < h. By definition, 7 is bijective, so it is a permutation,
ie., my € Szh. For instance, assume that A = 3 and r is as follows,
then values from Z,3 would be operated by 7, as follows:

(01234567) (54672310).

Next, we define a binary operation (o) on C,_;. Fort € Cp,_q,
we define the tree extension of 7y as 7y : Ty_; — Tp,_; such that

Toy (d’ ]) = (d’ Toy [d,l (]))>

where v [4_1€ Cy_; is restricted to be taken from a complete
binary tree with depth d — 1. Note that the extended m is also a
permutation on Tj,_, which consists of permutations on vectors at
each depth, and preserves the relations between a parent node and
its child nodes. The binary operation (o) : Cj,_1 X Cp_1 — Cp_1 is
defined as follows:

cor=(c-m) DT,

where (¢ - 7;) is given as (¢ - 7mp)q j =z, (q4,j) and @ denotes an
element-wise XOR of Cp,_;.

The following is an example of a tree permutation. When ¢ € C
and a vector v of length 8 are given as on the left-hand side, (¢, v) - 7y
corresponds to the label on the right tree.

Another Formulation. To assist in finding the intuition of tree
permutations, we also provide an operational definition of tree
permutations. Given (¢,v) and v € Cj,_; as input, the calculation
of (¢ or,v - m) can proceed as follows:

- Set (b, 2) := (¢,0)

2: ford=0,....,h—1do

3: forj=0,..., 24 —1doin parallel

4 Ifry ; = 1, update (D, z) by swapping the two sub-trees

under the node (d, j)

5 end for

6. end for

7. Output (D ® 1, 2)
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Under the operational definition, the above example of tree per-
mutation is calculated as in Fig. 4. This formulation shows that a
tree permutation can be viewed as a composite of node swapping
at every inner node.

Properties. We remark on important properties of tree permuta-
tions:

e Forc,r € Cy_q, itholds that 7¢or = 7¢ - 71y for the permutation
composition operation -, ie., mcor (d, j) = 7 (7 (d, j)) for
all (d,j) € Tp,.

e (Cy_1,0) forms a finite group. The identity is the all-zero
label 0, and the inverse of ¢ is given as ¢ - 7, 1

e A tree permutation preserves the output of the tracing step
of PathEval. That is, for any t € Cp_1, Uparn(c) and (v -

t) path(cor) are identical. This is shown as follows:

e (DNh=d-1 = Jlh=d—1 ® Yanc(d,j)
=(co r)anc(d,j) ® Yanc(d,j)
= (€ 7t )anc(d,j)
= Canc(d,m (j))
This means that t = 7 (j), thus vy = v, ;) = (v - ™).

Oblivious Tree Shuffle. Now we explain our oblivious tree shuffle
algorithm. It is defined as a secure computation of tree permutation
using random inner node values: Let ¢ € Cy_; and v € Zzh, let
{[cIB, [¢]N} be input tree values, and let t € Cy_; be a random
inner node value unknown to any party. Then, the procedure ran-
domizes {[c]5, [o]V} with 1, by computing {[c o t]B, [o - =]V}
Note that this randomization technique satisfies two important
properties as follows: (1) If t € C,_; is chosen uniformly at random,
then ¢ o r is also uniformly distributed, regardless of what ¢ is.
This follows from the fact that (Cj,_1, o) is a finite group. (2) The
path evaluation algorithm returns the same result for (¢,v) and
(cor,v-m), as shown above. These properties ensure that oblivious
tree shuffling can be used with the shuffle-and-reveal technique.

3.3.3  Path Evaluation Protocol. We now describe a protocol for
the path evaluation phase. The protocol is intended to perform an
oblivious tree shuffle, using the (ordinary) oblivious shuffle protocol.
Note that cot = (¢®t- ;1) - 7. Here, the application of 7, consists
of parallel vector permutations at each depth, so we can securely
compute it using an oblivious shuffle at each depth. Accordingly,
the task of the offline phase is to generate (my) for some random
t € Cp_; as an auxiliary input of Shuffle and ShuffleReveal, and
the input-independent shared-value [t - 7; !]5.

Offline Phase. We construct an offline phase protocol PathEvalPrep
to generate correlated randomness as shown in Protocol 7. The pro-

tocol takes 2 rounds. First, (7ry) is generated locally by using the

random generation algorithm RndGen. This step is well-defined

because (r + my) is injective. Then, Sy and S; pick a random s,

and Sy uses it for masking the value of m. After all, s is canceled

when considering 11 + u3. (11, u3) is an additive sharing of t - 7, 1

Loy -ﬂr_ll ® 1o (my, '7112)_1 &3 - (my, - 7y, ‘71'13)_1 for

lﬂB.

since ¢ - 71,
t = 11 0rg0r3. Thus, ShareConv™! gives a desired output [r - 7y
Online Phase. We define a protocol for the online phase as shown
in Protocol 8. The protocol takes {[¢]B, [o]V } as input, and outputs
[o:]N where t = path(c). Steps 1-4 perform an oblivious tree shuffle
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Protocol 7 Preprocess of Path Evaluation (PathEvalPrep)

Functionality: ((r), [b]®) < PathEvalPrep (L)

Input: 1.

Output: ((r);, [[b]]?) to S;, where 7 = my, - 7y, - 7y, for somer; € Cpp_yg,
andb=t- -7 lfort=11012013

1: S;—1 and S; sample 1; & Cp—1 using RndGen, and locally compute 7y;
from t;

2: S sets (); = (e, 7yyyy)

: Sq and Sy sample s & Cp-1 using RndGen

: Sq locally computes u; =5 - rrr_ll o ~7r[11 Oy - (7, - 7y) 7!

: Sy locally computes m =13 - (7, - m3)_1 @ s and sends it to S3

: S3 locally computes u3 = m - ;'

N o v e W

: Servers invoke [B]B « ShareConv™!(u;,113)

to reveal inner node labels. As a result, each S; holds a new decision
tree (e, [[w]]fv ). In step 5, S; locally computes the (plain-text) trace
step for input (e, [w]]fv) to get the resulting position ¢’ = path(e),
and obtains the desired output [w, ]N. Note that in ShuffleReveal,
shuffling [d]8 with () requires a permutation of nodes at each
depth. Since Shuffle and ShuffleReveal can run in parallel, the
protocol only requires two online communication rounds when we
use a known 2-round private shuffling protocols (OptShuffle and
ShuffleReveal in [17]) for each depth in parallel.

Protocol 8 Path Evaluation (PathEval)
Functionality: [o;]N « PathEval([c]5, [o]N)
Input: [c]5, [0]V, where c € Cp,_q, v € Zil;
Output: [o;]N

1: ((7r), [b]B) « PathEvalPrep(L)

2 B]” = []° ® [1]?

3: ¢ « ShuffleReveal ([d]5; (xr))

4

5

: [w]N « Shuffle([o]N; (z))

: Each server locally computes ¢’ := path(e), and outputs [wy]N.

Theorem 5. The protocol PathEval for Fpatheval is perfectly semi-

honest secure in the (Fshurries Fshufflereveals ﬁ’athEvalPrep)'hYbrid
model.

Proof Sketch. The correctness of the protocol directly comes from
property (2) of oblivious tree shuffle. The security proof is similar to
the proof for protocols using the shuffle-and-reveal technique (for
example, [25]). Remark that property (1) of oblivious tree shuffle
guarantees that the revealed values e do not leak any information
about the input values.

3.4 Private Decision Tree Evaluation

We now propose our PDTE protocol in Protocol 9. Remark that the
ideal functionality PDTE is given in FuNcTIONALITY 1. The protocol
performs FeatSelect, Compare, and PathEval sequentially, so the
total number of online communication rounds is 5.

Theorem 6. The protocol PDTE for Fpgte is perfectly semi-honest
secure in the (Freatselects ﬁompare» %atheval)'hybrid model.
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Figure 4: A Calculation Example of Tree Permutation. Each step indicates swapping by 1o = 1, swapping by 11,1 = 1, swapping
by 120 =1 and 123 = 1, and taking the element-wise XOR with r, respectively.

Protocol 9 Private Decision Tree Evaluation (PDTE)
Functionality: [val]V PDTE({[attr;]N }75 1, {[idx;]™ ety

h_
{51V }jex,_,» {Tcond;j 18} e, {Ival IV 12251
Input: Arithmetic shared attribute vector {[attr;]V ;’:’51, index vector
{[lidx;]™} jer,_, » threshold value vector { [[rjﬂN } jeT;,_, » condition vec-
21
=0

«—

tor {[cond;]B } jeT;,_, - leaf value vector {[val ]V}
Output: Arithmetic shared leaf value [val]™V
1: for j € T, do

2: Servers cooperatively compute and store the share of attribute
[[attridxj]]N «— FeatSelect([idx;]™, {[attr;]N }7;!
3: end for

4: {[[compj]]B }jeT,_, — Compare( {[[aﬂride]]N}jeTh,l,
{IziIN } ety {Icond; 1P e, )
5: [valg]N « PathEval({[comp;]®} jer;, ;. {[[valj]}N}i.igl)

6: return [vali ][N

4 EXPERIMENT

In this section, we provide detailed evaluation results of our PDTE
protocol.

4.1 Setting

As mentioned in Sect. 2.4, we assume that the servers obtain a
shared decision tree as a (shared) trained model. First, we show
our target dataset and then we show how to prepare such trained
models from the available dataset.

4.1.1 Dataset and model. We select datasets from the UCI machine
learning repository [22], which are Wine, Linnerud, Breast cancer,
Digits and Diabetes. All of these datasets are also used in [36] to
evaluate the performance of their protocols.

The decision tree for each dataset is trained using the scikit-
learn [42] toolkit, which enables to set up of the maximum possible
height of the desired final evaluation tree. Dummy nodes are then
added to this decision tree as in [31] and used for MPC evaluation.
Note that comparison with an experiment with sparse trees in [36]
and our experiment with a complete tree by adding dummy nodes
imply that computation and storage cost in a complete tree is not a
big deal, while the bandwidth of the network will affect the total
execution time.

From the dataset above, we trained seven different decision tree
models ranging from a depth of 5 to 18. See Table 4 and the Appen-
dix C for more details.

4.1.2  Implementation Setup. We implemented the online phase of
FeatSelect, Compare, and PathEval, in which three parties execute
the protocols with respective secret sharings as input and interact
with each other. For the offline phase, we evaluate the protocol
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Table 4: Tree Parameters in Our Experiments

Decision Tree || #Attributes | Tree Depth | #Nodes | Padding%
WINE 6 5 11 64.52%
LINNERUD 3 6 19 69.84%
BREAST 13 7 21 83.46%
DIGITS-10 48 10 138 86.51%
DIGITS-12 48 12 159 96.12%
DIGITS-15 48 15 167 99.49%
DIABETES-18 10 18 369 99.86%

construction by estimating the actual network communication cost
theoretically.

For a prototype implementation [1], we implemented our PDTE
protocol using Python 3.10.4. We use the sycret Python wrapper [45]
to implement the Fgqya function. This wrapper efficiently handles
both the Distributed Point Function (DPF) and Distributed Compari-
son Function (DCF) using Rust. Based on DPF, we can realize Fqyal
within the pre-processing model. However, the sycret wrapper does
not offer an implementation for F| essThan- To address this, we fol-
low the approach for creating an interval containment gate, as
described in Fig.3 of [9], to implement F{ essThan-

To test the performance of our protocols in a genuine hetero-
geneous network setting, we used a test bed composed of three
droplets provided by DigitalOcean, referred to as S1, Sz, and Ss.
Each of these droplets shares identical configurations, possessing a
relatively low specification of 8GB memory and 4-core CPUs, and
operating on Ubuntu 22.04 LTS. The geographical locations of the
droplets vary, with Sp situated in San Francisco, Sy in Singapore,
and S3 in Frankfurt. The RTT latency and bandwidth measured
between these servers were, on average, 180ms with 62Mbps be-
tween S; and Sy, 160ms with 135Mbps for S; and S3, and 170ms
with 115Mbps for Sy and Ss.

To prepare the RSS shares of the trained decision tree models, we
first execute the training via non-MPC machine learning algorithms.
Then we expand the decision tree to a full binary tree by padding
multiple dummy nodes and obtain RSS shares of the tree.

To test the real performance of our protocol, we run our im-
plementations on the above WAN test bed. Here, we execute our
protocol with the RSS shares of the test vectors from the UCI dataset
and the extended complete binary decision tree. This process al-
lows us to learn the real-world performance of our protocol such as
actual computation time and the amount of communication volume.

Both run-time cost and communication volume are measured
in the online phase, while we measured only communication vol-
ume in the offline phase. More detailed settings are described in
Appendix C.
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Table 5: Round and Communication Cost of PDTE Protocols
FeatSelect Compare PathEval
Online Offline Online Offline Online Offline
Round 11 2 10 1 4 0
Tsuchida et al. [46] - —— = — RSk k=3 logpF |~ 5 T T T T T T T T T T g T ST S TS TS S S SSSS o s oo
- gp+ 2 _ . _ 929Y.
Comm. | 4) + 6mk +3mk + 3k) - | (k" +mk+2m =K}k (45k+(9k=9) log p+22) 18k(k - 1) - (2 - 1) (6k +6h+3) - 20 0
@ -1 (2" -1) (2" -1
>50.1 MB >190.3 MB »11.9 MB >73.1 MB »>1.1 MB
Ji et al. [28] _Round | | vl ____ vl ______ L D R I 0.
' Comm. 12m- (2" =1) 6((m+D)A+2m+k) - (2" =1) 6k - (27 = 1) 2(k(2A+3) +24) - (2P = 1) | (2A+2k) -2 +2- (h+1)A+2h+k) 0
2.3 MB »157.2 MB »6.2 MB 69.9 MB »>1.3 MB
This work _Round | _ | 2 |l ___ z_ L 2 L__2__.
Comm. | (4mk +3k") - (2" = 1) 10mk - (27 = 1) (@k+13)-2F-1) | A+Nk+1)-5) - (2" -1) sk-2f 44 (2 1) 4-(2F =)
»25.2 MB »62.9 MB »0.5 MB »36.4 MB »0.6 MB »16.3 KB

The estimated communication cost for DIGITS-15 is written after the “>”symbol by calculating with k = 32, p = 37, m = 48, h = 15, A = 128. Here, m is the size of feature vector, k = [log N1, p is the smallest
prime number greater than k, k” = [log m], and A is security parameter for FSS. Note that this estimation is naively calculated using the equations of approximated communication cost in this table so that the
numbers only give a rough estimation.

Table 6: Total Bytes Sent during Our PDTE Protocol (KB/all parties)

Table 7: Running Time of Our PDTE Protocol [s]

FeatSelect Compare PathEval Total FeatSelect | Compare | PathEval | Total

Online Offline Online Offline Online | Offline | Online Offline WINE 0.13 0.27 0.44 0.83

WINE 4.96 7.44 3.32 34.50 1.44 0.015 9.71 41.9 LINNERUD 0.12 0.27 0.45 0.85

LINNERUD 6.33 7.56 6.53 70.12 2.59 0.031 15.46 77.71 BREAST 0.13 0.27 0.46 0.86
BREAST 37.51 66.04 12.97 141.36 4.90 0.063 55.39 207.47

DIGITS-10 1009.07 1964.16 103.10 1138.72 37.28 0.51 1149.45 3103.39 DIGITS-10 0.75 0.48 0.41 1.64

DIGITS-12 | 4039.07 | 7862.40 | 412.09 | 4558.24 | 148.28 | 2.04 | 4599.45 | 12422.69 DIGITS-12 1.12 0.75 0.77 2.64

DIGITS-15 32319.07 | 62912.64 3296.09 36473.76 | 1184.27 16.38 | 36799.44 | 99402.79 DIGITS-15 3.22 3.71 2.79 9.73

DIABETES-18 | 61951.83 | 104857.20 | 26368.09 | 291797.92 | 9472.24 | 131.07 | 97792.16 | 396786.19  DIABETES-18 10.94 31.96 38.04 80.94

4.2 Evaluation

We first estimate the bits sent among the servers and the commu-
nication rounds required for our PDTE protocol by definition. We
counted them in an online/offline paradigm to focus on the actual ex-
ecution time after obtaining the PDTE input, and we distinguished
offline pre-computations from the online execution. We compare
our protocol with the state-of-the-art PDTE protocol [46] theoret-
ically. Since [46] does not distinguish between online and offline
rounds, we re-counted rounds to separate them into online/offline
in Table 5 and have a fair comparison.

The evaluation results in Table 5 show that our protocol requires
almost the same offline rounds as [46] but requires much fewer
online rounds. More precisely, our PDTE protocol only requires 5
online-rounds in total while [46] requires 25 online rounds.

Next, we compare our work with the most recent work by Ji et
al. [28] that claimed it constructed a 4-round PDTE protocol. Al-
though the functionality of PDTE protocol in [28] is simplified as
pointed out in Appendix B, their PDTE protocol requires more
communication bits than that of our proposed protocol, i.e., [28]
requires approximately 235 MB to execute PDTE on the DIGITS-15
decision tree model, while ours requires approximately 135 MB of
communication in total. See the estimation of Ji et al. and ours in
Table 5. Note that, in Table 5, the estimation is naively calculated
by using the approximated equations of Tsuchida et al. [46] and
Ji et al. [28], which only give a rough estimation, and by our exact
equation, which gives an estimated minimum cost.

In Table 6, we record the actual online communication cost
for each of our subprotocols, while we list the estimated offline
communication cost. It shows that the communication costs rise
exponentially with the depth of the tree. More specifically, across
all phases of our protocols, the communication cost demonstrates
a linear relationship with 2.

In Table 7, we measure the running time of each online subpro-
tocol by calculating the elapsed time from the beginning to the
end of the respective subprotocol. We then calculate the average of
these measurements across all three droplets. Note that the reported
running time includes both the time for sending/receiving message
packets on network and the processing of the received messages. To
further reduce the execution time, we parallelized data processing
during the online FeatSelect and Compare phases. We segmented
the collected message from all tree nodes into smaller batches for
processing. Each batch, comprising messages from 1400 nodes, was
processed in individual threads. Additionally, our design ensures
that the sending, receiving, and processing of these messages occur
asynchronously. As indicated by Table 7, the online phase executes
swiftly for a decision tree of depth less than or equal to 12. However,
for trees of depth greater than 15, the vast communication volume
and associated computation cost become constraining, even though
our protocol maintains a constant round. Factors such as bandwidth
constraints, network delays, and processing extensive messages
form bottlenecks in execution time. It’s worth mentioning that our
evaluations ran using Python on modest servers (8GB Memory,
4-core CPUs). Implementing our protocol in a high-performance
programming language and deploying it on superior servers will
surely expedite the evaluation of deeper decision trees significantly.

The outsourced PDTE protocol by Ma et al. [36] reported in Fig.
15 of Ji et al. [28] has a running time of approximately 3 seconds
for BREAST and 10 seconds for DIGITS-15 in the WAN setting
with 80 ms of network latency, while our construction takes 0.86
seconds and 9.73 seconds, respectively, in the WAN with two times
larger network latency (160-180 ms). This fact convinces us to claim
that our protocol works well even in networks with larger delays
because of its small constant round complexity.
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We describe our protocols for share conversions here. Our ShareConv

protocol requires a single invocation of RndGen to make the output
values uniformly random when viewed from S3. The ShareConv™!
protocol also requires RndGen as a sub-functionality to generate a
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Protocol 10 Share Conversion (ShareConv)

Functionality: {x) « ShareConv([x]V)
Input: (2,3)-RSS arithmetic value [x]V
Output: (2,2)-SS arithmetic value {x)
1: S; and Sy sample r i ZN using RndGen
2: Sy computes y; = x; + x3 + r where [[x]]f] = (x1,%2)
3: S, computes y, = x3 — r where [[x]]g" = (2, x3)
4: Sy returns {x); = y; and S returns {x); = y,

Protocol 11 Share Conversion (ShareConv™1)

Functionality: [x] < ShareConv™!({x))

Input: {x) = (x;,x;), where x; from S;, x; from S;

Output: (2,3)-RSS arithmetic value [x]

: Servers generate a random share [[r] = (r1, r2, r3) using RndGen
: S; computes m; = x; + riy1 — r; and sends it to Sy

: S; computes mj = x;j +rj4; — rj and sends it to S

: Sk computes my = rry; — rr and sends it to Sgiq

: Servers set [x] = ((m1, mg), (m2, ms), (ms, my))

[ I N O I

3-out-of-3 zero-sharing. The main idea for generating zero-sharings
follows the technique proposed in [2].

B JIETAL’S PROTOCOL

We highlight the difference between Ji et al. [28]’s PDTE protocol
and our proposed protocol. As briefly mentioned in Sect. 1.2, the
PDTE protocol in [28] is different in three aspects.

First of all, the functionality they achieved was slightly different
from Tsuchida et al. [46] and ours. For example, the comparison
protocol does not consider switching operations such as less-than
comparison and equality check. More precisely, [28] only considers
a single operation, ie., the interval check.

Another disadvantage is that their path evaluation protocol does
not let servers hold proper secret shares at the final step. Therefore,
their PDTE protocol’s output cannot be an input of other function-
alities. To fix this problem, we believe that Ji et al.’s protocol needs
an extra step to convert the final output into proper shares.

Finally, the PDTE protocol in [28] deploys the FSS for all three
algorithms, the feature selection, comparison, and path evaluation,
while our protocol only relies on the FSS when constructing the
comparison protocol. Using FSS increases total communication
complexity and storage cost because of generations of FSS keys.
Table 5 shows the communication complexities.

C IMPLEMENTATION DETAILS

Table 4 shows the parameters of decision trees of each dataset using
scikit-learn, which are the number of attributes, the depth of trees,
and the number of nodes before padding. Note that we derived
three different decision trees from the same dataset DIGITS, which
are DIGITS-10, DIGITS-12, and DIGITS-15, respectively of depth 10,
12, and 15. It is realized by setting the maximum possible decision
tree height when using scikit-learn.

Since our protocol only considers integers, we convert the dec-
imals in the dataset (feature attributes) as well as the feature at-
tributes in the trained decision tree model to 32-bit integers. This
conversion is done by multiplying each attribute of each instance
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with a suitable power of 10 to ensure that all of them are in integer
form and the threshold values are also in integer form. Also, we
generate secret sharings within the ring Z32, this includes the secret
sharing of feature attribute values, threshold values, and the final
classification values.

The run-time was counted using the Python Timer Function.

The communication bytes were calculated by actually measuring
the transmitted messages between servers. The times reported
are averaged over 10 trials. Decimal numbers are truncated at the
second decimal place for simplicity.
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