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ABSTRACT
Membership inference attacks (MIAs) are important measures to
evaluate potential risks of privacy leakage from machine learning
(ML) models. State-of-the-art MIA defenses have achieved favor-
able privacy-utility trade-offs using knowledge distillation on split
training datasets. However, such defenses increase computational
costs as a large number of the ML models must be trained on the
split datasets. In this study, we proposed a new MIA defense, called
SEDMA, based on self-distillation using model aggregation to miti-
gate the MIAs, inspired by the model parameter averaging as used
in federated learning. The key idea of SEDMA is to split the train-
ing dataset into several parts and aggregate multiple ML models
trained on each split for self-distillation. The intuitive explanation
of SEDMA is that model aggregation prevents model over-fitting
by smoothing information related to the training data among the
multiple ML models and preserving the model utility, such as in
federated learning. Through our experiments on major benchmark
datasets (Purchase100, Texas100, and CIFAR100), we show that
SEDMA outperforms state-of-the-art MIA defenses in terms of
membership privacy (MIA accuracy), model accuracy, and compu-
tational costs. Specifically, SEDMA incurs at most approximately 3 -
5% model accuracy drop, while achieving the lowest MIA accuracy
in state-of-the-art empirical MIA defenses. For computational costs,
SEDMA takes significantly less processing time than a defense with
the state-of-the-art privacy-utility trade-offs in previous defenses.
SEDMA achieves both favorable privacy-utility trade-offs and low
computational costs.

KEYWORDS
membership inference attacks, privacy-preserving machine learn-
ing, self-distillation, model aggregation

1 INTRODUCTION
Machine learning (ML) has been widely used in a lot of areas, such
as predictive analytics, image recognition, and natural language
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processing, where the input may include privacy-sensitive data.
However, recent work has shown that ML models tend to memorize
information from the training data (due to over-fitting), which
poses serious privacy risks when training data includes privacy-
sensitive information [4, 33, 44]. Membership inference attacks
(MIAs), where an adversary aims to identifywhether a target sample
was used to train an ML model based on model behavior, are one of
the most fundamental privacy attacks against ML models [12, 33].
The attacks can pose a serious privacy threat as they reveal privacy-
sensitive information related to training data. For example, in the
case of an ML system for hospital health analytics, an adversary can
reveal that a victim was once a patient in the hospital (the victim’s
data was used for a training data of the ML system) by the MIAs.
In addition, MIAs have also been applied to data extraction attacks
[4] and the privacy-preserving assessment of ML models [15, 25].

MIA adversaries can obtain privacy-sensitive information re-
lated to the training data by simply accessing a prediction API in
ML systems (called black-box MIAs), even if the providers of the
ML systems are trusted. Black-box MIAs can be categorized into
single-query [3, 23, 34, 36, 43–45] and label-only attacks [7, 19, 20].
Single-query attacks directly query a target model with only a tar-
get sample, typically to identify the target sample as members of
the training data (used in training) or non-members (not used in
training). Label-only attacks indirectly query a target model with
multiple samples in the neighborhood of a target sample to identify
the target sample as members or non-members.

MIA defenses need to design ML models to behave similarly
between a sample of members and non-members because MIAs
identify the sample as members or non-members based on the
different model behavior caused by whether or not the sample is
included in the training data [1, 8, 14, 16, 23, 32, 38]. MIA defenses
can be categorized into provable privacy defenses and empirical
membership privacy defenses, as shown in Table 1. Provable privacy
defenses typically use differential privacy mechanisms to provide
provable privacy guarantees for the all inputs of ML models. How-
ever, differential privacy-based defenses, such as DP-SGD [1], have
been reported to significantly degrade model utility in a lot of ML
models. Empirical membership privacy defenses aim to preserve
the model utility and provide privacy empirically evaluated through
practical MIAs without provable privacy guarantees. This study
focuses on empirical membership privacy defenses and proposes a
new defense strategy that has better trade-offs among membership
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Table 1: Two categories of MIA defenses: provable privacy-
defenses and empirical membership privacy-defenses. The
provable privacy defenses provide provable privacy guar-
antees however degrade model utility. The empirical mem-
bership privacy defenses maintain high model utility, but
cannot provide provable privacy guarantees.

Low model utility High model utility

Provable DP-SGD [1] No defences, so far
privacy (challenging)

Empirical AdvReg [23],
membership - MemGuard [16],

privacy KCD [8], SELENA [38],
SEDMA (Our defense)

privacy, model utility, and computational costs, compared to state-
of-the-art empirical defenses, such as AdvReg [23], MemGuard [16],
KCD [8], and SELENA [38].

In this study, we introduce a new empirical membership privacy
defense called SEDMA 1. Our goal is to mitigate practical black-box
MIAs, maintain high model utility, and have low computational
costs. First, similar to KCD [8], SEDMA splits a training dataset into
several subsets and trains multiple ML models (called sub-models)
on each subset. Second, the trained sub-models are aggregated into
several pairs (called model aggregation). Model aggregation means
averaging the model parameters, such as performed in federated
learning [21]; however, it is different from federated learning in
that it is performed among several pairs of sub-models.

Next, SEDMA performs inference with several aggregated mod-
els on the subset not used in the training of each sub-model and
obtains their corresponding prediction vectors. These prediction
vectors were used as the soft labels for the original training dataset.
In general, SEDMA trains a protected model on a soft-labelled train-
ing dataset. This process is called self-distillation, transferring pre-
diction vectors (knowledge distillation) between ML models with
the same model architecture. The state-of-the-art MIA defenses,
KCD [8] and SELENA [38], have achieved favorable privacy-utility
trade-offs by self-distillation on split training datasets. Note that
the novelty of SEDMA lies in the approach of applying model ag-
gregation in several pairs of sub-models for self-distillation. The
intuitive explanation of SEDMA is that model aggregation prevents
over-fitting by smoothing information of the original training data
included in the trained models among the sub-models and preserv-
ing model utility such as in federated learning. In addition, SEDMA
reduces the computational costs by generating sub-models to com-
bine sub-models by usingmodel aggregation, unlike SELENAwhich
has state-of-the-art privacy-utility trade-offs in previous empirical
defenses.

In our experiments, we evaluated SEDMA on three benchmark
datasets (Purchase100, Texas100, and CIFAR100). We compared
SEDMA with four existing empirical MIA defenses [8, 16, 23, 38],
including KCD and SELENA. We conducted two types of black-box
MIAs, single-query attacks (NN-based attacks and metric-based

1SElf-Distillation using Model Aggregation

attacks) and label-only attacks (boundary distance attacks, data
augmentation attacks, and likelihood ratio attacks) as existing at-
tacks that have been used for evaluation in related work.

The experiments show that our defense achieves the lowest MIA
accuracy in four existing MIA defenses (around 52%). Nevertheless,
SEDMA incurs only a little drop model accuracy (at most approxi-
mately 3 - 5% drop compared to undefended models). Moreover, we
discuss the best hyperparameters of SEDMA for favorable trade-
offs, the computational costs of SEDMA, and the comparison with
provable privacy defenses. For computational costs, compared to
SELENA which has state-of-the-art favorable trade-offs, SEDMA
takes significantly less processing time (only a seventh of the time
on three benchmark datasets).

1.1 Contributions
In summary, the key contributions of this paper are as follows:

• We propose SEDMA, which is a new defense mechanism
against MIAs by self-distillation with model aggregation.
The novelty of SEDMA lies in the approach that reduces
overfitting by smoothing information related to the training
data among sub-models with model aggregation, similar to
the model averaging performed in federated learning [21].

• We show that SEDMA mitigates practical black-box MIAs,
maintains high model utility, and has low computational
costs. We also demonstrate that SEDMA’s performance de-
pends on the content ratio of the original training data for a
sub-model and discuss the best hyperparameters of SEDMA
for favorable privacy-utility trade-offs. SEDMA has the ad-
vantage of reducing overfitting and adjusting the content
ratio by model aggregation, while saving computation time.

• We evaluated SEDMA on three benchmark datasets (Pur-
chase100, Texas100, and CIFAR100) with single-query and
label-only attacks. We demonstrated that SEDMA outper-
forms state-of-the-art empirical defenses. SEDMA achieves
the lowest MIA accuracy in the previous defenses (around
55%), with only a model accuracy drop of approximately 3 -
5% compared to undefended models.

2 PRELIMINARIES
In this section, we introduce our threat model and provide an
overview of prior MIAs and MIA defenses. Based on the threat
model and previous work, we present our goals.

2.1 Threat Model
We assume black-box MIAs, in which an adversary has black-box
access to a target model. An adversary cannot access the target
model parameters directly, however, it can query the target model
through a prediction API and obtain the corresponding prediction
vectors and / or labels. Thus, the adversary can perform single-
query attacks with access to both prediction vectors and labels,
or label-only attacks with access to only prediction labels. This
threat model is standard black-box MIAs and is typically used for
the evaluation of MIAs in prior studies.

We also assume that the adversary knows a small subset of the
training dataset for the target model, similar to the assumption
in prior works [23, 34, 38]. In other words, the adversary knows
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Table 2: Two categories of black-box MIAs: single-query and
label-only attacks. Single-query attacks directly query a tar-
get model with only a target sample typically. Label-only
attacks indirectly query a target model with multiple sam-
ples in the neighborhood of a target sample.

Type Typical Attacks

NN-based attacks [23, 33],
Single-query Metric-based attacks

attacks (Correctness [45], Confidence [36, 44],
Entropy [33], Modified entropy [34],

Likelihood ratio [3, 43])

Label-only Boundary distance attacks [7, 19],
attacks Data augmentation attacks [7]

several members of the target model. In addition, we assume that
the adversary knows the architecture of the target model, in case
of NN (Neural Network) -based attacks [23, 33]. The adversary’s
goal is to identify the victim’s data as members or non-members of
the target model.

2.2 Related Work
We introduce an overview of prior MIAs and MIA defenses.

2.2.1 Membership Inference Attacks (MIAs). MIAs can identify
whether a target sample is a member based on prediction vectors
and / or labels from the target model. MIAs are typically studied in a
black-box scenario in which the adversary does not know the target
model parameters [23, 33]. Black-box MIAs can be performed either
by identifying a subset of the training dataset [23] or construct-
ing shadow models from a dataset with the same distribution [33].
Black-box MIAs can be classified into two categories: single-query
and label-only attacks, as shown in Table 2. There have been a lot
of types of single-query attacks in prior studies [34, 36, 44, 45].

Single-query attacks, such as NN-based attacks or metric-
based attacks, issue a query directly to a target model and use
prediction vectors and labels to identify the query as members or
non-members.

NN-based attacks [23, 33] build a neural network model 𝐼NN for
membership inference by using prediction vectors and labels of a
target model. The adversary identifies a target sample as members
or non-members with 𝐼NN.

Metric-based attacks [23, 33, 34, 36, 44, 45] use the metrics, such
as correctness (correctness-based attacks), confidences (confidence-
based attacks), or entropy (entropy-based attacks ormodified entropy-
based attacks) of the prediction results from the target model to
identify the target sample as members or non-members.

Correctness-based attacks [45] assume that a sample with cor-
rect prediction is likely to be a member. The attacks identify a
target sample as members or non-members based on the difference
between training accuracy and testing accuracy of a target model.
The adversary builds the membership inference classifier (members
as 1 and non-members as 0) 𝐼corr to the target model 𝐹 as follows:

𝐼corr (F (x), y) = 1{argmax
i

F (x)i = y}, (1)

where 𝑦 is the correct label of the input sample 𝒙 .
Confidence-based attacks [36, 44] exploit the fact that member’s

prediction confidence 𝐹 (𝒙)𝑦 is typically higher than non-member’s
one. The attacks identify a target sample as members when the pre-
diction confidence is higher than either a class-dependent threshold
𝜏𝑦 or a class-independent threshold 𝜏 . The membership inference
classifier 𝐼conf for the attacks is as follows:

𝐼conf (F (x), y) = 1{F (x)y ≥ 𝜏 (y) }. (2)

Entropy-based attacks [33] exploit the fact that member’s pre-
diction entropy is typically lower than that of non-members. The
attacks identify the target sample as a member when the prediction
entropy is lower than either a class-dependent threshold 𝜏𝑦 or a
class-independent threshold 𝜏 . The membership inference classifier
𝐼entr for the attacks is as follows:

𝐼entr (F (x), y) = 1

{
−
∑︁
i
F (x)i log(F (x)i) ≤ 𝜏 (y)

}
. (3)

Modified entropy-based attacks [34] use a metric to combine
prediction entropy and correct labels to improve entropy-based
attacks. The attacks exploit the fact that member’s values of the
modified entropy metric Mentr(F (x), y) is typically lower than
that of non-members. The adversary identifies a target sample as
members when the modified entropy metric is lower than either
a class-dependent threshold 𝜏𝑦 or a class-independent threshold
𝜏 . The membership inference classifier 𝐼mentr for the attacks is as
follows:

Mentr(F (x), y) = − (1 − F (x)y) log(F (x)y)−∑︁
𝑖≠𝑦

F (x)i log(1 − F (x)i), (4)

𝐼mentr (F (x), y) = 1{Mentr(F (x), y) ≤ 𝜏 (y) }. (5)
Likelihood ratio attacks [3, 43] use a ratio of likelihood of a

target sample on a target model and a reference model trained on
samples from population distribution, instead of a loss of the target
model. Carlini et al. [3] propose likelihood ratio attacks (LiRA),
which achieves the state-of-the-art attack performance. LiRA trains
N shadow models, of which half are IN models and the other half
are OUT models, and fit Gaussians to the confidences of the IN
and OUT models. The adversary measures the likelihood of the
confidence of the target sample under each distribution of the IN
and OUT models and identifies a target sample as members or not
by whichever is more likely. Jiayuan et al. [43] propose Attack R,
which is similar to LiRA and achieves higher performance than
LiRA.

Label-only attacks, such as boundary distance attacks or data
augmentation attacks, are based on the fact that a member’s sample
influences prediction vectors and labels on both itself and the other
samples in its neighborhood [20]. The attacks exploit the fact that
a target model is more likely to correctly classify samples around
members’ data than samples around non-members’ data [7, 19].
The adversary issues multiple queries around a target sample in-
directly to the target model and uses the prediction labels from
the target model to identify the target sample as members or non-
members. Therefore, obfuscating prediction confidence [16, 42], is
not a defense against label-only attacks.
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Boundary distance attacks [7, 19] assume that samples around
members are more likely to correctly classify than samples around
non-members. The attacks exploit the fact that the distance to the
classification boundary for members is larger than that for non-
members. The adversary computes the distance to the classification
boundary by using samples added with small noise to a target
sample or adversarial examples crafted to a target sample under
the black-box scenario [2, 5, 6].

Data augmentation attacks [7] use data augmentation techniques
in computer-vision for boundary distance attacks. The adversary
computes the distance to the classification boundary by using aug-
mented target samples with translations, rotations, or flips.

2.2.2 MIA Defenses. MIA defenses can be categorized into prov-
able privacy defenses using differential privacy and empirical mem-
bership privacy defenses designed specifically to mitigate MIAs.

Provable privacy defenses which are based on differential
privacy in ML, such as DP-SGD [1], add noise to ML models during
the training process. However, applying differential privacy to ML
models involves trade-offs betweenmodel accuracy loss and privacy
guarantees [15, 29]. Improving the model accuracy loss are actively
discussed in the provable privacy defenses.

PATE [26, 27] is a defense that leverages knowledge distillation
with public data and differential privacy for a provable privacy
guarantee. Knowledge distillation transfers knowledge of a model
(teacher) to another model (student) by using the prediction output
of the teacher model [11]. This defense splits training dataset for
sub-models and adds noise to the trained sub-models to label public
data for a student model. However, in a lot of realistic scenarios, it
is difficult to prepare public data corresponding to original privacy-
sensitive training data.

Currently, the state-of-the-art defense has shown that the model
accuracy is significantly degraded on benchmark datasets (the
model accuracy is 25% lower for 𝜖 ≦ 3) [22, 28, 40]. Thus far, it has
been difficult to achieve both acceptable utility loss and privacy
guarantees with differential privacy [15, 29].

Empirical membership privacy defenses, such as AdvReg
[23], MemGuard [16], DMP [32], KCD [8], SELENA [38], and MI-
AShield [14], aim to preserve model accuracy and provide privacy
empirically evaluated through practical MIAs without provable
privacy guarantees.

Adversarial Regularization (AdvReg) [23] is a defense that trains
an ML model to mitigate different model behavior between mem-
bers and non-members against MIAs. This defense is based on a
game theoretic framework similar to MIAs extended to generative
models [9]. The defense optimizes the training of ML models with
an objective function of reducing the prediction loss while also
minimizing the MIA accuracy.

MemGuard [16] is a defense that obfuscates prediction vectors
with noise to confuse membership inference classifiers. This de-
fense maintains the same model accuracy as the undefended model
because it only obfuscates prediction vectors without changing the
prediction labels. However, it is weak against metric-based attacks
and does not defend against label-only attacks [34].

DMP [32] is a defense that leverages knowledge distillation with
public data. This defense achieves favorable privacy-utility trade-
offs because it can indirectly train an ML model on the privacy-
sensitive training data by knowledge distillation with public data. It
is difficult to prepare public data as well as PATE in a lot of realistic
scenarios.

KCD [8] is a defense that trains multiple sub-models for each
combination of split training data and then trains a protected model
by distillation using the prediction outputs of the sub-models on
one remaining split training data not used for training. This defense
achieves favorable privacy-utility trade-offs without preparing pub-
lic data which is the challenge of DMP.

SELENA [38] is a defense that trains multiple sub-models on
each combination of split training data and then trains a protected
model by distillation using the ensemble prediction output of the
sub-models on the split training data not used for training. This
defense differs from KCD in that it averages the multiple predictions
outputs of sub-models for distillation. It also achieves favorable
privacy-utility trade-offs without preparing public data, such as in
KCD.

MIAShield [14] is a defense that trains each sub-model on multi-
ple sub-models on each augmented split training dataset and then
provides the ensemble prediction output of the sub-models, except
for a sub-model trained on data related to an input in the inference
phase. This defense is similar to SELENA; however, it has several
limitations, such as applying only to augmentable computer-vision
datasets and high-performance computing systems that can deploy
multiple sub-models for ensemble prediction.

In addition, several regularization techniques, such as dropout
[37], weight decay [41], and early-stopping [35], have been known
to mitigate MIAs to a limited extent.

2.3 Our goals
In this study, we propose a defense that has favorable privacy-utility
trade-offs and low computational costs against practical black-box
MIAs.

2.3.1 Low MIA Accuracy. We aim to mitigate practical black-box
MIAs, including both single-query and label-only attacks. Prior stud-
ies have often used accuracy of member inference, including both
members and non-members, as an MIA evaluation. We focus on
correct prediction for members because the adversary aims to iden-
tify whether a target sample was used to train an ML model. Thus,
we evaluated not only the accuracy but also precision and recall
on a dataset with the same number of members and non-members,
based on a recent work [30]. Precision indicates the percentage of
correct answers among the data inferred to be members, and recall
indicates the percentage of correct answers among the members of
the data. These metrics, accuracy, precision, and recall, have high
values when the risk of membership privacy leakage is high. Let
us denote TP as the number of true positives, FN as the number of
false negatives, TN as the number of true negatives, and FP as the
number of false positives. The accuracy, precision, and recall are
given as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (6)
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Figure 1: OverviewofMIAShield. A privacy-sensitive training
dataset is split and augmented. MIAShield trains multiple
sub-models on each augmented split data. In the prediction
process, the output is an ensemble of prediction results using
multiple sub-models.

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
. (8)

Thus, precision and recall about TP are important metrics in
terms of the adversary’s aim to identify whether a target sample is
a member.

2.3.2 High Model Accuracy. Our defense aims to achieve favorable
trade-offs between privacy and utility, that is, to protect member-
ship privacy without significantly degrading model accuracy. Prior
work has shown that defenses using knowledge distillation on split
training datasets, such as KCD [8] and SELENA [38], achieves fa-
vorable privacy-utility trade-offs. In addition, these defenses do not
require public datasets (PATE [26, 27] and DMP [32] require public
data). In this study, we focus on KCD and SELENA as benchmarks
to evaluate privacy-utility trade-offs.

2.3.3 Low Computational costs. Our defense aims to achieve low
computational costs. Even if a defense has favorable trade-offs
between privacy and model accuracy, it is not practical if the addi-
tional computational costs for the defense is significant. MIAShield
[14] adds computational costs corresponding to the number of sub-
models for each inference because it makes inferences by using
multiple sub-models trained on each split training data, as shown in
Figure 1. However, KCD and SELENA provide one protected model
by knowledge distillation, therefore they have no additional compu-
tational costs during the inference phase. In addition, it is difficult
to deploy MIAShield to embedded devices with limited resources
or federated learning which share one trained model [24].

In this study, MIAShield is out of scope and we focus on the
computational costs of KCD and SELENA during the training phase.
KCD requires additional training of sub-models for each combi-
nation of split training datasets, as shown in Figure 2. According
to KCD’s experiments [8], KCD provides favorable trade-offs with
more than 10 sub-models. SELENA also requires additional train-
ing depending on the combination of sub-models, as shown in
Figure 3. According to SELENA’s experiments [38], the 25 sub-
models are required for favorable trade-offs. Thus, the defenses
using knowledge distillation on split training datasets provide fa-
vorable privacy-utility trade-offs, however, the computational costs
of training sub-models becomes a main concern.

Figure 2: Overview of KCD. KCD makes combinations of
split training data and trains multiple sub-models on each
combination. The sub-models label prediction results for
each one remaining untrained split data and make a dataset
with the labeled data (soft labels). In the prediction process, it
outputs a prediction result for an input by using a protected
model trained on the dataset with soft labels.

Figure 3: Overview of SELENA. SELENA trains multiple sub-
models on each split training data and obtains prediction
results with the sub-models for each untrained split data. A
protected model is trained on a dataset labeled ensembles of
the prediction results. In the prediction process, it outputs a
prediction result for an input using a protectedmodel trained
on a dataset labelled by ensembled prediction results.

3 OUR PROPOSED DEFENSE
In this section, we present the concept and details of our defense.

3.1 Concept
MIAs result from the fact that ML model behavior differs between
members and non-members. For example, ML models exhibit the
behaviors, such as different prediction accuracy between members
and non-members [45], or higher prediction confidence for mem-
bers [31, 34, 36, 44]. We propose a new defense strategy to mitigate
these differences, based on model aggregation and self-distillation.

An overview of our proposed defense system is shown in Figure 4
and Algorithm 1. Our defense system first splits a privacy-sensitive
training dataset𝐷 into 𝑛 subsets𝐷1, 𝐷2, ..., 𝐷𝑛 . Sub-models 𝑓1, 𝑓2, ...,
𝑓𝑛 are trained on each subsets𝐷1, 𝐷2, ..., 𝐷𝑛 . Our defense aggregates
the sub-models 𝑓1, 𝑓2, ..., 𝑓𝑛 with

(𝑛
𝑘

)
combinations of 𝑘 sub-models.

Model aggregation refers to averaging the parameters of the models,
as used in federated learning. However, it differs from federated
learning in that it is performed among each combination of the sub-
models. In the case of 𝑘 = 𝑛− 1, the sub-models are aggregated into( 𝑛
𝑛−1

)
= 𝑛 aggregatedmodels. Our defense obtains prediction results

with the aggregate models to each subset not used for training of
original sub-models. The prediction results are used for each soft-
labelled subset 𝐷 ′

1, 𝐷
′
2, ..., 𝐷

′
𝑛 . Finally, an ML model 𝐹 is trained on

a training dataset 𝐷 ′ consisting of the soft-labelled subsets. The
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Figure 4: Overview of SEDMA. SEDMA trains multiple sub-models on each split training dataset and aggregates the sub-models
into each combination. The aggregated models label the split training data not used for training of the sub-models in each
combination. The labeled data is gathered as a dataset with soft labels. In the prediction process, SEDMA outputs a prediction
result for an input by using a protected model trained on the dataset with soft labels.

Algorithm 1 Training algorithm of SEDMA

Input: a training dataset𝐷 ⊂ {(𝑥,𝑦) |𝑥 ∈ 𝑹, 𝑦 ∈ {0, 1}} , a training
model 𝑓 , a loss function 𝐿, the number of subsets 𝑛, and the
number of sub-models aggregated to create each aggregated
model 𝑘 .

Output: a protected model 𝐹 .
Split 𝐷 into 𝑛 disjoint subsets {𝐷𝑖 }𝑛𝑖=1, such as
𝐷 =

⊔𝑛
𝑖=1 𝐷𝑖 .

for 𝑖 = 1 to 𝑛 do
Train sub-model 𝑓𝑖 by using 𝐷𝑖 ,∑

(𝑥,𝑦) ∈𝐷𝑖
𝐿(𝑓𝑖 (𝑥), 𝑦).

end for
Aggregate the trained sub-models 𝑓1, 𝑓2, ..., 𝑓𝑛 into

(𝑛
𝑘

)
combina-

tion set𝑀 of aggregated models 𝑓 ′1 , 𝑓
′
2 , ..., 𝑓

′(𝑛
𝑘

) ,
𝑓 ′
1,2,...,

(𝑛
𝑘

) = 1
𝑘

∑
𝑖∈{𝑀

1,2,...,
(𝑛
𝑘

) } (𝑓𝑖 ).
for 𝑖 = 1 to 𝑛 do

Let 𝐷 ′
𝑖
be a subset 𝐷𝑖 with soft labels,

𝐷 ′
𝑖
= {(𝑥, 𝑓 ′(𝑥)) |∃𝑦 : (𝑥,𝑦) ∈ 𝐷𝑖 }.

end for
Train 𝐹 on a dataset 𝐷 ′ consisting of subsets 𝐷 ′

1, 𝐷
′
2, ..., 𝐷

′
𝑛 ,

𝐷 ′ =
∑𝑛
𝑖=1 𝐷

′
𝑖
,∑

(𝑥,𝑦) ∈𝐷′ 𝐿(𝐹 (𝑥), 𝑦).
return 𝐹 .

model 𝐹 is expected to be a protected model to mitigate MIAs as
it is trained on the new training dataset 𝐷 ′ instead of the original
privacy-sensitive training data 𝐷 .

3.2 Description
The key attribute of our defense is to mitigate the over-fitting of
a trained model on a privacy-sensitive training dataset by using

model aggregation of multiple sub-models trained on split training
data. Our defense necessitates that the trained model contains less
additional information about the training data. The sub-models
can have similar behaviors to that of non-members for the other
split dataset, not used for training. Therefore, KCD soft-labels the
split data using the sub-model trained on the other split dataset
and trains a protected model on the soft-labelled dataset. SELENA
soft-labels the split data by using the ensemble prediction results of
the sub-models trained in the other split data. Our defense, however,
soft-labels the split data by using the aggregated model consist-
ing of the sub-models trained on the other split data. The model
aggregation aims to reduce the over-fitting of trained sub-models
by smoothing the information of the training data included in the
trained models among multiple sub-models while preserving the
model accuracy, such as in federated learning. The degree of over-
fitting on sub-models differs between our defense and KCD or
SELENA, even when we use the same number of sub-models. Our
defense generates multiple aggregated models from sub-models
by performing model averaging for every few sub-models. Each
aggregated model soft-labels to subsets not used for training of
the sub-models, which consist of the aggregated model. In KCD,
each sub-model soft-labels to one remaining subset excluded during
training of the sub-model.

Another key attribute of our defense is that additional computa-
tional costs for the defense is lower than that of SELENA. SELENA
has the state-of-the-art privacy-utility trade-offs, however, it has
additional costs to train a large number of sub-models (approxi-
mately 25) to obtain prediction results for an ensemble. Our defense,
however, combines sub-models by using model aggregation (simple
averaging of model parameters) and therefore only trains on each
split training dataset. The training for each combination of the
split training datasets, such as in SELENA, is unnecessary. If the
model accuracy of the aggregated models is not too high, only a
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Table 3: Three datasets for the evaluation of SELENA: Pur-
chase100, Texas100, and CIFAR100. "Train" is the amount of
the training data. "Test" is the amount of test data. "Known"
is the amount of the training data that the adversary can
know and exploit for MIAs. "Target" is the amount of data
to infer membership (half of the data is from members, and
the other half is from non-members).

Dataset Train Test Known Target

Purchase100 19,372 19,372 9,866 9,866
Texas100 10,000 5,000 5,000 5,000
CIFAR100 50,000 5,000 5,000 5,000

small amount of additional training is required, because the initial
model parameters are based on aggregated parameters from the
sub-models. In addition, because our defense does not use an en-
semble strategy such as SELENA, a large number of sub-models
are not required.

4 EXPERIMENTS
In this section, we introduce the experimental setup and evalua-
tion results compared to undefended models and state-of-the-art
defenses.

4.1 Setup
4.1.1 Datasets. We use three benchmark datasets widely used in
prior studies on MIAs. The benchmark datasets are Purchase100,
Texas100, and CIFAR100, as shown in Table 3. Purchase100 is a
dataset provided by Kaggle’s Acquire Valued Shoppers Challenge
[17].We use the dataset that Shokri et al. processed [33]. The dataset
has 197,324 records with 600 binary features regarding items cus-
tomers purchased. The data is classified into 100 classes regarding
purchase styles. Texas100 is a dataset provided by the Texas De-
partment of State Health Services [39]. We also use the dataset that
Shokri et al. processed [33]. The dataset has 67,330 records with
6,170 binary features about patients. The data is classified into 100
classes about procedures that patients underwent. CIFAR100 is a
dataset provided as a typical benchmark for image classification
algorithms [18]. The dataset has 60,000 images of various objects.
The data is classified into 100 classes of object names.

We set the number of training and test data, as shown in Table 3.
The adversary’s prior knowledge corresponds to half of the training
data and half of the test data, according to prior studies [23, 38].
Note that this does not make any adjustments to the datasets, such
as removing high-entropy data [8].

4.1.2 Model Architectures. We use a 4-layer fully connected neural
network with layer sizes of [1024, 512, 256, 100] for Purchase100
and Texas100, following prior work [23, 38]. For CIFAR100, we used
ResNet-18 [10] which is widely used in computer-vision tasks. Each
model is trained and tested on the dataset, as listed in Table 3.

4.1.3 MIAs for Evaluations. We conducted single-query and label-
only attacks, as shown in Table 2. The results show the median and
standard error from the ten runs. Single-query attacks consist of

five attacks, and we evaluated defenses based on the most success-
ful attack. For the label-only attacks, boundary distance attacks
were conducted. Data augmentation attacks were conducted on
CIFAR100 which is the computer-vision task. The code of these
attacks is based on the code 2 of SELENA. We used 15 shadow
models for LiRA and Attack R and applied both logit and linear
scaling to the model’s confidence on Attack R. We used accuracy,
precision, and recall to evaluate the attacks according to Section
2.3.1. The larger the metrics, the higher the risk of membership
privacy leakage.

4.1.4 Defenses for Comparison. We compared SEDMA with Mem-
Guard [16], AdvReg [23], KCD [8], and SELENA [38] as the state-of-
the-art defenses from Section 2.2.2. For KCD, we set the number of
split training data 𝑛 = 10 and the hyperparameter 𝛼 = 1 which is a
setting that protects privacy sufficiently. According to Chourasia et
al. [8], the larger 𝑛 generally implies better privacy and utility, and
the performance converges around 𝑛 = 10. For SELENA, we set the
number of split training data (sub-models) 𝐾 = 25 and the number
of sub-models for the ensemble 𝐿 = 10 with reference to the study’s
setup [38]. The hyperparameters of SEDMA are the number of split
training data 𝑛 and the number of the sub-model combination for
model aggregation

(𝑛
𝑘

)
. We set 𝑛 = 7 and

(𝑛
𝑘

)
=
(7
3
)
for SEDMA in the

experiments. We discuss the best hyperparameters of our defense
in Section 5.2.

4.2 Results
Table 4 summarizes the model accuracy and best attack accuracy,
precision, and recall for each attack type, including comparison
with undefended models and previous defenses.

4.2.1 Model Accuracy. We first compare our defense with unde-
fended models on MIA accuracy and model accuracy. According to
Table 4, the highest MIA accuracy in two types of attacks against un-
defended models is 68.23% on Purchase100, 67.51% on Texas100, and
74.51% on CIFAR100. However, the MIA accuracy against SEDMA
is no higher than 52.67% on Purchase100, 52.46% on Texas100, and
52.76% on CIFAR100. Our defense significantly reduces the risk of
membership privacy leakage by approximately 15-20%, compared
to the undefended models. The model accuracy of the undefended
models on the test dataset is 84.20% on Purchase100, 52.32% on
Texas100, and 77.69% on CIFAR100. The model accuracy of SEDMA
is 79.55% on Purchase100, 55.18% on Texas100, and 74.35% on CI-
FAR100. Compared with undefended models, our defense incurs,
at most, an accuracy drop of approximately 3 - 5%. Our defense
only has a small drop in model utility and achieves a low risk of
membership privacy leakage. Therefore, our defense has favorable
privacy-utility trade-offs. We next show that our defense achieves
better utility-privacy trade-offs compared to previous defenses,
such as AdvReg, MemGuard, KCD, and SELENA.

4.2.2 Comparison with Previous Defenses. We compare our defense
with previous defenses on MIA accuracy and model accuracy. Fig-
ure 5 shows the relationship between the model accuracy and the
single-query attack accuracy against undefended models, AdvReg,
MemGuard, KCD, SELENA, and SEDMA on (a) Purchase100, (b)

2https://github.com/inspire-group/MIAdefenseSELENA
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Table 4: Comparison of membership privacy and model accuracy. SEDMA is compared with undefended models and previous
defenses on three datasets. We evaluate membership privacy based on the most successful attack in each single-query and
label-only attack. The attack results show the median and standard error from the ten runs. The lowest attack accuracy,
precision, and recall on each dataset is bold.

Dataset Defense Mode accuracy Model accuracy Best single-query attack Best label-only attack
on training data on test data Accuracy Precision Recall Accuracy Precision Recall

None 99.98% 84.20% 69.00%(0.45) 70.95%(0.92) 63.63%(1.46) 65.84%(0.23) 60.39%(0.17) 92.04%(0.89)
AdvReg 90.10% 76.83% 62.33%(0.09) 67.47%(0.64) 47.64%(1.22) 58.19%(0.60) 55.79%(0.39) 78.88%(1.31)

Purchase100 MemGuard 99.98% 84.20% 65.26%(0.09) 68.99%(0.62) 55.45%(1.42) 61.98%(0.69) 61.98%(0.69) 93.89%(1.21)
KCD 82.07% 74.83% 64.34%(0.09) 69.02%(0.62) 52.04%(1.33) 60.08%(0.58) 56.98%(0.41) 82.31%(1.08)

SELENA 82.85% 79.07% 59.25%(0.16) 64.18%(0.66) 41.86%(1.07) 55.61%(0.55) 55.76%(0.59) 54.34%(0.70)
SEDMA 83.26% 79.55% 58.40%(0.20) 62.56%(0.68) 41.85%(1.07) 52.25%(0.61) 52.31%(0.64) 50.82%(1.00)

None 81.98% 52.32% 72.64%(0.23) 76.37%(0.11) 65.57%(0.50) 62.29%(0.22) 60.38%(0.30) 71.50%(0.55)
AdvReg 56.94% 46.52% 58.97%(0.01) 80.28%(0.02) 23.78%(0.04) 58.24%(0.45) 57.94%(0.46) 60.14%(0.65)

Texas100 MemGuard 81.98% 52.32% 59.96%(0.01) 82.12%(0.02) 25.46%(0.04) 65.68%(0.68) 62.87%(0.68) 76.62%(0.50)
KCD 52.23% 47.35% 59.43%(0.01) 81.59%(0.02) 24.48%(0.04) 53.61%(0.52) 54.80%(0.74) 41.24%(0.66)

SELENA 58.37% 53.43% 56.89%(0.01) 76.22%(0.02) 20.04%(0.03) 53.90%(0.44) 54.49%(0.51) 47.34%(0.65)
SEDMA 61.70% 53.89% 56.45%(0.01) 75.22%(0.02) 19.23%(0.03) 52.17%(0.34) 52.47%(0.39) 46.02%(0.63)

None 99.98% 77.69% 84.96%(3.01) 87.58%(0.86) 81.48%(6.27) 77.77%(0.13) 69.25%(0.13) 99.90%(0.07)
AdvReg 89.13% 71.39% 63.02%(1.21) 81.78%(1.17) 33.49%(2.58) 59.24%(0.12) 56.37%(0.10) 81.78%(0.09)

CIFAR100 MemGuard 99.98% 77.69% 65.06%(1.35) 84.06%(1.05) 37.16%(2.86) 68.34%(0.14) 61.30%(0.10) 99.46%(0.09)
KCD 76.14% 69.77% 61.33%(1.05) 81.96%(1.16) 29.05%(2.24) 55.28%(0.13) 54.90%(0.13) 59.18%(0.11)

SELENA 78.24% 74.43% 59.34%(0.88) 80.51%(1.22) 24.64%(1.90) 53.90%(0.14) 52.97%(0.11) 69.50%(0.11)
SEDMA 79.83% 74.25% 57.91%(1.39) 76.12%(2.84) 23.04%(2.92) 53.03%(0.15) 52.50%(0.12) 63.60%(0.15)

Texas100, and (c) CIFAR100. Figure 6 shows the relationship be-
tween the model accuracy and the label-only attack accuracy. The
plots towards the upper left in Figure 5 and Figure 6 show better
defenses for the utility-privacy trade-offs.

Compared with AvdReg, our defense archives higher model ac-
curacy and lower attack accuracy across all three datasets. The
highest MIA accuracy against AvdReg is 62.33% on Purchase100,
58.97% on Texas100, and 63.02% on CIFAR100. Our defense achieves
approximately 5-6% lower attack accuracy than AvdReg. The model
accuracy of AvdReg is 76.83% on Purchase100, 46.54% on Texas100,
and 71.39% on CIFAR100. The model accuracy of our defense is
approximately 3 - 9% higher than AvdReg. Our defense has better
privacy-utility trade-offs than AvdReg.

Compared with Memguard, our defense has an advantage of
a defense against label-only attacks because MemGuard only ob-
fuscates prediction confidence. Note that the results of label-only
attacks without prediction confidence against MemGuard are the
same as the results of the undefended model. The highest MIA
accuracy against MemGuard is 65.26% on Purchase100, 65.58% on
Texas100, and 68.37% on CIFAR100. Our defense achieves greater
than 10% lower attack accuracy than MemGuard. However, because
MemGuard maintains the same model accuracy as the undefended
models, our defense has a disadvantage in the model accuracy com-
pared to MemGuard. Our defense only has a small drop in the model
accuracy and defends against label-only attacks.

Compared with KCD, our defense achieves higher model accu-
racy and lower attack accuracy across all three datasets. The highest
MIA accuracy against KCD is 64.34% on Purchase100, 59.43% on
Texas100, and 61.33% on CIFAR100. The attack accuracy of our
defense is approximately 3-6% lower than that of KCD. The model
accuracy of KCD is 74.83% on Purchase100, 47.35% on Texas100,
and 69.77% on CIFAR100. Our defense achieves approximately 5 -

8% higher model accuracy than KCD. Therefore, our defense has
better privacy-utility trade-offs than KCD.

Compared with SELENA, our defense has an advantage in the at-
tack accuracy across all three datasets, although the model accuracy
is only a small difference from SELENA. The highest MIA accuracy
against SELENA is 59.25% on Purchase100, 56.89% on Texas100,
and 59.34% on CIFAR100. Our defense achieves approximately 0.4
- 2% lower attack accuracy than SELENA. The model accuracy of
SELENA is 79.07% on Purchase100, 53.43% on Texas100, and 74.43%
on CIFAR100. The model accuracy of our defense is 79.55% on
Purchase100, 53.89% on Texas100, and 74.25% on CIFAR100. Our de-
fense has the same model accuracy as SELENA on Purchase100 and
Texas100 or slightly less on CIFAR100. Our defense is comparable in
model accuracy and slightly better than SELENA in attack accuracy.
However, there are significant differences between SELENA and
our defense in computational costs, which will be discussed in the
next section.

We also evaluate the precision and recall of MIAs on three
datasets against previous defenses and our defense. Figure 7 shows
the relationship between the precision and recall of single-query
attacks against undefended models, AdvReg, MemGuard, KCD, SE-
LENA, and SEDMA on (a) Purchase100, (b) Texas100, and (c) CI-
FAR100. Figure 8 shows the relationship between the precision and
recall of label-only attacks. The plots towards the bottom left in
Figure 7 and Figure 8 are better defenses for membership privacy.

The precision and recall related to the percentage of correct
answers are important metrics in MIAs because the adversary tries
to know if a sample is a member. In Figure 7 and Figure 8, because
our defense is plotted in the bottom left across all three datasets, it
achieves the lowest MIA risk in comparison with previous defenses.
Our defense has a slight difference in the attack accuracy compared
to SELENA, however, it has a clear advantage in comparison to the
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Figure 5: Comparison of the model accuracy and single-query attack accuracy against undefended models, AdvReg, MemGuard,
KCD, SELENA, and SEDMA on (a) Purchase100, (b) Texas100, and (c) CIFAR100. The vertical axis is model accuracy on the test
dataset from Table 4. The horizontal axis is the MIA accuracy of the best single-query attack from Table 4. The plots towards
the upper left show better defenses for the privacy-utility trade-offs.

Figure 6: Comparison of the model accuracy and label-only attack accuracy against undefended models, AdvReg, MemGuard,
KCD, SELENA, and SEDMA on (a) Purchase100, (b) Texas100, and (c) CIFAR100. The vertical axis is model accuracy on the test
dataset from Table 4. The horizontal axis is the MIA accuracy of the best label-only attack from Table 4. The plots towards the
upper left show better defenses for the privacy-utility trade-offs.

precision and recall. Therefore, our defense outperforms state-of-
the-art empirical defenses in terms of privacy-utility trade-offs.

5 DISCUSSION
In this section, we discuss the best hyperparameters of our defense
for favorable privacy-utility trade-offs, the computational costs, the
comparison with provable privacy defenses, and limitations of our
defense.

5.1 Best hyperparameters
Our defense has the number of split training data 𝑛 and the combi-
nation for model aggregation

(𝑛
𝑘

)
as hyperparameters. Because our

defense splits the training data for the sub-models and aggregates
the trained sub-models, the performance against MIAs is expected
to depend on the over-fitting of the sub-models. Therefore, we focus
on the content ratio of the original training data for a sub-model in
terms of the over-fitting of the sub-models. We compare nine dif-
ferent SEDMAs shown in Table 5. The content ratio is determined

by the combination
(𝑛
𝑘

)
. For example, in the case of SEDMA_6-3,

the content ratio is 3 / 6 = 0.5, which means that 3 of the 6 dataset
splits are used to train each sub-model.

Figure 9 shows the relationship between the model accuracy
on Purchase100 and the content ratio of the original training data
against each different SEDMA. Figure 10 shows the relationship
between the attack accuracy of the best single-query attack and the
content ratio against each different SEDMA. The model accuracy
tends to be increased by the content ratio of the original training
data because the sub-models are assumed to fit the training data
more. However, the attack accuracy also tends to increase with the
content ratio, as shown in Figure 10.

The over-fitting of the sub-models is assumed to be related to
the content ratio of the original training data. If the content ratio is
high, the sub-model contains more information about the training
data. Therefore, we need to set the hyperparameters for SEDMA,
considering the trade-offs between attack accuracy and model ac-
curacy due to the content ratio. The best parameter in this study is
the combination

(𝑛
𝑘

)
=
(7
3
)
with a content ratio of 0.43. We consider
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Figure 7: Comparison of precision and recall of single-query attacks against an undefended model, AdvReg, MemGuard, KCD,
SELENA, and SEDMA on (a) Purchase100, (b) Texas100, and (c) CIFAR100. The vertical axis is the recall of the best single-query
attack from Table 4. The horizontal axis is the precision of the best single-query attack from Table 4. The points towards the
bottom left are better defenses for membership privacy.

Figure 8: Comparison of precision and recall of label-only attacks against undefended model, AdvReg, MemGuard, KCD,
SELENA, and SEDMA on (a) Purchase100, (b) Texas100, and (c) CIFAR100. The vertical axis is the recall of the best label-only
attack from Table 4. The horizontal axis is the precision of the best label-only attack from Table 4. The points towards the
bottom left are better defenses for membership privacy.

that the hyperparameters of SEDMA depend to some extent on the
kinds of training datasets or model architectures.

5.2 Computational costs
Table 6 shows the comparison of the processing time in the training
and inference phase of previous defenses and SEDMA on three
datasets. We measure the processing time on a GeForce RTX 2080
SUPER in our experimental setup. The processing time is averaged
from the three runs in each phase. We set the batch size to 512 for
Purchase100, 128 for Texas100, 256 for CIFAR100 in the training
phase. The number of epochs for each dataset is 30, 20, and 200,
respectively. In the inference phase, we set the batch size to 1 and
run 1,000 samples.

In the training phase, our defense takes approximately six times
longer than the undefended model. Compared to the previous de-
fenses, our defense requires only a seventh of the processing time
than SELENA which has favorable privacy-utility trade-offs. For
example, SELENA had the main cost of training 25 sub-models on
the 10 split training data in the experiments. However, our defense

Table 5: Nine different SEDMAs, with varying content ratio,
of how much training data is used for training each sub-
model. The content ratio depends on the combination for
model aggregation

(𝑛
𝑘

)
.

Our defense Combination
(𝑛
𝑘

)
Content ratio

SEDMA_5-4
(5
4
)
= 5 4 / 5 = 0.80

SEDMA_6-2
(6
2
)
= 15 2 / 6 = 0.33

SEDMA_6-3
(6
3
)
= 20 3 / 6 = 0.50

SEDMA_6-4
(6
4
)
= 15 4 / 6 = 0.67

SEDMA_7-2
(7
2
)
= 21 2 / 7 = 0.29

SEDMA_7-3
(7
3
)
= 35 3 / 7 = 0.43

SEDMA_7-4
(7
4
)
= 35 4 / 7 = 0.57

SEDMA_15-14
(15
14
)
= 15 14 /15 = 0.93

had the main cost to train only 7 sub-models and aggregate them.
503



Proceedings on Privacy Enhancing Technologies 2024(1) Nakai et al.

Table 6: Comparison of processing time on an undefended model, AdvReg, MemGuard, KCD, SELENA, and SEDMA on Pur-
chase100. The processing time is the average of three runs on a GeForce RTX 2080 SUPER.

Dataset Processing Time Undefended model AdvReg MemGuard KCD SELENA SEDMA

Purchase100 Training 11.49s 78.80s 12.57s 40.95s 433.45s 69.21s
Inference 0.46s 0.46s 461.78s 0.46s 0.46s 0.46s

Texas100 Training 13.75s 160.12s 14.20s 42.64s 440.43s 72.43s
Inference 0.46s 0.47s 460.73s 0.47s 0.46s 0.46s

CIFAR100 Training 1.79h 23.89h 1.78h 9.84h 30.37h 12.20h
Inference 13.45s 13.88s 505.02s 14.20s 14.03s 13.85s

Figure 9: Relationship between the model accuracy and the
content ratio against nine different SEDMAs. The vertical
axis is the model accuracy on the test dataset of Purchase100.
The horizontal axis is the content ratio of the original train-
ing data for one sub-model from Table 5.

The difference in processing time between SELENA and our defense
is due to the number of trained sub-models. Note that SELENA can
be accelerated by parallel execution of sub-models [38]; however,
this can also be applied in our defense.

KCD is approximately 60 - 80% faster than our defense in the
training phase. In the experiments, KCD had the main cost of train-
ing 10 sub-models and labels the training data by using the 10
sub-models. However, our defense labelled the training data by
using the 35 sub-models which is the combination

(7
3
)
of the 7

sub-models. The difference in processing time between KCD and
our defense is due to the number of sub-models used for labeling.
Note that our defense has much better privacy-utility trade-offs
than KCD. In addition, MemGuard has costs in the inference phase
because it processes prediction vectors of the trained undefended
model when outputting inference results. We next discuss the costs
in the inference phase.

In the inference phase, the processing time of our defenses is
the same as that of the undefended model. The previous defenses,
with the exception of MemGaurd, have the same processing time in
the inference phase. This is because the protected models trained

Figure 10: Relationship between the attack accuracy and the
content ratio against nine different SEDMAs. The vertical
axis is the MIA accuracy of the best single-query attack on
Purchase100. The horizontal axis is the content ratio of the
original training data for one sub-model from Table 5.

in the training phase are used for inference, the same as the unde-
fended model. MemGuard is approximately 1,000 times slower than
the others because it solves an optimization problem to obfuscate
prediction vectors for every input in the inference phase.

In conclusion, our defense achieves both favorable privacy-utility
trade-offs and low computational costs. The total computation costs
of our defense are lower than those of previous defenses, except
for KCD. However, KCD has worse privacy-utility trade-offs than
our defense.

5.3 Comparison with Provable Privacy Defenses
We discuss our defense compared with DP-SGD [1] as a provable
privacy defense. According to the study [38], DP-SGD (𝜖 = 4) results
in a model accuracy on Purchase100 of 56.0% and an attack accuracy,
for the best single-query, of 52.8%. However, our defense resulted
in a model accuracy of 79.6% and an attack accuracy of 52.0% from
Table 4. DP-SGD provides a differential privacy guarantee, however,
it incurs a significant model accuracy loss of approximately 14%
compared to our defense. Compared to the undefended model, DP-
SGD incurs an 18% drop in model accuracy The attack accuracy is
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slightly different between DP-SGD and our defense. Our defense
has no privacy guarantee, however, in terms of empirical privacy
guarantees, it only incurs at most approximately 3 - 5% model
accuracy drop with a low membership privacy risk, compared to
the undefended model.

In conclusion, our defense is not generally comparable to prov-
able privacy defenses, such as DP-SGD, in terms of provable privacy
guarantees, however we empirically achieve the best privacy-utility
trade-offs.

5.4 Limitations
SEDMA may not be suitable for settings where provable privacy
guarantees are necessary because it is an empirical membership pri-
vacy defense system. The appropriate use cases are for ML systems
that demand high levels of bothMIAmitigation andmodel accuracy.
We assume that there may not be enough resources for sub-models
and split datasets of SEDMA when training on small embedded
devices. SEDMA, on the other hand, has fewer sub-models than
SELENA and can be suitable for several embedded devices. The
appropriate use cases are for embedded device with resources for
repeated training, such as clients in federated learning systems.
SEDMA can also be suitable on resource-rich cloud servers.

6 CONCLUSION
In this study, we propose a new defense system using self-distillation
with model aggregation against MIAs. Our defense system miti-
gates the over-fitting of the privacy-sensitive training data by ag-
gregating multiple sub-models trained on split training data. In
addition, we achieve low computational costs because our defense
trains sub-models and aggregates the combinations of them rather
than training a lot of sub-models for self-distillation, such as a
state-of-the-art defense, SELENA. We performed the experimental
evaluation with major benchmark datasets (Purchase100, Texas100,
and CIFAR100) using the black-box MIAs, including single-query
and label-only attacks. We demonstrate that our defense outper-
forms previous defenses in achieving the lowest risk of membership
privacy leakage in comparison with previous empirical defenses,
such as AdvReg, MemGuard, KCD, and SELENA.

In addition, our defense also achieves favorable privacy-utility
trade-offs and low computational costs. Specifically, our defense
incurs, at most, a model accuracy drop of approximately 3 - 5% com-
pared to undefended models. That is approximately 5 - 8% higher
model than that of KCD and the same as SELENA. Our defense
requires only a seventh of the processing time than SELENA on
the datasets. Future work will include analyzing our defense per-
formance against practical white-box MIAs [13] and theoretically
guaranteeing the privacy of the defense.
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A DETAILED RESULTS OF EACH ATTACK
In this appendix, we show detailed results of single-query and
label-only attacks from Table 4. Figure 7 shows the detail results
of single-query and label-only attacks. We evaluate membership
privacy by using the highest attack accuracy in single-query and
label-only attacks.

B THE NUMBER OF TP, FN, FP, AND TN OF
EACH BEST ATTACK

In this appendix, we show the number of TP, FN, FP, and TN of
the best single-query and label-only attack from Table 4. Figure 8
shows the number of TP, FN, FP, and TN in the best single-query
attack. Figure 9 shows the number of TP, FN, FP, and TN in the best
label-only attack. We compute the attack accuracy, precision, and
recall with TP, FN, FP, and TN from Equation (6), (7), and (8).
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Table 7: Detail results of single-query and label-only attacks from Table 4. The best attack accuracy on each dataset is bold.

Dataset Defense Single-query attacks Label-only attacks
NN-based Correctness Confidence Entropy Modified-ent. LiRA Attack R Boundary Data aug.

None 67.21%(0.03) 54.78%(0.09) 65.88%(0.08) 66.32%(0.07) 66.45%(0.09) 61.45%(0.15) 69.00%(0.45) 65.84%(0.23) -%(-)
AdvReg 53.34%(0.01) 55.35%(0.02) 56.62%(0.07) 55.12%(0.11) 56.21%(0.13) 56.35%(0.12) 62.33%(0.09) 58.19%(0.60) -%(-)

Purchase100 MemGuard 59.21%(0.04) 62.44%(0.13) 61.07%(0.09) 58.19%(0.10) 61.43%(0.10) 58.35%(0.11) 65.26%(0.09) 61.98%(0.69) -%(-)
KCD 60.88%(0.05) 52.30%(0.14) 59.74%(0.23) 55.54%(0.08) 55.12%(0.21) 57.86%(0.10) 64.34%(0.08) 60.08%(0.58) -%(-)

SELENA 51.21%(0.10) 51.62%(0.21) 51.18%(0.16) 52.61%(0.09) 52.65%(0.18) 53.91%(0.18) 59.25%(0.16) 55.61%(0.55) -%(-)
SEDMA 52.13%(0.07) 51.34%(0.04) 51.45%(0.11) 51.22%(0.07) 54.81%(0.11) 53.02%(0.23) 58.40%(0.20) 52.25%(0.61) -%(-)

None 62.91%(0.13) 63.34%(0.21) 67.38%(0.31) 57.75%(0.22) 68.23%(0.32) 72.64%(0.23) 71.97%(0.03) 62.29%(0.22) -%(-)
AdvReg 51.45%(0.07) 54.98%(0.45) 58.01%(0.21) 55.34%(0.21) 58.34%(0.12) 58.63%(0.10) 58.97%(0.01) 58.24%(0.45) -%(-)

Texas100 MemGuard 63.05%(0.05) 63.12%(0.13) 63.43%(0.33) 57.15%(0.19) 63.39%(0.11) 59.93%(0.11) 59.96%(0.01) 65.68%(0.68) -%(-)
KCD 59.10%(0.11) 54.23%(0.22) 52.89%(0.12) 55.17%(0.17) 56.65%(0.21) 59.36%(0.11) 59.48%(0.01) 53.61%(0.52) -%(-)

SELENA 52.71%(0.04) 52.31%(0.31) 53.23%0.35) 52.61%(0.20) 53.81%(0.09 55.96%(0.08) 56.89%(0.01) 53.90%(0.44) -%(-)
SEDMA 51.10%(0.05) 53.20%(0.14) 51.80%(0.23) 53.41%(0.15) 50.99%(0.11) 55.39%(0.08) 56.45%(0.01) 52.17%(0.34) -%(-)

None 74.20%(0.07) 60.98%(0.11) 74.46%(0.39) 74.22%(0.15) 75.76%(0.41) 84.95%(3.32) 84.96%(3.01) 70.86%(0.42) 77.77%(0.13)
AdvReg 57.23%(0.05) 59.11%(0.21) 58.33%(0.32) 56.87%(0.17) 57.98%(0.31) 62.98%(1.50) 63.02%(1.21) 58.43%(0.21) 59.24%(0.12)

CIFAR100 MemGuard 52.00%(0.06) 62.12%(0.12) 64.78%(0.29) 62.34%(0.13) 63.32%(0.28) 65.03%(1.60) 65.06%(1.35) 69.86%(0.22) 68.34%(0.14)
KCD 56.85%(0.13) 52.34%(0.13) 57.24%(0.21) 59.02%(0.15) 56.93%(0.22) 61.30%(1.30) 61.33%(1.05) 52.96%(0.33) 55.28%(0.13)

SELENA 54.62%(0.11) 55.21%(0.12) 54.32%(0.21) 53.89%(0.15) 56.77%(0.27) 59.30%(1.13) 59.34%(0.88) 53.01%(0.12) 53.90%(0.14)
SEDMA 52.01%(0.12) 53.38%(0.18) 52.32%(0.27) 51.03%(0.15) 51.23%(0.33) 57.85%(1.74) 57.91%(1.39) 50.43%(0.34) 53.03%(0.15)

Table 8: In the best single-query attack from Table 4, TP as the number of true positives that are correct with members, FN as
the number of false negatives that are incorrect with non-members, TN as the number of true negatives that are correct with
non-members, and FP as the number of false positives that are incorrect with members.

Dataset Defense TP FN FP TN Total Accuracy Precision Recall

None 6234(136.38) 3564(136.38) 2553(122.51) 7381(122.51) 19732 69.00%(0.45) 70.95%(0.92) 63.63%(1.46)
AdvReg 4663(119.18) 5126(119.18) 2248(129.27) 7541(129.27) 19732 62.33%(0.09) 67.47%(0.64) 47.64%(1.22)

Purchase100 MemGuard 5428(138.75) 4361(138.75) 2440(140.27) 7349(140.27) 19732 65.26%(0.09) 68.99%(0.62) 55.45%(1.42)
KCD 5094(130.20) 4695(130.20) 2286(131.44) 7503(131.44) 19732 64.34%(0.09) 69.02%(0.62) 52.04%(1.33)

SELENA 4098(104.73) 5691(104.73) 2287(131.46) 7502(131.46) 19732 59.25%(0.16) 64.18%(0.66) 41.86%(1.07)
SEDMA 4096(104.70) 5693(104.70) 2451(140.93) 7338(140.93) 19732 58.40%(0.20) 62.56%(0.68) 41.85%(1.07)

None 3279(24.97) 1721(24.97) 1015(1.73) 3986(1.73) 10000 72.64%(0.23) 76.37%(0.11) 65.57%(0.50)
AdvReg 2328(3.98) 7461(3.98) 572(1.69) 9217(1.69) 10000 58.97%(0.01) 80.28%(0.02) 23.78%(0.04)

Texas100 MemGuard 2492(4.26) 7297(4.26) 543(1.60) 9246(1.60) 10000 59.96%(0.01) 82.12%(0.02) 25.46%(0.04)
KCD 2396(4.10) 7393(4.10) 541(1.60) 9248(1.60) 10000 59.43%(0.01) 81.59%(0.02) 24.48%(0.04)

SELENA 1961(3.35) 7828(3.35) 612(1.81) 9177(1.81) 10000 56.89%(0.01) 76.22%(0.02) 20.04%(0.03)
SEDMA 1882(3.22) 7902(3.22) 620(1.83) 9169(1.83) 10000 56.45%(0.01) 75.22%(0.02) 19.23%(0.03)

None 4074(313.44) 926(313.44) 578(24.42) 4422(24.42) 10000 84.96%(3.01) 87.58%(0.86) 81.48%(6.27)
AdvReg 3279(252.27) 6510(252.27) 731(30.87) 9058(30.87) 10000 63.02%(1.21) 81.78%(1.17) 33.49%(2.58)

CIFAR100 MemGuard 3637(279.86) 6152(279.86) 690(29.13) 9099(29.13) 10000 65.06%(1.35) 84.06%(1.05) 37.16%(2.86)
KCD 2844(218.83) 6945(219.83) 626(26.44) 9163(26.44) 10000 61.33%(1.05) 81.96%(1.16) 29.05%(2.24)

SELENA 2412(185.58) 7377(185.58) 584(24.66) 9205(24.66) 10000 59.34%(0.88) 80.51%(1.22) 24.64%(1.90)
SEDMA 2255(286.26) 7534(286.26) 707(29.89) 9082(29.89) 10000 57.91%(1.39) 76.12%(2.84) 23.04%(2.92)
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Table 9: In the best label-only attack from Table 4, TP as the number of true positives that are correct with members, FN as
the number of false negatives that are incorrect with non-members, TN as the number of true negatives that are correct with
non-members, and FP as the number of false positives that are incorrect with members.

Dataset Defense TP FN FP TN Total Accuracy Precision Recall

None 9081(87.89) 785(87.89) 5956(83.78) 3910(83.78) 19732 65.84%(0.23) 60.39%(0.17) 92.04%(0.89)
AdvReg 7782(129.56) 2084(129.56) 6166(71.55) 3700(71.55) 19732 58.19%(0.60) 55.79%(0.39) 78.88%(1.31)

Purchase100 MemGuard 9263(119.43) 603(119.43) 6900(44.47) 2966(44.47) 19732 61.98%(0.69) 61.98%(0.69) 93.89%(1.21)
KCD 8121(106.16) 1745(106.16) 6132(75.46) 3734(75.46) 19732 60.08%(0.58) 56.98%(0.41) 82.31%(1.08)

SELENA 5361(68.81) 4505(68.81) 4254(88.70) 5612(88.70) 19732 55.61%(0.55) 55.76%(0.59) 54.34%(0.70)
SEDMA 5014(98.45) 4852(98.45) 4571(61.41) 5295(61.41) 19732 52.25%(0.61) 52.31%(0.64) 50.82%(1.00)

None 3575(27.54) 1425(27.54) 2346(45.13) 2654(45.13) 10000 62.29%(0.22) 60.38%(0.30) 71.50%(0.55)
AdvReg 3007(32.67) 1993(32.67) 2183(40.63) 2817(40.63) 10000 58.24%(0.45) 57.94%(0.46) 60.14%(0.65)

Texas100 MemGuard 3831(25.19) 1169(25.19) 2263(63.80) 2737(63.80) 10000 65.68%(0.68) 62.87%(0.68) 76.62%(0.50)
KCD 2062(33.03) 2938(33.03) 1701(37.24) 3299(37.24) 10000 53.61%(0.52) 54.80%(0.74) 41.24%(0.66)

SELENA 2367(32.64) 2633(32.64) 1977(37.74) 3023(37.74) 10000 53.90%(0.44) 54.49%(0.51) 47.34%(0.65)
SEDMA 2301(31.57) 2699(31.57) 2084(33.77) 2916(33.77) 10000 52.17%(0.34) 52.47%(0.39) 46.02%(0.63)

None 4995(3.47) 5(3.47) 2218(13.55) 2782(13.55) 10000 77.77%(0.13) 69.25%(0.13) 99.90%(0.07)
AdvReg 4089(4.64) 911(4.64) 3165(14.23) 1835(14.23) 10000 59.24%(0.12) 56.37%(0.10) 81.78%(0.09)

CIFAR100 MemGuard 4973(4.73) 27(4.73) 3139(14.14) 1861(14.14) 10000 68.34%(0.14) 61.30%(0.10) 99.46%(0.09)
KCD 2959(5.54) 2041(5.54) 2431(13.51) 2569(13.51) 10000 55.28%(0.13) 54.90%(0.13) 59.18%(0.11)

SELENA 3475(5.35) 1525(5.35) 3085(11.17) 1915(11.17) 10000 53.90%(0.14) 52.97%(0.11) 69.50%(0.11)
SEDMA 3180(7.36) 1820(7.36) 2877(11.72) 2123(11.72) 10000 53.03%(0.15) 52.50%(0.12) 63.60%(0.15)
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