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ABSTRACT

This paper initiates a new direction in the design and analysis of

searchable symmetric encryption (SSE) schemes. We provide the

first comprehensive security model and definition for SSE that takes

into account leakage from the entirety of the SSE system, including

not only from access to encrypted indices but also from access to the

encrypted database documents themselves. Such system-wide leak-

age is intrinsic in end-to-end SSE systems, and can be used to break

almost all state-of-the-art SSE schemes (Gui et al., IEEE S&P 2023).

We then provide a static SSE construction meeting our new security

notion. The proposed SSE scheme involves a combination of novel

techniques: bucketization to hide volumes of responses to queries,

and delayed, pseudorandom write-backs to disrupt access pattern.

Our implementation and analysis of the proposed scheme demon-

strates that it offers very strong security against general classes

of (system-wide) leakage-abuse attacks with moderate overhead.

Our scheme scales smoothly to databases containing hundreds of

thousand of documents and millions of keyword-document pairs.

To the best of our knowledge, this is the first end-to-end SSE scheme

that effectively suppresses system-wide leakage while maintaining

practical efficiency.

1 INTRODUCTION

Searchable Symmetric Encryption (SSE). The goal of Search-

able Symmetric Encryption (SSE) [24, 29, 31, 47, 99] is two-fold:

(a) to allow a server to execute keyword search queries directly

on a collection of a client’s encrypted documents in an efficient

manner, and (b) to ensure client privacy by minimizing the amount

of information “leakage" to the server in the process. Existing pro-

posals for SSE in the literature can be broadly divided into two

categories – static SSE schemes that support keyword searches

for a fixed collection of documents [24, 29, 31], and dynamic SSE
schemes that also allow for updates of encrypted document collec-

tions [16, 19, 26, 28, 66].
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Leakage vs Efficiency. The most general notion of SSE with opti-

mal privacy guarantees (wherein little or no information is leaked

to the server) can be achieved using techniques like fully homo-

morphic encryption (FHE) [43] and Oblivious RAM (ORAM) [49].

However, these techniques today incur significant computational

and/or communication overheads. So designers of SSE currently

opt for better practical performance at the cost of leaking some

information to the server [24, 29, 31]. The main challenge in de-

signing SSE schemes is ensuring the right balance between leakage

and efficiency, especially because leakage can be exploited by an

adversarial server to infer sensitive client information, resulting in

privacy breaches [13, 21, 22, 32, 59, 61, 88, 90, 94].

LeakageMitigation in SSE.Defending SSE schemes against leakage-

abuse attacks while maintaining acceptable search performance

is difficult. The state-of-the-art is represented by recent work [34,

45, 65, 92] giving SSE schemes that provably leak little or no in-

formation to the adversarial server. A common feature underlying

these recent proposals (and indeed the majority of prior work) is

that they only consider leakage from the encrypted search index, a
specialized data structure for recovering the document identifiers

matching a given query. Specifically, these proposals ignore leakage
from the final step in processing a query, in which the client actu-
ally fetches the encrypted documents from the server. This leads to
the question of whether one could transfer existing leakage-abuse

attacks from the index to the document level, thereby breaking the

privacy guarantees of the schemes in [34, 45, 65, 92] when properly

viewed from a system-wide perspective.

System-Wide Leakage. In a very recent paper, Gui et al. [54]
answer this question in the affirmative by demonstrating that end-

to-end SSE systems built in a natural way by applying the volume-

hiding EMMs in [34, 45, 65, 92] to the search index only incur

system-wide co-occurrence leakage during document retrieval that

can be exploited to completely break the query privacy guarantees

of these schemes in practice.
1
These attacks affect the vast majority

of SSE schemes proposed to date [16, 19, 23, 24, 26, 29, 31, 41, 62,

64, 66, 86, 101], and highlight the importance of acknowledging

that system-wide leakage is a major privacy issue in existing SSE

schemes that needs to be addressed.

1
While Gui et al. [54] show concrete attacks on the end-to-end SSE systems built

from the volume-hiding EMMs in [65, 92], their attacks extend naturally to end-to-end

SSE systems where only the encrypted index (and not the document retrieval step) is

protected by dynamic volume-hiding EMMS [45] or ORAM-style techniques [34].
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The authors of [54] also demonstrate that known leakage mitiga-

tion techniques such as volume-hiding EMMs cannot be efficiently

scaled to the overall encrypted database. As one concrete example,

the authors of [54] show that for the Enron email database,
2
apply-

ing state-of-the-art leakage-mitigation techniques (such as volume-

hiding EMMs [34, 45, 65, 92], Oblivious RAMs (ORAMs) [27, 102], or

private information retrieval (PIR) [3, 5]) to encrypt whole database

incurs storage overheads ranging from 4× to 800× and bandwidth

overheads ranging from 20× to 110, 000×, as compared to a baseline

SSE system with no leakage mitigation for document retrieval. To

summarize, there exists no practically efficient and scalable end-to-

end SSE system that provides system-wide security for both index

and document retrieval.

1.1 Our Contributions

These observations motivate a change of perspective. Instead of fo-

cussing on securing only one component of an SSE system, namely

the encrypted search index, we need to take a system-wide view

of SSE and its leakage. In this paper, we propose a new approach

to designing and analyzing low-leakage yet efficient SSE schemes

supporting keyword searches over static databases. Crucially, we

include in our model, construction and analysis for SSE both the (en-

crypted) index and the document retrieval component of a search-

able encryption system.

System-wide Security Definition. We propose a new security

definition for static SSE schemes that takes into account the system-

wide leakage during setup and searches. Our definition is for an

honest-but-curious server
3
and we model security using the real

world/ideal world simulation paradigm with leakage profiles. Se-

curity consists of showing that, for every adversary, there is a

simulator that given only the leakage profile, can provide an ideal

world view for the adversary that is indistinguishable from what

it would observe in the real world. Informally, this means that the

adversary gains no information beyond the leakage profile. In con-

trast to previous analysis, we take a system-wide view, including

in our execution model and leakage profile the action of retrieving

encrypted documents from the data storage component as well as

the leakage from the encrypted search index.

New Construction Techniques. We propose a new static SSE

scheme named SWiSSSE that supports efficient keyword searches

over large real-world document collections. Keyword searches in

SWiSSSE require two rounds of communication between the client

and the server. We prove that SWiSSSE is adaptively secure under

our new system-wide security definition with respect to a well-

defined leakage profile. To the best of our knowledge, SWiSSSE is

the only end-to-end SSE system that is secure against the system-

wide leakage-abuse attacks proposed in [54] while supporting prac-

tically efficient searches. At the heart of our construction are two

techniques, keyword frequency bucketization and delayed, pseudo-
random write-backs.

Bucketization. Keyword frequency bucketization refers to divid-

ing the list of all keywords across multiple buckets such that each

keyword in a given bucket is “padded" to have the same frequency

2
https://www.cs.cmu.edu/~enron/

3
This is standard in the SSE literature; see [16, 19, 23, 24, 26, 29, 31, 41, 62, 64, 66, 86,

101].

as the most frequent keyword in that bucket. This mitigates attacks

based on volume leakage. Unlike worst case padding which either

imposes a linear search overhead [63] or a quadratic storage com-

plexity, our technique imposes a search overhead proportional to

the frequency of the most frequent keyword in each bucket, while

retaining linear storage complexity. There is an interplay between

the bucketization strategy, the padding overhead, and the security

that we obtain. We explore this in detail subsequently.

We note here that a number of prior works on SSE have explored

padding-based strategies to mitigate volume leakage (e.g., [17, 21,

22, 34, 65, 92]). However, all of these works primarily consider

index-only padding; more concretely, they only focus on hiding the

volume leakage in the search index, with no clear guidelines on

whether the same volume-hiding techniques are subsequently ap-

plied during document retrieval. When viewed from a system-wide
perspective, volume leakage from the document retrieval phase

can be used to launch query recovery attacks on any end-to-end

SSE system built by using the aforementioned approaches in their

original index-only form [54]. Unfortunately, in many cases (such

as [65, 92]), extending these padding strategies to document re-

trieval is practically infeasible due to the huge storage and commu-

nication overheads involved, as demonstrated by Gui et al. in [54]

and also in Section 6.4 of this paper.

On the other hand, our padding strategy is designed for prevent-

ing volume leakage from a system-wide perspective (i.e., from both

the index and document retrieval phases) in SWiSSSE, while (a)

scaling in a communication- and storage-efficient manner to large

databases (as demonstrated by our experiments evaluating the per-

formance of SWiSSSE in Section 6.2, Table 1, and also Section 6.4),

and (b) resisting system-wide volume leakage-based cryptanaly-

sis (as demonstrated by our cryptanalysis experiments on SWiSSSE

over real-world databases in Appendix C). To the best of our knowl-

edge, no existing padding-based strategy achieves both of these

features simultaneously.

Write-backs. To mitigate access pattern leakage, we use a delayed,

pseudorandom write-back strategy. After each search operation

involving a given keyword, we update all locations pertaining to

the keyword and the documents which contain it, throughout the

entire encrypted search index and the encrypted database, in a

pseudorandom manner. To limit the leakage from this “write-back"

step, we store the information in a stash on the client side and flush

a pseudorandomly chosen fraction of the stash back to the server at

regular intervals. Data pertaining to one keyword then gets spread

across multiple write-backs. This ensures that the server cannot

correlate search operations through write-backs. Now, for correct-

ness, search operations must also be done over the stash, since the

server storage at a given moment no longer fully captures the state

of the system. We design our scheme such that the latency of search

operations is not affected by the latency of write-back operations.

The two rounds of online communication needed to service search

operations in SWiSSSE contrasts with the polylogarithmic round

complexity of ORAM-style schemes [19, 26].

Our write-back strategy also allows SWiSSSE to support sig-

nificantly faster online query processing as compared to existing

ORAM-style SSE solutions [19, 26]. This is because the additional
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pseudorandom write-backs in SWiSSSE do not happen during on-

line query processing. This contrasts with existing ORAM-style

solutions, where read and write operations are executed entirely

during online query processing. In particular, SWiSSSE is designed

such that the latency of searches is not affected by the latency of

write-back operations, which occur independently and periodically

at pseudorandom times. We refer to Section 6.2 (Table 2) for an

empirical evaluation of the security vs efficiency tradeoffs offered

by a variety of write-back strategies (in particular, by varying the

write-back rate and the mean stash size at the client).

System-Wide Leakage Analysis. We formally prove the security

of SWiSSSE with respect to our system-wide security definition and

specific leakage profile. This leaves open the important question

of determining the security impact of that leakage. To answer that

question, and as is common in the SSE literature, we perform a

detailed cryptanalysis of our scheme. In particular, we show that

the known leakage-abuse attacks [13, 21, 59, 88] fail against our

scheme. We also show that the highly refined system-wide leakage-

abuse attacks of [54] (that are powerful enough to break the query

privacy of the vast majority of existing SSE schemes [16, 19, 23, 24,

26, 29, 31, 41, 62, 64, 66, 86, 101]) also fail against SWiSSSE, provided

we choose an appropriate bucketization strategy. We have made

the cryptanalysis of our own scheme as “unfriendly” as possible

but our scheme will benefit from further, independent analysis.

Implementation. We describe a Java implementation of SWiSSSE

and evaluate its performance. We used Redis
4
as the underlying

database system. For comparability with previous research in SSE,

we use the Enron email corpus for our experiments. We experi-

mented with a range of subsets of this corpus to gauge performance

for different database and keyword set sizes. As a flavor of our

results, for a database of 400K documents which corresponds to 1.3

GB of uncompressed plaintext storage, the client storage used by

our scheme is less than 10 MB and the storage used by the server

is about 3.6 GB; the throughput of our scheme is 2370 documents

per second for setup and 8400 documents per second for search.
5

Ethics Discussion. We believe that it is justifiable to use Enron

for our attack experiments given: (a) the lack of alternative realistic

datasets for conducting experiments for our attack, (b) the extensive

usage of this dataset for attack experiments in prior works [13, 59,

88], (c) the fact that the data has long already been public, and (d)

there has been an effort by the researchers curating the version of

the dataset used in this paper to remove users upon request.
6

Extension to Dynamic Databases. Our system-wide security

definitions for SSE and construction techniques for SWiSSSE can

be extended in a natural way to handle dynamic databases. In

Appendix E, we present new system-wide security definitions for

dynamic SSE, detail a dynamic version of SWiSSSE, and prove its

security against system-wide leakage-abuse attacks. We choose

to focus on the static version of SWiSSSE in the main body of the

paper as we consider it to be our primary contribution. Additionally,

our two-phase approach of first focusing on static SWiSSSE before

extending it to the dynamic setting allows for an easier exposition

4
https://redis.io/

5
The query response time for search queries depends on the queries themselves; here

we assume a uniform query distribution.

6
See https://www.cs.cmu.edu/~enron/ for detailed documentation.

of our core ideas. We note here that such two-phase approaches are

common in the SSE literature (e.g., volume hiding EMMs were first

proposed and analyzed extensively in the static SSE setting [65, 92]

before being extended to dynamic searchable indices [45]). In the

rest of the main body, we use SWiSSSE as a shorthand for the static
version of SWiSSSE (unless explicitly specified otherwise).

1.2 Related Work

In this section, we compare SWiSSSE with existing SSE schemes

and other popular techniques for encrypted database search.

Leakage-Resilient Static/Dynamic SSE. SWiSSSE addresses a

new threat model in the design of end-to-end SSE systems (namely

system-wide SSE security), and attempts to thwart a new class

of system-wide leakage cryptanalysis attacks, which were con-

ceptualized for the first time in [54] and have been formalized

and refined further in this paper. A number of recent works in

SSE (both static and dynamic) have focused on countering leakage

cryptanalysis by using a variety of leakage-suppression mecha-

nisms [4, 25, 33, 37, 45, 56, 57, 65, 92]. However, all of the (dynamic)

SSE schemes proposed in these works fall under the category of

index-only (dynamic) SSE schemes in the sense that they propose

mechanisms to specifically suppress leakage from the encrypted

search index, and do not specify how to realize an end-to-end SSE

system by building upon such an encrypted index. Hence, when

naturally extended to design end-to-end SSE systems (with no ad-

ditional leakage suppression during actual document retrieval),

these schemes incur exactly the same system-wide leakage as ob-

served in [54], and as considered in our security definitions for

system-wide SSE as well as our system-wide leakage cryptanalysis

experiments. As already demonstrated in [54], this system-wide

leakage can be exploited to break the query privacy guarantees of

end-to-end SSE systems obtained by naturally extending the afore-

mentioned index-only (dynamic) SSE schemes (with no additional

protection for document retrieval). On the other hand, SWiSSSE (in

both its static and dynamic versions) is an end-to-end SSE system

by design with built-in protections against system-wide leakage

abuse attacks. As demonstrated by our leakage cryptanalytic exper-

iments, SWiSSSE is not broken by (highly refined versions of) the

system-wide leakage cryptanalysis techniques proposed in [54].

We believe that a fair comparison of the above index-only schemes

with SWiSSSE can only be done by extending the leakage suppres-

sion mechanisms used by these index-only schemes to the docu-

ment retrieval phase as well (so as to achieve system-wide leakage

protection). Unfortunately, as already shown in [54], the latest ad-

vances in leakage-resilient (dynamic) SSE cannot be used to design

practically efficient end-to-end (dynamic) SSE systems with protec-

tion against system-wide leakage-abuse attacks. Indeed, as shown

in [54] and in our own experiments (see Table 3 in Section 6.4),

end-to-end SSE systems where the document retrieval phase is

also additionally protected using encrypted multi-maps [65, 92] are

extremely inefficient in practice due to large storage overheads and

high computational/communication costs of query processing. This

remains the same for both static and dynamic settings, and would

hold despite the latest improvements achieved in leakage-resilient

(dynamic) SSE when applied to the index-only setting. While such
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techniques and the improvements thereof may be practical and scal-

able when applied only to the index (which is typically small), they

simply do not scale practically to the entire database, and hence

cannot be used to protect document retrieval in and end-to-end

SSE setting, which is the focus of SWiSSSE. We refer to [54] and to

Section 6.4 of our paper for additional discussion.

ORAM and PIR. As the vast majority of SSE schemes in the liter-

ature are index-only schemes, it is natural to consider extending

these schemes to end-to-end SSE schemes by adding an encrypted

document retrieval step. There are two major primitives in the lit-

erature that study the document retrieval problem, namely ORAM

and PIR. We compare these primitives with the document retrieval

strategy of SWiSSSE in the discussion below. We refer the reader

to Table 3 in Section 6.4 for a more concrete comparison.

Comparison with ORAM. As mentioned earlier in the introduction,

an ORAM allows realizing SSE with little (access pattern) leakage

to an untrusted server. Typically, in an ORAM-based solution for

document retrieval, the client would outsource the documents to

an untrusted server, and subsequently retrieve them on at a time.

There is a long line of research on improving the efficiency of (multi-

server) ORAMs [8, 9, 49, 98, 102, 109]. However, as pointed out by

Larsen et al. [75], the bandwidth lower bound for ORAMs (per

document retrieval) is logarithmic in the number of documents. In

addition, a typical ORAM scheme requires one round of interaction

per document retrieved, leading to a linear (in the total number of

documents being retrieved) round complexity and high latency. On

the other hand, SWiSSSE achieves a constant bandwidth overhead

for document retrieval and all documents are retrieved in a total of

two rounds of interaction between the server and the client.

It is worth noting that there have been attempts to build SSE

schemes from (multi-server) ORAM [10, 26, 34, 42]. Apart from

being index-only schemes, these schemes have logarithmic band-

width overheads which makes them less efficient than SWiSSSE. In

addition, SWiSSSE supports significantly faster online query pro-

cessing as compared to these ORAM-style SSE solutions. This is

because the additional pseudorandom write-backs in SWiSSSE do

not happen during online query processing. This contrasts with

existing ORAM-style solutions, where read and write operations

are executed entirely during online query processing. In partic-

ular, SWiSSSE is designed such that the latency of online opera-

tions (searches and updates) is not affected by the latency of write-

back operations, which occur independently and periodically at

pseudorandom time-stamps.

Comparison with PIR. We also present a comparison of SWiSSSE

with solutions based on private information retrieval (PIR). Tradi-

tionally, the documents in a PIR scheme are assumed to be public.

The PIR scheme only protects the privacy of the queries. How-

ever, a PIR scheme can be easily adapted to the encrypted doc-

ument retrieval setting by encrypting the documents. There are

many PIR schemes proposed in the single-server single-query (each

query retrieves one document) setting [3, 5, 44, 69, 73, 80, 83],

single-server batched-query setting [5, 58, 82], and multi-server set-

ting [30, 38, 46, 48]. The main research focus of PIR is on reducing

the communication overhead. On the other hand, all (computa-

tional) PIR schemes need to access all documents per document

retrieval to hide the access pattern, leading to high computational

overhead. In comparison, SWiSSSE guarantees that the number of

documents accessed by the client is linear in the number of doc-

uments to be retrieved. This makes SWiSSSE significantly more

efficient than PIR schemes in terms of computational overhead.

Worst-Case Padding and Frequency Smoothing. We note that

certain previousworks (e.g., [59]) suggest using “worst-case” padding,

where the goal of the padding is to make all keywords in the data-

base indistinguishable from each other in terms of frequency (i.e., if

there are 𝑁 keywords, then the attacker should not be able to guess

the keyword underlying a query with probability better than 1/𝑁
from the number of matching outcomes). However, this padding

strategy is inherently expensive as keywords typically follow a Zipf

distribution in real-world databases. To reduce the overhead in-

curred by padding, we propose a “partial” padding strategy (namely,

keyword bucketization) in SWiSSSE, where the attacker is allowed

to guess the keyword corresponding to a query with probability

higher than 1/𝑁 , but not much better than that (as shown by our

cryptanalysis experiments). We experimentally validate that our

padding strategy achieves good security-efficiency trade-offs (see

Section 6 and Appendix C.4 for experiments evaluating the perfor-

mance and cryptanalysis-resistance of SWiSSSE for varying bucket

sizes and number of buckets).

On a related note, we compare SWiSSSE with PANCAKE [50] –

a recently introduced system that protects key-value stores from

access pattern leakage attacks using a technique called frequency
smoothing that transforms plaintext accesses into uniformly dis-

tributed encrypted accesses to an encrypted data store. Techni-

cally, PANCAKE suppresses access-pattern leakage in encrypted

key-value stores by using fake queries and query batching. While

SWiSSSE shares a similar leakage-suppression goal, the underly-

ing techniques used, namely keyword bucketization and intro-

duction of fake documents, differ significantly from those used

in PANCAKE. We leave it as an interesting open question to design

an end-to-end practically efficient SSE system with built-in protec-

tions against system-wide leakage cryptanalysis by using the same

leakage-suppression techniques as in PANCAKE.

TEE-based Encrypted Search. An alternative line of works [6, 7,

12, 39, 81, 95, 108] has explored the use of trusted execution envi-

ronments (TEEs)/secure enclaves (such as such as Intel SGX [79])

to design encrypted databases with advanced query capabilities.

We note that these solutions crucially rely on the TEE behaving as

a “black box” (an assumption that has been challenged by several

recent attacks [15, 84, 96, 97, 106, 107]). In addition, while these

solutions typically avoid the inefficiencies associated with the us-

age of cryptographic techniques for encrypted search, they tend to

incur high overheads in practice because of the multitude of read

and write operations required to fetch the encrypted data into the

enclave pre-query execution, and to write back to the database post-

query execution. In this paper, we focus on designing end-to-end

SSE systems where the security guarantees are derived purely from

standard mathematical/cryptographic assumptions, as opposed to

the hardware-based assumptions in the TEE-based solutions.

SSE for Alternative Query Types. An alternative line of works

investigates SSE schemes supporting point, range and substring

queries [34–36, 41], as well as SSE schemes supporting join and

group-by queries over encrypted relational databases [34, 60, 64].
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We note here that SSE schemes supporting range queries have been

cryptanalyzed extensively, notably in [51–53, 67, 74]. Similarly,

there exists a large body of work on order-preserving and property-

preserving encryption [1, 14, 68, 76, 93, 105] supporting a rich class

of SQL queries over encrypted relational databases, many of which

have also been broken by leakage-abuse and inference attacks [85].

Our goal in this paper is to design SSE schemes keyword search over

encrypted document collections, and we do not consider range (or

other classes of) queries in the present version.

Leakage Cryptanalysis in SSE. Starting with the seminal work of

Islam et al. [59], leakage cryptanalysis has been studied extensively

in the context of SSE for document collections [13, 21, 32, 55, 88,

91, 94]. Some of these works consider somewhat idealized and

noise-free leakage profiles (such as the leakage inversion technique

in [71]), while others consider noisy access-pattern leakage (such

as [88, 91]). Our cryptanalysis of SWiSSSE works with noisy system-
wide correlation leakage, and can be viewed as a highly refined

version of the system-wide leakage cryptanalysis techniques of [54].

2 PRELIMINARIES AND BACKGROUND

In this section, we introduce notations and present preliminary

background material.

2.1 Notation

Throughout the paper, 𝜆 is the security parameter and negl(𝜆)
denotes a negligible function in 𝜆. If𝑋 be a set or list, then we write

𝑥
ℓ←−

$
𝑋 to mean uniformly randomly sample ℓ elements from 𝑋

without replacement. We omit ℓ from the notation when ℓ = 1.

We note that the keys for cryptographic functions are sometimes

omitted from our notation for readability. So, if 𝐹 is a pseudorandom

functionwe simplywrite 𝐹 (𝑥) for the result of applying 𝐹 to𝑥 – how
and when the key is sampled will be obvious from context. We use a

similar convention for symmetric encryption. For a pseudorandom

function 𝐹 we write 𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡
𝐹,A for the advantage of an adversaryA

in distinguishing between 𝐹 and a truly random function with at

most 𝑡 queries.

2.2 Key-value Stores

The basic data structure used by our construction is a “key-value

store". This data structure implements an associative array abstract

data type that maps (non-cryptographic) keys to values. The data
structure supports efficient execution of the following operations:

• init : initialises an empty key-value store.

• get : takes as input a key 𝑘 and returns the associated value.

We abuse the notation and use get for getting the values for

a set of keys too.

• put : takes as input a key-value pair (𝑘, 𝑣) and sets the value
associated to 𝑘 to 𝑣 . We use put for putting a set of key-value

pairs too.

• contains : takes as input a key 𝑘 and returns a boolean

indicating if 𝑘 is one of the keys in the key-value store.

• del: takes as input a set of keys I and removes the key-value

pairs with the keys in I from the key-value store.

• pop: takes as input a natural number 𝑛, selects 𝑛 uniformly

random key-value pairs from the store, removes them from

the store, and returns them as the result.

We do not explicitly distinguish between the name of the data

structure and its state (e.g., if 𝑆 is a key-value storewewrite 𝑆.get(𝑘)
for the result returned by get(𝑘) on the current state of 𝑆).

2.3 Databases

Throughout the paper, when we use the term “database”, we refer

to a document collection, where each document is tagged with (one

or more) keywords. We consider a setting where a client wants to

outsource a database DB = {𝑑𝑖 } to a remote server, which it can

later query using keywords. We omit a fully formal treatment of

unencrypted databases, which is reasonably straightforward. We

only make some conventions which are helpful to formalize our

results. We write DB[𝑖] to mean the 𝑖-th document in the database.

We assume that each document 𝑑 has a unique document identifier

𝑖𝑑 (𝑑). For simplicity, we assume that the document identifiers run

from 0 to |DB| − 1. For each document 𝑑 we write𝑊 (𝑑) for the set
of keywords contained in the document 𝑑 . We write𝑊 {DB} for the
multiset of keywords in the collection of documents DB. We write

DB(𝑤) to mean the set of documents which contains keyword𝑤 .

2.4 System-Wide Definitions for SSE

We introduce new system-wide security definitions for (static) SSE

schemes in this paper. Our definitions take into account the leakage

from both the encrypted index and the document retrieval phase

during searches. This is in direct contrast to prior index-only defi-

nitions used extensively in the SSE literature [24, 29, 31] that only

take into leakage from the encrypted index component of the over-

all SSE system. Due to lack of space in the body of the paper, we

defer the detailed treatment of our system-wide definition for static

SSE to Appendix A. For completeness, we briefly summarize below

the system-wide syntax for static SSE (looking ahead, we use the

same syntax for our description of static SWiSSSE). An extension

of our definitions to dynamic SSE appears in Appendix E.1.

A system-wide static SSE scheme Σ consists of two protocols

Setup and KWQuery between a client and a server. The Setup

protocol is used by the client to encrypt a plaintext database DB.
The client outputs (EDB, stClt), where EDB is an encrypted data-

base (including the encrypted search index as well as the encrypted

documents) which is offloaded to the server, while stClt is some

internal state that is retained by the client. The KWQuery is a

client-server protocol between the client and server to support

single-keyword queries of the form 𝑞 = (𝑜𝑝, 𝑎𝑟𝑔𝑠) where 𝑜𝑝 is

the operation of the query, and 𝑎𝑟𝑔𝑠 are the additional arguments

required for the query. The server takes as input the encrypted

database EDB. The client and server interact with each other and by

the end of the interaction, the client gets (𝑟, stClt) where 𝑟 is the
result of the query (i.e., the actual documents matching the query)

and stClt is the new state of the client; the server state EDB may

also be modified following the execution.

Note that our syntax for static SSE takes into account the actual

encrypted documents (as part of the encrypted database EDB output
by Setup and as part of the query response 𝑟 output byKWQuery)
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in addition to the encrypted index. See Appendix A for the detailed

syntax, as well as the formal definitions of correctness and security.

3 SWISSSE FOR “SIMPLE" STATIC DATABASES

To highlight some of the key techniques underlying SWiSSSE, we

first consider a highly “simplified" static database in which each

document contains precisely one keyword. We explain how to ex-

tend this approach to the general case of arbitrarily many keywords

per document in Section 5.

Server Storage. Our SSE scheme offloads the storage of two en-

crypted data structures to the server – an encrypted lookup table
that is indexed by the set of keywords in the database, and an en-

crypted document array, which is indexed by the documents. For

each keyword, the corresponding entry in the lookup table stores

(in encrypted form) pointers to the corresponding entries in the

document array. For each document, the document array stores

(again in encrypted form) the contents of the document, the list of

keywords it contains, and some auxiliary information necessary for

searches. Both indices are implemented as key-value stores where

keys are calculated using a pseudorandom function, and values are

encryptions under a symmetric key owned by the client.

Bucketization. To limit keyword frequency leakage (i.e. in how

many documents a keyword appears), we use a frequency buck-

etization strategy, i.e., we pad the outsourced database with fake

occurrences of keywords as well as with additional fake documents.

For each entry in the keyword lookup index we store a mix of point-

ers pointing to “real" and “fake" documents in the document array.

Bucketization inherently introduces a tradeoff between security

and efficiency, since the work done by the server is now propor-

tional to the “bucket frequency" as opposed to the true frequency

of the keyword. We expand on this in Section 4.

Local Stash and Write-backs. If the server-side data structures

use static addresses (meaning that a given address in the keyword

lookup index and/or the document array always corresponds to

a fixed keyword and/or document), then the scheme inherently

suffers from “access pattern leakage". To prevent such leakage (and

hence the known attacks exploiting it), we ensure that all accesses,

even those involving the same keyword, “touch" different parts of

the server state. We achieve this through a delayed, pseudorandom

write-back technique: after each operation involving a keyword

we update the addresses of the keyword and of all documents

containing it across the encrypted data structures.

More concretely, we first “locally stash" all the information re-

turned by a server in response to a keyword search query at the

client. This information includes the list of documents, the number

of times the keyword has been accessed, and the number of times

each document containing the keyword has been accessed. Then,

at a later time, the client issues a “write-back operation", wherein it

flushes out this information from its stash onto the encrypted data

structures at the server, using fresh encryptions and to a new, pseu-

dorandomly generated set of addresses. The next time the client

issues a search query involving the same keyword, the server will

access the new set of addresses in both the lookup index and the

document array, and will observe only the fresh encryptions of the

same (or updated) content.

Note that addresses as described above correspond to keys in

the server’s key-value stores. The client need only assume that the

server provides a correct implementation of the key-value store

and to avoid using colliding addresses/keys. We defer a formal

description of the stashing and write-back procedure to Section 5.

Note also that, intuitively, a larger client stash leads to a larger

storage requirement on the client, but lowers the frequency with

which the client needs to flush its stash and trigger write-back

operations. This allows flexibility in trading-off client storage with

bandwidth requirements.

Search Queries. A search query involving a keyword𝑤 proceeds

as follows. The client first checks its private stash to see if the

transcript of a previous query involving 𝑤 already exists in its

stash. If yes, it directly obtains the search result from the stash and

does not initiate any further interaction with the server. Otherwise,

the client sends a search token to the server and receives back the

entry corresponding to𝑤 in the encrypted lookup index. Next, the

client decrypts the entry received from the server and retrieves the

list of pointers to addresses in the encrypted document array. It

sends this list to the server. The server retrieves the corresponding

entries from the encrypted document array and sends these back

to the client. Upon receiving the encrypted entries from the server,

the client decrypts them, discards any fake documents and retains

the real ones. Finally, the client caches the whole transcript of

the search operation in its local stash, so that its contents may be

written-back at a later point in time.

4 BUCKETIZATION IN SWISSSE

As mentioned in Section 3, we mitigate volume leakage in SWiSSSE

through a frequency bucketization strategy over the set of keywords

in the document collection. At a high level, this entails dividing the

set of all keywords across multiple buckets such that each keyword

in the same bucket is “padded" to have the same frequency as the

most frequent keyword in that bucket (also referred to as “bucket

frequency"). The core aim of bucketization is to prevent generic

volume/frequency leakage-based attacks on SSE [13, 21, 22, 59, 94].

Padding. Bucketization of keywords requires padding the original

database with fake data. Our first padding strategy is to add “fake

occurrences" of each keyword across the existing documents, such

that the keyword frequencies grow to the desired bucket frequency.

This approach incurs only moderate additional storage overheads

at the server since the number of documents remains the same, and

only the encrypted lookup index grows in size.

Note that we do not perform “worst-case padding" where every

keyword is padded to have the same frequency. Although theo-

retically free of volume leakage, worst-case padding is extremely

inefficient and either imposes a linear search overhead [63] or a qua-

dratic storage complexity, which we wish to avoid. Hence we opt

for strategies that, while theoretically less secure, offer significantly

better leakage versus efficiency tradeoffs in practice.

Bucket Sizes.We propose bucketing keywords using buckets of

two different sizes – 𝐵high for the keywords with higher frequen-

cies, and 𝐵low for the keywords with lower frequencies. We pad the

database with fake data so as to equalise the frequency of all key-

words within a given bucket. Hence, the adversary can guess the

queried keyword with probability at most 1/𝐵 for 𝐵 ∈ {𝐵high, 𝐵low}.
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The tradeoff here is that a larger 𝐵 (i.e. larger but fewer buckets)

enjoys lower leakage but incurs more padding and so greater search

overheads. Note that the guessing probability of the adversary is

independent of the real frequency of the queried keyword.

Our bucketization strategy is fundamentally motivated by the

fact that most real-world document collections follow a Zipf power

distribution [77], wherein frequency of ranked keywords decays

inversely. For document collections that follow a Zipf distribution,

we recommend a bucketization strategy where only a small frac-

tion of the buckets have size 𝐵high, while most of the buckets have

size 𝐵low. This yields low storage overheads and good search ef-

ficiency in practice. Concretely, for SWiSSSE, we propose using

𝐵high = 400 and 𝐵low = 200. In its most general form, SWiSSSE is

capable of handling any arbitrary vector of bucket sizes to partition

the keywords. We choose two distinct bucket sizes because our

experiments over real-world databases indicate that this yields a

good tradeoff between efficiency and security in practice.

We refer to Section 6.2 (Table 1) for an empirical evaluation of

the tradeoffs offered by a variety of bucketization strategies (in

particular, by varying the number of buckets and the size of each

bucket). Additionally, Appendix C empirically evaluates the security

offered by our bucketization strategy against co-occurrence leakage-

based cryptanalysis over the Enron email corpus and the English

Wikipedia.
7
Our experiments over these real-world databases show

that bucket sizes 𝐵high = 400 and 𝐵low = 200 suffice to thwart

not only all existing leakage-based attacks [13, 21, 59], but also

highly refined system-wide leakage cryptanalysis techniques [54],

while retaining practically efficient searches over these real-world

databases.

5 SWISSSE FOR GENERAL STATIC DATABASES

We now formally describe SWiSSSE for general static databases.

5.1 Changes from the Simplified Case

Auxiliary Write-Backs. At a high level, we opt for the following

strategy in the case of general databases: whenever a document 𝑑ℓ
is scheduled to be flushed from the client’s stash and written back

to the encrypted document array, the client additionally schedules

an auxiliary write-back for each keyword𝑤𝑖 occurring in 𝑑ℓ .

To understand why auxiliary write-backs ensure search correct-

ness, consider the following three scenarios:

(1) Suppose that a query on 𝑤𝑖 is issued before 𝑑ℓ is written

back. At this point, the client can directly retrieve 𝑑ℓ from

its private stash.

(2) Next, suppose that a query on𝑤𝑖 is issued after 𝑑ℓ has been

written back but before the auxiliary write-back for 𝑤𝑖 is

executed. In this case, the pointer in the lookup index is

invalid, but client can refer to its stash to check if an auxiliary

write-back for𝑤𝑖 is scheduled. This allows it to recover the

new pointer and use it for the search operation.

(3) Finally, suppose that a query on𝑤𝑖 is issued after the auxil-

iary write-back for 𝑤𝑖 has been executed. This again does

not affect search correctness because the entry for𝑤𝑖 in the

keyword lookup index now points to the “new" address for

𝑑ℓ in the document array.

7
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Moreover, thesewrite-backs impose no extra bookkeeping overhead

at the client, since they do not need to be executed in sync with the

original write-back for the document.

Restructuring the Keyword Lookup Index. To support auxil-

iary write-backs, we restructure the keyword lookup index. For

simplicity of presentation, we present a simplified version of the

restructuring. This incurs some undesirable leakage, which we

address subsequently.

Instead of storing a single entry for each keyword𝑤𝑖 , we now

store an entry for each keyword-document pair (𝑤𝑖 , 𝑑ℓ ) such that𝑑ℓ
contains𝑤𝑖 . The address for this entry is generated as 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | |cnt𝑤𝑖

),
where 𝐹 is a PRF with key 𝐾 , 𝑗 is a counter that runs from 0 to

|DB(𝑤𝑖 ) | − 1 (where DB(𝑤𝑖 ) denotes the set of documents contain-

ing keyword𝑤𝑖 ), and cnt𝑤𝑖
is a per-key word counter held in the

client’s stash which records how many times𝑤𝑖 has appeared in

search queries. Each entry stores a ciphertext encrypting a single
pointer to the address of some 𝑑ℓ in the document array.

In keeping with our “frequency bucketization strategy", we also

create and store in the lookup index additional “fake" entries of

the form (𝑤𝑖 , 𝑑ℓ ), where 𝑑ℓ is a fake document. The address for

each such fake entry is generated as 𝐹 (𝐾,𝑤𝑖 | | 𝑗 ′ | |cnt𝑤𝑖
), where 𝑗 ′

is a counter that runs from |DB(𝑤𝑖 ) | to one less than the bucket

size for𝑤𝑖 . Each such entry again stores a single ciphertext, now

encrypting a pointer from𝑤𝑖 to the fake document 𝑑ℓ .

This makes the lookup index amenable to auxiliary write-backs.

In particular, the auxiliary write-back for a keyword𝑤𝑖 occurring

in 𝑑ℓ targets the address 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | |cnt𝑤𝑖
), and updates specifically

the pointer from𝑤𝑖 to 𝑑ℓ .

Auxiliary Addresses for Auxiliary Write-Backs. To prevent

the server from correlating auxiliary write-backs to the last normal

write-back involving the same keyword, we choose to dissociate

the two sets of addresses. More concretely, we generate separate

sets of addresses for normal and auxiliary write-backs involving

the same keyword:

addrnorm (𝑤𝑖 , 𝑑ℓ , cnt𝑤𝑖
) = 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | | (2 ∗ cnt𝑤𝑖

)),
addraux (𝑤𝑖 , 𝑑ℓ , cnt𝑤𝑖

) = 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | | (2 ∗ cnt𝑤𝑖
+ 1)),

where 𝑗 is again a counter that runs from 0 to |DB(𝑤𝑖 ) | − 1 and

cnt𝑤𝑖
is again the per-key word counter held in the client’s stash

which records how many times𝑤𝑖 has appeared in search queries.

Similarly, for the fake documents associated with𝑤𝑖 , we generate

separate sets of addresses for normal and auxiliary write-backs:

addrnorm (𝑤𝑖 , 𝑑ℓ , cnt𝑤𝑖
) = 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | | (2 ∗ cnt𝑤𝑖

)),

addraux (𝑤𝑖 , 𝑑ℓ , cnt𝑤𝑖
) = 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | | (2 ∗ cnt𝑤𝑖

+ 1)),

where 𝑗 ′ is a counter that runs from |DB(𝑤𝑖 ) | to one less than the

bucket size for the keyword𝑤𝑖 .

Search Correctness. To ensure that a search query on the keyword

𝑤𝑖 correctly takes into account all auxiliary write-backs involving

𝑤𝑖 , the client now requests the server to access both sets of write-

back addresses for 𝑤𝑖 – normal and auxiliary – in the keyword

lookup index. If both sets of addresses exist for a particular docu-

ment, the client uses the pointer stored in the auxiliary write-back

address; otherwise it uses the pointer stored in the normal write-

back address.
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Remark 5.1. For ease of understanding, we explain the distinc-

tion between normal and auxiliarywrite-backs in SWiSSSE using an

example. Suppose that the client searches for keyword𝑤 and there

is only one document 𝑑 (stored in address addr in the encrypted

document array) containing 𝑤 . The search protocol in SWiSSSE

has two stages. In the first stage, the client looks for the address

of the document from the search index using a token computed

from keyword 𝑤 . In the second stage, the address can be used to

retrieve the actual document. Note that in the write-back proce-

dure, our goal is to flush document 𝑑 to a completely new address

addr′ in the encrypted document array. However, to retrieve the

document 𝑑 in future queries, we also need to update the search

index to point to this new address addr′ in the encrypted document

array. We summarize this distinction between normal and auxiliary

write-backs below.

• Normal write-back: Updates the search index for the key-

word 𝑤 that has just been searched for. The entry corre-

sponding to the searched keyword 𝑤 in the search index

now points to the new address addr′ after the update.
• Auxiliary write-back: A document 𝑑 containing the key-

word𝑤 may contain other keywords. Suppose, for simplicity,

that 𝑑 has one other keyword𝑤 ′. We also need to update the

address associated with the keyword𝑤 ′ in the search index

to maintain consistency during future searches. Auxiliary

updates help to achieve exactly that.

Remark 5.2. In SWiSSSE, post write-backs, the documents that

are still stored in the old addresses can be safely deleted (since the

encrypted lookup index consistently points to the latest updated

address of a document in the encrypted document array). Since

such deletions can be done periodically and the old addresses can

be reused for future search operations, SWiSSSE does not suffer

from ever-growing storage.

5.2 The Setup Procedure of SWiSSSE

Algorithm 1 describes SWiSSSE.Setup – the setup procedure of

SWiSSSE. The description uses a symmetric encryption scheme

(KGen1,Enc,Dec) and a pseudorandom function 𝐹 with key gen-

eration algorithm KGen2. For readability, we omit explicitly de-

scribing the keys used by these cryptographic functions.

The server stores an encrypted lookup table Svr.EI (to store

the map between the keywords and the document addresses in

the encrypted form) and an encrypted document array Svr.EA (to
store the map between the document addresses and the actual

documents in encrypted form). The addressing mechanism and

encrypted contents for these data structures are as described above.

Similarly, the client stores in its local stash a plaintext lookup

index Clt.I (to store the map between the keywords and where

they are in the encrypted document array before they are written

back to the server), and a plaintext document array Clt.A (to store

the map between the document identifiers and the documents).

In particular, the plaintext document array is used to store the

documents retrieved from the previous queries and randomly select

an appropriate number of documents for auxiliary write-backs.

To implement the keyword bucketization strategy, the client

creates a “padded version" DB′ of the original database DB before

encrypting and offloading it to the server. More concretely, the

Algorithm 1 SWiSSSE.Setup

1: procedure Clt.Setup(1𝜆, DB)
2: /* Key generation */

3: Clt.𝑠𝑘1 ← KGen1 (1𝜆)
4: Clt.𝑠𝑘2 ← KGen2 (1𝜆)
5: Generate map G : 𝑊 → N
6: Clt.G← G
7: /* Generate fake documents */
8: DB′ ← Fake_Doc_Gen(DB, Clt.G)
9: Clt.𝑁 ← |DB′ |
10: /* Clt.𝑁 allows the client to locally maintain the size of the padded

database. This is used subsequently in the keyword search algorithm. */
11: EI, EA← {}
12: for 𝑖 ∈ 1, . . . , |DB′ | do
13: /* Get the set of keywords with counters */
14: 𝑥 ← {(𝑤, Clt.KWCtr[𝑤 ]) | 𝑤 ∈𝑊 (DB′ [𝑖 ]) }
15: /* Update the lookup index */

16: /* In the following expression,𝑊 (DB′ [𝑖 ]) denotes the set of key-
words in the 𝑖-th document of the padded database. */

17: for 𝑤 ∈𝑊 (DB′ [𝑖 ]) do
18: 𝑗 ← Clt.KWCtr[𝑤 ]
19: /* Insert the new lookup entry in the search index EI */

20: EI← EI ∪ (𝐹 (𝑤 | | 𝑗 | |0),Enc(𝑖𝑑 (DB′ [𝑖 ])))
21: /* Note that the zero at the end of the PRF input essentially

indicates that the number of search operations involving 𝑤 is initially 0

at setup */

22: Clt.KWCtr[𝑤 ] ← Clt.KWCtr[𝑤 ] + 1

23: /* Insert the encrypted document in EA */
24: EA← EA ∪ (𝐹 (𝑖 | |0),Enc(𝑥 | |DB′ [𝑖 ]))
25: /* Reset the keyword counter */
26: for 𝑤 ∈𝑊 (DB′) do
27: Clt.KWCtr[𝑤 ] ← 0

28: /* Initialise the stash */

29: Clt.I.init()
30: Clt.A.init()
31: Send (EI, EA) to the server

32: procedure Svr.Setup(EI, EA)
33: Svr.EI.init()
34: Svr.EA.init()
35: Svr.EI.put(EI)
36: Svr.EA.put(EA)

client selects a map G :𝑊 → N. This map assigns each keyword to

a bucket, such that all keywords in the same bucket have the same

frequency in the padded database DB′.
Let |DB(𝑤) | and |DB′(𝑤) | denote the frequency of the keyword𝑤

in the original and padded databases, respectively. The map G allows
the client to determine a padding procedure Fake_Doc_Gen; the

procedure pads the input database DB with “fake" documents to

obtain a padded version DB′ such that |DB′(𝑤) | = G(𝑤) for each
keyword 𝑤 . The client may use any padding strategy to achieve

the desired keyword frequencies as specified by the function G.
Additionally, to suppress volume leakage, the document ad-

dresses and the document contents are padded to fixed lengths

ℓ0 and ℓ1 respectively (both assumed to be public parameters) prior

to encryption. Note, however, that we do not perform worst-case

document padding, which would potentially incur huge storage
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Algorithm 2 SWiSSSE.KWQuery: Address Retrieval Sub-Routine

1: procedure Clt.TokenGen(𝑤)

2: 𝐿 ← {}
3: /* Generate all lookup addresses for keyword 𝑤 and store them in 𝐿 */

4: for 𝑗 ∈ 0, . . . , Clt.G(𝑤) − 1 do

5: 𝐿 ← 𝐿 ∪ {𝐹 (𝑤 | | 𝑗 | |2 ∗ Clt.KWCtr[𝑤 ]) }
6: 𝐿 ← 𝐿 ∪ {𝐹 (𝑤 | | 𝑗 | |2 ∗ Clt.KWCtr[𝑤 ] + 1) }
7: /* Roll forward the counter corresponding to 𝑤 in preparation for the

next query on 𝑤 */

8: Clt.KWCtr[𝑤 ] ← Clt.KWCtr[𝑤 ] + 1

9: Send 𝐿 to the server

10: procedure Svr.Index_Lookup(𝐿)
11: Send Svr.EI.get(𝐿) to the client

Algorithm 3 SWiSSSE.KWQuery: Encrypted Document Retrieval

Sub-Routine

1: /* 𝐸𝐿 is a list containing all encrypted document addresses retrieved at
the end of Algorithm 2 */

2: procedure Clt.Document_Retrieval(𝑤, 𝐸𝐿)

3: 𝐿 ← the latest addresses of the keywords from Dec(𝐸𝐿) if they
are not in Clt.I

4: Add random document identifiers between 0 and Clt.𝑁 − 1 that

are not in the stash to 𝐿 until |𝐿 | = 2 · Clt.G(𝑤)
5: 𝑀 ← {}
6: for 𝑖𝑑 ∈ 𝐿 do

7: /* Compute the document addresses and collect them in𝑀 */

8: 𝑀 ← 𝑀 ∪ 𝐹 (𝑖𝑑 | |Clt.ArrCtr[𝑖𝑑 ])
9: /* Increase the counters */
10: Clt.ArrCtr[𝑖𝑑 ] ← Clt.ArrCtr[𝑖𝑑 ] + 1

11: Send𝑀 to the server

12: procedure Svr.Document_Retrieval(𝑀)

13: Send Svr.EA.get(𝑀) to the client

and communication overheads. Instead we use a fragmentation

strategy where each document is fragmented into sub-documents

of size ℓ1; so we only really perform padding for the last fragment

in case it has size less than ℓ1. We avoid these details in Algorithm 1

for the sake of readability.

5.3 The KWQuery Procedure of SWiSSSE

We now describe SWiSSSE.KWQuery – the keyword query proce-

dure for SWiSSSE. For ease of presentation, SWiSSSE.KWQuery

is broken up into three sub-routines described in Algorithms 2, 3

and 4. Again, for readability, we omit explicitly describing the keys

used by the cryptographic functions in these algorithms.

These algorithms formally depict the following steps taken by

the client during a keyword query:

• Algorithm 2: The client generates a search token to look

up both the normal and auxiliary write-back addresses for

𝑤𝑖 in the encrypted keyword lookup index, receives the cor-

responding encrypted entries from the server, and decrypts

the results locally to identify the relevant entries in the en-

crypted document array. It also updates the counter keeping

track of the number of search operations involving𝑤𝑖 (this

Algorithm 4 SWiSSSE.KWQuery: Auxiliary Write-Back Sub-

Routine

1: /* 𝐸𝑀 is a list containing all encrypted documents retrieved at the end of
Algorithm 3 */

2: procedure Clt.Write_Back(𝐸𝑀, �̄�)

3: 𝑈𝐴← {}
4: /* Get random documents from the stash, 𝑏𝑖 is a bit to indicate if 𝑤𝑖

was the leading keyword */

5: 𝐷 ← Clt.A.pop( ⌊ |Clt.A |/2⌋)
6: for ( {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } , 𝑑) ∈ 𝐷 do

7: /* Encrypt the new documents */
8: 𝑈𝐴 ← 𝑈𝐴 ∪ {(𝐹 (𝑖𝑑 (𝑑) | |Clt.ArrCtr[𝑖𝑑 (𝑑) ]),

Enc( {(𝑤𝑖 , 𝑗𝑖 ) } | |𝑑)) }
9: /* Update the stash for the lookup index */

10: for (𝑤, 𝑗,𝑏) ∈ {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } do
11: Clt.I.put( (𝐹 (𝑤 | | 𝑗 | |2∗Clt.KWCtr[𝑤 ] +𝑏),Enc(𝑖𝑑 (𝑑))))
12: /* Decrypt the documents retrieved at the end of Algorithm 3 and

insert them into the document array */

13: Clt.A.put(Dec(𝐸𝑀))
14: Send (Clt.I.pop( ⌊ |Clt.I |/2⌋),𝑈𝐴)

15: procedure Svr.Write_Back((𝑈 𝐼,𝑈𝐴))
16: Svr.EI.put(𝑈 𝐼 )
17: Svr.EA.put(𝑈𝐴)

helps generate the new write-back address for 𝑤𝑖 in the

encrypted keyword lookup index).

• Algorithm 3: The client then generates a search token and

retrieves the corresponding encrypted documents from the

document array at the server, and decrypts the results locally

to filter out the fake documents. For each accessed document,

the client updates the local counter keeping track of the

number of times the document has been addressed (this

helps generate the new write-back address for 𝑤𝑖 in the

encrypted document array).

• Algorithm 4: Finally, the client updates its local stash with

the documents retrieved in the previous step. These will

be written back to the encrypted document array at the

server via normal auxiliary write-backs at a later point of

time. Each write-back operation involves the client randomly

sampling a certain proportion of the documents and the

lookup indices from its local stash (created over multiple

search operations in the past), and writing them back to the

corresponding encrypted data structures at the server. For

the specific instance described in Algorithm 4, this fraction

is set to one-half; we justify the choice of the parameter in

Section 6.2.

5.4 System-Wide Correctness

We state and prove the following theorem for the system-wide

correctness of SWiSSSE.

Theorem 5.1 (Correctness of SWiSSSE). Let |DB| and |𝑊 {DB}|
denote the total number of documents and document-keyword

pairs, respectively, in the database DB, and let 𝑙 denote the output

length of the PRF 𝐹 used in SWiSSSE. Then the advantage of any

adversary A, which issues at most 𝑘 search queries, in breaking

the system-wide correctness of SWiSSSE over the database DB is at
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most: (
|DB|2 + 4𝑡0 |DB| + |𝑊 {DB}|2 + 4𝑡1 |𝑊 {DB}|

)
2
𝑙+1

+𝐴𝑑𝑣𝑃𝑅𝐹, |DB |+2𝑡0

𝐹,B +𝐴𝑑𝑣𝑃𝑅𝐹, |𝑊 {DB} |+2𝑡1

𝐹,C ,

where 𝑡0 = 𝑘 ·max𝑤 |DB(𝑤) |, 𝑡1 = 𝑘 ·max𝑤 |𝑤 {DB(𝑤)}|, and B and

C denote probabilistic polynomial-time adversaries in independent

security experiments against the PRF 𝐹 .

Due to lack of space in the body of the paper, we defer a formal

proof of this theorem to Appendix B.1.

5.5 System-Wide Leakage of SWiSSSE

We now formally describe the leakage profile for SWiSSSE with

respect to static databases. Following the approach introduced by

previous works on SSE (such as [31] and [24]), we use a simulation-

based framework where a PPT adversary is required to distin-

guish between the real world (where the adversary interacts with a

real execution of SWiSSSE that uses the secret key) and the ideal

world (where the adversary interacts with a simulator that only

has access to the described leakage profile for SWiSSSE). The enu-

meration is provably sound if no PPT adversary can distinguish

between these two worlds with non-negligible advantage over a

random guess.

Unlike most prior SSE constructions, the leakage function for

SWiSSSE is stateful. This follows naturally from the fact that the

search protocol in SWiSSSE makes abundant usage of random ad-

dress accesses across the encrypted data structures at the server. We

use a stateful definition to capture the leakage from such random

accesses.

Leakage at Setup. As summarized in Section 5, at setup, the client

offloads the encrypted lookup index and the encrypted document

array to the server. These data structures are essentially key-value

stores with pseudorandomly generated keys/addresses and val-

ues/entries that are encrypted under an IND-CPA secure encryption

scheme. Hence, at setup, the server learns no information about the

original database DB other than the number of documents in the

padded database DB′ (including both real and fake documents), and

the total number of keyword-document pairs post-bucketization.

Formally, we have:

LSetup

Σ (DB, G) = (
��DB′��, ��𝑊 {

DB′
}��, StL),

where Σ denotes a concrete instance of SWiSSSE. Note that the

leakage function is stateful; it maintains in StL a realisation of the

padded database (used later by the leakage function for searches).

Leakage during Searches and Write-Backs. As summarized in

Section 5, each search query leaks the following to the server:

(1) The set of normal and auxiliary write-back addresses in

the encrypted keyword lookup index corresponding to the

queried keyword (but not preciselywhich of these are normal

and which of these are auxiliary).

(2) The set of addresses in the encrypted document array for

the real and fake documents containing the queried key-

word (but not precisely the document identifiers, or even

which of the addresses correspond to real documents and

the fake documents, respectively).

Similarly, each write-back operation reveals to the server the set of

addresses in the encrypted keyword lookup index and the encrypted

document array that are written to using content from the stash.

We capture this leakage using a probabilistic and stateful leakage

function LKWQuery

Σ . Due to lack of space in the body of the paper,

we defer the formal description of the leakage profile to Algorithm

5 (for an instance Σ of the SWiSSSE scheme) in Appendix B.2. The

state of the leakage function contains a realisation of the padded

database, everything in the stash of the client, and two data struc-

tures, namely the lookup history IndHist and the array-access

history ArrHist, which we describe in Appendix 5.

The following theorem, which we prove in Appendix B.3, for-

malizes the security of SWiSSSE.

Theorem 5.2 (Security of SWiSSSE). LetLSetup
Σ andLKWQuery

Σ
be the leakage functions defined above. The instance Σ of SWiSSSE is(
LSetup
Σ ,LKWQuery

Σ

)
-secure.

We give a more detailed discussion on the implications of the

leakage in Appendix C.1.

5.6 System-Wide Leakage Cryptanalysis

We report in Appendix C a detailed cryptanalysis of the system-

wide leakage of SWiSSSE on the Enron email corpus and the English

Wikipedia dump. In particular, we show that for appropriate choices

of bucket sizes (more precisely, 400 for the most frequent keywords

and 200 for the remaining keywords), SWiSSSE is resilient to tradi-

tional leakage-abuse attack techniques [13, 21, 59, 88], as well as

the system-wide leakage-based query recovery attacks proposed

recently in [54]. The authors of [54] used their attacks to break all

end-to-end SSE systems built in a natural way from a vast majority

of the index-only SSE schemes in the literature [16, 19, 23, 24, 26,

29, 31, 41, 62, 64, 66, 86, 101], including those applying leakage-

suppression techniques such as volume-hiding EMMs [65, 92] to

the search index. To the best of our knowledge, SWiSSSE is the

only end-to-end SSE system to be secure against these system-

wide leakage-abuse attacks while supporting practically efficient

searches. More details can be found in Appendix C.

6 EXPERIMENTAL EVALUATION

In this section, we describe a prototype implementation of SWiSSSE

and report on its performance. We also present a detailed exper-

imental comparison between the query performance of state-of-

the-art SSE schemes with security against system-wide leakage,

and the query performance of SWiSSSE. A theoretical performance

evaluation of SWiSSSE can be found in Appendix D.

Overview of Experiments.As target database we chose the Enron

email corpus. It contains over 500K emails and over 30M keyword-

document pairs which makes it a perfect database to experiment

with the scalability of our SSE scheme. We run experiments on

sub-databases of different sizes ranging from 10K documents to

400K documents.

6.1 Experimental Setup

Choice of Primitives.We instantiate the PRF with HMAC-SHA-

256 [72]. Only the first 16 bytes of the output are used as keys
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to reduce storage. We use AES-GCM [78, 87] for symmetric-key

encryption.

Implementation.We implement the client and server in Java [104],

using the Java Cryptography Extension
8
as the underlying crypto-

graphic library. We choose to use a single-thread implementation

as it provides the most accurate measurements of performance.

The server we implemented serves as a proxy between the client

and the actual storage system. It is responsible for translating the

queries into standard key-value store queries. We used Redis
9
as

the underlying key-value store. For comparison, we also implement

a plaintext database in Java. The database uses an inverted index

for fast lookup, where the keys are the keywords, and the values

are lists of document identifiers associated to the keywords.

Document Preprocessing. To prepare the documents for inser-

tion, we extract keywords from them with the Natural Language

Toolkit.
10

The English stop words and the keywords with frequency

higher than 5% are removed from the set of keywords for each email.

Emails that are larger than 1KB are partitioned into chunks of 1KB,

taking care to associate all the keywords from a given email with

each chunk.

Experimental Environment.We run our experiments on anAMD

Ryzen 9 5900X CPU clocked at 3.7 GHz (4.8 GHz boost clock) and 32

GB DDR4 memory clocked at 2400 MHz. For simplicity, the server

and client are run on the same machine (so our results do not take

into account network latency).

6.2 Parameter Selection for SWiSSSE

There are three tunable parameters in SWiSSSE that affect its se-

curity and performance. These parameters are: (1) the size of the

buckets, (2) the fraction of documents written back in the write-

back step, and (3) the fraction of lookup indices written back in the

write-back step.

In this section, we investigate the relationship between the three

parameters above and the performance and security of SWiSSSE

experimentally. We give our recommended parameters at the end

of the section.

Size of buckets. We perform thorough performance and crypt-

analysis experiments to investigate the trade-offs between differ-

ent bucketization strategies. These experiments are performed on

the Enron email corpus and the write-back rate for the lookup in-

dices and the documents are set to 50%. A full description of our

cryptanalysis techniques and experimental results can be found in

Appendix C.3. Table 1 summarises our experimental results. The

query recovery rate shown in the table are for the most frequent

keywords only.

It can be seen that bucket sizes smaller than 400 do not offer

enough resilience against our new leakage cryptanalysis on the

most frequent keywords. On the other hand, using a bucket size

larger than 400 will incur significant overheads in terms of storage

and communication (Figure 3 in Appendix C.3).

8
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/

CryptoSpec.html

9
https://redis.io/

10
https://www.nltk.org/

Bucket size

(# buckets)

Storage

overhead

(index)

Communication

overhead

Query

Recovery

Rate

50 (668) 3.9% 0.9% 98.7%

100 (334) 8.1% 1.7% 84.9%

200 (167) 17.0% 3.6% 56.3%

400 (84) 36.1% 7.9% 26.5%

Table 1: Performance and cryptanalysis experiments on the size of the

buckets.

Write-back rate. In this section, we investigate alternative param-

eters for the fraction of documents written back and the fraction of

lookup indices written back in the write-back step. We note that

for any write-back rate 𝑟 , 𝑟 document write-backs and 𝑟 lookup

index write-backs produce equivalent leakage (since the leakage

comes retrieving documents/indices that have been just written

back). Therefore, we focus on parameter selection for the fraction

of documents.

We perform performance experiments and cryptanalysis experi-

ments with 50% to 90% lookup indices and documents write-back

(in steps of 10%). The cryptanalysis experiments (see Appendix C.3)

are performed on the Enron email corpus only and uses bucket size

of 400. We report the experimental results in Table 2.

Write-back

Mean Write-back

time (ms)

Mean Stash

Size (MB)

Query Recovery

Rate

50% 1571 0.978 26.5%

60% 1534 0.647 86.3%

70% 1584 0.422 91.4%

80% 1671 0.269 93.9%

90% 1690 0.179 94.5%

Table 2: Performance and cryptanalysis experiments on the write-back rate.

We observe that having a higher write-back rate does not help

with the write-back time. This is because a higher write-back rate

means more lookup indices and documents have to be written back

in the write-back step. On the other hand, the mean stash size

decreases significantly as the write-back rate increases, as expected.

In terms of resilience to query reconstruction attacks, we observe

that SWiSSSE is a lot more vulnerable to our highly refined leakage-

abuse attack if we allow for a higher write-back rate. In particular,

as soon as the write-back rate is set to 60%, our attack is able to

recover 86.3% of the queries.

Recommended Parameters. We give our recommended parame-

ters in this section. These parameters are used in the performance

experiments in Section 6.3. We choose a bucket size of 400 for the

most frequent 2400 keywords. For the other keywords, we find that

a bucket size of 200 provides reasonable security and efficiency. A

more detailed discussion of our bucketization strategy can be found

in Appendix C.4. As for the write-back rate, we set it to 50%.

Remark 6.1. For the bucket size of 400 and a write-back rate of

50%, our highly refined system-wide query recovery attacks achieve

a query recovery rate of 26.5% (the identical figures in Tables 1 and 2

result from using an identical experimental parameters in both

cases). While this appears to be a concern at first glance, we point

out that our leakage analysis is rather “pessimistic” and assumes
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(a) Setup time of the plaintext data-

base and SWiSSSE (log scale).

(b) Query response time of the

plaintext database and SWiSSSE on

400K documents (log scale).

(c) Distribution of write-back time

of SWiSSSE on 400K documents.

(d) Storage required by the plain-

text database and SWiSSSE (log

scale).

(e) Stash size of SWiSSSE on 400K

documents.

Figure 1: Performance comparison between the plaintext database and

SWiSSSE.

far more leakage than is actually leaked by a real implementation

of SWiSSSE in practice. Hence, we recommend that using these

parameters is safe from SWiSSSE in practical implementations. See

Appendix C.3 for additional discussion.

6.3 Benchmarks

Setup Time. Figure 1a shows the setup time of the plaintext data-

base and SWiSSSE. SWiSSSE is two orders of magnitude slower

than a plaintext implementation which is expected due to its exten-

sive use of encryption.

Query Response Time. Figure 1b shows the query response time

of the plaintext database and SWiSSSE for the experiment with

400K documents. In each experiment, 1000 uniformly randomly

picked keywords are queried. Here, real query response volume

refers to the actual number of documents associated to the key-

words and query response time is defined to be the time from the

start of a query to the point of time for which the client obtains

the plaintext documents. SWiSSSE is about 2-4 times slower than a

plaintext database depending on the real frequency of the queried

keyword and its padded frequency. This can be attributed to several

factors. Firstly, SWiSSSE deploys a bucketization strategy which

leads to more documents being retrieved than the real query re-

sponse volume. Secondly, SWiSSSE uses the duplication technique

on the inverted index, which means the amount of time required

for index retrieval become linear in the bucket size of the queried

keyword as opposed to a single query for the plaintext database.

Finally, SWiSSSE has to search the stash to retrieve locally stored

documents, and perform cryptographic operations.

We note that the query response time of SWiSSSE can be im-

proved significantly with parallelisation and multi-threading. For

example, the computation of search keys and decryption of doc-

uments can be parallelised. Computation of search tokens and

decryption of documents can be separated from interactions with

the server using different threads to reduce unnecessary blocking

time between different commands.

Write-back Efficiency. We report write-back efficiency for the

experiment with 400K documents in Figure 1c. As write-back time

depends on the number of documents retrieved in previous queries,

reporting an average value is not very informative. Here, we choose

to show the distribution of write-back time for 1000 uniformly

randomly distributed queries over the set of keywords. We observe

that over 80% of the write-backs are completed in under 1 second;

very long write-back times arise only occasionally.

The major bottle-neck of the write-back operation (over 70%

of the execution time) comes from inserting the key-value pairs

into the Redis database – a significant number of key-value pairs

needs to be inserted in every write-back operation due to the use

of duplication on the encrypted search index.

In practice, the client can simply transfer all the key-value pairs

it wants to update and go offline; the server (with the help of the

proxy if needed) can then insert these key-value pairs on its own.

This yields a 5× reduction of the effective write-back time.

Server Storage. Storage of the plaintext database compared to

SWiSSSE is reported in Figure 1d. The main source of overhead

for SWiSSSE comes from the inverted index as can be seen clearly

from the graph. This is because SWiSSSE uses duplication andmany

more keys need to be created for the inverted index. On the other

hand, the overhead for document storage is minimal.

The Client Stash. The distribution of the stash size is shown

in Figure 1e. The stash size was kept under 1 MB for over 80%

of the queries. There were several occasions when the stash size

grew to over 10 MB. This is due to queries on keywords with high

frequencies. These can be expected to be rare in practice for typical

query distributions. Furthermore, as half of the documents are

written back to the server after each query, the stash size will only

be high for a few queries. Therefore, we expect the stash size to

stay reasonably small on the client most of the time. On the rare

occasions where the stash size becomes large, the client can use

data compression or can issue dummy queries on low frequency

keywords causing the stash size to reduce more quickly.

We experimentally validate the data compression technique we

proposed and report the following performance metrics. The com-

pression algorithm used in our experiment is GZIP at compression

level 6. In terms of query response time, the compression technique

results in an 17.9% overhead (due to compression). In terms of the

write-back time, the compression technique results in a 4.3% over-

head (due to decompression). On the other hand, in terms of the

size of the stash for the documents, the compression technique

saves 27.6% of the storage. We recommend using data compression

when the stash size is high.
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Scheme

Storage

(Client)

Storage

(Server)

Computation

(Client)

Communication

(C→S

S→C)

SWiSSSE 23.3 MB 1.4 GB

2.1K PRF
2.1K DEC

16 KB

1.0 MB

Duplication - 42 GB (31×) 70K PRF
70K DEC

1.1 MB (67×)
68 MB (67×)

PRT-EMM [65] - 1.1TB (830×) 35K PRF
35K DEC

0.53 MB (34×)
34 MB (34×)

VH-EMM [92] - 110 GB (80×) 140K PRF
140K DEC

2.1 MB (130×)
140 MB (130×)

SealPIR [5]* - 340 GB (250×) 70K ENC
70K DEC

4.3 GB (270, 000×)
17 GB (17, 000×)

Non-recursive

Path ORAM [102]

42.7 MB 5.3 GB (3.9×) 1.5M ENC
1.5M DEC

3.0 GB (190, 000×)
3.0 GB (2, 900×)

Table 3: Comparison of different document retrieval techniques. In the

experiments, we used𝐺 = 522 as the query response volume (mean keyword

frequency in the Enron email corpus) for calculating the overheads. As all of

the schemes except SWiSSSE require full padding, only the performance num-

bers of SWiSSSE will be affected by the query response volume. The numbers

in the brackets indicate overheads beyond the baseline provided by SWiSSSE.

*SealPIR also requires the server to perform 390 billion FHE operations per

query. The client storage we report does not include cryptographic keys as

they do not grow with the size of the database.

Optimizations and Extensions.While our experiments already

demonstrate that SWiSSSE scales well in practice to very large

databases, an implementation in a low-level language (such as C)

should improve efficiency further. Another potential optimization

is to switch to a specialised PRF such as SipHash [11] in place of

HMAC-SHA-256. A larger client stashwould also allow batching the

write-backs together to further improve efficiency. We conducted

our experiments locally rather than over a network; further work

is needed to characterise the impact of network latency on query

response times. However, recall that each search operation only

involves two round trips. In addition, latency from communication

over a WAN would be on the order of 50 milliseconds [20] and it

is additive to the query processing time, which is typically on the

order of 1k-10k milliseconds. Hence, network latency does not have

a large impact on the performance.

6.4 Comparison to State-of-the-Art SSE Schemes

We now compare the performance of SWiSSSE with the state-of-

the-art SSE schemes if they were made system-wide secure.
11

For

ease of comparison, we ignore the index retrieval phase and focus

on the document retrieval phase only (the cost of index retrieval is

only a small fraction of the cost of document retrieval for all of the

schemes under consideration).We consider the same system-wide

secure solutions as in [54]: (1) duplicate the documents so that there

is no co-occurrence leakage any more, (2) apply the state-of-the-art

SSE schemes on the documents directly, and (3) use off-the-shelf

data retrieval techniques such as private information retrieval (PIR)

and oblivious random-access memory (ORAM). Concretely, we

choose Pseudo-Random Transform from [65] (referred to as PRT-

EMM) and the volume-hiding EMM from [92] (referred to as VH-

EMM), as well as SealPIR [5] and non-recursive Path ORAM [102]

as the PIR and ORAM schemes, respectively, for our comparison.

Parameter Choices.We use the following parameters in our exper-

iments. All PRFs used in the experiments have 128-bit outputs. For

PRT-EMM [65], we use 𝛼 = 0.5 as proposed in the original paper.

For SealPIR [5], we pick the degree of ciphertext to be 𝑁 = 2048,

11
Recall that, as presented in their original forms, they are not [54].

the size of the coefficients to be 60 bits and represent the database

in 𝑑 = 2 dimensions as those are used in the original paper. For Path

ORAM, we assume each block has size 1 KB and there are 4 blocks

per bucket. We pad query response volume from the duplication

scheme, SealPIR and Path ORAM to the maximum query response

length to suppress volume leakage. For Path ORAM, we assume

that all documents are of equal size. Note that leaking the length

of retrieved documents is undesirable and the standard practice

in the SSE literature is to either pad each document to the same

length or to divide each document into equal-sized chunks/sub-

documents associated with separate identifiers. Hence, we pick

a fixed document-size, which may be viewed as either all docu-

ments being padded to the same length, or all documents split into

equal-sized chunks.

Concrete Comparison. For the comparison experiments, we use

the same 400K (preprocessed) documents from the Enron email cor-

pus. We report storage, computation and communication costs in

Table 3. Storage and communication costs are measured in total vol-

umes. Additional overheads arising from how the data is structured

and packaged are ignored. It is clear from the table that SWiSSSE is

significantly more efficient than all of the alternatives that we con-

sider. This is because SWiSSSE uses delayed write-backs with fresh

addresses to suppress access-pattern leakage. That is significantly

more efficient than creating physical duplications of documents as

used in the duplication scheme and the state-of-the-art index-only

SSE schemes [65, 92]. Furthermore, SWiSSSE uses keyword bucke-

tization to suppress volume leakage. The resultant query response

volume is much smaller than the worst-case padding strategies

adopted by the other solutions.

7 EXTENSION TO DYNAMIC DATABASES

We conclude with a brief discussion on extending SWiSSSE to dy-

namic databases.We chose to focus on the static version of SWiSSSE

in the body of the paper for easy exposition of our core ideas. How-

ever, our approach naturally extends to the dynamic setting. In

Appendix E, we detail a dynamic version of SWiSSSE and prove its

security against system-wide leakage-abuse attacks. This two-phase

approach of first focusing on static SWiSSSE before extending it to

the dynamic setting is similar to much of the SSE literature, where

the static version of a scheme is usually proposed and analyzed

extensively before its dynamic counterpart is introduced.
12

Our dynamic SWiSSSE scheme achieves a new system-wide se-

curity notion called “obliviousness of operations", which requires

that search and update query operations should be computationally

indistinguishable to the server. This brings several advantages. First

of all, it naturally implies that search and update operations incur

computationally indistinguishable leakage, which allows for a uni-

fied system-wide security definition with respect to searches and

updates for dynamic SSE schemes, as opposed to the separate index-

only definitions in prior work. Secondly, as a consequence of this

property, dynamic SWiSSSE achieves stronger forward and back-
ward privacy guarantees than state-of-the-art SSE constructions in

the literature, including those based on volume-hiding EMMs or

ORAM [16, 19, 26, 45]. We refer to Appendix E for the full details.

12
For instance, volume hiding EMMs were first proposed in the static SSE setting [65,

92] before being extended to dynamic databases only recently [45].
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A SYSTEM-WIDE DEFINITIONS FOR

SEARCHABLE SYMMETRIC ENCRYPTION

In this section, we present our firstmajor contribution – new system-
wide security definitions for (static) SSE schemes. Our definitions

take into account the leakage from both the encrypted index and

the document retrieval phase during searches. This is in direct

contrast to prior index-only definitions used extensively in the SSE

literature [24, 29, 31] that only take into leakage from the encrypted

index component of the overall SSE system. An extension of our

definitions to dynamic SSE appears in Appendix E.1.

A.1 System-Wide Syntax for Static SSE

We begin by formally defining our system-wide syntax for a static

SSE scheme Σ consisting of two protocols Setup and KWQuery

between a client and a server. A query 𝑞 from the client to the server

takes the form (𝑜𝑝, 𝑎𝑟𝑔𝑠) where 𝑜𝑝 is the operation of the query,

and 𝑎𝑟𝑔𝑠 are the additional arguments required for the query. We

only focus on search queries over a single keyword𝑤 .

• Setup(1𝜆, DB) is a client-server protocol. The client takes as
input a security parameter 1

𝜆
and a database DB, and outputs

(EDB, stClt), where EDB is an encrypted database (including

the encrypted search index as well as the encrypted doc-

uments) and stClt is the client’s internal state. The client

sends EDB to the server and the server runs Svr.Setup(EDB)
to setup the encrypted database.

• KWQuery(𝑠𝑘, 𝑞, stClt; EDB) is a client-server protocol to

support single-keyword query. The query 𝑞 in this case is of

the form (KWQuery,𝑤), where𝑤 is the target keyword of

the query. The client takes as input a secret key 𝑠𝑘 , a search

query𝑞, and its internal state stClt. The server takes as input
the encrypted database EDB. The client and server interact

with each other and by the end of the interaction, the client

gets (𝑟, stClt) where 𝑟 is the result of the query (i.e., the

actual documents matching the query) and stClt is the new
state of the client; the server state EDB may also be modified

following the execution.

Note that our syntax for static SSE takes into account the actual

encrypted documents (as part of the encrypted database EDB output
by Setup and as part of the query response 𝑟 output byKWQuery)

in addition to the encrypted index.

A.2 System-Wide Security for Static SSE

We now present our new system-wide security definitions for static

SSE. As in prior index-only definitions for static SSE [24, 29, 31],

we formulate system-wide security in terms of a leakage function
which captures the information an adversary can unavoidably learn;

however, in contrast to existing definitions, our definitions also

capture the information leakage from the document retrieval phase.

We say that a static SSE scheme is system-wide secure with respect

to a leakage function L = (LSetup,LKWQuery) if no (honest-but-

curious) adversary can distinguish between the real execution and

an execution simulated given only the leakage, where the real and

simulated executions are outlined below.

Definition A.1 (System-Wide Security of Static SSE). Let

Σ = (Setup,KWQuery) be a static SSE scheme and consider the

following probabilistic experiment where A is a stateful, proba-

bilistic polynomial time (PPT) honest-but-curious adversary, S is a

stateful simulator and L is the leakage function.

RealΣ,A (1𝜆) :

(1) The adversary A selects a database DB and gives it to the

challenger C.
(2) The challenger C generates a key 𝑠𝑘 , and encrypts the data-

base as EDB ← Setup(1𝜆, 𝑠𝑘, DB). The challenger C sends

the encrypted database EDB to the adversary A.

(3) The adversary picks a polynomial number of keyword search

queries 𝑞1, . . . , 𝑞poly(𝜆) . For each query, the challenger C in-

teracts with the adversaryA to execute the search query pro-

tocol (including the final document retrieval phase), where

the challenger plays the client and the adversary plays the

server.

(4) Finally, the adversary A outputs a bit 𝑏 ∈ {0, 1}.
IdealΣ,A,S (1𝜆,L = (LSetup,LKWQuery)) :

(1) The adversaryA selects a database DB and givesLSetup (DB)
to the simulator S.

(2) Using LSetup (DB), the simulator S generates EDB and re-

turns it to the adversary A.

(3) The adversary picks a polynomial number of search queries

𝑞1, . . . , 𝑞poly(𝜆) . For each query, the simulator S computes

the transcript of the query using LKWQuery
(including the

leakage from the document retrieval phase corresponding

to the query), and sends it to the adversary A.

(4) Finally, the adversary A outputs a bit 𝑏 ∈ {0, 1}.
We say that Σ is L-secure if there exists a probabilistic polynomial-

time (PPT) simulator S such that for all PPT adversaries A,���Pr

[
RealΣ,A (1𝜆) = 1

]
− Pr

[
IdealΣ,A,S (1𝜆,L) = 1

] ��� ≤ negl(𝜆) .

Differences with Index-Only Security Definitions.Unlike prior

(index-only) SSE definitions [24, 29], our security definition for

static SSE takes into account the actual encrypted documents and

the leakage from the document retrieval phase. This follows from

the facts that: (a) the encrypted database EDB in both the real and

ideal worlds includes the actual encrypted documents, and (b) the

adversary A gains access to the leakage from the document re-

trieval phase in both the real and ideal worlds.

Comparisonwith [31].The security definition for SSE in [31] does

account for leakage during document retrieval. However, their defi-

nition assumes a pre-specified “noise-free” access-pattern leakage

by default and fails to capture SSE schemes with noisy/suppressed

leakage, including index-only SSE schemes (e.g., [34, 45, 65, 92]) and

end-to-end SSE systems (e.g., SWiSSSE). Additionally, the concrete

schemes proposed in [31] are index-only with no leakage suppres-

sion, no specification of document retrieval (in Definition 4.1 of [31],

the Search algorithm only outputs “a set 𝑋 of (lexicographically-

ordered) document identifiers”), and no enumeration of system-

wide leakage. One could, of course, naturally extend these index-

only schemes into end-to-end SSE systems matching the security

definition of [31]. However, such systems would leak the exact ac-

cess pattern anyway, and would be broken trivially by system-wide

attacks [54].
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Our system-wide definition of SSE is significantly more gen-

eral. It is parameterized by a generic leakage function (as opposed

to pre-specified leakage in [31]), and allows modeling a larger

class of (end-to-end) SSE schemes with leakage suppression and/or

stateful/probabilistic leakage profiles. Moreover, in contrast to the

index-only SSE schemes in [31], SWiSSSE precisely specifies how

to retrieve documents, and the leakage from document-retrieval is

enumerated explicitly in its system-wide leakage profile.

Adaptive vs Non-adaptive Adversaries. In the security defini-

tion above, we can distinguish between non-adaptive and adaptive

adversaries, depending on how the adversary chooses its queries.

We say that Σ is non-adaptively secure if the adversary A chooses

all the queries before executing them. We say that Σ is adaptively

secure if the adversary A can choose each of his queries based on

the transcripts resulting from his previous queries.

A.3 System-Wide Correctness for Static SSE

To define correctness of static SSE in a system-wide setting, we build

upon some of the formalism in our system-wide security definitions

above. Concretely, consider a game between a challenger and a PPT

adversary A very similar to the the game RealΣ,A (1𝜆) described
above with the adversary A issuing at most 𝑘 = poly(𝜆) single-
keyword queries during the game, except that at the end of the

game, a PPT distinguisher D receives one of the following:

• the data obtained by executing the plaintext queries against

the unencrypted/plaintext database (including the document

retrieval phase), or

• the data obtained from the execution of the KWQuery pro-

tocol between the challenger C and the adversary A (once

again, including the document retrieval phase).

Let 𝐴𝑑𝑣
𝑐𝑜𝑟𝑟,𝑘
Σ,A,D (1

𝜆) denote the probability that the distinguisher D
distinguishes between the aforementioned data distributions. We

say that the SSE scheme Σ is correct from a system-wide perspective

if for any such PPT adversary A and any such PPT distinguisher

D, we have 𝐴𝑑𝑣
𝑐𝑜𝑟𝑟,𝑘
Σ,A,D (1

𝜆) ≤ negl(𝜆).
Our correctness definition takes into account the actual en-

crypted documents returned by the query, as opposed to only the

encrypted document identifiers resulting from querying the index

considered by the prior (index-only) SSE definitions [24, 29, 31].

B FORMAL PROOF OF CORRECTNESS AND

LEAKAGE PROFILE OF SWISSSE

In this section, we formally prove Theorem 5.1 and Theorem 5.2.

B.1 Proof of Theorem 5.1

We use standard game-hopping to reduce the correctness game𝐺 to

finding a pair of collisions in a game where the adversary interacts

with truly random functions. Let game 𝐺2 be the game where the

PRF used to generate the addresses for the encrypted documents is

replaced by a truly random function. The number of addresses used

for the encrypted documents with 𝑘 queries is at most |DB| + 2𝑘 ·
max𝑤 |DB(𝑤) |, so the difference in the advantages between game𝐺

and𝐺2 is 𝐴𝑑𝑣
𝑃𝑅𝐹, |DB |+2𝑘 ·max𝑤 |DB(𝑤) |
𝐹

. For database DB, we use |DB|
addresses to store the encrypted documents during initialisation;

hence, the probability of a pair of collisions is upper-bounded by

|DB|2 · 2−(𝑙+1) .
In the subsequent write-backs, the number of active addresses in

the encrypted document array is at most |DB| and the number of new

addresses we generate is upper bounded by 2 max𝑤 |DB(𝑤) |. This
means that there are at most 2|DB| · max𝑤 |DB(𝑤) | new potential

pairs of collisions for each query. Using the birthday bound, the

probability of finding a collision in the addresses of the encrypted

document array in each write-back is upper bounded by 2|DB| ·
max𝑤 |DB(𝑤) | · 2−𝑙 .

Similarly, we define game𝐺3 be the game where the PRF used to

generate the addresses for the encrypted lookup table is replaced

with a truly random function. The number of addresses used for

the encrypted lookup table is at most |𝑊 {DB}| + 2𝑘 max𝑤 |DB {𝑤}|,
so the difference in the advantages between game 𝐺2 and 𝐺3 is

𝐴𝑑𝑣
𝑃𝑅𝐹,𝑊 {DB}+2𝑘 max𝑤 |DB{𝑤 } |
𝐹

.

Using a similar argument as above, the probability of a pair of

collision in the addresses for the encrypted lookup table during

initialisation is at most |𝑊 {DB}|2 · 2−(𝑙+1) , and the probability of a

pair of collision for the encrypted lookup table for each query is at

most 2|𝑊 {DB}| ·max𝑤 |DB {𝑤}| · 2−𝑙 .
Combining everything together with a union bound on all 𝑘

queries, we conclude that the failure probability of the construction

is at most(
|DB|2 + 4𝑡0 |DB| + |𝑊 {DB}|2 + 4𝑡1 |𝑊 {DB}|

)
· 2−(𝑙+1)

+𝐴𝑑𝑣𝑃𝑅𝐹, |DB |+2𝑡0

𝐹
+𝐴𝑑𝑣𝑃𝑅𝐹,𝑊 {DB}+2𝑡1

𝐹
,

where 𝑡0 = 𝑘 · max𝑤 |DB(𝑤) | and 𝑡1 = 𝑘 · max𝑤 |𝑤 {DB(𝑤)}|. This
completes the proof of Theorem 5.1.

B.2 Formal Description of Leakage Profile for

Static SWiSSSE

In this section, we formally describe the leakage functions LSetup

Σ

and LKWQuery

Σ corresponding to leakage of static SWiSSSE during

setup and keyword queries, respectively. We describe these proba-

bilistic and stateful leakage functions in Algorithm 5 for an instance

Σ of the SWiSSSE scheme. The state of the leakage function con-

tains a realisation of the padded database, everything in the stash

of the client, and two data structures, namely the lookup history

IndHist and the array-access history ArrHist, which we describe

below.

Lookup and Array-Access Histories. We define the lookup his-

tory IndHist and the array-access history ArrHist to be lists of

records corresponding to operations on the encrypted keyword

lookup index and the encrypted document array, respectively. These

capture the access pattern leakage during searches.

Formally, each lookup (respectively, array-access) record is of

the form (𝑖, 𝑏, 𝑡), where 𝑖 is a unique identifier associated with the

index (respectively, array) address being operated on,𝑏 is a bit which

indicates whether the entry corresponds to a read operation (𝑏 =

0) or a write operation (𝑏 = 1), and 𝑡 is the timestamp of the

query that resulted in the operation. We also overload notation and

let IndHist

[{
𝑖 𝑗
}]

and ArrHist

[{
𝑖 𝑗
}]

be the sets of all records
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Algorithm 5 SWiSSSE: Leakage Function for Searches and Write-

Backs

1: procedure LKWQuery

Σ (𝑞, StL )
2: (KWQuery, 𝑤) ← 𝑞𝑢𝑒𝑟𝑦

3: I, A, I′, A′, KWCtr, ArrCtr, IndHist,ArrHist← StL
4: /* Leakage from the query tokens */
5: IndHist ← IndHist ∪ {(T(𝑤, 𝑖, KWCtr[𝑤 ]), 0, 𝑘),

T(𝑤, 𝑖, KWCtr[𝑤 ] + 1), 0, 𝑘) | 𝑖 ∈ 1, . . . , G(𝑤) }
6: KWCtr[𝑤 ] ← KWCtr[𝑤 ] + 2

7: /* Leakage from document array access */
8: 𝐿 ← I[𝑤 ]
9: while |𝐿 | < 2 · Clt.G(𝑤) do
10: 𝑖𝑑 ← Rand( |A |)
11: if 𝑖𝑑 ∉ {𝑖𝑑 (𝑑) | 𝑑 ∈ A′ } then
12: 𝐿 ← 𝐿 ∪ 𝑖𝑑
13: ArrCtr[𝐿] ← ArrCtr[𝐿] + 1

14: ArrHist← ArrHist ∪ {(T(𝑙, ArrCtr[𝑙 ]), 0, 𝑘) | 𝑙 ∈ 𝐿}

15: /* Leakage from write-back */

16: 𝑈 𝐼 ← I′.pop( |I′ |/2)
17: IndHist← IndHist ∪ {(𝑖, 1, 𝑘) | 𝑖 ∈ 𝑈 𝐼 }
18: 𝑈𝐴← A′.Pop( ⌊ |𝑈𝐴 |/2⌋)
19: ArrHist ← ArrHist ∪ {(T(𝑖𝑑 (𝑑), ArrCtr[𝑖𝑑 (𝑑) ]), 1, 𝑘) |
( {𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 } , 𝑑) ∈ 𝑈𝐴}

20: /* Update the stash for consistency */

21: I′ ← I′ ∪ Index(𝑈𝐴, KWCtr)
22: A′ ← A′ ∪ Retrieve(A[𝐿], 𝑤)
23: StL ← (I, A, I′, A′, KWCtr, ArrCtr, IndHist,ArrHist)
24: Return (IndHist,ArrHist), StL

25: procedure Index(𝑈𝐴, KWCtr)
26: I← {}
27: for ( {𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 } , 𝑑) ∈ 𝑈𝐴 do

28: I← I ∪ {T(𝑤, 𝑗, KWCtr[𝑤 ] + 𝑏) | (𝑤, 𝑗,𝑏) ∈ {𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 }}
29: Return I

30: procedure Retrieve(A, 𝑤)

31: A′ ← {}
32: for ( {𝑤𝑖 , 𝑗𝑖 } , 𝑑) ∈ A do

33: A′ ← A′ ∪ {𝑤𝑖 , 𝑗𝑖 , (𝑤𝑖 = 𝑤) } , 𝑑)
34: Return A′

corresponding to a given set {𝑖 𝑗 } of index/array addresses, i.e.,

IndHist

[{
𝑖 𝑗
}]

=
{
(𝑖, 𝑏, 𝑡) | (𝑖, 𝑏, 𝑡) ∈ IndHist ∧ 𝑖 ∈

{
𝑖 𝑗
}}
.

ArrHist

[{
𝑖 𝑗
}]

=
{
(𝑖, 𝑏, 𝑡) | (𝑖, 𝑏, 𝑡) ∈ ArrHist ∧ 𝑖 ∈

{
𝑖 𝑗
}}
.

B.3 Proof of Theorem 5.2

The proof proceeds with a hybrid argument. Let DB be a database
and 𝑞1, . . . , 𝑞𝑘 be the set of single-keyword queries with the leading

keywords 𝑤1, . . . ,𝑤𝑘 . Let 𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡
𝐹

(𝜆) be the PRF advantage of

the PRF 𝐹 with at most 𝑡 evaluations used in the construction and

𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴
Σ′ (𝜆) be the IND-CPA advantage of the scheme Σ′ used

for lookup address encryption and document content encryption.

Finally, we assume the plaintext of the lookup addresses is padded

to ℓ0 and the plaintext of the document contents is padded to ℓ1.

The simulator has access to ℓ0 and ℓ1 as they are public parameters.

(Game 0.) Let the real execution of the scheme on the database

DB with queries 𝑞1, . . . , 𝑞𝑘 be game 𝐺0. Then we have that for any

adversary A,

Pr

[
RealΣ,A (1𝜆) = 1

]
= Pr[𝐺0 = 1] .

Algorithm 6 Game 𝐺1. Only the setup step is changed.

1: procedure Clt.Setup(DB)

2: (𝑁, 𝑝, StL ) ← LSetup

Σ (DB, G)
3: EI, EA← [ ]
4: /* Generate the encrypted documents */
5: for 𝑖 = 0, . . . , 𝑁 − 1 do

6: EA.Insert(RF(𝑖),Enc(0𝑙0 ))
7: /* Generate the encrypted document addresses */
8: for 𝑖 = 0, . . . , 2𝑝 do

9: EI.Insert(RF(2𝑖 + 1),Enc(0𝑙1 ))
10: Send (EI, EA) to the server

(Game 1.) We define game𝐺1 by letting the leakage function gener-

ate the padded database and replace the addresses in the encrypted

lookup index and the encrypted documents with outputs generated

from a truly random function RF with output length 𝑙 . We omit

the conversion between an integer to a string of appropriate length

in the use of the random function for simplicity. In addition, the

encryptions of the document addresses and the documents them-

selves are replaced with encryptions of zeros of length ℓ0 and ℓ1
respectively.

The number of addresses that needs to be generated in the ini-

tialisation step is equal to 𝑡0 =
∑

𝑤 G(𝑤) + |DB|. An equal num-

ber of encryptions need to be created, so the difference in advan-

tages between 𝐺0 and 𝐺1 is upper-bounded by 𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡0

𝐹
+ 𝑡0 ·

𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴
Σ′ (𝜆).

(Game 2.) In game 𝐺2, we replace the single-keyword query algo-

rithm with a simulator that has access to the output of the leakage

function only. As before, the addresses are generated by applying

the truly random functionRF on the indices provided by the leakage

function. The encrypted documents and the encrypted document

addresses are generated with encryptions of zeros of appropriate

length. The way the addresses are generated is consistent with

game 𝐺1 as the only difference between the two games is that the

leakage function is responsible for randomising the write-backs.

The number of addresses the algorithm has to generate is upper-

bounded by 𝑡1 = 2

∑
𝑖 G(𝑊 (𝑞𝑖 )) + 2

∑
𝑖 |DB(𝑊 (𝑞𝑖 )) |. The number of

encryptions that need to be created is upper-bounded by the same

𝑡1. This means the difference in advantages between 𝐺1 and 𝐺2 is

upper-bounded by 𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡1

𝐹
+ 𝑡1 · 𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴

Σ′ (𝜆).
(Conclusion.) By combining the two games above, we see that

the difference in advantages between𝐺0 and𝐺2 is atmost𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡0+𝑡1

𝐹

+(𝑡0 + 𝑡1) · 𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴
Σ′ (𝜆).

C CRYPTANALYSIS OF THE LEAKAGE OF

SWISSSE

Having established the precise leakage of SWiSSSE, we now turn

to its cryptanalysis. We begin by giving a brief discussion on the

leakage profile of SWiSSSE.
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Algorithm 7 Game 𝐺2.

1: procedure Clt.KWQuery(𝑞)

2: (IndHist,ArrHist), StL ← LKWQuery

Σ (DB, 𝑞, StL )

3: /* Encrypted document array address retrieval */
4: 𝐿 ← {}
5: 𝑡 ′ ← the number of single-keyword queries executed

6: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ IndHist, 𝑏 = 0, 𝑡 = 𝑡 ′ } do
7: 𝐿 ← 𝐿 ∪ RF(2𝑖 + 1)
8: Send 𝐿 to the server

9: /* Encrypted document retrieval */
10: 𝐿 ← {}
11: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ ArrHist, 𝑏 = 0, 𝑡 = 𝑡 ′ } do
12: 𝐿 ← 𝐿 ∪ RF(2𝑖)
13: Send 𝐿 to the server

14: /* Write-back */

15: 𝑈 𝐼,𝑈𝐴← {}
16: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ IndHist, 𝑏 = 1, 𝑡 = 𝑡 ′ } do
17: 𝑈 𝐼 ← 𝑈 𝐼 ∪ (RF(2𝑖 + 1),Enc(0𝑙0 ))
18: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ ArrHist, 𝑏 = 1, 𝑡 = 𝑡 ′ } do
19: 𝑈𝐴← 𝑈𝐴 ∪ (RF(2𝑖),Enc(0𝑙1 ))
20: Send (𝑈 𝐼,𝑈𝐴) to the server

We then briefly argue that SWiSSSE is resilient to most well-

known attack techniques, including the query recovery attacks

proposed in [13, 21, 59, 89], the document recovery attacks proposed

in [21] and the file-injection attacks proposed in [110].

Finally, we analyze the security of SWiSSSE against a highly spe-

cialized query reconstruction attack based on system-wide leakage.

The attack analysis is set up in a model that is as “unfriendly” for

SWiSSSE as possible: (1) the attacker gets more information than is

actually leaked from SWiSSSE; (2) the attacker observes all possible
keyword queries; and (3) the auxiliary data used by the attacker is

the same as the target database. The first two attack assumptions

are, in fact, stronger than any of the previous attacks [13, 21, 59, 88],

and are unlikely to be realizable in practice. We demonstrate that,

despite the strong attack setting, SWiSSSE resists this specialized

query reconstruction attack so long as the bucketization param-

eters are chosen appropriately. The authors of [54] actually used

a refined version of this attack to break several state-of-the-art

SSE schemes, albeit while relying on a significantly weaker attack

model as compared to the one we use here (and as compared to

existing attacks).

Remark C.1. Our cryptanalysis of SWiSSSE can be viewed as a

highly refined form of the attacks proposed originally in [54] (which

worked with more noisy versions of system-wide leakage). Our

attacks assume a “worst-case” version of the (probabilistic) leakage

of SWiSSSE, as well as very strong assumptions on the auxiliary

information available to the adversary. In the real world, we expect

the leakage from SWiSSSE to be significantly smaller than what we

assume in our cryptanalysis, and hence the resistance of SWiSSSE

to such attacks would be greater than reflected in our experiments.

We opt for such an “unfriendly/pessimistic” leakage analysis to

account for the worst-case leakage of SWiSSSE, but expect such

leakage to occur with very small probability in practice.

C.1 Discussion of the Leakage Profile

Search Pattern Leakage. SWiSSSE leaks search pattern/query

equality only probabilistically. Consider a query with response

volume 𝑣 at time 𝑡 , the write-back after the query will contain about

𝑣/2 of the retrieved documents. If the same keyword is queried in the

future, the server will be able to tell that about 𝑣/4 (the additional

factor of 1/2 comes from dummy retrievals) of the documents came

from time 𝑡 and guess that the two queries have the same underlying

keywords. However, this attack only works probabilistically as: (1)

the write-backs are pseudo-random and it is possible that none of

the documents retrieved at time 𝑡 are written back immediately,

and (2) the documents that have been written back may be touched

by dummy document retrievals, thereby breaking the traceability

of these documents (and hence the traceability of the query itself).

Volume Leakage. The bucketization strategy allows us to choose a

trade-off between volume leakage and search efficiency. An extreme

instantiation of the bucketization strategy is to place every keyword

in the same bucket. This is equivalent to worst-case padding [63]

and inherently imposes a linear search overhead. Instead, we use a

few well-spaced out buckets in the frequency spectrum to hide a

significant fraction of the volume leakage, while retaining efficient

searches in practice.

Access Pattern Leakage. As established formally in Theorem 5.2,

the leakage function output for a search operation on keyword𝑤

does not reveal to the adversarial server the identifiers of documents

containing𝑤 . In addition, all delayed pseudorandom write-backs

allow the server to see freshly re-encrypted documents and pointers

to documents. Hence, our scheme is free of access pattern leakage.

Co-occurrence Leakage. SWiSSSE effectively hides all forms of

leakage that could allow the adversarial server to correlate queries

executed by the client across time. Intuitively, the adversary learns

the co-occurrence information of the keywords when queries for

different keywords are made and there are documents returned in

common between these queries. In SWiSSSE, any retrieved docu-

ment is re-encrypted and written back to the server using a fresh

address with a random delay from the time when the document

was first retrieved, so only a small fraction of the the co-occurrence

pattern can be inferred from the document access pattern at the

best. Further, we update the encrypted document addresses for

the auxiliary keywords of the documents written back, but this is

done with fresh addresses so that the adversary cannot link these

addresses to the previous queries. In other words, the adversary

will find it hard to group these auxiliary keywords with the correct

leading keywords to produce the co-occurrence information of the

encrypted database.

C.2 Resistance to Traditional Leakage-Abuse

Attacks

Traditional query recovery attacks (such as those proposed in [13,

21, 59, 88]) and document recovery attacks (such as those proposed

in [21]) typically rely on a combination of three kinds of determin-

istic leakage – volume/frequency leakage, document access pat-

tern leakage, and query equality/search pattern leakage. Through

the use of keyword bucketization, SWiSSSE makes it possible to

suppress volume leakage sufficiently to prevent these attacks (we
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subsequently discuss in detail the appropriate bucket-sizes needed).

Similarly, the use of delayed pseudorandomwrite-backs correspond-

ing to each query prevents the adversary from deterministically

learning the document access patterns and the query equality pat-

terns across multiple queries. In summary, existing cryptanalytic

techniques for query and document recovery cannot be applied

directly to cryptanalyze the leakage profile for SWiSSSE.

C.3 Resistance to System-Wide Leakage-Abuse

Attacks

Since SWiSSSE resists the known cryptanalytic attacks, we tested

its resistance against an even stronger query recovery attack in

which we give the attacker access to a highly refined co-occurrence

leakage. This setting strengthens that of [13, 21, 59], as well as the

system-wide leakage-based attack setting considered in [54], where

the attacker has access to leakage from both the index retrieval

and document retrieval phases. We use this strong (and somewhat

idealized) attack model to establish settings for various design pa-

rameters for SWiSSSE, and to compare the pros and cons of the

various bucketization strategies discussed earlier.

Attack Assumption. Let 𝑀 : {1, . . . , |DB|}2 → N to be a two-

dimensional “co-occurrence" matrix that maps pairs of keywords

to the number of documents containing them both. Formally, we

have 𝑀𝑖, 𝑗 =
��DB(𝑤𝑖 ) ∩ DB(𝑤 𝑗 )

��
. It is important to note that this

matrix is defined with respect to the original database (before

padding/bucketization). We assume here that at the beginning of

the attack, the attacker has an exact copy of matrix 𝑀 . This is a

very strong assumption, because it is not obvious how the attacker

might obtain this information.

We also simulate an “observed" co-occurrence matrix �̄� as fol-

lows: let𝑀 ′ be the “co-occurrence" matrix for the padded version

of the database. We simulate �̄�𝑖, 𝑗 as a value sampled according to

a binomial distribution as follows:

�̄�𝑖, 𝑗 ← Binom(𝑀 ′𝑖, 𝑗 , 1/𝑞),

where 1/𝑞 is a parameter of SWiSSSE denoting the fraction of the

local stash flushed out by the client in eachwrite-back operation (we

use 𝑞 = 2 for our cryptanalysis experiments in keeping with the

formal description of SWiSSSE in Section 5). We assume that the

attacker has access to a randomly permuted version of �̄� , which

we abuse the notation �̄� to denote it.

Again, this is a very strong assumption. Inferring the matrix �̄�

from the leakage profile of SWiSSSE is highly non-trivial, since the

intermittent and pseudorandom nature of the write-back operations

corresponding to each search query makes it very hard for the

attacker to identify if the same document appears across multiple

search queries.

Attack Strategy. The goal of the attacker is to identify the most

likely assignment between the (unknown) queried keywords shown

in �̄� and the actual keywords. Note that the randomized nature

of write-backs in SWiSSSE rules out the deterministic approaches

in previous works, such as count-based approaches [21] and ma-

trix/graph matching-based approaches [59, 94]. We opt for a sim-

ulated annealing-based approach [2] to search for the most likely

keyword assignment following the attack strategy in [54], albeit

using the somewhat idealized leakage model described above. We

refer to [54] for the details of the attack procedure.

Cryptanalysis Results on Enron Email Corpus. We run the

simulated-annealing based attack against the Enron email corpus.
13

We focus on the bucketization strategy in the experiments. We pre-

process the documents in the same way we described in Section 6.1

and generate co-occurrence matrices from 400K emails, with key-

words from different frequency ranges. Specifically, we arranged

the keywords in decreasing order of frequency and chose 800 of the

most frequent keywords and 800 of the keywords from the 95-th

to 75-th percentile frequencies respectively. We constructed the

co-occurrence matrices𝑀 and �̄� with varying bucket sizes (in the

range of 50 to 400) for each of these keyword sets. We repeated the

attack for 100 times with freshly generated �̄� matrices, and the

average recovery rates are reported in Figure 2a.

We observe that the keyword recovery rates do not follow a linear

trend. For the most frequent keywords, we see very high query

recovery rates, but as soon as we get to 85-th to 90-th percentile,

the query recovery rate drops to almost zero. But as the keyword

frequency decreases even further into the 80-th percentile, we begin

to see significant query recovery rate for small bucket sizes again.

This phenomenon is likely due to the interaction between real

and fake co-occurrence counts in different frequency ranges. For

the Enron dataset with 400000 documents, the two most frequent

keywords occurred 28919 and 28587 times respectively. So we ex-

pect about 2114 fake co-occurrence counts between these two key-

words due to random padding. on the other hand, most of the

real co-occurrence counts between these two keywords and other

keywords are in the range of 4000 to 9000, and the amount of ran-

domness in the fake co-occurrence counts is insufficient to hide the

real ones.

For keywords with frequencies in the 85-th to 90-th percentile,

the real frequencies are on the order of 10
3
, and one can expect

fake co-occurrence counts on the order of tens. The later is exactly

the range of values one expect to find the co-occurrence counts

in, which means that the noise is just right to mask the real co-

occurrence counts.

Finally, for keywords with frequencies in the 80-th percentile

and lower, the real frequencies are on the order of 10
2
, and one does

not expect any fake co-occurrence counts between these keywords.

This means that the attack is essentially trying to match the real

co-occurrence count to itself (with padded keyword frequencies

of course), so it is not at all surprising to see high query recovery

rates for small bucket sizes. We argue that this is not a weakness

of our construction as a real-world adversary will likely receive a

noisy auxiliary co-occurrence matrix as opposed to the perfect one.

In that case, an attack on these keywords will be much harder as

the co-occurrence counts with these keywords are very small and

contain very little information. In fact, the attacks have shown that

using larger bucket sizes on these keywords is already enough to

create enough ambiguity.

Additional Cryptanalysis on English Wikipedia. We repeat

our cryptanalysis on the English Wikipedia dump
14

from 2012. The

articles in the English Wikipedia dump are much longer, so each

13
https://www.cs.cmu.edu/~enron/

14
http://kopiwiki.dsd.sztaki.hu/
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(a) The experimental results on the Enron email corpus. (b) Experimental results on the English Wikipedia dump.

Figure 2: Experimental results on the Enron email corpus and the English Wikipedia dump. The query recovery rate reported is averaged over 100 independent

runs of the attack. Fixed bucket size is used for the experiment.

“document” in the database contains a lot more keywords. This

should, in theory, generate richer co-occurrence information. We

sort the keywords in decreasing order of frequency just as before,

and choose 800 of the most frequent keywords and 800 keywords

from the 99.8-th, 99.6-th and 99.4-th percentile frequencies respec-

tively. Our choices of keywords are significantly different from

those for the Enron email corpus, but that is due to the fact that

the keyword universe of the English Wikipedia dump is two orders

of magnitude larger than that of the Enron email corpus, and over

60% of the keywords only appear once in the whole dataset. We

test our attack with varying bucket sizes and repeat it 100 times for

each set of attack just as before. The average query recovery rates

reported in Figure 2b establish the resistance of SWiSSSE against

system-wide leakage-abuse attacks.

C.4 Discussion

Interpreting the Experimental Results. Our cryptanalysis ex-

periments assumed a very optimistic attack setting where the at-

tacker has access to refined co-occurrence leakage. In practice, the

leakage profile of SWiSSSE is significantly more “noisy"; it is not

at all obvious how the attacker might obtain access to such refined

leakage from a real implementation.

On the other hand, we acknowledge the need for further crypt-

analysis of the leakage profile of SWiSSSE andwelcome such studies

from the community.

Security Versus Efficiency Tradeoffs for Bucketization. Our

experiments reveal some interesting insights into the security ver-

sus efficiency trade-offs associated with choosing the bucket size.

For example, we saw earlier that a bucket size of 50 for the most

frequent keywords leads to almost 100% recovery, while a bucket

size of 400 reduces this to around 30%. But what is the implica-

tion of using a larger bucket-size on the storage and bandwidth

requirements for SWiSSSE?

In Figure 3, we demonstrate through concrete figures how vari-

ations in bucket sizes affect the storage and communication over-

heads of our construction. Here, the storage overhead only applies

Figure 3: Overheads incurred by different bucket sizes on the Enron email

corpus. The experiments are conducted with fixed bucket sizes.

to the index as the number of documents is unaffected by bucketi-

zation in SWiSSSE. In general, the total number of (real and fake)

keyword-document pairs grows essentially linearly with the bucket

size. This implies that the search index overhead also grows linearly

with bucket size.

Interestingly, the growth in overhead is more gradual when

compared to the fall in recovery rate. When the initial bucket size

varies from 50 to 400, the storage overhead varies between 1.04×
and 1.36×. On the other hand, as demonstrated earlier, the keyword

recovery rate falls from 100% to below 30%. This indicates that

it is preferable to opt for a larger bucket size as long as the user

can afford it, since it provides significantly stronger resistance to

cryptanalysis while incurring only moderately larger overheads.

Parameter Selection. As discussed in Section 6.2, there are three

tunable parameters in SWiSSSE that affect its security. These param-

eters are: (1) the size of the buckets, (2) the fraction of documents

written back in the write-back step, and (3) the fraction of lookup

indices written back in the write-back step. We provide extensive

cryptanalysis and performance experiments on bucketization in

this section. Given these experiments, we give recommended bucket

sizes in Section 6.2. We also perform additional experiments on the
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write-back rate and give our recommended write-back rate in the

same section.

D SWISSSE: ASYMPTOTIC PERFORMANCE

EVALUATION

In this section, we provide an asymptotic performance analysis of

SWiSSSE (summarized in Figure 4).

Size of the Stash. For search queries, recall that the half of the

stash is flushed every iteration and filled with the response from

the latest query. Since the number of documents retrieved by any

query is less than 2 ·max𝑤 G(𝑤) (half of that comes from randomly

generated document addresses), there are at most 4 · max𝑤 G(𝑤)
documents in the stash. The documents are padded to a constant

size, whichmeans the storage of the documents in the stash requires

O(max𝑤 G(𝑤)) space.
The stash also stores a local lookup index. For a search query on

keyword𝑤 , the number of lookup index locations that need to be

updated is equal to the number of keyword-document pairs in the

query response, or |𝑊 {DB(𝑤)}|. Since the number of keywords in

the document is much smaller than |𝑊 {DB(𝑤1)}|, it is reasonable to
treat 𝑘 as a constant in the asymptotic analysis. Recalling that half

of the lookup index stored in the stash is flushed to the server after

each query, it is not hard to see that the maximum number of lookup

index locations stored by the client is O(max𝑤 |𝑊 {DB(𝑤)}|).
In addition, the client needs to store two arrays of integers,

namely an array for the groupings of the keywords and an array for

the counters used to generate the document array addresses. These

arrays are all small and of constant size, so they do not contribute

to the asymptotic size of the stash. Combining everything, we get

that the size of the stash is O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|).
Size of the Encrypted Database. The server stores an encrypted

lookup index and an encrypted document array. The size of the

encrypted lookup index is proportional to the total number of

keyword-document pairs whereas the size of the encrypted docu-

ment array is proportional to the number of documents. Hence, the

size of the encrypted database is O(∑𝑤 G(𝑤) + |DB|). Note that this
order-of-magnitude calculation ignores the overhead from padding

all documents to a constant size.

Time Complexity and Communication Volume of a Query.

Suppose that the leading keyword for the query is 𝑤 . The client

first computes the encrypted lookup index addresses for the query.

This involves O(G(𝑤)) computation and communication, as there

are at most 2 · G(𝑤) addresses involved. The server then takes

O(G(𝑤)) time to retrieve the encrypted document array addresses

and send them to the client. Upon receiving the O(G(𝑤)) encrypted
document array addresses, the client processes them and retrieves

2 · G(𝑤) encrypted documents from the server. The client decrypts

the documents and filters the results locally to obtain the query

response. The time complexity for the overall process is O(G(𝑤)).
It is also straightforward to see that the communication volume

and the time complexity for the server are both O(G(𝑤)).
Combining the analyses above, we conclude that the time com-

plexity of a query for both the client and the server isO(max𝑤 G(𝑤)+
max𝑤 |𝑊 {DB(𝑤)}|), while the communication volume of a query is

O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|). We note that stash handling

is not relevant to the retrieval of documents and it can be performed

whenever the client is free.

E DYNAMIC SWISSSE

In this appendix, we extend SWiSSSE to handle dynamic databases.

As in the case of static SWiSSSE, we design and analyze dynamic

SWiSSSE while taking into account the leakage from both the (en-

crypted) index and the document retrieval component of a search-

able encryption system. Our main technical contributions that are

specific to dynamic SWiSSSE are summarized briefly below.

System-wide Security of Dynamic SSE.We propose new secu-

rity definitions for dynamic SSE schemes that take into account

the system-wide leakage during setup, searches, and updates. Once
again, are for an honest-but-curious server and we use the real

world/ideal world simulation paradigm with leakage profiles to

model security. In contrast to previous analysis for dynamic SSE [16,

19, 26, 45], we take a system-wide view, including in our execution

model and leakage profile the action of retrieving encrypted docu-

ments from the data storage component as well as the leakage from

the encrypted search index. See Appendix E.1 for details.

Oblivious Operations. For dynamic SSE, we additionally intro-

duce a new system-wide security notion called “obliviousness of

operations", which requires that search and update query opera-

tions should be computationally indistinguishable to the server.

This brings several advantages. First of all, it naturally implies

that search and update operations incur computationally indis-

tinguishable leakage. This allows for a unified security definition

with respect to searches and updates for dynamic SSE schemes, as

opposed to the separate definitions in prior work.

Recent works [16, 19, 26, 45] have put forth two new notions

of security that any dynamic SSE scheme is expected to satisfy:

(a) forward privacy (which requires that updating a document in

the database should not reveal whether the updated document

contains keywords that have been previously searched for) and

(b) backward privacy (which requires that searching for a keyword

should reveal no information about files previously containing this

keyword that have subsequently been deleted from the database).

It turns out that obliviousness of operations yields stronger notions

of forward and backward privacy than considered in these recent

works. For instance, it implies a notion of forward privacy that

requires update operations (both inserts and deletes) to hide not

only the content but also the size (in terms of number of keywords)

of the document(s) being updated, something not addressed in

previous work. Obliviousness of operations also implies a notion of

backward privacy that requires searches to completely hide both the

result pattern and the update history associated with the underlying

keyword. This is a strong enough security guarantee to effectively

rule out a powerful class of file injection attacks [110] that can

otherwise compromise all existing notions of backward privacy

in the literature. See Appendix E.2 for a more detailed overview,

and Appendices E.3 and E.4 for rigorously formal definitions and

analyses.
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Storage

Stash O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}) |)
EDB/DB O(∑𝑤 G(𝑤) + |DB|)

Time

complexity

Document retrieval O(G(𝑤))
Write-back O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|)

Communication

volume

Document retrieval O(G(𝑤))
Write-back O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|)

Figure 4: A summary of the performance parameters. Here, 𝑤 denotes the leading keyword of a query, G(𝑤) is the bucket size of keyword 𝑤, |𝑊 {DB} | is the total
number of keyword-document pairs, and |𝑊 {DB(𝑤) } | is the total number of keyword-document pairs for the documents that contain 𝑤.

E.1 System-Wide Definitions for Dynamic SSE

System-Wide Syntax for Dynamic SSE.We begin by formally

defining our system-wide syntax for a dynamic SSE scheme Σ con-

sisting of four protocols: Setup, KWQuery Insert and Delete be-

tween a client and a server. A query 𝑞 from the client to the server

takes the form (𝑜𝑝, 𝑎𝑟𝑔𝑠) where 𝑜𝑝 is the operation of the query,

and 𝑎𝑟𝑔𝑠 are the additional arguments required for the query. We

note that Setup andKWQuery are identical for static and dynamic

SSE, but we repeat them below for the sake of completeness.

• Setup(1𝜆, DB) is a protocol between the client and the server.

The client takes as input a security parameter 1
𝜆
and a data-

base DB, and outputs (EDB, stClt), where EDB is an encrypted
database (including the encrypted search index as well as

the encrypted documents) and stClt is the client’s internal
state. The client sends EDB to the server and the server runs

Svr.Setup(EDB) to setup the encrypted database.

• KWQuery(𝑠𝑘, 𝑞, stClt; EDB) is a protocol between the client
and server to support single-keyword query. The query 𝑞

in this case is of the form (KWQuery,𝑤), where 𝑤 is the

target keyword of the query. The client takes as input a secret

key 𝑠𝑘 , a search query 𝑞, and its internal state stClt. The
server takes as input the encrypted database EDB. The client
and server interact with each other and by the end of the

interaction, the client gets (𝑟, stClt) where 𝑟 is the result of
the query (i.e., the actual documents matching the query)

and stClt is the new state of the client; the server state EDB
may also be modified following the execution.

• Insert(𝑠𝑘, 𝑞, stClt; EDB) is a protocol between the client and

server to support update on the database. An insertion query

𝑞 takes the form (Insert, {𝑤} , 𝑑), where 𝑑 is the document

to be inserted and {𝑤} are the keywords associated to the

document. The client takes as input a secret key 𝑠𝑘 , an update

query 𝑞, and his internal state stClt. The server takes as

input the encrypted database EDB. The client and server

interact with each other and by the end of the interaction,

the client gets (𝑟, stClt) where 𝑟 is the response from the

server and stClt is the new state of the client; the server gets

EDB where EDB is the encrypted database after the insertion

operation.

• Delete(𝑠𝑘, 𝑞, stClt; EDB) is a protocol between the client and
server to support update on the database. An insertion query

𝑞 takes the form (Delete, 𝑑), where 𝑑 is the document to be

deleted. The client takes as input a secret key 𝑠𝑘 , an update

query 𝑞, and his internal state stClt. The server takes as

input the encrypted database EDB. The client and server

interact with each other and by the end of the interaction,

the client gets (𝑟, stClt) where 𝑟 is the response from the

server and stClt is the new state of the client; the server gets

EDB where EDB is the encrypted database after the insertion

operation.

Once again, note that unlike prior (index-only) dynamic SSE defini-

tions [16, 19, 26, 45], our syntax for dynamic SSE takes into account

the actual encrypted documents (as part of the encrypted database

EDB output by Setup and as part of the query response 𝑟 output by

KWQuery, Insert andDelete) in addition to the encrypted search

index.

System-Wide Security of Dynamic SSE. We now present our

new system-wide security definitions for dynamic SSE. Similar to its

static counterpart in Section A, we formulate system-wide security

of dynamic SSE in terms of a leakage function. In contrast to existing
definitions for dynamic SSE [16, 19, 26, 45], our definitions also cap-

ture the information leakage from the document retrieval phase. We

say that a dynamic SSE scheme is system-wide secure with respect

to a leakage function L = (LSetup,LKWQuery,LInsert,LDelete)
if no (honest-but-curious) adversary can distinguish between the

real execution and an execution simulated given only the leakage,

as outlined below.

Definition E.1 (System-Wide Security of Dynamic SSE). Let

Σ = (Setup,KWQuery, Insert,Delete) be a dynamic SSE scheme

and consider the following probabilistic experiment where A is

a stateful, probabilistic polynomial time (PPT) honest-but-curious

adversary, S is a stateful simulator and L is the leakage function.

Real
Dynamic
Σ,A (1𝜆) :

(1) The adversary A selects a database DB and gives it to the

challenger C.
(2) The challenger C generates a key 𝑠𝑘 , and encrypts the data-

base as EDB ← Setup(1𝜆, 𝑠𝑘, DB). The challenger C sends

the encrypted database EDB to the adversary A.

(3) The adversary picks a polynomial number of queries 𝑞1,

. . . , 𝑞poly(𝜆) (where each query could be either a keyword
search query or an update query). For each query, the chal-

lenger C interacts with the adversary A to execute the cor-

responding query protocol (including the final document

retrieval phase), where the challenger plays the client and

the adversary plays the server.

(4) Finally, the adversary A outputs a bit 𝑏 ∈ {0, 1}.

Ideal
Dynamic
Σ,A,S (1

𝜆,L = (LSetup,LKWQuery,LInsert,LDelete)) :
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(1) The adversaryA selects a database DB and givesLSetup (DB)
to the simulator S.

(2) Using LSetup (DB), the simulator S generates EDB and re-

turns it to the adversary A.

(3) The adversary picks a polynomial number of queries 𝑞1, . . . ,

𝑞poly(𝜆) (where each query could be either a keyword search
query or an update query). For each query, the simulator S
computes the transcript of the query using the appropriate

component of the leakage function L (including the leakage

from the document retrieval phase corresponding to the

query), and sends it to the adversary A.

(4) Finally, the adversary A outputs a bit 𝑏 ∈ {0, 1}.
We say that a dynamic SSE scheme Σ is L-secure if there exists a
probabilistic polynomial-time (PPT) simulator S such that for all

PPT adversaries A, we have��� Pr

[
Real

Dynamic
Σ,A (1𝜆) = 1

]
− Pr

[
Ideal

Dynamic
Σ,A,S (1

𝜆,L) = 1

] ��� ≤ negl(𝜆) .

Differences with Index-Only Security Definitions. Unlike prior (index-
only) dynamic SSE definitions [16, 19, 26, 45], our security definition

for dynamic SSE takes into account the actual encrypted documents

and the leakage from the document retrieval phase. This follows

from the facts that: (a) the encrypted database EDB in both the real

and ideal worlds includes the actual encrypted documents, and (b)

the adversary A gains access to the leakage from the document

retrieval phase of both search and update queries in the real and

ideal worlds.

Adaptive vs Non-adaptive Adversaries. Finally, as in our system-

wide definitions for static SSE, we can distinguish between non-

adaptive and adaptive adversaries in the above definition, depend-

ing on how the adversary chooses its queries. We say that Σ is

non-adaptively (resp. adaptively) secure if the adversaryA chooses

all the queries before executing them (resp. chooses each of his

queries based on the transcripts resulting from his previous queries).

System-Wide Correctness of Dynamic SSE. Our system-wide

correctness definition for dynamic SSE is very similar in flavor to

the corresponding definition for static SSE, except that we now

consider correctness for both keyword search queries and update

queries (including the correctness of the document retrieval/update

phase for both classes of queries). Concretely, consider a game be-

tween a challenger and a PPT adversary A very similar to the the

game Real
Dynamic
Σ,A (1𝜆) described above with the adversaryA issu-

ing at most 𝑘 = poly(𝜆) keyword search or update queries during

the game, except that at the end of the game, a PPT distinguisher

D receives one of the following:

• the data obtained by executing the plaintext queries against

the unencrypted/plaintext database (including the document

retrieval phase), or

• the data obtained from the execution of the KWQuery pro-

tocol (for keyword search queries) between the challenger

C and the adversaryA (once again, including the document

retrieval phase).

• the data obtained from the execution of the Insert and

Delete protocols (for update queries) between the challenger

C and the adversaryA (including the corresponding updates

to the actual encrypted documents).

Let 𝐴𝑑𝑣
𝑐𝑜𝑟𝑟,𝑘,Dynamic
Σ,A,D (1𝜆) denote the probability that the distin-

guisher D distinguishes between the aforementioned data distri-

butions. We say that the dynamic SSE scheme Σ is correct from a

system-wide perspective if for any such PPT adversary A and any

such PPT distinguisher D, we have

𝐴𝑑𝑣
𝑐𝑜𝑟𝑟,𝑘,Dynamic
Σ,A,D (1𝜆) ≤ negl(𝜆).

Once again, our correctness definition for dynamic SSE takes

into account the actual encrypted documents returned/updated by

the query, as opposed to only the encrypted document identifiers

resulting from querying the index considered by the prior (index-

only) dynamic SSE definitions [16, 19, 26, 45].

E.2 Overview of Dynamic SWiSSSE

In this section, we present an informal overview how we extend

SWiSSSE to handle dynamic databases. See Appendix E.3 for the

detailed formal description.

We consider two kinds of updates to the database – document

insertion and document deletion; a document update can be simu-

lated via: (a) a deletion operation on the old document, followed

by (b) an insertion operation on the modified document. We first

present a simple idea for handling document insertions. At a high

level, we use a technique similar to the auxiliary write-backs used

in our static construction. This incurs some undesirable leakage,

which we address subsequently.

Handling Insertions—Simple Version.When a document 𝑑ℓ is

to be inserted, the client simply schedules: (a) a normal document

write-back for 𝑑ℓ targeting a set of “insert write-backs" for every

keyword𝑤𝑖 ∈ 𝑑ℓ . As with auxiliary write-backs, insert write-backs

target a separate set of addresses to avoid any correlation with

prior write-backs (normal and auxiliary) corresponding to the same

keyword. More concretely, we now generate three separate sets of

addresses for normal, auxiliary and update write-backs involving

the same keyword:

addrnorm (𝑤𝑖 , 𝑑ℓ , cnt𝑤𝑖
) = 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | | (3 ∗ cnt𝑤𝑖

)),
addraux (𝑤𝑖 , 𝑑ℓ , cnt𝑤𝑖

) = 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | | (3 ∗ cnt𝑤𝑖
+ 1)),

addrinsert (𝑤𝑖 , 𝑑ℓ , cnt𝑤𝑖
) = 𝐹 (𝐾,𝑤𝑖 | | 𝑗 | | (3 ∗ cnt𝑤𝑖

+ 2)),
where 𝐹 is a PRF, 𝑗 is a counter that runs from 0 to |DB(𝑤𝑖 ) | −
1 (where DB(𝑤𝑖 ) denotes the set of documents containing keyword

𝑤𝑖 ), and cnt𝑤𝑖
is a per-key word counter held in the client’s stash

which records how many times 𝑤𝑖 has appeared in search and
insertion queries.

In other words, during the time interval between the 𝑡 th and

(𝑡 + 1)th queries on keyword 𝑤𝑖 , we use three sets of write-back
addresses – the set {addrnorm (𝑤𝑖 , 𝑑ℓ , 𝑗)} for normal write-backs,

the set {addraux (𝑤𝑖 , 𝑑ℓ , 𝑗)} for auxiliary write-backs, and the set

{addrinsert (𝑤𝑖 , 𝑑ℓ , 𝑗)} for insert write-backs. The insert write-backs
happen intermittently and can be randomly interspersed with nor-

mal and auxiliary write-backs involving other keywords and docu-

ments.

During a search query involving𝑤𝑖 , the client now requests the

server to access all three sets of write-back addresses – normal,

auxiliary and insert – in the keyword lookup index. The entries
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corresponding to the normal and insert write-back addresses allow

the client to recover the pointers to already existing documents

and freshly inserted documents, respectively, that contain𝑤𝑖 . The

entries corresponding to the auxiliary write-back addresses allow

the client to identify if any of these pointers have been updated sub-

sequently due to searches involving other keywords. Thus, search

correctness is ensured. Finally, as before, we use additional pointers

to fake documents to hide the exact frequency of the keyword𝑤𝑖 ,

and reveal its bucket size instead.

Leakage. The solution outlined above leaks that a new document

has been inserted: when the client executes a normal document

write-back operation for the newly inserted document 𝑑ℓ , the total

number of actual and dummy addresses in the encrypted document

array increases by one. While this leakage is currently incurred

by all existing dynamic SSE schemes, it has some repercussions

with respect to file injection attacks [110]. For this attack vector to

work, the adversary needs to infer exactly when an insert operation

corresponding to amaliciously constructed file occurs, as well as the

effect of this insertion on subsequent keyword search operations.

This motivates hiding the occurrences of inserts from the server,

and hence, masking the aforementioned leakage. We describe how

to achieve this next.

Handling Insertions—Modified Version. An effective way to

mask when a document is inserted is to avoid creating a fresh entry

in the encrypted document array. Instead, we simply convert an

(already existing) dummy entry into a real one.

Concretely, to insert a fresh document 𝑑ℓ , the client first iden-

tifies a “leading keyword" 𝑤∗ in 𝑑ℓ . We assume without loss of

generality that 𝑤∗ is the keyword in 𝑑ℓ with the smallest occur-

rence frequency in the database. Next, the client issues a search

query on 𝑤∗ and retrieves a list of pointers to real and dummy

locations in the document array. To insert the new document, the

client schedules a normal document write-back targeting one of

the dummy addresses, as opposed to a newly generated address.

The insert write-backs are scheduled exactly as described in the

simple version above, except they now encapsulate a pointer to the

dummy address as opposed to some newly generated address.

Handling Deletions. Finally, deletions are handled in a manner

that is complementary to the insertion procedure described above.

Namely, when a document is to be deleted, we convert the real

entry corresponding to this document in the document array into a

dummy entry with some garbage ciphertext. More concretely, the

client again issues a search query on𝑤∗, and schedules a dummy

document write-back targeting the address corresponding to the

document to be deleted. The insert write-backs are scheduled ex-

actly as for the inserts, except they now encapsulate pointers to

random addresses in the document array.

Note that in the above strategy, there is the possibility that we

run out of dummy addresses in the document array after a certain

number of insert operations. For simplicity of presentation and

analysis, we implicitly assume a cap (determined at setup) on the

maximum number of new document insertions supported by the

system. We refer the reader to Appendix E.3 for a more detailed

discussion on how to generalize the above proposal to support an

uncapped number of insertions.

We refer the reader to Appendix E.3 for a formal analysis of how

dynamic SWiSSSE achieves correctness of searches and updates

while handling insertions and deletions as outlined above.

ObliviousOperations.Dynamic SWiSSSE naturally supports “obliv-

ious operations". Both keyword searches and document updates

involve reading a set of entries from the encrypted data structures,

followed by delayed write-backs. The only functional differences

between searches and updates are reflected in how the client locally

manages/updates its stash. From the point of view of the server,

the output of the leakage function at the point of query is sim-

ply the accesses made to the encrypted data structures, which is

unconditionally indistinguishable for searches and updates. We

formalize the notion of oblivious operations and prove that our

dynamic scheme achieves this notion in Appendix E.4.

Forward Privacy. Dynamic SWiSSSE achieves stronger forward

privacy guarantees than existing constructions in the literature,

including those based on ORAM [16, 19, 26, 45]. Existing schemes

satisfy a definition of forward privacy that only requires insertion

and deletion operations to computationally hide the set of keywords

in the target document. However, they do not hide the number of
keywords an inserted/deleted document contains, which is poten-

tially sensitive information. Our construction, on the other hand,

achieves the stronger notion of forward privacy in which we also

hide from the server the number of keywords in a document which

is inserted/deleted. We formalize this in Appendix E.4.

Backward Privacy. Dynamic SWiSSSE also achieves stronger

backward privacy guarantees than existing constructions in the

literature. The strongest notion of backward privacy achieved thus

far is called Type-1 backward privacy [19], and the only construc-

tions to achieve it are based on full-fledged ORAM-style tech-

niques [19, 26]. This notion allows the adversary to learn, for every

search query, the corresponding result pattern and the timestamps

at which the documents containing the queried keyword were in-

serted. We achieve a stronger notion of backward privacy that hides

both these forms of leakage from the adversarial server.

To see why this is the case, recall that our construction com-

putationally hides the result pattern for each query, since the ad-

versarial server only sees encrypted documents and pointers to

documents (in fact, the server sees fresh encryptions of these items

for every write-back operation). Secondly, due to the delayed write-

backs, the locations of keywords and documents change after every

search and update operation. Therefore, it is difficult for the ad-

versary to trace each encrypted document it accesses during a

search query at timestamp 𝑡 back to the timestamp 𝑡 ′ < 𝑡 when

the document was originally inserted. We formally describe this in

Appendix E.4.

Resistance to Leakage Cryptanalysis. Finally, it turns out these

stronger notions of forward and backward privacy makes SWiSSSE

more resilient to known leakage-abuse and file-injection attacks

as compared to existing dynamic schemes, including those based

on ORAM-style techniques [19, 26]. We refer the reader to Appen-

dix E.4 for a more detailed explanation.
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Algorithm 8 Dynamic SWiSSSE.Setup

1: procedure Clt.Setup(DB)
2: /* Generate fake documents */
3: DB′ ← Fake_Doc_Gen(DB, Clt.G)
4: Clt.𝑁 ← |DB′ |
5: EI, EA← {}
6: for 𝑖 = 1, . . . , |DB′ | do
7: /* Get the set of keywords with counters */
8: 𝑥 ← {(𝑤, Clt.KWCtr[𝑤 ]) | 𝑤 ∈𝑊 (DB′ [𝑖 ]) }
9: /* Update the lookup index */

10: for 𝑤 ∈𝑊 (DB′ [𝑖 ]) do
11: EI← EI ∪ (𝐹 (𝑤 | |Clt.KWCtr[𝑤 ] | |0), Enc(𝑖𝑑 (DB′ [𝑖 ])))
12: Clt.KWCtr[𝑤 ] ← Clt.KWCtr[𝑤 ] + 1

13: /* Insert the encrypted document */
14: EA← EA ∪ (𝐹 (𝑖 | |0),Enc(𝑥 | |DB′ [𝑖 ]))
15: /* Reset the keyword counter */
16: for 𝑤 ∈𝑊 (DB′) do
17: Clt.KWCtr[𝑤 ] ← 0

18: /* Initialise the stash */

19: Clt.I.init()
20: Clt.A.init()
21: Send (EI, EA) to the server

22: procedure Svr.Setup(EI, EA)
23: Svr.EI.init()
24: Svr.EA.init()
25: Svr.EI.put(EI)
26: Svr.EA.put(EA)

E.3 Dynamic SWiSSSE: Detailed Description

In this section, we present a formal description of the various pro-

tocols involved in dynamic SWiSSSE.

Setup. The setup procedure for the dynamic construction is very

similar to the static one. The only differences are that the client

has to initialise an array Clt.InsCtr to keep track of the number

of insertions for each keyword since the last time they have been

queried as the leading keywords.

SWiSSSE.{KWQuery, Insert,Delete}.We now describe the key-

word query, insert and delete procedures for dynamic SWiSSSE.

For ease of representation, these procedures broken up into smaller

sub-routines described subsequently.

EncryptedDocumentArrayAddressRetrieval.This sub-routine

is the same for a search query, document insertion or document

deletion, and is described in Algorithm 9, and is very similar to the

corresponding sub-routine for document array address retrieval

in the static version of SWiSSSE.KWQuery, except that the client

now fetches three sets of addresses - normal, auxiliary and insert.

For document insertion, the client simply queries the first keyword

in the document he wants to insert. For document deletion, the

client queries the first keyword in the document he wants to delete.

As the index for the inserted keywords are stored by the server, the

client has to compute some additional virtual addresses to retrieve

the documents.

Encrypted Document Retrieval. The sub-routine is again identi-

cal for a search query, document insertion and document deletion,

and works in the same way as the corresponding sub-routine for

Algorithm 9Dynamic SWiSSSE.{KWQuery, Insert,Delete}: En-
crypted Document Array Address Retrieval

1: procedure Clt.TokenGen(𝑤)

2: 𝐿 ← {}
3: for 𝑗 ∈ 0, . . . , Clt.G(𝑤) − 1 do

4: 𝐿 ← 𝐿 ∪ {𝐹 (𝑤 | | 𝑗 | |3 ∗ Clt.KWCtr[𝑤 ]) },
5: 𝐿 ← 𝐿 ∪ {𝐹 (𝑤 | | 𝑗 | |3 ∗ KWCtr[𝑤 ] + 1) },
6: 𝐿 ← 𝐿 ∪ {𝐹 (𝑤 | | 𝑗 | |3 ∗ Clt.KWCtr[𝑤 ]) + 2}.
7: /* Roll forward the counter for the next query */

8: Clt.KWCtr[𝑤 ] ← Clt.KWCtr[𝑤 ] + 1

9: Send 𝐿 to the server

10: procedure Svr.Index_Lookup(𝐿)
11: Send Svr.EI.get(𝐿) to the client

Algorithm 10 Dynamic SWiSSSE.KWQuery: Write-Back Sub-

Routine

1: procedure Clt.Write_Back_Keyword_Query(𝑀, �̄�)

2: Replace the lookup addresses of the newly inserted documents

which contain �̄� with the addresses used for the fake documents.

3: 𝑈𝐴← {}
4: /* Get random documents from the stash */

5: 𝐷 ← Clt.A.pop( |Clt.A |)
6: for ( {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } , 𝑑) ∈ 𝑈𝐴 do

7: /* Encrypt the new document addresses and documents */
8: 𝑈𝐴 ← 𝑈𝐴 ∪ {(𝐹 (𝑖𝑑 (𝑑) | |Clt.ArrCtr[𝑖𝑑 (𝑑) ]),

Enc( {(𝑤𝑖 , 𝑗𝑖 ) } | |𝑑)) }
9: /* Update the stash for the lookup index */

10: for (𝑤, 𝑗,𝑏) ∈ {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } do
11: Clt.I.put( (𝐹 (𝑤 | | 𝑗 | |Clt.KWCtr[𝑤 ] + 𝑏),Enc(𝑖𝑑 (𝑑))))
12: /* Decrypt the documents retrieved and insert them into the document

array */

13: Clt.A.put(Dec(𝑀))
14: Send (Clt.I.pop( ⌊ |Clt.I |/2⌋),𝑈𝐴)

15: procedure Svr.Write_Back((𝑈 𝐼,𝑈𝐴))
16: Svr.EI.put(𝑈 𝐼 )
17: Svr.EA.put(𝑈𝐴)

the static version of SWiSSSE (see Algorithm 3 for the details of

how this sub-routine works).

The final set of sub-routines are the write-back sub-routines

corresponding to search queries, insertions and deletions. Unlike

the previous sub-routines, write-backs are executed differently for

each query type. We describe these next.

Write-Back for Search Query. The write-back sub-routine under

dynamic SWiSSSE.KWQuery is described in Algorithm 10. Techni-

cally, it is very similar to that under static SWiSSSE.KWQuery (Al-

gorithm 4), except that the client has to perform some mainte-

nance on the lookup index for the queried keyword to relocate the

addresses for the document insertions to the ones used for fake

documents.

We explain this idea in greater detail. Recall that during the

encrypted document array address retrieval phase, we have ob-

tained all the normal write-back addresses of the form 𝐹 (𝑤 | | 𝑗 | |3 ∗
KWCtr[𝑤]), the auxiliarywrite-back addresses of the form 𝐹 (𝑤 | | 𝑗 | |3∗
KWCtr[𝑤] + 1) and insertion write-back addresses of the form
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Algorithm 11 Dynamic SWiSSSE.Insert: Write-Back Sub-Routine

1: procedure Clt.Write_Back_Insertion(𝑀,
{
𝑤𝑗

}
, ¯𝑑)

2: Replace the lookup addresses of the newly inserted documents

which contain �̄� with the addresses used for the fake documents.

3: 𝑈𝐴← {}
4: /* Get random documents from the stash */

5: 𝐷 ← Clt.A.pop( |Clt.A |)
6: for ( {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } , 𝑑) ∈ 𝑈𝐴 do

7: /* Encrypt the new document addresses and documents */
8: 𝑈𝐴 ← 𝑈𝐴 ∪ {(𝐹 (𝑖𝑑 (𝑑) | |Clt.ArrCtr[𝑖𝑑 (𝑑) ]),

Enc( {(𝑤𝑖 , 𝑗𝑖 ) } | |𝑑)) }
9: /* Update the stash for the lookup index */

10: for (𝑤, 𝑗,𝑏) ∈ {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } do
11: Clt.I.put( (𝐹 (𝑤 | | 𝑗 | |Clt.KWCtr[𝑤 ] + 𝑏),Enc(𝑖𝑑 (𝑑))))
12: /* Decrypt the documents retrieved and insert them into the document

array */

13: Clt.A.Insert(Dec(𝑀))
14: Insert document

¯𝑑 with keywords

{
𝑤𝑗

}
into Clt.A

15: Send (Clt.I.pop( ⌊ |Clt.I |/2⌋),𝑈𝐴)

16: procedure Svr.Write_Back((𝑈 𝐼,𝑈𝐴))
17: Svr.EI.put(𝑈 𝐼 )
18: Svr.EA.put(𝑈𝐴)

𝐹 (𝑤 | | 𝑗 | |3 ∗ KWCtr[𝑤] + 2). Our goal is to remove the additional

insertion addresses of the form 𝐹 (𝑤 | | 𝑗 | |KWCtr[𝑤] + 2) by making

use of the fake documents that contain the keyword𝑤 . In terms of

the documents, this means for each newly inserted document, we

find a fake document that contains𝑤 , remove the keyword from

the fake document, and allocate it to the newly inserted document.

We omit the low-level details of the procedure for readability.

Write-Back forDocument Insertion.Thewrite-back sub-routine

under dynamic SWiSSSE.Insert is described in Algorithm 11. Tech-

nically, it is essentially identical to the corresponding sub-routine

under dynamic SWiSSSE.KWQuery except that the client has to

insert the document locally. This is done by scanning the query

response for fake documents, and replace one of them by the docu-

ment that is to be inserted. The keyword pointers are updated so

as to maintain correctness of future searches.

Write-Back for Document Deletion. The write-back sub-routine

under dynamic SWiSSSE.Delete is described in Algorithm 12. Tech-

nically, it is again identical to the corresponding sub-routine under

dynamic SWiSSSE.KWQuery except that the client has to over-

write the target document to a fake document in the stash.

Supporting UncappedNumber of Insertions.As one can clearly

see from the bucketization strategy and the fake document genera-

tion procedure in our construction, there is a limit on how many

documents the client can insert into the database. One possible

work-around is to instantiate a new encrypted database every time

the maximum quota is hit. This may not be practical for some sys-

tems as the client storage grows linearly in the number of instances

of encrypted databases.

As an alternative, we can extend our dynamic construction to

support uncapped document insertions at the cost of additional

leakage. Without loss of generality, suppose that the client wants

to store 𝑎 documents more. He can simply insert 𝑎 fake documents

Algorithm 12Dynamic SWiSSSE.Delete: Write-Back Sub-Routine

1: procedure Clt.Write_Back_Deletion(𝑀, ¯𝑑)

2: Replace the lookup addresses of the newly inserted documents

which contain �̄� with the addresses used for the fake documents.

3: 𝑈𝐴← {}
4: /* Get random documents from the stash */

5: 𝐷 ← Clt.A.pop( |Clt.A |)
6: for ( {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } , 𝑑) ∈ 𝑈𝐴 do

7: /* Encrypt the new document addresses and documents */
8: 𝑈𝐴 ← 𝑈𝐴 ∪ {(𝐹 (𝑖𝑑 (𝑑) | |Clt.ArrCtr[𝑖𝑑 (𝑑) ]),

Enc( {(𝑤𝑖 , 𝑗𝑖 ) } | |𝑑)) }
9: /* Update the stash for the lookup index */

10: for (𝑤, 𝑗,𝑏) ∈ {(𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 ) } do
11: Clt.I.put( (𝐹 (𝑤 | | 𝑗 | |2∗Clt.KWCtr[𝑤 ] +𝑏),Enc(𝑖𝑑 (𝑑))))
12: /* Decrypt the documents retrieved and insert them into the document

array */

13: Clt.A.put(Dec(𝑀))
14: Turn

¯𝑑 into a fake document in Clt.A
15: Send (Clt.I.pop( ⌊ |Clt.I |/2⌋),𝑈𝐴)

16: procedure Svr.Write_Back((𝑈 𝐼,𝑈𝐴))
17: Svr.EI.put(𝑈 𝐼 )
18: Svr.EA.put(𝑈𝐴)

in the stash and redirect some of the pointers of the fake keywords

(which he can obtain from normal queries) to these new fake docu-

ments. These new fake documents can then be written back to the

server just like the normal documents. If the client wants to store

𝑎 additional documents for a particular keyword𝑤 , he can make

a search query on 𝑤 to retrieve the documents associated to 𝑤 ,

increase the address space of𝑤 by 𝑎 keywords, and generate 𝑎 fake

documents and point the newly generated keyword pointers to the

new fake documents. These pointers and documents can then be

written-back to the server with normal write-back operations. On

a side note, the client should choose 𝑎 such that the new bucket

size of𝑤 corresponds to the bucket size of some other keyword, so

that the volume leakage does not trivially leak the identity of𝑤 in

the future queries.

We leave it as an interesting future work to formalize the storage

expansion process, and to analyze the additional leakage thereof.

Correctness. Similar to the static case, there is a possibility for

our dynamic construction to fail if the client generates repeated

addresses. We provide an upper bound of the failure probability of

our dynamic construction with adversarially chosen queries below.

As the proof is almost identical to the static case, we omit the proof

from the paper.

Theorem E.1. [Correctness of Dynamic SWiSSSE]

Let |DB| and |𝑊 {DB}| denote the total number of documents and

document-keyword pairs, respectively, in the database DB at any

given point of time, and let 𝑙 denote the output length of the PRF 𝐹

used in static SWiSSSE. Then the advantage of any adversary A,

which issues at most 𝑘 queries, in breaking the correctness of static
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Algorithm 13 Dynamic SWiSSSE: Leakage Function for Keyword

Queries

1: procedure LKWQuery
(𝑞, StL )

2: (KWQuery, �̄�) ← 𝑞

3: I′, A′, KWCtr, ArrCtr← StL
4: IndHist ← IndHist ∪ {(T(�̄�, 𝑖, KWCtr[𝑤1 ]), 0, 𝑘),

T(�̄�, 𝑖, KWCtr[𝑤1 ] + 1), 0, 𝑘),T(�̄�, 𝑖, KWCtr[𝑤1 ] + 2), 0, 𝑘) | 𝑖 ∈
0, . . . , G(𝑤1) − 1}

5: KWCtr[𝑤1 ] ← KWCtr[�̄� ] + 3

6: 𝐿 ← I[�̄� ]
7: while |𝐿 | < 2 · Clt.G(𝑤) do
8: 𝑖𝑑 ← Rand( |A |)
9: if 𝑖𝑑 ∉ {𝑖𝑑 (𝑑) | 𝑑 ∈ A′ } then
10: 𝐿 ← 𝐿 ∪ 𝑖𝑑
11: ArrCtr[𝐿] ← ArrCtr[𝐿] + 1

12: ArrHist← ArrHist ∪ {(T(𝑙, ArrCtr[𝑙 ]), 0, 𝑘) | 𝑙 ∈ 𝐿}

13: 𝑈 𝐼 ← I′.pop( |I′ |/2)
14: IndHist← IndHist ∪ {(𝑖, 1, 𝑘) | 𝑖 ∈ 𝑈 𝐼 }
15: State𝑈𝐴← A′.Pop( ⌊ |𝑈𝐴 |/2⌋)
16: ArrHist ← ArrHist ∪ {(T(𝑖𝑑 (𝑑), ArrCtr[𝑖𝑑 (𝑑) ]), 1, 𝑘) |
( {𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 } , 𝑑) ∈ 𝑈𝐴}

17: A′ ← A′ ∪Merge_Index(A[𝐿], �̄�)
18: StL ← (I′, A′, KWCtr, ArrCtr)
19: Return (IndHist,ArrHist), StL

SWiSSSE over the database DB is at most:(
|DB|2 + 4𝑡0 |DB| + 9|𝑊 {DB}|2 + 18𝑡1 |𝑊 {DB}|

)
2
𝑙+1

+𝐴𝑑𝑣𝑃𝑅𝐹, |DB |+2𝑡0

𝐹,B +𝐴𝑑𝑣𝑃𝑅𝐹,2 |𝑊 {DB} |+2𝑡1

𝐹,C ,

where 𝑡0 = 𝑘 ·max𝑤 |DB(𝑤) |, 𝑡1 = 𝑘 ·max𝑤 |𝑤 {DB(𝑤)}| and B and

C denote probabilistic polynomial-time adversaries in independent

security experiments against the PRF 𝐹 .

E.4 System-Wide Leakage of Dynamic SWiSSSE

Setup. At setup, the client offloads the encrypted lookup index and

the encrypted document array to the server. These data structures

are essentially key-value stores with pseudorandomly generated

keys/addresses and values/entries that are encrypted under an IND-

CPA secure encryption scheme. Hence, at setup, the server learns no

information about the original database DB other than the number

of documents in the padded database DB′ (including both real and

fake documents), and the total number of keyword-document pairs

post-bucketization. Formally, we have:

LSetup

Σ (DB, G) = (
��DB′��, ��𝑊 {

DB′
}��, StL) .

Keyword Queries.As we have introduced virtual addresses for the

inserted documents, the insertion history will be revealed by the

keyword queries. As in the static case, we capture this leakage using

a probabilistic and stateful leakage function, described formally in

Algorithm 13.

Document Insertion. The leakage of a document insertion is iden-

tical to a single-keyword query except that the inserted document is

processed in the state of the leakage. We capture this leakage using

Algorithm 14 Dynamic SWiSSSE: Leakage Function for Insertion

Queries

1: procedure LInsert
(𝑞, StL )

2: (Insert, {�̄�𝑖 } , ¯𝑑) ← 𝑞

3: I′, A′, KWCtr, ArrCtr← StL
4: IndHist ← IndHist ∪ {(T(�̄�, 𝑖, KWCtr[𝑤1 ]), 0, 𝑘),

T(�̄�, 𝑖, KWCtr[𝑤1 ] + 1), 0, 𝑘),T(�̄�, 𝑖, KWCtr[𝑤1 ] + 2), 0, 𝑘) | 𝑖 ∈
0, . . . , G(𝑤1) − 1}

5: KWCtr[𝑤1 ] ← KWCtr[𝑤1 ] + 3

6: 𝐿 ← I[𝑤 ]
7: while |𝐿 | < 2 · Clt.G(𝑤) do
8: 𝑖𝑑 ← Rand( |A |)
9: if 𝑖𝑑 ∉ {𝑖𝑑 (𝑑) | 𝑑 ∈ A′ } then
10: 𝐿 ← 𝐿 ∪ 𝑖𝑑
11: ArrCtr[𝐿] ← ArrCtr[𝐿] + 1

12: ArrHist← ArrHist ∪ {(T(𝑙, ArrCtr[𝑙 ]), 0, 𝑘) | 𝑙 ∈ 𝐿}

13: 𝑈 𝐼 ← I′.pop( |I′ |/2)
14: IndHist← IndHist ∪ {(𝑖, 1, 𝑘) | 𝑖 ∈ 𝑈 𝐼 }
15: 𝑈𝐴← A′.Pop( ⌊ |𝑈𝐴 |/2⌋)
16: ArrHist ← ArrHist ∪ {(T(𝑖𝑑 (𝑑), ArrCtr[𝑖𝑑 (𝑑) ]), 1, 𝑘) |
( {𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 } , 𝑑) ∈ 𝑈𝐴}

17: I′ ← I′ ∪ Index(𝑈𝐴, KWCtr)
18: 𝑀 ← Insert(A[𝐿], {�̄�𝑖 } , 𝑑))
19: A′ ← A′ ∪Merge_Index(𝑀,𝑤1)
20: StL ← (I′, A′, KWCtr, ArrCtr)
21: Return (IndHist,ArrHist), StL

a probabilistic and stateful leakage function, described formally in

Algorithm 14.

Document Deletion. The leakage of a document deletion is iden-

tical to a single-keyword query except that the target document

to be deleted is marked as fake in the state of the leakage.We cap-

ture this leakage using a probabilistic and stateful leakage function,

described formally in Algorithm 15.

Finally, we are ready to state the security of our dynamic con-

struction and prove it.

Theorem E.2 (Security of Dynamic SWiSSSE). Let Σ be our
proposed dynamic SSE scheme. Let LSetup

Σ and LKWQuery
Σ , LInsert,

andLDelete be the leakage functions defined above, then Σ is (LSetup
Σ ,

LKWQuery
Σ ,LInsert,LDelete)-secure.

Proof. We use a game-based argument to prove the security of the

dynamic construction.

(Game 0) Let the real execution of the scheme on the database

DB with queries 𝑞1, . . . , 𝑞𝑘 be game 𝐺0. Then we have that for any

adversary A,

Pr

[
Real

Dynamic
Σ,A (1𝜆) = 1

]
= Pr[𝐺0 = 1] .

(Game 1) Let game 𝐺1 be the same game as 𝐺0 except that the

execution of the setup step is replaced by the simulator. Clearly the

simulator works the same way as the static case, so the difference

in advantages between𝐺0 and𝐺1 is upper-bounded by𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡0

𝐹
+

𝑡0 · 𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴
Σ′ (𝜆), where 𝑡0 = 2

∑
𝑤 G(𝑤) + |DB|.

(Game 2) In game𝐺2, we replace the query algorithms with the

simulator. The algorithms look the same for all query types so we
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Algorithm 15 Dynamic SWiSSSE: Leakage Function for Deletion

Queries

1: procedure LDelete
(𝑞, StL )

2: (Delete, {�̄�𝑖 } , ¯𝑑) ← 𝑞

3: I′, A′, KWCtr, ArrCtr← StL
4: IndHist ← IndHist ∪ {(T(�̄�, 𝑖, KWCtr[𝑤1 ]), 0, 𝑘),

T(�̄�, 𝑖, KWCtr[𝑤1 ] + 1), 0, 𝑘),T(�̄�, 𝑖, KWCtr[𝑤1 ] + 2), 0, 𝑘) | 𝑖 ∈
0, . . . , G(𝑤1) − 1}

5: KWCtr[𝑤1 ] ← KWCtr[𝑤1 ] + 3

6: 𝐿 ← I[𝑤 ]
7: while |𝐿 | < 2 · Clt.G(𝑤) do
8: 𝑖𝑑 ← Rand( |A |)
9: if 𝑖𝑑 ∉ {𝑖𝑑 (𝑑) | 𝑑 ∈ A′ } then
10: 𝐿 ← 𝐿 ∪ 𝑖𝑑
11: ArrCtr[𝐿] ← ArrCtr[𝐿] + 1

12: ArrHist← ArrHist ∪ {(T(𝑙, ArrCtr[𝑙 ]), 0, 𝑘) | 𝑙 ∈ 𝐿}

13: 𝑈 𝐼 ← I′.pop( |I′ |/2)
14: IndHist← IndHist ∪ {(𝑖, 1, 𝑘) | 𝑖 ∈ 𝑈 𝐼 }
15: 𝑈𝐴← A′.Pop( ⌊ |𝑈𝐴 |/2⌋)
16: ArrHist ← ArrHist ∪ {(T(𝑖𝑑 (𝑑), ArrCtr[𝑖𝑑 (𝑑) ]), 1, 𝑘) |
( {𝑤𝑖 , 𝑗𝑖 , 𝑏𝑖 } , 𝑑) ∈ 𝑈𝐴}

17: I′ ← I′ ∪ Index(𝑈𝐴, KWCtr)
18: 𝑀 ← Delete(A[𝐿], ¯𝑑))
19: A′ ← A′ ∪Merge_Index(𝑀,𝑤1)
20: StL ← (I′, A′, KWCtr, ArrCtr)
21: Return (IndHist,ArrHist), StL

Algorithm 16 Game 𝐺1 (dynamic construction). Only the setup

step is changed.

1: procedure Clt.Setup(DB)

2: (𝑁, 𝑝, StL ) ← LSetup

Σ (DB, G)
3: EI, EA← [ ]
4: /* Generate the encrypted documents */
5: for 𝑖 = 0, . . . , 𝑁 − 1 do

6: EA.Insert(RF(2𝑖),Enc(0𝑙0 ))
7: /* Generate the encrypted document addresses */
8: for 𝑖 = 0, . . . , 2𝑝 do

9: EI.Insert(RF(2𝑖 + 1),Enc(0𝑙1 ))
10: Send (EI, EA) to the server

only show the one for the single-keyword query. The simulator

looks the same as game𝐺2 in the proof of security for the static case,

but the lookup index tokens in the dynamic construction includes

the addresses generated by the insertion queries too.

The number of addresses the algorithm has to generate is upper-

bounded by 𝑡1 = 2

∑
𝑖 G(𝑊 (𝑞𝑖 ))+2

∑
𝑖 |DB(𝑊 (𝑞𝑖 )) |, and the number

of encryptions needs to be created is upper-bounded by the same

𝑡1. This means the difference in advantages between 𝐺1 and 𝐺2 is

upper-bounded by 𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡1

𝐹
+ 𝑡1 · 𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴

Σ′ (𝜆).
(Conclusion.) By combining the two games above, we see that

the difference in advantages between𝐺0 and𝐺2 is atmost𝐴𝑑𝑣
𝑃𝑅𝐹,𝑡0+𝑡1

𝐹
+

(𝑡0 + 𝑡1) · 𝐴𝑑𝑣𝐼𝑁𝐷−𝐶𝑃𝐴
Σ′ (𝜆).

Oblivious Operations.We introduce here a new notion of security

for dynamic SSE schemes called “oblivious operations". Informally,

a dynamic SSE scheme supports oblivious operations if document

Algorithm 17 Game 𝐺2 (dynamic construction).

1: procedure Clt.KWQuery(𝑞)

2: (IndHist,ArrHist), StL ← LKWQuery

Σ (DB, 𝑞, StL )

3: /* Encrypted document array address retrieval */
4: 𝐿 ← {}
5: 𝑡 ′ ← the number of single-keyword queries executed

6: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ IndHist, 𝑏 = 0, 𝑡 = 𝑡 ′ } do
7: 𝐿 ← 𝐿 ∪ RF(2𝑖 + 1)
8: Send 𝐿 to the server

9: /* Encrypted document retrieval */
10: 𝐿 ← {}
11: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ ArrHist, 𝑏 = 0, 𝑡 = 𝑡 ′ } do
12: 𝐿 ← 𝐿 ∪ RF(2𝑖)
13: Send 𝐿 to the server

14: /* Write-back */

15: 𝑈 𝐼,𝑈𝐴← {}
16: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ IndHist, 𝑏 = 1, 𝑡 = 𝑡 ′ } do
17: 𝑈 𝐼 ← 𝑈 𝐼 ∪ (RF(2𝑖 + 1),Enc(0𝑙0 ))
18: for 𝑖 ∈ {𝑖 | (𝑖, 𝑏, 𝑡 ) ∈ ArrHist, 𝑏 = 1, 𝑡 = 𝑡 ′ } do
19: 𝑈𝐴← 𝑈𝐴 ∪ (RF(2𝑖),Enc(0𝑙1 ))
20: Send (𝑈 𝐼,𝑈𝐴) to the server

updates and keyword searches are computationally indistinguish-

able to an adversarial server. The formal definition is presented

below.

Definition E.2 (Oblivious Operations). Let Σ be a dynamic
SSE scheme. Let DB be a database, G be the bucketization parameter,
𝑞1, . . . , 𝑞𝑘−1

be a sequence of queries, and 𝑞𝑘 and 𝑞′
𝑘
be two queries

such that𝑊 (𝑞𝑘 ) =𝑊 (𝑞′𝑘 ). Let ℓ0, St
0

L ← L
Setup
Σ (DB) and ℓ𝑖 , St𝑖L ←

L∗Σ (𝑞𝑖 , St
𝑖−1

L ) for 0 < 𝑖 ≤ 𝑘 where L∗Σ is the appropriate leakage

function for the query 𝑞𝑖 , and ℓ ′𝑘 , St
′𝑘
L ← L

∗
Σ (𝑞
′
𝑘
, St𝑘−1

L ).
We say that Σ supports oblivious operations if ℓ𝑘 is computationally

indistinguishable from ℓ ′
𝑘
for any choice of DB, G, 𝑞1, . . . , 𝑞𝑘 and 𝑞′

𝑘
.

Note that the definition of oblivious operations only requires the

outputs of the leakage functions (at the point where the query is

executed) to be indistinguishable. It does not, however, require the

states of the leakage function to be indistinguishable. This makes

sense because the leakage output is available to the adversary as

soon as the corresponding operation is executed, which makes for

an easymapping task. On the other hand, the information contained

in the state of the leakage function may be revealed to the adversary

at a later point of time (for instance, via delayed pseudorandom

write-backs in our scheme), and it is computationally hard for the

adversary to map it back in time to the exact query it corresponds

to.

Our dynamic SSE scheme naturally satisfies the aforementioned

definition of oblivious operations. Both keyword searches and doc-

ument updates involve reading a set of entries from the encrypted

data structures, followed by delayed write-backs. The only func-

tional differences between searches and updated are reflected in

how the client locally manages/updates its stash. From the point

of view of the server, the output of the leakage function at the
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point of query are simply the accesses made to the encrypted data

structures, which is unconditionally indistinguishable for searches

and updates. This allows us to state the following theorem.

Theorem E.3 (Oblivious Operations). The dynamic variant
SWiSSSE described above supports oblivious operations.

Forward Privacy. Forward private SSE was introduced by Chang

and Mitzenmacher in [28], and has been subsequently studied

in [16, 18, 19, 40, 42, 70, 100, 101]. An SSE scheme is said to be

forward private if insertion and deletion operations computation-

ally hide the set of keywords in the underlying document. Forward

privacy has received much attention in light of leakage-abuse and

file injection attacks [21, 110], which are potentially devastating

for SSE schemes that try to support updates without being forward

private.

Observe that combining Theorems E.2 and E.3 allows us to claim

that our dynamic SSE scheme achieves stronger forward privacy

guarantees than existing constructions in the literature, including
those based on ORAM [16, 19, 26, 42]. In particular, existing defi-

nitions of forward privacy do not hide the number of keywords an
inserted/deleted document contains, which is potentially sensitive

information. Our construction, on the other hand, achieves the

stronger notion of forward privacy in which we also hide from

the server the number of keywords in a document which is in-

serted/deleted.

We now present a more detailed argument. By Theorem E.3, our

dynamic SSE scheme satisfies indistinguishability of operations.

Hence, the output of the leakage function for updates is computa-

tionally indistinguishable from the output of the leakage function

for keyword searches. Next, by Theorem E.2, the leakage function

output for searches is the set of accesses made to the encrypted

data structures at the server, which reveals no information to a com-

putationally bounded adversary about the underlying keywords

and documents Hence, at the point of an update operation, our

dynamic scheme not only computationally hides the actual key-

words in the target document, but also the number of keywords.

As discussed later, this has important repercussions with respect to

security against leakage-abuse and file-injection attacks.

Backward Privacy. The notion of backward privacy for dynamic

SSE is comparatively more recent, and was first formalized by

Bost et al. in [19]. Subsequently, Chamani et al. [26] and Sun et
al. [103] proposed SSE schemes supporting single keyword search

that are backward private under various leakage profiles. The

strongest notion of backward privacy formalized in [19] is called

Type-1 backward privacy [19]. A dynamic SSE scheme is said to

be Type-1 backward private if a search query on a keyword𝑤 re-

veals no information to the adversary beyond result pattern for𝑤

and the timestamps at which the documents containing 𝑤 were

inserted into the database. The only constructions to achieve this

strong notion of backward privacy adopt ORAM-style techniques

and require polylogarithmically many communication rounds for

searches [19, 26].

Once again, Theorem E.2 allows us to claim that our dynamic

SSE scheme achieves stronger than Type-1 backward privacy guar-

antees. This is particularly notable given that our construction only

require two rounds of communication between the client and the

server for searches.

To begin with, observe that as per Theorem E.2 the leakage func-

tion output at the point of searches in our construction hides the

result pattern and the update history for the underlying keyword

from the server. If the adversary could monitor the state of the

leakage function from the beginning of time up until the point of

query, it could potentially learn the update history associated with

a keyword. However, in the actual scheme, the adversary can only

glean this through observing the delayed write-backs. However,

given that the write-backs are mixed and matched and target pseu-

dorandom locations, it is difficult for a computationally bounded

adversary to trace each encrypted document it accesses during a

search query at timestamp 𝑡 back to the timestamp 𝑡 ′ < 𝑡 when the

document was originally inserted.

In the discussion below, we expand some more on delayed write-

backs and their impact on the leakage of our dynamic scheme using

an example.

File-Injection Attacks. Recall that file-injection attacks [110] are

an extremely powerful class of query-recovery attacks where the

adversary has the ability to additionally inject maliciously crafted

files into the database. The adversary uses the occurrences of these

files in query outputs to identify the keyword(s) underlying a given

query. Once again, query recovery via file-injection relies crucially

on the document access pattern leakage. In particular, it requires the

adversary to identify which of the maliciously crafted files appear

in the outcome of a given query (either from accesses to the search

index or to the document array).

As was the case for static SWiSSSE, this leakage is also not avail-

able during search or update queries in dynamic SWiSSSE as the

document identifiers matching a given query are never revealed in

the clear, and the locations of documents in the encrypted docu-

ment array change with every write-back operation (making it hard

for the adversary to trace the occurrence of malicious documents

across queries). Below, we explain in greater detail why the strong

notion of backward privacy achieved by our scheme makes it more

resilient to file-injection attacks than existing backward private

SSE schemes. We illustrate this via a simple example.

Consider the following query-recovery attack strategy on a dy-

namic scheme: the adversary injects 𝑛 maliciously created docu-

ments 𝑑1, 𝑑2, . . . , 𝑑𝑛 at timestamps 𝑡1 < 𝑡2 < . . . < 𝑡𝑛 , and at a later

point in time 𝑡∗ > 𝑡𝑛 passively observes the outcome of a search

operation involving an unknown keyword𝑤 . Also assume that it

can identify (from some leakage source) which of the documents it

injected earlier appeared in the search outcome. It can then exploit

its knowledge of the keyword distributions across these documents

to try to recover𝑤 .

To our knowledge, all existing dynamic SSE schemes are vul-

nerable to this attack despite their forward and backward security

guarantees. In particular, a scheme that only satisfies Type-1 back-

ward privacy is vulnerable to this attack, since the result pattern

leakage trivially allows the server to learn which of the maliciously

injected files appear in the search outcome. Perhaps surprisingly,

dynamic SWiSSSE is able to thwart an attack as strong as this. In

particular, by the arguments given above, our scheme makes it dif-

ficult for the adversary to map the outcome of the search operation
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Figure 5: An illustration of the operations related to a document 𝑑 in our construction. At time 𝑖 , the document 𝑑 is retrieved by a query. The document is in the

stash and ready to be written back at time 𝑖 + 1. The document itself is written back at time 𝑖 + 𝑡0, where 𝑡0 is a random delay due to randomised write-backs. The

encrypted document addresses associated to 𝑑 will be updated randomly in time later than 𝑖 + 𝑡0.

on𝑤 at time 𝑡∗ to any of the malicious document injections at the

prior timestamps 𝑡1, 𝑡2, . . . , 𝑡𝑛 .

Remark E.1. We do not claim that the above file-injection attack

compromises existing notions/definitions of backward privacy. The

above example simply illustrates that standard notions of backward

privacy are not sufficient to rule out some very strong instances

of file-injection attacks. This motivates considering even stronger

notions of backward privacy that would also rule out such powerful

attacks. Such a stronger notion of backward privacy (implied by

obliviousness of operations) is achieved by dynamic SWiSSSE.

Encrypted document write-back. Without loss of generality, let

DB be the database and (𝑞1, . . . , 𝑞𝑘 ) be the sequence of queries on
the database. Let 𝑑 be one of the documents retrieved in query 𝑞𝑖
where 1 ≤ 𝑖 < 𝑘 . We are interested in the distribution of 𝑡0 for

which query 𝑞𝑖+𝑡0
triggers the write-back of document 𝑑 . As half of

the documents are written back from the stash after each query, 𝑡0
clearly follows a shifted geometric distribution with parameter

1

2
,

unless that there is a query 𝑞𝑖+𝑗 that retrieves 𝑑 . In the latter case,

the write-back of document 𝑑 will happen at query 𝑞𝑖+𝑗+𝑡0
with 𝑡0

following a shifted geometric distribution with parameter
1

2
.

Encrypted document address write-back. Under the same set-

ting as above, let 𝑑 be one of the documents retrieved in query

𝑞𝑖 where 1 ≤ 𝑖 < 𝑘 and 𝑤 be one of the keywords of 𝑑 . We are

interested in the distribution of 𝑡1 for which query 𝑞𝑖+𝑡1
triggers

the write-back of the encrypted document address associated to

keyword𝑤 . Recall that the write-backs for the encrypted document

addresses are scheduled after the respective documents are written

back to the server, and half of the encrypted document addresses

are written back to the server in each query, this means that 𝑡1
follows the sum of a shifted geometric distribution and a geometric

distribution both parameterized by
1

2
, or equivalently, one plus a

negative binomial distribution with parameter (2, 1

2
). As before,

if the document 𝑑 is retrieved by another query 𝑞𝑖+𝑗 before it is
written back, then we will write the encrypted document address

in query 𝑞𝑖+𝑗+𝑡1
.

Resistance to Cryptanalysis. Finally, for appropriate parameter

choices (e.g., bucket sizes and bucketization strategies), dynamic

SWiSSSE achieves strong enough backward privacy guarantees in

practice to resist a wide range of cryptanalytic attacks based on

system-wide leakage, such as access pattern and query equality pat-

tern based attacks [21, 59], file injection attacks [110], and attacks

based on highly refined leakage (such as the correlation-leakage

based attack described in Section C). Also noteworthy is the fact

that SWiSSSE achieves such strong guarantees without compro-

mising significantly on query performance and communication

overheads. This makes it an attractive candidate for deployment in

typical applications involving outsourced databases.

E.5 Dynamic SWiSSSE: Asymptotic

Performance Evaluation

In this section, we revisit the asymptotic performance analysis of

SWiSSSE from Appendix D, with focus on the dynamic version.

Size of the Stash. Since search queries are processed exactly as

in static SWiSSSE, the corresponding stash size required remains

unchanged, i.e. the space complexity is O(max𝑤 G(𝑤)). For docu-
ment insertion queries, the documents to be inserted are processed

with the responses, so the same analysis on the space complexity

applies. Similarly, the size of the local lookup index also remains un-

changed, and the client still needs to store O(max𝑤 |𝑊 {DB(𝑤)}|)
lookup index locations.

The main change from the static version is that, in dynamic

SWiSSSE, the client needs to store three arrays of integers, namely

an array for the groupings of the keywords, an array for the number

of insertions of the keywords, and an array for the counters used

to generate the document array addresses. However, these arrays

are all small and of constant size, so they do not contribute to the

asymptotic size of the stash. Combining everything together, we

get that the size of the stash is O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|),
which is the same as static SWiSSSE.

Size of the Encrypted Database. As in static SWiSSSE, the server

stores an encrypted lookup index and an encrypted document ar-

ray, with combined size O(∑𝑤 G(𝑤) + |DB|). Note that this order-
of-magnitude calculation ignores the overhead from padding all

documents to a constant size.

Time Complexity and Communication Volume of a Query.

Asymptotically, the time complexity and communication volume of

search and insertion/deletion queries in dynamic SWiSSSE are the

same as that of a search query in static SWiSSSE. However, certain

concrete constants differ due to the additional write-back addresses

involved for handling updates, and we detail this for the sake of
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(a) Insertion of dynamic SWiSSSE on 400K docu-

ments (log scale).

(b) Distribution of write-back time of dynamic

SWiSSSE on 400K documents.

(c) Stash size of dynamic SWiSSSE on 400K docu-

ments.

Figure 6: Performance comparison between the plaintext database and

dynamic SWiSSSE.

completeness. Suppose that the leading keyword for the query is𝑤 .

In our construction, a query consists of three rounds of interaction.

In the first round, the client computes the encrypted lookup index

addresses for the query. This involves O(G(𝑤)) computation and

communication, as there are at most 3·G(𝑤) addresses involved. The
server then takes O(G(𝑤)) time to retrieve the encrypted document

array addresses and send them to the client. This means that the

overall communication volume is O(G(𝑤)) for the first round.
Upon receiving theO(G(𝑤)) encrypted document array addresses,

the client processes them and retrieves 2 · G(𝑤) encrypted docu-

ments from the server. The client decrypts the documents and filters

the results locally to obtain the query response. The time complex-

ity for the overall process is O(G(𝑤)). It is also straightforward to

see that the communication volume and the time complexity for

the server are both O(G(𝑤)).

Finally, after receiving the encrypted documents from the previ-

ous step, the client decrypts them in O(G(𝑤)) time. If the query is

a document insertion query, the client has to do at most O(G(𝑤))
amount of work to turn one of the fake documents into the docu-

ment intended for insertion. After that, the client randomly picks

at most 2 · max𝑤 G(𝑤) documents from the stash, encrypts them

and uploads them to the server. He also randomly picks half of

the lookup indices stored in the stash, encrypts them, and uploads

them to the server. Using the analysis of the stash size above, we

conclude that the time complexity and communication volume for

this step is O(max𝑤 G(𝑤) + max𝑤 |𝑊 {DB(𝑤)}|). This means the

overall time complexity of this step for the client and the commu-

nication volume is O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|). Similarly,

we conclude that the time complexity of this step for the server is

O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|).
Combining the analyses above together, we conclude that the

time complexity of a query for both the client and the server is

O(max𝑤 G(𝑤) +max𝑤 |𝑊 {DB(𝑤)}|), while the communication vol-

ume of a query is O(max𝑤 G(𝑤) + max𝑤 |𝑊 {DB(𝑤)}|). We note

that stash handling is not relevant to the retrieval of documents

and it can be performed whenever the client is free. With regards

to document retrieval only, the time complexity for the client and

the server is O(G(𝑤)) and the communication volume is O(G(𝑤)).

E.6 Dynamic SWiSSSE: Experimental

Evaluation

In this section, we provide experimental results on dynamic SWiSSSE.

We use the same experimental setup as we used for static SWiSSSE

in Section 6. The only difference between the two set of experiments

is that we create as many placeholder documents (and keywords) as

the real ones for insertions. This doubles the setup time and storage

cost of dynamic SWiSSSE as compared to the static version.

Insertion and Query Response Time. Figure 6a shows the in-

sertion time for dynamic SWiSSSE. As expected, the insertion time

grows linearly with respect to the minimum frequency of the key-

words in the document to be inserted. The time for an insertion

query and the time for a search query are the same by design for

dynamic SWiSSSE.

Write-back Efficiency.We report write-back efficiency for the ex-

periment with 400K documents in Figure 6b. As before, the majority

of the write-back queries are completed in under one second.

The Client Stash. The distribution of the stash size is shown

in Figure 6c. The stash size is under 10 MB for over 90% of the

time. It gets large occasionally due to consecutive queries on high

frequency keywords, but we believe that this will rarely happen in

real deployments; it is also possible for the client to issue dummy

queries to reduce the stash size rapidly.
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