
User-Controlled Privacy: Taint, Track, and Control
François Hublet

ETH Zürich

francois.hublet@inf.ethz.ch

David Basin

ETH Zürich

basin@inf.ethz.ch

Srđan Krstić

ETH Zürich

srdan.krstic@inf.ethz.ch

ABSTRACT

We develop the first language-based, Privacy by Design approach

that provides support for a rich class of privacy policies. The poli-

cies are user-defined, rather than programmer-defined, and support

fine-grained information flow restrictions (considering individual

application inputs and outputs) with temporal constraints. Our ap-

proach, called Taint, Track, and Control (TTC), combines dynamic

information-flow control and runtime verification to enforce these

policies in the presence of malicious users and developers.

We provide TTC’s semantics and proofs of correct enforcement,

formalized in the Isabelle/HOL proof assistant. We also implement

our approach in a web development framework and port three

baseline applications from previous work into this framework for

evaluation. Overall, we find that our approach enforces expressive

user-defined privacy policies with practical runtime performance.

1 INTRODUCTION

Motivation and Problem Statement. Over the last decade, new leg-

islation, such as the European Union’s General Data Protection Reg-

ulation (GDPR), has paved the way for a more extensive recognition

of individuals’ right to privacy. While, from a legal viewpoint, the

GDPR has set a de-facto global standard [68], the level of effective

privacy enjoyed by users of online applications remains unsatisfac-

tory. Amid reports of widespread non-compliance, the gap between

expectations and real-world practice has only become more evident.

Privacy by Design (PbD), the principle of “design[ing] and de-

velop[ing] products with a built-in ability to demonstrate compli-

ance” [74], offers a promising path to improving the status quo.

With Privacy by Design, privacy policies are specified that define
who can use which data, when, and for which purposes. Incen-

tives for practitioners to adopt PbD include developing or maintain-

ing a competitive advantage in privacy-critical markets [51] and

avoiding the costs resulting from major privacy breaches and non-

compliance [42, 66]. Moreover, Article 25 GDPR makes it obligatory

for data controllers to use ‘state-of-the-art’ techniques to imple-

ment data protection principles [14]. Whenever technologies for en-

suring compliance are available “at a reasonable price,” controllers

are legally obliged to use these (or similar) technologies [55].

Privacy policies can be specified by developers (e.g., at the code

level) or end-users (e.g., through a policy management interface).

An example of a user-specified policy that addresses the key GDPR

concern of purpose limitation is policy 𝑃1 in Figure 1, which states

that Alice’s personal data shall never be used for marketing. Assum-

ing that Alice’s personal data is only input by herself, a conservative

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(1), 597–616
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0034

Policy Textual description

𝑃0 “Alice’s personal data can be used for any purpose”

𝑃1 “Alice’s personal data shall never be used for marketing purposes”

𝑃2 “Alice’s posts in the Minitwit app shall never be used for mar-

keting purposes; after one week, it shall only be used for service

purposes; for analytics purposes, it can only be sent to

trustedanalytics.com, but not to any other party”

𝑃3 “Alice’s personal data shall only be shown to herself”

Figure 1: Example privacy policies for Alice

interpretation of this policy is that Alice’s inputs and any data de-
rived from those inputs shall never be used for marketing purposes.

Privacy policies can be enforced using a language-based ap-

proach [74]: developers write applications in a specially designed

programming language that guarantees the enforcement of policies

either statically or dynamically. Language-based PbD can in turn

be implemented as an extension of traditional information-flow

control (IFC) [53, 74], leveraging the similarity between the two ap-

proaches: both PbD and IFC must restrict data flows and guarantee

that, by default, the protection enjoyed by data items extends to

any other data derived from them. But despite these similarities,

existing IFC designs cannot be directly reused for PbD, since the as-

sumptions made by these designs do not match the requirements of

privacy laws. In particular, the following requirements stand out:

[R1] User-specified policies. Privacy policies must be specified by

individual users, rather than developers. In the GDPR, this

reflects that the allowed usage of data depend on end-user

consent, which must be freely given [1, Art. 7].

[R2] Per-input policies. The policy language must distinguish be-

tween different user inputs to support fine-grained restric-

tions on data usage, e.g., to provide the additional protection

enjoyed by special data categories [1, Art. 9]. Users must be

able to define different restrictions for each of their inputs.

[R3] Time-dependent policies. The policy language must allow users

to define restrictions that apply only for a specific time period.

For example, the GDPR has the notion of a storage period [1,

Rec. 45] during which data can be used and retained.

Policy 𝑃2 in Figure 1 exemplifies these requirements: user Alice

demands that her posts in a microblogging platform are never used

for marketing purposes, that only a single trusted third-party can

be sent information about the posts for analytics purposes, and that

after a week, the messages can only be used for service purposes.

These limitations extend to all data derived from her posts. The

policy is user-specific (only concerning Alice’s inputs), per-input

(only applying to Alice’s posts), and time-dependent (as additional

constraints apply after a week).

State of the Art. Requirements [R1-3] are out of the scope of most

previous work on IFC. Existing approaches usually provide little or

no support for time-dependent policies [R3], and define restrictions

597

https://orcid.org/0000-0001-5419-3125
https://orcid.org/0000-0003-2952-939X
https://orcid.org/0000-0001-8314-2589
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0034


Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

Grayed-out components are inactive in the corresponding phase. The operations in Track take place in any order. Blue: User-provided. Red: Developer-provided.

Users

Wrapper Enforcer

(+policy)

Interpreter

(+program)

Storage

1: input

3: input + fresh UT

2: input event

(a) Taint

Users

Wrapper Enforcer

(+policy)

Storage

data + UTs

data + UTs

data + UTs

(+program)

Interpreter

(b) Track

Users

Wrapper

Interpreter

(+program)

Storage

(4: output)?

1: output

request

2: output event

3: verdict
(+policy)

Enforcer

(c) Control

Figure 2: Taint, Track, and Control

on information flow in terms of the data model [5, 18, 21, 25, 45, 64,

77, 78], rather than single inputs [R2]. Moreover, and critically, their

focus is on developer-specified, rather than user-specified, policies

[R1]. In some works [21, 45, 77, 78], developers can build custom

user interfaces where users can select from different predefined

policies, but this requires additional effort and does not provide

users with formal guarantees at the level of individual inputs.

To enforce user-defined policies [R1], dynamic approaches ap-

pear most promising. Indeed, first-order temporal policies [R2–3]

are well-supported by those runtime enforcement (RE) techniques

developed within the runtime verification community [56, 69].

These techniques consider timestamps event traces modeling exe-

cutions of an application at runtime (e.g., events represent specific

actions, like the applications’ inputs and outputs). The policy en-

forced is defined as a set of such traces, i.e., a trace property. To
ensure compliance, some of the application’s actions (typically, out-

puts) can be suppressed. Concretely, a Policy Enforcement Point

(PEP) is informed before each such action is performed; the PEP

reports candidate events to a Policy Decision Point (PDP) that then

check the compliance of the resulting trace with the policy. Based

on the PDP’s verdict, the PEP either allows or suppresses the action.

To cover [R1–3], a temporal first-order policy language [7, 52] can

be chosen, and the overall policy to be enforced can be expressed

as the conjunction of individual policies specified by end-users.

Our solution. In this paper, we develop the first language-based

PbD approach that combines IFC and trace-based runtime enforce-

ment to satisfy the requirements [R1–3]. We support a broad class

of applications, which we call online applications, that run and con-

tinuously interact with users by collecting and processing their

data (Section 2). This class includes (but is not restricted to) web

applications, services, or other applications with an event-driven

behavior. Our approach, called Taint, Track, and Control (TTC),
brings together (i) an enforcer for metric first-order temporal poli-
cies [56] serving as the PDP, (ii) an interpreter for a programming

language implementing a variant of dynamic IFC, (iii) a wrapper

that controls inputs and outputs and serves as the PEP, and (iv) per-

sistent storage, such as a database or file system. Once the enforcer

is loaded with a policy and the interpreter with a program defin-

ing the application’s functionality, user inputs are handled in three

phases (see Figure 2):

Taint: The wrapper receives a new user input and tags it with

a fresh unique taint (UT) (1). The UT is a unique bitstring

identifying one specific input during its lifetime. The wrap-

per informs the enforcer about the new UT by emitting an

event (2). The input and UT are sent to the interpreter (3).

Track: The semantics implemented by the interpreter ensures

that at all times, every data item in memory is tagged with

the UTs of all inputs that have influenced its current value.
The interpreter interacts with persistent storage, to which

UTs are propagated.

Control: Any output that the interpreter attempts to per-

form must go through the wrapper (1). Upon receiving an

output request, the wrapper generates events capturing the

attempted output and all user inputs that influenced it. To

identify the latter, it uses the UTs of the candidate output.

These events are sent to the enforcer (2), which can accept

or reject the output (3). If its verdict is positive, the wrapper

emits the output (4).

TTC guarantees the enforcement of users’ privacy policies against

an adversary that can impersonate other users or tamper with ap-

plication code. The latter covers the realistic threat scenario of a

malicious developer with no direct access to the application’s pro-

duction data. In particular, we make the following contributions:

(1) We introduce information-flow traces capturing inputs, out-
puts, and interference between them, and we specify privacy

policies covering [R1–3] using such traces (Section 3).

(2) We introduce TTC, the first language-based PbD approach

for enforcing such privacy policies in online applications.

We provide formal semantics and correctness proofs checked

in the Isabelle/HOL proof assistant (Section 4, Appendix A).

(3) We implement WebTTC, a proof-of-concept web develop-

ment framework that incorporates TTC. WebTTC applica-

tions enforce user-defined privacy policies (Section 5).

(4) We demonstrate TTC’s ease of use and efficiency by present-

ing and evaluating our development framework. We port ap-

plications from previous works to our framework and show

their practical runtime performance (Section 6).

This works focuses on consent-based PbD. As consent is at

the core of the GDPR’s design [68] and omnipresent in web ser-

vices [15], tackling consent-based PbD is an important first step

towards more comprehensive enforcement of legal requirements.

598



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

1 def generate_ad(posts): # Returns personalized ads
2 ...
3

4 @route('/<username >') # Displays a user's posts
5 def user_timeline(username ):
6 posts = sql("""
7 SELECT post.pub_date , post.id, post.author_id ,
8 post.text , user.username FROM post
9 JOIN user ON user.id = post.author_id
10 WHERE user.username = ?0""", [username ])
11 ad = generate_ad(posts)
12 send("trustedanalytics.com", "Analytics", username)
13 send("evilanalytics.com", "Analytics", username)
14 return render("timeline.html",
15 {"posts": ("Service", posts),
16 "ad": ("Marketing", ad)})

Figure 3: Excerpt from the code of Minitwit

Still, requirements [R1-3] do not cover the full range of legal bases

for processing defined in the GDPR: e.g., necessity for fulfilling

a contract or the controller’s “legitimate interest” can also be in-

voked [1, Art. 6]. Therefore, in the conclusion (Section 8), we dis-

cuss how our work could be extended to support a more compre-

hensive fragment of privacy laws.

2 ENFORCEMENT IN ONLINE APPLICATIONS

In this section, we first introduce the application model that we ad-

dress (Section 2.1).We then refine it into amodel of applications that

run in an architecture featuring both an interpreter and an enforcer

(Section 2.2). Finally, we define our adversary model (Section 2.3).

2.1 Modeling Online Applications

In this paper, we will consider applications that repeatedly receive

queries from users, collect user data (inputs), process it, and send

data back to users (outputs). This covers web applications as well

as other types of applications such as microservices. We generi-

cally refer to such applications as online applications. Further, we
assume that each output of an online application is labeled with a

GDPR-style purpose, such as “Service” (if the output is necessary
for offering the service for which the application was primarily de-

veloped), “Marketing” (for, e.g., ads), or “Analytics”.

2.1.1 An Example. The code in Figure 3, taken from a simple

microblogging platform, exemplifies the behavior of online ap-

plications. Users can call a function user_timeline that takes a

username and displays the user’s posts. The first part of the func-

tion’s code (l. 6–10) extracts username’s posts from the database

into a variable posts. It then generates a personalized ad in the

variable ad based on the posts’ content (l. 11). Next, username is

sent to two third-parties (l. 12-13) for analytics purposes. Finally,

the page is rendered using posts (for purpose Service: the appli-
cation’s primary function is to allow users to see each other’s posts)

and ad (for purpose Marketing) and returned to the caller (l. 18-20).

2.1.2 Model and Assumptions. More formally, we consider appli-

cations that execute the following input-output loop. First, an in-

put is received by an application endpoint from some user. This

input is processed, modifying the application’s internal state and

resulting in a sequence of outputs to different users, which include

both users of the application and third-parties such as other con-

trollers. After producing its outputs, the application returns to a

1 def filter_check(posts):
2 posts2 = []
3 for post in posts:
4 posts2 += [post] if check("Service",posts) else []
5 return posts2
6

7 @route('/<username >') # Displays a user's posts
8 def user_timeline(username):
9 posts = sql("""...""", [username ])
10 posts = filter_check(posts)
11 ad = generate_ad(posts) if check("Marketing", posts)

else generate_ad("")
12 send("trustedanalytics.com", "Analytics", username)
13 send("evilanalytics.com", "Analytics", username)
14 return render("timeline.html",
15 {"posts": ("Service", posts),
16 "ad": ("Marketing", ad)})

Figure 4: Excerpt from the code of Minitwit, II

state where it can accept further inputs. We model the execution of

such applications as deterministic sequences of transitions of one

of the following three forms:

𝑆
i(𝑢,𝑓 ,{𝑎𝑖 ↦→𝑑𝑖 }1≤𝑖≤𝑘 ,𝜏)−−−−−−−−−−−−−−−−−−−→ 𝑆 ′, 𝑆

o(𝑓 ,𝑢,𝑝,𝑑,𝜏)
−−−−−−−−−−→ 𝑆 ′, or 𝑆

•−→ 𝑆 ′.

These respectively correspond to reading 𝑘 simultaneous input ar-

guments, producing a single output, and performing non-IO transi-

tions. In the above transitions, 𝑢 is the user producing the input or

receiving the output; the 𝑑𝑖 are the input or output values; 𝑓 is the

function performing IO; and 𝜏 ∈ N is the timestamp according to

some global clock. For inputs, (𝑎𝑖 )1≤𝑖≤𝑘 are the (distinct) arguments

of 𝑓 to which the inputs are passed. For outputs, 𝑝 is the output’s

purpose. Non-IO transitions are marked with the special symbol •.
We assume that we have a fixed initial state 𝑆0 and monotonic times-

tamps, i.e., if 𝑆
...(...,𝜏)
−−−−−−→ 𝑆 ′ → · · · → 𝑆 ′′

...(...,𝜏 ′)
−−−−−−−→ 𝑆 ′′′, then 𝜏 ′ > 𝜏 .

Example 2.1. Assume that at the timepoint 𝜏0, the user Alice

calls user_timeline (l. 5) with username Bob. Her input has label

i(Alice, user_timeline, {username ↦→ Bob}, 𝜏0) .

Performing a • transition, the function computes the list of Bob’s

posts and the corresponding ad (l. 6–11). It then produces four

outputs (l. 12–16) with respective labels

o(view_timeline, trustedanalytics.com, Analytics, Bob, 𝜏1)
o(view_timeline, evilanalytics.com, Analytics, Bob, 𝜏2)
o(view_timeline, Alice, Service, 𝑝𝑜𝑠𝑡𝑠, 𝜏3)
o(view_timeline, Alice, Marketing, 𝑎𝑑, 𝜏4)

where 𝑝𝑜𝑠𝑡𝑠 and 𝑎𝑑 stand for the value of the respective variable

after line 16, and 𝜏0 < 𝜏1 < 𝜏2 < 𝜏3 < 𝜏4.

Since the relation→ is deterministic, the application’s state only

depends on the sequence of timestamped inputs that it receives. This

sequence can be represented as

(
𝑢𝑖 , 𝑓𝑖 , {𝑎𝑖 𝑗 ↦→ 𝑑𝑖 𝑗 }1≤ 𝑗≤𝑘𝑖 , 𝜏𝑖

)
1≤𝑖≤𝑝

,

where 𝑢𝑖 are users, 𝑓𝑖 are functions, 𝑎𝑖 𝑗 are the names of input argu-

ments, 𝑑𝑖 𝑗 are the input values, and 𝜏𝑖+1 > 𝜏𝑖 for all 𝑖 . When, start-

ing in the state 𝑆 with input sequence 𝐼 , the application can reach

the new state 𝑆 ′ with a remaining (non-processed) input sequence

𝐼 ′, we write 𝑆, 𝐼 =⇒ 𝑆 ′, 𝐼 ′.

2.2 Privacy-Enforcing Applications

599



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

Next, we refine the previous formalism into a model of applica-

tions whose behavior results from the interplay between an inter-

preter and an enforcer. We first recall standard definitions of traces

and enforcers, and then present our model.

2.2.1 Traces and Enforcers. A signature is a triple Σ = (D,A, 𝜄)
where D ⊇ N is an infinite set of constant symbols, A is a finite

set of actions, and 𝜄 : A → N is an arity function. An event over
the signature Σ is an expression of the form 𝑎(𝑑1, . . . , 𝑑𝜄 (𝑎) ), where
𝑎 ∈ A and𝑑𝑖 ∈ D, that encodes an action and its parameters. A trace
stores the full history of the actions performed by the applications;

it is a finite timestamped sequence of sets of events, i.e., a sequence

𝜎 = (𝜏𝑖 , 𝐷𝑖 )1≤𝑖≤𝑘 where the 𝜏𝑖 are strictly increasing timestamps,

and the 𝐷𝑖 are finite sets of events. The concatenation of two traces

𝑡 and 𝑡 ′ is denoted by 𝑡 · 𝑡 ′, assuming that the first timestamp of 𝑡 ′

is larger than the last timestamp of 𝑡 . The set of events (resp. traces)

over a signature Σ is denoted by EΣ (resp. TΣ). Finally, a policy 𝑃 is

a subset 𝑃 ⊆ TΣ. Any trace 𝑡 in 𝑃 is called compliant with 𝑃 .

For the purpose of enforcement, the system’s actions are all

observable, and must be classified according to whether they can

only be observed (only-observable actions, Obs ⊆ A), or can also

be suppressed at the PEP (suppressable actions, Sup ⊆ A).1 An

enforcer for a policy 𝑃 is a function that takes a trace 𝜎 that complies

with 𝑃 and a new timestamped set of events, examines the set, and

returns a subset of these events that should be suppressed in order

for the trace to remain compliant. More formally, given a trace 𝜎

and (𝜏, 𝐷) such that 𝜎 · (𝜏, 𝐷) is a trace and 𝜎 complies with 𝑃 ,

an enforcer for 𝑃 returns a subset 𝐷 ′ ⊆ 𝐷 of suppressable events

such that 𝜎 · (𝜏, 𝐷 \ 𝐷 ′) complies with 𝑃 . The set 𝐷 ′
is called the

enforcer’s verdict. Any policy 𝑃 such that the empty trace complies

with 𝑃 and an enforcer exists for 𝑃 is called enforceable.

Example 2.2. If the action capturing the outputs of a system

is suppressable, the policy “the system shall perform no output

to Alice” is enforceable; a corresponding enforcer would simply

suppress any tentative output to Alice. On the other hand, the policy

“the system shall perform an output to Alice” is not enforceable,

since the system can suppress, but not cause outputs.

2.2.2 Applications. The rest of the paper considers applications

whose behavior is uniquely determined by the interplay of two

components: an interpreter component and an enforcer component.
The interpreter component is loaded with a program 𝜋 , provided

by developers, which encodes the application’s functionality.

The enforcer component provides an enforcer E for an enforce-

able policy 𝑃 over some signature Σ. To support user-defined poli-

cies, the privacy policy 𝑃 is assumed to be of the form ∩𝑢∈U𝑃𝑢 ,
where U is the set of users and for all 𝑢 ∈ U, 𝑃𝑢 denotes the indi-

vidual policy of user 𝑢. The intersection ∩𝑢∈U𝑃𝑢 is the property

expressing the simultaneous compliance with all (𝑃𝑢 )𝑢∈U.
A privacy-enforcing application is an online application whose

behavior is fully determined by (i) user inputs (ii) the program

executed by the interpreter and (iii) users’ privacy policies. The

inputs to a privacy-enforcing application are provided by users

and are thus only-observable, while the outputs are performed by

the application and are thus suppressable. We obtain a family of

1
Previous work has also considered the case when some actions can be observed and

caused by the enforcer [10]. We focus on the only-observable and suppressable actions.

transition relations for the entire application of the form

(
→𝜋,𝑃

)
,

where 𝜋 ranges over the set of programs and 𝑃 over the set of

policies. We write ⇒𝜋,𝑃 for the relation ⇒ that we obtain as in

Section 2.1.2 by setting→ to→𝜋,𝑃 .

2.3 Adversary Model

In this paper, we consider the enforcement of users’ privacy poli-

cies against both malicious users (end-users or third-parties) and

malicious developers that can tamper with program code.

We consider an adversary that can impersonate both users and

developers. As a user 𝑢, the adversary can interact with the appli-

cation, observe its outputs, and set and read the policy 𝑃𝑢 . As a

developer, she can observe and set the program 𝜋 . The adversary,

however, can neither observe nor directly influence the content of

persistent storage or the policies 𝑃𝑢 . Neither can she observe or

modify the internal state of the interpreter, wrapper, and enforcer

components, or tamper with the network. In practice, the assump-

tion that the adversary cannot directly tamper with the behavior of

the TTC components is sufficient as long as (malicious) developers

have no access to the production infrastructure, which is managed

by a distinct group of trusted privacy-compliance specialists.

Furthermore, for purpose-based usage to be correctly enforced,

we assume that a trusted party (e.g., privacy compliance specialists

or external auditors) has certified that the purposes labeling the

various outputs generated by 𝜋 are appropriately set. This should

apply irrespective of whether the adversary has impersonated the

developers or not. This assumption may seem strong, but it is un-

avoidable once concepts such as ‘purpose of processing’ are intro-

duced; currently, such checks can only be performed by privacy or

legal experts, and are not readily automatable. In practice, this re-

quirement can be fulfilled via appropriate organizational measures,

such as compulsory validation of annotations by compliance teams

whenever production code is deployed or modified.

Finally, we consider a termination and timing-insensitive setup

in which the time intervals between inputs and outputs do not

convey information about the values of inputs, and every function

is assumed to terminate after a fixed duration. To this end, we

assume that every function performs a fixed number of outputs at

fixed time intervals after receiving any set of inputs, and that this

interval is smaller than the interval between consecutive inputs.

3 TRACES AND PRIVACY POLICIES

In this section, we develop TTC’s policy language in three steps.

First, we show how to encode the IO behavior of applications by

collecting i and o labels into input-output (IO) traces (Section 3.1).

Second, we use sets of IO traces to define information-flow traces
(Section 3.2) that capture interference between inputs and outputs.

Finally, we show how to use these information-flow traces to specify

privacy policies covering requirements [R1-3] (Section 3.3).

3.1 Input-Output Traces

Applications’ input-output behavior can be faithfully encoded into

a trace over ΣIO = (D, {in, out}, {in ↦→ 4, out ↦→ 4}) (see also Fig-

ure 5). For each timestamp 𝜏𝑖 when a transition 𝑆
...(...,𝜏)
−−−−−−→ 𝑆 ′ oc-

curs, we generate a set of events 𝐸𝑖 over ΣIO in the following way:

600



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

Event in ΣIO Semantics

in(𝑢, 𝑓 , 𝑎, 𝑑) User 𝑢 inputs 𝑑 to argument 𝑎 of function 𝑓

out(𝑓 ,𝑢, 𝑝, 𝑑) Function 𝑓 outputs 𝑑 to user 𝑢 for purpose 𝑝

Event in ΣIF Semantics

In(𝑢, 𝑓 , 𝑖) User 𝑢 inputs 𝑖 to function 𝑓

Out(𝑓 ,𝑢, 𝑝, 𝑜) Function 𝑓 outputs 𝑜 to user 𝑢 for purpose 𝑝

Itf (𝑖, 𝑜) Input 𝑖 interferes with (≈ influences) output 𝑜

Figure 5: Signatures ΣIO and ΣIF (domain = D)

• If the transition has label i
(
𝑢, 𝑓 , {𝑎𝑖 ↦→ 𝑑𝑖 }1≤𝑖≤𝑘 , 𝜏𝑖

)
, then

𝐸𝑖 = {in(𝑢, 𝑓 , 𝑎𝑖 , 𝑑𝑖 ) | 1 ≤ 𝑖 ≤ 𝑘};
• If it has label o(𝑓 ,𝑢, 𝑝, 𝑑, 𝜏𝑖 ), then 𝐸𝑖 = {out(𝑓 ,𝑢, 𝑝, 𝑑)}.

The complete input-output (IO) trace is obtained by considering

the sequence of all such pairs (𝜏𝑖 , 𝐸𝑖 ).

Example 3.1. The scenario described in Example 2.1 produces

the following IO trace:

( (𝜏0,{in(Alice, user_timeline, username, Bob) }),
(𝜏1,{out(user_timeline, trustedanalytics.com, Analytics, Bob) }),
(𝜏2,{out(user_timeline, evilanalytics.com, Analytics, Bob) }),
(𝜏3,{out(user_timeline, Alice, Service, 𝑝𝑜𝑠𝑡𝑠) }),
(𝜏4,{out(user_timeline, Alice, Marketing, 𝑎𝑑) })) .

In the following, we label the relation⇒𝜋,𝑃 introduced in Sec-

tion 2.2.2 with the IO trace produced by the execution. We write

𝑆, 𝐼
𝜎
==⇒

𝜋,𝑃
𝑆 ′, 𝐼 ′ if 𝑆, 𝐼 =⇒ 𝑆 ′, 𝐼 ′ and 𝜎 is the IO trace produced by

the sequence of transitions from 𝑆 to 𝑆 ′.

3.2 Information-Flow Traces

We now define information-flow traces, which will provide our

ground truth on which to specify privacy policies. Our definition

aims at (i) minimizing the amount of information to be stored in

the trace to improve performance while preserving privacy and

(ii) giving a precise meaning to what “data derived from an input”

means. To address (i), we replace the values stored in the IO traces by

unique input and output identifiers. To address (ii), we introduce a

new Itf event based on a notion of (non)interference [46] capturing

the influence of an input on an output. The signature is ΣIF =(
D ∪ D2, {In,Out, Itf}, {In ↦→ 3,Out ↦→ 4, Itf ↦→ 2}

)
(cf. Figure 5).

3.2.1 Inputs and Outputs. In information-flow traces, the In event

encodes an input and the Out event an output. Since timestamps

increase with every IO transition, each input can be uniquely iden-

tified by its timestamp 𝜏 and argument name 𝑎. We can use the

pair 𝑖 = (𝜏, 𝑎), which we call a unique taint (UT), as a unique input
identifier. UTs allow us to refer to individual inputs specifically and

are independent of the input’s value. Similarly, each output can be

uniquely identified by its timestamp. We obtain the following rules:

• Each in(𝑢, 𝑓 , 𝑎𝑖 , 𝑑𝑖 ) in the IO trace at timestamp 𝜏 becomes

In (𝑢, 𝑓 , (𝜏, 𝑎𝑖 )) in the information-flow trace;

• Each out(𝑓 ,𝑢, 𝑝, 𝑑) in the IO trace at timestamp 𝜏 becomes

Out (𝑓 ,𝑢, 𝑝, 𝜏) in the information-flow trace.

Example 3.2. In the scenario from Example 2.1, the information-

flow trace contains the following In and Out events:

( (𝜏0,{In(Alice, user_timeline, username, (𝜏0, username)) }),
(𝜏1,{Out(user_timeline, trustedanalytics.com, Analytics, 𝜏1), . . . }),
(𝜏2,{Out(user_timeline, evilanalytics.com, Analytics, 𝜏2), . . . }),
(𝜏3,{Out(user_timeline, Alice, Service, 𝜏3), . . . }),
(𝜏4,{Out(user_timeline, Alice, Marketing, 𝜏4), . . . })) .

where the dots are placeholders for the Itf events discussed next.

Note that a distinct 𝑎 argument no longer shows up in In, since
𝑎 becomes part of the identifier input 𝑖 = (𝜏, 𝑎).

3.2.2 Interference. To reason about derived data, IO traces also

contain events of the form Itf (𝑖, 𝑜), where 𝑖 is a UT and 𝑜 an output

identifier (i.e., an output timestamp). Informally, Itf (𝑖, 𝑜) is present
in the trace if, and only if, observing the value of the output with

identifier 𝑜 allows us to learn at least one bit of information about

the value of the input with UT 𝑖 . This definition of Itf allows us to
capture (non)interference [46] in a fine-grained way, encoding the

influence of a single input on a single output. In contrast, conven-

tional IFC approaches group inputs according to users and, further,

according to security levels.

Example 3.3. Assume that, in Example 2.1, the table post con-
tains a single post by user Bob. The text of this post, an input from

a previous function call, is tagged with a UT 𝑖1. Consider first the

application without proactive checks (Figure 3). At timestamp 𝜏0,

user_timeline retrieves Bob’s posts in the variable posts. Two
inputs have influenced the content of posts: the one marked by 𝑖1,

and Alice’s latest input to user_timeline (with value username =

“Bob”), which has some UT (𝜏0, username). Thus, the information-

flow trace must contain Itf (𝑖1, 𝜏3) and Itf ((𝜏0, username), 𝜏3) at

timestamp 𝜏3. Further, username is sent to the two analytics third-

parties, which receive the outputswith identifiers𝜏1 and𝜏2. Through

generate_ad, the two inputs that influenced posts also influence

ad, which is output with the identifier 𝜏4. Hence, we have the fol-

lowing information-flow trace:

( (𝜏0,{. . . }),
(𝜏1,{. . . , Itf ( (𝜏0, username), 𝜏1)) },
(𝜏2,{. . . , Itf ( (𝜏0, username), 𝜏2)) },
(𝜏3,{. . . , Itf (𝑖1, 𝜏3), Itf ( (𝜏0, text), 𝜏3) }),
(𝜏4,{. . . , Itf (𝑖1, 𝜏4), Itf ( (𝜏0, text), 𝜏4) }))

where the dots represent the In and Out events from Example 3.2.

A formal definition of the relation “input 𝑖 = (𝜏, 𝑎) interferes with
output 𝑜 = 𝜏1 given the input sequence 𝐼 ,” written (𝜏, 𝑎) ⇝𝜋,𝑃,𝐼 𝜏1,

is given in Appendix A.1. Using this relation, we can state the last

rule defining our information-flow trace:

• Let 𝐼 be an input sequence, 𝜋 a program, and 𝑃 a policy.

Assume that we execute the application defined by →𝜋,𝑃

on 𝐼 . Event Itf ((𝜏, 𝑎) , 𝜏1) is in the information-flow trace at

timestamp 𝜏1 if, and only if, (𝜏, 𝑎) ⇝𝜋,𝑃,𝐼 𝜏1.

We write trace𝜋,𝑃 (𝐼 , 𝜎) to state that the processing of all inputs in

𝐼 using →𝜋,𝑃 generates the information-flow trace 𝜎 .

Our Itf event plays a role analogous to the leak modality of

SecLTL [32] by capturing a hyperproperty [23]: the occurrence of the
Itf event depends on the existence of an alternative execution of the

601



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

program in which a different input value leads to a different output

value. In general, deciding whether such an alternative execution

exists is impossible; hence, the information-flow trace cannot be

fully computed at runtime. In Section 4, we will see how this trace

can be soundly overapproximated using dynamic IFC techniques.

3.3 Privacy Policies

We can finally define a privacy policy as a policy over information-

flow traces, i.e., a subset of TΣIF . We say that the online application

𝐴 =
(
S, 𝑆0,→𝜋,𝑃

)
enforces the privacy policy 𝑃 ⊆ TΣIF iff for any

input sequence 𝐼 and trace 𝜎 , we have trace𝜋,𝑃 (𝐼 , 𝜎) ∈ 𝑃 . In our ap-

plication model, inputs are only-observable, while outputs are sup-

pressable. Interference, which results from the program’s behavior,

can only be observed. Hence Obs = {In, Itf}, Sup = {Out}.
Our privacy policy definition addresses [R1-3]:

[R1] Our architecture supports user-specified policies.

[R2] Restrictions can be defined down to the level of single inputs

by specifying privacy policies that prohibit outputs involving

interference from specific inputs identified by their UT.

[R3] Privacy policies can be temporal, since traces are.

Example 3.4. A way to specify a privacy policy as defined above

is using a temporal logic. Metric First-Order Temporal Logic [7, 19]

provides the temporal operators ♦𝐼 (‘once in the past within time

interval 𝐼 ’) and □ (always) that can be used to formalize the policies

in Figure 1. A full description of MFOTL and a formalization of the

policies from Figure 1 in MFOTL can be found in Appendix C.

Discussion. In this section, we have shown how information-

flow traces can be used to specify a general class of user-defined

privacy policies. In general, the richness of this policy language

and its explicit use of interference can challenge users. Hence the

question naturally arises of how best to design appropriate inter-

faces for collecting user consent, and what concrete (high-level)

policy language should be exposed to users in such interfaces. Inter-

face and policy language design might involve standard techniques

such as specification patterns [36], graphical representations [62],

or natural language generation [79], and might benefit from a trans-

disciplinary effort. The policies collected through such interfaces

could then be converted into an expressive formal language such

as MFOTL. We see designing such interfaces and languages as an

important, but distinct, problem. Hence, in the rest of this paper,

we focus on the enforcement of policies expressed as MFOTL for-

mulae, which provide the required expressivity and tools.

4 TAINT, TRACK, AND CONTROL

We now introduce our Taint, Track, and Control (TTC) approach.
We first present a high-level overview of TTC (Section 4.1). Then,

we proceed with a description of TTC’s formal semantics: we define

TTC programs (Section 4.2), introduce a new data structure called

tagged values (Section 4.3), describe the state space on which TTC

applications operate (Section 4.4), and then give the semantic rules

for each of the Taint, Track, and Control steps (Sections 4.5–4.7).

Finally, we establish the guarantees that TTC provides (Section 4.8).

4.1 TTC: a High-Level Overview

At its core, TTC consists of (a) an architecture for privacy enforce-

ment and (b) an enforcement strategy carried out in three phases,

called Taint, Track, and Control respectively.

The TTC architecture has the components shown in Figure 2: an

enforcer serving as a PDP, an interpreter, a wrapper orchestrating

the interaction between the interpreter, enforcer, and users, and

serving as a PEP, and a persistent storage module.

Enforcement in this architecture is structured in three phases:

Taint: A set of user inputs is received by the wrapper. Each

user input is tagged with a fresh UT and the corresponding

In events are forwarded to the enforcer. Then, the interpreter

is loaded with the code of the function called by the user,

and passed the (tagged) user inputs.

Track: This code is executed by the interpreter, updating the

content of permanent storage and computing a tentative out-

put value. For every data item in both working memory and

permanent storage, the interpreter additionally maintains

a UT history (see next section) that conservatively approxi-

mates the set of user inputs that have influenced its current

value. At the end of the Track phase, the interpreter returns

an output value to the wrapper.

Control: The wrapper computes (an overapproximation of)

the Out and Itf events corresponding to the new tentative

output. The UT history of the output is used to identify a su-

perset of all inputs that interfered with the output, and hence

generate the right Itf events. These events are forwarded to

the enforcer, which responds with a verdict. Finally, the out-

put is emitted if and only if the enforcer’s verdict is empty,

i.e., if and only if the new output complies with the policy.

After a Control phase, the system can either start a new

Track phase or return to the Taint phase to process the

next set of arguments. The UT histories of data in perma-

nent storage are persisted, thereby tracking the influence of

inputs over their entire lifetime.

Example 4.1. Let us revisit Example 2.1 in the TTC context. In the

Taint phase, the wrapper receives the input username = Bob from

user Alice querying function user_timeline. It tags it with the

UT 𝑖 = (𝜏0, username) and sends the corresponding In event to the

enforcer. It then forwards the tagged input to the interpreter. In the

Track phase, the interpreter computes the first output (to be sent to

trustedanalytics.com), which it sends back to the wrapper. Then,
in the Control phase, the wrapper generates the corresponding

Out and Itf events, which it sends to the enforcer. Depending on the
enforcer’s verdict, the corresponding output is (or is not) forwarded

to trustedanalytics.com. After the end of the Control phase,

a new Track phase starts, this time producing the second output

(to evilanalytics.com). This Track phase is followed by a new

Control phase handling the output to evilanalytics.com. Two
other iterations follow to generate and handle the two outputs to

Alice. After the last output has been produced, a new Taint phase

can take place to process the next user input.

602



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

In practice, developers should properly handle data that they

cannot output, rather than just have outputs be suppressed. This re-

quires proactive checks that allow programs to obtain enforcer ver-

dicts ahead of time and react to them appropriately. With proactive

checks, developers can, e.g., remove data items from a page being

built if these items cannot be displayed according to the current

policy. To support such proactive checks, the interpreter must be

able to perform direct queries to the enforcer in the Track phase.

Example 4.2. A version of the code from Figure 3 with proactive

checks is shown in Figure 4. Proactive enforcer calls are performed

via the primitive check. If the content of posts cannot be used for

marketing, a non-personalized ad is generated (l. 11). The function

filter_check (l. 1-5) filters out messages that cannot be shown

to the caller user for service purposes; it is used (l. 10) to remove

all posts that the caller is not allowed to see from the page. These

operations occur during the Track phase.

4.2 TTC Programs

A TTC program is a mapping 𝑓 → 𝜋 (𝑓 ) from function names to

non-empty, finite sequences of tuples of the form

𝜋 (𝑓 ) = ((code𝑖 , out_y𝑖 , out_u𝑖 , out_p𝑖 , time𝑖 ))1≤𝑖≤𝑘 .
Given a function name 𝑓 , the tuple sequence 𝜋 (𝑓 ) specifies the
behavior of 𝑓 . More precisely, each tuple in the sequence encodes

a block of non-IO source code code𝑖 followed by a single output

statement that attempts to output the content of variable out_y𝑖 to
user out_u𝑖 for purpose out_p𝑖 . The complete source code of the

function is obtained by concatenating the (code𝑖 )1≤𝑖≤𝑘 and their

respective output statements. Each out_u𝑖 can take any value in U
or the special value me denoting the user that performed the latest

input. The integer time𝑖 ∈ N is the fixed duration of executing

code𝑖 . In the following, the various components of 𝜋 (𝑓 )𝑖 will be
denoted by 𝜋 (𝑓 )𝑖 .code, . . . , 𝜋 (𝑓 )𝑖 .time respectively. Note that this
definition fits into the time-insensitive framework described in

Section 2.3 above.

Example 4.3. The function user_timeline in Figure 3 can be

decomposed as follows, where 𝜀 denotes an empty source code:

𝜋 (𝑓 ) = ( ( ⟨code l. 9–15⟩, username, trustedanalytics.com, Analytics),
(𝜀, username, evilanalytics.com, Analytics),
(𝜀, posts, me, Service),
(𝜀, ad, me, Marketing)) .

To simplify the presentation, we consider non-IO source code

written in a Turing-complete language called TTCWhile that ma-

nipulates integer values. We fix a set O of binary operator symbols

and a mapping Ω : O→ (D × D→ D) interpreting these symbols.

For illustrative purposes, we assume that O contains at least two

symbols == and + such that Ω(==) = (𝑥,𝑦) ↦→ if 𝑥 = 𝑦 then 1 else 0
and Ω(+) = (𝑥,𝑦) ↦→ if {𝑥,𝑦} ⊆ N then 𝑥 +𝑦 else 0. The syntax of
TTCWhile programs is given by the following grammar:

𝑒 := 𝑐 | 𝑥 | 𝑒 ⊕ 𝑒

𝑠 := 𝑥 = 𝑒 | while 𝑥 {𝑏} | 𝑥 = check 𝑦 [𝑢 |me] 𝑝
𝑏 := 𝑠 | 𝑏;𝑏 | 𝜀

where 𝑐 ∈ D is a constant, ⊕ ∈ O a binary operator symbol, 𝑥 a

variable name, 𝑢 a user name, and 𝑝 a purpose.

A source code, represented by the non-terminal 𝑏 (“block”) is

a (possibly empty) sequence of statements. Statements include as-

signments of expressions (𝑥 = 𝑒), while loops (while 𝑥 {𝑏}), and
the special check instruction (𝑥 = check 𝑦 𝑢 𝑝). Expressions can

be constructed from constants (𝑐), variables (𝑥), and binary oper-

ators (𝑒 ⊕ 𝑒). The instruction 𝑥 = check 𝑦 𝑢 𝑝 puts 1 into 𝑥 if the

content of a variable 𝑦 can be output to some user 𝑢 for some pur-

pose 𝑝 , and 0 otherwise; the user that performed the last input can

be referred to as me. From assignments and while loops, we define
if statements as syntactic sugar, writing if 𝑥 {𝑏} as shorthand for

t = 𝑥 ; while t {𝑏; t = 0}.
For the rest of this section, we fix a TTCWhile program 𝜋 , an

enforceable policy 𝑃 ⊆ TΣIF , and choose an enforcer E for 𝑃 .

4.3 Tagged Values

Tagged values are a new data structure designed to support fine-

grained information-flow tracking and proactive checks.

A tagged value is a pair𝑤 = ⟨𝑣, 𝛼⟩ of a value 𝑣 ∈ D and a finite

list 𝛼 = [{ℓ11, . . . , ℓ1𝑘1 }, . . . , {ℓ𝐿1, . . . , ℓ𝐿𝑘𝐿 }] of finite sets of UTs.

The list 𝛼 is called a UT history. The UT history 𝛼 represents all

inputs that have influenced the value 𝑣 , as well as dependencies

between these influences. More specifically, whenever a variable x
contains𝑤 as above, we require the following properties to hold:

(1) The value 𝑣 may have been influenced only by those inputs

whose UT is one of the ℓ𝑖 𝑗 ;

(2) The UTs in the first set, i.e., {ℓ11, . . . , ℓ1𝑘1 }, are part of the
history of x independently of any input;

(3) For any 𝑖 > 1, the content of the 𝑖th set of the history,

{ℓ𝑖1, . . . , ℓ𝑖𝑘𝑖 }, has been influenced only by those inputswhose
UTs are in the 𝑖 − 1 previous sets.

Example 4.4. Consider a variable x containing the tagged value

⟨1, [{ℓ1}, {ℓ2, ℓ3}]⟩. The value of x is 1. The history indicates that:

(1) Inputs with UTs ℓ1, ℓ2, and ℓ3 may have influenced x’s value;
(2) No input has influenced that ℓ1 tags x;
(3) The input with UT ℓ1 has influenced that ℓ2 and ℓ3 tag x.

In practice, such a history can be obtained, e.g., by executing the

code x = 10; if y {x = u + v} when y, u, and v contain inputs

⟨1, [{ℓ1}]⟩, ⟨0, [{ℓ2}]⟩, and ⟨1, [{ℓ3}]⟩ respectively. In this case:

(1) The values of the inputs y, u, vwith UTs ℓ1, ℓ2, ℓ3 respectively
have all influenced the final value of x;

(2) The value of the input y with UT ℓ1 has influenced the final

value of x irrespective of the value of any other input;

(3) The value of the input ywith UT ℓ1 has influenced that u and
v (with UTs ℓ2 and ℓ3) influence x: if the if block is executed,

there is influence of u and v on x, whereas there is no such

influence if the if block is not executed.

When property (1) above holds, the Itf events resulting from

outputting 𝑣 must all be of the form Itf (ℓ𝑖 𝑗 , 𝑜) for some ℓ𝑖 𝑗 in 𝛼 . This

allows for a sound overapproximation of Itf events at runtime.

Unlike conventional dynamic IFC techniques based on tagging

data with labels from a fixed security lattice, our notion of tagged

values allows for arbitrarily fine-grained, per-input information-

flow tracking. The use of UT histories fulfilling properties (1)-(3),

rather than unordered UT sets that can fulfill only (1), is motivated

by the need to perform proactive checks while still keeping track of

603



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

information flows. As we will demonstrate in Section 4.6.2 below,

UT histories allow for such checks to be performed on outputs that

combine several inputs by providing an order in which individual

UTs can be checked.

4.4 State Space

TTC applications operate on a state space STTC = S𝑊 ×S𝐼×S𝐸×S𝑀 ,

where S𝑊 , S𝐼 , S𝐸 , and S𝑀 are the state spaces of the wrapper,

the interpreter, the enforcer, and persistent storage (also called

memory), respectively. The states of the wrapper and interpreter

are represented as record types; their structure will be introduced

in the next sections. The enforcer state stores a trace approximation.
A trace approximation is a trace 𝜎 ∈ TΣIF = S𝐸 that contains at
least as many Itf events as the actual information-flow trace of the
system. Finally, the memory state is a mapping from variable names

to tagged values.

4.5 Taint

The semantics of the Taint phase is given by the rule

𝜏′ = 𝜏 + 𝜋 (𝑓 )1 .time 𝑠′𝐸 = 𝑠𝐸 · (𝜏, {In (𝑢, 𝑓 , (𝜏, 𝑎𝑖 )) }1≤𝑖≤𝑘 )
taint

{step = Taint}, 𝑠𝐼 , 𝑠𝐸 , 𝑠𝑀
i(𝑢,𝑓 ,{𝑎𝑖 ↦→𝑑𝑖 }1≤𝑖≤𝑘 ,𝜏)−−−−−−−−−−−−−−−−−−−−→𝜋,𝑃

{step = Track, u = 𝑢, f = 𝑓 , t = 𝜏′, i = 1 },
init𝐼 (𝑓 ,𝑢, 𝑠′𝐸 , 𝜏

′, 1) , 𝑠′𝐸 , 𝑠𝑀 (𝑎𝑖 := ⟨𝑑𝑖 , [ {(𝜏, 𝑎𝑖 ) ] ⟩) .

This uses the three auxiliary functions

init𝐼 (𝑓 ,𝑢, 𝜎, 𝜏′, 𝑖) = {code = 𝜋 (𝑓 )𝑖 .code, pc = [], u_me = 𝑢, c = 𝑐E
𝑓 ,𝑢,𝜎,𝜏′ },

𝑐E
𝑓 ,𝑢,𝜎,𝜏′ (ℓ,𝑢

′, 𝑝) =
(
E

(
𝜎,

(
𝜏′, {Out

(
𝑓 , usr(𝑢,𝑢′), 𝑝, 𝜏′

)
, Itf

(
ℓ, 𝜏′

)
}
) )

= ∅
)

usr(𝑢,𝑢′) = if 𝑢′ = me then 𝑢 else 𝑢′.

This taint rule can be performed only when the wrapper state

has its step parameter set to Taint. First (Step 1 in Figure 2,

highlighted in yellow), the next set of inputs is retrieved. The caller

user 𝑢, the called function 𝑓 , and the input timestamp 𝜏 are read in

the wrapper’s state. Moreover, the timestamp 𝜏 is incremented by

𝜋 (𝑓 )1 .time to obtain the timestamp 𝜏 ′ = 𝜏 +𝜋 (𝑓 )1 .time of the next
tentative output, and the field i, which encodes the index of the

tuple of 𝜋 (𝑓 ) currently being executed, is set to 1. Second (Step 2

in Figure 2), the trace approximation is updated with the In events

corresponding to the last input. Third (Step 3 in Figure 2), the

interpreter’s state is initialized using the auxiliary function init𝐼 :
its field code receives the source code 𝜋 (𝑓 )1 .code of 𝑓 ; its program
counter history, discussed in the next section, is initialized to [];
the constant u_me is set to 𝑢; finally, the single-UT enforcement

oracle c, which will be used to execute check instructions in the

Track phase, is set to 𝑐E
𝑓 ,𝑢,𝜎,𝜏

. The function c takes as arguments a

UT ℓ , a user 𝑢, and a purpose 𝑝; it returns 1 if one can perform an

output to 𝑢 for purpose 𝑝 at timestamp 𝜏 ′ with a value influenced

by ℓ without violating 𝑃 . To detect violations, c calls the enforcer
E. The auxiliary function usr makes it possible to refer to the caller

user 𝑢 in c using the special constant me. Finally, the arguments 𝑎𝑖
are set in memory, each tagged with a fresh UT (𝜏, 𝑎𝑖 ).

𝑐 ∈ D
econst

[|𝑐 |] (𝑚) = ⟨𝑐, ∅⟩
evar

[|𝑦 |] (𝑚) =𝑚 (𝑦)

[|𝑒1 |] = ⟨𝑣1, 𝛼1 ⟩ [|𝑒2 |] = ⟨𝑣2, 𝛼2 ⟩
ebinop

[|𝑒1 ⊕ 𝑒2 |] (𝑚) = ⟨Ω (⊕) (𝑣1, 𝑣2), 𝛼1 ⋓ 𝛼2 ⟩

(a) Evaluation of values

[|𝑒 |] (𝑚) = ⟨𝑣, 𝛼 ⟩
assign

𝑥 = 𝑒 ;𝜋, 𝑝𝑐,𝑚 d 𝜋, 𝑝𝑐,𝑚 (𝑥 := ⟨𝑣, all(𝑝𝑐) · 𝛼 ⟩)
𝑚 (𝑥) = ⟨𝑣, 𝛼 ⟩ 𝑣 ≠ 0

while_true

while 𝑥 {𝑏 };𝜋, 𝑝𝑐,𝑚 d
𝑏; while 𝑥 {𝑏 }; pop;𝜋, [𝛼 ] · 𝑝𝑐, sanitize(𝑚,𝑏, 𝛼)

𝑚 (𝑥) = ⟨0, 𝛼 ⟩
while_false

while 𝑥 {𝑏 }, 𝑝𝑐,𝑚 d pop;𝜋, [𝛼 ] · 𝑝𝑐, sanitize(𝑚,𝑏, 𝛼)
pop

pop;𝜋, [𝑠 ] · 𝑝𝑐,𝑚 d 𝜋, 𝑝𝑐,𝑚

𝑚 (𝑦) = ⟨𝑣, 𝛼 ⟩ 𝜅 (𝑢, 𝑝, 𝛼) = ⟨𝑣′, 𝛼′⟩
check

𝑥 = check 𝑦 𝑢 𝑝 ;𝜋, 𝑝𝑐,𝑚 d 𝜋, 𝑝𝑐,𝑚 (𝑥 := ⟨𝑣′, all(𝑝𝑐) · 𝛼′⟩)

(b) Semantic rules

lhs(𝑏) =


∅ if 𝑏 = 𝜀

{𝑥 } ∪ lhs(𝑏′) if 𝑏 = 𝑥 = 𝑒 ;𝑏′

{𝑥 } ∪ lhs(𝑏′) if 𝑏 = 𝑥 = check 𝑦 𝑢 𝑝 ;𝑏′

lhs(𝑏′) ∪ lhs(𝑏′′) if 𝑏 = while 𝑥 {𝑏′ };𝑏′′

sanitize(𝑚,𝑏, 𝛼) =𝑚 (∀𝑣 ∈ lhs(𝑏) . 𝑣 := ⟨𝑑, 𝛼 · 𝛽 ⟩where ⟨𝑑, 𝛽 ⟩ =𝑚 (𝑣))
all( [𝛼1, . . . , 𝛼𝑘 ]) = 𝛼𝑘 · . . . · 𝛼1

𝜅 (𝑢, 𝑝, [𝑠1, . . . , 𝑠𝑘 ]) =


⟨1, [] ⟩ if 𝑘 = 0

⟨0, [] ⟩ if ∃ℓ ∈ 𝑠1 . c(𝑢, 𝑝, ℓ) ≠ 1

⟨𝑣, 𝑠1 · 𝛽 ⟩ where ⟨𝑣, 𝛽 ⟩ = 𝜅 (𝑢, 𝑝, [𝑠2, . . . , 𝑠𝑘 ])
if ∀ℓ ∈ 𝑠1 . c(𝑢, 𝑝, ℓ) = 1.

(c) Auxiliary functions

Figure 6: Small-step semantics of TTCWhile

4.6 Track

In the Track step, the interpreter executes the code stored in its

code field. We first present the semantics of assignments and loops

(Section 4.6.1), then the semantics of checks (Sections 4.6.2), and

finally state the track rule itself (Section 4.6.3).

4.6.1 TTCWhile Semantics. The small-step semantics of TTCWhile

is shown in Figure 6. The five rules assign,while_true,while_false,

pop, and check (Figure 6b) are of the form 𝜋, 𝑝𝑐,𝑚 d 𝜋 ′, 𝑝𝑐 ′,𝑚′
,

where 𝜋 is a source code, 𝑝𝑐 is a program counter history, and𝑚

is a memory state. The program counter history is a list of UT his-

tories. It keeps track of all inputs that have influenced the control

flow: when entering a while loop, the UT history of the variable in

the loop branches is added to 𝑝𝑐; when leaving the loop, this his-

tory is removed from 𝑝𝑐 . Three rules econst, evar, and ebinop

of the form [[𝑣]] (𝑚) = ⟨𝑤, 𝛼⟩ (Figure 6a) evaluate expressions to
tagged values over a given memory state𝑚.

The evaluation rules econst and evar are straightforward. Rule

ebinop evaluates expressions of the form 𝑒1 ⊕ 𝑒2. For this, the two

subexpressions are recursively evaluated to [[𝑒1]] (𝑚) = ⟨𝑣1, 𝛼1⟩ and
[[𝑒2]] (𝑚) = ⟨𝑣2, 𝛼2⟩; then, a tagged value with value Ω(⊕)(𝑣1, 𝑣2)

604



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

and UT history 𝛼1 ⋓ 𝛼2 is computed, where ⋓ is defined by

[𝑠1, ..., 𝑠𝐿 ] ⋓ [𝑡1, ..., 𝑡𝑀 ] =
{
[𝑠1 ∪ 𝑡1, ..., 𝑠𝐿 ∪ 𝑡𝐿, 𝑡𝐿+1, ..., 𝑡𝑀 ] if𝑀 ≥ 𝐿

[𝑠1 ∪ 𝑡1, ..., 𝑠𝑀 ∪ 𝑡𝑀 , 𝑠𝑀+1, ..., 𝑠𝐿 ] if 𝐿 ≥ 𝑀.

By this definition, the UT history of [[𝑒1 ⊕ 𝑒2]] (𝑚) contains all UTs
in the histories of [[𝑒1]] (𝑚) and [[𝑒2]] (𝑚). This reflects that the
inputs that have influenced the evaluation 𝑒1⊕𝑒2 are those that have
influenced the evaluation of 𝑒1 or 𝑒2. Moreover, the relative order

of the UTs within 𝛼1 and 𝛼2 respectively is preserved in 𝛼1 ⋓ 𝛼2.
The assign rule defines the semantics of assignments 𝑥 = 𝑒 .

First, [[𝑒]] is evaluated to some ⟨𝑣, 𝛼⟩. Then,𝑚(𝑥) receives a new
tagged value with value 𝑣 and UT history all(𝑝𝑐) · 𝛼 , where all(𝑝𝑐)
concatenates all UT histories in 𝑝𝑐 (see Figure 6c). Thus the new UT

history of𝑚(𝑥) contains all UTs in the history of [[𝑒]] (𝑚), as well as
all UTs in the program counter history. This reflects that the inputs

that influenced the value of 𝑚(𝑥) are those that influenced the

result of evaluating 𝑣 or the control flow. Prepending of all(𝑝𝑐) to 𝛼
records that the presence of the UTs from 𝛼 in𝑚(𝑥) depends on the

inputs with UTs in all(𝑝𝑐), which have influenced the control flow.

Thewhile_true andwhile_false rules define the semantics of

loops while 𝑥 {𝑏}. If𝑚(𝑥) = ⟨𝑣, 𝛼⟩ and 𝑣 ≠ 0, then while_true is

applicable. This rule adds 𝑏 at the front of the code to be executed

and prepends 𝛼 to 𝑝𝑐 , recording that the inputs corresponding to

the UTs in 𝛼 now influence the control flow. To cover any implicit
flows that the loop’s execution can cause, while_true additionally

adds the UTs 𝛼 to𝑚(𝑣) for all variables 𝑣 that can be modified by 𝑏.

The set of such variables is computed using the auxiliary function

lhs (see Figure 6c). Finally, a special pop instruction is inserted after

while. Its semantics is defined by the pop rule, which removes the

top element of the program counter history after the while loop
completes. If 𝑣 = 0, the rule while_false is applied instead. In

contrast towhile_true, it does not add𝑏 to the code to be executed.

Example 4.5. Let 𝑘0 = while x {z = a + b; x = 0}. Consider
the initial memory state𝑚0 = {a ↦→ ⟨3, [{ℓ1}]⟩, b ↦→ ⟨2, [{ℓ2}]⟩,
x ↦→ ⟨1, [{ℓ3}]⟩, z ↦→ ⟨0, []⟩ . . . }. Executing 𝑘0 on𝑚0 yields:

𝑘0, [],𝑚0 d z = a + b; . . . , [ {ℓ3 }],𝑚0 (z := ⟨0, [ {ℓ3 }] ⟩) [while_true]
d x = 0; . . . , [ {ℓ3 }],𝑚0 (z := ⟨5, [ {ℓ3 }, {ℓ1, ℓ2 }] ⟩) =:𝑚1 [assign]
d while x . . . ; pop, [ {ℓ3 }],𝑚1 (x := ⟨0, [ {ℓ3 }] ⟩) [assign]
d pop; pop, [ {ℓ3 }, {ℓ3 }],𝑚1 (x := ⟨0, [ {ℓ3 }] ⟩) [while_false]
d pop, [ {ℓ3 }],𝑚1 (x := ⟨0, [ {ℓ3 }] ⟩) [pop]
d [], [],𝑚1 (x := ⟨0, [ {ℓ3 }] ⟩) [pop] .

The formal noninterference property satisfied by this semantics

is given in Appendix A (Lemma A.25).

4.6.2 Checks. The check rule in Figure 6b defines the semantics

of 𝑥 = check 𝑦 𝑢 𝑝 . It uses the function 𝜅 in Figure 6c, calling it

with the arguments (𝑢, 𝑝, 𝛼) where 𝛼 is the UT history of 𝑚(𝑥).
The function 𝜅 is defined so that this call returns 1 if, and only if,

c(𝑢, 𝑝, ℓ) = 1 for every UT ℓ contained in 𝛼 , where c is the single-UT
enforcement oracle defined in the previous section. In other words,

𝜅 (𝑢, 𝑝, 𝛼) = 1 if all inputs that have influenced 𝑦 can be output to 𝑢

for purpose 𝑝 . This matches the intuitive semantics of check.
While defining the value of 𝜅 (𝑢, 𝑝, 𝛼) using c(𝑢, 𝑝, ℓ) is easy,

choosing the right definition for the UT history of 𝜅 (𝑢, 𝑝, 𝛼) is more

difficult. This is because this definition must both (a) account for

all information flows between user inputs and the c(𝑢, 𝑝, ℓ) and

(b) ensure that the result of the check can still be branched on to

proactively react to (especially negative) enforcer verdicts.

Regarding (a): In general, the output value of 𝜅 can be influenced

by user inputs in such a way that concrete information about inputs

can be learnt. An example of this is given in Appendix A.2.

Regarding (b): We expect check to be used to proactively check if
an output is allowed: typically, after executing 𝑥 = check𝑦 𝑢 𝑝 , an if
branch will be used to generate different output values depending

on whether 𝑦 can be output or not. But if 𝑥 is tagged by any UT

for which 𝑐 (𝑢, 𝑝, ·) = 0, then no output value computed within the

if branch may be output, removing the practical benefit expected

from the check primitive. Therefore, we do not want 𝜅 (𝑢, 𝑝, 𝛼) to
be tagged by any UTs for which c(𝑢, 𝑝, ·) returns 0. Formally:

∀𝑝, 𝛼, 𝑣, 𝛽, ℓ . 𝜅 (𝑢, 𝑝, 𝛼) = ⟨𝑣, 𝛽⟩ ∧ ℓ ∈ uts(𝛽) ⇒ c(𝑢, 𝑝, ℓ) = 1

where uts( [𝑠1, . . . , 𝑠𝑘 ]) = 𝑠1 ∪ · · · ∪ 𝑠𝑘 .

In Appendix A.2, we show that the following algorithm, together

with our definition of UT histories, defines a 𝜅 (𝑢, 𝑝, 𝛼) that fulfills
the constraints expressed in both (a) and (b):

• Call c(𝑢, 𝑝, ℓ) for every UT ℓ in 𝛼 in the order of the history;

• If any call returns 0, then return 0, otherwise return 1;

• Tag the return value with all UTs for which c returned 1 and
that are not in the last set of the history, in the same order

as in the original history.

The definition of 𝜅 in Figure 6c formalizes this.

Example 4.6. Consider again the tagged value ⟨1, [{ℓ1}, {ℓ2, ℓ3}]⟩.
Fix some 𝑢0 and 𝑝0, and let 𝛼 = [{ℓ1}, {ℓ2, ℓ3}].

If c(𝑢0, 𝑝0, ℓ1) = 0, then we have 𝜅 (𝑢0, 𝑝0, 𝛼) = ⟨0, []⟩: the first
check performed is on ℓ1, which immediately fails. By invariant (2)

of UT histories (see Section 4.3), we know that the presence of ℓ1 in

the first set of 𝛼 has not been influenced by the value of any input.

Hence, the output of 𝜅 (𝑢0, 𝑝0, 𝛼) does not depend on the value of

any input and the empty UT history in ⟨0, []⟩ correctly accounts

for all information flows (a). Moreover, since the history is empty,

condition (b) is trivially fulfilled.

If c(𝑢0, 𝑝0, ℓ1) = 1, then 𝜅 (𝑢0, 𝑝0, 𝛼) = ⟨(c(𝑢0, 𝑝0, ℓ2) = 1) ∧
(c(𝑢0, 𝑝0, ℓ3) = 1), [{ℓ1}]⟩: the first call of c(𝑢0, 𝑝0, ·) on ℓ1 is suc-

cessful, hence the value of 𝜅 (𝑢0, 𝑝0, 𝛼) depends on the output of

c(𝑢0, 𝑝0, ·) on ℓ2 and ℓ3. The content of 𝜅 (𝑢0, 𝑝0, 𝛼) now depends on

the value of the inputwith UT ℓ1 (since this value influences the pres-

ence of ℓ2 and ℓ3 in the history), which is indicated by having ℓ1 in

the history [{ℓ1}] (a). But since c(𝑢0, 𝑝0, ℓ1) = 1, (b) is also fulfilled.

Note that the algorithm we described requires an order on the

set of UTs tagging a given value in memory that reflects the depen-

dencies between the influences of the various inputs. This moti-

vates the introduction of UT histories.

4.6.3 track Rule. The rule for the Track phase is

𝑠𝐼 .code, [], 𝑠𝑀 d∗ 𝜀, 𝑝𝑐′, 𝑠′𝑀
track,

{step = Track, u = 𝑢, f = 𝑓 , t = 𝜏, i = 𝑖 }, 𝑠𝐼 , 𝑠𝐸 , 𝑠𝑀
•−→𝜋,𝑃

{step = Control, u = 𝑢, f = 𝑓 , t = 𝜏, i = 𝑖 }, 𝑠𝐼 , 𝑠𝐸 , 𝑠′𝑀 .

whered∗
denotes the transitive closure ofd. After executing the

code in 𝑠𝐼 .code ( 1 ), the wrapper moves the system into a Control

state using a •-transition, updating the memory state ( 2 ).

605



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

4.7 Control

The rule defining the semantics of the Control phase is

𝑢′ = if 𝜋 (𝑓 )𝑖 .out_u = me then 𝑢 else 𝜋 (𝑓 )𝑖 .out_u

𝑝 = 𝜋 (𝑓 )𝑖 .out_p ⟨𝑣, 𝛼 ⟩ =𝑚 (𝜋 (𝑓 )𝑖 .out_y)

𝑏 = E(𝑠𝐸 , (𝜏, 𝑁 (𝑓 ,𝑢′, 𝑝, 𝜏, 𝛼))) 𝑠′𝐸 = 𝑠𝐸 · (𝜏, 𝑁 (𝑓 ,𝑢′, 𝑝, 𝜏, 𝛼))
ctrl

{step = Control, u = 𝑢, f = 𝑓 , t = 𝜏, i = 𝑖 },

𝑠𝐼 , 𝑠𝐸 , 𝑠𝑀
if 𝑏=∅ then o( 𝑓 ,𝑢′,𝑝,𝑣,𝜏) else •
−−−−−−−−−−−−−−−−−−−−−−−−−−→𝜋,𝑃

next𝑊 (𝑓 ,𝑢, 𝜏, 𝑖) , next𝐼 (𝑓 ,𝑢, 𝑠′𝐸 , 𝜏, 𝑖) ,

(if 𝑏 = ∅ then 𝑠′𝐸 else 𝑠𝐸 · (𝜏, ∅)) , 𝑠𝑀 .

where 𝑁 (𝑓 ,𝑢, 𝑝, 𝜏, 𝛼) = {Out (𝑓 ,𝑢, 𝑝, 𝜏) } ∪ {Itf (ℓ, 𝜏) | ℓ ∈ uts(𝛼) }

next𝑊 (𝑓 ,𝑢, 𝜏, 𝑖) =


{step = Taint} if 𝑖 = |𝜋 (𝑓 ) |
{step = Track, u = 𝑢, f = 𝑓 ,

t = 𝜏 + 𝜋 (𝑓 )𝑖+1 .time, i = 𝑖 + 1} otherwise

next𝐼 (𝑓 ,𝑢, 𝜎, 𝜏, 𝑖) =
{
{} if 𝑖 = |𝜋 (𝑓 ) |
init𝐼 (𝑓 ,𝑢, 𝜎, 𝜏 + 𝜋 (𝑓 )𝑖+1 .time, 𝑖 + 1) otherwise.

First, the recipient user 𝑢 ′, the purpose 𝑝 , and the output value

𝑤 of the tentative output defined by the program are retrieved

(Step 1 in Figure 2). Second, an overapproximation 𝑁 (𝑓 ,𝑢 ′, 𝑝, 𝜏, 𝛼)
of the set of events caused by the output is computed, and the en-

forcer’s verdict is obtained (Steps 2-3 in Figure 2). Third, depend-

ing on whether 𝑏 = ∅ (output complies with 𝑃 ) or 𝑏 ≠ ∅ (output

violates 𝑃 ), the output is either performed or suppressed, with the

trace approximation being updated accordingly (Step 4 in Fig-

ure 2). Finally, the system returns to a Track state incrementing

𝑖 if 𝑖 < |𝜋 (𝑓 ) |, or to a Taint state if 𝑖 = |𝜋 (𝑓 ) |; the corresponding
updates in the state of the wrapper and interpreter use the auxil-

iary functions next𝑊 and next𝐼 (Step 5 , not shown in Figure 2).

4.8 Guarantees

We now state and discuss sufficient conditions on 𝑃 that guaran-

tee the correct enforcement of the policy 𝑃 by any application

implementing our TTC semantics. These conditions are (1) Itf-
monotonicity and (2) independence of past outputs.

(1) We say that a policy 𝑃 is 𝑎-monotonic for some action 𝑎 ∈ A
iff, for any trace 𝜎 that violates 𝑃 , adding additional 𝑎 events in 𝜎

cannot restore compliance with 𝑃 . Formally, 𝑃 is 𝑎-monotonic iff

for all 𝜎 = ((𝜎𝑖 , 𝐷𝑖 ))𝑖 and 𝜎 ′ = ((𝜎 ′
𝑖
, 𝐷 ′

𝑖
))𝑖 , we have(

∀𝑖 . 𝐷𝑖 ⊆ 𝐷 ′
𝑖 ∧ 𝐷 ′

𝑖 − 𝐷𝑖 ⊆
{
𝑎(𝑑) | 𝑑 ∈ D𝜄 (𝑎)

})
∧ 𝜎 ∉ 𝑃 ⇒ 𝜎 ′ ∉ 𝑃 .

Example 4.7. The policies in Figure 1 are Itf-monotonic, as they

are of the formΦ𝜓 = □ [∀𝑓 ,𝑢, 𝑝, 𝑜, 𝑖 . Out (𝑓 ,𝑢, 𝑝, 𝑜) ∧ Itf (𝑖, 𝑜) ⇒ 𝜓 ] ,
where𝜓 contains no Itf event.

In general, TTC cannot enforce policies that are non-Itf-monotonic,

since UTs overapproximate information flows.

(2) We say that a policy 𝑃 is independent of past outputs if compli-

ance with 𝑃 does only dependent on past In events, but not on past

Out and Itf events. If we allow for malicious developers and users,

policies that depend on past outputs cannot, in general, be enforced

using TTC. This is shown in Appendix B. To support such policies,

one would need to adopt a coarser propagation of UTs in the pres-

𝑝𝑟𝑜𝑔 ::= 𝑓 𝑢𝑛; . . . ; 𝑓 𝑢𝑛 (1)

𝑓 𝑢𝑛 ::=

����� @route(𝑠𝑡𝑟 )
def 𝑖𝑑 (𝑖𝑑, . . . ,𝑖𝑑) :
𝑏𝑙𝑜𝑐𝑘

(2)

𝑏𝑙𝑜𝑐𝑘 ::=

����� 𝑠𝑡𝑚𝑡
. . .
𝑠𝑡𝑚𝑡

(3)

𝑠𝑡𝑚𝑡 ::= 𝑙ℎ𝑠 = 𝑒𝑥𝑝 (4)

| del 𝑙ℎ𝑠 [𝑒𝑥𝑝 ] (5)

| return 𝑒𝑥𝑝

�������
if 𝑒𝑥𝑝 :
𝑏𝑙𝑜𝑐𝑘

Jelse:
𝑏𝑙𝑜𝑐𝑘K

(6)

���� while 𝑒𝑥𝑝 :𝑏𝑙𝑜𝑐𝑘

���� for 𝑖𝑑 in 𝑒𝑥𝑝 :
𝑏𝑙𝑜𝑐𝑘

(7)

𝑙ℎ𝑠 ::= 𝑖𝑑J[𝑒𝑥𝑝 ]K∗ (8)

𝑒𝑥𝑝 ::= 𝑐𝑜𝑛𝑠𝑡 | 𝑖𝑑 | 𝑒𝑥𝑝 [𝑒𝑥𝑝 ] (9)

| Ω1 𝑒𝑥𝑝 | 𝑒𝑥𝑝 Ω2 𝑒𝑥𝑝 | 𝑖𝑑 (𝑒𝑥𝑝, . . . , 𝑒𝑥𝑝)
(10)

| {𝑒𝑥𝑝 :𝑒𝑥𝑝, . . . , 𝑒𝑥𝑝 :𝑒𝑥𝑝 } (11)

| [𝑒𝑥𝑝, . . . , 𝑒𝑥𝑝 ] | {𝑒𝑥𝑝, . . . , 𝑒𝑥𝑝 } (12)

| len(𝑒𝑥𝑝) | keys(𝑒𝑥𝑝) (13)

| sql(𝑞𝑢𝑒𝑟𝑦,𝑒𝑥𝑝) | render(𝑒𝑥𝑝,𝑒𝑥𝑝) (14)

| redirect(𝑒𝑥𝑝) | get_session(𝑐𝑜𝑛𝑠𝑡 ) (15)

| set_session(𝑐𝑜𝑛𝑠𝑡, 𝑒𝑥𝑝) (16)

| get(𝑐𝑜𝑛𝑠𝑡 ) | post(𝑐𝑜𝑛𝑠𝑡 ) (17)

| send(𝑐𝑜𝑛𝑠𝑡, 𝑐𝑜𝑛𝑠𝑡, 𝑒𝑥𝑝) (18)

| check(𝑒𝑥𝑝,𝑐𝑜𝑛𝑠𝑡J,𝑒𝑥𝑝K) | me() (19)

Figure 7: Syntax of PythonTTC programs

ence of implicit flows, or to store the UTs of all inputs that affected

the content of the trace approximation. Both approaches risk an ex-

plosion in the number of UTs to be stored (‘label creep’). Hence, in

this paper, we focus on policies that are independent of past outputs.

Example 4.8. All policies in Figure 1 are independent of past

outputs, since only In events appear below temporal operators.

Theorem 4.9 (Enforcement). Let

𝑆0,TTC = {step = Taint}, {}, (), (𝑥 ↦→ ⟨0, []⟩).

If 𝑃 is enforceable, Itf-monotonic, and independent of past outputs,
and the online application 𝐴TTC =

(
STTC, 𝑆0,TTC,→𝜋,𝑃

)
terminates,

then 𝐴TTC enforces the privacy policy 𝑃 ⊆ TΣIF .

Finally, we discuss the usefulness of the check instruction for

different classes of policies. The check instruction enables the pro-

gram to obtain the enforcer’s verdict in advance for individual in-

puts or data items. For instance, in the code from Figure 3, the

HTML representations of a sequence of events are incrementally

generated and added to the page only when check succeeds. The
programmer’s intent is that by doing so, she can ensure that the

page sent to the user will be accepted by the enforcer. However,

this is only the case if the enforcer’s verdict on a UT history 𝛼 ⋓ 𝛽

is no stricter than the conjunction of its verdicts on 𝛼 and 𝛽 respec-

tively. Otherwise, the output can fail despite the checks succeed-

ing; this would not affect the application’s security but may reduce

its usability. A policy of the form Φ𝜓 , however, always fulfills the
above condition, and can therefore be chosen as a general form of

policies amenable to both enforcement and checking.

Formal Proofs. All definitions and theorems from Sections 2–4

have been machine-checked using the Isabelle/HOL proof assistant.

The formalization, which has approximately 4,300 lines of Isar code,

is openly available [57]. More details are provided in Appendix A.

5 IMPLEMENTATION

To show how our approach can be used, we have implemented

WebTTC, a web programming framework with TTC semantics.

WebTTC features a Python-like language called PythonTTC that

extends TTCWhile with support for basic web programming prim-

itives. PythonTTC’s syntax is presented in Figure 7. Figures 3 and 4

show examples of PythonTTC code. Beyond standard Python fea-

tures (functions, dictionaries, lists, sets, l. 1–8 and 9–13), PythonTTC

606



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

Table 1: Size of code base for each application

Flask/Python Jacqueline WebTTC

Application V
i
e
w
*

M
o
d
e
l

T
e
m
p
l
a
t
e

V
i
e
w
*

M
o
d
e
l

S
e
c
u
r
i
t
y

T
e
m
p
l
a
t
e

V
i
e
w
*

S
e
c
u
r
i
t
y

T
e
m
p
l
a
t
e

Conf 284 - 633 335 75 94 643 298 16 675

HIPAA 136 146 846 134 189 134 948 140 12 979

Minitwit 102 - 114 115 9 91

Minitwit
+

121 - 119 141 9 100

* only functionality code, without registration functions

supports standard web-programming primitives (l. 2, 14–19) like the

binding of URLs to functions (@route), SQL database queries (sql,
which accepts SELECT, DELETE, and INSERT statements), templates

(render), redirections (redirect), getting and setting session vari-

ables (get_session, set_session), reading GET and POST argu-

ments (get, post), and sending data to third-parties over the net-

work (send). The render function supports assigning different pur-

poses to different arguments passed to the template renderer (l. 18-

19 in Figure 3), generating one event per argument. Suppression of

one of these events causes the corresponding argument to be set to

a default error value. The check primitive from TTCWhile is also

available (l. 19), and the constant me returns the identifier of the

current user (l. 19). Note that despite using a Python-like syntax,

PythonTTC cannot make use of external Python libraries, since

these libraries may, in general, rely on Python features not sup-

ported by PythonTTC. Instead, WebTTC supports web program-

ming directly as part of PythonTTC.

WebTTC compiles PythonTTC programs deployed by program-

mers into Python3 code. It provides an out-of-the-box interface in

which users can log in and specify their privacy policies, and im-

plements the wrapper through which they can interact with indi-

vidual applications. We use SQLite 3.31.1 for persistent storage and

the state-of-the-art MFOTL enforcer EnfPoly [56] for enforcement.

WebTTC consists of approximately 3,500 lines of Python code. We

provide a ready-to-use image [58] containing all artifacts and tests.

The framework discharges our model’s assumptions as follows:

(1) The assumptions about the privacy policies (independence

of past outputs, monotonicity, enforceability) are verified by

restricting policies to a ‘safe’ syntactic fragment of MFOTL

on which these requirements are fulfilled [7, 56].

(2) To keep the number of outputs in each function fixed, send-

ing data to third-parties is disallowed in if and then blocks.

(3) The intervals between inputs are kept larger than the func-

tions’ running time by processing the next input only after

the previous function terminates.

(4) Termination is ensured by introducing a timeout on function

execution. A more powerful alternative would be requiring

(automated) termination proofs from developers. Proving

the termination of programs is a well-researched task (see,

e.g., [44]) that is largely orthogonal to this work.

6 EVALUATION

Beyond showcasing the feasibility of TTC, our framework provides

a basis for demonstrating how TTC can be used to enforce nontriv-

ial user-provided privacy policies in real-world applications. We

evaluate WebTTC by answering the following research questions:

RQ1. Is WebTTC sufficiently expressive to develop realistic web

applications? How is the size of the code base impacted?

RQ2. How much runtime overhead does WebTTC incur? How

does it scale with the database size and policy choice?

RQ3. How does the runtime performance of WebTTC compare to

the performance of state-of-the-art IFC languages?

RQ1: Generality. We have implemented the following benchmark

applications from previous work within our framework:

• A conference management system (Conf) [77];

• A HIPAA-style health record manager (HIPAA) [77];

• The microblogging appMinitwit [75]; and

• Minitwit
+
, aMinitwit extension with personalized ads.

For each of these applications, we have implemented a Flask/Python

baseline application without security, both using pure SQL (for

Conf and Minitwit) and the SQLAlchemy ORM (for HIPAA).

For the two applications implemented in Jacqueline [77], we also

consider the original implementation. To our best knowledge, the

Riverbed [75] implementation of Minitwit is not publicly available.

For each application, every argument of call or render was an-

notated with a purpose in {Service, Marketing, Analytics} as in
Figure 3. In the considered applications, this process was straight-

forward, as all webpage components and calls to third-parties had a

clearly identifiable purpose (e.g., a block containing ads has purpose

Marketing, a list of other users’ posts has purpose Service). How-
ever, we recall that correct purpose annotation is critical and gener-

ally requires certification by trusted legal experts (see Section 2.3).

We have been able to implement the original application func-

tionality of all four applications in WebTTC. Table 1 shows the

size of the code base for each of these implementations. Each

PythonTTC implementation requires under 20 lines of security

code, which consists mostly of applications of check in views show-

ing lists of objects. The number of lines of code needed to imple-

mentation the application’s functionality grows by about 10% with

respect to the unsecured baseline, and is comparable to Jacqueline’s.

In the experience of this paper’s authors, porting applications

from the Flask/Python baseline to WebTTC was a relatively smooth

process. The similarity between the two interfaces allowed us to

convert most code straightforwardly without altering its structure.

The main difference between the Flask and WebTTC source codes

consists of the introduction of checks in functions displaying lists

of objects that may be subject to different permissions, and in the

addition of purpose annotations. Some additional testing with vari-

ous user policies was also required to ensure that the check state-
ments had been adequately added. However, since programmers

need not design the policies themselves, we expect the overall pro-

cess of porting applications to WebTTC to be less time-consuming

and more mechanical than with conventional IFC frameworks.

RQ2: Enforcement overhead.We assess the total runtime overhead

of TTC by comparing the latency of selected function calls from

our four test applications to the latency of the Flask/Python imple-

mentation without security. We thus obtain a conservative estimate

of the overhead of TTC. For each application, we selected (i) a func-

tion displaying one relevant entity, if available (a paper in Conf,

an individual in HIPAA), (ii) a function displaying a list of entities

(all papers for Conf, all individuals for HIPAA, the latest 30 posts
inMinitwit), and (iii) a function adding one entity, if available (a

607



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

Table 2: Average latency of Flask/Python, Jacqueline and WebTTC

(a) 𝑛 = 256, 𝑃𝑢 = 𝑃𝑢
2
, 𝑁 = 100 (data in ms)

𝑢

Function Impl. 1 4 16 64 256 1024

Conf:

view_paper

Flask 2 2 2 2 3 2

Jacqueline 9 9 9 9 9 9

WebTTC 4 4 4 4 4 5

O
Flask

2.0 2.0 2.0 2.0 1.3 2.5

Conf:

view_papers

Flask 61 62 62 62 62 62

Jacqueline 392 390 389 390 389 391

WebTTC 274 282 287 301 355 424

O
Flask

4.5 4.5 4.6 4.9 5.7 6.8

Conf:

submit_paper

Flask 5 5 5 5 6 6

Jacqueline 10 10 10 10 9 10

WebTTC 9 8 8 8 8 9

O
Flask

1.8 1.6 1.6 1.6 1.3 1.5

HIPAA:

view_patient

Flask 3 3 3 3 3 3

Jacqueline 65 65 67 66 47 57

WebTTC 2 3 2 2 3 3

O
Flask

0.7 1.0 0.7 0.7 1.0 1.0

HIPAA:

view_index

Flask 6 6 6 6 6 6

Jacqueline 780 786 784 770 747 816

WebTTC 103 103 103 103 103 106

O
Flask

17 17 17 17 17 18

Minitwit:

timeline

Flask 2 2 2 3 3 2

WebTTC 9 9 10 10 12 12

O
Flask

4.5 4.5 5 3.3 4.0 6.0

Minitwit:

add_message

Flask 6 6 6 5 5 5

WebTTC 15 15 10 6 6 6

O
Flask

2.5 2.5 1.7 1.2 1.2 1.2

Minitwit
+
:

timeline

Flask 4 4 5 6 6 7

WebTTC 10 10 10 11 13 13

O
Flask

2.5 2.5 2.0 1.8 2.2 1.9

Minitwit
+
:

add_message

Flask 7 6 7 7 9 9

WebTTC 17 17 13 6 5 6

O
Flask

2.4 2.8 1.9 0.9 0.6 0.7

(b) 𝑢 = 256, 𝑃𝑢 = 𝑃𝑢
2
, 𝑁 = 100 (data in ms)

𝑛

Function Impl. 1 4 16 64 256 1024

Conf:

view_paper

Flask 3 3 2 3 3 3

Jacqueline 9 10 10 10 9 10

WebTTC 4 4 4 4 4 4

O
Flask

1.3 1.3 2 1.3 1.3 1.3

Conf:

view_papers

Flask 2 3 6 17 62 239

Jacqueline 6 11 29 100 389 1637

WebTTC 4 7 22 82 355 1607

O
Flask

2.0 2.3 3.7 4.8 5.7 6.7

Conf:

submit_paper

Flask 6 6 5 6 6 6

Jacqueline 9 10 9 10 9 10

WebTTC 8 9 9 9 8 9

O
Flask

1.3 1.5 1.8 1.5 1.3 1.5

HIPAA:

view_patient

Flask 3 3 3 3 3 3

Jacqueline 30 30 31 33 47 39

WebTTC 3 2 3 3 3 3

O
Flask

0.7 1.0 1.0 1.0 1.0 1.0

HIPAA:

view_index

Flask 3 3 3 4 6 16

Jacqueline 34 40 65 164 747 4560

WebTTC 2 3 5 15 103 1887

O
Flask

0.7 1.0 1.7 3.8 17 118

Minitwit:

timeline

Flask 1 2 2 2 3 3

WebTTC 3 4 8 12 12 11

O
Flask

3.0 2.0 4.0 6.0 4.0 3.7

Minitwit:

add_message

Flask 4 5 5 5 5 6

WebTTC 6 6 6 7 6 7

O
Flask

1.5 1.2 1.2 1.4 1.2 1.2

Minitwit
+
:

timeline

Flask 6 6 6 6 6 7

WebTTC 3 4 8 13 13 11

O
Flask

0.5 0.7 1.3 2.2 2.2 1.6

Minitwit
+
:

add_message

Flask 7 7 7 9 9 9

WebTTC 5 6 5 5 5 7

O
Flask

0.7 0.9 0.7 0.6 0.6 0.8

(c) 𝑛 = 256, 𝑢 = 256, 𝑁 = 100 (data in ms)

𝑃𝑢
Function Impl. 𝑃0 𝑃1 𝑃2 𝑃3
Conf: view_paper WebTTC 4 4 4 4

Conf: view_papers WebTTC 421 369 355 368

Conf: submit_paper WebTTC 8 8 8 8

HIPAA: view_patient WebTTC 2 3 3 3

HIPAA: view_index WebTTC 102 102 103 102

Minitwit: timeline WebTTC 12 8 12 8

Minitwit: add_message WebTTC 6 6 6 7

Minitwit
+
: timeline WebTTC 14 8 13 8

Minitwit
+
: add_message WebTTC 5 6 5 6

(d) 𝑛 = 256, 𝑢 = 256, 𝑁 = 100 (data in ms)

Function Policy WebTTC Jacqueline

Conf: view_paper 𝑃𝑢
Conf

4 9

Conf: view_papers 𝑃𝑢
Conf

363 389

Conf: submit_paper 𝑃𝑢
Conf

9 9

HIPAA: view_patient 𝑃𝑢
HIPAA

2 47

HIPAA: view_index 𝑃𝑢
HIPAA

103 747

(e) Requirements covered by the policies

Policy [R1] [R2] [R3]

𝑃0
𝑃1 ✓
𝑃2 ✓ ✓ ✓
𝑃3 ✓
𝑃𝑢
Conf

✓ ✓
𝑃𝑢
HIPAA

✓ ✓

paper in Conf, a post inMinitwit). For each function, we measure

the page latency using the Python requests library on a high-end

laptop (Intel Core i5-1135G7, 32 GB RAM) over 𝑁 = 100 repetitions,

while varying the number 𝑛 of entities, the number 𝑢 of users, and

the policies 𝑃𝑢 of users. Large values of 𝑛 cover the scenario where

the application was used for an extended period of time. The range

of values for 𝑛 and 𝑢 is taken from Yang et al. [77]. We set 𝑃𝑢 to

either 𝑃𝑢
0
, 𝑃𝑢

1
, 𝑃𝑢

2
, 𝑃𝑢

3
where, for 𝑖 ∈ {0, . . . , 3}, 𝑃𝑢

𝑖
is identical to pol-

icy 𝑃𝑖 in Figure 1, except that Alice is replaced by 𝑢 and posts are

replaced by papers in Conf and individuals in HIPAA. We denote

by O
Flask

the ratio between the latencies ofWebTTC and Flask.

The results of our experiments is presented in Tables 2a–b. The

latency is constant with respect to 𝑛 and 𝑢 for functions of type (i)

and (iii), as well as for timeline. In these functions, a finite number

of elements is displayed and WebTTC only adds a constant number

of checks, leading to a constant, low overhead between 1 and 2.5.

The latency of these functions remains consistently below 15 ms,

irrespective of the choice of 𝑛, 𝑢, and 𝑃𝑢 . For view_papers and

view_index, we observe both linear latency in 𝑛 and an increase

in latency for large 𝑢 and 𝑛, with the overhead versus Flask being

1–10 for view_papers, or even higher for view_index. The high
overhead is caused by the large number of checks andmore complex

UT propagation induced when combining many inputs into a single

output. These functions show all entities stored in the database,

a ‘stress test’ [77] that is unlikely to materialize in applications

featuring appropriate pagination.

Provided that pagination is introduced, our experiments thus

show that the overhead of the TTC application with respect to a

baseline without security is moderate, and that its performance is

at least similar to that of conventional IFC systems. With a slow-

down of 1 to 2.5× and latency below 15 ms for all values of the pa-

rameters tested, the usability of the case study applications is not

significantly impacted by the additional runtime costs.

RQ3: Comparison with the state of the art. In the previous section,

we have given a conservative estimate of the overhead of TTC with

respect to a baseline without security. Next, we compare TTC’s run-

time performance on Conf andHIPAA to that of Jacqueline [77], a

state-of-the-art Python-based IFC web framework [78]. For all val-

ues of 𝑛 and 𝑢 tested, WebTTC exhibits a latency equal to or lower

than Jacqueline’s (see Table 2a–b). Better performance is also ob-

served in those functions for which WebTTC exhibits a significant

overhead with respect to the baseline without security.

Since Jacqueline is based on a different, developer-specified pol-

icy model, we additionally converted Conf’s and HIPAA’s origi-

nal IFC policies from [77] into MFOTL privacy policies 𝑃
Conf

and

𝑃HIPAA that lead to equivalent information-flow restrictions (see

Appendix D for details). The results of these additional experi-

ments, presented in Table 2d, confirm that for all values of 𝑛 and 𝑢,

WebTTC exhibits a latency equal or lower than Jacqueline’s.

7 RELATEDWORK

IFC Languages. Denning’s seminal works [28, 29] gave rise to a

rich IFC literature. Many IFC languages have been developed, in-

cluding JIF [61], FlowCaml [72], Jeeves [78], JSFlow [54], LWeb [64],

and others [5, 18, 20, 21, 25, 45, 47, 59, 60, 65, 71, 75]. Ourwork builds

on two ideas from this field: dynamic information-flow [4, 37, 67, 77]

608



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

Table 3: Comparison of related work

J
I
F
[
6
1
]

F
l
o
w
C
a
m
l
[
7
2
]

S
I
F
[
2
1
]

S
E
L
i
n
k
s
[
2
5
]

U
r
F
l
o
w
[
1
8
]

J
e
e
v
e
s
[
7
8
]

J
S
F
l
o
w
[
5
4
]

J
a
c
q
u
e
l
i
n
e
[
7
7
]

J
S
L
I
N
Q
[
5
]

H
a
i
l
s
[
4
5
]

D
A
I
S
Y
[
4
7
]

L
W
e
b
[
6
4
]

R
i
v
e
r
b
e
d
[
7
5
]

E
s
t
r
e
l
a
[
1
1
]

L
i
f
t
y
[
6
5
]

S
t
o
r
m

[
5
9
]

W
e
b
T
T
C

[R1] User-defined ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓
[R2] Fine-grained ✓ ✗ ✓ –

a –a –a ✗ –a ✓ –a –a ✗ ✗ –a –a –a ✓
[R3] Time-dependent ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
Proofs ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓
Noninterference ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
Code available ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ? ✓ ✓ ? ✓ ? ✓ ✓

a
Fine-grained restrictions defined at the data-model level only.

and monitored execution [48, 49] where a monitor integrated into

the program’s semantics ensures compliance with a specification.

Table 3 summarizes previous work with respect to support for

[R1-3], existence of formal correctness proofs for a core of the lan-

guage (‘Proofs’), and the enforcement of noninterference, as op-

posed to just access control (‘Noninterference’). Riverbed [75] is,

to our knowledge, the only approach tackling user-defined data

usage policies [R1]. However, Riverbed does not consider noninter-

ference, and comes with no formal proofs. More critically, its policy

language has very limited expressivity: a user can only (dis)allow

that all their data is aggregated with data of other users or writ-

ten to permanent storage. As a result, users can neither associate

custom policies to different inputs they provide nor exchange in-

formation with users that have different policies.

Jif [61], SIF [21], FlowCaml [72], JSLINQ [5], Lifty [65], and

Storm [59] use type systems, while UrFlow [18] relies on symbolic

execution and theorem proving to enforce privacy policies. These

inherently static approaches are not applicable to the case of user-

defined policies [R1], since programswould then need to be checked

against arbitrary conjunctions of user policies.

The dynamic IFC systems of Jeeves [78], Jacqueline [77], Hails [45],

LWeb [64], and Estrela [11] rely on policies defined at the data-

model level. Hails [45] and LWeb [64] are based on Haskell monads,

Estrela [11] on modifying database queries, and Jeeves [78] and

Jacqueline [77] on a custom 𝜆 calculus. In Jeeves and Jacqueline, sen-

sitive values are evaluated either to their actual value or a default

value according to the content of some level variable, which is set

according to the application’s policy. In all these systems, the fields

or rows of databases can be assigned confidentiality labels, whose

semantics may depend on the values of the data and on the context

of execution. Such approaches support fine-grained policies but not

arbitrary per-input policies as in requirement [R2], as they model in-

terference from the database to outputs rather than from inputs to

outputs. In particular, labels are not persisted between user queries.

Jif [61], SIF [21], and JSLINQ [5] support static reasoning about

interference between inputs and outputs in a fine-grained way, thus

fulfilling [R2]. Additionally, in SIF [21] and JSLINQ [5], programs

can dynamically create new security labels encoding data usage

permissions. This can be used to let users select between different

policy options. However, even then, the policy space available to

users is still strictly limited by the developers’ choices, and users

obtain no formal guarantees that the preferences they express are

correctly taken into account. Hence, these systems fall short of ful-

filling [R1]. In contrast, SELinks [25] uses a type system to guaran-

tee that access to sensitive data is always guarded by appropriate

policy checks. In SELinks, arbitrary functions can be assigned to

security labels to define custom policies, a mechanism that could

possibly be extended to support user-defined policies; however,

SELinks does not provide noninterference guarantees. None of the

above approaches supports time-dependent policies [R3].

Other Approaches. While we focus on the enforcement of IFC in

server-side code, IFC techniques are also used in the browser [9, 12,

13, 17, 27, 30, 54, 73] to avoid leaks caused by client-side code.

Another line of research has considered temporal IFC from the

point of view of runtime verification and (trace-based) runtime en-

forcement. Hyperproperty extensions of temporal logic such as Hy-

perLTL [22] and SecLTL [31] can be used to monitor noninterfer-

ence. However, hyperproperty monitors usually take the set of all

system traces as an input [2, 16, 24, 38–40, 50], a set which cannot

be computed in reasonable time for general programs.

For classical (non-hyper-)properties, efficient monitors [7, 8, 52,

70] and enforcers [56] exist and have been used to verify data

usage [6] and GDPR [3] restrictions in real-world settings.

Differential privacy [35] is a promising approach to enforcing

privacy regulations [26], providing strong statistical privacy guar-

antees. However, being statistical, these guarantees may be practi-

cally insufficient or of limited usability depending on the data type,

the size of datasets, and the queries considered [33, 34, 76].

The combination of fully homomorphic encryption [43] with

trusted computing allows for outsourcing complex computations

with reduced information leakage [41, 63]. However, these ap-

proaches are still prohibitively slow for general computation, while

efficient alternatives [41] sacrifice the coverage of implicit flows.

8 CONCLUSION

In this paper, we have presented Taint, Track, and Control (TTC),

the first language-based PbD approach that enforces user-defined,

fine-grained, temporal privacy policies in online applications against

both malicious peers and developers. We have introduced a notion

of information-flow traces that can be used to define expressive pri-

vacy policies; defined the formal semantics of TTC and proven its

correctness; and implemented and evaluatedWebTTC, a framework

that allows for the development of private-by-design applications.

The work described in this paper can be extended to address fur-

ther aspects of privacy regulations. In addition to requiring consent-

based usage, the GDPR recognizes users’ “right to be forgotten.”

Enforcing such a right requires timely erasure of data at rest, i.e.,
causation of systems actions [56]. Hence, adding support for causa-

tion to our TTC framework would allow it to cover a larger set of

the GDPR requirements. GDPR also allows programmers to disre-

gard user consent when data is anonymized, or when other legal

grounds (e.g., legitimate interest) are met. One may therefore con-

sider extending TTC with controlled declassification of user inputs.

Extending TTC (and WebTTC) to support more features of mod-

ern software systems, like communicating components, provides an-

other avenue for future research. With more features and a broader

GDPR coverage, we also plan to conduct studies involving external

developers and users, exploring how TTC can help develop of new

generation of user-centric, private-by-design software systems.

609



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

ACKNOWLEDGMENTS

François Hublet is supported by the Swiss National Science Foun-

dation grant “Model-driven Security & Privacy” (204796). We thank

the anonymous reviewers for their insightful feedback.

REFERENCES

[1] 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of

27 April 2016 on the protection of natural persons with regard to the processing

of personal data and on the free movement of such data, and repealing Directive

95/46/EC (General Data Protection Regulation). Official Journal of the European
Union (2016).

[2] Shreya Agrawal and Borzoo Bonakdarpour. 2016. Runtime verification of k-safety

hyperproperties in HyperLTL. In 2016 IEEE 29th Computer Security Foundations
Symposium (CSF). IEEE, 239–252. https://doi.org/10.1109/CSF.2016.24

[3] Emma Arfelt, David Basin, and Søren Debois. 2019. Monitoring the GDPR. In 24th
European Symposium on Research in Computer Security (ESORICS’2019) (ESORICS),
Karuze Sako, Steve Schneider, and Peter Y. A. Ryan (Eds.). Springer, 681–699.

https://doi.org/10.1007/978-3-030-29959-0_33

[4] Thomas H. Austin and Cormac Flanagan. 2009. Efficient purely-dynamic infor-

mation flow analysis. In 4th ACM SIGPLANWorkshop on Programming Languages
and Analysis for Security (PLAS), Stephen Chong and David A. Naumann (Eds.).

ACM, 113–124. https://doi.org/10.1145/1554339.1554353

[5] Musard Balliu, Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld. 2016. Jslinq:

Building secure applications across tiers. In 6th ACM Conference on Data and
Application Security and Privacy (CODASPY). 307–318. https://doi.org/10.1145/

2857705.2857717

[6] David Basin, Matús Harvan, Felix Klaedtke, and Eugen Zalinescu. 2013. Monitor-

ing Data Usage in Distributed Systems. IEEE Trans. Software Eng. 39, 10 (2013),
1403–1426. https://doi.org/10.1109/TSE.2013.18

[7] David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu. 2015. Monitor-

ing Metric First-Order Temporal Properties. J. ACM 62, 2, Article 15 (May 2015),

45 pages. https://doi.org/10.1145/2699444

[8] David Basin, Felix Klaedtke, and Eugen Zalinescu. 2017. The MonPoly Monitor-

ing Tool. In An International Workshop on Competitions, Usability, Benchmarks,
Evaluation, and Standardisation for Runtime Verification Tools (RV-CuBES), Giles
Reger and Klaus Havelund (Eds.), Vol. 3. 19–28. https://doi.org/10.29007/89hs

[9] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and

Yuan Tian. 2015. Run-time Monitoring and Formal Analysis of Information Flows

in Chromium. In NDSS. https://doi.org/10.14722/ndss.2015.23295

[10] Lujo Bauer, Jarred Ligatti, and David Walker. 2002. More enforceable security

policies. In Workshop on Foundations of Computer Security (FCS’02).
[11] Abhishek Bichhawat, Matt Fredrikson, Jean Yang, and Akash Trehan. 2020. Con-

textual and granular policy enforcement in database-backed applications. In Pro-
ceedings of the 15th ACM Asia Conference on Computer and Communications Se-
curity. 432–444. https://doi.org/10.1145/3320269.3384759

[12] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. 2014.

Information flow control in WebKit’s JavaScript bytecode. In Principles of Security
and Trust, Vol. 3. Springer, 159–178.

[13] Abhishek Bichhawat, Vineet Rajani, Jinank Jain, Deepak Garg, and Christian

Hammer. 2017. Webpol: Fine-grained information flow policies for web browsers.

In 22nd European Symposium on Research in Computer Security (ESORICS’17),
Vol. I. Springer, 242–259. https://doi.org/10.1007/978-3-642-54792-8_9

[14] European Data Protection Board. 2019. Guidelines 4/2019 on Article 25. Data

Protection by Design and by Default.

[15] Dino Bollinger, Karel Kubicek, Carlos Cotrini, and David Basin. 2022. Automating

cookie consent and GDPR violation detection. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association.

[16] Borzoo Bonakdarpour and Bernd Finkbeiner. 2016. Runtime verification for

HyperLTL. In International Conference on Runtime Verification. Springer, 41–45.
https://doi.org/10.1007/978-3-319-46982-9_4

[17] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering information

leakage from browser extensions. In ACM SIGSAC Conference on Computer and
Communications Security. 1687–1700. https://doi.org/10.1145/3243734.3243823

[18] Adam Chlipala. 2010. Static Checking of Dynamically-Varying Security Policies

in Database-Backed Applications. In 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI), Remzi H. Arpaci-Dusseau and Brad Chen

(Eds.). USENIX, 105–118.

[19] Jan Chomicki. 1995. Efficient Checking of Temporal Integrity Constraints Using

Bounded History Encoding. ACM Trans. Database Syst. 20, 2 (June 1995), 149–
186. https://doi.org/10.1145/210197.210200

[20] Stephen Chong, Andrew C. Myers, K. Vikram, and Lantian Zheng. 2009. Jif

Reference Manual. https://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html

[21] Stephen Chong, K. Vikram, and Andrew C. Myers. 2007. SIF: Enforcing Confiden-

tiality and Integrity in Web Applications. In 16th USENIX Security Symposium,
Boston, MA, USA, August 6-10, 2007, Niels Provos (Ed.). USENIX.

[22] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,

Markus N. Rabe, and César Sánchez. 2014. Temporal logics for hyperproperties.

In International Conference on Principles of Security and Trust. Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[23] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157–1210. https://doi.org/10.3233/JCS-2009-0393

[24] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Yan-

nick Schillo. 2021. Runtime enforcement of hyperproperties. In International
Symposium on Automated Technology for Verification and Analysis. Springer, 283–
299. https://doi.org/10.1007/978-3-030-88885-5_19

[25] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. 2009. Cross-Tier, Label-

Based Security Enforcement for Web Applications. In ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), Ugur Çetintemel, Stan-

ley B. Zdonik, Donald Kossmann, and Nesime Tatbul (Eds.). ACM, 269–282.

https://doi.org/10.1145/1559845.1559875

[26] Rachel Cummings and Deven Desai. 2018. The role of differential privacy in

GDPR compliance. In Workshop on Responsible Recommendation (FATREC).
[27] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.

2012. FlowFox: a web browser with flexible and precise information flow control.

In Proceedings of the 2012 ACM conference on Computer and communications
security. 748–759.

[28] Dorothy E. Denning. 1976. A lattice model of secure information flow. Commun.
ACM 19, 5 (may 1976), 236–243. https://doi.org/10.1145/360051.360056

[29] Dorothy E. Denning and Peter J. Denning. 1977. Certification of programs

for secure information flow. Commun. ACM 20, 7 (jul 1977), 504–513. https:

//doi.org/10.1145/359636.359712

[30] Dominique Devriese and Frank Piessens. 2010. Noninterference through secure

multi-execution. In IEEE Symposium on Security and Privacy. IEEE, 109–124.
https://doi.org/10.1109/SP.2010.15

[31] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and Helmut

Seidl. 2012. Model checking information flow in reactive systems. In International
Workshop on Verification, Model Checking, and Abstract Interpretation. Springer,
169–185. https://doi.org/10.1007/978-3-642-27940-9_12

[32] Rayna Dimitrova, Bernd Finkbeiner, and Markus N. Rabe. 2012. Monitoring

temporal information flow. In International Symposium On Leveraging Applica-
tions of Formal Methods, Verification and Validation. Springer, 342–357. https:

//doi.org/10.1007/978-3-642-34026-0_26

[33] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer.

2018. Detecting violations of differential privacy. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), David Lie, Mohammad Mannan,

Michael Backes, and XiaoFeng Wang (Eds.). ACM, 475–489. https://doi.org/10.

1145/3243734.3243818

[34] Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling Ji, Peng

Cheng, and Jiming Chen. 2021. AHEAD: Adaptive Hierarchical Decomposition

for Range Query under Local Differential Privacy. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), Yongdae Kim, Jong Kim, Giovanni

Vigna, and Elaine Shi (Eds.). ACM, 1266–1288. https://doi.org/10.1145/3460120.

3485668

[35] Cynthia Dwork. 2006. Differential privacy. In International Colloquium on Au-
tomata, Languages, and Programming. Springer, 1–12. https://doi.org/10.1007/

11787006_1

[36] Matthew B. Dwyer, George S Avrunin, and James C Corbett. 1998. Property

specification patterns for finite-state verification. In Proceedings of the second
workshop on Formal methods in software practice. 7–15.

[37] J. S. Fenton. 1974. Memoryless subsystems. Comput. J. 17, 2 (1974), 143–147.

https://doi.org/10.1093/comjnl/17.2.143

[38] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.

2018. RVHyper: A Runtime Verification Tool for Temporal Hyperproperties. In

International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 194–200. https://doi.org/10.1007/978-3-319-89963-3_11

[39] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2019.

Monitoring hyperproperties. Formal Methods in System Design 54, 3 (2019), 336–

363. https://doi.org/10.1007/s10703-019-00334-z

[40] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2020.

Efficient monitoring of hyperproperties using prefix trees. International Journal
on Software Tools for Technology Transfer 22, 6 (2020), 729–740.

[41] Andreas Fischer, Benny Fuhry, Florian Kerschbaum, and Eric Bodden. 2020.

Computation on Encrypted Data using Dataflow Authentication. Proc. Priv.
Enhancing Technol. 2020, 1 (2020), 5–25. https://doi.org/10.2478/popets-2020-0002

[42] Michal S. Gal and Oshrit Aviv. 2020. The Competitive Effects of the GDPR.

Journal of Competition Law & Economics 16, 3 (2020), 349–391. https://doi.org/

10.1093/joclec/nhaa012

[43] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In 41st
Annual ACM Symposium on Theory of Computing (STOC), Michael Mitzenmacher

(Ed.). ACM, 169–178. https://doi.org/10.1145/1536414.1536440

[44] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. 2006. AProVE 1.2:

Automatic termination proofs in the dependency pair framework. In Automated
Reasoning: Third International Joint Conference, IJCAR 2006, Seattle, WA, USA,

610

https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1007/978-3-030-29959-0_33
https://doi.org/10.1145/1554339.1554353
https://doi.org/10.1145/2857705.2857717
https://doi.org/10.1145/2857705.2857717
https://doi.org/10.1109/TSE.2013.18
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89hs
https://doi.org/10.14722/ndss.2015.23295
https://doi.org/10.1145/3320269.3384759
https://doi.org/10.1007/978-3-642-54792-8_9
https://doi.org/10.1007/978-3-319-46982-9_4
https://doi.org/10.1145/3243734.3243823
https://doi.org/10.1145/210197.210200
https://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-030-88885-5_19
https://doi.org/10.1145/1559845.1559875
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/359636.359712
https://doi.org/10.1109/SP.2010.15
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1007/978-3-642-34026-0_26
https://doi.org/10.1007/978-3-642-34026-0_26
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1145/3460120.3485668
https://doi.org/10.1145/3460120.3485668
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1093/comjnl/17.2.143
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.2478/popets-2020-0002
https://doi.org/10.1093/joclec/nhaa012
https://doi.org/10.1093/joclec/nhaa012
https://doi.org/10.1145/1536414.1536440


User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

August 17-20, 2006. Proceedings 3. Springer, 281–286. https://doi.org/10.1007/

11814771_24

[45] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C.

Mitchell, and Alejandro Russo. 2017. Hails: Protecting data privacy in untrusted

web applications. J. Comput. Secur. 25, 4-5 (2017), 427–461. https://doi.org/10.

3233/JCS-15801

[46] Joseph A Goguen and José Meseguer. 1982. Security policies and security models.

In IEEE Symposium on Security and Privacy (S&P). IEEE, 11–20. https://doi.org/

10.1109/SP.1982.10014

[47] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and Andrei

Sabelfeld. 2019. Information-flow control for database-backed applications. In

IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, IEEE, 79–94.
https://doi.org/10.1109/EuroSP.2019.00016

[48] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A Schmidt.

2006. Automata-based confidentiality monitoring. In Annual Asian Computing
Science Conference. Springer, 75–89. https://doi.org/10.1007/978-3-540-77505-8_7

[49] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A. Schmidt.

2007. Automata-Based Confidentiality Monitoring. In Advances in Computer
Science - ASIAN 2006. Secure Software and Related Issues. Springer, 75–89. https:

//doi.org/10.1007/978-3-540-77505-8_7

[50] Christopher Hahn. 2019. Algorithms for monitoring hyperproperties. In Inter-
national Conference on Runtime Verification. Springer, 70–90. https://doi.org/10.

1007/978-3-030-32079-9_5

[51] David Harborth, Maren Braun, Akos Grosz, Sebastian Pape, and Kai Rannenberg.

2018. Anreize und Hemmnisse für die Implementierung von Privacy-Enhancing

Technologies im Unternehmenskontext. Sicherheit (2018).
[52] Klaus Havelund, Doron Peled, and Dogan Ulus. 2018. DejaVu: A Monitoring

Tool for First-Order Temporal Logic. In 2018 IEEE Workshop on Monitoring and
Testing of Cyber-Physical Systems (MT-CPS). IEEE. https://doi.org/10.1109/mt-

cps.2018.00013

[53] Katia Hayati and Martín Abadi. 2004. Language-based enforcement of privacy

policies. In International Workshop on Privacy Enhancing Technologies. Springer,
302–313. https://doi.org/10.1007/11423409_19

[54] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:

Tracking Information Flow in JavaScript and Its APIs. In 29th ACM Symposium
on Applied Computing (SAC). ACM, 1663–1671. https://doi.org/10.1145/2554850.

2554909

[55] Mireille Hildebrandt and Laura Tielemans. 2013. Data protection by design and

technology neutral law. Computer Law & Security Review 29, 5 (2013), 509–521.

https://doi.org/10.1016/j.clsr.2013.07.004

[56] François Hublet, David Basin, and Srđan Krstić. 2022. Real-time policy enforce-

ment with metric first-order temporal logic. In European Symposium on Research
in Computer Security. Springer, 211–232. https://doi.org/10.1007/978-3-031-

17146-8_11

[57] François Hublet, David Basin, and Srđan Krstić. 2023. User-Controlled Privacy:

Taint, Track, and Control. Isabelle/HOL formalization. https://drive.google.com/

file/d/1Y2YMu3p92ke1fChbQG_UtUDek2NRkiXo

[58] François Hublet, David Basin, and Srđan Krstić. 2023. User-Controlled Privacy:

Taint, Track, and Control. VirtualBox Image. https://drive.google.com/file/d/

1l1sByhZAtfFd9yjLGlvh1-LIPJaOGzm4

[59] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Po-

likarpova, Deian Stefan, and Ranjit Jhala. 2021. STORM: Refinement Types for

Secure Web Applications. In 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI’21). 441–459.

[60] Jed Liu, Michael D George, Krishnaprasad Vikram, Xin Qi, Lucas Waye, and

Andrew C Myers. 2009. Fabric: A platform for secure distributed computation

and storage. In ACM SIGOPS 22nd symposium on Operating systems principles.
321–334.

[61] Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Con-

trol. In 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, 228–241. https://doi.org/10.1145/292540.292561

[62] Henrik Nergaard, Nils Ulltveit-Moe, Terje Gj, et al. 2015. A scratch-based graph-

ical policy editor for XACML. In 2015 International Conference on Information
Systems Security and Privacy (ICISSP). IEEE, 1–9.

[63] Elena Pagnin, Carlo Brunetta, and Pablo Picazo-Sanchez. 2018. HIKE : Walking

the Privacy Trail. In 17th International Conference on Cryptology and Network
Security (CANS, Vol. 11124), Jan Camenisch and Panos Papadimitratos (Eds.).

Springer, 43–66. https://doi.org/10.1007/978-3-030-00434-7_3

[64] James Parker, Niki Vazou, and Michael Hicks. 2019. LWeb: Information Flow

Security for Multi-Tier Web Applications. Proc. ACM Program. Lang. 3, POPL,
Article 75 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290388

[65] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance,

and Armando Solar-Lezama. 2020. Liquid information flow control. ACM on
Programming Languages 4, ICFP (2020), 1–30. https://doi.org/10.1145/3410237

[66] Ira S Rubinstein. 2011. Regulating privacy by design. Berkeley Tech. LJ 26 (2011),

1409.

[67] Andrei Sabelfeld and Alejandro Russo. 2010. From Dynamic to Static and Back:

Riding the Roller Coaster of Information-Flow Control Research. In Perspectives

of Systems Informatics. Springer, 352–365. https://doi.org/10.1007/978-3-642-

11486-1_30

[68] Beata A. Safari. 2016. Intangible privacy rights: How Europe’s GDPR will set a

new global standard for personal data protection. Seton Hall L. Rev. 47 (2016), 809.
[69] Fred B. Schneider. 2000. Enforceable Security Policies. ACM Trans. Inf. Syst. Secur.

3, 1 (Feb. 2000), 30–50. https://doi.org/10.1145/353323.353382

[70] Joshua Schneider, David Basin, Srđan Krstić, and Dmitriy Traytel. 2019. A For-

mally Verified Monitor for Metric First-Order Temporal Logic. In Runtime Verifi-
cation, Bernd Finkbeiner and Leonardo Mariani (Eds.). LNCS, Vol. 11757. Springer,

310–328. https://doi.org/10.1007/978-3-030-32079-9_18

[71] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. 2014. SeLINQ: Tracking

Information across Application-Database Boundaries. In 19th ACM SIGPLAN
International Conference on Functional Programming (ICFP). ACM, 25–38. https:

//doi.org/10.1145/2628136.2628151

[72] Vincent Simonet. 2003. The Flow Caml System (version 1.00): Documentation and

user’s manual. http://www.normalesup.org/~simonet/soft/flowcaml/manual/

[73] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman,

Brad Karp, and David Mazieres. 2014. Protecting Users by Confining JavaScript

with COWL. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’14). USENIX, 131–146.

[74] Shukun Tokas, Olaf Owe, and Toktam Ramezanifarkhani. 2019. Language-based

mechanisms for privacy-by-design. In IFIP International Summer School on Privacy
and Identity Management. Springer, 142–158. https://doi.org/10.1007/978-3-030-

42504-3_10

[75] Frank Wang, Ronny Ko, and James Mickens. 2019. Riverbed: Enforcing User-

defined Privacy Constraints in Distributed Web Services. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI). USENIX, 615–630.

[76] Benjamin Weggenmann and Florian Kerschbaum. 2021. Differential Privacy for

Directional Data. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.).

ACM, 1205–1222. https://doi.org/10.1145/3460120.3484734

[77] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac

Flanagan, and Stephen Chong. 2016. Precise, Dynamic Information Flow for

Database-BackedApplications. In 37th ACMSIGPLANConference on Programming
Language Design and Implementation (PLDI), Chandra Krintz and Emery Berger

(Eds.). ACM, 631–647. https://doi.org/10.1145/2908080.2908098

[78] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A Language for

Automatically Enforcing Privacy Policies. In 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 85–96. https:

//doi.org/10.1145/2103656.2103669

[79] Le Yu, Tao Zhang, Xiapu Luo, and Lei Xue. 2015. AutoPPG: Towards Automatic

Generation of Privacy Policy for Android Applications. In Proceedings of the 5th
Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices. 39–50. https://doi.org/10.1145/2808117.2808125

A FORMAL DEFINITIONS AND PROOFS

Our Isabelle/HOL formalization [57] is divided into four files:

File Section LOC Description

Traces.thy 2–3 633 Applications, traces

TaggedValues.thy 4.4 518 Tagged values

TTCWhile.thy 4.6.1–4.6.2 1145 TTCWhile

TTC.thy 4.2–4.5, 4.6.3, 4.7–4.8 1995 TTC semantics

This section summarizes the main definitions and theorems.

A.1 Applications and Traces (Traces.thy)
We denote with :: the standard cons operation and with · concate-
nation on tuples and lists, i.e., 𝑎1 :: [𝑎2, . . . , 𝑎𝑘 ] = [𝑎1, . . . , 𝑎𝑘 ] and
[𝑎1, . . . , 𝑎𝑘 ] · [𝑏1, . . . , 𝑏𝑘 ] = [𝑎1, . . . , 𝑎𝑘 , 𝑏1, . . . , 𝑏𝑘 ]. We fix a set of

states S, an initial state 𝑆0, a transition relation→, and a Boolean

predicate wf_in_seq2 on input sequences.

Definition A.1 (Well-formed input sequences, wf_in_seq’). An
input sequence 𝐼 is called well-formed, written wf_in_seq’ 𝐼 , if

wf_in_seq2 𝐼 holds and the timestamps in 𝐼 are strictly increasing.

Definition A.2 (IO trace, ttrans). We define

·
=⇒ inductively as:

611

https://doi.org/10.1007/11814771_24
https://doi.org/10.1007/11814771_24
https://doi.org/10.3233/JCS-15801
https://doi.org/10.3233/JCS-15801
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/EuroSP.2019.00016
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1109/mt-cps.2018.00013
https://doi.org/10.1109/mt-cps.2018.00013
https://doi.org/10.1007/11423409_19
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1016/j.clsr.2013.07.004
https://doi.org/10.1007/978-3-031-17146-8_11
https://doi.org/10.1007/978-3-031-17146-8_11
https://drive.google.com/file/d/1Y2YMu3p92ke1fChbQG_UtUDek2NRkiXo
https://drive.google.com/file/d/1Y2YMu3p92ke1fChbQG_UtUDek2NRkiXo
https://drive.google.com/file/d/1l1sByhZAtfFd9yjLGlvh1-LIPJaOGzm4
https://drive.google.com/file/d/1l1sByhZAtfFd9yjLGlvh1-LIPJaOGzm4
https://doi.org/10.1145/292540.292561
https://doi.org/10.1007/978-3-030-00434-7_3
https://doi.org/10.1145/3290388
https://doi.org/10.1145/3410237
https://doi.org/10.1007/978-3-642-11486-1_30
https://doi.org/10.1007/978-3-642-11486-1_30
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1145/2628136.2628151
https://doi.org/10.1145/2628136.2628151
http://www.normalesup.org/~simonet/soft/flowcaml/manual/
https://doi.org/10.1007/978-3-030-42504-3_10
https://doi.org/10.1007/978-3-030-42504-3_10
https://doi.org/10.1145/3460120.3484734
https://doi.org/10.1145/2908080.2908098
https://doi.org/10.1145/2103656.2103669
https://doi.org/10.1145/2103656.2103669
https://doi.org/10.1145/2808117.2808125


Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

io_nop

𝑆, 𝐼
()
==⇒ 𝑆, 𝐼

𝑆, 𝐼
𝜎
==⇒ 𝑆 ′,

(
𝑢, 𝑓 , 𝐴, 𝜏 ′′

)
:: 𝑇, 𝑆 ′

i(𝑢,𝑓 ,𝐴,𝜏 ′′)
−−−−−−−−−→ 𝑆 ′′

io_in

𝑆, 𝐼
𝜎 · (𝜏 ′′,{in(𝑢,𝑓 ,𝑎,𝑑) |𝐴(𝑎)=𝑑 })
===========================⇒ 𝑆 ′′,𝑇

𝑆, 𝐼
𝜎
==⇒ 𝑆 ′, 𝐼 ′ 𝑆 ′

•−→ 𝑆 ′′

io_none

𝑆, 𝐼
𝜎
==⇒ 𝑆 ′′, 𝐼 ′

𝑆, 𝐼
𝜎
==⇒ 𝑆 ′, 𝐼 ′, 𝑆 ′

o(𝑓 ,𝑢,𝑝,𝑑,𝜏 ′′)
−−−−−−−−−−−→ 𝑆 ′′

io_out.

𝑆, 𝐼
𝜎 · (𝜏′′,{out(𝑓 ,𝑢,𝑝,𝑑) })
=====================⇒ 𝑆 ′′, 𝐼 ′

The formal definition of noninterference is as follows. Assume

we can reach state 𝑆1 from 𝑆0 by processing the inputs 𝐼 , i.e., we

have 𝑆0, 𝐼
𝜎
==⇒

𝜋,𝑃
𝑆1, 𝐼1 for some 𝜎 , 𝐼1. Moreover, assume that there

exists 1 ≤ 𝑗 ≤ |𝐼 | and an argument name 𝑎 such that 𝐼 𝑗 = (𝑢, 𝑓 , 𝐴, 𝜏),
𝑎 ∈ dom𝐴, and𝐴[𝑎] = 𝑑 . We focus on this input, which has value 𝑑

and UT (𝜏, 𝑎). For any 𝑑 ′ ∈ D, denote by 𝐼 (𝑑 ′/𝑑) the input sequence
𝐼 ′ that is identical to 𝐼 , except that 𝐼 ′

𝑗
= (𝑢, 𝑓 , 𝐴[𝑎 := 𝑑 ′], 𝜏). Now,

assume that in the transition following state 𝑆1, the application

produces an output with value 𝑣1 and identifier 𝜏1. We say that input

(𝜏, 𝑎) interferes with output 𝜏1, written (𝜏, 𝑎) ⇝𝐼 𝜏1, if there exists

at least one value of the input identified by (𝜏, 𝑎) that is incompatible

with the output we observe. In other words, (𝜏, 𝑎) ⇝𝐼 𝜏1 holds

if we can find 𝑑 ′ ∈ D such that if 𝐼 (𝑑 ′/𝑑), 0 𝜎′
==⇒ 𝑆 ′

1
, 𝐼1, then the

application never outputs 𝑣1 to 𝑢 at time 𝜏1 in 𝑆 ′
1
. Thus, observing

𝑣1 tells us that the value of 𝑖 cannot have been 𝑑
′
.

Definition A.3 (Input-output interference, interf).
Assume that we have

𝑎 ∈ dom 𝐴 𝐼 = 𝐻 · (𝑢, 𝑓 , 𝐴, 𝜏) :: 𝑇 𝑆0, 𝐼
𝜎
==⇒ 𝑆1, 𝐼1

𝑆1
o(𝑓1,𝑢1,𝑝1,𝑣1,𝜏1)−−−−−−−−−−−−−→ 𝑆 ′.

We say that input (𝜏, 𝑎) interfereswith output𝜏1, written (𝜏, 𝑎) ⇝𝐼

𝜏1, iff there exists 𝐼 ′, 𝑑 ′, 𝜎 ′
1
, 𝜏2 such that

𝐼 ′ = 𝐻 ·
(
𝑢, 𝑓 , 𝐴[𝑎 := 𝑑 ′], 𝜏

)
:: 𝑇

𝑆0, 𝐼
′ 𝜎′

1
· (𝜏2,𝐷)

=========⇒ 𝑆 ′
1
, 𝐼 ′
1

𝜏2 ≥ 𝜏1

∀𝑖 ≤ |𝜎 ′
1
|. ∀𝐷 ′

1
. (𝜎 ′

1
· (𝜏2, 𝐷))𝑖 = (𝜏1, 𝐷 ′

1
) ⇒ out(𝑓1, 𝑢1, 𝑝1, 𝑣1) ∉ 𝐷 ′

1

When the transition relation is →𝜋,𝑃 , we denote by⇝𝜋,𝑃,𝐼 the

corresponding interference relation.

Definition A.4 (Information-flow traces, enforcement). We say that

an application enforces a property 𝑃 , written enforces 𝑃 , iff, for

any input sequence 𝐼 such that wf_in_seq’ 𝐼 and 𝑆0, 𝐼
𝜎
==⇒ 𝑆 ′, 𝐼 ′,

we have Δ𝐼 (𝜎) ∈ 𝑃 , where

𝜌 (in(𝑢, 𝑓 , 𝑎, 𝑑), 𝜏) = {In(𝑢, 𝑓 , (𝜏, 𝑎))}
𝜌 (out(𝑓 ,𝑢, 𝑝, 𝑑), 𝜏) = {Out(𝑓 ,𝑢, 𝑝, 𝜏)}

∪ {Itf ((𝜏 ′, 𝑎), 𝜏) | (𝜏 ′, 𝑎) ⇝𝐼 𝜏}

𝛿𝐼 (𝜏, 𝐷) =
(
𝜏,

⋃
𝑒∈𝐷

𝜌𝐼 (𝑒, 𝜏)
)

Δ𝐼 = map 𝛿𝐼 .

We will use the following lemma to prove correct enforcement

through (information-flow-trace) approximation:

Lemma A.5 (enforces_approx). Let ⊑ ∈ P(T × T), Π ⊆ T, and
𝑡 : S→ TΣIF . Assume that the following conditions hold:

(1) ∀𝜎, 𝜎′. 𝑃 ∈ Π ∧ 𝜎′ ∈ 𝑃 ∧ 𝜎 ⊑ 𝜎′ ⇒ 𝜎 ∈ 𝑃 ;

(2) ∀𝐼 , 𝜎, 𝑆, 𝐼 ′. 𝑃 ∈ Π∧wf_in_seq’ 𝐼∧
[
𝑆0, 𝐼

𝜎
==⇒ 𝑆, 𝐼 ′

]
⇒ Δ𝐼 (𝜎) ⊑ 𝑡 𝑆 ;

(3) ∀𝐼 , 𝜎, 𝑆, 𝐼 ′. 𝑃 ∈ Π ∧ wf_in_seq’ 𝐼 ∧
[
𝑆0, 𝐼

𝜎
==⇒ 𝑆, 𝐼 ′

]
⇒ 𝑡 𝑆 ∈ 𝑃 .

Then 𝑃 ∈ Π ⇒ enforces 𝑃 .

Here, we will instantiate ⊑ with the following:

Definition A.6. We define ⊑TTC∈ P(T × T) as follows:

((𝜏1, 𝐷1), . . . , (𝜏𝑘 , 𝐷𝑘 )) ⊑TTC ((𝜏 ′
1
, 𝐷 ′

1
), . . . , (𝜏 ′

𝑘′, 𝐷
′
𝑘′))

⇔ ∃(𝜏𝑖 , �̂�𝑖 )
1≤𝑖≤ ˆ𝑘

. remove_empty((𝜏 ′𝑖 , 𝐷
′
𝑖 )1≤𝑖≤𝑘′) = (𝜏𝑖 , �̂�𝑖 )

1≤𝑖≤ ˆ𝑘

∧ 𝑘 = ˆ𝑘

∧ (∀1 ≤ 𝑖 ≤ 𝑘. 𝜏𝑖 = 𝜏𝑖 ∧ 𝐷𝑖 ⊆ �̂�𝑖 ∧ �̂�𝑖 \ 𝐷𝑖 ⊆ {Itf (𝑖, 𝑜) | 𝑖, 𝑜})

where

remove_empty((𝜏𝑖 , 𝐷𝑖 )1≤𝑖≤𝑘 ) = [(𝜏𝑖 , 𝐷𝑖 ) | 1 ≤ 𝑖 ≤ 𝑘, 𝐷𝑖 ≠ ∅] .

A.2 Tagged Values (TaggedValues.thy)
LetH denote the set of UT histories, T the set of tagged values, and

Var the set of variable names. We consider the following operations

on UT histories:

• Concatenation: 𝛼 · 𝛽 (see above);

• Union: 𝛼 ⋓ 𝛽 (see above);

• Normalization:𝜈 ( [𝐿1, . . . , 𝐿𝑘 ]) = [𝐿1, 𝐿2\𝐿1, . . . , 𝐿𝑘\∪𝑘−1𝑖=1
𝐿𝑖 ];

• Normalized concatenation: 𝛼 ·̂ 𝛽 := 𝜈 (𝛼 · 𝛽);
• Normalized union: 𝛼 ⋓̂ 𝛽 := 𝜈 (𝛼 ⋓ 𝛽).

The normalization operation preserves the set of UTs contained

in the history while removing all duplicates, thus improving both

the memory and runtime performance of the interpreter. The nor-

malized operators ·̂ and ⋓̂ are obtained from the standard opera-

tors · and ⋓ by applying the standard operator followed by a nor-

malization step. As we will show next, the normalized operators

can be used in place of the standard operators in the semantics of

TTCWhile without any loss of privacy. For this reason, while we

sticked to · and ⋓ in the body of this paper to simplify the presenta-

tion, the normalized variant of the operators was used throughout

in our formal proofs and prototype.

We define the following indistinguishability relations on UT

histories, tagged values, and memory states:

612



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

Definition A.7. Let ℓ be a UT. The relations=ℓ ⊆ H2
and≈ℓ ⊆ T 2

are defined as follows:

[] =ℓ []
ℓ ∈ ℎ

ℎ :: 𝑡 =ℓ ℎ :: 𝑡 ′
𝑡 =ℓ 𝑡

′

ℎ :: 𝑡 =ℓ ℎ :: 𝑡 ′

𝛼 =ℓ 𝛼
′

⟨𝑣, 𝛼⟩ ≈ℓ ⟨𝑣, 𝛼 ′⟩
𝛼 =ℓ 𝛼

′ ℓ ∈ uts(𝛼) ∩ uts(𝛼 ′)
⟨𝑣, 𝛼⟩ ≈ℓ ⟨𝑣 ′, 𝛼 ′⟩.

We lift ≈ℓ to (Var → T)2 by defining

𝑚 ≈ℓ 𝑚
′ ≡ ∀𝑣 ∈ Var. 𝑚(𝑣) ≈ℓ 𝑚

′(𝑣) .

We prove a series of technical lemmata, of which the most im-

portant are:

Lemma A.8 (equiv_ind_history, equiv_ind_tv). For any UT
ℓ , the relations =ℓ and ≈ℓ are equivalence relations.

Lemma A.9. If ⟨𝑣, 𝛼⟩ ≈ℓ ⟨𝑣 ′, 𝛼 ′⟩ but ⟨𝑣, 𝛼⟩ ≠ ⟨𝑣 ′, 𝛼 ′⟩, then ℓ ∈
uts(𝛼) ∩ uts(𝛼 ′).

Lemma A.10. If ⟨𝑣, 𝛼⟩ ≈ℓ ⟨𝑣 ′, 𝛼 ′⟩, then 𝛼 =ℓ 𝛼
′.

Lemma A.11. If ⟨𝑣, 𝛼⟩ ≈ℓ ⟨𝑣 ′, 𝛼 ′⟩ and 𝛽 =ℓ 𝛽
′, then ⟨𝑣, 𝛽 ·̂ 𝛼⟩ ≈ℓ

⟨𝑣 ′, 𝛽 ′ ·̂ 𝛼 ′⟩.

Lemma A.12. If 𝛼 =ℓ 𝛼 ′ and ℓ ∈ uts(𝛼) ∩ uts(𝛼 ′), then for all
𝑣, 𝑣 ′, 𝛽, 𝛽 ′, we have ⟨𝑣, 𝛼 ·̂ 𝛽⟩ ≈ℓ ⟨𝑣 ′, 𝛼 ′ ·̂ 𝛽 ′⟩.

Lemma A.13. If 𝛼1 =ℓ 𝛼 ′
1
and 𝛼2 =ℓ 𝛼 ′

2
, then 𝛼1 ⋓̂ 𝛼2 =ℓ 𝛼 ′

1
⋓̂ 𝛼 ′

2
.

Lemma A.14. uts(𝛼 ⋓̂ 𝛽) = uts(𝛼 ·̂ 𝛽) = uts(𝛼) ∪ uts(𝛽)

Lemma A.15. If 𝑚 ≈ℓ 𝑚′ and 𝑤 ≈ℓ 𝑤 ′, then 𝑚(𝑥 := 𝑤) ≈ℓ

𝑚′(𝑥 := 𝑤 ′).

Lemma A.16. If𝑚 ≈ℓ 𝑚
′ and 𝛼 =ℓ 𝛼

′, then sanitize(𝑚,𝑏, 𝛼) ≈ℓ

sanitize(𝑚′, 𝑏, 𝛼 ′).

Lemma A.17. If 𝛼 =ℓ 𝛼
′, then 𝜅 (𝑢, 𝑝, 𝛼) ≈ℓ 𝜅 (𝑢, 𝑝, 𝛼 ′).

In general, the output value of 𝜅 can be influenced by user inputs.

Consider the following code 𝑘1, where u1 and p1 are arbitrary:

𝑘1 = u = check x u1 p1; if x {z = a}; v = check z u1 p1; w = u == v.

This program first checks x, assigns a to z if x is non-zero, and

checks z. The two verdicts are written into u and v, respectively.
Then, it stores the result of the comparison u == v in w. We claim

that if w is 0 after executing 𝑘1 on𝑚0, the initial value of x must

be nonzero. The proof is by contraposition: if x is initially 0, then

the if block is never executed; instead, the UTs of x are added to

the UTs of z, which can be modified within the if block. Hence,

when z is checked, it contains exactly the same UTs as x contained

initially, and the values of u and v must be equal. Hence if w is 0,

then x cannot have been 0 initially, i.e., x influences w through the

use of check. Therefore, our definition of 𝜅 must ensure that, after

executing 𝑘1, w is tagged with the initial UT of x.
Next, we prove the additional property of 𝜅 from Section 4.6.2:

Theorem A.18 (𝜅_accept). If 𝜅c (𝑢, 𝑝, 𝛼) = ⟨𝑣 ′, 𝛼 ′⟩ (where 𝜅c is
𝜅 defined as in Section 4.6.2 using the single-UT enforcement oracle c)
and ℓ ∈ uts(𝛼 ′), then c(𝑢, 𝑝, ℓ) = 1.

Example A.19. With the code 𝑘1 introduced above, our definition

gives 𝜅 (u1, p1, [{ℓ3}]) = ⟨0, []⟩ if 𝑐 (u1, p1, ℓ3) = 0, or ⟨1, [{ℓ3}]⟩ if
𝑐 (u1, p1, ℓ3) = 1. In the former case, ℓ3 is not allowed to be output,

and w must contain 0 after executing 𝑘1 irrespective of the value

of x, as both calls to check return 0. Hence, w is not influenced by

the value of x. In the latter case, ℓ3 is allowed to be output, but the

initial content of ymay not be. In this case, the first checkmay yield

𝑣1 = 1 and the second 𝑣2 = 0, and we may learn that x was initially

nonzero by observing that w contains 0. But since after executing
𝑘1, the variable w now contains ⟨𝑣1 = 𝑣2, [{ℓ3}]⟩, this information

flow is correctly tagged by the UTs. In both cases, 𝜅 (u1, p1, [{ℓ3}])
is only tagged with ℓ3 if 𝑐 (u1, p1, ℓ3) = 1.

A.3 TTCWhile (TTCWhile.thy)
We first need to define a few properties of programs:

Definition A.20 (Termination, terminates’). We say that a code

𝜋 terminates on a program counter history 𝑝𝑐 and a memory state

𝑚 for a given choice of c, written terminates’ 𝜋 𝑝𝑐 𝑚 c, iff there

exists 𝑝𝑐 ′ and𝑚′
such that 𝜋, 𝑝𝑐,𝑚 d∗

c 𝜀, 𝑝𝑐
′,𝑚′

.

Definition A.21 (pops). For any code 𝜋 , we denote by pops(𝜋)
the number of pop statements that appear in 𝜋 (excluding potential

pop statements inside while blocks).

Definition A.22 (Well-formedness, wf_code). We say that a code 𝜋

is well-formed, written wf_code 𝜋 , iff it contains no pop statements

inside its while blocks.

We prove that evaluating the same TTCWhile expression against

two indistinguishable memory states produces indistinguishable

tagged values:

LemmaA.23 (eval_ind). If𝑚 ≈ℓ 𝑚
′, [|𝑒 |] (𝑚) = 𝑤 and [|𝑒 |] (𝑚′) =

𝑤 ′, then𝑤 ≈ℓ 𝑤
′.

We then show the following properties for TTCWhile programs:

Lemma A.24 (Determinism, steps_deterministic). If

𝜋, 𝑝𝑐0,𝑚 d
∗
c 𝜀, 𝑝𝑐1,𝑚1 ∧ 𝜋, 𝑝𝑐0,𝑚 d

∗
c 𝜀, 𝑝𝑐2,𝑚2,

then 𝑝𝑐1 = 𝑝𝑐2 ∧𝑚1 =𝑚2.

Lemma A.25 (Noninterference, ni). If

terminates’ 𝜋 𝑝𝑐 𝑚1 c ∧ terminates’ 𝜋 𝑝𝑐 𝑚2 c

∧wf_code 𝜋 ∧ pops(𝜋) = |𝑝𝑐 | ∧𝑚1 ≈ℓ 𝑚2

∧𝜋, 𝑝𝑐,𝑚1 d
∗
c 𝜀, 𝑝𝑐1,𝑚

′
1
∧ 𝜋, 𝑝𝑐,𝑚2 d

∗
c 𝜀, 𝑝𝑐2,𝑚

′
2
,

then𝑚′
1
≈ℓ 𝑚

′
2
.

A.4 TTC Semantics (TTC.thy)
We prove our enforcement property in two steps. First, we fix a

set of objects and assumptions about them (a locale in Isabelle

parlance) and prove that, if these assumptions hold, the semantics

of TTC guarantees correct enforcement. Second, we show that the

assumptions in the locale hold for TTCWhile.

613



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

A.4.1 The PL Locale. We fix a program transition relationd∗
as

above, a program 𝜋 , an enforcer E, a property 𝑃 , an initial program

counter history 𝑝𝑐0, and a null program 𝜖 .

Further, we define 𝑆0,TTC = {step = Taint}, {}, (), (𝑥 ↦→ ⟨0, []⟩)
and restrict acceptable input sequences to those where inputs occur

at intervals larger than the maximal execution time of functions:

Definition A.26 (wf_in_seq2).

wf_in_seq2 𝐼 ≡ ∀𝑖 ∈ {1..|𝜋 (𝑓 ) |}, 𝑢, 𝑓 , 𝐴, 𝜏,𝑢 ′, 𝑓 ′, 𝐴′, 𝜏 ′.

𝐼𝑖 = (𝑢, 𝑓 , 𝐴, 𝜏) ∧ 𝐼𝑖+1 = (𝑢 ′, 𝑓 ′, 𝐴′, 𝜏 ′)

⇒ 𝜏 ′ > 𝜏 +
|𝜋 (𝑓 ) |∑︁
𝑖=1

𝜋 (𝑓 )𝑖 .time.

Finally, we assume:

(1) 𝑃 is independent of past outputs and Itf-monotonic,

(2) E is an enforcer for 𝑃 ,

(3) For all 𝑓 , |𝜋 (𝑓 ) | > 0,

(4) For all 𝑓 , 𝑖 ∈ {0..|𝜋 (𝑓 ) | − 1}, 𝜋 (𝑓 )𝑖 .time > 0,

(5) Noninterference: for all 𝑓 , 𝑖 ∈ {0..|𝜋 (𝑓 ) | − 1},𝑚1,𝑚2, 𝑝𝑐1,

𝑝𝑐2,𝑚
′
1
, and𝑚′

2
,

𝑚1 ≈ℓ 𝑚2

∧ 𝜋 (𝑓 )𝑖 .code, 𝑝𝑐0,𝑚1 d
∗
c 𝜖, 𝑝𝑐1,𝑚

′
1

∧ 𝜋 (𝑓 )𝑖 .code, 𝑝𝑐0,𝑚2 d
∗
c 𝜖, 𝑝𝑐2,𝑚

′
2

⇒𝑚′
1
≈ℓ 𝑚

′
2
,

(6) Determinism: for all 𝑓 , 𝑖 ∈ {0..|𝜋 (𝑓 ) | − 1},𝑚, 𝑝𝑐1, 𝑝𝑐2,𝑚1,

and𝑚2,

𝜋 (𝑓 )𝑖 .code, 𝑝𝑐0,𝑚 d∗
c 𝜖, 𝑝𝑐1,𝑚1

∧ 𝜋 (𝑓 )𝑖 .code, 𝑝𝑐0,𝑚 d∗
c 𝜖, 𝑝𝑐2,𝑚2

⇒𝑚1 =𝑚2 .

Under these assumptions, we show:

Lemma A.27 (approx). If

wf_in_seq’ 𝐼 𝑆0, 𝐼
𝜎
==⇒

𝜋,𝑃
𝑆 ′, 𝐼 ′ 𝑆 ′ = (𝑠𝑊 , 𝑠𝐼 , 𝑠𝑀 , 𝑠𝐸 ),

then Δ𝐼 (𝜎) ⊑TTC 𝑠𝐸 .

Lemma A.28 (happy). If

wf_in_seq’ 𝐼 𝑆0, 𝐼
𝜎
==⇒

𝜋,𝑃
(𝑠𝑊 , 𝑠𝐼 , 𝑠𝐸 , 𝑠𝑀 ), 𝐼 ′,

then 𝑠𝐸 ∈ 𝑃 .

We finally prove our main theorem.

Theorem A.29 (PL.main). enforces 𝑃 holds.

Proof. Using Lemma A.5 with ⊑ = ⊑TTC, 𝑡 = (𝑠𝑊 , 𝑠𝐼 , 𝑠𝑀 , 𝑠𝐸 ) ↦→
𝑠𝐸 , and Π the set of all policies that are enforceable, Itf-monotonic,

and independent of past outputs.

(1) By definition of ⊑TTC and Itf-monotonicity of policies in Π.
(2) By Lemma A.27.

(3) By Lemma A.28.

□

A.4.2 Refining the Locale: TTCWhile_PL. In this section, d∗
de-

notes the transition relation defined in Section A.3, programs are

TTCWhile programs, 𝑝𝑐0 is [], and 𝜖 is 𝜀. We now assume:

(1)–(5) As above,

(8) For all 𝑓 , 𝑖 ∈ {0..|𝜋 (𝑓 ) | − 1},
wf_code(𝜋 (𝑓 )𝑖 .code) ∧ pops(𝜋 (𝑓 )𝑖 .code) = 0.

We easily obtain:

Lemma A.30 (TTCWhile_PL ⊆ PL). TTCWhile_PL entails PL.

Proof. Assumptions (1)–(5) are identical.

Assumption (6) in PL follows from Lemma A.25 using (4) and (8).

Assumption (7) in PL follows from Lemma A.24. □

In particular, Theorem 4.9 holds when the programming lan-

guage in the TTC semantics is instantiated with TTCWhile. Given

that pop is not part of the language accessible to developers, this

provides the desired correctness property:

Theorem 4.9. Assume that for all 𝑓 , |𝜋 (𝑓 ) | > 0, and that every
𝜋 (𝑓 )𝑖 has a strictly positive running time.

If 𝑃 is enforceable, Itf-monotonic, and independent of past outputs,
then 𝐴TTC enforces the privacy policy 𝑃 ⊆ TΣIF .

Proof. Immediate corollary of TTCWhile_PL.main. □

B POLICIES THAT DEPEND ON PAST

OUTPUTS

Consider the code in Figure 8. Assume that the honest user Alice and

the impersonated user Eve first call set_secret and set_adv_input
to set adv_input and secret respectively. Eve has set her policy
to allow only one output for each of her inputs, while Alice wants

to prevent any other user from seeing her inputs. Clearly, Eve’s pol-

icy depends on past outputs. Next, Alice calls foo, which outputs 1

to her (the output is allowed since both adv_input and secret are
allowed to be output to Alice once). Finally, Eve can call bar. The
check (l. 9-10) fails, since adv_input is not allowed to be output

a second time, and bar returns 1 to Eve. But now, the adversary

knows that secret was 1, since if the secret had been 0 the output

in foo would not have involved any of Alice’s input, thus allowing

the check on l. 9-10 to succeed. The adversary was thus able to break

𝑃Alice by choosing malicious code and 𝑃Eve. To prevent the previ-

ous leak, we must either adopt a coarser propagation of UTs when

covering the implicit flow l. 4, or the UTs that affected the content of

the trace must be permanently remembered. Both approaches risk

an explosion in the number of UTs to be propagated (‘label creep’).

C METRIC FIRST-ORDER TEMPORAL LOGIC

In this section, we formally describe the syntax and semantics of

MFOTL. Our description is closest to [56], which studies MFOTL

from the perspective of enforcement.

Definition C.1. MFOTL formulae over Σ = (D,A, 𝜄) are defined
by the grammar

𝜑 ::= 𝑎(𝑡1, . . . , 𝑡𝜄 (𝑟 ) ) | ¬𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥 . 𝜑
| 𝐼 𝜑 | #𝐼 𝜑 | 𝜑 S𝐼 𝜑 | 𝜑 U𝐼 𝜑,

where 𝑡1, . . . , 𝑡𝑎 (𝑟 ) ∈ Var ∪ D, 𝑎 ∈ A, and 𝐼 are intervals on N.
614



User-Controlled Privacy: Taint, Track, and Control Proceedings on Privacy Enhancing Technologies 2024(1)

1 def foo():
2 y = 0
3 if secret == 1:
4 y = adv_input
5 return y
6

7 def bar():
8 y = 1
9 if check(adv_input ,
10 me, "..."):
11 y = 0
12 return y

13 def set_adv_input(x):
14 adv_input = x
15

16 def set_secret(x):
17 secret = x

𝑃Alice : “data derived from Alice’s

inputs shall only be output to Alice.”

𝑃Eve : “data derived from each of Eve’s

inputs shall be output at most once.”

Steps: 1. Alice calls set_secretwith x = 1; 2. Eve calls set_adv_inputwith
x = 0; 3. Alice calls foo; 4. Eve calls bar. If bar returns 1, then secret is 1.

Figure 8: Leak caused by a policy dependent on past outputs

We define the following as syntactic sugar: ⊤ := 𝑝 ∨ ¬𝑝 , ⊥ :=

¬⊤, 𝜑 ⇒ 𝜓 := ¬𝜑 ∨ 𝜓 , and the operators “once” (♦𝐼 𝜑 := ⊤ S𝐼
𝜑), “eventually” (♢𝐼 𝜑 := ⊤ U𝐼 𝜑), “always” (□𝐼 𝜑 := ¬ ♢𝐼 ¬𝜑), and
“historically” (■𝐼 𝜑 := ¬ ♦𝐼 ¬𝜑).

Satisfaction of an MFOTL formulae is defined over valuations.

Definition C.2. A valuation is a function 𝑣 : Var ∪ D→ D such

that 𝑣 (𝑑) = 𝑑 for all 𝑑 ∈ D.

We write 𝑣 [𝑥 ↦→ 𝑑] for the valuation obtained from 𝑣 by setting

𝑣 (𝑥) to 𝑑 . We can now define the semantics of MFOTL.

Definition C.3. Fix a signature Σ. Given 𝑘 ∈ N, a trace 𝜎 =

((𝜏𝑖 , 𝐷𝑖 ))1≤𝑖≤𝑘 over Σ, a timepoint 1 ≤ 𝑖 ≤ |𝜎 |, a valuation 𝑣 , and

an MFOTL formula 𝜑 over Σ, we define the satisfaction relation |=
as follows:

𝑣, 𝑖 |=𝜎 𝑎(𝑡1, ..., 𝑡𝑛) iff (𝑟, (𝑣 (𝑡1), ..., 𝑣 (𝑡𝑛))) ∈ 𝐷𝑖

𝑣, 𝑖 |=𝜎 ¬𝜑 iff 𝑣, 𝑖 ̸ |=𝜎 𝜑

𝑣, 𝑖 |=𝜎 ∃𝑥 . 𝜑 iff 𝑣 [𝑥 ↦→ 𝑑], 𝑖 |=𝜎 𝜑 for 𝑑 ∈ D
𝑣, 𝑖 |=𝜎 𝜑 ∨𝜓 iff 𝑣, 𝑖 |=𝜎 𝜑 or 𝑣, 𝑖 |=𝜎 𝜓

𝑣, 𝑖 |=𝜎  𝐼 𝜑 iff 𝑖 > 1 and 𝑣, 𝑖 − 1 |=𝜎 𝜑 and 𝜏𝑖 − 𝜏𝑖−1 ∈ 𝐼

𝑣, 𝑖 |=𝜎 #𝐼 𝜑 iff 𝑖 + 1 ≤ |𝜎 |, 𝑣, 𝑖 + 1 |=𝜎 𝜑 , and 𝜏𝑖+1 − 𝜏𝑖 ∈ 𝐼

𝑣, 𝑖 |=𝜎 𝜑 S𝐼 𝜓 iff 𝑣, 𝑗 |=𝜎 𝜓 for some 𝑗 ≤ 𝑖, 𝜏𝑖 − 𝜏 𝑗 ∈ 𝐼 ,

and 𝑣, 𝑘 |=𝜎 𝜑 for all 𝑘 , 𝑗 < 𝑘 ≤ 𝑖

𝑣, 𝑖 |=𝜎 𝜑 U𝐼 𝜓 iff 𝑣, 𝑗 |=𝜎 𝜓 for some |𝜎 | ≥ 𝑗 ≥ 𝑖, 𝜏 𝑗 − 𝜏𝑖 ∈ 𝐼 ,

and 𝑣, 𝑘 |=𝜎 𝜑 for all 𝑘 , 𝑗 > 𝑘 ≥ 𝑖

𝑣, 𝑖 |=𝜀 𝜑.

Each MFOTL formula 𝜑 over Σ defines a policy 𝑃𝜑 ⊆ TΣ as

follows:

Definition C.4. The MFOTL formula 𝜑 over Σ defines the policy

𝑃𝜑 = {𝜎 ∈ TΣ | ∃𝑣 . 𝑣, 1 |=𝜎 𝜑}.

Sufficient enforceability conditions are established in [56].

Using the operators ♦𝐼 and □, the policies from Figure 1 can be

formalized as follows:

𝜑𝑃0 = ⊤
𝜑𝑃1 = □

[
∀𝑓 ,𝑢, 𝑝, 𝑜, 𝑖, 𝑓 ′. Out(𝑓 ,𝑢, 𝑝, 𝑜) ∧ Itf (𝑖, 𝑜)

⇒ ♦[0,∞) In(“Alice”, 𝑓 ′, 𝑖) ⇒ 𝑝 ≠ “Marketing”
]

𝜑𝑃2 = □
[
∀𝑓 ,𝑢, 𝑝, 𝑜, 𝑖, 𝑓 ′. Out(𝑓 ,𝑢, 𝑝, 𝑜) ∧ Itf (𝑖, 𝑜)

⇒ ♦[0,∞) In(“Alice”, 𝑓 ′, 𝑖)
⇒ 𝑓 ′ = “add_message”

⇒ (𝑝 ≠ “Marketing”)
∨ (𝑝 = “Analytics” ∧𝑢 ≠ “trustedanalytics.com”)
∨ (𝑝 ≠ “Service” ∧ ¬(♦[0,1 week] In(“Alice”, 𝑓 ′, 𝑖)))

𝜑𝑃3 = □ [∀𝑓 ,𝑢, 𝑝, 𝑜, 𝑖 . Out(𝑓 ,𝑢, 𝑝, 𝑜) ∧ Itf (𝑖, 𝑜)
⇒ ♦[0,∞) In(“Alice”, 𝑓 ′, 𝑖) ⇒ 𝑢 = “Alice”

]
Generally, for any user v, we can express user policies of the form

□
[
∀𝑓 ,𝑢, 𝑝, 𝑜, 𝑖, 𝑓 ′. Out (𝑓 ,𝑢, 𝑝, 𝑜) ∧ Itf (𝑖, 𝑜) ⇒ ♦[0,∞) In(v, 𝑓 ′, 𝑖) ⇒ 𝜙

]
where 𝜙 expresses the condition under which v consents that the
data she input to function 𝑓 ′ can be output to user 𝑢 by function 𝑓

for purpose 𝑝 .

D CONVERSION OF JACQUELINE IFC

POLICIES

D.1 Conf

In theConf application from [77], the authors enforce the following

restrictions:

• The email of users is only visible to the chair or user itself;

• The author of papers is visible if the phase of the submission

process is ‘final’, or if the current user is the author, a chair,

a PC member, and there is no conflict with the paper;

• The coauthors, review assignments, paper versions, reviews,

comments are visible only if the current user is the author, a

chair, a PC member, and there is no conflict with the paper.

We assume that the phase is not final, that there are no conflicts,

and that the user identifiers are of the form “0”, “1”, . . . where “0”
is a chair, “1”, . . . , “10” are PC members, and “11”, . . . are regular
users. In this setup, the following TTC policy imposes the same

information-flow restrictions as in the original application:

𝜑𝑃‹u›
Conf

= ∀𝑓 ′, 𝑢, 𝑝, 𝑜, 𝑙, 𝑓 , 𝑎. Out(𝑓 ′, 𝑢, 𝑝, 𝑜) ∧ Itf (𝑙, 𝑜) ∧ ♦ In(𝑓 , 𝑎, 𝑙)
⇒ [((𝑓 = “submit_view” ∨ 𝑓 = “assign_reviewer”

∨ 𝑓 = “paper_view” ∨ 𝑓 = “submit_review_view”

∨ 𝑓 = “submit_comment_view”)))
∧ (𝑢 = ‹u› ∨ 𝑢 = “0” ∨ (𝑢 = “1” ∨ · · · ∨ 𝑢 = “10”))
∨ 𝑓 = “register” ∧ 𝑎 = “email” ∧ (𝑢 = ‹u› ∨ 𝑢 = “0”)] .

D.2 HIPAA

In the HIPAA application from [77], the authors enforce the fol-

lowing restrictions:

• The data from model Individual is visible to the individual;
• The location from model HospitalVisit is visible to the

patient, hospital, and users with profile type 6;

615



Proceedings on Privacy Enhancing Technologies 2024(1) François Hublet, David Basin, and Srđan Krstić

• The patient ID frommodel Treatment is visible to the patient
and prescribing entity;

• The patient ID frommodel Diagnosis is visible to the patient
and recognizing entity;

• The shared information from model BusinessAssociate-
Agreement is visible to the covered entity and business as-

sociate;

• The standard, first party, second party, and purpose from

model Transaction is visible to the first party and second

party;

• The email from model UserProfile is visible to the user

itself.

We perform tests with Individual only, hence we consider:

𝜑𝑃‹u›
HIPAA

= ∀𝑓 ′, 𝑢, 𝑝, 𝑜, 𝑙, 𝑓 , 𝑎. Out(𝑓 ′, 𝑢, 𝑝, 𝑜) ∧ Itf (𝑙, 𝑜) ∧ ♦ In(𝑓 , 𝑎, 𝑙)
⇒ 𝑓 = “Individual” ∧ 𝑢 = ‹u›.

616


	Abstract
	1 Introduction
	2 Enforcement in Online Applications
	2.1 Modeling Online Applications
	2.2 Privacy-Enforcing Applications
	2.3 Adversary Model

	3 Traces and Privacy Policies
	3.1 Input-Output Traces
	3.2 Information-Flow Traces
	3.3 Privacy Policies

	4 Taint, Track, and Control
	4.1 TTC: a High-Level Overview
	4.2 TTC Programs
	4.3 Tagged Values
	4.4 State Space
	4.5 Taint
	4.6 Track
	4.7 Control
	4.8 Guarantees

	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Formal Definitions and Proofs
	A.1 Applications and Traces (Traces.thy)
	A.2 Tagged Values (TaggedValues.thy)
	A.3 TTCWhile (TTCWhile.thy)
	A.4 TTC Semantics (TTC.thy)

	B Policies that Depend on Past Outputs
	C Metric First-Order Temporal Logic
	D Conversion of Jacqueline IFC Policies
	D.1 Conf
	D.2 HIPAA


