
Multiparty Private Set Intersection Cardinality and Its
Applications

Jiahui Gao

Arizona State University

jgao76@asu.edu

Ni Trieu

Arizona State University

nitrieu@asu.edu

Avishay Yanai

VMware Research

ay.yanay@gmail.com

ABSTRACT
We describe a new paradigm for multi-party private set intersec-

tion cardinality (PSI-CA) that allows 𝑛 parties to compute the in-

tersection size of their datasets without revealing any additional

information. We explore a variety of instantiations of this paradigm.

By operating under the assumption that a particular subset of par-

ties refrains from collusion, our protocols avoid computationally

expensive public-key operations and are secure in the presence of

a semi-honest adversary.

We demonstrate the practicality of our PSI-CA with an imple-

mentation. For 𝑛 = 16 parties with data-sets of 2
20

items each, our

server-aided variant takes 71 seconds. Interestingly, in the server-

less setting, the same task takes only 7 seconds. To the best of

our knowledge, this is the first ‘special purpose’ implementation

of a multi-party PSI-CA from symmetric-key techniques (i.e. an

implementation that does not rely on a generic underlying MPC).

We study two interesting applications – heatmap computation

and associated rule learning (ARL) – that can be computed securely

using a dot-product as a building block.We analyse the performance

of securely computing heatmap and ARL using our protocol and

compare that to the state-of-the-art.

KEYWORDS
multiparty, private set intersection cardinality, secure dot product,

heatmap computation, associated rule learning

1 INTRODUCTION
Secure multi-party computation (MPC) allows a set of parties to

jointly invoke a distributed computationwhile ensuring correctness,

privacy, and more. in this work, we study Private Set Intersection

Cardinality (PSI-CA), a special case of MPC, that allows multiple

parties to compute the intersection size of their private sets without

revealing additional information. PSI itself has been motivated by

many real-world applications such as contact discovery [26]. Over

the last several years PSI has become truly practical with extremely

fast cryptographically secure implementations [11, 22, 35, 38]. In

the setting of two parties, PSI with post-processing (a.k.a circuit-

based PSI), especially PSI-CA, has recently drawn more attention

with several applications, such as measuring the effectiveness of

online advertising [25], limiting the spread of Child Sexual Abuse

Material (CSAM) [7], and private contact tracing related to COVID-

19 [6, 15, 18]. However, the state-of-the-art PSI-CA is only efficient

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(2), 73–90
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0041

in the two-party setting [15, 18, 25]. This work considers a natural

generalization to the multi-party setting, which opens the oppor-

tunity for richer applications, like the two we showcase below.

The state-of-the-art protocol for PSI-CA in the multi-party setting

[10] relies on secret-shared computation [12], which might not

scale well for a large number of parties. In this work we present

a scalable protocol for PSI-CA in the multi-party setting with an
assumption that a particular subset of parties refrains from collusion.
This is an reasonable assumption for real-life applications especially

when performance is critical so that a weaker security guarantee

is applied as trade off. For example, in the Covid-19 heatmap com-

putation with multiple mobile network operators, a large cloud

computing company (e.g. Amazon AWS) can play the role of the

server, and the health service running by the government can play

the role of 𝑃1. Statutes and regulations imposed upon large com-

panies and governments reduce the likelihood of collusion among

these parties. In reality, such participants can be chosen to play

the role of server or leaders (i.e. 𝑃1, 𝑃2, or 𝑃𝑛 depending on the

protocol) when invoking the multi-party protocols we proposed.

Moreover, we present a new protocol, called DotProd, where
𝑛 parties may compute a sum of element-wise products of their

binary vectors without revealing any additional information. Math-

ematically, suppose party 𝑃𝑖 holds the𝑚-element vector 𝑥𝑖 , then

the parties obtain

∑𝑚
𝑗=1

∏𝑛
𝑖=1 𝑥𝑖 [𝑗], where 𝑥𝑖 [𝑗] is the 𝑗𝑡ℎ element

of the vector 𝑥𝑖 . Note that in the two-party case, the computation

is exactly of the dot product 𝑥1 · 𝑥2. We demonstrate the efficiency

of our protocols through two real-world applications: a COVID-

19 heatmap computation based on PSI-CA and an associated rule

learning (ARL) based on DotProd.
In the rest of this section, we will present the related work of

PSI-CA and its applications. Additionally, we will delve into the

technical overview and outcomes of our proposed protocols. To es-

tablish a foundation, Section 2 presents the necessary preliminaries.

Furthermore, we will introduce two novel cryptographic gadgets,

namely Server-Aided Shuffled OPRF and Server-Aided OPPRF, in

Section 3. We will discuss our PSI-CA protocols in Section 4 and

explore practical applications in Section 5. Lastly, in Section 6, we

will evaluate the performance of our PSI-CA protocols and provide

a comparison with existing approaches.

1.1 State-of-the-Art for PSI Cardinality
Private Set Intersection Cardinality (PSI-CA) is a variant of PSI in
which the parties learn the intersection size and nothing else. In

this work, we also focus on server-aided PSI-CA constructions. By

“server-aided", we refer to cases where the parties perform PSI-CA

computation with the help of a semi-honest cloud server(s). To the

best of our knowledge, this work proposes the first special-purpose

73

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0041

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

PSI-CA protocols from symmetric-key techniques that work in the

multi-party setting.

We start with discussing PSI-CA works in the two-party setting.

Clearly, one can use circuit-based PSI [36] to implement PSI-CA.
However, this generic solution is expensive due to the secure com-

putation inside the circuit. For the special-purpose two-party PSI-
CA constructions, the work [13, 25] extends the classic DH-based

PSI protocol [32] to support two-party PSI-CA by having a sender

shuffle the PRFs of their items before returning to the receiver.

Epione [43] also proposed a protocol that is suitable to the unbal-

anced, client-server setting, in which the server has a large database

of𝑚1 items and the client has a small database of𝑚2 items. The

protocol, however, requires 𝑂 (𝑚1 +𝑚2) expensive public-key op-

erations (group exponentiation). Delegated PSI-CA [18] improves

the efficiency of the two-party PSI-CA protocol on the client’s de-

vice, Catalic [18] proposes a delegated system in which the client

(i.e. PSI-CA receiver) can shift most of its PSI-CA computation

to multiple untrusted servers while preserving privacy. However,

Catalic system requires at least two non-colluding cloud servers

with a heavy computation/communication cost. Based on oblivi-

ous switching network (OSN), [21] proposes a two-party PSI-CA
(so-called OSN-based PSI-CA) which is better than circuit-based

PSI-CA protocol [36] in terms of communication cost and running

time in the WAN setting. However, it has both communication and

computation complexity𝑂 (𝑚 log(𝑚)) for a set size𝑚 due to the ex-

pensive OSN construction. Dittmer et al. [15] introduces a variant of

two-party PSI-CA (so-called weighted PSI-CA) in which each token

of the client has an associated secret weight. The weighted PSI-CA
is based on cheap Function Secret Sharing (FSS) constructions [8, 9],

thus it is efficient on both client’s and server’s sides. However, their

construction assumes that there exist two non-colluding servers,

each holding an identical input set. In Section 4, we show that the

more straightforward version of the server-aided PSI [27] yields a

fastest PSI-CA protocol in the two-party setting.

A multi-party PSI-CA protocol was first proposed by Kissner and

Song [28]. The protocol of [28] is based on oblivious polynomial

evaluation which is implemented using additively homomorphic

encryption. The basic idea is to represent a dataset as a polynomial

whose roots are its elements, and send the homomorphic encryp-

tions of the coefficients to other parties so that they can evaluate

the encrypted polynomial on their inputs. The protocol of [28] has

a quadratic computation and communication complexity in both

the size of dataset and the number of parties.

Mohassel et al. [34] proposed a PSI-CA protocol, but on secret

shared data in the honest-majority three-party setting, which is

different than the setting in this paper, as we consider a setting

with any number of parties, in which the input does not have to be

in a secret-sharing form. However, one can extend the protocol of

[34] to support the multi-party PSI-CA where all the parties secret-

share their input to the three parties of [34] which then jointly

compute the final output. We discuss the extension and compare

the performance of our protocol and [34]’s in Section 6.2.

Chandran et al. [10] proposed an efficient PSI (not PSI-CA), which

can be extended to circuit-based PSI. Hence, one could combine

their extended protocol with a circuit that computes the size of the

intersection to obtain a protocol for PSI-CA. At the technical core,

[10] is built on 𝑛-party secret-sharing functionalities introduced

by [12]. Their use of generic secure computation protocol for a

specific problem (of PSI-CA) makes their extended protocol less

attractive. In addition, [10] requires 10 interaction rounds while

our server-less multiparty PSI-CA protocol needs 4 rounds. We

compare the performance of our protocols and [10] in Section 6.2.

Very recently, Fenske et al. [19] proposed an efficient and mali-

cious multi-party PSI-CA procotol in the outsourcing setting. Their

approach makes use of 𝐾 servers, with the assumption that at least

one of the servers is not colluding with other participants. When

𝐾 = 1, their protocol is comparable to our server-aided one, as both

require a non-colluding server. However, our protocol outperforms

theirs in this scenario, as we employ symmetric-key operations

while [19] heavily relies on the additively homomorphic encryp-

tion. For instance, in the case of 𝑛 = 8 and𝑚 = 2
16
, our semi-honest

protocol can compute PSI-CA within 3 seconds. In contrast, the ma-

licious protocol [19] requires approximately 2 hours for 𝑛 = 5 and

𝑚 = 30000, as indicated in their Figure 10. This demonstrates the ef-

ficiency and superiority of our approach in terms of computational

time. Note that the protocol [19] only works in the server-aided set-

ting, whereas in this work we also propose a way to work without

such an entity, which we call the “server-less" setting.

1.2 Secure Dot Product and Its Applications
Dot-product plays a key role in machine learning and data analysis

tasks. Its implementation in a privacy-preserving setting remains

expensive as it requires either generating Beaver triples [5] or using

fully homomorphic encryption (FHE). There is a long list of results

for secure computation of dot product or linear algebra in general

[1, 4, 14, 24, 42, 46, 47]. For the applications that we consider in

this paper, namely, Covid-heatmap and ARL, dot-product of sparse
vectors would be sufficient. Many algorithms for linear algebra op-

erations, like matrix multiplication, leverage an apriori knowledge

of the operands being sparse, and sometimes these algorithms can

even be computed securely, without degrading their asymptotic

complexity. None of the above works, however, address the problem

of dot product in a setting where the vectors are sparse. The most

relevant works to ours are [4, 16, 41, 44, 45].

To the best of our knowledge, Vaidya and Clifton [44] were

the first to study secure computation of scalar product of two𝑚-

element vectors in the two-party setting and its application to

privacy-preserving association rule learning (ARL). Their dot prod-
uct protocol heavily relies on public-key operations, and requires

four communication rounds, communication complexity of 𝑂 (𝑚)
and computation complexity of 𝑂 (𝑚2).

Their follow-up work [45] is based on PSI, which makes the

complexity dependent only of 𝑡 , where 𝑡 is the upper-bound on

the Hamming weight of the vectors. They also propose a protocol

for the multi-party setting, which requires a commutative one-way

hash function so that the input from each party can be encrypted

by a common set of keys. The resulting ciphertexts are the same if

the original values are the same. Although efficient, their protocol

introduces an undesirable leakage; specifically, it leaks the items in

the intersection (rather only their sum). Moreover, their protocol is

insecure when the input domain is relatively small (e.g. of size 2
30
)

as one party could easily perform a brute force attack [37]. To handle

the latter security issue, [16] studied a two-party ARL and proposed
74

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

a solution via PSI that is built on the Goldwasser-Micali Encryption

[23] and Oblivious Bloom Intersection [17]. Their protocol still leaks

the items in the intersection, and became much more expensive

than the protocol we present in this paper. In addition, they did not

consider an extension to the multi-party case.

Recently, Bampoulidis et al. [4] studies COVID-19 heatmap com-

putation and proposes secure dot product based on homomorphic

encryption with several optimizations. However, the number of re-

quired HE operations is𝑂 (𝑚) (regardless of the Hammingweight of

the vectors), which makes their protocol expensive. Schoppmann et

al. [41] presents efficient two-party protocols for several common

sparse linear algebra operations including sparse matrix-vector

multiplication. The main building block of their protocols is a new

functionality – Read-Only Oblivious Map (ROOM). Using ROOM,

the cost of the secure matrix-vector multiplication is dependent

only on the number of non-zero entries, instead of the operands’

size. However, in all three ROOM constructions the parties invoke

generic secure computation in order to obtain a secret-shared out-

put. We compare the performance of our protocol to a ROOM-based

dot-product in Section 6.1.

1.3 Our Results and Techniques
1.3.1 Our PSI-CA Approach: We present a new multi-party PSI-CA
protocol paradigm with an assumption that a subset of particular

parties does not collude. We offer two variants of our protocol. The

first protocol relies on a non-colluding semi-honest server that has

no input. It is optimized for the number of communication rounds

between parties; that is, the protocol leverages a star network topol-

ogy, where parties mostly communicate with the server. The second

protocol removes the need of a server by reducing the problem of

𝑛-party PSI-CA to the problem of server-aided (𝑛−1)-party PSI-CA
with use of a semi-honest party 𝑃𝑛 who may have an input. The
base case with 𝑛 = 2 can be instantiated efficiently by two-party

server-aided PSI protocol of Kamara et al. [27]. However, [27] is

only for PSI itself (not PSI-CA)1. We simplify their PSI protocol and

present the server-aided two-party PSI-CA in Section 4.1.

The main building blocks of our multiparty PSI-CA protocols

are oblivious key-value store (OKVS) data structure [22], and/or

Oblivious Programmable PRF (OPPRF) [30]. To this end, we propose

a very simple and efficient protocol for server-aided OPPRF, which

we believe to be of independent interest. Our server-aided OPPRF

is based on a two-party server-aided shuffled OPRF, a functionality

we formally define in Section 3.1.

We provide an implementation of server-aided and server-less

variants of our PSI-CA approach for 𝑛 > 2. To the best of our

knowledge, this is the first ‘special-purpose’ implementation of

multi-party PSI-CA from symmetric-key techniques that does not

rely on generic secure computation. We find that multi-party PSI-
CA is practical, by evaluating our protocols over settings with mil-

lion items sets and 16 parties. The main reason for the efficiency of

our protocol is its reliance on fast symmetric-key primitives. This is

in contrast with prior multi-party PSI-CA protocols, which require

expensive public-key operations for each item [28] or computation

on secret-shared data [10].

1
Note that [27] has a protocol for multiparty PSI, but it reveals intersection items of

each pair-wise parties sets to the server and is non-trivial to support PSI-CA.

Interestingly, the server-less PSI-CA variant is about 10× faster

than the server-aided one. We consider colluding model in the semi-

honest setting which is introduced in detail in Section 2.1. The two

variants, however, offer different security guarantees. Specifically,

the former is secure in the presence of an adversary who may

passively corrupt any subset from {𝑃3, . . . , 𝑃𝑛} or one of 𝑃1,𝑃2 or
𝑃𝑛 (i.e. 𝑃1, 𝑃2 and 𝑃𝑛 are non-colluding). The latter (server-aided

PSI-CA) is secure in the presence of an adversarywhomay passively

corrupt any strict subset of {𝑃1, 𝑃3, . . . , 𝑃𝑛} or {𝑃2, 𝑃3, . . . , 𝑃𝑛} (i.e.
𝑃1 and 𝑃2 do not collude) or passively corrupt the cloud server C.
In some sense, one may look at the server-less variant as a multi-

server-aided PSI-CA but the servers have their private input. Hence,

we can use our efficient server-aided OPPRF (instead of the two-

party OPPRF [30]) in the server-less PSI-CA protocol, which may

explain why it is possible to get a better performance in this case.

In the server-less variant, we assign the non-colluding party 𝑃1 the

role of a server in the server-aided OPPRF protocol.

The security model employed in this work deviates from the

commonly known concept of “threshold security". Rather, we adopt

a specific but sufficiently general access structure, in which a desig-

nated subset of parties does not collude. Although this approach

differs from the conventional notion of threshold security, we do be-

lieve our approach can be used as a stepping stone toward achieving

security in the ‘standard’ threshold access structure.

Note that in practice, a server-aided model can be reasonable.

Performance is critical and often it makes sense given that the

alternative has a weaker security guarantee. For example, in the

federated learning setting, there is a server and many clients where

the server helps training a machine learning model for the benefit

of the clients. In this work, we motivate our protocols with two real-

world applications in which using a non-colluding, but semi-honest

server, makes complete sense. For example, in the Covid-19 heatmap

computation, an established company (e.g. Google or Apple) can

play the role of the server.

1.3.2 Our Multi-party Dot-Product of Binary Vectors (DotProd):
We propose a new protocol for computing the sum of element-

wise products of 𝑛 sparse binary vectors (so-called multiple dot

product, DotProd). Let us begin with the simpler case, where 𝑛 = 2,

known as secure dot product. One would expect a solution for a dot

product of𝑚-elements vectors to incur communication overhead

of at least𝑂 (𝑚), for the very fact that the parties need to first input
those elements (which usually involves some sort of encryption or

secret sharing on each element). In this work, we show that the

communication and computation complexity is independent of𝑚

and can be reduced to 𝑂 (𝑡), where 𝑡 is the upper bound on the

Hamming weight of the vectors. This improvement is significant

when the vectors are sparse (i.e. 𝑡 = 𝑜 (𝑚)).
For an𝑚-element binary vector 𝑥 we define idx(𝑥) = {𝑖 ∈ [𝑚] |

𝑥 [𝑖] = 1} to be the set of non-zero indices in 𝑥 . Suppose the receiver
𝑃0 and the sender 𝑃1 hold an𝑚-element binary sparse vector 𝑥0
and 𝑥1, respectively. The vectors are sparse and have the number

of non-empty elements bounded by 𝑡 = 𝑜 (𝑚). As a very simple

warm-up, we consider a non-secure dot product computation with

the communication complexity cost of𝑂 (𝑡). Given the input vector

𝑥0, the receiver computes 𝐴0 = idx(𝑥0) and the sender computes

𝐴1 = idx(𝑥1). The sender then sends 𝐴1 to the receiver, who is

75

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

able to compute the dot product 𝑥 ·𝑦 by computing the intersection

𝐴0 ∩𝐴1 and outputting its cardinality |𝐴0 ∩𝐴1 |.
The main advantage of the above solution is to reduce depen-

dency on the length of the vectors, especially when the input vectors

are sparse. To compute 𝑥0 · 𝑥1 securely, the parties run a private

set intersection cardinality protocol (PSI-CA) where 𝑃0 inputs 𝐴0

and 𝑃1 inputs 𝐴1. This idea, however, has received little attention

due to the large overhead required to compute PSI-CA. We then

extend DotProd to the multi-party case. Given an input vector 𝑥𝑖 ,

party 𝑃𝑖 computes 𝐴𝑖 = idx(𝑥𝑖). It is easy to see that the sum of

element-wise products of the vectors is equal to the size of their

intersection, namely,

∑𝑚
𝑗=1

∏𝑛
𝑖=1 𝑥𝑖 [𝑗] = |

⋂𝑛
𝑖=1𝐴𝑖 |. We implement

the multi-party DotProd using our multi-party PSI-CA.

1.3.3 Application to PSI-CA and DotProd: We show that our PSI-
CA and DotProd techniques can be used to implement and improve

the performance of several privacy-preserving applications. More

specifically, we consider two running examples: COVID-19 heatmap

computation and associated rule learning (ARL).
In the COVID-19 heatmap problem, we consider a scenariowhere

the Department of Health and Human Services (HHS) wants to

learn areas with a higher chance of getting infected with the dis-

ease without knowing the travel route of infected individuals. The

heatmap can be implemented by computing the vector-matrix mul-

tiplication as 𝑥⊤𝑌 , where 𝑥 and 𝑌 are as follows: 𝑥 is a binary

vector of size 𝑁 , held by the HHS, such that 𝑥 [𝑖] = 1 if the 𝑖th

user has tested positive to COVID-19 and 𝑥 [𝑖] = 0 otherwise; and

𝑌 = (𝑦1, . . . , 𝑦𝑚) ∈ Z𝑁×𝑚
2

is a user-location matrix, held by a net-

work operator, such that the 𝑖th element of the column vector 𝑦 𝑗
indicates whether the 𝑖th user has recently visited the 𝑗th location.

In that case 𝑦 𝑗 [𝑖] = 1 and otherwise 𝑦 𝑗 [𝑖] = 0. Clearly, 𝑧 = 𝑥⊤𝑌 is

an𝑚-element vector where the 𝑖th element is equal to the number

of users who have tested positive and recently visited the 𝑖th lo-

cation. [4] proposes different optimizations on HE to implement a

secure dot product, which still requires 𝑂 (𝑁𝑚) independent mul-

tiplications (regardless of the Hamming weight of the vectors). In

the heatmap example above, we observe that the vector 𝑥 is sparse

because the proportion of diagnosed individuals per day among

all 𝑁 subscribed individuals is small (e.g, 0.01-1% would be a large

percentage [2]). Similarly, the matrix𝑌 is also sparse due to people’s

localized travel habits. In Section 5.2, we apply our DotProd proto-

col to compute COVID-19 heatmap. In addition, [4] only supports a

two-party computation between the HHS and a network provider.

In real-world scenarios, there are many network providers. We

modify the two-party PSI-CA protocol [27] to support heatmap

computation between the HHS and multiple network providers

without revealing additional information.

Second, we study associated rule learning (ARL) as an application
of DotProd. ARL is a rule-based machine learning method that is

used to discover rules/relations of the type (𝑋 ⇒ 𝑌) between vari-

ables𝑋,𝑌 in databases. As a typical example in the sales database of

a supermarket, a rule/relation {onions, potatoes ⇒ burger} indi-
cates that if a customer buys onions and potatoes together, they are

likely to also buy hamburger meat. In market design, such informa-

tion can be used as the basis for decisions about product placements,

promotional pricing, and more. However, the ARL training process

requires a large transaction database, which may be collected from

different sources. Thus, it is highly desirable to maintain the privacy

of each source. We study a common ARL training algorithm, called

Apriori [3, 40], and adapt it to the privacy-preserving setting. Most

steps in Apriori can be computed locally except a step in which

the parties want to compute a confidence score of how many trans-

actions across a joint database that contains all attributes/items

in both 𝑋 and 𝑌 . This step can be implemented by computing a

sum of bit-wise products of multiple binary vectors. We first apply

multi-party DotProd for ARL and make its learning process in a

privacy-preserving manner.

2 PRELIMINARIES
Computational and statistical security parameters are denoted by

𝜅, 𝜆, respectively. We use [𝑥] to denote the set {1, 2, . . . , 𝑥} and
[𝑥,𝑦] to denote the set {𝑥, 𝑥 + 1, . . . , 𝑦}. A set is a collection of

distinct elements. We denote the concatenation of two bit strings 𝑥

and 𝑦 by 𝑥 | |𝑦. For a pseudorandom function (PRF) 𝐹 , a key 𝑘 and

a set 𝐴, we define 𝐹 (𝑘,𝐴) = {𝐹 (𝑘, 𝑎) | 𝑎 ∈ 𝐴}. For an𝑚-element

binary vector 𝑥 , we define idx(𝑥) = {𝑖 ∈ [𝑚] | 𝑥 [𝑖] = 1}.

2.1 Security Model
Secure computation allows mutually untrusted parties to jointly

compute a function on their private inputs without revealing any

additional information. There are two classical security models:

colluding model is modeled by considering a single monolithic

adversary that captures the possibility of collusion between the

dishonest participants; and non-colluding model is modeled by

considering independent adversaries, each captures the view of

each independent dishonest party. There are also two adversarial

models, which are usually considered. In the semi-honest (passive)

model, the adversary is assumed to follow the protocol, but may try

to learn information from the protocol transcript. In the malicious

(active) model, the adversary follows an arbitrary polynomial-time

strategy to learn additional information. This paper introduces two

variations of PSI-CA in the semi-honest model, each providing

distinct security guarantees. Firstly, the server-aided variant of

PSI-CA ensures security in the presence of an adversary who may

passively corrupt any subset of {𝑃1, 𝑃3, . . . , 𝑃𝑛} or {𝑃2, 𝑃3, . . . , 𝑃𝑛}
(i.e. 𝑃1 and 𝑃2 do not collude) or passively corrupt the server C.
The “server-less" protocol guarantees security in the presence of an

adversary who may passively corrupt any subset from {𝑃3, . . . , 𝑃𝑛}
or passively corrupt one of 𝑃1, 𝑃2, or 𝑃𝑛 .

2.2 Oblivious Key-Value Store (OKVS)
A Key Value Store (KVS) consists of two algorithms: i) Encode takes
as input a set of (𝑘𝑖 , 𝑣𝑖) key-value pairs from the key-value domain,

K ×V , and outputs an object 𝑆 (or, with negligible probability, an

error indicator ⊥); ii) Decode takes as input an object 𝑆 , a key 𝑥

and outputs a value 𝑦.

EXPERIMENT 2.2.1.

(
ExpA (K = (𝑘1, . . . , 𝑘𝑚))

)
(1) for 𝑖 ∈ [𝑚]: choose uniform 𝑣𝑖 ← V
(2) return A

(
Encode({(𝑘1, 𝑣1), . . . (𝑘𝑚, 𝑣𝑚) })

)
A KVS is correct if, for all 𝐴 ⊆ K × V with distinct keys: i)

𝑃𝑟 [Encode(𝐴) = ⊥] is negligible, and ii) if Encode(𝐴) = 𝑆 ≠ ⊥ and

(𝑘, 𝑣) ∈ 𝐴 then Decode(𝑆, 𝑘) = 𝑣 .
76

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

We say that a KVS is oblivious if for all K1,K2 of size𝑚 and all

PPT adversaries A:

��
Pr[ExpA (K1) = 1] − Pr[ExpA (K2) = 1]

�� =
1

2
+ 𝜀 where 𝜀 ≤ negl(𝜅). In other words, if the values 𝑣𝑖 are chosen

uniformly then the output of Encode hides the choice of the keys 𝑘𝑖 .
Oblivious Key-Value Store (OKVS)[22] is given in Experiment 2.2.1,

where A is an arbitrary PPT algorithm.

2.3 Oblivious PRF (OPRF) and Programmable
PRF (OPPRF)

An oblivious PRF (OPRF) [20] is a 2-party protocol in which the

sender learns a PRF key 𝑘 and the receiver learns the PRF values

𝐹 (𝑘, 𝑞1), . . . , 𝐹 (𝑘, 𝑞𝑚). Here, 𝐹 is a PRF and (𝑞1, . . . , 𝑞𝑚) are inputs
chosen by the receiver. Functionality 1 presents a variant of OPRF

where the receiver obtains outputs of multiple statically chosen

queries.

FUNCTIONALITY 1.

(
Oblivious PRF - F𝑚oprf

)
Parameters: A PRF 𝐹 , and a bound 𝑚 on the number of

queries.

Behavior:Wait for distinct queries (𝑞1, . . . , 𝑞𝑚) from the receiver

where 𝑞𝑖 ∈ {0, 1}𝜅 . Sample a random PRF key 𝑘 and give it to the

sender. Give {𝐹 (𝑘,𝑞1), . . . , 𝐹 (𝑘,𝑞𝑚) } to the receiver.

An oblivious programmable PRF (OPPRF) functionality is intro-

duced by [30]. It is similar to the plain OPRF functionality except

that it allows the sender to initially provide a set of points P which

will be programmed into the PRF. Functionality 2 presents a simple

version of OPPRF defined in [30]. For a comprehensive and in-depth

understanding of OPPRF, we refer the reader [30, 35].

FUNCTIONALITY 2.

(
Oblivious Programmable PRF - F𝑚1,𝑚2

opprf

)
Parameters: A PRF 𝐹 , an upper bound𝑚1 on the number of points

to be programmed, and a bound𝑚2 on the number of queries.

Behavior:Wait for points P = {(𝑎1, 𝑡1), . . . , (𝑎𝑚1
, 𝑡𝑚1
) }, with dis-

tinct keys𝑎𝑖 ’s, from the sender S, and distinct queries (𝑞1, . . . , 𝑞𝑚2
)

from the receiver R. Run 𝑘 ← KeyGen(𝜅, P) . Give 𝑘 to S and

(𝐹 (𝑘,𝑞1), . . . , 𝐹 (𝑘,𝑞𝑚2
)) to R.

2.4 Unconditional Zero Sharing
Unconditional zero sharing provides the parties with a sharing

function 𝑆 : {0, 1}𝜅 × {0, 1}ℓ → {0, 1}𝜅 and a key 𝐾𝑖 for party

𝑃𝑖 , such that for every 𝑥 ∈ {0, 1}ℓ , we have that 𝑠𝑖 = 𝑆 (𝐾𝑖 , 𝑥)
is 𝑃𝑖 ’s random share, and

⊕𝑛
𝑖=1 𝑠𝑖 = 0. The functionality and its

construction from [30] are given in Functionality 3 and Protocol 17.

FUNCTIONALITY 3.

(
Zero-Sharing - FZS

)
Parameters: 𝑛 parties. The dictionary store is initialized to ∅.
Behavior: 𝑃𝑖 obtains a zero-sharing key𝐾𝑖 for a sharing function 𝑆 .
Upon an input 𝑥 from 𝑃𝑖 , if store𝑥 does not exist, generate random

values 𝑠1, . . . , 𝑠𝑛 where 𝑠𝑖 = 𝑆 (𝐾𝑖 , 𝑥) s.t.
⊕𝑛

𝑖=1 𝑠𝑖 = 0 and store

store𝑥,𝑖 = 𝑠𝑖 for 𝑖 ∈ [𝑛]. Output 𝐾𝑖 , store𝑥,𝑖 to 𝑃𝑖 .

2.5 Private Set Intersection Cardinality
Private set intersection cardinality (PSI-CA) allows 𝑛 parties, each

holding a set of𝑚 items, to learn the intersection size of their private

sets without revealing anything else. In the server-aided PSI-CA,
we assume there is a distrusted server that has no input and does

not collude with the parties. The server is involved in the PSI-CA
protocol while learning nothing. PSI-CA and server-aided PSI-CA

are formally presented in Functionality 4. The highlighted text is

required for the server-aided case.

FUNCTIONALITY 4.

(
PSI Cardinality - FPSI−CA

)
Parameters: 𝑛 parties 𝑃1, . . . , 𝑃𝑛 ; an untrusted server C; the set
size𝑚.

Behavior:
• Wait for input set 𝑋𝑖 of𝑚 distinct items from 𝑃𝑖 .

• Give the server C nothing.

• Give 𝑃1 an intersection set size |⋂𝑛
𝑖=1𝑋𝑖 |.

2.6 Secure Dot Product of Binary Vectors
Secure dot product functionality allows 𝑛 parties, each holding an

𝑚-element binary vector, to learn the dot product of their private

vectors without revealing any additional information. In this work,

we consider the problem of the secure dot product of 𝑛 binary

vectors, in a server-aided setting, in which we make use of a non-

colluding distrusted server. Our protocols are extremely efficient

when the upper bound on the Hamming weight of the vectors,

denoted 𝑡 , is in 𝑜 (𝑚). The dot product of 𝑛 vectors 𝑥1, . . . , 𝑥𝑛 , each

with𝑚 elements, is defined by

∑𝑚
𝑗=1

∏𝑛
𝑖=1 𝑥𝑖 [𝑗] and is called Dot-

Prod. DotProd is presented in Functionality 5. The highlighted text

is required for the server-aided case.

FUNCTIONALITY 5.

(
Secure Dot Product - FDotProduct

)
Parameters: 𝑛 parties: 𝑃𝑖∈[𝑛] ; an untrusted server C; an upper-

bound 𝑡 .

Behavior:
• Wait for input𝑚-element binary vector 𝑥𝑖 from 𝑃𝑖 .

• Give the server C nothing.

• Give to

∑𝑚
𝑗=1

∏𝑛
𝑖=1 𝑥𝑖 [𝑗] the party 𝑃1.

3 SERVER-AIDED OPRF AND OPPRF
In this section, we introduce new OPRF and OPPRF constructions

which make use of a semi-honest non-colluding cloud server.

3.1 Server-Aided Shuffled OPRF
The server-aided OPRF functionality involves a sender S, a receiver
R and a server C. It is defined as follows: S has a key-pair 𝑘 =

(𝑘1, 𝑘2) where 𝑘𝑖 ∈ {0, 1}𝜅 , R has a set of queries {𝑦𝑖 }𝑖∈[𝑚] and
the server C has no input. S does not receive an output whereas R
obtains {𝑦′

𝜋 (1) , . . . , 𝑦
′
𝜋 (𝑚) }where𝑦

′
𝑖
= 𝐹 ′(𝑘,𝑦𝑖) and 𝜋 : [𝑚] → [𝑚]

is a random permutation. The output of C is the permutation 𝜋 .

Clearly, R cannot associate the response 𝑦′
𝑖
with the query 𝑦𝑖 as all

responses are pseudorandom. Figure 6 formally presents the ideal

functionality of F (𝑚)soprf .

FUNCTIONALITY 6.

(
Server-Aided Shuffled OPRF - F (𝑚)soprf

)
Parameters: S, R and C, the set size𝑚, a pseudorandom func-

tion (PRF) 𝐹 ′ : {0, 1}2𝜅 × {0, 1}ℓ → {0, 1}𝜅 where 𝐹 ′ (𝑘1, 𝑘2, 𝑥) =
𝐹 (𝑘2, (𝐹 (𝑘1, 𝑥)) where 𝐹 is a PRF.

Behavior:
• Wait key 𝑘 = (𝑘1, 𝑘2) from S.
• Wait distinct queries {𝑦𝑖 }𝑖∈[𝑚] from R.
• Send a random permutation 𝜋 : [𝑚] → [𝑚] to C.
• Send {𝑦′

𝜋 (1) , . . . , 𝑦
′
𝜋 (𝑚) } to R where 𝑦′

𝑖
= 𝐹 ′ (𝑘, 𝑦𝑖) .

We first define 𝐹 ′((𝑘1, 𝑘2), 𝑥) = 𝐹 (𝑘2, 𝐹 (𝑘1, 𝑥)) where 𝐹 is a PRF.

It is easy to see that 𝐹 ′ is a PRF. In protocol Π
(𝑚)
soprf , the S has the

77

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

key 𝑘 = (𝑘1, 𝑘2), so it can send 𝑘1 to R and 𝑘2 to C. We assume

that the receiver and helper do not collude, thus they are unable to

compute the sender’s key 𝑘 . Having 𝑘1, R computes 𝑌 ′ = 𝐹 (𝑘1, 𝑌)
and sends𝑌 ′ to C. The server C then computes𝑌 ′′ = 𝐹 (𝑘2, 𝑌 ′), and
applies a random permutation 𝜋 on 𝑌 ′′. This one-round protocol

takes into account the presence of a semi-honest sender/receiver.

Theorem 1. Protocol Π (𝑚)soprf securely implements the functionality

F (𝑚)soprf in the presence of an adversary who may passively corrupt
either S, R, or C.

The formal proof of Theorem 1 is present in Appendix A.1.

PROTOCOL 7.

(
Server-Aided Shuffled OPRF - Π (𝑚)soprf

)
Parameters:
• Set size𝑚; a PRF 𝐹 .

• A sender S, a receiver R, a non-colluding semi-honest server C
Inputs:
• Sender S has input 𝑘 = (𝑘1, 𝑘2)
• Receiver R has input a set of𝑚 items 𝑌 = {𝑦1, . . . , 𝑦𝑚 }
• Cloud server C has no input.

Protocol:
(1) S sends 𝑘1 to R and 𝑘2 to C.
(2) R computes 𝑌 ′ = 𝐹 (𝑘1, 𝑌) and sends 𝑌 ′ to C.
(3) C chooses a random permutation 𝜋 : [𝑚] → [𝑚]. C computes

𝑌 ′′ = 𝐹 (𝑘2, 𝑌 ′) and sends a random permutation 𝜋 of 𝑌 ′′ to R.

3.2 Server-Aided OPPRF
The server-aided OPRF functionality involves a sender S, a receiver
R, and a non colluding server C. It is defined as follows: S has a set

of𝑚1 pointsP = {(𝑥𝑖 , 𝑣𝑖)}𝑖∈[𝑚1] with (pseudo)random 𝑣𝑖 ∈ {0, 1}𝜅 ,
and R has a set 𝑌 = {𝑦𝑖 }𝑖∈[𝑚2] . C has no input. Denote the set of

first (resp. second) entries of the pairs in P by 𝑋 (resp.𝑉). S and C
do not have an output whereas R, for every 𝑦𝑖 , obtains 𝑣𝑖 iff 𝑦𝑖 ∈ 𝑋 ,
and some other pseudorandom value otherwise. This is denoted by

Fsopprf and formally described in Functionality 8.

FUNCTIONALITY 8.

(
Server-Aided OPPRF - F (𝑚1,𝑚2)

sopprf

)
Parameters: S, R and C,𝑚1 the size of P and𝑚2 the number of

queries.

Behavior:
• Wait for a set of𝑚1 points P = {(𝑥𝑖 , 𝑣𝑖) }𝑖∈[𝑚1] with distincts

𝑥𝑖 ’s and (pseudo)random 𝑣𝑖 ∈ {0, 1}𝜅 , from S.
• Wait for a set 𝑌 = {𝑦𝑖 }𝑖∈[𝑚2] from R.
• For every 𝑖 ∈ [𝑚2] set 𝑣′𝑖 = 𝑣𝑗 if 𝑦𝑖 = 𝑥 𝑗 for some 𝑗 ∈ [𝑚1] and
otherwise assign a random value to 𝑣′

𝑖
. Let𝑉 ′ = {𝑣′

𝑖
}𝑖∈[𝑚2] .

• Send𝑉 ′ to R.

In the protocol, S, R and C invoke a non-shuffled version of

OPRF, where S inputs the key 𝑘 = (𝑘1, 𝑘2), R inputs 𝑌 , and a sets

𝑌 ′ = {𝑦′
1
, . . . , 𝑦′𝑚2

} as a part of the output with 𝑦′
𝑖
= 𝐹 ′(𝑘,𝑦𝑖). Then,

S constructs an OKVS 𝑇 ← Encode({(𝑥𝑖 , 𝐹 ′(𝑘, 𝑥𝑖) ⊕ 𝑣𝑖 }𝑖∈[𝑚1])
and sends 𝑇 to R, which outputs 𝑤 𝑗 = 𝑦′

𝑗
⊕ Decode(𝑇,𝑦 𝑗) for

𝑗 ∈ [𝑚2]. In terms of the correctness, R obtains 𝑣 ′
𝑗
= 𝐹 ′(𝑘,𝑦 𝑗)) ⊕

Decode(𝑇,𝑦 𝑗) for all 𝑦 𝑗 ∈ 𝑌 . If 𝑦 𝑗 = 𝑥𝑖 , then Decode(𝑇,𝑦𝑖) =

𝐹 ′(𝑘, 𝑥𝑖) ⊕ 𝑣 𝑗 , thus, 𝑣 ′𝑗 = 𝑣𝑖 . Otherwise, Decode(𝑇,𝑦𝑖) gives R a

pseudorandom value which makes 𝑣 ′
𝑗
pseudorandom as well. Since

the sender can combine messages of OKVS and OPRF executions

before sending them to the receiver, thus, this server-aded OPRF

protocol is one-round.

Theorem 2. Protocol Π (𝑚1,𝑚2)
sopprf securely computes the function-

ality F (𝑚1,𝑚2)
sopprf in the F (𝑚)soprf-hybrid model, in the presence of an

adversary who may passively corrupt either S, R, or C.

The formal proof of Theorem 2 is present in Appendix A.2.

PROTOCOL 9.

(
Server-Aided OPPRF - Π (𝑚1,𝑚2)

sopprf

)
Parameters:
• Parties are sender S, receiver R, and a server C. Set sizes𝑚1,𝑚2.

A PRF 𝐹 ′ : {0, 1}2𝜅 × {0, 1}ℓ → {0, 1}𝜅 where 𝐹 ′ (𝑘1, 𝑘2, 𝑥) =
𝐹 (𝑘2 (𝐹 (𝑘1, 𝑥)) where 𝐹 is a PRF.

Inputs:
• S has P = {(𝑥𝑖 , 𝑣𝑖) }𝑖∈[𝑚1] with (pseudo)random 𝑣𝑖 ’s.

• R has the set 𝑌 = {𝑦𝑖 }𝑖∈[𝑚2] .
• C has no input.

Protocol:
(1) S, R, and C jointly invoke F (𝑚2)

soprf where S inputs a random key

𝑘 = (𝑘1, 𝑘2) ← {0, 1}2𝜅 , by which C obtains 𝑘2 and R obtains

𝑘1. Then R inputs 𝑌 , and obtains 𝑌 ′ = {𝑦′
1
, . . . , 𝑦′𝑚2

} as output,
where 𝑦′

𝑖
= 𝐹 ′ (𝑘, 𝑦𝑖) . Note that we use a non-shuffled version of

OPRF.
(2) S constructs an OKVS over 𝑇 ← Encode({(𝑥𝑖 , 𝐹 ′ (𝑘, 𝑥𝑖) ⊕

𝑣𝑖 }𝑖∈[𝑚1]) and sends𝑇 to R.
(3) For every 𝑗 ∈ [𝑚2], R outputs 𝑣′

𝑗
= 𝑦′

𝑗
⊕ Decode(𝑇, 𝑦 𝑗) .

4 PSI CARDINALITY PROTOCOL
In this section we present three protocols:

• In Section 4.1, we simplify the server-aided PSI protocol of [27]

and formally present their server-aided two-party PSI-CA pro-

tocol. Unlike previous “server-less" protocols (see Section 1.1)

that are based on oblivious transfer [18] or on the Diffie Hellman

proble [25, 43], which in turn are based on public-key primitives,

the two-party PSI-CA protocol [27] uses only symmetric-key

operations. This is possible, among other improvements, due to

the replacement of their OPRF constructions with a server-aided

version, which is much simpler and more efficient.

• In Section 4.2, we show an extension of the protocol to the multi-

party case, where the adversary may passively corrupt (almost)

any strict subset of the parties or passively corrupt the server. To

the best of our knowledge, this is the first ‘special-purpose’ proto-

col for privately computing the intersection cardinality of more

than two parties, for which we present interesting applications

(see Section 5).

• In Section 4.3, we show that a server is not necessary when some

parties are assumed to be semi-honest and non-colluding.

4.1 Server-Aided Two-Party PSI-CA [27]
We consider sender S and receiver R who want to compute the

intersection size of their private sets 𝑋 = {𝑥1, . . . , 𝑥𝑚1
} and 𝑌 =

{𝑦1, . . . , 𝑦𝑚2
}, respectively. To do so, they use a non-colluding, semi-

honest cloud server C. The formal description is given in Proto-

col 10. The protocol is inspired by the size-hiding server-aided PSI

of Kamara et al. [27]. For completeness, a description of their PSI

protocol is given in Appendix E.

78

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

For correctness, notice that for a value 𝑧 ∈ 𝑋 ∩ 𝑌 , the value

𝐹 (𝑘, 𝑧) appears in both 𝑋 ′ and 𝑌 ′. On the other hand, if 𝑧 ∉ 𝑋 then

𝐹 (𝑘, 𝑧) ∉ 𝑋 ′; and if 𝑧 ∉ 𝑌 then 𝐹 (𝑘, 𝑧) ∉ 𝑌 ′.
Length ofOPRF outputs.The length of OPRF output influences

the probability of a collision within the protocol. Similar to previous

work [29], it is sufficeint to have the output length of 𝜆+ log(𝑚1𝑚2)
to bound the probability of any spurious collision to 2

𝜆
.

The protocol is one-round and extremely efficient because of the

efficiency of the shuffled Fsoprf . In terms of communication cost, it

only requires S to send𝑚1 values to R. The construction for Fsoprf ,
in turn, requires only𝑚2 messages from R to C and𝑚2 messages

back from C to R. We prove the following:

PROTOCOL 10.

(
Server-Aided Two-party PSI-CA

)
Parameters:
• The protocol runs between a sender S, a receiver R, and a server

C. S and R have input size of 𝑚1 and 𝑚2, resp. A PRF 𝐹 ′ :

{0, 1}2𝜅 × {0, 1}ℓ → {0, 1}𝜅 .
Inputs:
• Sender S has input 𝑋 = {𝑥1, . . . , 𝑥𝑚1

}
• Receiver R has input 𝑌 = {𝑦1, . . . , 𝑦𝑚2

}
• Cloud server C has no input.

Protocol:
(1) S, R, and C jointly invoke F (𝑚2)

soprf as follows: S inputs a random

key 𝑘 = (𝑘1, 𝑘2) ∈ {0, 1}2𝜅 , upon which R obtains 𝑘1 and C ob-

tains 𝑘2 and 𝜋 (recall that 𝜋 : [𝑚2] → [𝑚2] is a random permu-

tation). Then R inputs𝑌 and obtains𝑌 ′ = {𝑦′
𝜋 (1) , . . . , 𝑦

′
𝜋 (𝑚2)

},
where 𝑦′

𝜋 (𝑖) = 𝐹
′ (𝑘, 𝑦𝑖) .

(2) S sends a random permutation of 𝑋 ′ = 𝐹 ′ (𝑘,𝑋) to R.
(3) R outputs |𝑋 ′ ∩𝑌 ′ |.

Theorem 3. Protocol 10 securely implements the Functionality 4
(FPSI−CA) with 𝑛 = 2 in the Fsoprf-hybrid model, in the presence of
an adversary who may passively corrupt either S, R, or C.

The formal proof of Theorem 3 is present in Appendix A.3.

4.2 Server-Aided Multi-Party PSI-CA
In this section, we assume that all parties have the same set size

𝑚. Protocol 11 may be seen as if we have one receiver, who is 𝑃1,

and multiple senders, who are 𝑃2, . . . , 𝑃𝑛 . The role of the server

is to shuffle PRF results from the senders before delivering them

to the receiver. As a simplification to Protocol 11, suppose that

we want the receiver to obtain 𝑛 − 1 shares of zero for each of

its items that is in the intersection. This can be done by querying

the senders on each of their items and collecting the results. Each

sender programs the responses such that if the query is on one of

its items, then it responds with its (pseudorandom) share of zero,

otherwise, it responds with some other pseudorandom value. Given

the senders’ responses on a query, if they sum up to zero then the

receiver knows that its query is in the intersection. Since the server

shuffles the responses to the queries, the receiver does not know,

for a given set of responses which are shares of zero, to which query

it is associated, thus, the output leaks nothing but the intersection

size. Formally,

(1) 𝑃2, . . . , 𝑃𝑛 (the senders) generate keys for a zero sharing func-

tion 𝑆 , so 𝑃𝑖 obtains 𝐾𝑖 such that for every 𝑥 it holds that⊕𝑛
𝑖=2 𝑆 (𝐾𝑖 , 𝑥) = 0.

(2) 𝑃1 (the receiver) sends to the server its queries 𝑋1.

(3) The server runs an OPPRF instance with every sender, using

the queries 𝑋1. A sender 𝑃𝑖 (𝑖 ∈ [2, 𝑛]) programs the responses

such that on query 𝑥 ∈ 𝑋𝑖 the response is 𝑆 (𝐾𝑖 , 𝑥) whereas on
any other query the response is another pseudorandom value.

(4) The server obtains the set 𝑌 ′
𝑖∈[2,𝑛] , of 𝑛 − 1 OPPRF responses,

on every query 𝑥𝑖 ∈ 𝑋1. It chooses a random permutation

𝜋 : [𝑚] → [𝑚] and sends to 𝑃1 the set {𝑌 ′𝜋 (1) , . . . , 𝑌
′
𝜋 (𝑚) }.

(5) 𝑃1 checks for every response set 𝑌𝑖 whether its values are valid

shares of zero. If so, it adds 1 to the cardinality.

In the above simplification, there are several security issues:

first, the server learns 𝑃1’s queries in the clear; second, the server

mediates all PRF responses and therefore it learns whenever there is

a set of responses that are valid shares of zero, thus it can learn the

intersection size as well; third, if the receiver colludes with one of

the senders, together they can reverse the server’s permutation on

items that are in the intersection and by that leak the intersection

itself (rather than only its size).

PROTOCOL 11.

(
Server-Aided Multi-Party PSI-CA

)
Parameters:
• The protocol runs between parties 𝑃1, . . . , 𝑃𝑛 for 𝑛 > 2, and a

cloud server C. A PRF 𝐹 : {0, 1}𝜅 × {0, 1}ℓ → {0, 1}𝜅 . A PRG

𝐺 : {0, 1}𝜅 → {0, 1}★.
Inputs:
• 𝑃𝑖 has 𝑋𝑖 = {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚 }.
• Cloud server C has no input.

Protocol:
(1) Parties 𝑃2, . . . , 𝑃𝑛 invoke FZS (Functionality 3 with no input)

and each party 𝑃𝑖 obtains the key 𝐾𝑖 for a sharing function 𝑆 .

(2) 𝑃1 chooses a random PRG seed 𝛾0 ← {0, 1}𝜅 and sends it to 𝑃2.

Both 𝑃1 and 𝑃2 generate𝑚 values Γ = (𝛾1, . . . , 𝛾𝑚) ← 𝐺 (𝛾0)
where 𝛾𝑖 ∈ {0, 1}𝜅 .

(3) 𝑃1 chooses a random PRF key 𝑘 and sends it to 𝑃2, . . . , 𝑃𝑛 .

(4) Party 𝑃𝑖 for 𝑖 ∈ [2, 𝑛] computes the set of points P𝑖 where:
• For 𝑖 = 2, P2 =

{(
𝐹 (𝑘, 𝑥2, 𝑗), 𝑆 (𝐾2, 𝑥2, 𝑗) ⊕ 𝛾𝜋 (𝑗)

)}
𝑗∈[𝑚]

where 𝜋 : [𝑚] → [𝑚] is a random permutation chosen

by 𝑃2.

• For 𝑖 ∈ [3, 𝑛], P𝑖 =
{(
𝐹 (𝑘, 𝑥𝑖,𝑗), 𝑆 (𝐾𝑖 , 𝑥𝑖,𝑗)

)}
𝑗∈[𝑚] .

(5) 𝑃1 sends 𝑋
′
1
= 𝐹 (𝑘,𝑋1) = {𝐹 (𝑘, 𝑥1, 𝑗) } 𝑗∈[𝑚] to C.

(6) C and 𝑃𝑖 (for every 𝑖 ∈ [2, 𝑛]) invoke Fopprf , where 𝑃𝑖 acts as a
sender with input P𝑖 and C acts as a receiver with input 𝑋 ′

1
. C

obtains the result 𝑦𝑖,𝑗 on the query 𝑥1, 𝑗 .

(7) For every 𝑗 ∈ [𝑚], C computes 𝑤𝑗 =
⊕𝑛

𝑖=2 𝑦𝑖,𝑗 and sets𝑊 to

be a random permutation of {𝑤1, . . . , 𝑤𝑚 }. C sends𝑊 to 𝑃1.

(8) 𝑃1 outputs |𝑊 ∩ Γ |.

The first issue is easily solved by having all parties 𝑃1, . . . , 𝑃𝑛
agree on a PRF key 𝑘 , so instead of computing |⋂𝑛

𝑖=1 𝑋𝑖 | their
objective is to compute |⋂𝑛

𝑖=1 𝐹 (𝑘,𝑋𝑖) |. This way, the server does
not know 𝑃1’s set. Hiding the intersection size from the server (the

second issue above) is trickier. We solve it by having 𝑃1 and 𝑃2
agree on a set of random values Γ = {𝛾1, . . . , 𝛾𝑚} so that instead of

programming the responses with the ‘zero shares’, on a value 𝑥 ∈
𝑋2, 𝑃2 programs the response 𝑆 (𝐾2, 𝑥) ⊕𝛾 for some 𝛾 ∈ Γ. Now, for
items that are in the intersection, the server C sees a set of responses

that constitutes a valid share of some𝛾 ∈ Γ, but since the C does not

know Γ, this looks random indistinguishable from the responses on

values that are not in the intersection. Finally, we propose a protocol

79

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

under a relaxed setting, that solves the third issue above. Concretely,

the protocol is secure as long as 𝑃1 and 𝑃2 do not collude. This is

done by adding one step to the above description: before the server

forwards the responses set𝑊 to 𝑃1, it sums its items and forwards

only the sum to 𝑃1. This means that now 𝑃𝑖 (𝑖 ≥ 3) could not trace

back and learn the intersection itself. This is formally presented

in Protocol 11. The initial five steps of the protocol need only one

round of communication as the involved parties can consolidate

their messages prior to transmission. The OPPRF [30] demands two

rounds. Step 7 involves a single round. Consequently, this server-aid

protocol requires a total of four rounds in entirety.

Theorem 4. Protocol 11 securely implements the Functionality 4
(FPSI−CA) for arbitrary 𝑛, in the (Fopprf , FZS)-hybrid model, in the
presence of an adversary who may passively corrupt any subset of
{𝑃1, 𝑃3, . . . , 𝑃𝑛} or {𝑃2, 𝑃3, . . . , 𝑃𝑛}, or passively corrupt the server C.

We note that, in our protocol, parties use zero shares to mask

their actual input. This step is similar to the one in [22]. The formal

proof of the Theorem 4 is present in Appendix A.4.

PROTOCOL 12.

(
Multi-Party PSI-CA

)
Parameters:
• The protocol runs between parties 𝑃1, . . . , 𝑃𝑛 for 𝑛 > 2, and a

cloud server C. A PRF 𝐹 : {0, 1}𝜅 × {0, 1}ℓ → {0, 1}𝜅 .
Inputs: 𝑃𝑖 has 𝑋𝑖 = {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚 }.
Protocol:
(1) Parties 𝑃2, . . . , 𝑃𝑛 invoke FZS (Functionality 3) and each party

𝑃𝑖 obtains the key 𝐾𝑖 for a sharing function 𝑆 .

(2) 𝑃1 chooses a random 𝑠 ← {0, 1}𝜅 and sends it to 𝑃2.

(3) 𝑃2 chooses a random 𝑘 ← {0, 1}𝜅 and sends it to 𝑃3, . . . , 𝑃𝑛 .

(4) Party 𝑃𝑖 for 𝑖 ∈ [2, 𝑛 − 1] computes the set of points P𝑖 where:
• P2 =

{(
𝐹 (𝑘, 𝑥2, 𝑗), 𝑆 (𝐾2, 𝑥2, 𝑗) ⊕ 𝐹 (𝑠, 𝑥2, 𝑗)

)}
𝑗∈[𝑚] .

• For 𝑖 ∈ [3, 𝑛 − 1], P𝑖 =
{(
𝐹 (𝑘, 𝑥𝑖,𝑗), 𝑆 (𝐾𝑖 , 𝑥𝑖,𝑗)

)}
𝑗∈[𝑚] .

(5) 𝑃𝑛 and 𝑃𝑖 (for every 𝑖 ∈ [2, 𝑛 − 1]) invoke an instance of the

server-aided OPPRF F (𝑚,𝑚)
sopprf where:

• 𝑃𝑖 acts as a sender with input P𝑖 ,
• 𝑃1 acts as a cloud server with no input.

• 𝑃𝑛 acts as a receiver with input 𝑋 ′𝑛 = 𝐹 (𝑘,𝑋𝑛) . 𝑃𝑛 obtains

the result 𝑦𝑖,𝑗 on the query 𝑥𝑛,𝑗 .

(6) For every 𝑗 ∈ [𝑚], 𝑃𝑛 computes𝑤𝑗 =
⊕𝑛−1

𝑖=2 𝑦𝑖,𝑗 ⊕𝑆 (𝐾𝑛, 𝑥𝑛,𝑗) .
Then, 𝑃𝑛 sets𝑊 to be {𝑤1, . . . , 𝑤𝑚 }.

(7) 𝑃1 and 𝑃𝑛 invoke the server-aided FPSI−CA functionality with

𝑃2 as a server, where

• 𝑃𝑛 acts as a sender with input𝑊

• 𝑃2 acts as a cloud server with no input

• 𝑃1 acts as a receiver with input 𝑉 = 𝐹 (𝑠,𝑋1) , and obtains

|𝑊 ∩𝑉 |.

4.3 Multi-party PSI-CA
We now describe our “server-less” multi-party PSI-CA protocol.

The main idea is to convert the problem of 𝑛-party server-aided

PSI-CA to the problem of (𝑛− 1)-party with the use of an untrusted

party 𝑃𝑛 who, however, has a private input set𝑋𝑛 . Recall that in the

server-aided PSI-CA protocol, the cloud server C has no input, but

obtains from 𝑃1 the PRF values 𝐹 (𝑘,𝑋1) which are used to invoke

an OPPRF with parties 𝑃𝑖∈[2,𝑛] . In the problem of (𝑛 − 1)-parties,
however, party 𝑃𝑛 (who plays the role of C) does have input 𝑋𝑛 .

Thus, 𝑃𝑛 can compute its PRF values 𝐹 (𝑘,𝑋𝑛) on its own since

it knows 𝑘 . Similar to the server-aided version, 𝑃𝑛 computes the

exclusive-or of the OPPRF results and its zero share 𝑆 (𝐾𝑛, 𝑥𝑛,𝑗),
with the 𝑗-th result denoted by𝑤 𝑗 . Note that𝑤 𝑗 is equal to 𝛾 𝑗 if all

parties 𝑃𝑖∈[2,𝑛] has 𝑥𝑛,𝑗 , otherwise,𝑤 𝑗 is random. At this point, if

𝑃𝑛 sends all values𝑤 𝑗 to 𝑃1, 𝑃1 can only compute the intersection

size of 𝑛 − 1 sets ⋂𝑛
𝑖=2 𝑋𝑖 since there was nothing to do with the

input set 𝑋1.

Instead, to have 𝑃1 output |
⋂𝑛
𝑖=1 𝑋𝑖 |, we propose the following

steps. Instead of using a random set Γ in Step (2) of Protocol 11, 𝑃2
uses PRF to compute 𝛾 𝑗 ← 𝐹 (𝑠, 𝑥2, 𝑗) where 𝑠 is known by only 𝑃1
and 𝑃2. We observe that if 𝑥1, 𝑗 is an intersection item, the corre-

sponding PRF value 𝐹 (𝑠, 𝑥1, 𝑗) should be equal to a value 𝑤𝑘 hold

by 𝑃𝑛 because of 𝑤𝑘 = 𝛾𝑘 = 𝐹 (𝑠, 𝑥
2,𝑘) = 𝐹 (𝑠, 𝑥1, 𝑗). Therefore, the

intersection size |⋂𝑛
𝑖=1 𝑋𝑖 | can be computed by counting howmany

PRF values 𝐹 (𝑠, 𝑥1, 𝑗) are in the set𝑊 = {𝑤1, . . . ,𝑤𝑛}. 𝑃1 and 𝑃𝑛
can do this by invoking a two-party PSI-CA, where 𝑃1 acts as a
receiver with an input set {𝐹 (𝑠, 𝑋1)} and 𝑃𝑛 acts as a sender with

an input set𝑊 .

We implement the two-party PSI-CA using our server-aid pro-

tocol described in Protocol 10 in which any party 𝑃𝑖∈[2,𝑛−1] (say
𝑃2) can play the role of the cloud server. The two party PSI-CA
Protocol 10 requires that both sender and receiver do not collude

with the semi-honest server. Thus, in our multi-party protocol, we

assume that 𝑃2 is semi-honest and non-colluding with both 𝑃1 and

𝑃𝑛 . In addition, given this assumption, we can improve the perfor-

mance of our multi-party OPPRF. Particularly, unlike Protocol 11

in the above section, we use our server-aided OPPRF construction

described in Section 3.2 to execute an OPPRF instance between 𝑃𝑛
and each 𝑃𝑖∈[2,𝑛−1] , where 𝑃1 plays the role of the OPPRF server
(thus, 𝑃1 is non-colluding). We formally present our server-less

multi-party PSI-CA in Protocol 12, and its security statement below

(see the formal proof in Appendix A.5). Similar to our server-aided

PSI-CA, this server-less protocol is 4-round.

Theorem 5. Protocol 12 securely implements the Functionality 4
(FPSI−CA) for arbitrary 𝑛, in the (Fsopprf , FZS, FPSI−CA, server-aided
two-party PSI-CA)-hybrid model, in the presence of an adversary
who may passively corrupt any subset from {𝑃3, . . . , 𝑃𝑛} or passively
corrupt 𝑃1 or 𝑃2 (i.e. 𝑃1 and 𝑃2 are non-colluding).

5 APPLICATIONS
We demonstrate that our PSI-CA can be used for several privacy-

preserving applications by implementing two running example

applications which are built on the two-party PSI-CA protocol [27]

and multi-party PSI-CA protocols, respectively.

5.1 Secure Dot Product Construction
Given a secure protocol for computing the cardinality of the inter-

section of the parties’ sets, the protocol for dot product is simple. Let

𝑥𝑖 be an𝑚-element binary vector of party 𝑃𝑖 , and let𝐴𝑖 = idx(𝑥𝑖). It
is easy to see that the dot product of the 𝑥𝑖 ’s is exactly the cardinality

of the intersection of the𝐴𝑖 ’s, that is,
∑𝑚
𝑗=1

∏𝑛
𝑖=1 𝑥𝑖 [𝑗] = |

⋂𝑛
𝑖=1𝐴𝑖 |.

Thus, to securely compute the dot product, we can use the PSI-

CA functionality described in the previous section. Note that even

though the input size is 𝑂 (𝑚), the communication complexity of

the protocol is only 𝑂 (𝑡), which makes it extremely efficient when

80

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

𝑡 = 𝑜 (𝑚), where 𝑡 is the upper bound on the Hamming weight of

the vectors.

One subtle issue is that in the PSI-CA protocols the parties know

the number of elements in each other’s set, which leaks more infor-

mation than required. Here, we assume that there is a known upper

bound, 𝑡 , on the Hamming weight of the vectors 𝑋𝑖 ’s, and require

that the parties’ input to the PSI-CA contains exactly 𝑡 items. That

is, if the Hamming weight of 𝑋𝑖 is 𝑡
′ < 𝑡 then 𝑃𝑖 adds random

“dummy" items to its input to the PSI-CA. Formally, for a given up-

per bound 𝑡 , 𝑃𝑖 inputs𝐴𝑖 to the PSI-CAwhere𝐴𝑖 ← idx′(𝑋𝑖 , 𝑡) and
idx′(𝑋, 𝑡) is defined as follows: let 𝑡 ′ be the Hamming weight of 𝑋 ,

set 𝐴 = idx(𝑋), pick 𝑡 − 𝑡 ′ random values 𝐷 = {𝑑1, . . . , 𝑑𝑡−𝑡 ′} from
the domain D = {𝑚 + 1, . . . , 2𝜆+log(𝑡) +𝑚} and output 𝐴 = 𝐴 ∪ 𝐷 .
The choice of the domain D allows the collision probability of

dummy items to be negligible and equals to 2
−𝜆

.

The formal description is given in Protocol 15 in Appendix D.

Note that it is possible to compute dot product DotProd with or

without the help of a cloud server C, so both variants are presented.

The protocol’s correctness, complexity and security follow directly

from the underlying PSI-CA protocol presented in Section 4 with

different corruption structures.

Theorem 4. Protocol 15 securely implements the Functionality 5
(FDotProduct) in the (FPSI−CA)-hybrid model. In particular, if 𝜋 is a
protocol that securely computes FPSI−CA in the presence of an adver-
sary A then, when instantiated with 𝜋 , Protocol 15 is secure in the
presence of adversary A as well.

5.2 Heatmap Computation
As stated in [4], the heatmap can be considered as a two-party com-

putation between HHS and a mobile network operator (MNO). HHS

has a list of individuals who have reported positive for the disease.

MNO knows an approximated location data of their subscribers as

the subscriber connects to a certain cell tower when traveling (un-

less the user does not have a phone or disconnects to their network

provider). Mathematically, HHS generates a binary vector 𝑥 ∈ Z𝑁
2

which indicates whether the user 𝑖 ∈ [1, 𝑁] amongst 𝑁 subscribed

individuals has tested positive (𝑥 [𝑖] = 1) or not (𝑥 [𝑖] = 0). For each

cell tower 𝑗 ∈ [1,𝑚], the MNO initializes a vector 𝑦 𝑗 of 𝑛 elements,

where 𝑦 𝑗 [𝑖] corresponds to the 𝑖-th subscriber (say that HHS and

MNO agree on the subscribers’ identifier and on their positions in

the vectors). If the 𝑖-th subscriber connects to a cell tower 𝑗 within

some period of time, then 𝑦 𝑗 [𝑖] = 1, and 𝑦 𝑗 [𝑖] = 0 otherwise. To

learn how many positive individuals visit a certain area (e.g. the

area covered by the 𝑗-th cell tower, HHS and MNO run a secure

dot product protocol to obtain 𝑥 · 𝑦 𝑗 .
The solution proposed in [4] relies on HE to implement the

secure dot product for the heatmap problem. Even with the HE op-

timizations, [4] requires 𝑂 (𝑁) independent secure multiplications

to compute 𝑥 ·𝑦 𝑗 for each cell tower. Therefore, their protocol costs

𝑂 (𝑚𝑁) HE multiplications to compute secure vector-matrix mul-

tiplications 𝑥 · 𝑌 , where 𝑌 consists of𝑚 columns 𝑦1, . . . , 𝑦𝑚 . Each

element of 𝑥 · 𝑌 corresponds to how many diagnosed subscribers

visited a cell town.

In this work, we observe that the proportion of diagnosed in-

dividuals among all 𝑁 subscribed individuals is usually small (e.g.

0.01 − 0.1% new positive cases per day [2]), thus, the vector 𝑥 is

sparse. In addition, the vector 𝑦 𝑗 is also sparse due to people’s local-

ized travel habits. Therefore, the heatmap computation is a perfect

application for our DotProd where the input vectors are sparse.

By applying DotProd, we show that the computational complexity

of the dot product in the heatmap example can be reduced from

𝑂 (𝑁) to 𝑂 (𝑡), where 𝑡 is the maximum between the upper bound

on the number of new positive test cases and the upper bound on

the number of individuals visiting a geographical area covered by

a cell tower.

Multiple MNOs. We support a heatmap computation between

one HHS, 𝑃0, and multiple MNOs, 𝑃1, . . . , 𝑃𝑛 . For a cell tower 𝑗 ∈
[1,𝑚], the MNO 𝑃𝑘 (𝑘 ∈ [𝑛]) has the vector𝑦𝑘𝑗 of 𝑁 elements.𝑦𝑘

𝑗
[𝑖]

indicates whether a subscriber 𝑖 connects to a cell tower 𝑗 of the

MNO 𝑃𝑘 (we assume that the 𝑗-th cell tower of all MNOs covers

the same geographical area, this should be adjusted in practice).

The sum of the dot products

∑𝑛
𝑘=1
(𝑥 · 𝑦𝑘

𝑗
) indicates how many

individuals, across different MNOs, visit a certain area. In our multi-

party heatmap, if 𝑃0 invokes DotProd with each MNO 𝑃𝑘 where

𝑃0’s input is 𝑥 and 𝑃𝑘 ’s input is 𝑦
𝑘
𝑗
, 𝑃0 learns extra information –

each term of the sum

∑𝑛
𝑘=1
(𝑥 ·𝑦𝑘

𝑗
). To address the issue, we modify

the underlying shuffled-opprf protocol of DotProd. At the high-
level idea, C computes PRF values of all MNOs 𝑃𝑘∈[𝑛] , permutes

them before returning to the 𝑃0. The formal description of our

multi-party heatmap computation is presented in Protocol 13.

PROTOCOL 13.

(
Server-aided Heatmap Construction

)
Parameters:

• Parameters 𝑘 , 𝑁 , 𝑡 .

• A HHS and 𝑛 MNO 𝑃1, . . . , 𝑃𝑛 , and a cloud server C
• A PRF 𝐹 : {0, 1}𝜅 × {0, 1}★ → {0, 1}𝜅

Inputs:

• A HHS 𝑃0 has input a binary vector 𝑥 of length 𝑁

• Each MNO 𝑃𝑘∈[𝑛] has input a binary matrix 𝑌𝑘 of size 𝑁 ×𝑚
• Cloud server C has no input.

Protocol 𝑛 = 1: For each 𝑗 ∈ [𝑚], the HHS and the MNO 𝑃1

invoke DotProd where 𝑃0 input is 𝑥 and 𝑃1 input is 𝑦1
𝑗
. The HHS

outputs 𝑥 · 𝑦1
𝑗

Protocol 𝑛 > 1:

(1) HHS computes a set𝐴← idx(𝑥) and pads A with dummy items

to the upper-bound set size 𝑡 .

(2) 𝑃0 chooses a random 𝑠 ← {0, 1}𝜅 and sends it to 𝑃1, . . . , 𝑃𝑛 .

(3) For each 𝑗 ∈ [𝑚]:
(a) 𝑃𝑘∈[𝑛] computes a set 𝐵𝑘 ← idx(𝑦𝑘

𝑗
) , and pads 𝐵𝑘 with

dummy items to the upper-bound set size 𝑡 .

(b) Each MNO 𝑃𝑘∈[𝑛] , the HHS, and the cloud server C jointly

invoke a modified shuffled-OPRF:

• 𝑃𝑘 chooses two PRF keys 𝑠𝑘,1, 𝑠𝑘,2 ← {0, 1}𝜅
• 𝑃𝑘 sends 𝑠𝑘,1 to HHS and sends 𝑠𝑘,2 to C
• HHS computes and sends 𝐴′

𝑘
= 𝐹 (𝑠𝑘,1, 𝐴) to C.

• C computes 𝐴′′
𝑘
= 𝐹 (𝑠𝑘,2, 𝐴′𝑘) .

C sends a permutation of 𝐴′′ ← {𝐴′′
1
, . . . , 𝐴′′𝑛 } to HHS

(c) Each 𝑃𝑘∈[𝑛] sends 𝐵
′′′
𝑘

= 𝐹
(
𝑠, 𝐹 (𝑠𝑘,2, 𝐹 (𝑠𝑘,1, 𝐵𝑘))

)
to C who

sends a permutation of 𝐵★ ← {𝐵′′′
1
, . . . , 𝐵′′′𝑛 } to HHS.

(d) HHS computes 𝐴★ = 𝐹 (𝑠,𝐴′′) and outputs |𝐴★ ∩ 𝐵★ |.

In real-world scenarios, HHS prefers to minimize bandwidth cost

and computation workload on their side. Our protocol makes this

81

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

happen bymaking use of the untrusted server. For the heatmap com-

putation, HHS only needs to compute𝑛𝑚𝑡 and 2𝑛𝑚𝑡 symmetric-key

operations in the two-party and multi-party settings, respectively.

In terms of communication cost, HHS sends and receives 3𝑛𝑚𝑡 ele-

ments. Finally, our protocol requires only 1-round communication.

5.3 Association Rule Learning
Association rules learning (ARL) aims to discover regularities/rules

between variables in transaction data. In this work, we use our

DotProd protocol to mitigate information leakage in ARL when

training the model on a vertical partitioning of the private data-

base between multiple parties. We study the ARL definition in [3]

and adapt it to the privacy-preserving context (see Definition 1 in

Appendix B). We consider only a vertically-partitioned database

since if the data is horizontally-partitioned, each party can locally

compute ARL. For whom are not familiar with ARL, we provide a
detailed explanation of the algorithm in Appendix C.

PROTOCOL 14.

(
Privacy-Preserving ARL

)
Parameters:

• A ARL threshold 𝜏 , 𝛼 attributes, empty lists 𝐿𝑛, . . . , 𝐿𝛼 .

• 𝑛 parties: 𝑃1, . . . , 𝑃𝑛 .

• An DotProd functionality described in Functionality 5.

• An apriori-gen algorithm described in Figure 1.

Inputs: 𝑃𝑖∈[𝑛] has input a vertically-partitioned database𝑇𝑖∈[𝑛] .

Protocol:

(1) 𝑃𝑖∈[𝑛] locally computes a list 𝐿𝑖
1
of frequent itemsets that has

only 1 attribute.

(2) 𝑃𝑖∈[𝑛] invoke a DotProd with each attribute input 𝑗𝑖 ∈ 𝐿𝑖
1
, and

add 𝑗𝑖 into a published list 𝐿𝑛 if the output of the DotProd is

great than 𝜏 (e.g. a sum of element-wise products of multiple

sparse binary vectors𝑇 [𝑗𝑖] as
∑𝑚

𝑣=1

∏𝑛
𝑖=1𝑇 [𝑗𝑖] [𝑣] > 𝜏)

(3) For 𝑘 = 𝑛 + 1 to 𝛼 , if 𝐿𝑘 is empty, the parties do the following:

(a) 𝑃𝑖∈[𝑛] locally computes𝐶𝑘 = apriori-gen(𝐿𝑘−1) .
(b) For each candidate 𝑐 ∈ 𝐶𝑘 , let 𝐽 = { 𝑗1, . . . , 𝑗𝑚 } be a set of

attributes in 𝑐 .

• Assume that each 𝑃𝑖∈[𝑛] have ℎ𝑖 attributes 𝐽𝑖 =

{ 𝑗𝑖1 , . . . , 𝑗𝑖ℎ𝑖 }. 𝑃𝑖 locally computes an element-wise

product of multiple binary vectors 𝑇 [𝑗𝑖𝑣] as 𝑋𝑖 ←∏ℎ𝑖
𝑣=1

𝑇 [𝑗𝑖𝑣]
• Parties invoke a DotProd execution:

– 𝑃𝑖 inputs 𝑋𝑖 .

– 𝑃1 obtains the output 𝑠 , and adds 𝑐 to 𝐿𝑘+1 if 𝑠 > 𝜏

Privacy-preserving ARL (PPARL) consists of two subproblems

(see Appendix B). The second subproblem can be publicly solved

since the frequent itemsets are a part of the ARL result. According

to [44], one can reduce the first subproblem of PPARL to securely

computing the dot products of the binary vectors with minor leak-

age information. For simplicity, consider the candidate itemset has

only two attributes. Let 𝑥 and 𝑦 represent columns in the database.

i.e., 𝑥 [𝑖] = 1 iff row 𝑖 has value 1 for attribute 𝑋 (similar for 𝑦 and

𝑌). Each party 𝑃1 and 𝑃2 holds a vertically-partitioned database

of the transaction 𝑥 and 𝑦 respectively. The dot product of two

𝑚-element vectors 𝑥 and 𝑦 as 𝑥 · 𝑦 =
∑𝑚
𝑖=0 𝑥 [𝑖]𝑦 [𝑖] is the support

count which indicates how many times the itemset 𝑋𝑌 appears

in the joint transaction set. The dot product computation requires

the joint database from both parties, thus, it should be computed

in a privacy-preserving manner. Given 𝑠 ← 𝑥 · 𝑦, the parties can

check whether the obtained support count is greater or equal to

the threshold 𝜏 . If yes, the candidate itemset is a frequent itemset.

In the ideal world, if 𝑠 < 𝜏 , the exact value of 𝑠 is not revealed to

the parties. Thus, the information is considered as leakage informa-

tion in our PPARL scheme as well as previous work [16, 44]. Note

that [16, 44] reveal more information than ours - they leak indexes

that 𝑥 [𝑖] = 𝑦 [𝑖] = 1 (i.e. intersection items).

In this work, we consider 𝑛-party setting with global rules where
every vertically-partitioned transaction database𝑇𝑖∈[𝑛] has at least
one item in the frequent itemset. Protocol 14 presents our PPARL

construction which closely follows the Apriori algorithm [3, 44].

The first two steps aim to find a list of itemsets that (1) appear in

the transaction set𝑇 at least 𝜏 times; and (2) every party has at least

one attribute in the itemset. We denote the obtained list to be 𝐿𝑛 .

Given 𝐿𝑛 , the party locally computes a list of candidates 𝐶𝑛+1 for
itemsets of size 𝑛 + 1 using the apriori-gen algorithm [3]. At the

high-level idea, the function apriori-gen is done by generating

a superset of possible candidate itemsets and pruning this set. We

present the apriori-gen algorithm in Figure 1, and refer the reader

to [3] for more detail. Note that apriori-gen is computed on the

public list 𝐿𝑛 , thus it leaks no additional information. The parties

jointly execute Step (3) to compute 𝐿𝑡>𝑛 until it is empty.

6 IMPLEMENTATION AND PERFORMANCE
We evaluate the performance of our PSI-CA (or DotProd) protocols
and estimate the performance of heatmap computation and ARL.
Protocols are evaluated under different network settings, number of

parties, and input set sizes to demonstrate their scalability. Our im-

plementation is available at https://github.com/asu-crypto/mpsica.

Choice of Parameters. We run experiments on a single machine

2× 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM and simu-

lated network using the Linux tc command. We consider two net-

work settings: the LAN setting has 0.02ms round-trip latency and

10 Gbps network bandwidth; the WAN setting has 96ms round-trip

latency and 200 Mbps network bandwidth. In our implementation,

each party uses a separate thread to communicate with other parties.

The computational security parameter 𝜅 = 128 and the statistical

security parameter 𝜎 = 40. The number of parties is in a range of

{2, 4, 8, 16}. The set size𝑚 of PSI-CA or the upper-bound Hamming

weight 𝑡 of DotProd is in {212, 216, 220, 224}.

Choice of PRF, OPPRF, and OKVS. We instantiate the PRF 𝐹 using

AES-NI. We use OKVS and OPPRF as a black box in the imple-

mentation. Our implementation uses the table-based OPPRF code

from [30]. While there are different OKVS constructions [22], we

choose the most efficient Encode and Decode of 3-cuckoo PaXoS

data structure. The number of bins in the cuckoo table is 1.3𝑚 with

3 hash functions.

PSI-CA and DotProd protocols. Recall that the steps of PSI-CA
and DotProd protocols are similar, except for a small cost overhead

in Step (1) of DotProdwhere each party locally computes a function

idx(). In the DotProd protocol, we assume that there is a known

upper bound, 𝑡 , on the Hamming weight of the party’s input vector

𝑋 . To implementDotProd using PSI-CA, we require that the parties’
input to the PSI-CA contains exactly 𝑡 items. Thus, we only report

the detailed computational and communication performance results

82

https://github.com/asu-crypto/mpsica

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

of our PSI-CA protocols for the set size 𝑚. It indicates that the

DotProd protocols are evaluated with the upper bound 𝑡 =𝑚.

6.1 Performance of Two-party Protocols
PSI-CA Protocol. We evaluate the two-party PSI-CA protocol [27]

(Protocol 10) in the LAN and WAN settings. The aim is to evaluate

its performance in comparison to existing work and determine the

most effective candidate for our multi-party protocols, heatmap

computation, and ARL among the two-party PSI-CA options. We

consider both balanced and unbalanced set sizes as our heatmap

computation is built on the asymmetric two-party PSI-CA. In Pro-

tocol 10, the parties do not need to involve in the entire protocol’s

computation. The sender S send 𝐹 ((𝑘1, 𝑘2), 𝑋) and 𝑘1 to the re-

ceiver, send 𝑘2 to the server C at the same time and complete its

computation. Similarly, the C does not need to be online during the

whole process. Instead, the C start its computation when receiving

the S’s key PRF 𝑘2 and the set of receiver’s queries. Therefore, we

report the performance of each participant separately in Table 6 (in

Appendix). We find that Protocol 10 scales well in the experiments

as it contains only AES calls. For instance, the total run time with

the input set size𝑚1 =𝑚2 = 2
20

is only 1.5 seconds.

Two-party PSI-CA Comparison. Both DH-based and delegated

PSI-CA [18] protocols are secure against a semi-honest adversary,

but the latter requires two non-colluding servers. Note that one can

use the protocol proposed in [33] to implement PSI-CA, however,
the protocol is much expensive compared to DH-based PSI-CA.
The PSI-CA implementation of [15, 43] is not available

2
, thus we

exclude them from the comparison. In addition, we compare Pro-

tocol 10 with ROOM-based protocol [41]. The two-party DotProd
of [41] consists of two expensive steps: ROOM and a generic dense

matrix multiplication. We only report the performance of ROOM

in settings where [41] performs best. We use DH-based PSI code

implemented by [39] with the fastest Curve25519 implementation

from libsodium. For a fair comparison, we run the implementation

of delegated PSI-CA [18] and DH-based PSI on the same benchmark

machine and network settings. Note that [18] only provides the

implementation of their protocol building blocks, thus, there are

no performance results on the WAN setting. The times
3
for ROOM

are taken from [41, Figure 17] and [31, Table 2], initially provided

for a database 50, 000 and a number of queries 5, 000 and 50, 000.

Table 4 presents the performance of each PSI-CA protocol. When

comparing the protocols, we find that the running time of Proto-

col 10 is 10 − 100× faster than that of the prior works. In addition,

our protocol requires 2− 5× less bandwidth cost compared to them.

Performance of Heatmap Computation. In the two-party setting,

executing the heatmap computation essentially involves multiple

DotProd or PSI-CA executions. Similar to [4], we want to evaluate

our protocol for smaller nation-states such as New York City or

Singapore which has a population around 𝑁 = 2
23
. Concretely, we

consider a case in which the MNO has a matrix 𝑌 of size 𝑁 ×𝑚
and the HHS has a vector 𝑥 of 𝑁 , where 𝑁 = 2

23
and𝑚 = 2

15
. The

parties need to perform𝑚 DotProd instances as 𝑥 · 𝑦 𝑗 ∈[𝑚] , where
2
[43] requires a non-colluding server that is similar to Protocol 10, but their protocol

heavily replies on DH based PSI. [15] requires two non-colluding senders, each holds

an identical input set.

3
Unknown benchmark machine

𝑦 𝑗 is the 𝑗
𝑡ℎ

column of𝑌 . Recall the 𝑥 and𝑦 𝑗 are binary vectors that

indicate whether an individual tested positive to COVID-19, and

whether this individual visited a place nearby the network town

𝑦 𝑗 , respectively. Among 𝑁 = 2
23
, we assume that there are 𝑡2 = 2

12

new positive cases per day [2], and each patient visits 4 places per

day on average. We run𝑚 = 2
15

instances of Protocol 10 with the

MNO’s set size 𝑡1 = 2
14

and the HHS’s set size 𝑡2 = 2
12
, and find

that our protocol costs about 10 minutes using a single thread. On
the other hand, [4] reports about 90 minutes but using 96 threads

and stronger benchmark machine
4
. Therefore, we estimate that our

protocol is at least 50× faster than [4]. It is due to the fact that our

protocol is based on symmetric-key operations while [4] heavily

relies on public-key operations. In addition, [4] requires that the

participants agree on database indices (i.e. data alignment before

running heatmap computation). Using PSI-CA, we can remove this

requirement. The party’s input can be a set of patient/visitor ids

(instead of the vector/matrix).

Performance of ARL. Based on the DotProd performance, we

estimate the performance of our ARL. In two-party setting, each

party 𝑃𝑖∈[2] locally computes a list 𝐿𝑖
1
of frequent itemsets that

has only one attribute. The parties sequentially invoke DotProd to

compute lists 𝐿𝑘 of frequent itemsets that has exactly 𝑘 attributes

where 𝐿𝑘+1 is empty (say 𝐿𝑚+1 is empty). Assume that each at-

tribute/vector in 𝐿𝑗 ∈[2,𝑚] has a Hamming weight 𝑡 𝑗 . Also, assume

that each 𝐶 𝑗 has |𝐶 𝑗 | candidates. The performance of our ARL

is

∑𝑚
𝑖=2 |𝐶 𝑗 | [Π

(𝑡 𝑗 ,2)
DotProduct], where [Π

(𝑡 𝑗 ,2)
DotProduct] is the cost of two-

party DotProd with Hamming weight 𝑡 𝑗 . According to Table 6, we

estimate that our ARL would take under hours to compute ARL of

the database with million records.

6.2 Performance of Multi-party Protocols
PSI-CA Protocol. The running times and communication over-

head of our server-aided multiparty PSI-CA are shown in Table 5

(Appendix). The protocol is asymmetric with respect to the server,

the receiver 𝑃1 and other parties 𝑃𝑖∈[2,𝑛] , thus, we report the per-
formance results of these parties separately. In our protocol, the

workload of the receiver is light as it only requires to call𝑚 AES

instances. The majority of the receiver’s running time is to wait

for other parties to finish their work. For example, 𝑃1 takes 34.74

seconds to compute PSI-CA (or DotProd) with 𝑛 = 8 and𝑚 = 2
20

(or 𝑡 = 2
20
) in the LAN setting. Also, the server plays the role of

the receiver in most OPPRFs, his communication cost is highest

amongst other participants. For 𝑛 = 8 and𝑚 = 2
20

(or 𝑡 = 2
20
), the

PSI-CA (or DotProd) requires 3305 MB on the server’s side.

Table 1 presents the performance of our “server-less" multiparty

PSI-CA protocol in both LAN and WAN settings. Similar to the

server-aided protocol, we separately report the performance results

of 𝑃1, 𝑃2, 𝑃𝑛 and other parties 𝑃𝑖∈[3,𝑛−1] . Unlike server-aided proto-
col, this protocol only relies on OKVS (i.e. makes use of symmetric-

key operations only). We find that our protocol scales to large input

sets (e.g.𝑚 = 2
20
) with a large number of participants (e.g. 𝑛 = 16).

For 𝑛 = 16 and𝑚 = 2
20

(or 𝑡 = 2
20
), our protocol requires only 6

seconds with the total communication cost 1GB.

4
an c5.24xlarge AWS EC2 instance (96 vCPU @ 3.6 GHz, 192 GiB RAM)

83

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

Table 1: Run time (in second) and communication cost (in MB) of our “server-less" multiparty PSI-CA protocols for 𝑛 parties on sets of size𝑚.

𝑚
𝑛 = 4 𝑛 = 8 𝑛 = 16

𝑃1 𝑃2 𝑃 (3:𝑛−1) 𝑃𝑛 𝑃1 𝑃2 𝑃 (3:𝑛−1) 𝑃𝑛 𝑃1 𝑃2 𝑃 (3:𝑛−1) 𝑃𝑛

Runtime 2
12

0.08 0.07 0.06 0.07 0.08 0.07 0.06 0.07 0.08 0.08 0.06 0.08

LAN 2
16

0.40 0.37 0.21 0.33 0.41 0.38 0.22 0.34 0.43 0.39 0.23 0.36

(second) 2
20

7.00 5.69 3.99 6.38 7.31 5.77 4.26 7.02 7.74 6.43 4.60 7.16

Runtime 2
12

1.52 1.33 0.06 0.75 1.74 1.54 0.06 0.96 1.74 1.55 0.06 0.97

WAN 2
16

4.21 3.61 0.98 2.37 4.60 4.00 1.17 2.76 6.09 5.49 1.46 4.26

(second) 2
20

22.59 21.24 11.32 20.20 34.74 33.34 19.86 32.34 60.62 59.27 36.72 58.26

Comm. 2
12

0.52 0.28 0.16 0.71 1.02 0.28 0.16 1.85 2.02 0.29 0.16 4.12

Cost 2
16

8.27 4.54 2.54 11.35 16.27 4.54 2.54 29.51 32.27 4.54 2.54 65.83

(MB) 2
20

132.32 72.64 40.64 181.60 260.32 72.64 40.64 472.16 516.32 72.64 40.64 1053.28

Table 2: Run time (in second) and communication cost (in MB), and round number of[10] and our protocols for 4 parties and no collusion.
Each party has a set size𝑚. The numbers of [10] are for PSI itself (not, PSI-CA).

PSI [10] PSI-CA Protocol 11 PSI-CA Protocol 12

(server-less, semi-honest) (server-aided, semi-honest) (server-less, semi-honest)

𝑚 2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

LAN 0.23 1.6 23.8 0.19 1.38 19.65 0.07 0.40 7.00

WAN 1.9 7 69.6 1.89 6.90 106.08 1.52 4.21 22.59

Comm. 3.2 49.4 790.2 3.41 53.86 967.32 0.84 13.35 213.6

Rounds 10 4 4

Table 3: Run time (in second), communication cost (in MB) of [34] and our server-less protocol for 𝑛 parties. Each party has a set size𝑚.
Three-party PSI-CA [34] Our PSI-CA Protocol 12

(𝑛,𝑚) (8, 214)/(4, 215) (8, 218)/(4, 219) (8, 222)/(4, 223) (8, 214) (8, 218) (8, 222) (4, 215) (4, 219) (4, 223)
LAN 0.2 3.1 74 0.15 1.79 29.39 0.23 3.48 56.28

WAN 1.8 15.8 267 2.31 10.63 131.19 2.78 12.79 159.83

Comm. 32.6 521.5 8344 7.88 187.00 1008.32 6.68 106.80 1708.80

Comparison with Prior Work. The three-party PSI-CA proto-

col [34] can be applied to multi-party cases by letting all the 𝑛

parties secret-share their set of𝑚 items to their three parties/leaders

𝑆1, 𝑆2, 𝑆3, then the three leaders jointly compute the PSI-CA output.

The three leaders conduct the computation in the honest-majority

model, which might achieve the similar security assumption in our

server-less protocol in which 𝑃1, 𝑃2, 𝑃𝑛 acts as leaders. To imple-

ment a 𝑛-party PSI-CA, each having𝑚 input items, the protocol

of [34] requires to run PSI-CA on the total of𝑚𝑛 secret-shared input

items. Note that [34] only consider computing the PSI-CA for two

sets, each of𝑚 items. Thus, the running time and communication

cost of their protocol reported in [34, Figure 8] is for computing

PSI-CA on the total of 2𝑚 secret-shared input items. To have a fair

comparison, we report the performance of ours and [34]’s protocol

for the total𝑚𝑛 input items. For example, computing PSI-CA for

𝑛 = 2
3
parties, each with𝑚 = {214, 218, 222}, results in the compu-

tation of the total𝑚𝑛 ∈ {217, 221, 225} elements. This is equivalent

to the experiential results for the two-party PSI-CA using [34] with

the set size {2 ∗ 216, 2 ∗ 220, 2 ∗ 224}, which are reported in [34, Fig-

ure 8] where each party has {216, 220, 224} input items, respectively

(i.e., one needs to execute the two-party PSI-CA of [34] with each

input set of𝑚𝑛/2 items). Since the implementation of [34] is not

publicly available, we take numbers from the publication and have

the comparison with our protocol. We present the detailed perfor-

mance comparison in Table 3
5
. Our protocol shows about 1.5×

faster than [34] for sufficient large𝑚. We also note that when these

leaders servers collude, our protocol only reveals the intersection

items while [34] leaks all input items to the adversary.

As far as we know, [10]’s implementation is not publicly available.

Thus, we take their reported run times from [10, Table 2-5]. For the

most direct comparison, we used the same configured machine (2x

36-core Intel Xeon 2.30GHz 256GB of RAM) and network settings

to evaluate their and our protocols. We compare our “server-less"

protocol with [10] for the case of 𝑛 = 4, one dishonestly colluding

(no collusion), each with𝑚 ∈ {212, 216, 220}. We show an improve-

ment of 1.6− 4× in the run time, and 3.5− 4× in the bandwidth cost.

We report the performance numbers in Table 2. Our server-less

protocol with 𝑛 = 16 requires only 7.74s in the LAN setting and

𝑚 = 2
20

(see Table 1). From Table 2, the [10] with 𝑛 = 4 requires

23.8s in the same setting. Our protocol with 𝑛 = 16 is already 3.07×
faster than [10] with 𝑛 = 4, thus, we do not present the comparison

of the two protocols for larger 𝑛.

Performance of Heatmap Computation. The complexity of our

heatmap protocol is linear in the number of MNOs. Using the suit-

able parameters of the two-party heatmap where each MNO has a

matrix of size 2
23×215, and HHS has a vector of size 223, we estimate

5
We estimate the running time by using linear interpolation for𝑚 < 2

20
and linear

extrapolation for𝑚 > 2
20

based on the running time we have in Table 1.

84

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

that our protocol takes about one hour if there are 6 MNOs involved

in the protocol execution. Note that our protocol does not reveal

additional information other than the output – how many patients

visit a certain area. In contrast, [4] only works in the two-party

setting. In real-world scenarios, there are many MNOs. If using

only their protocol where the HHS executes vector-matrix multi-

plication with each MNO and then computes the “global" heatmap,

this solution leaks extra information – the individual result of each

vector-matrix multiplication.

Performance of ARL. Similar to the two-party ARL, the perfor-

mance of our multi-party ARL is

∑𝑚
𝑖=𝑛 |𝐶 𝑗 | [Π

(𝑡 𝑗 ,𝑛)
DotProduct], where

[Π (𝑡 𝑗 ,𝑛)DotProduct] is the cost of 𝑛-party DotProd with Hamming weight

𝑡 𝑗 . Here, we assume that each attribute/vector in 𝐿𝑗 ∈[𝑛,𝑚] has a
Hamming weight 𝑡 𝑗 . According to the performance of our multi-

party DotProd (or multi-party PSI-CA) shown in Table 5&1, we

estimate that our ARL would take under a day to compute ARL of

the database with million records.

ACKNOWLEDGMENTS
The first and the third authors were partially supported by NSF

awards #2101052, #2200161, #2115075, and ARPA-H SP4701-23-C-

0074.

REFERENCES
[1] 2018. Outsourcing scalar products and matrix products on privacy-protected

unencrypted data stored in untrusted clouds. Information Sciences (2018).
[2] 2023. Covid-19 Coronavirus Pandemic. https://www.worldometers.info/

coronavirus/ https://www.worldometers.info/coronavirus/.

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association

Rules between Sets of Items in Large Databases. SIGMOD Rec. 22, 2 (June 1993),
207–216. https://doi.org/10.1145/170036.170072

[4] Alexandros Bampoulidis, Alessandro Bruni, Lukas Helminger, Daniel Kales, Chris-

tian Rechberger, and Roman Walch. 2020. Privately Connecting Mobility to In-

fectious Diseases via Applied Cryptography. Cryptology ePrint Archive, Report

2020/522. https://ia.cr/2020/522.

[5] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In CRYPTO (LNCS, Vol. 576), Joan Feigenbaum (Ed.). Springer, 420–432.

[6] Alex Berke, Michiel Bakker, Praneeth Vepakomma, Ramesh Raskar, Kent Larson,

and AlexSandy’ Pentland. 2020. Assessing disease exposure risk with location

histories and protecting privacy: A cryptographic approach in response to a

global pandemic. arXiv preprint arXiv:2003.14412 (2020).
[7] Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and Karl Tarbe.

2021. The Apple PSI System. [Online; accessed 18-Sept-2021].

[8] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In

EUROCRYPT 2015, Part II (LNCS, Vol. 9057), Elisabeth Oswald and Marc Fischlin

(Eds.). Springer, Heidelberg, 337–367. https://doi.org/10.1007/978-3-662-46803-

6_12

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-

ments and Extensions. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press,

1292–1303. https://doi.org/10.1145/2976749.2978429

[10] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Ob-

battu, Sruthi Sekar, and Akash Shah. 2021. Efficient Linear Multiparty PSI and

Extensions to Circuit/Quorum PSI. CCS.

[11] Melissa Chase and Peihan Miao. 2020. Private Set Intersection in the Internet Set-

ting from Lightweight Oblivious PRF. In CRYPTO 2020, Part III (LNCS, Vol. 12172),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 34–63.

https://doi.org/10.1007/978-3-030-56877-1_2

[12] IvanDamgård and Jesper Buus Nielsen. 2007. Scalable and Unconditionally Secure

Multiparty Computation. In CRYPTO 2007 (LNCS, Vol. 4622), Alfred Menezes (Ed.).

Springer, Heidelberg, 572–590. https://doi.org/10.1007/978-3-540-74143-5_32

[13] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. 2012. Fast and Private

Computation of Cardinality of Set Intersection and Union. In Cryptology and
Network Security, Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 218–231.

[14] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS 2015.
The Internet Society.

[15] Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky, Mohamed Elsabagh,

Nikolaos Kiourtis, Brian Schulte, and Angelos Stavrou. 2020. Function Secret

Sharing for PSI-CA: With Applications to Private Contact Tracing. Cryptology

ePrint Archive, Report 2020/1599.

[16] Changyu Dong and Liqun Chen. 2014. A fast secure dot product protocol with

application to privacy preserving association rule mining. In PAKDD.
[17] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection

meets big data: an efficient and scalable protocol. In ACM CCS 2013, Ahmad-Reza

Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, 789–800. https:

//doi.org/10.1145/2508859.2516701

[18] Thai Duong, Duong Hieu Phan, and Ni Trieu. 2020. Catalic: Delegated PSI

Cardinality with Applications to Contact Tracing. In ASIACRYPT 2020, Part III
(LNCS, Vol. 12493), Shiho Moriai and Huaxiong Wang (Eds.). Springer, Heidelberg,

870–899. https://doi.org/10.1007/978-3-030-64840-4_29

[19] Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr. 2022. Accountable

Private Set Cardinality for Distributed Measurement. ACM Trans. Priv. Secur. 25,
4, Article 25 (jul 2022), 35 pages. https://doi.org/10.1145/3477531

[20] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word Search and Oblivious Pseudorandom Functions. In TCC, Joe Kilian (Ed.).

[21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and

Jaspal Singh. 2021. Private Set Operations fromOblivious Switching. In Public-Key
Cryptography – PKC 2021, Juan A. Garay (Ed.). Springer International Publishing,

Cham, 591–617.

[22] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

2021. Oblivious Key-Value Stores and Amplification for Private Set Intersection.

In CRYPTO 2021, Part II (LNCS, Vol. 12826), Tal Malkin and Chris Peikert (Eds.).

Springer, Heidelberg, Virtual Event, 395–425. https://doi.org/10.1007/978-3-030-

84245-1_14

[23] Shafi Goldwasser and Silvio Micali. 1982. Probabilistic Encryption How to Play

Mental Poker Keeping Secret All Partial Information (STOC ’82).
[24] Chunqiang Hu, Ruinian Li, Wei Li, Jiguo Yu, Zhi Tian, and Rongfang Bie. 2016.

Efficient Privacy-Preserving Schemes for Dot-Product Computation in Mobile

Computing (PAMCO ’16).
[25] Mihaela Ion, Ben Kreuter, Ahmet ErhanNergiz, Sarvar Patel, Shobhit Saxena, Karn

Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On Deploying

Secure Computing: Private Intersection-Sum-with-Cardinality. In EuroS&P. IEEE,
370–389.

[26] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and

Christian Weinert. 2019. Mobile Private Contact Discovery at Scale. In USENIX.
[27] Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian.

2014. Scaling Private Set Intersection to Billion-Element Sets. In Financial Cryp-
tography and Data Security - 18th International Conference, FC 2014, Christ Church,
Barbados, March 3-7, 2014, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 8437), Nicolas Christin and Reihaneh Safavi-Naini (Eds.). Springer,

195–215. https://doi.org/10.1007/978-3-662-45472-5_13

[28] Lea Kissner and Dawn Xiaodong Song. 2005. Privacy-Preserving Set Operations.

In CRYPTO 2005 (LNCS, Vol. 3621), Victor Shoup (Ed.). Springer, Heidelberg,

241–257. https://doi.org/10.1007/11535218_15

[29] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient Batched Oblivious PRF with Applications to Private Set Intersection. In

ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,

Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, 818–829. https://doi.org/

10.1145/2976749.2978381

[30] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.

2017. Practical Multi-party Private Set Intersection from Symmetric-Key Tech-

niques. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,

and Dongyan Xu (Eds.). ACM Press, 1257–1272. https://doi.org/10.1145/3133956.

3134065

[31] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. 2020.

Private Join and Compute from PIR with Default. Cryptology ePrint Archive,

Report 2020/1011. https://ia.cr/2020/1011.

[32] Catherine Meadows. 1995. Formal Verification of Cryptographic Protocols: A

Survey (Invited Lecture). In ASIACRYPT’94 (LNCS, Vol. 917), Josef Pieprzyk and

Reihaneh Safavi-Naini (Eds.). Springer, Heidelberg, 135–150. https://doi.org/10.

1007/BFb0000430

[33] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. 2020.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality.

In CRYPTO 2020, Part III (LNCS, Vol. 12172), Daniele Micciancio and Thomas

Ristenpart (Eds.). Springer, Heidelberg, 3–33. https://doi.org/10.1007/978-3-030-

56877-1_1

[34] Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins and

PSI for Secret Shared Data. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna (Eds.). ACM Press, 1271–1287. https://doi.org/10.1145/

3372297.3423358

[35] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:

Fast, Malicious Private Set Intersection. In EUROCRYPT 2020, Part II (LNCS,
Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 739–767.

https://doi.org/10.1007/978-3-030-45724-2_25

85

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://doi.org/10.1145/170036.170072
https://ia.cr/2020/522
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1145/3477531
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/11535218_15
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://ia.cr/2020/1011
https://doi.org/10.1007/BFb0000430
https://doi.org/10.1007/BFb0000430
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1145/3372297.3423358
https://doi.org/10.1145/3372297.3423358
https://doi.org/10.1007/978-3-030-45724-2_25

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

[36] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. 2019.

Efficient Circuit-Based PSI with Linear Communication. In EUROCRYPT 2019,
Part III (LNCS, Vol. 11478), Yuval Ishai and Vincent Rijmen (Eds.). Springer, Hei-

delberg, 122–153. https://doi.org/10.1007/978-3-030-17659-4_5

[37] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private

Set Intersection Based on OT Extension. In USENIX Security 2014, Kevin Fu and

Jaeyeon Jung (Eds.). USENIX Association, 797–812.

[38] Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: Fast OPRF and Circuit-

PSI from Vector-OLE. In EUROCRYPT 2021, Part II (LNCS, Vol. 12697), Anne
Canteaut and François-Xavier Standaert (Eds.). Springer, Heidelberg, 901–930.

https://doi.org/10.1007/978-3-030-77886-6_31

[39] Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set Intersection

for Small Sets. CCS. https://ia.cr/2021/1159.

[40] Cynthia Rudin. 2012. MIT Lecture Notes: Machine Learning and Sta-

tistics. https://ocw.mit.edu/courses/sloan-school-of-management/15-

097-prediction-machine-learning-and-statistics-spring-2012/lecture-

notes/MIT15_097S12_lec01.pdf.

[41] Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny Pinkas. 2019.

Make Some ROOM for the Zeros: Data Sparsity in Secure Distributed Machine

Learning. InACMCCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFengWang,

and Jonathan Katz (Eds.). ACM Press, 1335–1350. https://doi.org/10.1145/3319535.

3339816

[42] Babak Siabi, Mehdi Berenjkoub, andWilly Susilo. 2019. Optimally Efficient Secure

Scalar Product With Applications in Cloud Computing. IEEE Access (2019).
[43] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. 2020.

Epione: Lightweight contact tracing with strong privacy. arXiv (2020).

[44] Jaideep Vaidya and Chris Clifton. 2002. Privacy Preserving Association Rule

Mining in Vertically Partitioned Data (KDD).
[45] Jaideep Vaidya and Chris Clifton. 2005. Secure set intersection cardinality with

application to association rule mining. Journal of Computer Security 13 (10 2005),

593–622. https://doi.org/10.3233/JCS-2005-13401

[46] Jun Zhang, Xin Wang, Siu-Ming Yiu, Zoe Jiang, and Jin Li. 2017. Secure Dot

Product of Outsourced Encrypted Vectors and its Application to SVM.

[47] Youwen Zhu, Zhikuan Wang, Bilal Hassan, Yue Zhang, Jian Wang, and Cheng

Qian. 2016. Fast Secure Scalar Product Protocol with (almost) Optimal Efficiency.

In Collaborative Computing: Networking, Applications, and Worksharing, Song
Guo, Xiaofei Liao, Fangming Liu, and Yanmin Zhu (Eds.). Springer International

Publishing, Cham, 234–242.

A CORRECTNESS AND SECURITY PROOF
A.1 Server-Aided Shuffled OPRF

Theorem 1. Protocol Π (𝑚)soprf securely implements its functionality

F (𝑚)soprf in the presence of an adversary who may passively corrupt
either S, R, or C.

Proof. We exhibit simulators SimS , SimR , and SimC for simu-

lating the view of corrupt S, R, and C respectively which consists

of the randomness, input, output, and received messages during the

execution of the protocol. And then we argue the indistinguishabil-

ity of the produced transcript from the real execution.

• Passively Corrupted S. S does not receive anything during the

execution of the protocol. So it is trivial to simulate his view.

• Passively Corrupted R. SimR randomly select a pair of keys

(𝑘1, 𝑘2) and appends the 𝑘1 to the view. Given the PRF 𝐹 , SimR
computes 𝑌 ′′ = 𝐹 (𝑘2, 𝐹 (𝑘1, 𝑌)) for the input set 𝑌 and appends a

permutation of 𝑌 ′′ to the view. Now we argue that the view out-

put by SimR is indistinguishable from the real one. The way that

SimR selects keys is identical to the real execution when assum-

ing that the receiver does not collude with the server. Outputs of

the PRF given different keys are computationally indistinguish-

able. So this simulated view is computationally indistinguishable

from the real execution.

• Passively Corrupted C. SimC randomly selects a pair of keys

(𝑘1, 𝑘2) and appends the 𝑘2 to the view. Given the PRF 𝐹 , SimC
computes 𝑌 ′ = 𝐹 (𝑘1, 𝑌) for the randomly selected input set 𝑌

and appends it to the view. Nowwe argue that the view output by

SimC is indistinguishable from the real one. The way that SimC
selects keys is identical to the real execution when assuming

that the receiver does not collude with the server. Outputs of

the PRF given are computationally indistinguishable. So this

simulated view is computationally indistinguishable from the

real execution.

□

A.2 Server-Aided OPPRF
Theorem 2. Protocol Π (𝑚1,𝑚2)

sopprf securely computes functionality

F (𝑚1,𝑚2)
sopprf in the F (𝑚)soprf-hybrid model, in the presence of an adversary

who may passively corrupt either S, R, or C.

Proof. We exhibit simulators SimS , SimR , and SimC for sim-

ulating the view of corrupt S, R, and C respectively, and argue

the indistinguishability of the produced transcript from the real

execution.

• Passively Corrupted S. SimS simulates the view of corrupt S,
which consists of S’s randomness, input, output, and received

messages. SimS proceeds as follows. It chooses a random key

𝑘 = (𝑘0, 𝑘1) ← {0, 1}2𝜅 , calls a simulator Simsoprf
S of the corrupt

sender in the server-aided OPRF, and appends its output to the

view. Since the Simsoprf
S is trivial (i.e. S does not receive any

messages during the execution of Π
(𝑚)
soprf), it is easy to see the

view of SimS is computationally indistinguishable from the real

execution.

• Passively Corrupted R. SimR simulates the view of corrupt R,
which consists of R’s randomness, input, output, and received

messages. SimR proceeds as follows. It calls a Simsoprf
R with in-

put 𝑌 and appends the output to the view. To simulate Step 3,

SimR generates𝑚1 random points (𝑥𝑖 , 𝑣𝑖) ← {0, 1}ℓ × {0, 1}𝜅 ,
constructs an OKVS over𝑇 ← Encode({(𝑥𝑖 , 𝑣𝑖)}, and appends it
to the view.

We now argue that the output of SimR is indistinguishable from

the real execution. For this, we formally show the simulation by

proceeding with the sequence of hybrid transcripts 𝑇0;𝑇1;𝑇2,

where 𝑇 0 is the real view of S, and 𝑇 3 is the output of SimR .
– Hybrid 1. Let𝑇1 be the same as𝑇0, except the output of server-

aid OPRF execution is replaced by the output of the Simsoprf
R . It

is easy to see 𝑇0 and 𝑇1 are computationally indistinguishable.

– Hybrid 2. Let 𝑇2 be the same as 𝑇1, except the OKVS 𝑇 is con-

structed on randomly selected points (𝑥𝑖 , 𝑣𝑖). Since the value
𝐹 ′(𝑘, 𝑥𝑖) ⊕ 𝑣𝑖 are also pseudorandom in the real execution, the

two constructed OKVS tables 𝑇 are computationally indistin-

guishable.

• Passively Corrupted C. Since the C only participates in the ex-

ecution of server-aid OPRF as the C, the SimC is exactly the

same SimC in the server-aid OPRF. According Theorem 1, it is

computationally indistinguishable from the real execution and

we omit the proof here.

□

86

https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-77886-6_31
https://ia.cr/2021/1159
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.3233/JCS-2005-13401

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

Table 4: Run time (in second), communication cost (in MB), and system requirement of the two-party PSI-CA (or DotProd) protocols: DH-based
PSICA [25, 32], OSN-based PSI-CA [21], Catalic [18], ROOM as a building block in DotProd [41], and Protocol 10 (a simpler variant of the [27]
PSI protocol) for the sender set size𝑚1 and receiver set size𝑚2. Cells with − denote trials that are not supported by the protocol.

DH-PSICA [25] OSN-based PSI-CA [21] ROOM [41] Catalic [18] Protocol 10

𝑚1 2
16

2
20

2
16

2
20

2
16

2
20

2
16

2
20

2
16

2
20

𝑚2 2
12

2
16

2
16

2
20

2
12

2
16

2
16

2
20

2
12

2
16

2
16

2
20

2
12

2
16

2
16

2
20

2
12

2
16

2
16

2
20

LAN 8.31 10.21 112.51 191.87 - 6.56 - 84.88 14.3 144.17 - - 6.41 8.92 85.1 166.12 0.1 0.13 1.01 1.5

WAN 11.26 11.5 150.14 248.32 - 24.57 - 284.62 - - - - - - - - 1.54 2.37 4.85 8.24

Comm. 2.82 4.78 46.14 77.59 - 55.49 - 1030 863 13788 878 13837 6.29 6.29 100.66 100.66 1.18 3.15 18.87 50.33

System server-less two non-colluding servers one non-colluding server

Req. semi-honest parties semi-honest parties/servers semi-honest parties/servers

Table 5: Run time (in second) and communication cost (in MB) of our server-aided multiparty PSI-CA protocols for 𝑛 parties on sets of size𝑚.

𝑚
𝑛 = 4 𝑛 = 8 𝑛 = 16

𝑃1 𝑃 (2:𝑛) Server 𝑃1 𝑃 (2:𝑛) Server 𝑃1 𝑃 (2:𝑛) Server

Runtime 2
12

0.19 0.18 0.19 0.35 0.28 0.35 0.54 0.39 0.54

LAN 2
16

1.38 1.02 1.37 2.31 1.22 2.3 4.56 1.97 4.55

(second) 2
20

19.65 15.6 19.39 33.86 16.8 33.61 71.17 32.36 70.89

Runtime 2
12

1.89 1.15 1.84 2.47 1.16 2.08 3.04 1.25 2.66

WAN 2
16

6.9 3.18 6.01 14.07 4.1 13.28 26.09 6.01 25.3

(second) 2
20

106.08 23.98 97.49 197.35 39.43 196.87 409.13 71.26 408.65

Comm. 2
12

0.13 1.64 5.05 0.13 1.64 11.61 0.13 1.64 24.73

Cost 2
16

2 25.93 79.79 2 25.93 183.51 2 25.93 390.95

(MB) 2
20

32 467.66 1434.98 32 467.66 3305.62 32 467.66 7046.9

Table 6: Running time (in second) and communication cost (in MB) of the two-party PSI-CA protocol [27] (Protocol 10) for the
sender set size𝑚1 and receiver set size𝑚2.

Comm. LAN WAN

𝑚2 𝑚1 Receiver Sender Server Receiver Sender Server Receiver Sender Server

2
8

2
8

0.012 0.004 0.008 0.002 0.001 0.002 0.481 0.001 0.289

2
10

0.025 0.016 0.008 0.002 0.002 0.002 0.482 0.002 0.29

2
12

0.074 0.066 0.008 0.008 0.006 0.006 0.679 0.005 0.486

2
12

2
12

0.197 0.066 0.131 0.01 0.005 0.008 1.066 0.005 0.681

2
14

0.393 0.262 0.131 0.029 0.019 0.02 1.274 0.02 0.888

2
16

1.18 1.049 0.131 0.099 0.065 0.065 1.537 0.066 1.144

2
16

2
16

3.146 1.049 2.097 0.132 0.058 0.102 2.374 0.065 1.579

2
18

6.291 4.194 2.097 0.315 0.209 0.203 2.924 1.42 2.097

2
20

18.874 16.777 2.097 1.007 0.583 0.553 4.853 3.732 3.597

2
20

2
20

50.332 16.777 33.554 1.501 0.964 1.206 8.235 5.745 7.681

2
22

100.663 67.109 33.554 4.814 2.637 4.247 19.535 15.373 18.772

2
24

301.99 268.435 33.554 19.123 9.625 17.305 66.244 54.594 64.089

A.3 Server-Aided Two-party PSI-CA
Theorem 3. Protocol 10 securely realizes Functionality 4 (FPSI−CA)

with 𝑛 = 2 in the Fsoprf-hybrid model, in the presence of an adversary
who may passively corrupt either S, R, or C.

Proof. We exhibit simulators SimS , SimR , and SimC for sim-

ulating the view of corrupt S, R, and C respectively, and argue

the indistinguishability of the produced transcript from the real

execution.

• Passively Corrupted S. SimS simulates the view of corrupt

S, which consists of S’s randomness, input, output, and

received messages. SimS proceeds as follows. It chooses

a random key 𝑘 = (𝑘0, 𝑘1) ← {0, 1}2𝜅 , calls a simulator

Simsoprf
S of the corrupt sender in the server-aided OPRF, and

appends its output to the view. Since the Simsoprf
S does not

receive any messages in the protocol, it is easy to see the

view of SimS and the view in the real execution are identical.

• Passively Corrupted R. SimR simulates the view of corrupt

R, which consists of R’s randomness, input, output, and re-

ceivedmessages. SimR proceeds as follows. It calls a Simsoprf
R

with input 𝑌 and appends the output to the view. To simu-

late Step 2, SimR generates a random set of𝑚1 values 𝑋 =

{𝑥1, ..., 𝑥𝑚1
}, chooses random key 𝑘 ′ = (𝑘 ′

1
, 𝑘 ′

2
) ← {0, 1}2𝜅 ,

computes 𝑋 ′′ = 𝐹 ′(𝑘,𝑋) and appends it to the view. The

87

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

PRF values 𝑋 ′′ received from the simulator are computation-

ally indistinguishable from the random permutation of 𝑋 ′

received from the real execution.

• Passively Corrupted C. Since the C only participates in the ex-

ecution of server-aid OPRF as the C, the SimC is exactly the

same SimC in the server-aid OPRF. According Theorem 1, it

is computationally indistinguishable from the real execution

and we omit the proof here.

□

A.4 Server-Aided Multi-Party PSI-CA
Correctness. We consider three cases based on whether 𝑥 is in

the intersection of all sets 𝑋𝑖∈[𝑛] :
• Case 1: Suppose 𝑥 ∈ ⋂

𝑋𝑖∈[𝑛] . In other words, ∀𝑖 ∈ [𝑛], ∃𝑥𝑖, 𝑗𝑖 ∈
𝑋𝑖 , such that 𝑥𝑖, 𝑗𝑖 = 𝑥 . Thus, we have (i) all PRF values 𝑥 ′

𝑖, 𝑗𝑖
=

𝐹 (𝑘, 𝑥𝑖, 𝑗𝑖) are equal which is 𝐹 (𝑘, 𝑥), (ii) XORing all zero shares

𝑆 (𝐾𝑖 , 𝑥 𝑗𝑖) for 𝑖 ∈ [2, 𝑛] is equal to zero.When querying theOPPRF

programmed P𝑖∈[3,𝑛] using the common PRF value 𝑥 ′
1
= 𝐹 (𝑘, 𝑥),

the cloud server obtains 𝑦𝑖, 𝑗 . Based on the correctness of OPPRF,

we have 𝑦𝑖, 𝑗𝑖 = 𝑆 (𝐾𝑖 , 𝑥 𝑗𝑖). In addition, the cloud server obtains

𝑦2, 𝑗2 = 𝑆 (𝐾2, 𝑥 𝑗2) ⊕ 𝛾 𝑗2 when querying on 𝑥 ′
1
. Therefore, the

value𝑤 𝑗 =
⊕𝑛

𝑖=2 𝑦𝑖, 𝑗𝑖 is equal to 𝛾 𝑗2 which belongs to the set Γ
known by 𝑃1. Thus, 𝑃1 can count how many 𝑤 𝑗 in Γ to output

the intersection size.

• Case 2: Suppose 𝑥 is in 𝑋1 and is not an element in some sets

𝑋𝑖∈[2,𝑛] . Some OPPRF output 𝑦𝑖, 𝑗 is a random value since 𝐹 (𝑘, 𝑥)
was never used in the OPPRF programming process. Therefore,

𝑤 𝑗 =
⊕𝑛

𝑖=2 𝑦𝑖, 𝑗 is random and does not belong to the set Γ.
• Case 3: Suppose 𝑥 is an element in some sets 𝑋𝑖∈[2,𝑛] , but not
in 𝑋1. Some OPPRF output 𝑦𝑖, 𝑗 is a random value. Therefore,

𝑤 𝑗 =
⊕𝑛

𝑖=2 𝑦𝑖, 𝑗 is random and does not belong to the set Γ.

Theorem 4. Protocol 11 securely realizes Functionality 4 (FPSI−CA)
for arbitrary𝑛, in the (Fopprf , FZS)-hybrid model, in the presence of an
adversary who may passively corrupt any subset of {𝑃1, 𝑃3, . . . , 𝑃𝑛}
or {𝑃2, 𝑃3, . . . , 𝑃𝑛} or passively corrupt the cloud server C.

Proof. We separate the proof to the maximal collusion, from

which a security to non-maximal ones can be derived. We exhibit

simulators in three different cases and argue the indistinguishability

of the produced transcript from the real execution.

• Case 1: 𝑃1, 𝑃3, . . . , 𝑃𝑛 are passively corrupted. The simulator

first calls the FZS simulator SimZS
and appends the parties

keys 𝐾𝑖 ’s for a zero sharing to the view of 𝑃1, 𝑃3, . . . , 𝑃𝑛 . In

addition, the simulator runs a PRG to generate a set of Γ with

key𝛾0 and appends them to the view of 𝑃1, The simulator also

appends a PRF key 𝑘 to the view of 𝑃1, 𝑃3, . . . , 𝑃𝑛 . The simula-

tor now calls the Fopprf simulator SimOPPRF
S with input P𝑖 =

{(𝐹 (𝑘,𝑋𝑖), 𝑆 (𝐾𝑖 , 𝑋𝑖))} and appends the output to the view

of 𝑃3, . . . , 𝑃𝑛 . Then the simulator calls the Fopprf simulator

SimOPPRF
R with input 𝐹 (𝑘,𝑋1) = {𝐹 (𝑘, 𝑥1, 𝑗)} 𝑗 ∈[𝑚] for each

instance of 𝑃3, . . . , 𝑃𝑛 , receives 𝑌𝑖 = {𝑦𝑖, 𝑗 }𝑖∈[2,...,𝑛], 𝑗 ∈[𝑚] ,
computes set𝑊 = {𝑤 𝑗 } 𝑗 ∈[𝑚] where 𝑤 𝑗 =

⊕𝑛
𝑖=2 𝑦𝑖, 𝑗 , and

appends a random permutation of 𝑊 to the view of 𝑃1
({𝑦2, 𝑗 } 𝑗 ∈[𝑚] are obtained by randomly choose𝑚 values from

{0, 1}ℓ). The joint view of the parties 𝑃1, 𝑃3, . . . , 𝑃𝑛 is identi-

cally distributed in the simulation, and in the real execution,

the messages seen by them are identically distributed and

so is the output given to 𝑃1 (who is the only party receiving

output).

• Case 2: 𝑃2, 𝑃3, . . . , 𝑃𝑛 are passively corrupted. Most of the

simulation is similar to the case above. The simulator first

calls the FZS simulator SimZS
and appends the parties keys

𝐾𝑖 ’s for a zero sharing to the view of 𝑃2, . . . , 𝑃𝑛 . In addition,

the simulator runs a PRG to generate a set of Γ with key

𝛾0 and appends them to the view of 𝑃2, The simulator also

appends a PRF key 𝑘 to the view of 𝑃2, . . . , 𝑃𝑛 . The simulator

now calls the Fopprf simulator SimOPPRF
S with input P𝑖 =

{(𝐹 (𝑘,𝑋𝑖), 𝑆 (𝐾𝑖 , 𝑋𝑖))} and appends the output to the view

of 𝑃2, . . . , 𝑃𝑛 . This concludes the simulation. The joint view

of the parties is identically distributed in the simulation

and in the real execution, the messages seen by them are

identically distributed and these corrupted parties do not

receive outputs.

• Case 3: C is passively corrupted. The server C has no input or

output. In the protocol it receives the pseudorandom values

𝑋 ′ from 𝑃1 and the pseudorandom values 𝑦𝑖, 𝑗 for 𝑖 ∈ [2, 𝑛]
and 𝑗 ∈ [𝑚]. These 𝑚 · 𝑛 values can be easily simulated

by handing C 𝑚 · 𝑛 random values. The output of all par-

ties 𝑃1, . . . , 𝑃𝑛 are identically distributed in the simulation

and the real execution. It only remains to argue that the

view of C is computationally indistinguishable in both cases,

which follows from the security of the 𝐹 and the OPPRF

functionality.

□

A.5 Multi-party PSI-CA
Correctness. We consider three following cases based onwhether

𝑥 is in the intersection of all sets 𝑋𝑖∈[𝑛] :
• Case 1: Suppose 𝑥 ∈ ⋂

𝑋𝑖∈[𝑛] . In other words, ∀𝑖 ∈ [𝑛], ∃𝑥𝑖, 𝑗𝑖 ∈
𝑋𝑖 , such that𝑥𝑖, 𝑗𝑖 = 𝑥 . Thus, we have (i) all PRF values 𝐹 (𝑘, 𝑥𝑖, 𝑗𝑖) =
𝐹 (𝑘, 𝑥) are equal, (ii) XORing all zero shares 𝑆 (𝐾𝑖 , 𝑥 𝑗𝑖), 𝑖 ∈ [2, 𝑛]
is equal to zero. When querying the OPPRF points P𝑖∈[2,𝑛] us-
ing the common PRF value 𝐹 (𝑘, 𝑥), the party 𝑃𝑛 obtains 𝑦𝑖, 𝑗𝑖 .

Based on the correctness of OPPRF, we have 𝑦𝑖, 𝑗𝑖 = 𝑆 (𝐾𝑖 , 𝑥)
for 𝑖 ∈ [3, 𝑛 − 1] and 𝑦2, 𝑗2 = 𝑆 (𝐾𝑖 , 𝑥) ⊕ 𝑃𝑅𝐹 (𝑠, 𝑥). Therefore,
the value 𝑤 =

(⊕𝑛−1
𝑖=2 𝑦𝑖, 𝑗𝑖

)
⊕ 𝑆 (𝐾𝑛, 𝑥) is equal to 𝑃𝑅𝐹 (𝑠, 𝑥) as⊕𝑛

𝑖=2 𝑆 (𝐾𝑖 , 𝑥) = 0. Step (7) allows 𝑃1 to count 𝑥 to output the

intersection set by checking whether𝑤 ∈ 𝐹 (𝑠, 𝑋).
• Case 2: Suppose 𝑥 is in 𝑋1 and is not an element in some sets

𝑋𝑖∈[2,𝑛] . Clearly,𝑤 ∉ 𝐹 (𝑠, 𝑋1) with the high probability.

• Case 3: Suppose 𝑥 is an element in some sets 𝑋𝑖∈[2,𝑛] , but not in
𝑋1. The value𝑤 𝑗 might equal to 𝐹 (𝑠, 𝑥2) for 𝑥2 ∈ 𝑋 or random.

However, 𝑥2 ∉ 𝑋1, thus𝑤 ∉ 𝐹 (𝑠, 𝑋1) with the high probability.

Theorem 5. Protocol 12 securely realizes Functionality 4 (FPSI−CA)
for arbitrary 𝑛, in the (Fsopprf , FZS, FPSI−CA, server-aided two-party
PSI-CA)-hybrid model, in the presence of an adversary who may
passively corrupt any subset from {𝑃3, . . . , 𝑃𝑛} or passively corrupt
𝑃1 or 𝑃2 (i.e. 𝑃1 and 𝑃2 are non-colluding).

88

Multiparty Private Set Intersection Cardinality and Its Applications Proceedings on Privacy Enhancing Technologies 2024(2)

Proof. We separate the proof into multiple cases, depending

on the adversary’s corruption. As before, we assume maximal cor-

ruption and stress that the security in the case of non-maximal

corruption can be easily derived. We exhibit simulators in three

different cases and argue the indistinguishability of the produced

transcript from the real execution.

• Case 1: 𝑃3, . . . , 𝑃𝑛 are passively corrupted. The simulator first

calls the FZS simulator SimZS
and appends the parties keys

𝐾𝑖 ’s for a zero sharing to the view of 𝑃3, . . . , 𝑃𝑛 . The sim-

ulator then appends a PRF key 𝑘 to the view of 𝑃3, . . . , 𝑃𝑛 .

The simulator now calls the Fopprf simulator SimOPPRF
S with

input P𝑖 = {(𝐹 (𝑘,𝑋𝑖), 𝑆 (𝐾𝑖 , 𝑋𝑖))} and appends the output to
the view of 𝑃3, . . . , 𝑃𝑛−1. Then the simulator calls the Fopprf
simulator SimOPPRF

R with input 𝐹 (𝑘,𝑋𝑛) for each instance of

𝑃2, . . . , 𝑃𝑛−1, receives 𝑌𝑖 = {𝑦𝑖, 𝑗 }𝑖∈[2,...,𝑛−1], 𝑗 ∈[𝑚] , computes

set𝑊 = {𝑤 𝑗 } 𝑗 ∈[𝑚] where 𝑤 𝑗 =
⊕𝑛−1

𝑖=2 𝑦𝑖, 𝑗 ⊕ 𝑆 (𝐾𝑛, 𝑥𝑛,𝑗).
Then the simulator calls the two-party server-aided FPSI−CA
simulator SimPSI−CA

S with input𝑊 , and appends the output

to the view of 𝑃𝑛 .

This concludes the simulation. The joint view of 𝑃3, . . . , 𝑃𝑛
is computationally indistinguishable for the simulation and

in the real execution.

• Case 2: Passively Corrupted 𝑃2. The simulator first calls the

FZS simulator SimZS
and appends the key 𝐾2’s for a zero

sharing to the view of 𝑃2. It then appends the PRG seed

𝛾0, P2, and the transcript of Fopprf execution with C to its

view. Since the FZS is secure, the message received from FZS
execution reveals no information to the corrupt 𝑃2. For other

views, 𝑃2 plays as the sender and receives nothing. Thus,

the view of 𝑃2 is computationally indistinguishable for the

simulation and in the real execution.

• Case 3: Passively Corrupted 𝑃1. The simulator first appends

a PRF key 𝑠 to the view of 𝑃1. Then the simulator calls the

two-party server-aided OPPRF simulator SimSOPPRF
C with-

out input, and appends the output to the view of 𝑃1. Fi-

nally the simulator calls the simulator SimSPIS−CA
R with in-

put 𝑉 = 𝐹 (𝑠, 𝑋1) and appends the output to the view of 𝑃1.

This concludes the simulation. The view of 𝑃1 is computa-

tionally indistinguishable for the simulation and in the real

execution.

□

B MULTI-PARTY ARL
Definition 1. In the privacy-preserving ARL (PPARL) problem,

there are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , each holding a private vertically par-
titioned database of transactions 𝑇1, . . . ,𝑇𝑛 , respectively. Let 𝑇 =

𝑇1 | | . . . | |𝑇𝑛 be a jointed vertically database of 𝑛 parties. Let 𝐼 =

{𝑖1, 𝑖2, ..., 𝑖𝑚} be a public set of binary attributes, called items. Each
transaction (row) 𝑡 ∈ 𝑇 is represented as a binary vector, with 𝑡 [𝑘] = 1

if the transaction contains item 𝑖𝑘 ∈ 𝐼 , and 𝑡 [𝑘] = 0 otherwise. We
say that the transaction 𝑡 satisfies idx(𝑡). Denote an association rule
by⇒. Let 𝑋,𝑌 ⊆ [𝑚], we consider the following association rules:
(1) The rule 𝑋 ⇒ 𝑌 holds in𝑇 with support factor of 0 ≤ 𝑠 ≤ 1 iff at

least 𝑠% of transactions in 𝑇 satisfy 𝑋 ∪ 𝑌

(2) The rule 𝑋 ⇒ 𝑌 holds in 𝑇 with confidence factor of 0 ≤ 𝑐 ≤ 1

iff at least 𝑐% of transactions in 𝑇 that satisfy 𝑋 also satisfy 𝑌 .
(3) The rule 𝑋 ⇒ 𝑌 is global if every transaction in 𝑇 has at least

one item in 𝑋 ∪ 𝑌 .
The goal of PPARL is to allow all parties 𝑃1, . . . , 𝑃𝑛 to find all global

rules having high support and confidence on their jointed database 𝑇
while maintaining the privacy of each individual database.

Generally speaking, the support factor indicates how frequently

the itemset appears in the dataset. The support of 𝑋 with respect to

𝑇 is defined as the proportion of transactions in the dataset which

contains the itemset 𝑋 . That is, supp(𝑋) = | {𝑋 ⊆𝑇 } ||𝑇 | .

The confidence factor indicates how often the rule 𝑋 ⇒ 𝑌 is

true. The confidence value of a rule, 𝑋 ⇒ 𝑌 , in a set of transactions

𝑇 , is the proportion of the transactions that contain 𝑋 which also

contain 𝑌 . conf (𝑋 ⇒ 𝑌) = supp(𝑋∪𝑌)
supp(𝑋) . Thus confidence can be

interpreted as an estimate of the conditional probability.

Given the definitions of support and confidence factors, the

method for finding an association rule [3] can be decomposed into

two subproblems.

(1) Find the frequent itemset: The frequent itemset is defined as

the itemset that appears in the transaction set 𝑇 at least 𝜏 times,

where 𝜏 is predefined minimum support (also called a threshold).

(2) Use the frequent itemsets to generate the association rules: For

every large itemset 𝑋 , find all non-empty subsets 𝐴 of 𝑋 . For

every such subset 𝐴, output a rule of the form 𝐴 ⇒ (𝑋 \ 𝐴) if
the ratio of supp(𝑋) to supp(𝐴) is at least 𝜏 .

C EXAMPLE OF THE ARL ALGORITHM
For simplicity, we consider two parties 𝑃1 and 𝑃2, each holding a ver-

tical partitioned database𝑇1 and𝑇2, respectively. Assume that𝑇1 has

3 attributes/columns {𝑎1, 𝑎2, 𝑎3}, and 𝑇2 has 2 attributes/columns

{𝑏1, 𝑏2}.
One important step of the ARL algorithm is to find all “global”

frequent itemsets. For example, we want to compute how many

transactions that contain 2 attributes (𝑎1, 𝑏1). If the number of these

transactions is greater than a threshold 𝑡 , we say that (𝑎1, 𝑏1) is a
frequent itemset.

For a better protocol explanation. We define “global” vs “local”

frequent itemset. A frequent itemset is global if each party has at

least one item in the frequent itemset (this aligns with the global

rule mentioned in Definition 1). A frequent itemset is local if the

frequent itemset contains only items belonging to one party.

If (𝑎1, 𝑏1) is a “global” frequent itemset, the attribute 𝑎1 itself

should be a “local” frequent itemset. Thus, before any interaction

between parties, each party 𝑃𝑖 needs to locally compute a list 𝐿𝑖
1

that has only 1 attribute. For example, if the attribute 𝑎1 appears

more than or equal 𝑡 times in𝑇1, then 𝑎1 is a local frequent itemset,

and thus 𝑎1 is added to 𝐿1
1
. In contrast, if the attribute 𝑎2 appears

less than 𝑡 times in the 𝑇1, then 𝑎2 is not a local frequent itemset,

and thus 𝑎2 ∉ 𝐿
1

1
. Assume that from Step 1, we have 𝐿1

1
= {𝑎1, 𝑎3},

and 𝐿2
1
= {𝑏1, 𝑏2}.

Step 2 of Protocol 14 aims to find a list 𝐿𝑛 of “global" frequent

itemsets, where each itemset has n items (𝑛 = 2 in the two-party

setting). To do so, the parties run DotProd where the party’s input

is each itemset in 𝐿1
1
and 𝐿2

1
. For example, the parties check whether

89

Proceedings on Privacy Enhancing Technologies 2024(2) Jiahui Gao, Ni Trieu, and Avishay Yanai

Algorithm 1 apriori-gen(𝐿𝑡)
1: Find all pairs of itemsets in 𝐿𝑡 where the first 𝑡 − 1 items are identical.

e.g., 𝑡 = 5 and two pairs {𝑎,𝑏, 𝑐 }, {𝑎,𝑏,𝑑 }
2: Union them (lexicographically) to get a list of candidates𝐶′

𝑡+1
e.g., {𝑎,𝑏, 𝑐 }, {𝑎,𝑏,𝑑 } → {𝑎,𝑏, 𝑐,𝑑 }

3: Prune𝐶𝑡+1 = {𝑐 ∈ 𝐶′𝑡+1 | ∀𝑠𝑐 ∉ 𝐿𝑡 }, where 𝑠𝑐 is a 𝑡 -subsets of 𝑐 .

4: Return𝐶𝑡+1

Figure 1: A Simplest apriori-gen Algorithm [3, 40]

each of pairs (𝑎1, 𝑏1), (𝑎1, 𝑏2), (𝑎3, 𝑏1), (𝑎3, 𝑏2) are “global” frequent
items. Assume that the column 𝑎1 is (1, 1, 1, 0, 0) and the column

b1 is (1, 1, 1, 1, 0). The dot product 𝑎1 · 𝑏1 is 3. E.g. a pair (𝑎1, 𝑏1)
appears 3 times in the database. If the threshold 𝑡 = 2, the (𝑎1, 𝑏1)
is a “global" frequent itemset.

Step 3 of the protocol aims to find a list 𝐿𝑘 of “global" frequent

itemsets, where each itemset has 𝑘 items (here, 𝑘 > 2). For example,

the parties want to check whether (𝑎1, 𝑎3, 𝑏1) is a “global” frequent
itemset (in this case, 𝑘 = 3). They first need to compute the dot

product 𝑎1 ·𝑎3 ·𝑏1. To do so, 𝑃1 locally computes a dot product of 𝑎1
and 𝑎3 before running a secure DotProd with 𝑃2 (see Step 3b). The

function apriori-gen is for improving the computation – it helps to

generate the set of candidate itemsets for 𝐿𝑘 .

D OUR SECURE DOT PRODUCT PROTOCOL
See Protocol 15.

PROTOCOL 15.

(
Secure Dot Product - Π (𝑡,𝑛)DotProduct

)
Parameters:

• An upper-bound 𝑡 .

• 𝑛 parties: 𝑃1, . . . , 𝑃𝑛 ; an untrusted server C;
• A PSI-CA functionality FPSI−CA in Functionality 4.

• A function idx′ : Z★
2
× {0, 1}★ → ({0, 1}★)★ in Section 5.1

Inputs:

• 𝑃𝑖∈[𝑛] has 𝑋𝑖 = {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚 }.
• Cloud server C has no input.

Protocol:

(1) Each party 𝑃𝑖∈[𝑛] computes 𝐴𝑖 ← idx′ (𝑋𝑖 , 𝑡) .
(2) All parties invoke FPSI−CA where 𝑃𝑖 inputs𝐴𝑖 , C inputs nothing,

and 𝑃1 obtains the output |
⋂𝑛

𝑖=1𝐴𝑖 |.

E SERVER-AIDED 2-PARTY PSI
PROTOCOL[27]

See Protocol 16.

PROTOCOL 16.

(
Server-Aided 2-Party PSI [27]

)
Parameters: There are 2 parties 𝑃1, 𝑃2 and a third-party server 𝑆 .

𝑃1 and 𝑃2 have sets 𝑋1 and 𝑋2 as input, respectively. The server 𝑆

does not have input. Let 𝐹 be a PRF, and parameter 𝑑 > 0.

Protocol:

(1) 𝑃1 chooses sets 𝐷0, 𝐷1, 𝐷2 and a key 𝑘1 such that |𝐷0 | =
|𝐷1 | = |𝐷2 | = 𝑑 , sends them to 𝑃2 and set 𝑌1 ← 𝑋1 ∪𝐷0 ∪
𝐷1.

(2) 𝑃2 sets 𝑌2 ← 𝑋2 ∪𝐷0 ∪𝐷2.

(3) 𝑃2 chooses a random key 𝑘2 and sends it to the server 𝑆 .

(4) Party 𝑃1 sends a shuffled version of 𝑌 ′
1
= {𝐹 (𝑘1, 𝑥) }𝑥∈𝑌𝑖 to

𝑆 .

(5) The server returns a shuffled version 𝜋 of 𝑌 ′′
1

=

{𝐹 (𝑘2, 𝑦) }𝑦∈𝑌 ′
1

to 𝑃1

(6) Party 𝑃2 sends a shuffled version of 𝑌 ′′
2

=

{𝐹 (𝑘2, 𝐹 (𝑘1, 𝑥)) }𝑥∈𝑌2 to 𝑃1.
(7) 𝑃1 computes 𝐼 = 𝑌 ′′

1
∩𝑌 ′′

2
and sends the result to 𝑃2

(8) 𝑃2 computes 𝐼−1 = {𝐹−1 (𝑘1, 𝐹−1 (𝑘2, 𝑥)) |∀𝑥 ∈ 𝐼 }
(9) 𝑃2 check that 𝐼 has the right form and aborts if:

(a) Either 𝐷0 ⊄ 𝐼
−1

or 𝐷2 ∩ 𝐼−1 ≠ ∅
(b) There exists 𝑥 ∈ 𝑋2 and 𝛼, 𝛽 ∈ [𝜆] such that 𝑥 | |𝛼 ∈ 𝐼−1

and 𝑥 | |𝛽 ∉ 𝐼−1

(10) If 𝑃2 does not abort, it notifies 𝑆 who sends the shuffled

function 𝜋 to 𝑃1. 𝑃1 uses 𝜋 learns the values in the set 𝐼−1

(11) 𝑃1 checks that 𝐼 has the right form as in Step (9) and aborts

if the check fails.

(12) The parties output distinct items in 𝐼−1 \𝐷0.

F ZERO SHARING PROTOCOL [30]
See Protocol 17.

PROTOCOL 17.

(
Zero-Sharing - ΠZS [30]

)
Parameters: There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 . There is a PRF

𝐹 : {0, 1}𝜅 × {0, 1}ℓ → {0, 1}𝜅 .

Protocol:

(1) Each party 𝑃𝑖 picks a random seed 𝑟𝑖,𝑗 for 𝑗 ∈ [𝑖 +
1, 𝑛] and sends 𝑟𝑖,𝑗 to 𝑃 𝑗 . The key 𝐾𝑖 of party 𝑃𝑖 is

(𝑘1,𝑖 , . . . , 𝑘𝑖−1,𝑖 , 𝑘𝑖,𝑖+1, . . . , 𝑘𝑖,𝑛) .
(2) To obtain its share for value 𝑥 , party 𝑃𝑖 computes

𝑆 (𝐾𝑖 , 𝑥) =
(⊕
𝑗<𝑖

𝐹𝑘 𝑗,𝑖
(𝑥)

)
⊕

(⊕
𝑗>𝑖

𝐹𝑘𝑖,𝑗 (𝑥)
)

90

	Abstract
	1 Introduction
	1.1 State-of-the-Art for PSI Cardinality
	1.2 Secure Dot Product and Its Applications
	1.3 Our Results and Techniques

	2 Preliminaries
	2.1 Security Model
	2.2 Oblivious Key-Value Store (OKVS)
	2.3 Oblivious PRF (OPRF) and Programmable PRF (OPPRF)
	2.4 Unconditional Zero Sharing
	2.5 Private Set Intersection Cardinality
	2.6 Secure Dot Product of Binary Vectors

	3 Server-Aided OPRF and OPPRF
	3.1 Server-Aided Shuffled OPRF
	3.2 Server-Aided OPPRF

	4 PSI Cardinality Protocol
	4.1 Server-Aided Two-Party PSI-CA DBLP:conf/fc/KamaraM0S14
	4.2 Server-Aided Multi-Party PSI-CA
	4.3 Multi-party PSI-CA

	5 Applications
	5.1 Secure Dot Product Construction
	5.2 Heatmap Computation
	5.3 Association Rule Learning

	6 Implementation and Performance
	6.1 Performance of Two-party Protocols
	6.2 Performance of Multi-party Protocols

	Acknowledgments
	References
	A Correctness and Security Proof
	A.1 Server-Aided Shuffled OPRF
	A.2 Server-Aided OPPRF
	A.3 Server-Aided Two-party PSI-CA
	A.4 Server-Aided Multi-Party PSI-CA
	A.5 Multi-party PSI-CA

	B Multi-party ARL
	C Example of the ARL algorithm
	D Our Secure Dot Product Protocol
	E Server-Aided 2-Party PSI ProtocolDBLP:conf/fc/KamaraM0S14
	F Zero Sharing Protocol CCS:KMPRT17

