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ABSTRACT
In this work, we study ad conversion measurement, a central func-
tionality in digital advertising, where an advertiser seeks to esti-

mate advertiser website (or mobile app) conversions attributed to

ad impressions that users have interacted with on various publisher

websites (or mobile apps). Using differential privacy (DP), a notion

that has gained in popularity due to its strong mathematical guar-

antees, we develop a formal framework for private ad conversion

measurement. In particular, we define the notion of an operationally

valid configuration of the attribution rule, DP adjacency relation,

contribution bounding scope and enforcement point. We then pro-

vide, for the set of configurations that most commonly arises in

practice, a complete characterization, which uncovers a delicate

interplay between attribution and privacy.
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1 INTRODUCTION
Over the last two decades, numerous attacks have illustrated the pri-

vacy risks associated with the release of (aggregated, de-identified)

information, across various domains [24, 30, 36]. This has led to the

introduction of differential privacy (DP) [17, 18], a rigorous math-

ematical notion that quantifies the privacy loss of users against

arbitrary adversaries observing the algorithm’s output (and regard-

less of the data contributed by other users). While DP has been

deployed in several fields including census data release [3], learn-

ing frequently typed words [8], and collection of telemetry data

[16], there has not been any formal study of it for ad conversion

measurement—a core functionality in the digital advertising space—

that we undertake in this work.

This work is licensed under the Creative Commons Attribu-
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We now provide a quick overview of the problem space. Let the

term conversion refer to a valuable action (e.g., a purchase, add-to-

cart, newsletter sign up, etc.) on the advertiser website
1
and the

term impression refer to an ad engagement (e.g., a click on an ad

or a view of an ad) by the user on the publisher website (and not

merely an ad fetch). In (ad) conversion measurement, an advertiser

running campaigns on multiple publishers aims to measure the

performance of various campaign slices.
2
This includes estimating

conversion counts and values (the latter can be numerical, e.g.,

in US dollars) for different settings of impression and conversion

features (e.g., Example 1 below). This information can then be

used by the advertiser to estimate the conversion rate and the

return on ad spend, to optimize the purchase of ad impressions

on guaranteed selling channels, and/or to power real-time bidding

systems [12]. The ease of measuring conversions on advertiser

websites (or apps) and attributing them to impressions that the

same user had interacted with on publisher websites (or apps) is

an important reason why online advertising is significantly more

efficient thanmore traditional forms of advertising (e.g., print media,

radio and television).

Privacy is a crucial consideration in conversion measurement.

Ad measurement is indeed fundamentally a cross-site functional-

ity, involving multiple publishers and advertisers. For the last two

decades, non-private approaches to the problem have allowed third

parties to track users across websites; this has been enabled on the

Web by third-party cookie technology. However, in recent years, a

consensus has emerged that these approaches are too invasive for

users, and that new privacy-preserving methods for supporting var-

ious ad use cases are critically needed. This has led to the decision to

deprecate third-party cookies by several browsers including Apple

Safari [40], Mozilla Firefox [43], and Google Chrome [34]. Conse-

quently, multiple efforts are currently underway by many browsers,

platforms and industry groups to design privacy-preserving APIs

1
Although in this paper we mostly discuss advertiser and publisher websites, these
could alternatively be mobile apps, and the same treatment holds.

2
A campaign consists of a subset of impressions, associated with the same campaign

ID. Eeach impression is also associated with attributes over which an analyst can slice.
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that aim to support ad conversion measurement functionalities.
3

These APIs and proposals include the Interoperable Private Attri-

bution (IPA) proposed by Mozilla and Meta, [37], Masked LARk

from Microsoft [32], the Privacy Sandbox Attribution Reporting

API (ARA) on Chrome [29] and Android [7], Private Click Measure-

ment (PCM) on Safari [41], SKAdNetwork on iOS [1] as well as the

recent proposal [42] from Apple. While most of these efforts seek

to guarantee DP in order to ensure that sensitive user information

cannot be recovered from the output of the API, they still lack an

end-to-end formal DP framework. The goal of our work is to de-

velop such a framework, so that proposals in this space are built on

a solid mathematical foundation.

2 MOTIVATION, SETUP & CONTRIBUTIONS
2.1 Ad Conversion Measurement System
We next define the main components of an ad conversion measure-

ment system, and discuss the central concept of attribution.

2.1.1 Basic Definitions. An impression event consists of (i) a times-

tamp, (ii) a publisher id, (iii) an advertiser id, (iv) a user id, and (v)

metadata associated with the impression (e.g., type indicating if it

is a click or view, format indicating size of ad, etc.).

A conversion event consists of (i) a timestamp, (ii) an advertiser id,

(iii) a user id, and (iv) metadata associated with the conversion (e.g.,

a type indicating if it is a purchase or a sign up, a value if it is a

purchase etc).

The entities that are involved in ad conversion measurement are:

• Publisher : a website on which ad impressions take place.

• Advertiser : a website where conversion events take place.

• Ad tech: entity (often a third party) used by an advertiser to

buy, manage, and measure their digital advertising.

The most common type of functionality in ad conversion measure-

ment can be thought of as a two-step process: first, conversions are

assigned to one or more impressions using a fixed attribution rule,
and then queries are executed on the resulting attributed dataset.
On a high level, the attribution rule determines how the credit

from a conversion is to be divided over the different ad impressions

corresponding to the same advertiser and the same user as the con-

version. The attributed dataset consists of (impression, conversion)

pairs, each corresponding to an attribution; optionally the pair is

also associated with a (fractional) credit. (In the cases where all

credits are equal, we omit them from the attributed dataset notation

for simplicity.) The queries used in the second step include counting

the number of conversions attributed to a subset of impressions

(and the corresponding conversion rate), as well as the total return

on ad spend for that subset.

Example 1. An example of the set of impression features can include
the publisher website, the advertiser website, the ad engagement type
(click or view), as well as its time and geographical location. An exam-
ple set of conversion features can include the advertiser website, the
conversion time, and the conversion type (e.g., add-to-cart, purchase,

3
We note that, on a high-level, the goals of ad conversion measurement are not at odds

with privacy; in fact, advertisers typically want to change their ad spend allocation

based on patterns that are significant enough to generalize to large groups of users (as

opposed to overfitting to individual user actions).

email sign-up). Thus, examples of ad conversion measurement queries
include asking for:
• The number of conversions on advertiser1.com attributed to ad
impressions on publisher1.com which occurred in the UK.
• The total value (in US dollars) of purchases on advertiser1.com
taking place on August 31st and attributed to ad impressions
on publisher1.com.

,

We next discuss the attribution step in more details.

Impression 1 
advertiser.com

publisher1.com
(click)

User visits 
advertiser.com,

“converts” on the ads, 
e.g., makes a 

purchase

ti,1 = 1 ti,2 = 2 ti,3 = 3 ti,4 = 4 tc = 5

time

Impression 2 
advertiser.com

publisher2.com
(click)

Impression 3 
advertiser.com

publisher3.com
(view)

Impression 4 
advertiser.com

publisher4.com
(click)

Figure 1: Example Attribution Path. In this case, a user inter-
acts with four ad impressions from the same advertiser, but
on four different publishers. The third of these interactions
is a view, whereas the others are clicks. For simplicity, we
assume that the four impressions and the subsequent con-
version occur at equally spaced times.

2.1.2 Attribution Rule. A key component of any conversion mea-

surement system is the attribution rule. Specifically, consider the

setting, illustrated in Figure 1, where a user is exposed to several

impressions on multiple publishers before converting on the adver-

tiser website. Which of these impressions should get the credit for

driving the conversion? This attribution question has been the sub-

ject of numerous studies (see, e.g., [25] and the references therein).

In practice, the most popular attribution rules include last-touch

attribution (LTA), first-touch attribution (FTA), uniform attribu-

tion (UNI), and exponential time decayed attribution (EXP). As the

names suggest, first- and last-touch attribution assign all the credit

to the first and last impressions on the attribution path, respectively,

whereas uniform attribution divides the credit evenly among all the

impressions, and exponential time decayed attribution assigns to

each impression a credit that decays exponentially as a function of

the time gap to the conversion. For an illustration of these different

attribution rules for the example in Figure 1, we refer the reader to

Table 1.

Attribution Credit to Credit to Credit to Credit to
Rule Click on Click on View on Click on

publisher1 publisher2 publisher3 publisher4
LTA 0 0 0 1

FTA 1 0 0 0

UNI 0.25 0.25 0.25 0.25

EXP 0.0667 0.1333 0.2667 0.5333

Table 1: Example Credit Attribution.

We next explain how the values in Table 1 were computed. For

LTA, all the credit goes to the “last touch”, which is the user click
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that took place on publisher4.com. For FTA, all the credit goes to

the “first touch”, which is the user click on publisher1.com. For UNI,

the credit is split equally among the 4 ad impressions (3 clicks and

1 view). For the EXP attribution rule, we assume that the half-life

parameter
4
is 1, and that the times of the successive impressions

and conversion are all separated by 1 time unit, as shown in Figure 1;

thus, the credit assigned to ad impression 𝑖 is 0.55−𝑖/(0.5 + 0.52 +
0.53 + 0.54) for each 𝑖 ∈ {1, 2, 3, 4}.

In practice, different ad techs might offer advertisers support

different attribution rules to be used when measuring conversions.

For instance, while FTA might be desirable for some advertised

products, LTA might be natural in other settings. In this work, we

consider all of the basic and most popular attribution rules that

were mentioned above.
5

2.2 Privacy Model
We start by describing the threat model for privacy-preserving ad

conversion measurement.

2.2.1 Threat Model. To illustrate the threat model, we consider the

setting where an untrusted third party (e.g., an ad tech as defined

in Section 2.1.1) would like to run queries on a conversion mea-

surement dataset pertaining to multiple publishers and advertisers.

We assume that a central trusted curator is in charge of executing

the query on the dataset and sending the output to the ad tech; the

trusted curator could, e.g., be a web browser or mobile platform, a

trusted third party, or a secure multi-party computation protocol.

The goal is to protect sensitive information (e.g., related to a single

impression, conversion, or user?) from being leaked to the ad tech

through the output of the protocol. Examples of sensitive informa-

tion in this setting include app or web browsing history (e.g., did

the user recently visit a sensitive website), or the shopping history

of the user. To protect the data of individual users from leaking

through an output released to an untrusted third party, DP has be-

come the gold standard. It has been suggested as a primary privacy

guardrail in multiple industry proposals for privacy-preserving ad

measurement systems. Therefore, in this work, we study DP as the

desired privacy guarantee on the output of the ad measurement

system.

Remark 1. (Robustness to Side Information) We note that in some
cases, depending on browser constraints, user sign-ins, and business
arrangements, the third party could have a prior partial view of the
dataset. E.g., it could know the set of all impressions (across all users
but without knowing the associated user id for each impression), or
the set of all conversions, or both. Nevertheless, the protection offered
by DP would still be meaningful in this setting, since DP is robust to
the presence of side information.

2.2.2 Differential Privacy Ingredients.

Adjacency Relation. On a high level, DP dictates that the distri-

butions of the output of a (randomized) algorithm on two adjacent
conversion measurement datasets are statistically indistinguish-

able (see Section 3.1 for a formal definition). It is thus necessary to

specify the adjacency relation (a.k.a. privacy unit) to which the DP

4
We refer the reader to Section 3.2 for the formal definition.

5
In addition to the aforementioned attribution rules, we also cover position-based, U-

shaped, and impression-priority attribution; see Section 3.2 for the formal definitions.

definition applies. Due to the highly fragmented nature of conver-

sion measurement datasets (with the conversion taking place on

one of the advertisers and the impressions taking place on different

publishers), it turns out there are multiple natural alternatives for

defining the adjacency relation, with subtle implications on the

privacy-utility trade-offs. The different possibilities are listed in

Table 2. For each adjacency relation, the allowed difference between

two adjacent datasets consists of all user engagements that only

belong to a single tuple in the adjacency relation. For instance, for

the user × advertiser relation, two adjacent datasets can differ on

the set of all impressions of Alice associated with advertiser1.com

(and shown on any publisher), along with all conversions of Alice

on advertiser1.com; this is because all of these engagements are

only associated with a single (user, advertiser) tuple, namely, (Alice,

advertiser1.com). On the other hand, for the user × publisher × ad-
vertiser relation, the difference consists of all impressions associated

with a fixed publisher and a fixed advertiser (e.g., all impressions

of Alice shown on publisher1.com, and that are associated with

advertiser1.com); note that the conversions associated with the ad-

vertiser (e.g., advertiser1.com) are not included here, as they can be

associated with multiple other publishers (e.g., publisher2.com), and

are thus also related to other (user, publisher, advertiser) tuples in

the adjacency relation, e.g., (Alice, publisher2.com, advertiser1.com)

is such a tuple.

Remark 2 (Intuitive Interpretation of the Different Adjacency Re-

lations). The different adjacency relations described in Table 2 offer a
spectrum of possible privacy guarantees. On one end, the conversion
(respectively, impression) adjacency relation seeks to protect a single
conversion (respectively, impression) from being leaked by the output
of the algorithm. On the other end, the user relation protects any infor-
mation related to all the impressions and conversions of any user from
being leaked. The other notions can be seen as interpolating between
these two ends. E.g., the user × advertiser relation protects all the
user’s impressions and conversions pertaining to a single advertiser,
but it does not necessarily protect information that can be deduced
by observing the user’s impressions and conversions across multiple
advertisers. In particular, under this user × advertiser relation, observ-
ing the output of the privacy-preserving ad conversion measurement
the system would not substantially increase an attacker’s ability to
distinguish whether Alice had any attributed conversions associated
with advertiser1.com. The choice of the adjacency relation depends
on the privacy protection that the system designer seeks to guarantee,
and the associated utility trade-offs that they are willing to accept.
E.g., the user × advertiser adjacency can be natural in some settings as
it would prevent the ad-tech associated with a publisher from learning
that a visitor to the publisher later visited a (sensitive) advertiser site.
On the other hand, a user × publisher adjacency relation can prevent
an ad-tech associated with the advertiser from learning about the
actions of a converting user on publisher sites.

Remark 3 (Time Dimension in Adjacency Relations). In practice, it
is common to include the time dimension in some adjacency relations,
in particular, the user, user × publisher and user × advertiser ones.
Moreover, DP composition can be used to handle the case where the
time dimension in the adjacency relation can cover multiple releases
of the output of the system on different subsets of the dataset.
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time

Impression i1 
advertiser1.com

publisher1.com Visits
advertiser1.com

Conversion c1Impression i2 
advertiser1.com

publisher2.com

Impression i3 
advertiser1.com

publisher2.com

Impression i4 
advertiser1.com

publisher2.com

Impression i5 
advertiser2.com

publisher1.com
Visits

advertiser1.com,
Conversion c3

Visits
advertiser1.com,

Conversion c2

Visits
advertiser1.com,

Conversion c4

Visits
advertiser2.com,

Conversion c5

Figure 2: Attribution Path forMultiple Publishers and Advertisers. In this example, the user interacts with ads on two publishers,
and converts on the two corresponding advertiser websites.

Contribution Bounding Scope. To ensure privacy for a given adja-

cency relation, a core component of DP systems is the notion of a

contribution bound. Note that, in the case of ad conversion mea-

surement, the number of interactions can naturally be unbounded.

For example:

• An impression could lead to multiple conversions.

• Different impressions can be on the attribution path of the

same conversion.

• The same user can be shown many impressions on the same

or on different publishers, and could convert multiple times

on the advertiser.

See Figure 2 for an example. To be able to guarantee a bounded

privacy leakage, the contributions of the interactions to the com-

puted function should be restricted by a certain contribution bound.
The contribution bounding scope is the set of user interactions that
share the same contribution bound. The scope can be any one of

the options listed in Table 2 for the adjacency relation. We will

consider in this work the natural setting where the contribution

bounding scope is the same as the adjacency relation. It turns out

that each adjacency relation / contribution bounding scope can

have a different interplay with the attribution rule, and with the

resulting DP guarantee. Moreover, as we will see shortly, some will

be easier to operationalize than others.

Contribution Bound Enforcement. One particular choice, that

turns out to be important, is whether the contribution bound should

be enforced before (pre-attribution contribution capping) or after
(post-attribution contribution capping) the attribution rule is applied

to the dataset. In the former case, only impressions belonging to a

scope with a non-zero remaining contribution bound can be con-

sidered on the attribution path of a conversion. In the latter case, a

conversion could get attributed to an impression with a remaining

contribution bound of 0, only to get discarded at the contribution

bound enforcement step (without the attribution falling back to

any other impression on the path). In other words, pre-attribution

contribution bound enforcement limits the number of impressions

or conversions that belong to the contribution bounding scope and

that can enter the attribution rule. By contrast, post-attribution

enforcement limits the number of post-attribution (impression, con-

version) pairs that belong to the contribution bounding scope.
6

See Table 3 for the attributed dataset resulting from applying post-

attribution contribution bounding with a bound of 2 to the dataset

given in Figure 2 and with the LTA rule.

6
In the case of multi-touch attribution, each (impression, conversion) in the attributed

dataset is weighted, and when enforced post-attribution, the contribution bound in

fact limits the total weight of the pairs that belong to the contribution bounding scope.

Contribution Bounding Attributed Dataset
(𝑖2, 𝑐1)

(𝑖2, 𝑐2)

None (𝑖2, 𝑐3)

(𝑖4, 𝑐4)

(𝑖5, 𝑐5)

(𝑖2, 𝑐1)

Impression (𝑖2, 𝑐2)

(Contribution Bound = 2) (𝑖4, 𝑐4)

(𝑖5, 𝑐5)

User × Advertiser (𝑖2, 𝑐1)

(Contribution Bound = 2) (𝑖2, 𝑐2)

(𝑖5, 𝑐5)

User (𝑖2, 𝑐1)

(Contribution Bound = 2) (𝑖2, 𝑐2)

Table 3: Post-Attribution Contribution Bounding. The input
dataset is shown in Figure 2. The LTA rule was applied.

We now explain how the attributed datasets were generated in

Table 3. First, note that in the absence of any contribution bounding,

each conversion should simply be attributed to the last impression

occurring prior to it. So in the dataset given in Figure 2, conversions

𝑐1, 𝑐2 and 𝑐3 should be attributed to impression 𝑖2, conversion 𝑐4
should be attributed to impression 𝑖4, and conversion 𝑐5 should be

attributed to impression 𝑖5. This explains the first row of Table 3.

We note that post-attribution contribution bounding with a per

conversion contribution bounding scope is a no-op, so it would

result in the same attributed dataset as the first (i.e., “None”) row in

Table 3. In second row of Table 3, a post-attribution contribution

bound of 2 is applied for each impression. This leads to dropping

the pair (𝑖2, 𝑐3) from the attributed dataset because conversions

𝑐1 and 𝑐2 are already attributed to impression 𝑖2. In the third row

of Table 3, a contribution bound of 2 is applied post-attribution

to each (user, advertiser) pair. Since Figure 2 specifies a dataset

for a single user and for two advertisers (namely, advertiser1.com

and advertiser2.com), this entails capping the number of attributed

conversions for of each of the two advertisers to 2. Compared to

the second row, this has the additional effect of dropping the pair

(𝑖4, 𝑐4) from the attributed dataset, since conversions 𝑐1 and 𝑐2
occur on the same advertiser and already appear in the attributed

dataset. Finally, in the last row of Table 3, a contribution bound

of 2 is applied post-attribution for each user. For the user whose

dataset is shown in Figure 2, this implies that the total number

of conversions (across all advertisers) appearing in the attributed

dataset should be bounded to at most 2. Compared to the third row
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Adjacency Relation Difference between Adjacent Datasets
Impression A single impression

Conversion A single conversion

User × Publisher All impressions shown to a user on a given publisher

User × Advertiser

All impressions shown to a user and for a given advertiser, and all

conversions by the same user on the same advertiser

User × Publisher × Advertiser

All impressions shown to a user on a given publisher and corresponding

to a given advertiser

User

All impressions shown on all publishers, and all conversions occurring

on all advertisers, for a given user

Table 2: DP Adjacency Relations.

of Table 3, this has the further effect of dropping the pair (𝑖5, 𝑐5)
from the attributed dataset, because the same user already has two

conversions, 𝑐1 and 𝑐2, appearing in the attributed dataset (despite

the fact that these conversions occur on a different advertiser).

For the results for pre-attribution contribution bounding, see

Table 4.

Contribution Bounding Attributed Dataset
User × Advertiser (𝑖5, 𝑐5)

(Contribution Bound = 2)

User Empty

(Contribution Bound = 2)

Table 4: Pre-Attribution Contribution Bounding. The input
dataset is shown in Figure 2. The LTA rule was applied.

We next explain how the attributed datasets were generated

in Table 4. In the first row, a contribution bound of 2 is applied

pre-attribution for each (user, advertiser) pair. For the single user

corresponding to Figure 2, the first advertiser will have its contri-

bution bound exhausted after impressions 𝑖1 and 𝑖2 are processed;

hence, no conversion occurring on the first advertiser will appear

in the attributed dataset. By contrast, for the second advertiser,

impression 𝑖5 and and conversion 𝑐5 will be processed, and the

resulting pair (𝑖5, 𝑐5) will be added to the attributed dataset (and at

that point the contribution bound for the second advertiser would

be exhausted). For the last row of Table 4, the contribution bound

of 2 is enforced pre-attribution at the user level. For the user corre-

sponding to Figure 2, the contribution bound would be exhausted

after impressions 𝑖1 and 𝑖2 are processed, and thus the attributed

dataset would be empty. We point out that pre-attribution contri-

bution bounding with an per impression contribution bounding

scope is a no-op; hence it results in the same attributed dataset as

the first (i.e., “None”) row in Table 3.

As is the case in Tables 3 and 4, pre-attribution contribution

bounding in general results in a larger signal loss in the attributed

dataset compared to post-attribution contribution bounding. As we

will discuss shortly, the design choice of whether to enforce the

contribution bound pre- or post-attribution significantly affects the

end-to-end privacy of the ad conversion measurement system.

2.3 Valid Configurations
The DP aspects of a private conversion measurement system are

mostly captured by the choice of (i) the attribution rule, (ii) the

adjacency relation, (iii) the contribution bounding scope, and (iv)

the contribution bound enforcement point. We refer to a setting

of each of these choices as a configuration. It is natural to consider

a configuration to be operationally valid if for every positive in-

teger 𝑟 , enforcing a contribution bound of 𝑟 at the required point

ensures that any two adjacent datasets always result in two post-

attribution post-enforcement datasets that differ on at most 𝐶0 · 𝑟
many (impression, conversion) pairs, where 𝐶0 is an absolute con-

stant independent of the numbers of publishers and advertisers.
7
If

this property does not hold, then a change of, e.g., a single impres-

sion’s contributions, within the the contribution bound of 𝑟 , could

result in a change in the attributed dataset of magnitude growing

with the (unbounded and potentially very large) number of pub-

lishers and advertisers showing ads to a given user. It turns out that

this condition is not only sufficient to ensure the DP of the ad mea-

surement system, but also in a sense necessary, unless the noise is

increased with the total number of publishers or advertisers—which

is practically unwieldy as this number is not fixed and can vary

from user to user (note that the subset of publishers and advertisers

showing ads to a given user as they browse the Web cannot be fixed

ahead of time). In other words, a configuration is deemed invalid if

the sensitivity increases as the number of advertisers or publishers

increases. For more details, we refer the reader to Lemma 1 and the

paragraph following it.

2.4 Our Contributions
In addition to formally defining the framework for ad conversion

measurement and defining the notion of an operationally valid con-

figuration, we provide a complete characterization of the validity

of the configurations that most commonly arise in practice.

Classification. We provide a complete classification of all the con-

figurations of attribution rule, adjacency relation and contribution

bound enforcement point, that are operationally valid; see Table 5.

We discuss the obtained classification next.

We first note that pre-attribution contribution bound enforce-

ment results in valid configurations for all considered attribution

7
To cover multi-touch attribution, we in fact bound the ℓ1-distance between the two

post-attribution post-enforcement datasets of weighted (impression, conversion) pairs.

See Definitions 2 and 4 for more details.
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rules and adjacency relations. A possible challenge to such an en-

forcement point is that an impression or publisher can incur a

deduction from their contribution bound whenever they are part of

the input to the attribution rule, and even if they are not selected

for attribution. This can result in situations where a publisher can

see their contribution bound totally exhausted due to conversions

that got attributed to other publishers. This is in fact the main

motivation for considering post-attribution contribution bound

enforcement, which we discuss next.

It turns out that the adjacency relations that are valid for all

attribution rules in the case of post-attribution enforcement are

the conversion, user × advertiser, and user options. A limitation of

the conversion adjacency relation is that the privacy would de-

grade as a user converts more than once. Given that conversion

events are in practice not restricted to purchases (e.g., page views,

email signups, and add-to-carts can also qualify as conversions),

the privacy leakage could increase noticeably. On the other hand,

the user adjacency relation could be operationally challenging to

enforce as all the publishers and advertisers would have to share

the same contribution bound, which could end up being dominated

by certain publishers and/or advertisers. For the other relations of

impression, user × publisher, and user × publisher × advertiser, we
demonstrate in Table 5 that the situation is much more delicate, as

the validity of the different attribution rules turns out to depend

on the adjacency relation. For instance, we show that, surprisingly,

while the impression, and user × publisher × advertiser adjacency
relations and contribution bounding scopes admit valid configura-

tions for post-attribution contribution bound enforcement, the user
× publisher adjacency relation does not.

Our results suggest that if all the considered attribution rules are

to be supported, then either pre-attribution enforcement, or a user,
user × advertiser, or conversion adjacency relation should be used.

If, however, post-attribution enforcement is desired and a middle

ground is sought between the conversion and user contribution

bounding scopes, then only a subset of the attribution rules can be

supported (as in Table 5).

We emphasize that the dimensions considered in our classifi-

cation are fundamental to any conversion measurement system.

Specifically, any such system has to select an attribution rule. More-

over, any DP implementation has to choose a privacy unit. It also

has to bound contributions, and keep track of a remaining contri-

bution bound.

For a high-level overview of the proofs, we refer the reader to

Section 6.4.

We next give an example illustrating the idea captured by the

notion of invalid configurations.

Example of an Invalid Configuration. Consider the configuration
where LTA is selected as the attribution rule, the adjacency relation

(and the contribution bounding scope) is set to user × publisher,
and contribution bounding is performed post-attribution. Moreover,

consider the typical setting where an advertiser runs a campaign

displaying ads on multiple publishers. The advertiser’s goal is to

estimate the number of conversions attributed to ad impressions

shown on each publisher. Since the adjacency relation is user ×
publisher, and since summation has sensitivity 𝑂 (1), one would
hope for an 𝜖-DP algorithm with error𝑂 (1/𝜖). On a high level, our

results suggest that surprisingly, this is not possible to achieve since

adding last-touch interactions on a publisher can remove attrib-

uted conversions for all other publishers. Hence, the sensitivity in

fact grows with the (practically unbounded) number of publishers,

which would result in poor measurements even if a publisher has

thousands of attributed conversions.

2.5 Additional Related Work
There have been several previous works on (non-private) conver-

sion measurement, e.g., [5, 27, 28, 33]. We point out that it is com-

mon in the literature on DP to consider notions between protecting

a single contribution and protecting all the user’s contributions;

see, e.g., [31] and the references therein. We also note that some

recent ad conversion measurement systems rely on ad-hoc privacy

notions; see, e.g., [9]. To the best of our knowledge, our work is the

first study of the end-to-end (differential) privacy of ad conversion

measurement systems.

The very recent works of [13] and [6] provide an empirical evalu-

ation of a differentially private ad conversion measurement system

similar to the one studied in this work. Their focus is the Privacy

Sandbox Attribution Reporting API (ARA) on Chrome and Android.

They consider last touch attribution and an impression privacy unit.

Both of these work consider the linear queries functionality (e.g.,

conversion counts and values). The former focuses on hierarchi-

cal queries whereas the latter studies the non-hierarchical setting.

These works provide a concrete instantiation of a DP ad conversion

measurement system similar to the one studied in this work, and

they empirically evaluate the error, on real ad conversion datasets,

for different values of the differential privacy parameter 𝜖 . We refer

the reader to these two papers for more details. Note that, in our

terminology, ARA assumes that the attributed dataset is the input,

and that post-attribution capping and noising is performed. Thus,

our work complements these previous works: the valid configura-

tions (for the impression adjacency relation) in our work imply that

ARA satisfies an end-to-end DP guarantee for the corresponding

attribution rules. Meanwhile, the invalid configurations imply that

the end-to-end DP guarantee may not hold for those attribution

rules.

Organization of Rest of the Paper. We start Section 3 with some

notation that will be used in the rest of the paper. We recall the

formal definition of DP in Section 3.1. In Section 3.2, we formally

define the various attribution rules that will be studied in this pa-

per. In Section 4, we present the notion of an operationally valid

configuration, along with its connection to the design of a DP ad

conversion measurement system. The pre- and post-attribution con-

tribution bound enforcement algorithms are described in Section 5.

We present our main validity and invalidity results in Section 6.

Some of the proofs are given in Section 6.5 (with the rest deferred

to the Appendix). Our work opens up several interesting areas of

exploration; we describe some of these in Section 7 where we also

discuss our results in the context of related practical applications.
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LTA FTA UNI EXP U-S POS IPA

Post-Attribution
Impression Thm. 8(+) Thm. 2(+) Thm. 9(−) Cor. 1(−) Thm. 10(−) (±) (±)

User Thm. 6(+)
User × Publisher Thm. 1(−)
User × Advertiser Thm. 7(+)
User × Pub × Adv Thm. 3(−) Thm. 11(+) Cor. 2(−) (±) (±)

Pre-Attribution
Impression

User

User × Publisher Thm. 5(+)
User × Advertiser

User × Pub × Adv

Conversion* Thm. 4(+)

Table 5: Validity of post- and pre-attribution enforcement configurations. A (+) cell indicates a valid configuration, a (−)
cell indicates an invalid configuration, and a (±) cell means means that there are attribution rules in that family that result
in a valid configuration and an invalid configuration. Specifically, both the IPA class and the POS class contain FTA and UNI; in
the impression and user × publisher × advertiser adjacency relations, the former is valid but the latter is invalid. (*) For the
conversion adjacency relation, no contribution bound enforcement is applied as the conversion is already only used once in the
attribution rule.

3 PRELIMINARIES
Notation. For any positive integer 𝑛, we denote by [𝑛] the set

{1, . . . , 𝑛}. For any finite set 𝑆 , we denote by 𝑆∗ the set of all finite-
length non-empty sequences of elements of 𝑆 . For any positive inte-

ger𝑚, the𝑚-dimensional probability simplex, denoted by Δ𝑚 , is de-

fined as the set of all vectors in [0, 1]𝑚+1 whose coordinates add up
to 1. The ℓ1-norm of a vector 𝑣 ∈ R𝑑 is defined as ∥𝑣 ∥1 =

∑𝑑
𝑖=1 |𝑣𝑖 |.

The Laplace distribution with zero mean and scale parameter 𝑏 > 0

is the continuous probability distribution whose probability density

function is given by 𝑓 (𝑥 ;𝑏) = 1

2𝑏
· 𝑒−

|𝑥 |
𝑏 , for any real number 𝑥 .

3.1 Differential Privacy
Wedenote two adjacent datasetsD andD′ byD ∼ D′. The adjacency
notions considered in this work are listed in Table 2, and will be

further discussed in Section 4.1, but DP can be defined generally

for any such relation.

Definition 1 (Differential Privacy [18]). Let 𝜖 ≥ 0. A randomized
mechanismM is 𝜖-differentially private (denoted by 𝜖-DP) if for
each pair D ∼ D′ of adjacent datasets and each subset S of outputs
ofM, it holds that Pr[M(D) ∈ S] ≤ 𝑒𝜖 · Pr[M(D′) ∈ S], where
the probabilities are over the randomness inM.

Intuitively, the DP definition guarantees that the outputs of two

adjacent datasets are approximately statistically indistinguishable.

The degree of indistinguishibility is dictated by the 𝜖 parameter.

The smaller 𝜖 is, the more private the algorithm would be. In our

setting, the dataset D consists of the impressions and conversions

(pre-attribution), across all users, advertisers and publishers. The

outputM(D) is the output of the privacy-preserving ad conversion
measurement system.

DP satisfies several useful mathematical properties that have

made it an appealing measure of privacy. These include robustness

to post-processing, composition, and group privacy. For a compre-

hensive overview of the area, we refer the reader to the monographs

[19, 39].

3.2 Attribution Rule
The attribution rule function (see, e.g., [15] for background) takes

as input a sequence of𝑚 impressions and a conversion, all corre-

sponding to the same user and advertiser, and returns a fraction

in [0, 1] for each of the𝑚 impressions. We denote this function by

a : I∗ × C → [0, 1]∗, where I is the set of all possible impressions,

and C is the set of all possible conversions. We assume that for

any input ((𝑖1, . . . , 𝑖𝑚), 𝑐) to the attribution function a, it is the case
that the impressions 𝑖1, . . . , 𝑖𝑚 have been sorted from least to most

recent according to their timestamps and 𝑐 occurs later than 𝑖𝑚 .

Moreover, it is assumed that a((𝑖1, . . . , 𝑖𝑚), 𝑐) ∈ Δ𝑚−1.

3.2.1 Single-Touch. In single-touch attribution, only a single coor-

dinate in the output a((𝑖1, . . . , 𝑖𝑚), 𝑐) is equal to 1 and all the other

𝑚 − 1 coordinates are equal to 0. We next describe some notable

special cases of single-touch attribution.

Last-Touch Attribution (LTA). a((𝑖1, . . . , 𝑖𝑚), 𝑐) = (0, . . . , 0, 1), i.e.,
the last impression in the sequence is selected.

First-Touch Attribution (FTA). a((𝑖1, . . . , 𝑖𝑚), 𝑐) = (1, 0, . . . , 0),
i.e., the first impression in the sequence is selected.

3.2.2 Multi-Touch. While the single touch attribution rules assign

all the credit to a single impression, multi-touch attribution allows

spreading the credit over more than one impression. The simplest

multi-touch attribution rule is uniform (aka linear).

Uniform (UNI). a((𝑖1, . . . , 𝑖𝑚), 𝑐) = (1/𝑚, . . . , 1/𝑚), i.e., the credit
is split equally among all the impressions.
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Exponential Time Decay (EXP). In the EXP rule with half-life

parameter 𝑡
1/2, the credit assigned to a given impression is propor-

tional to (0.5)
𝑡

𝑡
1/2

, where 𝑡 is the difference between the timestamp

of the impression and that of the conversion.

U-Shaped (U-S). If there are at least three impressions, 40% of

the credit goes to the first touch, 40% of the credit goes to the last

touch, and the remaining credit is divided uniformly over all the

intermediate impressions (i.e., those that are neither first nor last). If

there are two impressions, we assume that the credit is split equally

between them.

Positional (POS). In positional (aka position based) attribution,

the credit assigned to each impression is based on the total number

of impressions and the order in which this impression occurs, i.e.,

the credit does not depend on the user, publisher, or advertiser

IDs, or on the metadata. More precisely, a positional attribution

is parameterized by a class F = {𝑣𝑚}𝑚∈N of vectors, where 𝑣𝑚 ∈
Δ𝑚−1. The attribution function is defined as a((𝑖1, . . . , 𝑖𝑚), 𝑐) = 𝑣𝑚 .

It is worth noting that POS is a class of attribution rules, one for

each choice of F . The POS class contains FTA (𝑣𝑚 = (1, 0, . . . , 0)),
LTA (𝑣𝑚 = (0, . . . , 0, 1)), UNI (𝑣𝑚 = (1/𝑚, . . . , 1/𝑚)) and U-S (𝑣𝑚 =

(0.4, 0.2/(𝑚 − 2), . . . , 0.2/(𝑚 − 2), 0.4)), but it does not contain EXP.

Impression-Priority Attribution (IPA). One of the impressions is

selected by applying a prioritization function pr : I∗ → [0, 1]∗
that depends only on the impressions and not on the conversion,

i.e., a((𝑖1, . . . , 𝑖𝑚), 𝑐) = pr(𝑖1, . . . , 𝑖𝑚) ∈ Δ𝑚−1.
Similar to POS, IPA is a class of attribution rules; it contains FTA,

LTA, UNI, EXP, and U-S.

4 DIFFERENTIALLY PRIVATE CONVERSION
MEASUREMENT SYSTEMS

To describe our framework for DP conversion measurement, we

first discuss in Section 4.1 the adjacency relations and contribution

bounding scopes that we consider, and then describe attribution

systems and how to privatize their outputs in Section 4.2

4.1 Adjacency Relations and Contribution
Bounding Scopes

As we saw in Definition 1, any application of DP should specify a

notion of when two datasets are considered adjacent. In the con-

version measurement setting, there are several options; the most

natural of them are summarized in Table 2.

For any relation in the first column of Table 2, we can then define

two datasets to be adjacent if one can be obtained from the other

by adding or removing impressions and/or conversions as listed in

the second column of the table.

Any application of DP should, at some level, limit the individual

contributions; otherwise, the finite amount of noise that is injected

would not be sufficient to ensure DP when the individual contribu-

tions become too large. In the conversion measurement use case,

there are multiple contribution bounding scopes in which the con-

tributions could be limited. These include the same choices listed in

Table 2 for the adjacency relation. We consider henceforth the most

natural setting where the contribution bounding scope matches the

adjacency relation. E.g., for the user × publisher adjacency relation,

all the contributions of a given user on a given publisher share the

same contribution bound.

4.2 Attribution Systems
An attribution system is an algorithm that takes as input impres-

sions and conversions sequences and outputs the attributions, rep-

resented by a set of weighted pairs of impressions and conversions

(defined formally as an attributed dataset below).

Definition 2 (Attributed Dataset). An attributed dataset Dattr is
a set of triplets (𝑖, 𝑐,𝑤) ∈ I × C × R≥0, where for each (𝑖, 𝑐) there
is a unique𝑤 . We may represent an attributed dataset as a function
𝑤Dattr : I×C → R≥0, where𝑤Dattr (𝑖, 𝑐) represents8 the total weight
attributed to impression 𝑖 by conversion 𝑐 . The ℓ1-distance between
two attributed datasets Dattr,D ′attr is given by

∥Dattr − D ′attr∥1 :=
∑︁

𝑖∈I,𝑐∈C
|𝑤Dattr (𝑖, 𝑐) −𝑤D′attr (𝑖, 𝑐) |.

Given an attribution system, we can build a conversion measure-
ment system by applying a function 𝑓 that maps the attributed

dataset to a vector in R𝑑 ; the vector measures the statistics that an

ad tech would like to estimate. For example, if the ad tech wants to

know the total attributions for each slice of (campaign × time-of-

day), then each of the 𝑑 dimensions can represent a valid (campaign

ID, time-of-day) pair, and the value that 𝑓 assigns to that dimension

would be the total attribution for that campaign ID and time-of-day.

Of course, as described above, the system is not (differentially)

private: the ad tech can allocate a dimension for a particular user

and then count exactly, e.g., the number of impressions that user

sees. Since this is not desirable, we employ two methods to ensure

privacy. First, we apply contribution bound enforcement within the
attribution system, which will be discussed below. Second, we add

(appropriately scaled) Laplace noise to each of the 𝑑 coordinates of

the values of 𝑓 ; these noisy estimates are then sent to the ad tech.

See Figure 3 for an illustration of such a conversion measurement

system. Note that we consider the central DP setting, where a

(trusted) curator runs the attribution rule, computes the function 𝑓 ,

and adds the noise; the output of this curator is required to be DP.

It turns out that there are two important properties needed to

ensure DP of the output. The first is that the sensitivity of 𝑓 is small,

i.e., that a small change (in the ℓ1-distance) to the attributed dataset

does not change the value of 𝑓 (again, in the ℓ1-distance) by much.

This is formalized below.

Definition 3 (Sensitivity of 𝑓 ). For a function 𝑓 that maps an
attributed dataset to a vector of real numbers in R𝑑 , we define its
(ℓ1-)sensitivity to be

Δ(𝑓 ) := max

Dattr,D′attr
∥Dattr−D′attr ∥1≤1

∥ 𝑓 (Dattr) − 𝑓 (D ′attr)∥1 .

For many natural functions, such as the “sum by slices” example

above, the sensitivity is bounded (e.g., by 1 in the example).

8
In this notation, 𝑤D

attr
(𝑖, 𝑐) = 0 could correspond to different situations: one is that

impression 𝑖 was considered when attributing conversion 𝑐 but was not selected by

the attribution rule; the other is that impression 𝑖 and conversion 𝑐 are incompatible,

e.g., impression 𝑖 takes place after conversion 𝑐 , or they correspond to different users

or advertisers.
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Input

Dataset

D

(DP) Conversion Measurement System

Attribution

System

Attributed

Dataset

Dattr

𝑓 (Dattr) + 𝑍

Figure 3: Illustration of a (DP) Conversion Measurement Sys-
tem. Each coordinate of the noise𝑍 is drawn from the Laplace
distributionwith an appropriate scale (see Lemma 1).Wenote
that the attribution system can include a contribution bound
enforcement component (this is the case in Algorithms 1
and 2).

The second property we need is with regards to the attribution

system itself. Although we have not defined the contribution bound

enforcement yet, it takes in a positive integer parameter 𝑟 , con-

sidered as the “contribution bound”.
9
To ensure DP, we need this

parameter 𝑟 to be an upper bound on the possible change (in the ℓ1
sense) in the resulting attributed dataset.

More specifically, an attribution system—which can be speci-

fied by a “configuration” of adjacency relation, contribution bound

enforcement point, and attribution rule—is “valid” if two adjacent

datasets get mapped to attributed datasets that are at most 𝑂 (𝑟 )
apart, as stated more precisely below.

Definition 4 (Valid Configurations). An adjacency relation along
with a contribution bound enforcement point is said to be 𝐶0-valid

for a given attribution rule if, for every positive integer 𝑟 , applying a
contribution bound of 𝑟 at the required enforcement point ensures that
any two adjacent datasets always result in two attributed datasets
that are at an ℓ1-distance of at most 𝐶0 · 𝑟 , where 𝐶0 is an absolute
constant independent of the numbers of publishers and advertisers. We
call a configuration valid if it is 𝐶0-valid for some absolute constant
𝐶0 > 0.

Assuming the above two properties, if we appropriately scale

the Laplace-distributed noise injected in Figure 3, then we can

guarantee that the system is DP:

Lemma 1. If the attribution system is instantiated with a 𝐶0-valid
configuration and each coordinate of the noise 𝑍 is sampled according
to the Laplace distribution with scale parameter 𝐶0 · 𝑟 · Δ(𝑓 )/𝜀, then
the conversion measurement system is 𝜀-DP.

We remark that the “converse” of Lemma 1 is also true in the

following sense: if we let 𝑓 be the identity function, i.e., the range of

𝑓 is associated with RI×C and let 𝑓 (Dattr) (𝑖,𝑐) = 𝑤Dattr
(𝑖, 𝑐), then

the conversion measurement system with 𝑍 sampled according to

the Laplace distribution with scale𝐶0 ·𝑟/𝜀 is 𝜀-DP iff the attribution

system is instantiated with a𝐶0-valid configuration. In other words,

the validity of the configuration characterizes the DP property of

the conversion measurement system in this sense.

Proof of Lemma 1. Consider any two adjacent datasets D,D ′;
let Dattr and D ′attr be the results of the attribution system on these

9
We note that while in post-attribution enforcement, the contribution bound 𝑟 could

be set to any positive real number without any modification to our treatment, we

choose to keep it integral for consistency with the case of pre-attribution enforcement.

two datasets, respectively. Then, since the configuration is𝐶0-valid,

we have ∥Dattr −D ′attr∥1 ≤ 𝐶0 · 𝑟 . Therefore, from the definition of

Δ(𝑓 ), we can conclude that ∥ 𝑓 (Dattr) − 𝑓 (D ′
attr
)∥1 ≤ 𝐶0 · 𝑟 · Δ(𝑓 ).

In other words, the entire measurement system before adding noise

is simply a function with ℓ1-sensitivity at most 𝐶0 · 𝑟 · Δ(𝑓 ). Thus,
the standard DP guarantee of the Laplace mechanism [18] implies

that the system is 𝜀-DP as desired. □

Remark 4. While the treatment above considers the evaluation of a
single function on the input dataset, it can be readily extended to the
setting where one would like to compute multiple (possibly adaptively
chosen) functions on the same dataset; this can be done using the
standard composition properties of DP [19].

Remark 5. For typical functions 𝑓 that are of interest in ad conver-
sion measurement, their sensitivity Δ(𝑓 ) can be computed explicitly.
For example, if 𝑓 computes the total (attributed) conversion count,
then Δ(𝑓 ) = 1. Similarly, if 𝑓 computes the number of distinct users
with attributed conversions, then Δ(𝑓 ) = 1 too. On the other hand, if
𝑓 computes the sum of capped conversion values, where each value is
capped to a positive real number 𝑉 , then the sensitivity of 𝑓 is given
by Δ(𝑓 ) = 𝑉 .

Queries of interests are also often “sliced” by certain attributes. For
example, one might be interested in histogram of the total (attributed)
conversion count for each publisher or each geographic location (which
is e.g. determined by the impression’s metadata). In this case, the
sensitivity Δ(𝑓 ) remains 1.

5 CONTRIBUTION BOUND ENFORCEMENT
As stated earlier, a major part of the attribution system is contribu-

tion bound enforcement algorithm. This algorithm takes a positive

integer 𝑟 , the “contribution bound”, and tries to “enforce” this con-

tribution bound. We consider two types of enforcement in this

paper, pre-attribution and post-attribution, which we will explain

next. (It is an interesting future direction to understand if there are

other contribution bound enforcement strategies that may be more

privacy safe and/or practical than the ones considered here.)

First, let us note that for the conversion adjacency relation (Ta-

ble 2), no contribution bound enforcement is applied. The reason

is that each conversion is used only once in the attribution rule.

Therefore, the enforcement strategies described below will anyway

not affect it.

To describe the enforcement strategies for the other adjacency

relations, it is key to define the scope of a contribution bound.

Definition 5 (Contribution Bounding Scope). The contribution
bounding scope for an adjacency relation is the unit of that relation.

For example, for the user adjacency relation, a contribution

bounding scope would be each user.

5.1 Post-Attribution Contribution Bound
Enforcement

For post-attribution contribution bound enforcement, we simply

run the attribution algorithm as usual. However, we only add each

weighted (impression, conversion) pair to the attributed dataset if

it does not exceed the (remaining) contribution bound of that scope.

The pseudo-code is given in Algorithm 1.
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ALGORITHM 1: Attribution with Post-Attribution Contribution

Bound Enforcement.

1: Parameters: Attribution rule a, contribution bound 𝑟 .

2: Input: Dataset D = (𝑖1, . . . , 𝑖𝑛), (𝑐1, . . . , 𝑐𝑚) ordered from oldest to

newest.

3: for each contribution bounding scope 𝑠 do
4: 𝑏𝑠 ← 𝑟 . {Set remaining contribution bound of this scope to 𝑟 .}

5: Dattr ← ∅.
6: for 𝑗 = 1, . . . ,𝑚 do
7: 𝑖′

1
, . . . , 𝑖′ℓ ← impressions that come before 𝑐 𝑗 in time and are

associated with the same advertiser and the same user as 𝑐 𝑗 .

8: (𝑤1, . . . , 𝑤ℓ ) ← a( (𝑖′
1
, . . . , 𝑖′ℓ ), 𝑐 𝑗 ) . {Standard attribution alg.}

9: for 𝑘 = 1, . . . , ℓ do
10: 𝑠 ← contribution bounding scope corresponding to (𝑖′

𝑘
, 𝑐 𝑗 , 𝑤𝑘 ) .

11: if 𝑏𝑠 ≥ 𝑤𝑘 then
12: 𝑏𝑠 ← 𝑏𝑠 − 𝑤𝑘 . {Subtract the spent contribution bound.}

13: Add (𝑖′
𝑘
, 𝑐 𝑗 , 𝑤𝑘 ) to Dattr.

14: return Dattr

5.2 Pre-Attribution Contribution Bound
Enforcement

Pre-attribution enforcement is much more pessimistic than the

post-attribution approach. Specifically, we charge one unit from

the contribution bound of every scope involved with the input im-
pressions to the attribution rule. If any scope does not have enough

contribution bound left, we remove all impressions associated with

that scope. As we will show below, such a pessimistic approach

is—perhaps not too surprisingly—more privacy-safe than the post-

attribution approach in certain settings. The full pseudo-code of

the pre-attribution contribution bound enforcement is given in

Algorithm 2.

ALGORITHM 2: Attribution with Pre-Attribution Contribution Bound

Enforcement.

1: Parameters: Attribution rule a, contribution bound 𝑟 .

2: Input: Dataset D = (𝑖1, . . . , 𝑖𝑛), (𝑐1, . . . , 𝑐𝑚) ordered from oldest to

newest.

3: for each contribution bounding scope 𝑠 do
4: 𝑏𝑠 ← 𝑟 . {Set remaining contribution bound of this scope to 𝑠 .}

5: Dattr ← ∅.
6: for 𝑗 = 1, . . . ,𝑚 do
7: 𝐼 ← set of impressions that come before 𝑐 𝑗 in time and are

associated with the same advertiser and the same user as 𝑐 𝑗

8: 𝑆 ← set of contribution bounding scopes corresponding to at least

one impression in 𝐼 .

9: for 𝑠 ∈ 𝑆 do
10: if 𝑏𝑠 ≥ 1 then
11: 𝑏𝑠 ← 𝑏𝑠 − 1. {Subtract the spent contribution bound.}

12: else
13: Remove 𝑠 from 𝑆 . {Not enough contribution bound remaining;

discard from the final output.}

14: 𝑖′
1
, . . . , 𝑖′ℓ ← impressions in 𝐼 corresponding to scopes in 𝑆 .

15: (𝑤1, . . . , 𝑤ℓ ) ← a( (𝑖′
1
, . . . , 𝑖′ℓ ), 𝑐 𝑗 ) .

16: Add (𝑖′
1
, 𝑐 𝑗 , 𝑤1), . . . , (𝑖′ℓ , 𝑐 𝑗 , 𝑤ℓ ) to Dattr.

17: return Dattr

6 CLASSIFICATION RESULTS
In this section we present our results on the validity of different

adjacency relations; they are summarized in Table 5. For ease of

presentation, we organize our results into two categories: when the

validity holds independent on the attribution rule and otherwise.

We only state in this section the theorems that are proved in

Section 6.5. For the other theorems, we provide forward pointers to

their formal statements (along with their proofs) in the Appendix.

6.1 Attribution Rule-Independent Validity
We start by discussing the validity of different adjacency relations,

which turn out to be independent of the attribution rule. The con-
version adjacency relation (which, as stated earlier, involves no

contribution bound enforcement) turns out to be valid for every

adjacency relation and every attribution rule (Theorem 4).

For pre-attribution enforcement, it also turns out that all adja-

cency relations and all attribution rules result in valid configura-

tions (Theorem 5).

We next turn our attention to post-attribution enforcement. In

this case, we show that the validity of the user × advertiser and
user adjacency relations are independent of the attribution rule

(Theorems 6 and 7). By contrast, the following theorem (which we

will prove in Section 6.5) shows the invalidity of the user × publisher
adjacency relation for any attribution rule.

Theorem 1. For any attribution rule, the user × publisher ad-
jacency relation with contribution bound enforced post-attribution
constitutes an invalid configuration.

6.2 Post-Attribution Enforcement and
Impression Adjacency

In this section we consider the impression adjacency under post-

attribution enforcement of the contribution bound. Our first result

proves the validity of FTA.
10

Following Lemma 1, this means that

these configurations require adding twice as much noise compared

to those in previous validity results (under the same contribution

bound).

Theorem 2. For the FTA rule, the impression adjacency relation
with contribution bound enforced post-attribution constitutes a 2-valid
configuration.

We also prove a similar result for LTA (Theorem 8). By contrast,

we prove that the UNI, EXP, and U-S attribution rules are all valid

in this case (Theorem 9, Corollary 1, and Theorem 10 respectively).

6.3 Post-Attribution Enforcement and
User × Publisher × Advertiser Adjacency

We next consider the user × publisher × advertiser adjacency rela-

tion. In this case, and under post-attribution enforcement, it turns

out that only FTA results in a valid configuration (Theorem 11)

whereas the LTA, UNI, EXP, and U-S attribution rules result in

invalid configurations (Theorem 3 and Corollary 2).

10
Note that it has a slightly worse absolute constant of𝐶0 = 2 compared to𝐶0 = 1 as

in Theorem 4.

133



Proceedings on Privacy Enhancing Technologies 2024(2) Delaney et al.

Theorem 3. For the LTA attribution rule, the user × publisher
× advertiser adjacency relation with contribution bound enforced
post-attribution constitutes an invalid configuration.

6.4 Intuition and Proof Overview
Before we proceed to the formal proofs of these classification results,

let us briefly (and informally) discuss the high-level ideas behind

them. For the invalidity results in the post-attribution case, there

are (roughly speaking) two root causes behind them:

• Cascading Effect within Attribution Rule. A single im-

pression can be an input of multiple executions of the attri-

bution algorithm (Line 8 of Algorithm 1). When removing

such an impression from the dataset, the attribution rule

also changes the weights assigned to other input impres-

sions. Below we construct datasets which make sure that

these changes affect different privacy units, implying that

it can exceed the contribution bound. This is the idea be-

hind our constructions for the impression adjacency relation

(Theorem 9, Corollary 1, and Theorem 10).

• Multiple Impressions Affecting Multiple Privacy Units.
In some scenarios (see LTA, FTA discussion below), chang-

ing a single impression does not result in a cascading ef-

fect. In this case, the high-level idea is to construct multiple

impressions—corresponding to the same privacy unit—in

such a way that removing each one affects some other differ-

ent privacy unit. When all of these impressions are removed

simultaneously, the effect occurs across different privacy

units and therefore bypasses the contribution bounding. This

is the gist of our constructions for the user × publisher ad-
jacency relation (Theorem 1) and the user × publisher ×
advertiser adjacency relation (Theorem 3).

We next discuss the validity results. We remark that the attri-

bution rule-independent results (e.g., for the user-level adjacency

relation) are relatively straightforward to prove, so we will focus

our discussion here on the exceptions: LTA for the impression-level

adjacency relation (Theorem 8), and FTA for the impression-level

adjacency (Theorem 2) and the user × publisher × advertiser adja-

cency relations (Theorem 11).

• LTA.Whenwe remove an impression, LTA essentially “routes”

all the attributions of this impression to the previous one

with the same advertiser. Thus, in the impression-level ad-

jacency relation, contribution bounding will upper-bound

the change. On the other hand, this reasoning fails for the

user × publisher × advertiser adjacency relation because it is

possible to remove multiple impressions that affect different

privacy units (i.e., different publishers); this is indeed the

second root cause described above for invalidity.

• FTA.When we remove an impression, if this impression is

not the first one of this advertiser, then no change occurs in

attribution. Otherwise, FTA “routes” all the attributions of

this impression to the second impression of this advertiser.

Similar to LTA, this implies validity for the impression-level

adjacency relation. However, in contrast to LTA, this ar-

gument remains true in the user × publisher × advertiser

adjacency relation; this is because, even after removing mul-

tiple impressions of the same advertiser, all attributions are

routed to the same impression—the first one of this advertiser

after the removal. Therefore, post-attribution enforcement

successfully bounds the change.

This concludes our summary of the proof ideas. We will next for-

malize these by providing the proofs of Theorems 1, 2, and 3. (The

remaining proofs are deferred to the Appendix.)

6.5 Selected Proofs
FTA, Impression Adjacency. We now prove the validity of the

FTA rule for the impression adjacency relation. The proof follows

the outline from the previous subsection.

Theorem 2. For the FTA rule, the impression adjacency relation
with contribution bound enforced post-attribution constitutes a 2-valid
configuration.

Proof of Theorem 2. Consider two adjacent datasets D,D ′
such that D ′ results from removing an impression 𝑖 . Let 𝐴 be 𝑖’s

advertiser, 𝑈 be 𝑖’s user and 𝐶𝐴 denote the set of conversions from

the advertiser and the user. We may assume w.l.o.g. that all conver-

sions in 𝐶𝐴 occur after the first impression w.r.t. the advertiser 𝐴

and the user 𝑈 . (As other conversions remain unattributed in both

D and D ′.) We consider two cases, based on whether 𝑖 is the first

impression w.r.t. its advertiser 𝐴 and its user𝑈 (in D).

• Case I: 𝑖 is not the first impression w.r.t. the advertiser 𝐴

and the user 𝑈 . In this case, the two attributed datasets

Dattr,D ′attr are exactly the same, because all conversions in

𝐶𝐴 are attributed to the first impression w.r.t. the advertiser

𝐴 (which is not 𝑖).

• Case II: 𝑖 is the first impression w.r.t. the advertiser𝐴 and the

user𝑈 . In this case, all conversions 𝑐 𝑗 ∈ 𝐶𝐴 are attributed to

𝑖 . These are the only conversions whose attributions change

between D and D ′.
To analyze this change, consider two subcases, whether 𝑖 is

the only impression in D from 𝐴.

– Case IIa: 𝑖 is the only impression inD from𝐴 and the user

𝑈 . In this case, all conversions in𝐶𝐴 become unattributed

inD ′. Therefore, ∥Dattr−D ′attr∥1 =
∑
𝑐 𝑗 𝑤Dattr

(𝑖, 𝑐 𝑗 ) ≤ 𝑟,

where the inequality follows from the post-attribution

contribution bound enforcement for 𝑖 .

– Case IIb: 𝑖 is not the only impression in D from 𝐴 and

the user 𝑈 . Let 𝑖 ′ be the second impression in D from 𝐴.

In this case, every conversion in 𝐶𝐴 is either attributed

to 𝑖 ′ or unattributed in D ′. Furthermore, no conversions

are attributed to 𝑖 ′ in D (because 𝑖 comes before 𝑖 ′ in the

same advertiser 𝐴 and the same user 𝑈 ). Therefore, we

have

∥Dattr − D ′attr∥1 =
∑︁
𝑐 𝑗

𝑤Dattr
(𝑖, 𝑐 𝑗 ) +

∑︁
𝑐 𝑗

𝑤D′
attr

(𝑖 ′, 𝑐 𝑗 ) ≤ 2𝑟,

where the inequality follows from the post-attribution

contribution bound enforcement for impressions 𝑖 and 𝑖 ′.

In all cases, we can conclude that ∥Dattr − D ′attr∥1 ≤ 2𝑟 . □

LTA, User × Publisher × Advertiser Adjacency. Next, we prove the
invalidity of the LTA rule under the user × publisher × advertiser
adjacency relation. This is due to the fact that we may arrange the

impressions/conversions in such a way that a single publisher gets
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a large amount of attribution weight (before contribution bound

enforcement) and that, once this publisher is removed, this weight

is re-attributed to multiple publishers. The latter ensures that the

change grows with the number of publishers. (This is also the main

difference between LTA and FTA, since we cannot ensure such a

condition for FTA.) Such an example is given together with a formal

argument below.

Theorem 3. For the LTA attribution rule, the user × publisher
× advertiser adjacency relation with contribution bound enforced
post-attribution constitutes an invalid configuration.

Proof of Theorem 3. Let 𝑟 = 1 and let 𝑝 > 1 be any integer.

We construct the dataset D as follows:

• Let there be a single user, a single advertiser, and 𝑝 publishers

𝑃1, . . . , 𝑃𝑝 .

• Let 𝑖1, . . . , 𝑖2𝑝−2 be impressions such that impression 𝑖
2𝑘−1 is

associated with publisher 𝑃𝑘 and impression 𝑖
2𝑘 is associated

with publisher 𝑃𝑝 for all 𝑘 ∈ [𝑝 − 1].
• Let 𝑐1, . . . , 𝑐𝑝−1 be conversions such that 𝑐𝑘 appears after 𝑖

2𝑘

and before 𝑖
2𝑘+1, for all 𝑘 ∈ [𝑝 − 1].

Finally, let D ′ be the dataset resulting from removing publisher

𝑃𝑝 ’s impressions (i.e., 𝑖2, . . . , 𝑖2𝑝−2) from D.

In D, publishers 𝑃1, . . . , 𝑃𝑝−1’s impressions get attributed with

zero weight. On the other hand, in D ′, each of these publishers get

attribution weight of exactly one. Therefore, ∥Dattr − D ′attr∥1 ≥
𝑝 − 1, invalidating the attribution system for this configuration. □

Any Attribution Rule, User × Publisher Adjacency. Finally, we
prove the invalidity of the user × publisher adjacency for any attri-

bution rule. We remark that, if we were looking for an invalidity

proof of a specific attribution rule, then the construction could have

been simplified. For example, the construction in Theorem 3 above

also shows the invalidity of LTA in this setting. However, we would

like our proof to generalize to all attribution rules. Our construction
below accomplishes this by first creating another “dummy” dataset

˜D (with multiple publishers) to understand how the attribution

weights are distributed across different publishers. We then create

the datasets D,D ′ that differ on the highest weighted publisher to

ensure that there is a large–unbounded–change between the two

attributed datasets.

Theorem 1. For any attribution rule, the user × publisher ad-
jacency relation with contribution bound enforced post-attribution
constitutes an invalid configuration.

Proof of Theorem 1. Let a be any attribution rule. To create

our datasets D,D ′, let us start by constructing another dataset
˜D

as follows.

• Let there be

(𝑝
2

)
advertisers 𝐴{1,2}, 𝐴{1,3}, . . . , 𝐴{𝑝−1,𝑝 } , and

𝑝 publishers 𝑃1, . . . , 𝑃𝑝 .

• For each advertiser𝐴{ 𝑗,𝑘 } , let there be impressions 𝑖
{ 𝑗,𝑘 }
𝑗

, 𝑖
{ 𝑗,𝑘 }
𝑘

and conversion 𝑐 { 𝑗,𝑘 } , coming after both impressions. Fur-

thermore, let 𝑖
{ 𝑗,𝑘 }
𝑗

and 𝑖
{ 𝑗,𝑘 }
𝑘

be associated with publishers

𝑃 𝑗 and 𝑃𝑘 , respectively.

Now, suppose we run the attribution system—without any con-

tribution bound enforcement—on
˜D. Let 𝑃ℓ denote the publisher

that gets the largest total attribution weight (with ties broken ar-

bitrarily). Note that the total weight it receives must be at least(𝑝
2

)
/𝑝 = 0.5(𝑝 − 1).
We now construct D by keeping only advertisers 𝐴{ℓ, 𝑗 } for

𝑗 ∈ [𝑝] \ {ℓ} in ˜D (and discard the rest of advertisers together

with all impressions and conversions associated to them). Let the

contribution bound 𝑟 be 1. Furthermore, let D ′ denote the dataset
resulting from removing all impressions corresponding to publisher

𝑃ℓ from D. We will now show that ∥Dattr − D ′attr∥1 ≥ 0.5(𝑝 − 1),
which implies that the attribution system is an invalid one.

To show this, first observe that, in D ′, each 𝑖
{ℓ, 𝑗 }
𝑗

is the only

impression that gets fed into the attribution rule for 𝑐 {ℓ, 𝑗 } ; therefore,
it gets attributed with weight one. Furthermore, since we use a

contribution bound 𝑟 = 1 for each (user, publisher) pair and each

𝑖
{ℓ, 𝑗 }
𝑗

corresponds to a different publisher, the contribution bound

enforcement leaves these weights unchanged. In summary, we have

𝑤D′
attr

(𝑖 {ℓ, 𝑗 }
𝑗

, 𝑐 {ℓ, 𝑗 }) = 1.

On the other hand, by our choice of the publisher 𝑃ℓ , we have∑︁
𝑗 ∈[𝑝 ]\{ℓ }

𝑤Dattr
(𝑖 {ℓ, 𝑗 }
𝑗

, 𝑐 {ℓ, 𝑗 }) ≤ 0.5(𝑝 − 1) .

Combining the above two inequalities, we get that

∥Dattr − D ′attr∥1

≥
∑︁

𝑗 ∈[𝑝 ]\{ℓ }
|𝑤D′

attr

(𝑖 {ℓ, 𝑗 }
𝑗

, 𝑐 {ℓ, 𝑗 }) −𝑤Dattr
(𝑖 {ℓ, 𝑗 }
𝑗

, 𝑐 {ℓ, 𝑗 }) |

≥ 0.5(𝑝 − 1). □

7 DISCUSSION AND FUTURE DIRECTIONS
In this paper, we presented a formal framework for DP ad conver-

sion measurement setting. We also demonstrated a delicate inter-

play between attribution and privacy. We defined the notion of

operationally valid configurations, and provided a complete clas-

sification of the validity of the configurations based on the most

popular attribution rules, adjacency relations, contribution bound-

ing scopes, and contribution bound enforcement points. We hope

that our end-to-end differential privacy framework can lead to a

solid foundation for practical privacy-preserving ad conversion

measurement systems.

While we have focused for simplicity on pure-DP (Definition 1),

ℓ1-sensitivity (Definition 2, 3, and 4), and Laplacemechanism (Lemma 1),

our formalism extends readily to the case of approximate-DP [17],

other type of sensitivities, and other DPmechanisms. For example, if

the set of measurements is large, we could replace the Laplace mech-

anism with the partition selection algorithm (see, e.g., [14] and the

references therein) if we relax to approximate DP. Similarly, we can

extend our framework to ℓ2-sensitivity
11

and Gaussian mechanism,

which could for instance be used to train DP predicted conversion

rate models based on DP stochastic gradient descent [2]. (For prior

work on non-private conversion models, see, e.g., [5, 27, 28, 33].)

We describe next some interesting future research directions.

11
Note that changing the sensitivity notion may change the set of valid configurations.
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Adjacency Relation ≠ Contribution Bounding Scope. We focused

in this work on the most natural setting where the contribution

bound scope is the same as the adjacency relation. In principle,

this is not necessary: e.g., one might consider a user contribution
bounding scope with a user × advertiser adjacency relation. It might

be interesting to give a characterization in such cases, as it will

lead to an even more fine-grained understanding of the privacy

provided by the conversion measurement system.

Contribution Capping: Beyond Pre- and Post-Attribution? While

we focus on pre-attribution and post-attribution contribution cap-

ping, it remains an interesting open question whether there are

other (general) capping procedures that can further improve the

utility-privacy trade-off.

To illustrate the challenge, note that an intuitive capping strategy

is to do it “at the query evaluation time”. Although such a strategy

makes sense for certain query functions 𝑓 and adjacency relations,

it is not completely well-defined for all functions 𝑓 . For example,

let 𝑓 be the number of distinct users with attributed conversions

from Remark 5 and suppose we are interested in the impression
adjacency relation. If two impressions share the same user ID, then

it is not clear what their contributions are; on one hand, removing

each of them alone does not cause any change to the value of 𝑓 .

Meanwhile, removing them both may decrease the value. Such a

situation is only exacerbated when we have a more complicated

function 𝑓 . We also remark that it is preferable if a single capping

procedure is used for all functions 𝑓 since it allows more flexibility

for the measurements that can be made on the platform.

Privacy of the Computation. Our work has focused on guaran-

teeing privacy against an adversary that has access to “what” is

being computed, but not to “how” it is being computed. Concretely,

our results capture the setting where a single entity has access

to the all the raw impression and conversion data, and seeks to

release DP estimates to some requested conversion measurement

queries. Studying the privacy of “how” this is computed is an im-

portant direction for future work. For instance, one could naturally

extend this formalism to distributed settings where the trust in a

single entity is relaxed by relying on methods such as secure multi-

party computing [21], and on-device noise addition as in local DP

[18, 22, 26] or shuffle DP [10, 11, 20]. Moreover, we studied the case

of a static dataset of impressions and conversions; it would be of

interest to study the online variant of the problem where privacy

needs to be ensured at any time as the impressions and conversions

take place.

Enhanced Attribution. Some attribution systems offer a conver-

sion lookback window option (which limits how far back in time

from a conversion are impressions eligible for attribution), and an

impression expiry option (which limits how far in the future would

the impression be eligible for attribution). It would be interesting

to investigate the interplay of these enhancements with privacy

and their impact on the validity of the configurations.

In our classification, we considered the simplest and most com-

monly used attribution rules (listed in Section 3.2), which operate

on a single user’s data. It would be interesting to investigate the

interplay between DP and more advanced alternatives such as those

based on the Shapley value (e.g., [35]) as well as data-driven attri-

bution (DDA), which by contrast is a class of attribution rules that

operate on the entire dataset (across users).

Incentives. While there has been interesting prior work at the

intersection of privacy and economics, e.g., [4, 23], understand-

ing privacy and incentives in the conversion measurement setting

would greatly benefit from further investigation. For instance, our

study captures the case where a single ad tech company would like

to query the DP conversion measurement system across multiple

publishers. In reality, multiple ad techs, which are often competing

but could in principle collude, would want to issue DP queries on

overlapping impressions and conversions taking place on the same

set of publishers and advertisers.

Finally, while a user contribution bounding scope can admit valid

configurations, it is vulnerable to “crowding out attacks”, where,

e.g., one publisher can exhaust the contribution bound of a user (by

showing them a large number of impressions). Incorporating the

economic incentives of different entities into the analysis of privacy

and utility of conversion measurement systems seems worthwhile.

Privacy-Utility Trade-offs of Various Tasks. The classification in

this work is in terms of sensitivity, which is closely related to addi-

tive noise mechanisms as these naturally calibrate the noise scale

to the sensitivity. While most proposed DP conversion measure-

ment systems follow this sensitivity and additive noise paradigm, it

would be valuable to consider other families of mechanisms, and to

quantify the privacy-utility trade-offs of various estimation tasks.

Correlation across Users. There are settings where different users’
data can be correlated. In ad measurement, this can arise if multiple

users watch the same ad (e.g., on a TV). Then, their impressions

are correlated, and extra care is needed when applying DP [38]. We

leave the exploration of this interesting setting for future work.

DP Advertising. Applying DP in practical advertising systems

has been notoriously difficult for the reasons considered in this

work, namely: How to define adjacent datasets? Given the corre-

lation between a given user’s behavior across (a practically un-

bounded number of) websites (and/or apps), can DP be applied

without adding a disproportionately large amount of noise that

would preclude the measurement of simple statistics? We hope that

our work provides a stepping stone for tackling these questions in

the setting of attribution measurement—the cornerstone of digi-

tal advertising—and leads to solid deployments of DP in practical

advertising systems.
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A DEFERRED STATEMENTS AND PROOFS
In this section, we provided all the remaining statements and proofs

for our classification results from Section 6. We remark that, in all

the datasets that we construct below for the invalidity results, all the

impressions/conversions belong to a single user, and we will hence-

forth not specify this explicitly. Throughout, let Dattr and D ′attr
denote the attributed datasets resulting from D,D ′, respectively.

A.1 Conversion Adjacency Relation
We start with the simple proof for the validity of the conversion
adjacency relation (Theorem 4).

Theorem 4. For any attribution rule, the conversion adjacency
relation (without contribution bound enforcement) constitutes a valid
configuration with 𝑟 = 𝐶0 = 1.

Proof. Consider two adjacent datasets D,D ′ such that D ′ re-
sults from adding a conversion 𝑐 to D. Notice that D ′

attr
is ex-

actly equal to Dattr together with (𝑖 ′
1
, 𝑐,𝑤1), . . . , (𝑖 ′ℓ , 𝑐,𝑤ℓ ) where

𝑖 ′
1
, . . . , 𝑖 ′

ℓ
are the impressions that come before 𝑐 and correspond

to the same advertiser as 𝑐 , and (𝑤1, . . . ,𝑤ℓ ) = a((𝑖 ′
1
, . . . , 𝑖 ′

ℓ
), 𝑐).

Therefore, we have ∥Dattr − D ′attr∥1 ≤
∑

𝑗 ∈[ℓ ] 𝑤 𝑗 = 1, where the

equality follows from the definition of an attribution rule. Thus,

the conversion adjacency relation (without contribution bound en-

forcement) constitutes a valid configuration with 𝑟 = 𝐶0 = 1 as

desired. □

A.2 Pre-Attribution Enforcement
Once again, pre-attribution enforcement results in valid configura-

tions for all adjacency relations and attribution rules.

Theorem 5. For any attribution rule, any adjacency relation with
contribution bound enforced pre-attribution constitutes a valid con-
figuration with 𝐶0 = 1.

Proof. Consider adjacent datasets D,D ′ such that D ′ results
from adding impressions 𝑖1, . . . , 𝑖𝑎 and conversions 𝑐1, . . . , 𝑐𝑏 all

associated with a single contribution bounding scope 𝑠 . Let 𝐼 :=

{𝑖1, . . . , 𝑖𝑎} and 𝐶 := {𝑐1, . . . , 𝑐𝑏 }.
Observe that, in all privacy notions considered, the set of impres-

sions considered for attribution to 𝑐 ∈ 𝐶 (on Line 7 of Algorithm 2)

must come from 𝐼 . This means that the attribution rule applied to𝐶

does not affect any scope apart from 𝑠 . This in turn implies that, in

both D,D ′, the impressions fed into the attribution rule for each

𝑐 𝑗 ∉ 𝐶 (on Line 14) are the same apart from those in 𝐼 .

Thus, ∥Dattr−D ′attr∥1 can be at most the number of conversions

𝑐 𝑗 for which at least one impression from 𝐼 is included in its attribu-

tion rule (on Line 14). However, when this happens, we subtract one

from the contribution bound of scope 𝑠; therefore, the number of

such 𝑐 𝑗 ’s can be at most 𝑟 . Hence, we have ∥Dattr−D ′attr∥1 ≤ 𝑟 . □

A.3 Post-Attribution Enforcement
We will now move on to the second—and more subtle—privacy

enforcement: post-attribution.

A.3.1 Validity of User and User × Advertiser Relations. We start by

considering the user adjacency relation.

Theorem 6. For any attribution rule, the user adjacency relation
with contribution bound enforced post-attribution constitutes a valid
configuration with 𝐶0 = 1.

Proof. Consider adjacent datasets D,D ′ such that D ′ results
from adding impressions 𝑖1, . . . , 𝑖𝑎 and conversions 𝑐1, . . . , 𝑐𝑏 all

associated with a single user 𝑈 . Let 𝐼 := {𝑖1, . . . , 𝑖𝑎} and 𝐶 :=

{𝑐1, . . . , 𝑐𝑏 }.
Notice that outside of the conversions in𝐶 , the attribution system

produces exactly the same result for both D,D ′. Therefore, we
have ∥Dattr − D ′attr∥1 =

∑
𝑖∈𝐼 ,𝑐∈�̃� 𝑤D′

attr

(𝑖, 𝑐) . Moreover, the post-

attribution enforcement exactly ensures that the quantity on the

right-hand side is at most 𝑟 . □

We next consider the user × advertiser adjacency relation.

Theorem 7. For any attribution rule, the user × advertiser ad-
jacency relation with contribution bound enforced post-attribution
constitutes a valid configuration with 𝐶0 = 1.

Proof of Theorem 7. Similar to the proof of Theorem 6, con-

sider two adjacent datasetsD,D ′ such thatD ′ results from adding

impressions 𝑖1, . . . , 𝑖𝑎 and conversions 𝑐1, . . . , 𝑐𝑏 all associated with

a single user 𝑈 and a single advertiser 𝐴. Let 𝐼 := {𝑖1, . . . , 𝑖𝑎} and
𝐶 := {𝑐1, . . . , 𝑐𝑏 }.

Outside of the conversions in𝐶 , the attribution system produces

exactly the same result for both D,D ′. This implies that ∥Dattr −
D ′

attr
∥1 =

∑
𝑖∈𝐼 ,𝑐∈�̃� 𝑤D′

attr

(𝑖, 𝑐), which is at most 𝑟 due to post-

attribution enforcement. □

A.3.2 Impression Relation. We next consider the impression ad-

jacency relation. As stated earlier, the validity in this case does

depend on the attribution rule. We note that the validity for FTA

was already shown in the main body (Theorem 2).

Last-Touch Attribution. Again this results in a valid configuration
(Theorem 8). The idea is similar to before, except that instead of

re-attribution to the second impression, the re-attribution happens

to the second-to-last impression before the conversion.

Theorem 8. For last-touch attribution, the impression adjacency
relation with contribution bound enforced post-attribution constitutes
a valid configuration with 𝐶0 = 2.

Proof. Consider adjacency datasetsD,D ′ such thatD ′ results
from removing an impression 𝑖 . Let 𝐴 be 𝑖’s advertiser, 𝑈 be its

user, and 𝐶𝐴 denote the set of conversions attributed to 𝑖 in D. We

consider two cases, based on whether 𝑖 is the first impression w.r.t.

its advertiser 𝐴 and its user𝑈 (in D).

• Case I: 𝑖 is the first impression w.r.t. the advertiser 𝐴 and the

user𝑈 . In this case, all conversions in𝐶𝐴 become unattributed.

As a result,

∥Dattr − D ′attr∥1 =
∑︁
𝑐 𝑗

𝑤Dattr
(𝑖, 𝑐 𝑗 ) ≤ 𝑟,

where the inequality follows from the post-attribution con-

tribution bound enforcement for the impression 𝑖 .

• Case II: 𝑖 is not the first impression w.r.t. the advertiser 𝐴

and the user𝑈 . Let 𝑖 ′ denote the impression that comes right

before 𝑖 w.r.t. the advertiser𝐴 and the user𝑈 . 𝑖 and 𝑖 ′ are the
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only two impressionswhose attributions change between the

two datasets. Furthermore, all attributions to 𝑖 ′ inD remains

unchanged in D ′, because the corresponding conversions

must come before 𝑖 and therefore before all conversions in

𝐶𝐴 . In other words, the only changes to 𝑖 ′ are the additional
attributions from conversions in 𝐶𝐴 . As a result, we have

∥Dattr − D ′attr∥1 =
∑︁
𝑐 𝑗

𝑤Dattr
(𝑖, 𝑐 𝑗 ) +

∑︁
𝑐 𝑗 ∈𝐶𝐴

𝑤D′
attr

(𝑖 ′, 𝑐 𝑗 ) ≤ 2𝑟,

where the inequality again follows from the post-attribution

contribution bound enforcement for impressions 𝑖 and 𝑖 ′.

In all cases, we can conclude that ∥Dattr − D ′attr∥1 ≤ 2𝑟 , which

means that this is a valid configuration with 𝐶0 = 2 as desired. □

Uniform Multi-Touch and Exponential Time Decay Attributions.
Next, we move on the prove the invalidity for uniform multi-touch

and exponential time decay attribution rules.

Theorem 9. For uniform multi-touch attribution, the impression
adjacency relation with contribution bound enforced post-attribution
constitutes an invalid configuration.

Since exponential time decay can be used to implement uniform

multi-touch rule when assuming that the time of every impression

is the same, Corollary 1 is immediate.

Corollary 1. For exponential time decay attribution, the impression
adjacency relation with contribution bound enforced post-attribution
constitutes an invalid configuration.

The idea of the proof of Theorem 9 is to construct an impression

that is involved in many conversions’ attribution rule. Due to the

uniform attribution, such an impression naturally “draws” large

weights from the overall attribution. Therefore, when removing

it, such weights get re-attributed back to the other impressions,

resulting in a large change in the attributed dataset.

Proof. Let 𝑟 = 1 and let 𝑝 be any positive integer. Consider D
such that there are 𝑝 impressions 𝑖1, . . . , 𝑖𝑝 and

(𝑝+1
2

)
conversions

𝑐1,1, 𝑐2,1, 𝑐2,2, . . . , 𝑐𝑝,𝑝 such that conversion 𝑐𝑘,1, . . . , 𝑐𝑘,𝑘 appears af-

ter 𝑖𝑘 (and before 𝑖𝑘+1 if it exists); all impressions and conversions

are associated with the same advertiser.

Then, let D ′ denote D but with 𝑖1 removed.

Under the uniform attribution rule, it is simple to see that, for

all 𝑗 = 2, . . . , 𝑝 , we have𝑤Dattr
(𝑖 𝑗 , 𝑐 𝑗,𝑘 ) = 1

𝑗 for all 𝑘 = 1, . . . , 𝑗 and

𝑤D′
attr

(𝑖 𝑗 , 𝑐 𝑗,𝑘 ) = 1

𝑗−1 for all 𝑘 = 1, . . . , 𝑗 − 1. Therefore,

∥Dattr − D ′attr∥1 ≥
𝑝∑︁
𝑗=2

∑︁
𝑘∈[ 𝑗 ]

|𝑤Dattr
(𝑖 𝑗 , 𝑐 𝑗,𝑘 ) −𝑤D′

attr

(𝑖 𝑗 , 𝑐 𝑗,𝑘 ) |

=

𝑝∑︁
𝑗=2

2

𝑗
≥ 2 ln(𝑝/2) .

By taking 𝑝 → ∞, we can see that this is not bounded above by

𝐶0 · 𝑟 for any constant 𝐶0. □

U-Shaped Attribution. U-shaped attribution rule also results in

an invalid configuration (Theorem 10). The construction is an adap-

tation of the above construction for the uniform attribution. The

rough idea is that the “middle” part of U-shaped attribution rule is

essentially the uniform attribution (scaled by a factor of 0.2). This

allows us to use the U-shaped attribution rule to “implement” the

uniform distribution rule.

Theorem 10. For U-shaped attribution, the impression adjacency
relation with contribution bound enforced post-attribution constitutes
an invalid configuration.

Proof of Theorem 10. Let 𝑟 = 1 and let 𝑝 be any positive inte-

ger greater than three. ConsiderD such that there are 𝑝 impressions

𝑖1, . . . , 𝑖𝑝 and

(𝑝−1
2

)
− 1 conversions, constructed as follows: For ev-

ery 𝑗 = 4, . . . , 𝑝 , there are 𝑗 − 2 impressions 𝑐 𝑗,1, . . . , 𝑐 𝑗, 𝑗−2 after 𝑖 𝑗
(and before 𝑖 𝑗+1 if it exists). All impressions and conversions are

associated with the same advertiser.

Then, let D ′ denote D but with 𝑖1 removed.

Under the U-shaped attribution rule, for all 𝑗 = 4, . . . , 𝑝 − 1, we
have𝑤Dattr

(𝑖 𝑗 , 𝑐 𝑗+1,𝑘 ) = 0.2
𝑗−1 for all𝑘 = 1, . . . , 𝑗−1 and𝑤D′

attr

(𝑖 𝑗 , 𝑐 𝑗,𝑘 ) =
0.2
𝑗−2 for all 𝑘 = 1, . . . , 𝑗 − 2. Therefore,

∥Dattr − D ′attr∥1 ≥
𝑝−1∑︁
𝑗=4

∑︁
𝑘∈[ 𝑗−2]

|𝑤Dattr
(𝑖 𝑗 , 𝑐 𝑗,𝑘 ) −𝑤D′

attr

(𝑖 𝑗 , 𝑐 𝑗,𝑘 ) |

=

𝑝−1∑︁
𝑗=4

∑︁
𝑘∈[ 𝑗−2]

(
0.2

𝑗 − 2 −
0.2

𝑗 − 1

)
≥

𝑝−1∑︁
𝑗=4

0.2

𝑗 − 1 ≥ 0.2 ln

(
𝑝 − 1
4

)
.

By taking 𝑝 → ∞, we can see that this is not bounded above by

𝐶0 · 𝑟 for any constant 𝐶0. □

A.3.3 User × Publisher × Advertiser Relation. We now consider the

last adjacency relation: User × Publisher × Advertiser.

First-Touch Attribution. FTA is the only valid configuration in

this case. The key observation here is that, although removing

impressions for a scope may result in re-attribution of multiple

conversions, these re-attribution is only to the first impression left

for that advertiser. Thereby, an argument analogous to that in the

proof of Theorem 8 can show the validity of the configuration.

Theorem 11. For first-touch attribution, the user × publisher ×
advertiser adjacency relation with contribution bound enforced post-
attribution constitutes a valid configuration with 𝐶0 = 2.

Proof of Theorem 11. Consider two adjacent datasets D,D ′
such that D ′ results from removing impressions 𝑖1, . . . , 𝑖𝑎 (ordered

from oldest to newest) all associated to a single user 𝑈 , a single

publisher 𝑃 and a single advertiser 𝐴. Let 𝐶𝐴 denote the set of

conversions at the advertiser 𝐴 and the user𝑈 .

We consider two cases, based onwhether 𝑖1 is the first impression

w.r.t. its advertiser 𝐴 and the user𝑈 .

• Case I: 𝑖1 is not the first impression w.r.t. the advertiser 𝐴

and the user 𝑈 . In this case, the two attributed datasets

Dattr,D ′attr are exactly the same, because all conversions in

𝐶𝐴 are attributed to the first impression w.r.t. the advertiser

𝐴 and the user𝑈 (which is not among 𝑖1, . . . , 𝑖𝑎).
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• Case II: 𝑖1 is the first impressionw.r.t. the advertiser𝐴 and the

user𝑈 . In this case, all conversions 𝑐 𝑗 ∈ 𝐶𝐴 are attributed to

𝑖1. These are the only conversions whose attributions change

between D and D ′.
To analyze this change, consider two subcases, whether

𝑖1, . . . , 𝑖𝑎 are the only impressions in D from the advertiser

𝐴 and the user𝑈 .

– Case IIa: 𝑖1, . . . , 𝑖𝑎 are the only impressions in D from the

advertiser𝐴 and the user𝑈 . In this case, all conversions in

𝐶𝐴 become unattributed in D ′. Thus, ∥Dattr − D ′attr∥1 =∑
𝑘∈[𝑎]

∑
𝑐 𝑗 𝑤Dattr

(𝑖𝑘 , 𝑐 𝑗 ) ≤ 𝑟, where the inequality fol-

lows from the post-attribution contribution bound enforce-

ment for the contribution bounding scope (𝑈 , 𝑃,𝐴).
– Case IIb: 𝑖1, . . . , 𝑖𝑎 are not the only impressions inD from

the advertiser 𝐴 and the user 𝑈 . Let 𝑖 ′ be the first im-

pression w.r.t. the advertiser 𝐴 and the user 𝑈 that is not

among 𝑖1, . . . , 𝑖𝑎 . In this case, all conversions in 𝐶𝐴 are

attributed to 𝑖 ′ in D ′. Furthermore, no conversions are

attributed to 𝑖 ′ (or other impressions in 𝑖 ′’s contribution
bounding scope) in D because 𝑖1 comes first for the same

advertiser 𝐴 and the same user𝑈 . Therefore, we have

∥Dattr − D ′attr∥1 =
∑︁

𝑘∈[𝑎]

∑︁
𝑐 𝑗

𝑤Dattr
(𝑖𝑘 , 𝑐 𝑗 ) +

∑︁
𝑐 𝑗

𝑤D′
attr

(𝑖 ′, 𝑐 𝑗 ) ≤ 2𝑟,

where the inequality again follows from the post-attribution

contribution bound enforcement for the contribution bound-

ing scope (𝑈 , 𝑃,𝐴) and the contribution bounding scope

of 𝑖 ′.

In all cases, we can conclude that ∥Dattr − D ′attr∥1 ≤ 2𝑟 , which

means that this is a valid configuration with 𝐶0 = 2 as desired. □

Uniform Multi-Touch, Exponential Time Decay and U-Shaped At-
tributions. The invalidity of these attribution rules (Corollary 2)

follows directly from that of the impression case.

Corollary 2. For uniform multi-touch attribution, exponential time
decay attribution and U-shaped attribution, the user × publisher ×
advertiser adjacency relation with contribution bound enforced post-
attribution constitutes an invalid configuration.

Proof of Corollary 2. We may use the same constructions as

in the proof of Theorem 9, Corollary 1, and Theorem 10 respectively,

except we assign each 𝑖1, . . . , 𝑖𝑝 to 𝑝 different publishers. This way

D,D ′ are adjacent under the user × publisher × advertiser relation.
The remainder of the proof then ensures that ∥Dattr − D ′attr∥1 is
not bounded above by 𝐶0 · 𝑟 for any constant 𝐶0. □
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