Traceable mixnets

Prashant Agrawal’
CSE, IIT Delhi
CDAIS, Ashoka University
prashant@cse.iitd.ac.in

Subodh Vishnu Sharma*
CSE, IIT Delhi
svs@cse.iitd.ac.in

ABSTRACT

We introduce the notion of traceable mixnets. In a traditional mixnet,
multiple mix-servers jointly permute and decrypt a list of cipher-
texts to produce a list of plaintexts, along with a proof of correct-
ness, such that the association between individual ciphertexts and
plaintexts remains completely hidden. However, in many applica-
tions, the privacy-utility tradeoff requires answering some specific
queries about this association, without revealing any information
beyond the query result. We consider queries of the following types:
a) given a ciphertext in the mixnet input list, whether it encrypts
one of a given subset of plaintexts in the output list, and b) given a
plaintext in the mixnet output list, whether it is a decryption of one
of a given subset of ciphertexts in the input list. Traceable mixnets
allow the mix-servers to jointly prove answers to the above queries
to a querier such that neither the querier nor a threshold number of
mix-servers learn any information beyond the query result. Further,
if the querier is not corrupted, the corrupted mix-servers do not
even learn the query result. We first comprehensively formalise
these security properties of traceable mixnets and then propose
a construction of traceable mixnets using novel distributed zero-
knowledge proofs (ZKPs) of set membership and of a statement we
call reverse set membership. Although set membership has been
studied in the single-prover setting, the main challenge in our dis-
tributed setting lies in making sure that none of the mix-servers
learn the association between ciphertexts and plaintexts during the
proof. We implement our distributed ZKPs and show that they are
faster than state-of-the-art by at least one order of magnitude.

KEYWORDS

verifiable mixnets; traceability; distributed zero-knowledge proofs;
set membership; reverse set membership

1 INTRODUCTION

A mixnet is a cryptographic primitive used for anonymous mes-
saging, specifically for unlinking the identity information of data

*CS and CSE stand for “Computer Science” and “Computer Science and Engineering”.
CDAIS stands for the Centre for Digitalisation, Al and Society at Ashoka University.
TWork done while at Ashoka University.

tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(2), 235-275

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0049

This work is licensed under the Creative Commons Attribu-

Abhinav Nakarmi*t
CSE, University of Michigan
nakarmi@umich.edu

235

Mahabir Prasad Jhanwar*
CS and CDALIS, Ashoka University
mahavirjhawar@ashoka.edu.in

Subhashis Banerjee*
CSE, IIT Delhi
CS and CDALIS, Ashoka University
suban@ashoka.edu.in

providers with the sensitive data they provide. Let u; denote the
identity information of the i individual and v; denote the sensi-
tive data they contribute. For example, in a secure electronic voting
context where mixnets are commonly used, u; may contain a voter
id and v; may contain the vote. The link between u; and v; is hid-
den by encrypting v; to obtain ciphertexts (encrypted votes) ¢;,
uploading u; along with c¢; to an input list, and feeding the list of
ciphertexts ¢ as the mixnet input. The mixnet, which consists of
a series of mix-servers, processes these ciphertexts and outputs a
list o” of decryptions of the ciphertexts in a randomly permuted
order [23]. The secret permutation that links the ciphertexts with
their corresponding plaintexts is shared among the mix-servers
and remains hidden unless a threshold number of mix-servers are
corrupted, thus completely hiding which ciphertext or voter id cor-
responds to which vote (see Figure 1a). Using verifiable mixnets
[53], the mix-servers can also prove to a verifier that the output list
is obtained correctly by permuting and decrypting each element of
the input list, while keeping the linkages between the ciphertexts
and plaintexts completely hidden.

However, sometimes, it is necessary to reveal specific partial
information about the association between c¢; and v;, while still
preventing any additional information leakage. For example, con-
sider a large-scale public election running across multiple polling
booths. Further, assume a dual voting setup [8, 65] where voters
cast their vote both electronically and on paper: the electronic sys-
tem produces an encrypted vote as the voter receipt and processes
these encrypted votes via a mixnet, whereas the paper votes are
collected to form a physical audit trail. Such dual voting systems
aim to improve the overall robustness and transparency of electoral
processes. In such systems, revealing partial information about
the encrypted and decrypted votes allows graceful recovery from
disputes without re-running the entire election [2]. For example,
if there is a mismatch between a plaintext vote in the mixnet out-
put list and its corresponding paper record, the ability to pinpoint
which specific booth the disputed vote came from enables a localised
recovery of the election by selectively rerunning the election only
at the corrupted booths. Yet, it is important to not reveal additional
information such as vote counts of all the polling booths or, worse,
votes of individual voters. Further, any such partial information
revealed should be provable, to ensure that recovery steps lead to
the correct election outcome. A traditional mixnet does not allow
for the release of such controlled partial information because votes
cast at all the booths are anonymised together before decryption.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0049

Proceedings on Privacy Enhancing Technologies 2024(2)

Input My My Output
ul’ cl g Ed Ed (]3
uzc2 : : : vs

us, ¢3 7[(1) . 7[(2) . 702
ugcy | : : o

us, Cs e d e U4

(a) A traditional verifiable mixnet.

Input My Mz Output
uy ¢z X : : : U5
S ey Sl @ o
uy,cq : : : o1
us, Cs5 g g e V4

(b) A Traceln(ca, {vs, v2, v1}) query in a traceable mixnet: whether
¢, encrypted one of {vs, v;, 01 }.

Input M Mz Output
u,c1 | — - - |03
uz,c2 . . . vs

us, ¢35 7 2@ 0

Uy, C4 01 X
Us,Cs5 e Ed e V4

(c) A TraceOut({cy, c2, c3}, v1) query in a traceable mixnet: whether
v1 was encrypted in one of {cj, ¢z, c3}.

Figure 1: Traditional and traceable mixnets. u; denotes the i" in-
dividual’s identity information and v; denotes their sensitive data;
c;s encrypt u;s and are passed as input to the mixnet; the mixnet
consists of mix-servers M; and M, that jointly decrypt and permute
input list c to output a plaintext list o' := (v(;)?:1, where 7 is com-
posed of secret permutations 71 and 72 of M; and M.

Conversely, consider a voter claiming that their published en-
crypted vote does not match the one in their (possibly fake) receipt.
If it can be shown that their published encrypted vote decrypted to a
plaintext vote that mismatches with its corresponding paper record,
it supports the voter’s claim because an incorrectly uploaded en-
crypted vote must also mismatch with the paper vote on decryption.
As above, this revealed information should be provable and should
not leak any additional information, e.g., the voter’s specific vote.
Traditional mixnets do not allow this either.

To address this gap, we introduce the notion of traceable mixnets.
Let ¢; := {c; | i € I} for some index set I denote a subset of
ciphertexts in the input list and o/, := {u; | j € J} for some index
set J denote a subset of plaintexts in the output list. A traceable
mixnet allows its mix-servers to jointly and provably answer the
following queries to an interested and authorised querier:

- Traceln(c;, v}): Does the ciphertext ¢; in the input list encrypt
a plaintext in set v} (Figure 1b)? Given an encrypted vote ¢; mis-
matching a voter receipt and a set 0} of plaintext votes mismatch-
ing with their paper records, this query answers if ¢; decrypted
to a mismatching plaintext vote and thus was incorrect.

TraceOut(cy, v;.): Is the plaintext u;. in the output list encrypted

in a ciphertext in set ¢y (Figure 1c)? Given an output plaintext
vote v} mismatching with its paper vote and a set ¢y of encrypted
votes cast at a given polling booth B, this query answers if the
disputed vote v;. came from booth B.

236

Agrawal et al.

The queries are answered such that no additional information be-
yond the query output is leaked to an adversary controlling the
querier and less than a threshold number of mix-servers. Also, to
prevent mix-servers from accumulating query responses issued to
different queriers over time, the mix-servers are not allowed to
even learn the output of a query if they do not control the querier.
Such controlled querying mechanism is useful in voting as well as
several other applications where privacy-preserving data sharing
with guaranteed correctness is required.

Note, though, that the query outputs may themselves leak sensi-
tive information, especially when multiple queries are combined.
Thus, arbitrary queries cannot be allowed in any application. De-
ciding what queries to allow requires a privacy risk analysis of the
overall information leaked by the queries, followed by an analysis
of whether the leakage is acceptable for the application’s privacy
requirements. For example, in the voting application, the allowed
queries are decided so that the recovery process does not leak the
vote counts of any booth except the corrupted booths [2]. Once a
policy detailing the allowed queries is decided, possibly allowing dif-
ferent queries to different queriers, the application layer must also
ensure that the mix-servers comply with the policy. The traceable
mixnet guarantees that if an honest mix-server follows the policy,
the adversary learns nothing about the output of the queries disal-
lowed by the policy. Without such analysis and policy compliance
though, a traceable mixnet solution should not be deployed.

We emphasise that a traceable mixnet’s secrecy requirements
are more stringent than what existing proof-of-shuffle and verifi-
able decryption techniques in the area of verifiable mixnets [53]
can provide. For example, given a mixnet input list (¢y,. .., ¢5) and
output list (v;, .. vg) a Traceln(cq, {vé, vé, 02}) query requires
proving in ZK that ¢4 decrypts to one of v, v; and v}. Using these
techniques, the mix-servers can prove this by, e.g., verifiably reveal-
ing the subset C := {c1, ¢2, c4} of the input ciphertexts that decrypt
to the set of plaintexts {v},v},0;} and letting the querier verify
that ¢4 € C (see Figure 2b). However, this is not ZK: it reveals, e.g.,
that ciphertexts c1, ¢z decrypt to one of v, v} and v} (and not v]
or ;). Figure 2 shows other similar leakage scenarios. A traceable
mixnet does not reveal any such intermediate information.

Finally, our focus is on offline batch processing, i.e., efficiently
answering multiple TraceIn/TraceOut queries against the same set.
Thus, we define the following batched queries: a) BTraceIn(cy, v}):
which ciphertexts in set ¢; encrypt a plaintext in set v}; and b)
BTraceOut(cr, v): which plaintexts in set v} are encrypted in a
ciphertext in set c¢;? We require the amortised time for batched
queries to be linear in the input list size to enable practical appli-
cations like dispute resolution in elections with millions of votes.
Note that offline batch processing in verifiable mixnets is distinct
from mixnets in real-time anonymous communication networks
[36]. Thus, we do not aim to answer the queries in real time.

1.1 Our contributions

Our main contributions are the following. First, we introduce the
notion of traceable mixnets and formalise their completeness, sound-
ness and secrecy requirements (Section 2).

Second, we propose a construction of traceable mixnets (Sec-
tion 4) using novel distributed ZKPs of set membership [19] and

Traceable mixnets

’ ’ ’
€1 31 il 1 31 @i
c2 A ¢ c2 v X vy X

’ ’ ’
c3 v e c3 c3e || v} c3 || vg
cax || o) cq X cq v} ca || 0]
Cs U; Cs Cs v; Cs U;

(@) (b) (c)
Figure 2: Subfigures (a) and (b) are for a Traceln(cs, V) query,
where V = {0}, v},v}}. With proofs-of-shuffle and verifiable de-
cryption, the mix-servers can either a) verifiably reveal the plain-
text encrypted by cy4, say o7, and let the querier check if v} € V,
or b) verifiably reveal the set of ciphertexts encrypting set V, say
C := {cy1, ¢2, ¢4}, and let the querier check if ¢4 € C. Subfigures (c)
and (d) are for a TraceOut(C, v,) query, where C = {c3, ¢4, c5}. The
mix-servers can either c) verifiably reveal the ciphertext encrypting
), say c3, and let the querier check if c3 € C, or d) verifiably reveal
the set of plaintexts that set C decrypts to, say V := {v], v}, v} }, and
let the querier check that ¢, € V. With traceable mixnets, they do
not need to reveal any such intermediate information.

a novel primitive called reverse set membership. Given a commit-
ment scheme [74] comm with commitment space T', message space
V and randomness space R, a ZKP of set membership for a com-
mitment y € I' and a set ¢ of values from V proves that y com-
mits a member of V. Formally, we denote this as psm(y, ¢) =
PK{(v,r) : y = comm(v;r) A v € ¢}, a proof of knowledge of
a member v of set ¢ and a randomness r such that y commits
v with randomness r. A ZKP of reverse set membership for a
value v € V and a set ® of commitments from I' proves that
v is committed by a member of ®. Formally, we denote this as
PRSM (@, 0) == PK{(r) : y = comm(v;r) Ay € ®}, a proof of knowl-
edge of a randomness r such that some member y of ® commits
v with randomness r. Prior work has mainly focused on the ZKP
of set membership and the single-prover case, whereas our ZKPs
(both for set membership and the novel reverse set membership)
work in a distributed setting where the mixnet’s mix-servers jointly
act as the provers. The mix-servers need to carry out the proof
without themselves learning any information about either the com-
mitment openings or the association between commitments and
plaintext values. Our ZKPs are interactive, which is acceptable for
our inherently interactive use-case.

Third, we provide detailed security analysis of our construction
and formal rules for privacy risk analysis of a given set of allowed
Traceln/TraceOut queries (Section 5 and Appendices C-D).

Fourth, we provide a comprehensive implementation of our pro-
posal (Section 6). Our construction has linear time complexity in
the size of the mixnet input list for batched queries and greatly
outperforms even single-prover existing techniques. Specifically,
our distributed ZKPs of set membership and reverse set member-
ship (which enable BTraceln and BTraceOut respectively) have
per-prover proving times respectively 43x and 9x faster than single-
prover zkSNARK-plus-Merkle tree based proofs. By conservative
estimates, this makes them at least 86x and 18x faster than the state-
of-the-art collaborative zZkSNARKSs [72] in the distributed setting.
Our implementation is open source and available at [1].

237

Proceedings on Privacy Enhancing Technologies 2024(2)

1.2 Related work

1.2.1 Controlled information release in statistical databases. A com-
mon approach for controlled information release for statistical ana-
lytics is by anonymising (releasing a noisy version of) the dataset.
Another approach is differential privacy (DP) [37]: interactively
providing noisy answers to analytics queries such that the answer
distribution is insensitive to any given individual’s data. However,
anonymisation is a known poor safeguard against re-identification
attacks [31, 69]. Further, because of correlations in different individ-
uals’ data items, differentially private mechanisms can still reveal
arbitrary partial information about the link between users’ identity
information and sensitive data to an adversary running arbitrary
queries [84]. In comparison, traceable mixnets reveal answers to
only pre-approved queries and otherwise keep users’ identity in-
formation and sensitive data unlinkable. Also, their distributed
setting naturally fits into privacy-sensitive applications, whereas
most anonymisation/DP solutions assume a trusted data curator.

1.2.2 Existing traceability notions. Many works [5, 25, 54, 78-80]
aim to balance anonymity with accountability by letting users com-
municate anonymously by default but allowing a trusted third party
to revoke the anonymity of users that misbehave by sending ille-
gal, misinformative or offensive messages. This is done by tracing
the exact senders of the offending messages, in contrast to our
generalised set-based and bidirectional notion of traceability.
Group/ring signatures [22, 75] let a verifier verify that a message
was sent by a member of a group, without learning which member.
This resembles our TraceOut query if we map the group of senders
with the subset of input ciphertexts. However, these signatures
require active involvement of the senders and are not logistically
suitable for backend analytics applications. Likewise, anonymous
credentials [20] let individuals prove in ZK that they satisfy some
eligibility criteria, resembling our Traceln queries, but they also
require individuals’ active involvement in securing their anonymity,
whereas this is done by distributed mix-servers in traceable mixnets.

1.2.3 Existing verifiable mixnets. Haines and Muller [53] review
and identify the following existing techniques for building verifi-
able mixnets: message tracing [61, 82], verification codes [61, 76], trip
wires [17, 58], message replication [58], randomised partial check-
ing (RPC) [55, 59, 62, 63] and proofs of shuffle [70, 77, 83]. These
techniques only verify that the mixnet output list was a decryption
and permutation of its input ciphertext list and do not support the
fine-grained Traceln/TraceOut queries. Message tracing and verifi-
cation codes provide limited traceability by letting senders verify
the processing of their own ciphertexts, but one who does not hold
the ciphertext secrets cannot perform this verification.

Proofs of shuffle are the state-of-the-art verifiable mixnet tech-
niques. A proof-of-shuffle proves in ZK that two ciphertext lists
are permutations and re-encryptions of each other. This, combined
with verifiable decryption techniques [44], provides a ZKP that a
list of plaintexts is a decryption and permutation of a list of cipher-
texts. These approaches can also prove that a sublist of the plaintext
list is a decryption and permutation of its corresponding sublist in
the input ciphertext list. However, as shown in Figure 2, they leak
extra information beyond TraceIn/TraceOut query outputs.

Proceedings on Privacy Enhancing Technologies 2024(2)

Note that unlike non-interactive verifiable mixnets, an interac-
tive verifiable/traceable mixnet necessarily requires the mix-servers
to store their permutations. Thus, forward secrecy of query results
is not maintained under future compromise of stored permutations.

1.2.4 Set membership proofs. Below we review set membership
and reverse set membership ZKP techniques, first for a single prover.

Techniques with quadratic complexity. Cramer et al. [28] pro-
pose a generic technique to create a zero-knowledge X-protocol
for the OR composition of two statements, given 2-protocols for
each individual statement. Both ZKPs of set membership and re-
verse set membership can be constructed using this technique:
psm(y:¢) == PK{(r) : Vyepy = comm(o; r)} and prsm (D, 0) =
PK{(r) : Vyea ¥ = comm(v;r)}. However, for proving psm(y, ¢)
for multiple ys against the same set ¢ or prsm (@, v) for multiple
us against the same set ® (the “batched” queries), it results in an
overall O(n?) complexity, where n ~ |®|, |¢|. Groth and Kohlweiss
[51] propose a ZKP of knowledge of the form prsm-o := PK{(r) :
VyeaV = comm(0;7)}, i.e., a proof that one of the commitments
in a set commits to 0, with O(log(n)) communication complex-
ity. Interestingly, prsm-o can be used to prove both pspm and prsm
[51], resulting in an O(nlog(n)) communication complexity for the
batched queries. However, the computational complexity (for both
the prover and the verifier) remains O(n?).

Accumulator-based techniques. Cryptographic accumulators [9,
68, 71] enable efficient ZKPs of set membership. An accumula-
tor scheme (Acc, GenWitness, AccVer) allows computing a short
digest Ay to a large set ¢ as Ay < Acc(¢) and a short member-
ship witness wy for a member v € ¢ as wy < GenWitness(Ay, v)
such that AccVer(A¢,,0, wp) = 1is a proof that v € ¢. A ZKP of
set membership can thus be constructed by requiring both prover
and verifier to compute Ay, the prover to compute wy and both to
then engage in psm-acc (¥, Ag) = PK{(v, 7, wp) : y = comm(o;7) A
AccVer(Ag, v, wp) = 1}. If the accumulator scheme allows com-
mitments to be set members, a ZKP of reverse set membership
can be similarly constructed using prsm-acc (v, Agp) = PK{(r,w) :
AccVer(Agp, comm(v;r), w) = 1}, where w denotes the membership
witness of the commitment comm(v;r) € .

A popular approach for accumulator-based ZKPs of set member-
ship involves Merkle accumulators [68] as the accumulator scheme
and zkSNARKSs [24, 45, 50] as the ZK proof system. With Merkle
accumulators, both GenWitness and AccVer take O(logn) time,
where n = |¢|, which allows n set membership and reverse set
membership proofs in O(nlog(n)) time. This approach can also
generically support prsm-acc by computing Merkle accumulators
for the set of commitments. However, it involves expensive hash
computations inside the zkSNARK circuit. Benarroch et al. [12]
present a non-generic ZKP of set membership using RSA accumu-
lators, avoiding these expensive hash computations. However, the
technique does not support reverse set membership. Also, com-
puting witness w, for RSA accumulators takes O(n) time, which
makes it O(n?) for batched queries. Techniques to efficiently batch
multiple membership proofs together also exist [15, 21].

Extending to the distributed setting. All the above techniques
work on the single-prover case. Extending them to our distributed
setting where none of the provers (the mix-servers) know either

238

Agrawal et al.

the commitment openings or the permutation between the commit-
ments and the plaintexts is non-trivial. The batching techniques
[15, 21] also fail in the distributed setting since they require the
prover to know upfront which entries pass the membership proof.

Collaborative zZkSNARKSs [72] allow a distributed set of provers
holding secret shares of a SNARK witness to prove joint knowledge
of the same. They add roughly 2x overhead in per-prover proving
time over the standard zkSNARKSs [72]. DPZKs [32] provide similar
guarantees. However, even to securely obtain shares of the SNARK
witness, an extra MPC protocol is likely required.

Signature-based set membership. Camenisch et al. [19] initiated a
different approach to ZKPs of set membership: the verifier provides
to the prover signatures on all members of the set under a fresh sign-
ing key generated by the verifier, and the prover proves knowledge
of a signature on the committed value in ZK. This proves set mem-
bership because if the commitment commits a value outside the set,
the prover does not obtain a signature on it and must forge it. This
approach gives O(n) batched query complexity because verifier sig-
natures can be reused. We extend these ZKPs by a signature-based
ZKP of reverse set membership and by distributed signature-based
ZKPs for both set membership and reverse set membership.

2 FORMAL DEFINITIONS

We now formalise traceable mixnets. We directly present the batched
BTraceln/BTraceOut protocols as that is our main focus (the Tra-
ceIn/TraceOut protocols are trivial special cases). Also, for simplic-
ity, we present the special case when all t+ = m mix-servers are
required to decrypt the ciphertexts but any set of less than ¢ mix-
servers cannot break secrecy. Extension to a general t is possible
with standard threshold cryptography techniques [34]. Finally, we
assume an authenticated broadcast channel that ensures authentic-
ity, availability and non-repudiability of all published messages.

Notation. Given a positive integer n, we denote the set {1,...,n}
by [n]. We let (boldface) x € X™ denote an n-length vector of values
drawn from a set X, x; denote the jth component of x, and, given
an index set I C [n], x; denote the set {x; | i € I'}. For any scalar
binary operation ® : X X Y — Z and vectors x € X", y € Y", we
let x © y denote the vector (x; ® y;);c[n], i-€., the vector obtained
by component-wise application of ©. We let u? denote (ufi die[n]s
f(0) denote (£(01));e[n], f(x,) denote (f(x,00))ic(a). eic.

We denote a multiparty computation protocol P between parties
P1. ..., Pm where the common input of each party is ci, Py’s se-
cret input is sig, the common output is co and P} ’s secret output
is soy. as follows: co, (Px [[soxDke[m] < Plei, (PrllsitDre[m))-
When a party does not have a secret output, we drop it from the
left-hand side. In security experiments where the experimenter
plays the role of honest parties (Py)rey for some H C [m] and
an adversary A plays the role of (Pg)rec[m]\H> We indicate it as

co, (PrllsoxDierr — P(ei, (PellsitDrer (PeMremm)- We
let x(%) denote a component (typically, secret-share) of x desig-
nated for .. We call a function f negligible if for any polynomial
p, there exists an N € N such that f(x) < 1/p(x) for all x > N.

DEFINITION 1 (TRACEABLE MIXNETS). A traceable mixnet is a tu-
ple of protocols/algorithms (Keygen, Enc, Mix, BTraceln, BTraceOut)

Traceable mixnets

between n senders (S;)jc[n], m mix-servers (My)re[m] and a querier
or verifier Q such that:

- mpk, (M [[msk® TDgefm] < Keygen(1%, (Mk[[IDkemy) is @
key generation protocol between (M.)r.e[m], where A is a security
parameter (given in unary), individual mix-servers do not have any
secret input, the common output is a mixnet public key mpk and
each My ’s secret output is a secret key msk)

¢; «— Enc(mpk,v;) is an algorithm run by sender S;, where mpk
is the mixnet public key and v; is S;’s sensitive input drawn from
some plaintext space V. Output ¢; is a ciphertext “encrypting” v;.
o', (Millo® e [m) — Mix(mpk, ¢, (M [[msk™ e) is
a mixing protocol between (My)c[m), where mpk is the mixnet
public key and ¢ < (Enc(mpk,v;));c[pn] is a vector of cipher-
texts encrypting the senders’ plaintexts (vi);c[n]- Each My’s se-

cret input is its secret key mskK). The common output is a vector
v’ of plaintext values obtained after permuting and decrypting ¢
(thusv” = (v (;))ie[n] for some permutation r). Each My.’s secret
output is a witness w® to be used in proving correctness of the
BTraceln/BTraceOut outputs (see below).

Ql[cr+]] « BTraceln(mpk,¢,v’, 1, J, (M [[msk(k),w(k)]])ke[m],
Q[[1]) is a protocol between (M)iec[m) and querier Q, where
o', My [[0®] — Mix(mpk, ¢, M [[msk®T]), ¢ — (Enc(mpk,
9i))ie[n] and I,] C [n]. Q’s secret output is a set of ciphertexts
cr-={ciccy|vje u}}; Q may abort if it is not convinced about

the correctness of cy+.

Q[[1]) is a protocol between (My)re[m| and Q, where all inputs
are exactly the same as BTraceln and Q’s secret output is a set of
plaintexts v”,, = {v} € u} | u} € vr}; Q may abort if it is not
convinced about the correctness of v’,,.

2.1 Completeness

The completeness definition for traceable mixnets (Definition 2 and
Figure 3) models that when all the parties are honest then a) Q’s
output ¢+ on a BTraceln query on (¢,0’, I,]) is exactly the set of
ciphertexts in cy that encrypted some plaintext in u} (line 7), and
b) its output v, on a BTraceOut query on (c, v, 1, J) is exactly the
set of plaintexts in u} that were encrypted by some ciphertext in
¢ (line 8). Note that we only consider the case of distinct values.
The case of repeated values is trivially reducible to this case if S;
prefixes v; with a nonce drawn uniformly from a large set.

DEFINITION 2 (COMPLETENESS). A traceable mixnet is complete
if for each security parameter A € N, number of ciphertextsn € N,
vector v € V" of distinct plaintext values and index sets I,] C [n],
there exists a negligible function negl such that

Pr[Expcomp[eteness(l’\, n,o,1,J) =1] 2 1 - negl(A),

where EXpcompleteness i 4s defined in Figure 3.

1

2.2 Soundness

The soundness definition (Definition 3) models that as long as in-
put ciphertexts are well-formed, even if all the mix-servers are
dishonest, sets ¢+ and v}* output by Q in BTraceln and BTraceOut

respectively must be “correct,” where the correctness of ¢+ and

Q[[v}*]] « BTraceOut(mpk, c,v’,1,], (Mk[[msk(k),w(k)]])ke[m

B

239

Proceedings on Privacy Enhancing Technologies 2024(2)

Expcompleteness(ll’ no,L]J):
mpk, (M [[msk ™ T])e m)) < Keygen(1!, (Mg [[Diefmy)
c:=(¢i)ic[n] < (Enc(mpk,0i))ic[n] // ci encrypts v;
o', (Mllo® e m) — Mix(mpk, ¢, (M [[msk® T eem))
Q[[cy+]] « BTraceln(mpk,c,v’,1,], (Mk[[msk(k),w(k)]])kE[mJ,Q[[]])
Q[[v}]] « BTraceOut(mpk, c,v’, 1,], (Mk[[msk(k),w(k)]])kg[m],Q[[]])
return 1 if all ¢;s and all v’;s are distinct, and

1)cp={ciccy|ovi€ u}}; and

2) v}* = {u; € u} | v}. €or}t //er ={Enc(pk,v) |v € v}

0 N U R W N

Figure 3: Completeness experiment

Expfc‘undness(lll) ;
mpk — Keygen (12, (M)gcm)
0= (0)ie[n] < AQ
¢ = (€i)ie[n] < (Enc(mpk,vi))je[n]
v’ «— Mix(mpk, ¢, (M,‘;ﬂ)ke[m])
L]« A
Q[[cr<]l « BTraceln(mpk,c,v’, 1,], (Ml‘fﬂ)ke[m],Q[[]])
Q[[v}]] « BTraceOut(mpk,¢,v’, I,], (M]f()kg[m],Q[[]])
return 1 if all v;s and all v’;s are distinct, and either
e #{ci€cr|vi€ v}}; or

O 0 N N U R W N

—
o

2) U}, * {v; € u} | v;. cvr} //ef={Enc(pk,v) | v €or}

Figure 4: Soundness experiment

v}* is exactly as defined in EXp ompleteness- Thus, we do not allow
the cheating mix-servers to force Q to produce incorrect output (Q
may abort, though). We only consider well-formed input cipher-
texts because “correct” processing of ill-formed inputs is undefined.
Nevertheless, proofs of well-formedness of inputs are generally
required for application-level correctness and these can be con-
structed by the senders at the time of uploading their ciphertexts.
The experiment (Figure 4) begins with the key generation proto-
col where the adversary A controlling all the mix-servers (M) m]
provides the mixnet public key mpk (line 1). We let A supply the
plaintexts but create ciphertexts from them honestly (lines 2-3),
to model that A can supply plaintexts of its choice to cheat but
the ciphertexts must be well-formed. We then allow ‘A to run the
Mix protocol and produce the output list o’ (line 4). A then out-
puts index sets I and J on which it wants to break the subsequent
BTraceln/BTraceOut queries (line 3). During these queries, Q out-
puts ¢y« and v}* respectively (lines 6-7). A wins if it supplies distinct
entries and Q produces valid outputs ¢j-, u}* (does not abort) but

at least one of them is incorrect (lines 8-10).

DEFINITION 3 (SOUNDNESS). A traceable mixnet is sound if for
each PPT adversary A and security parameter A € N, there exists a
negligible function negl such that

Pr[Expt | (1%) = 1] < negl(2),)
where Expfolundness is as defined in Figure 4.

2.3 Secrecy

The secrecy definition (Definition 4) extends a standard anonymity
property [10, 11, 13, 33] to the case when the BTraceln/BTraceOut
queries are also allowed. The standard anonymity property can be

Proceedings on Privacy Enhancing Technologies 2024(2)

stated for our setting as follows: an adversary controlling all-but-
two senders, the querier and any set of less than m mix-servers
should not be able to distinguish between a world where cipher-
texts (co, c1) sent by the two honest senders encrypt values (v, v1)
(world 0) and the world where they encrypt (v1,vp) (world 1). When
BTraceln/BTraceOut queries are allowed, distinguishing between
the two worlds is trivial because of the query outputs (e.g., if I, J
given to a BTraceln query are such that cp,c1 € cy and vy € u} but
v ¢ v} then A immediately knows it is in world 0 if output ¢y«
includes c¢). Thus, we require that) in all the BTraceln queries ei-
ther both vy, v1 € v} or both vg,v7 ¢ v} and b) in all the BTraceOut
queries either both ¢, ¢; € ¢y or both ¢, ¢1 € ¢y

In more detail, in this experiment (Figure 5), adversary A en-
gages in the key generation protocol where it controls all the mix-
servers except one, i.e., My~ (line 1). It then supplies input cipher-
texts for all the senders except the two that it does not control,
say Sj, and S;,. For these senders, it supplies the values vg, v1 (line
2). In world 0 (b = 0), S;,’s ciphertext ¢;, encrypts vy and S;,’s
ciphertext ¢;, encrypts vy; in world 1 (b = 1), this order is reversed
(lines 3-4). The ciphertext list thus formed is processed through
the Mix protocol, where A controls all mix-servers except M-
and produces an output plaintext list v’ (line 5). Then, A obtains
access to oracles OTraceln, OTraceOut that let it choose I, J, con-
trol Q and all mix-servers except M- and interact with My in
the BTraceln, BTraceOut protocols (lines 6-14). A is required to
respect the condition of including either both or none of the honest
senders’ ciphertexts/plaintexts in its oracle calls (lines 12 and 18).
Finally, A outputs a bit b’ as its guess of the bit b (line 5) and wins
if its advantage in making the correct guess is non-negligible.

DEFINITION 4 (SECRECY). A traceable mixnet protects secrecy if
for each PPT adversary A, security parameter A € N, k* € [m], and
io, i1 € [n], there exists a negligible function negl such that

|Pr[EXpZe[crecy(l/1’ k*>i0)i150) = 1]_ (3)
Pr[EXpZerecy (1% k", o, i1, 1) = 1] < negl(A),

where Expge[Crecy is as defined in Figure 5.

Definition 5 below models that when A does not control @, it
should not even learn the query outputs.

DEFINITION 5 (OUTPUT SECRECY). A traceable mixnet protects
output secrecy if it protects secrecy as per Definition 4 except that
in experiment Expé?e(crecy (Figure 5), A does not control Q during the
BTraceln/BTraceOut calls (lines 10 and 14) and the constraints on
lines 9 and 13 are removed.

Note that Definition 4 also models that if the honest mix-server
follows a query policy then the adversary gains no information
about the output of queries disallowed by the policy, since this case
corresponds to an adversary that simply does not call the OTraceln
or OTraceOut oracles for the disallowed queries. The privacy risk
associated with the outputs of allowed queries is outside the scope
of formal security requirements of traceable mixnets, but we provide
a mechanism to analyse this risk in Appendix D.

240

Agrawal et al.

EXPrecy (1% k" 10, i1, b) :

mpk, M- [[msk)T — Keygen(1%, M [T, (M) i)
00,91, (€i)ie[n]\ {ip.iy} < A(mpk)

if b = 0: ¢;, < Enc(mpk,vg); ¢;; < Enc(mpk,v1)

else: ¢;, < Enc(mpk,v1); ¢j; < Enc(mpk,vg)

o', My [[0® DT — Mix(mpk, (¢7)ie], Mie [[msk ®I T, (M)gerpe)
— ﬂOTraceIn,OTraceOut (U’)

return b’

OTraceln(L,) :
assert (o) € u} — v; €7))
10 BTraceln(mpk,c,v’, I, J, M [[msk(k*), w<k*)]], (Mkﬂ)k#k*, Qﬂ)

O 0 NN U R W N =

12 OTraceOut(L,]) :
13 assert (cj, € c; & cj, €cy)
14 BTraceOut(mpk, ¢, 0’, I, J, M [[msk*") (k)] (Mg‘)kik*,aﬂ)

Figure 5: Secrecy experiment

3 PRELIMINARIES

Setup. We assume that the output of the following Setup algo-
rithm is implicitly available to all the parties: (¢, G1, G, Gr, e, fi,
g1, h1, fo, g2, fr) « Setup(14, m, n). Setup takes as input a secu-
rity parameter A € N, integers m and n (m represents the number
of mix-servers and n represents the number of input ciphertexts)
and outputs the following setup parameters: a large prime num-
ber g (¢ > m, n), cyclic groups Gy, Gz, Gt of order g, generators
{fi,91,h1}, {f2. g2} and fr of groups G;, G and Gt respectively,
and an efficiently computable bilinear map e : G; x G, — Gp 1. We
assume that the n-Strong Diffie Hellman (SDH) assumption [14]
holds in groups (Gq, Gz) and that the decisional Diffie-Hellman
(DDH) and discrete logarithm (DL) problems are hard in G;. We as-
sume that all generators are randomly generated, e.g., as the output
of a hash function modelled as a random oracle.

3.1 Key cryptographic primitives
3.1.1 (Basic) Boneh-Boyen (BB) signatures (Section 3.1; [14]). In

this signature scheme, the signer chooses its secret key (SK) as x &
Zq and verification ke?/ (VK) as y < g3 . To sign a message m € Zg,

it computes o « gl'"7 . The signature is verified if (o, yg3*) 2
e(g1,g2)- This scheme is unforgeable against weak chosen message
attacks under the n-SDH assumption [14].

3.1.2 BBS+ signatures [4]. In this signature scheme, the signer

chooses its SK as x & Zgand VKasy « f;*.To signa message m €

Zg, it computes c, r & Zgand S «— (fig"

. . . . ?
(S, ¢,r). The signature is verified if e(S, yf,) = e(f197*h], f2). The
scheme is unforgeable against adaptively chosen message attacks
under the n-SDH assumption [4].

1
h]) &= and outputs ¢ :=

3.1.3 Signatures on committed values. BBS+ signatures also let one
reveal only a Pedersen commitment [74] y = g{h] to a signer (and
a PoK of v, r) and obtain a signature on the committed value v:
- The requester sends y and p, < PK{(v,r) : y = g{h]} to the

signer. The signer verifies py.

IFor all a,b € Zq and generators g1, gz of G; and Gy respectively, e(gf,gf) =

e(gl,gz)"h and e(g1,92) # 14, Where 1g;. denotes the identity element of Gr.

Traceable mixnets

- The signer (with SK x and VK y = f}¥) computes a quasi BBS+

signature by choosing c, 7 & Zg and computing S < (fi hfy) =3
It sends 6 := (S, ¢, 7) to the requester.

- The requester computes o « (S,c,7+r). (0 = ((fi hi”gi’) ﬁ, c
f +r) is a valid BBS+ signature on message v under VK y.)

6 = (S, ¢,7) can be verified by checking if e(S, yfy) z e(flhiy,fg).

3.1.4 (m, m)-threshold secret sharing. We consider the following
standard (m, m)-threshold secret sharing scheme where Share al-
lows sharing a secret x among m parties and Recons allows its
reconstruction by all of them (fewer parties do not learn x):

- (x(k))ke[m] « Sharepmm(x € Zq) : (x(k))ke[m—l] ‘i Z;n_1§

x ™ — (x = Tem-1)x*)) (mod g)
- X« Recons((x(k))ke[m]) xe— 3 xR (mod q)

ke[m]

A secret sharing scheme is called additive (resp. multiplicative) if
P on input its shares x(k), y(k) of secrets x and y respectively can
obtain its share of x +y (resp. xy) without any additional interaction
with other parties. The above scheme is clearly additive. It can also
be made multiplicative using Beaver’s trick [27], which employs
an input-independent precomputation step and an algorithm Mult
such that P can obtain its share of xy as Mult(x (%), y(K)),

3.1.5 (m, m)-threshold proofs of knowledge. An (m, m)-threshold
proof of knowledge (also called a distributed proof of knowledge or a
DPK) is a protocol between provers (g)i [m] and a verifier V that
convinces V that for a given common input x, the provers know
secret shares w(K) of a secret w such that a predicate p(x, w) is true.
We denote these DPKs as V [[res]] « DPK(x, p, (P [0)xe [m]
VI[1]), where res = 1 means that “V accepted the proof. The secrecy
guarantee is that an adversary A controlling V and all (Pg) g+
for some k* cannot learn anything about ©*) (and thus) [57].
We use DPKs where the predicate p is of the form A;c[,) yi =

[Tiere g;’;j for ¢,¢' € N, public values y;,9i;j € G, Gz or Gt

and w; € Zg. These DPKs can be constructed using standard -

protocol techniques [18, 35, 57] if each prover $. knows share w](k)

of each w;. We use the following NIZK variant obtained using the

Fiat-Shamir heuristic [42]:

(k)

- (Pr)ke[m]: Publish agk) — [Tjeren glrj , where rj(.k) i Zg.

- (Pr)ke[m): Compute a; — [lke[m] a,@: ¢ — H(pll(aiie[e))
where H is a cryptographic hash function modelled as a random
oracle; zj(.k) — rj(k) - ca)j(.k) (mod q). Send z;k) to V.

- V:Obtain ((al(k))ie[[],ke[m]s c, (Zj(-k))ielelke[m]) from (Prke[m]-
Compute a; < [Ixe[m] agk);zj- — Yke[m] zj(,k) (mod q).Check
¢ £ H(pll(a)iere) and Ajere) ai =y Tljeqe 9, -

In this variant, if A controls (P)gxi+ but not V, it does not even

learn whether the statement was proved successfully or not, because

(r(k*) (k*)

. k*) j
itonly sees a;” * « []je[e] 9 and not z;

3.1.6 (m,m)-threshold homomorphic encryption. An (m, m)-threshold
encryption scheme E'M between parties (Pr)ke[m)] With plaintext
241

Proceedings on Privacy Enhancing Technologies 2024(2)

space M(Eth) and ciphertext space C(E™") is a tuple (Keygen, Enc,
TDec), where Keygen is a key generation protocol, Enc is an en-
cryption algorithm and TDec is a threshold decryption protocol,
such that for all x € M(Et), security parameters 1 € N, (pk,
(Prllsk ™ Iie(m)) — Keygen(1*, Py [1]), TDec(ER Enc(pk, x),
(Pr [[Sk(k)]])kelmj) = x. IND-CPA security of these schemes is
analogous to the IND-CPA security of vanilla public-key encryp-
tion schemes [48], where the adversary controls less than m parties.

We use the following threshold encryption schemes: a) EtE%: the
threshold El Gamal encryption scheme [34] where M(Eg‘c) =Gy
and (C(EtE}EJ) = Gy X Gy, and b) EtPI';: an optimised threshold Paillier
encryption scheme from Damgard et al. [29] where M(Eg;) =ZN
for an RSA modulus N and C(Eg;) =7y, EtF_hG is multiplicatively
homomorphic in Gq: for any two ciphertexts c¢1,c; € Gy X Gy
encrypting messages mi,mg € Gy, cicz (their component-wise
multiplication in G1) decrypts to the message m;mz (group mul-

h

tiplication in Gy). EtP is additively homomorphic in Zy: for any

two ciphertexts cq, cza € Z;‘\jz encrypting messages mj, mg € Zy,
c1¢2 mod N2 decrypts to the message m; + mp mod N. However,
we require additive homomorphism in Zg (a prime order group).
Thus, we let N > g, intepret messages in Z4 as messages in Zy
and carefully use Eg;’s homomorphic addition modulo N to obtain
homomorphic addition modulo g (see Section 4.3).

Both EtE% and Etpg are IND-CPA secure, respectively under the
DDH assumption in G; [40] and the decisional composite residu-

osity (DCR) assumption [73]. Also, both support distributed key
th
EG’

shares independently; for EtPI;'i, a secure key generation protocol
can be designed [30]. Further, the TDec protocols of both schemes
provide simulation security, i.e, the adversary’s view in the TDec
protocol can be simulated given access to a decryption oracle.

We also use a standard (non-threshold) IND-CPA secure public-
key encryption scheme E on message space Zy.

generation protocols. For EZ}., each party already generates its key

3.1.7 Shuffles. Let Eth be an (m, m) threshold homomorphic en-
cryption scheme, pk be a public key under Eth, € be an n-length
vector of ciphertexts against pk, 7D, . 7™ ¢ Perm(n) be se-
cret permutations of parties Py, ..., Pm, where Perm(n) denotes
the space of permutation functions, and Et".REnc(pk, c) be re-
encryption under Eth of ciphertext ¢ with fresh randomness. We
let €’ « Shuffle(Eth, pk, €, P1 [z, ..., Pm[x™]) be a short-
hand for repeated re-encryption and permutation of € by each of
(Pr)ke[m) in sequence, such that for all j € [n], e} = Eth.REnc(pk,

€x(j))> where 7 = 7™ o...0x(1) The order of parties in the
Shuffle protocol denotes that first ; runs, then Ps, etc.

4 OUR CONSTRUCTION

Our traceable mixnet construction extends Camenisch et al’s single-
prover ZKPs of set membership [19] and our novel ZKP of reverse
set membership (Section 4.1.2). We explain these protocols first.

4.1 Single prover case

4.1.1 ZKP of set membership [19]. In this ZKP, given a Pedersen
commitment [74] y and a set of values ¢, a single prover proves

Proceedings on Privacy Enhancing Technologies 2024(2)

knowledge of v, r such that y = g7h] and v € ¢. The main idea is that

. . . $
the verifier generates a fresh BB signature key pair x < Zg,y < g5
and sends to the prover the verification key y and signatures 0',,' —

x+u

g; oneach v’ € $. The prover chooses a blinding factor b & Zg
and sends to the verifier a blinded version 6, of the signature

on the value v committed by y, as &, « crv = g5 <+ Both then
engage in a ZKP of knowledge PK{(v,7,b) : y = g?h] A e(60,y) =
e(g1, gz) e(6y, g2)~°}, which proves knowledge of a valid signature
(65)'/% on the value committed by y (see Section 3.1.1). This is a
proof of set membership because if y does not commit a member of
¢ then the proof fails since the prover does not obtain signatures on
non-members of the set and cannot forge them. The scheme is an
honest-verifier ZKP of set membership if |$|-Strong Diffie Hellman
assumption holds in (G4, Gz) [19].

A nice property of the scheme is that multiple proofs for a set
@ of commitments against the same set ¢ of values can be given
efficiently by reusing verifier signatures. After obtaining signatures
(00)oey» the prover can precompute (Gy)yey in a stage 1. In stage
2, for each commitment y € ® committing a value v € ¢, the
corresponding 6, can be looked up and the ZKP of knowledge can
be constructed in O(1) time. This results in an O(|¢|+|®|) amortised
complexity for proving set membership for |®| commitments.

4.1.2 ZKP of reverse set membership. Now we show how to ex-
tend this idea to prove reverse set membership. Note that the BB
signatures used above require messages to be in group Zg. Since
commitments are members of G1, one cannot use BB signatures
to sign members of the set ® of commitments for the reverse
set membership proof. Recall, however, that the BBS+ signature
scheme [4] lets one present a commitment y = g7h] along with
py = NIZKPK{(v,7) : y = g7h]} to the signer and obtain a BBS+
signature on the value v, without leaking v to the signer. We exploit
this property for the reverse set membership proof.

Our reverse set membership verifier generates fresh BBS+ sig-

nature key pairs x i Zg, y — f; and sends quasi-signatures
Gy = (S,¢,7) « ((flhry) o ,¢,7) for each y = g{h] € @, after
verifying py. If the prover knows commitment randomness r for
each y € @, it can use 6y to derive a valid BBS+ signature o, «

(S,er=7+r) =((fig] h”'r) o ,¢, 7 +r) on the committed value
v and store o, indexed by v. To prove that a given v is committed
by some commitment in ®, the prover looks up oy in O(1) time,
blinds each component of ¢, to obtain a blinded signature 6, and
proves knowledge of a BBS+ signature on v by revealing only &, to
the verifier. This is a proof of reverse set membership because the
prover can obtain valid BBS+ signatures only on values committed
by y € ® and cannot forge it for v if no y € ® committed v. This
protocol also enjoys O(|¢| + |®|) amortised complexity for multiple
proofs for each v € ¢ against the same set of commitments ®. See
Appendix A for the detailed protocol.

4.2 Overview of our construction

We now give an overview of our traceable mixnet construction (see
Section 4.3 for detailed protocol steps). In our construction, senders

242

Agrawal et al.

send threshold encryptions of their sensitive values as input cipher-
texts which get shuffled by a series of mix-servers and eventually
decrypted just like a standard re-encryption mixnet [53]. However,
in addition, the senders also upload Pedersen commitments to the
encrypted values along with the input ciphertexts and secret-share
the commitment openings among the mix-servers (see Figure 6a).
The mix-servers use these shares to distributedly answer BTraceln
and BTraceOut queries via our distributed and batched ZKPs of set
membership and reverse set membership (DB-SM and DB-RSM).

A DB-SM protocol for index sets I,] allows the mix-servers to
prove for each uploaded commitment at an index i € I that it
commits a value in the set of output plaintexts at indices J; the
querier’s output is the indices I* C I where the statement holds. As
in the single-prover ZKP of set membership, the querier is asked
to provide BB signatures on the set of plaintexts at indices J. Note,
however, that in the single prover case, the prover knows the com-
mitment’s committed value v, which allows it to look-up its blinded
signature &, in O(1) time. In the distributed mixnet setting, no
prover (mix-server) knows the committed value, randomness or
the permutation between the list of commitments and plaintexts.
The challenge is to efficiently identify the blinded signature on a
given commitment’s committed value without letting any set of
less than m mix-servers or the querier learn these secrets.

To solve this challenge, the querier signatures are encrypted and
shuffled by the mix-servers in the reverse direction as the forward
mixnet shuffle — following the inverse of the mixnet permutation
- and are homomorphically blinded by random blinding factors
before decryption (see Figure 6b). This process produces the blinded
signatures next to the corresponding input commitments. To prove
set membership, the mix-servers use the blinding factors and the
commitment opening shares sent by the senders to jointly prove
knowledge of a BB signature on the committed value via a DPK.

A technical complication in the above outline is that in addition
to supplying BB signatures for each plaintext at an index j € J, the
querier must also provide invalid signatures for plaintexts at indices
Jj ¢ J. These invalid (“fake”) signatures should also be encrypted,
reverse-shuffled and blinded in the same way as the valid signatures.
Without these invalid signatures, the blinded signatures would
appear against exactly the input list commitments that committed a
plaintext in set 0}. This would reveal even for commitments outside
set c; whether they committed a plaintext in set o/, or not, violating
our secrecy definition. With these invalid signatures, the DPKs pass
only for commitments in ¢; that commit a value in set v} but no
information is revealed for commitments outside cj.

A DB-RSM protocol for index sets I, J allows the mix-servers to
prove for each output plaintext at an index j € J that it is committed
by a member of the set of commitments at indices I; the querier’s
output is the indices J* C J where the statement holds. As in the
single-prover ZKP of reverse set membership, the querier is asked to
provide BBS+ quasi-signatures on the set of commitments at indices
I (and invalid quasi-signatures for indices [n] \ I). These quasi-
signatures are encrypted, homomorphically converted to encrypted
BBS+ signatures and then shuffled by the mix-servers in the forward
direction — following the mixnet permutation — to obtain encrypted
BBS+ signatures next to the corresponding plaintexts (see Figure
6¢c). These encrypted signatures are then homomorphically blinded

Traceable mixnets

Proceedings on Privacy Enhancing Technologies 2024(2)

Input My Ma Output Input My Ma Output Input My M, Output
= = 7 5 —
Y1 - - - |y =3 Y01 | < - | voy Y01 | 7 - = [o4
7 ~ ;o 5 s
: : co|vy=0s .02), 0. 62 | : : 05,
e RO = Lo 207 2@ 22 o2] | e | 2
s . . P Y305 U3, 03 3,03 | U303
7 - 7 > 7 =7
Ya : : : V=01 Y4 04 Uy 0y V4 04 v,
Vs - — — |vi=uv4 V5. 05 | — — | vl V5,05 | — - - | vidl

(a) The mixing process

(b) Protocol DB-SM (Figure 8)

(c) Protocol DB-RSM (Figure 9)

Figure 6: A summary of our construction: a) the mixing process with two mix-servers; b) a DB-SM call for index sets I,] represented by

the green entries in the mixnet input and output lists: in stage 1, the querier prepares valid BB signatures a} for (v}) jej and invalid ones

(marked red) for (u;) j¢J; blinded versions (G;);c[n] of these signatures appear alongside commitments (y;);c[n]; the DPKs of stage 2 pass only

for commitments (y;);c; whose corresponding blinded signature was valid (not marked red); c) a DB-RSM call: the querier prepares valid

BBS+ quasi-signatures (6;);c; for commitments (y;);c; and invalid ones for (y;)i¢s; blinded versions (&}) je[n] Of signatures on the respective

committed values appear alongside the values (v}) je[n]; the DPKs of stage 2 pass only for values (z);) jej whose blinded signature was valid.

before decryption and the mix-servers use the blinding factors to
provide a DPK of a BBS+ signature on the corresponding plaintext.

Even when all the mix-servers are cheating, they cannot make
make the proofs pass for an incorrect entry and include, e.g., a
commitment that did not commit a value in set »’, in DB-SM output.
However, this does not prevent them from deliberately failing proofs
for commitments that actually committed a value in U}, producing
a smaller-than-correct output set and violating Definition 3. Thus,
we run DB-SM against both J and [n] \ J in a BTraceln call and
make the querier abort if proofs against both the runs failed for
some commitment (similarly for BTraceOut).

4.3 Technical details

Figure 7 shows our traceable mixnet construction in detail (this con-
struction preserves secrecy only in the honest-but-curious (HBC)
setting; see Section 4.3.1 for malicious security). We use the thresh-
old Eg; scheme to create ciphertexts €;, the EtEhG
shuffle BB signatures in DB-SM and both EtE% and Etpi to forward-
shuffle BBS+ signatures in DB-RSM. Further, we use a standard
public-key encryption scheme E for securely sending shares of com-
mitment openings to the individual mix-servers. The Keygen step
creates public/private keys for all these schemes. Secret keys for EEhG

scheme to reverse-

and EtPha are shared among the mix-servers and secret keys for E for
each public key is held by individual mix-servers. Via the Enc algo-
rithm, senders upload ciphertexts €; encrypting their secret values,
along with commitments y; and encryptions of secret shares of the
commitment openings for each mix-server. They also upload proofs
of knowledge py,; of the commitment openings and encryptions €,
of commitment randomnesses to enable the DB-RSM proofs. Dur-
ing the Mix protocol, the mix-servers shuffle and threshold-decrypt
€; to produce permuted plaintexts v;. = (9(j))je[n]> Where 7 is
composed of secret permutations 7K of each mix-server My. Each
M stores 7(K) and decryptions of commitment opening shares to
jointly answer BTraceln/BTraceOut queries via DB-SM/DB-RSM.

Figure 8 shows our DB-SM protocol. In stage 1, the querier Q
publishes valid BB signatures 0;. on v;. for each j € J and invalid
signatures (a fixed group element) for j ¢ J. These “signatures”
are encrypted under Eth. and shuffled by the mix-servers in the re-

EG
verse direction from My, to M;, with each Mj using permutation

243

(x")1 to produce encrypted signatures €, on the value v; com-
mitted by y; (the encrypted signature being valid only if v; € v}).

The mix-servers then use the multiplicative homomorphism of EtE%

2
Ykelm] b!)

to jointly obtain encryptions €5, < €y, , where each My

contributes blinding factors pk) ﬁ Zg. The plaintext blinded sig-
natures o; are finally obtained by threshold decryption of é4, and
published alongside y;. In stage 2, 6; for each (y;);er are looked
up in O(1) time. A DPK of a BB signature on the value committed
by y; is given by proving joint knowledge of the commitment open-
ings and blinding factors to unblind o; to a valid signature. This

DPK has the format of Section 3.1.5 and can be given efficiently
0
openings and b;k) for the blinding factors. All indices for which
the DPK passed are included in Q’s output I*. If Q is not corrupted,
(Mi)ke[m)] do not learn I* since they do not learn which DPK
passed. The amortised complexity of the entire protocol is O(n).
Figure 9 shows our DB-RSM protocol. Note that to obtain BBS+
signatures on committed values, knowledge of commitment open-
ings must be first shown. For this, Q checks the NIZKs py, up-
loaded by the senders for each i € I. Q then sends valid BBS+
quasi-signatures &; on y; for (y;);cr and invalid ones for (y;);¢r. It

since each My knows additive sharesov."’, r gk) for the commitment

encrypts each component (S;, ¢;, 7;) of 6; independently, using Eg’c
for S; and EH; for ¢; and 7;, to create encrypted quasi-signatures
€5, = (€s;, €c;; €7,). Using €3, and the sender-uploaded encryp-
tions €,;, encrypted BBS+ signatures on the committed values are
derived by homomorphically adding the commitment randomness
r; to the signature’s #; component. Thus, encrypted (valid and
invalid) BBS+ signatures €5, = (€s;, €c;, €r; = €p,€r;)ic[n] are
obtained next to each commitment y; in the input list.

To obtain blinded BBS+ signatures on plaintext values in the per-
muted list v, each component (€g, €, €) of the BBS+ signature is
re-encrypted individually using encryption schemes (EE‘G, Etpg, Etpg)
respectively and shuffled in the forward direction. The permuted
and re-encrypted signatures (es’, €.’, €’) are individually blinded
to obtain (€s’, €.’, €’), which are individually threshold-decrypted
to obtain blinded BBS+ signatures 6, := (5}, &7, 7") alongside o’

Note that Eg; used for encrypting ec’, €’ is homomorphic in
group Zy, which induces addition modulo N in the plaintext space,
not modulo g. Thus, blinding by blinding factors drawn from Zg

Proceedings on Privacy Enhancing Technologies 2024(2)

Keygen(1%, (M [[Mkem)):
Mi)ke[m):

pk(k), sk(k) ? E.Keygen(l’l); publish pk(k>
pkec, (Mk[[sk< Meim) — EPKeygen(1h, (My[[Dkefm))
Pkpa: (M [[skSs]]>ke[m1 — Eh Keygen(14, (Mg [[Dkefm))
output mpk := ((pk'))kE[m% pkEG Pkpa),

(k) . (k) o (k (k)
(M [[msk'™ = (sk Sk k)]])ke[m]

Enc(mpk := ((pk™)ge[m), - Pkpa) 0 € Zg):

e(—E

// run by Sy,..., Sn
»-Enc(pkp,, 0) // interpret v as an element of Zy

r <— Zq y <« g7hT; py « NIZKPK{((v, 7)) : y = g7hT}

€ — E
(v())ke m] < Sharem m(v); (r<))kg[m] « Sharep,m(r)
(eV(k>)ke[m] — (EEnc(pk™, o))y

(er™)efm) — (EEnc(pk™, r®))c)

output ¢ := (e,y, (ev(k>,er(k))kg[m],py,Er)

- -Enc(pkp,,) // interpret r as an element of Zy

k)

Mix(mpk := (- ,Pkpa) c:= (ei (v, er™)i dietnls

(M [Imsk® = (sk®), - sk{E >>JJ>kE[m])

Mikem):]T<k> «— Perm(n)
(e’)je[nj — Sthﬂe(Epa pkp, (51)16
1l e = Eth REnc(pkpa, €x(j))s where;r ﬂ(m)
(v)]E[n] — Eth TDec((¢/ Dielnl (Mkllsk
(Mk)ke[m]

ok — E.Dec(sk(k),ev(k)); rtk) E‘Dec(sk(k),er(k))
output o, (M[[o® = (0,00 rON]

Ml [[7[(1)]], . ,Mm[[ﬂ(m)]])

oz

JJ)kE[m])

BTraceln(mpk := (-, pkgg, <), ¢ = (5 ¥4 Die[n]»
o' €Z1IC [n],J € [n].
My lImsk® == (. sk,), 0®) =
Q) :
Q[I"]] « DB-SM(pkeg. y.9".1J,
Melsk&), 70,00), (. QI // see Fig. 8
Q[[If]) < DB- SM(pkEG y. 0" L[n]\],

(x5, 0® N Demy

Melsk &), 70,00), QI // see Fig 8
Q :if I* UL} # I: abort
output Q[[c;+]]

BTraceOut(mpk = (-, pkggs Pkpa)s € = (5 Eri’Py,-)ie[n],
v’ eZ"IC[n]]C[n]
M lImsk(® = (. skt ski), 0®) = (20,00, r®O))y,
Q[:
Q[IJ*]l < DB-RSM(pkeg, pkp,, ¥, py. €r,0", 1],
Melsk&), sk, 70 o®), 20Ty, 1, QI 1 see Fig. 9
Q[UJST] « DB-RSM(pkeg, pkpa, ¥: Py, €, 0", [n] \ 1,],
(M [[Skgg,Sk;,];), 7 k) r<k>]])ke[m],Q[[]]) // see Fig. 9
Q :if J* U JF # J: abort
output Q[[v}* 1

Figure 7: Our construction of a traceable mixnet.

would not be perfectly hiding. To circumvent this issue, we follow
an approach similar to [46, 47]. First, we ensure that N is much
larger than q so that all additions remain integer additions and
do not wrap around N (this is anyway the case since N is usu-
ally a 2048-bit modulus, ¢ is of 254 bits and we perform a small
number of homomorphic additions per ciphertext). Second, we
pad blinding factors bc;,by; € Zg for €, €, by much larger
offsets q Xc; X r; € Zg(q-1) SO that the padded blinding factors
bej+qxc;.brj+qxy; are identically distributed to uniform sam-
ples from Z 2 and provide an almost perfect integer blinding for

244

Agrawal et al.

Participants: Mix-servers (My)ie[m], Querier Q

Common input: (pkeg, ¥ = (¥)ic[n] ¢ = (v})je[,,],l,]) s.t.:
y; € Gl,v' €Z¢ 1] < [n]

M’s input: (sk(k)), () r(K)) s.t. letting

v = Yke|]v 7= Yke[m] T ®), g=gmo...

1)Vie[n]:y; —gl‘hr’
2)Vj € [n] :u’. = Ug(j)

Q’s output: [* := {i el|ov;= u;. for some j € J}

Stage 1:

Signature generation

ox;

Q: x«iZq;y<—g’2‘)

X+’
o’ — (0))je[n). where 07 = {91 T oifje]

g1 otherwise
€l — E Enc(pkEG a’)
publish y a €L
Shuffling

€5 — Shuffle(E . PKeG: €5 Mm[[(ﬂ(m)) ..., Mi[[(z)~1])

x+u,

/l €5, = EtEhG.REnc(pkEG, 6i)ioi=g, " if n71(i) €] else g1
Homomorphic blinding

(Mp)ke[m):

b & z

®)
publish e(k) Eth REnc(pkeg, b)) 1/ & = gth. Enclpkeg, o o)
. ctm B

(Midke[m): €0 < Tlkeim) 6()y &g, = E %.-Enc(pkeg, orzk tml %y

Threshold decryption
& — EfR TDeC(Em (M [[SkEG Drermy))

x+u 7

/1 &i = o’i
publish &

if 771(i) € J else gl

Stage 2:

I 0

foriel:
Qllresll « DPK((y;, &5,), pos,, Micllo{ v b1, QI

where pgp, = (y; = g7k}’ A e(51.y) = e(g1.92)Pe(51.92) ")

Q: ifres=1:I" —T* U {i}

endfor

output Q[[I*]]

Figure 8: Protocol DB-SM (see summary in Figure 6b).

the messages c,;(j) € Zq and F () + 'z (j) € Zzq- The offsets are
removed by reducing decryptions é;.’ , i‘}' of €; . €;, modulo g.
In stage 2, for each j € J, a DPK is given that proves that the

. ~y —bs.
mix-servers know shares ofbsj, bcj,brj such that (Sj_q1 7, c} -

b¢; mod g, 7, — by; mod g) is a valid BBS+ signature on message
v} under Q’s verification key. The actual DPK used in Figure 9 is
designed to follow the format of Section 3.1.5. Since each mix-server
knows shares of bs ;. bcj. by j, 80 and gets shares of 6; and Jz via

Beaver’s Mult algorithm, these DPKs can be given efficiently.

4.3.1 HBC to malicious security. Now we highlight steps to main-
tain secrecy even when the corrupted parties maliciously deviate
from the protocol (see Appendix B for detailed steps). Any party that
publishes an encryption - senders during Enc, the querier, or the
mix-servers during Mix or BTraceln/BTraceOut protocols - must
provide proofs of knowledge of underlying plaintexts. This is to
avoid attacks where re-encryptions of honest senders’ ciphertexts
are published to get them decrypted. Moreover, before participating
in threshold decryption protocols, honest mix-servers must verify

Traceable mixnets

Participants: Mix-servers (My)ic[m], Querier Q
Common input: (pkeg, pkpa, ¥ = (V))ie[n]: Py = (Pyic[n]>
er = (€ri)ie[n), ¢ = (¢))je[n), L.J) st
Y €Gupy; = NIZKPK{(v,7) : p; =
v;. €Zg, 1] < [n]
My’s input: (sk(k),skg;), ﬂ(k), v<k),r(k)) s.t. letting
0= Yke[m) UFk 7= Ykelm]r(k) b *ﬂ(m) o--ox(M;
1)Vie [n]: 71 2 -Enc(pkpy, 1)
2)Vj € [n] :u
Q’s output: J*

gen'}. €y, € C(EM)

gy'h]" and e, — E

C)
= {j €J |0} = o for someicI}

Stage 1:
Signature generation
Q: for each i € I: abort if NIZKVer(y;, py,) # 1

xiZq;yefzx;cﬁzg;fwiZg
~ 1
Fio\Ee ir
S < (Si)ie[n] where S; = iy, ifiel
f otherwise
(s, €c, €7) — (E
Eth. Enc(pkpa,r»

-Enc(pkeg, S), Ef .Enc(pkp,,),

pubhsh y,6 :=(S,¢,7), €5 = (€5, €c, €;)
Mpdkeim): € < €r€r :
1 (€5, €c;» €x,) encrypt ((figy hy™)=, cp Fi+ri) if i €1

// else (flo, ci, Fi+rj)
Shuffling
(es',€c’ &) — Shuffle((E‘Eh? ERE), (pkeg. Pkpa, Pkpa). (€s. €c. €r),
My [[zD7], ™ 1]) // shuffle all three components
Homomorphic blinding
Mikem):
(b(k) b(k) b(k)) & (Zp X TP X D) X(k): (rk)

S
(k)
.Enc(pkgg, 91),

k
+axk >E”‘ Enc(plpy b + qx! >))

(k) (k)
M e e’ €, 7,
ke[m] P8

(k)) - (E
(k

publish (e

Eth Enc(pkpa

(Mk)ke[m]- (&', &' &) « (es’ be

ke[m] ke[m]

Threshold decryption
8" — Eth. TDec(és’, (M [[skiy]])ke[m])
& e E“' TDec(&., (Mg [[sk]])kelm]) K
P Eth TDeC(Er , (M [[SkPa Drem))s 7
pubhsha (S 1)
// S (fgvn(j hl’nmﬂ*n j)))(+0”(1) g
// = (flgl'h:”(””””))x"”(ﬂ bs; if 7(j) € I else gi’S’
18] = en(j) +beji 7} =Fr(j) +Tn(j) +br;

7=
/i wherebs, = % b\ b= % b:by = 3 b
ke[m] 55 ke[m] ke[m]

Jif 7(j) €I else g?s’

Stage 2:
Q J <0
Mpke[m)> Q:
for j e J:
(Mk)ke[m]
s &z, (5”‘) 5“”) - (Mun(b(’j),bﬁ’j)),Mult(ag">,b§’j>))

b1 — e(hi, f2) 71 b2 — e(gr. o) i bs — fr

(/\)
pubhsh 3 I)

(Mike(m) Q31 < nke[m] 30 30— euf,) e(hay by fo)
g1 —eShf) g e e(g1.ufy”)

Q([res]] < DPK((81,82. b1, b2, b3, 31, 32), pBBS+)»

(Mk[[bg’jlbﬁ’?,b&’?,65">,6§k>,6§k)]]>ke[m] QI

bs, ,
where ppps+; = (31 = b, ’f) ANg, =3 b 'b3 A
be; bs. b,
32=0,"8, 5, b
Q: ifres=1:J" « J*U{j}
endfor

output Q[[J*]]

&)

Figure 9: Protocol DB-RSM (see summary in Figure 6c).

245

Proceedings on Privacy Enhancing Technologies 2024(2)

that all encryptions are correctly created and consistently shuffled
using the same permutation in DB-RSM as in Mix and the inverse
permutation in DB-SM (say, using techniques of [77, 83]). Mix-
servers should also verify that the querier’s signatures are valid for
all elements in the requested set and invalid for the complement
set. The DPKs can be converted using Fiat-Shamir heuristic [42].

5 SECURITY ANALYSIS

THEOREM 1 (COMPLETENESS). Let ITTp be the protocol of Figure
7. IItpm is complete (Definition 2). (Proof in Appendix C.1).

THEOREM 2 (SOUNDNESS). Under the DL assumption in Gy and
n-SDH assumption in (G, Gy) [14], IITpm is sound (Definition 3).

Proof sketch (full proof in Appendix C.2): If an adversary won
EXPsoundness then @ must have output either 1) a wrong ¢y in a
BTraceln(I, J) query; or 2) a wrong o', in a BTraceOut(1, J) query.
Case 1 implies that either a) ¢j+ included a ¢; € ¢y not encrypting a
plaintext in v} or b) it excluded a ¢; € cg encrypting a plaintext in
u}. Case 1a directly reduces to breaking the soundness of DB-SM
for y; against set v}. Further, since each ¢; € ¢j \ ¢j+ must be in crr
for Q to not abort, case 1b also reduces to breaking the soundness
of DB-SM (because if ¢; ¢ ¢y« encrypts a plaintext in v}, it does not
encrypt a plaintext in v’n due to distinctness of v} s,butc; € cp).
Case 2 similarly reduces to breaking the soundness of DB-RSM.

Soundness of DB-SM for I, J: The DPK proves that (My)ke[m]
know blinding factors to unblind &; to a valid BB signature on
the value ; committed by y; under Q’s fresh public key. Since Q
issued valid signatures only for plaintexts in v’,, passing the DPK
ifo; ¢ v} requires (Mp)ie[m] to forge a BB signature under Q’s
public key, which is hard under the stated assumptions.

Soundness of DB-RSM for I, J: The DPK proves that (My)ke[m]
know blinding factors to unblind &} to a valid BBS+ signature on
v} under Q’s fresh public key. Since Q issued valid signatures only
for commitments in y;, deriving a signature on a plaintext not com-
mitted in any commitment in y; reduces to breaking the soundness
of the BBS+ scheme for obtaining signatures on committed values,
which is hard under the stated assumptions.

THEOREM 3 (SECRECY). Under the IND-CPA security of E, the DDH
assumption in Gy and the DCR assumption [73], IITpm protects secrecy
(Definition 4) against HBC adversaries in the random oracle model.

Proof sketch (full proof in Appendix C.3): We need to show that for
any pair of values v;, v;,, no PPT adversary controlling (M)gk+
(S1)ig{io,iy} and Q can distinguish between world 0 where S;, sends
vj, and S;, sends v;, and world 1 where this order is reversed, if the
assert conditions in all OTraceln and OTraceOut calls of Expgecrecy
are respected (and all adversarial parties are honest-but-curious).
We do this by simplifying world b for each b € {0, 1} by the follow-
ing sequence of indistinguishability arguments:

- Foreachi € {io, i1}, NIZK py; can be simulated, shares v() l()
given to (My)rzk+ can be replaced by random elements drawn
from Zg, and encryptions ev(k*), ergk*) can be replaced by en-
cryptions of 0 by the IND- CPA security of E.

- Threshold decryption protocols for Eth and E“'I do not reveal any

information beyond the decryption output Wthh can be obtained

Proceedings on Privacy Enhancing Technologies 2024(2)

by permuting the list of input values, where S;; and S;,’s input
values are v;, and v;,_, respectively. With the decryption oracles
now eliminated, all EtEhG and Etpg encryptions/re-encryptions can
be replaced by encryptions of dummy values, by the IND-CPA
security of EtEhG and EtP}; under the DDH and DCR assumptions
respectively.

The only information leaked during a DPK for S;;, /S;,’s commit-
ment/plaintext is whether the DPK passed or not, but the assert
conditions ensure that this information is the same in both the
worlds. Thus, these DPKs can be simulated by a ZK simulator
that does not know which specific world it is in.

gk*), erfk*) can be replaced by encryptions
of 0 since the encrypted values vgk*), rgk*) are not used any-
where anymore (they were used in the DPKs/encryptions earlier).
Similarly, Yip Vi, cannow be replaced with commitments of 0.
The blinded signatures corresponding to S;, or S;,’s commitments
or plaintexts during DB-SM and DB-RSM can now be replaced
with random group elements because they are not used anywhere
anymore and the blinding factors chosen by My« are random
(note: for the ¢, r components of the BBS+ signature, this holds
because of flooding with large blinding factors).

For i € {ip,i1}, ev

The two worlds obtained now are indistinguishable because now
only the mixnet output list »” depends on v;, and v;, and this list is
identically distributed in the two worlds because of the uniformly
chosen permutation 7k by M.

THEOREM 4 (OUTPUT SECRECY). Under the same assumptions as
Theorem 3, IITp protects output secrecy (Definition 5). (Proof in Ap-
pendix C.4).

In Appendix C.5, we also sketch a proof that after applying the
additional steps mentioned in Section 4.3.1 and Appendix B, our
construction protects secrecy against general malicious adversaries.

5.1 Privacy risk analysis of query outputs

Theorem 3 guarantees that a traceable mixnet does not reveal any
information beyond the output of the BTraceln/BTraceOut queries.
To evaluate the privacy risk impact of these outputs themselves,
we provide a mechanism in Appendix D to statically analyse in-
formation leaked by a given set of queries. Specifically, given a
set Q of proposed Traceln/TraceOut queries in an application, the
mechanism outputs information potentially leaked by them: a) for
each i € [n], the smallest set Jiin, representing potential plain-
texts that ¢; might encrypt and b) for each j € [n], the smallest
set Imin; Tepresenting potential ciphertexts that u;. might decrypt
from (Jimin, = [n] denotes that queries in Q reveal no additional
information about c;; likewise for Iminj)~ The Jmin/Imin information
can then directly be used to analyse application-level security.

6 IMPLEMENTATION AND BENCHMARKS

We implemented a proof-of-concept for our traceable mixnet con-
struction, with the primary goal of evaluating its runtime query
performance. Given this focus, we mainly implemented the DB-SM
and DB-RSM protocols. This allows us to directly estimate the total
time for BTraceln or BTraceOut queries as that of two DB-SM or
DB-RSM invocations. However, an optimisation where the DB-SM
calls for J and [n] \ J (similarly for DB-RSM) are combined to a

246

Agrawal et al.

single call as follows considerably improves this estimate: Q gener-
ates signature key pairs x, y for J and xc, y. for [n] \ J and sends
signatures using key x. for j ¢ J instead of invalid signatures, thus
avoiding extraneous shuffling/decryption of invalid signatures.
We used standard threshold ElGamal encryption [34] for Eg’c
and Damgérd et al’s [29] optimised threshold Paillier encryption
for EE,Z 2 For key generation, we implemented a simplified protocol
where a trusted dealer distributes key shares to the mix-servers.

Secure distributed key generation is trivial for EtEhG

special protocol [30] for Eg;. However, our simplification is justified

as key generation is a one-time setup step that can be executed
ahead of time and does not affect runtime query performance.

We also implemented all the steps mentioned in Section 4.3.1
and Appendix B to evaluate performance in the realistic malicious
setting. We used the following techniques to optimise these steps:
1) standard 2-protocol techniques to let senders efficiently prove
knowledge of their uploaded ciphertexts and mix-servers prove
knowledge of blinding factors during homomorphic blinding; 2)
batch-verification techniques of [7, 41] to let each mix-server ef-
ficiently verify the querier’s signatures/quasi-signatures and the
correctness of other mix-servers’ decryption shares during thresh-
old decryption; and 3) permutation commitment-based techniques
of [77, 83] to let each mix-server efficiently prove that they created
their shuffles consistently during Mix, DB-SM and DB-RSM.

We implemented all sender proofs of knowledge required to
achieve our soundness and secrecy requirements. However, we
did not implement proofs of well-formedness of input ciphertexts
(Section 2): proofs that y; commit the same value as encrypted by €;
and that €;, €y, encrypt values in the range [0, q].3 This is primarily
due to our focus on runtime query performance and because these
costs are incurred by individual senders and mix-servers as and
when senders send their data. Our proofs of knowledge incur ~0.15
seconds cost per-sender for both the sender and the mix-servers.
With standard X-protocol techniques and FO commitments [43] for
proving equality of committed and encrypted values and [16, 64] for
range proofs, the total time is expected to remain <1 s per sender.

Finally, we did not implement the authenticated broadcast chan-
nel. Since our uploaded datasets are moderate in size and the round
complexity is small, we do not expect this to be a bottleneck.

Our implementation [1] is based on the Charm library [3] with
the PBC backend [66] for pairing operations. We chose the BN254
curve [6, 56] to instantiate pairing groups (G1, G2, Gr), which gives
a group order g of 254 bits.* We attempted to minimise the number
of pairing operations wherever possible and used pre-computation
of powers of fixed bases to speed-up exponentiation operations.

We ran all our benchmarks on an Intel(R) Xeon(R) W-1270 CPU
@ 3.40GHz with 64 GB RAM on a single core. Figure 10 shows the
performance of our DB-SM/DB-RSM implementation in the worst

but requires a

2We slightly simplified [29] by skipping the factorial trick used for general ¢-out-of-m
threshold cryptography in RSA groups, focusing on the m-out-of-m case.

3Senders do not need to prove distinctness of their encrypted messages because
duplicate values can be detected at the mixnet output and the offending senders could
be identified (by, say, a BTraceln query) on demand.

4With NFS attacks [60], the security of BN254 curves has dropped to 100-110 bits
[39, 67]. We are limited to BN254 because of our chosen Charm library, but we estimate
that the overall performance hit in per-mix-server time on switching to a more secure
curve BLS12-381 [39] is <1.3x, given that BLS12-381 operations are <2x slower than
BN254 [26] and that curve operations predominantly only affect our stage 2 DPKs.

Traceable mixnets

M and Q times (sec) in DB-SM and DB-RSM for different n and m
m=2 m=4
n=10n=10"n=10°[n=10°] n=10"] n=10°
DB-SM - My 35 340 3400 49 490 4916
DB-SM (HBC) - My 23 225 2268 23 227 2274
DB-SM - Q 20 190 2000 20 200 2000
collab-zkSNARK-SM 4120 42960 | 446800 4120 42960 | 446800
DB-RSM - My 168 1600 20000 240 2400 32000
DB-RSM (HBC) - My 122 1188 11981 129 1291 12949
DB-RSM - Q 62 610 6200 62 620 6200
collab-zkSNARK-RSM | 4160 43100 | 448920 | 4160 43100 | 448920
Detailed breakdown for n = 10* and m = 4

- Size of n input ciphertexts 200 MB
- (M) Mixing (Fig. 7): 343 s
DB-SM (Fig. 8):
- (Q) Generating n BB signatures/encryptions 83s
- (M) Verifying n BB signatures/encryptions 15s
- (M) Re-encryption of encrypted signatures 7.3s
- (M) Proof-of-shuffle of encrypted signatures 139 s
- (M) Homomorphic blinding of encrypted signatures 130 s
- (M) Threshold decryption of encrypted signatures 22s
- (M) Generating n DPK proofs for pgg 170 s
- (Q) Verifying n DPK proofs for pgp 190 s
- Size of n BB signatures 0.3 MB
- Size of n DPK proofs for pgp 3.8 MB
DB-RSM (Fig. 9):
- (Q) Verifying n PoKs of commitments 7.9s
- (Q) Generating n BBS+ quasi-signatures 23s
- (M) Verifying n BBS+ quasi-signatures/encryptions 27 s
- (M) Re-encryption of encrypted signatures 16 s
- (M) Proof-of-shuffle of encrypted signatures 349 s
- (M}.) Homomorphic blinding of encrypted signatures 830 s
- (M) Threshold decryption of encrypted signatures 441s
- (My) Generating n DPK proofs for ppgs+ 673 s
- (Q) Verifying n DPK proofs for ppps+ 590 s
- Size of n BBS+ signatures 0.9 MB
- Size of n DPK proofs for ppps+ 11 MB

Figure 10: Performance of DB-SM and DB-RSM (n: number of input
ciphertexts, m: number of mix-servers). M and Q denote per-mix-
server and querier times respectively; collab-zkSNARK denotes esti-
mated per-prover times in collaborative zkSNARKSs [72].

case when I = J = [n], with the overall mix-server and querier
times for different n and m at the top and the detailed breakdown
for n = 10000 ciphertexts and m = 4 mix-servers at the bottom. All
reported values are averages over 3 runs. The deviation from the
average in any run is <1.5%. We report per-mix-server times, which
accurately capture real-world latencies as the heavy operations like
proofs-of-shuffle, homomorphic blinding, threshold decryption and
stage 2 DPKs can be run in parallel by the mix-servers. The only
sequential operation is re-encryption, but it is a negligible fraction
of other steps. We also report timings for the HBC case to highlight
the overhead introduced by the malicious security steps.

Our ZKPs are practical for offline batch processing tasks, finish-
ing within an hour and requiring moderate amount of data to be
published for 10000 ciphertexts. They scale linearly with n. The
scale-up with m is constant for the HBC mix-server time and for the
querier, but in the malicious case, each mix-server needs to verify
other mix-servers’ output, which leads to a ~1.4x increase from
m = 2 to m = 4. Our main bottlenecks are expensive pairing and
exponentiation computations in our DPKs and expensive Paillier

247

Proceedings on Privacy Enhancing Technologies 2024(2)

operations in DB-RSM. The additional proofs for malicious security
add an overhead of roughly 1.5-2x over the HBC case where these
steps are skipped.

There exists a high degree of task parallelism in our construction,
since DPKs in stage 2 are independent of each other and stage 1
operations incur at most constant communication overhead. Thus,
we expect significant speedups if each mix-server and the querier
are given multiple cores. With a moderate parallel cluster of 100
nodes, recovery for an election with 10° votes can thus be per-
formed within a few hours. Further, if the signer in stage 1 of our
ZKPs could be a separate trusted entity different than the querier
and pre-sign all set entries, then our ZKPs become completely non-
interactive and only incur stage 2 costs for verification.

Comparison. The only technique comparable to our distributed
setting is collaborative zZkSNARKSs [72]. We indirectly estimate our
performance against them by employing a thumbrule given by [72]
that the per-prover time in a collaborative zkSNARK, assuming
each prover already has a share of the SNARK witness, is ~2x the
prover time in the corresponding single-prover zkSNARK. Thus,
we implemented zkSNARKSs for psp-acc and prsm-acc via Merkle
accumulators (see Section 1.2.4). We used the ZoKrates toolchain
[38] and the Groth16 proof system [50]. We used the Baby Jubjub
curve [81], which has similar order as BN254 and allows efficient
computation of Merkle hashes for commitments for prsm-acc- For
creating Merkle hashes, we used the Poseidon hash function [49].

Figure 10 (top) also shows the per-prover times in a collabora-
tive zZkSNARK approach estimated as above (averaged over 3 runs
with deviation <1.1%). We find the prover time for one psm-pcc or
PRSM-Acc proof against a set of size 10000 is ~2.15 s, which when
scaled to 10000 commitments takes ~21500 s. From this, the per-
prover time in collaborative zkSNARKSs is estimated to be ~43000 s,
as shown in the column for n = 10* (for any m). This estimate is con-
servative as it does not count the time taken to securely distribute
shares of the SNARK witness among the collaborating provers. This
makes our DB-SM and DB-RSM proofs ~86x and ~18x faster than
collaborative zZkSNARKSs. We note that our verification times (200
s and 620 s for n = 10000) are slower than zkSNARKSs’ ~50 s, but
the dominant prover times in zkSNARKSs imply that our techniques
still bring drastic overall improvements.

We also ran Benarroch et al.’s [12] official implementation [52],
which proves psm-acc for a single prover (but not prsm-acc)- This
takes ~2200 s for 10000 psp-acc proofs, excluding the O(n?) time
taken to generate the RSA accumulator witnesses (see Section 1.2.4).

7 CONCLUSION

We introduced and formalised the notion of traceable mixnets,
extending traditional mixnets to provably answer useful subset
queries in zero knowledge. We also proposed a traceable mixnet
construction using novel distributed ZKPs of set membership and
reverse set membership, which are useful in other settings too. We
implemented these ZKPs and showed that they are significantly
faster than the state-of-the-art techniques. Nevertheless, our cur-
rent implementation is practical only for offline batch processing
such as recovery in elections. Constructing traceable mixnets for
real-time privacy applications is a challenging open problem.

Proceedings on Privacy Enhancing Technologies 2024(2)

ACKNOWLEDGMENTS

We wish to thank Rohit Vaish, Kabir Tomer and Mahesh Sreekumar
Rajasree for their helpful discussions and comments, and Aarav
Varshney for assistance in setting up the benchmarks. Our grati-
tude also extends to the anonymous reviewers whose suggestions
significantly improved the manuscript’s presentation.

This research was partially supported by the Pankaj Gupta Chair
in Privacy and Decentralisation. Prashant Agrawal received addi-
tional support from the Pankaj Jalote Doctoral Grant, and Abhinav
Nakarmi was supported by a research grant from the MPhasis F1
Foundation.

REFERENCES

[1] Prashant Agrawal, Abhinav Nakarmi, Mahabir Prasad Jhanwar, Subodh Sharma,
and Subhashis Banerjee. 2023. Benchmarks for traceable mixnets. https://github.
com/agrawalprash/traceable-mixnets/tree/v1.

[2] Prashant Agrawal, Kabir Tomer, Abhinav Nakarmi, Mahabir Prasad Jhanwar, Sub-
odh Vishnu Sharma, and Subhashis Banerjee. 2023. OpenVoting: recoverability
from failures in dual voting. In E-VOTE-ID. 18-34.

[3] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael
Rushanan, Matthew Green, and Aviel D. Rubin. 2013. Charm: a framework for
rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3, 2
(2013), 111-128.

[4] Man Ho Au, Willy Susilo, and Yi Mu. 2006. Constant-size dynamic k-TAA. In
Security and Cryptography for Networks. 111-125.

[5] Michael Backes, Jeremy Clark, Aniket Kate, Milivoj Simeonovski, and Peter
Druschel. 2014. BackRef: accountability in anonymous communication networks.
In ACNS. 380-400.

[6] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-friendly elliptic curves
of prime order. In Selected Areas in Cryptography. 319-331.

[7] Mihir Bellare, Juan A Garay, and Tal Rabin. 1998. Fast batch verification for
modular exponentiation and digital signatures. In EUROCRYPT. 236-250.

[8] Josh Benaloh. 2008. Administrative and public verifiability: can we have both?
EVT 8 (2008), 1-10.

[9] Josh Benaloh and Michael de Mare. 1993. One-way accumulators: a decentralized

alternative to digital signatures. In EUROCRYPT. 274-285.

Josh Benaloh and Dwight Tuinstra. 1994. Receipt-free secret-ballot elections. In

ACM symposium on Theory of Computing. 544-553.

[11] Josh C Benaloh and Moti Yung. 1986. Distributing the power of a government to

enhance the privacy of voters. In ACM symposium on Principles of Distributed

Computing. 52-62.

Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris

Kolonelos. 2021. Zero-knowledge proofs for set membership: efficient, succinct,

modular. In Intl. Conf. Financial Cryptography and Data Security. 393-414.

David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan

Warinschi. 2015. SoK: a comprehensive analysis of game-based ballot privacy

definitions. In IEEE S&P. 499-516.

[14] Dan Boneh and Xavier Boyen. 2004. Short signatures without random oracles. In
EUROCRYPT. 56-73.

[15] Dan Boneh, Benedikt Biinz, and Ben Fisch. 2019. Batching techniques for ac-
cumulators with applications to IOPs and stateless blockchains. In CRYPTO.
561-586.

[16] Fabrice Boudot. 2000. Efficient proofs that a committed number lies in an inter-

val. In International Conference on the Theory and Applications of Cryptographic

Techniques. 431-444.

Xavier Boyen, Thomas Haines, and Johannes Miiller. 2020. A verifiable and

practical lattice-based decryption mix net with external auditing. In European

Symposium on Research in Computer Security. 336-356.

[18] Jan Camenisch. 1998. Group signature schemes and payment systems based on the

discrete logarithm problem. Ph.D. Dissertation. ETH Zurich.

Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. 2008. Efficient protocols for

set membership and range proofs. In ASIACRYPT.

[20] Jan Camenisch and Anna Lysyanskaya. 2004. Signature schemes and anonymous

credentials from bilinear maps. In CRYPTO. 56-72.

Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and

Hyunok Oh. 2022. Succinct zero-knowledge batch proofs for set accumulators.

In CCS. 455-469.

David Chaum and Eugéne van Heyst. 1991. Group signatures. In EUROCRYPT.

257-265.

David L. Chaum. 1981. Untraceable electronic mail, return addresses, and digital

pseudonyms. Commun. ACM 24, 2 (1981), 84-90.

=
S

[12

[13

(17

[19

[21

[22

[23

Agrawal et al.

[24] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas Ward. 2020. Marlin: preprocessing zkSNARKs with universal and
updatable SRS. In EUROCRYPT. 738-768.

Joris Claessens, Claudia Diaz, Caroline Goemans, Jos Dumortier, Bart Preneel,
and Joos Vandewalle. 2003. Revocable anonymous access to the Internet? Internet
Research 13, 4 (2003), 242-258.

Consensys. 2021. Benchmarking pairing-friendly elliptic curves libraries. https:
//hackmd.io/@gnark/eccbench. Accessed on November 27, 2023.

Ronald Cramer, Ivan Damgard, and Ueli Maurer. 2000. General secure multi-party
computation from any linear secret-sharing scheme. In EUROCRYPT. 316-334.
Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. 1994. Proofs of partial
knowledge and simplified design of witness hiding protocols. In CRYPTO. 174—
187.

Ivan Damgérd, Mads Jurik, and Jesper Buus Nielsen. 2010. A generalization of
Paillier’s public-key system with applications to electronic voting. Intl. Jr. Inf.
Security 9 (2010), 371-385.

Ivan Damgérd and Maciej Koprowski. 2001. Practical threshold RSA signatures
without a trusted dealer. In EUROCRYPT. 152-165.

Anupam Datta, Divya Sharma, and Arunesh Sinha. 2012. Provable de-
anonymization of large datasets with sparse dimensions. In Principles of Security
and Trust. Springer, 229-248.

Pankaj Dayama, Arpita Patra, Protik Paul, Nitin Singh, and Dhinakaran Vinayaga-
murthy. 2022. How to prove any NP statement jointly? Efficient distributed-prover
zero-knowledge protocols. PETS 2 (2022), 517-556.

Stéphanie Delaune, Steve Kremer, and Mark Ryan. 2009. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security 17, 4
(2009), 435-487.

Yvo Desmedt. 1994. Threshold cryptography. European Tr. Telecommunications
5,4 (1994), 449-458.

Yvo Desmedt and Yair Frankel. 1989. Threshold cryptosystems. In CRYPTO,
Vol. 435. 307-315.

Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. 2004. Tor: The
second-generation onion router.. In USENIX Security, Vol. 4. 303-320.

Cynthia Dwork. 2006. Differential privacy. In Automata, Languages and Program-
ming. Springer, 1-12.

Jacob Eberhardt and Stefan Tai. 2018. ZoKrates - scalable privacy-preserving
off-chain computations. In IEEE iThings. 1084-1091.

Ben Edgington. 2023. BLS12-381 for the rest of us. https://hackmd.io/
@benjaminion/bls12-381. Accessed on November 27, 2023.

Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Tr. Information theory 31, 4 (1985), 469-472.

Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael @stergaard
Pedersen. 2009. Practical short signature batch verification. In CT-RSA. 309-324.
Amos Fiat and Adi Shamir. 1986. How to prove yourself: practical solutions to
identification and signature problems. In CRYPTO. 186-194.

Eiichiro Fujisaki and Tatsuaki Okamoto. 1997. Statistical zero knowledge proto-
cols to prove modular polynomial relations. In CRYPTO. 16-30.

Jun Furukawa. 2005. Efficient and verifiable shuffling and shuffle-decryption.
IEICE Tr. Fundamentals of Electronics, Communications and Computer Sciences 88,
1(2005), 172-188.

Ariel Gabizon, Zachary] Williamson, and Oana Ciobotaru. 2019. PLONK: Per-
mutations over Lagrange-bases for Oecumenical Noninteractive arguments of
Knowledge. Cryptology ePrint Archive (2019).

Rosario Gennaro and Steven Goldfeder. 2018. Fast multiparty threshold ECDSA
with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1179-1194.

Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-
optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In
ACNS. 156-174.

Shafi Goldwasser and Silvio Micali. 1982. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In STOC. 365-377.
Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: a new hash function for zero-knowledge
proof systems. In USENIX Security.

Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In
EUROCRYPT. 305-326.

Jens Groth and Markulf Kohlweiss. 2015. One-out-of-many proofs: or how to
leak a secret and spend a coin. In EUROCRYPT. 253-280.

Kobi Gurkan. 2021. CPSNARKSs-Set. https://github.com/kobigurk/cpsnarks-set.
[Accessed Mar 21, 2023].

Thomas Haines and Johannes Miiller. 2020. SoK: techniques for verifiable mix
nets. In CSF. 49-64.

Rawane Issa, Nicolas Alhaddad, and Mayank Varia. 2022. Hecate: abuse reporting
in secure messengers with sealed sender. In USENIX Security. 2335-2352.
Markus Jakobsson, Ari Juels, and Ronald L. Rivest. 2002. Making mix nets
robust for electronic voting by randomized partial checking. In USENIX Security.
339-353.

https://github.com/agrawalprash/traceable-mixnets/tree/v1
https://github.com/agrawalprash/traceable-mixnets/tree/v1
https://hackmd.io/@gnark/eccbench
https://hackmd.io/@gnark/eccbench
https://hackmd.io/@benjaminion/bls12-381
https://hackmd.io/@benjaminion/bls12-381
https://github.com/kobigurk/cpsnarks-set

Traceable mixnets

[56] John Johnson. 2021. BN254 for the rest of us. https://hackmd.io/@jpw/bn254.

[57]

[58]

[59]

[60]

(61

[62]

[63

[64]
[65]

[66]

[67]

[72]

[73

[74]

[75

[76]
[77]

[78]

[79

[80]

[82

[83

[84

A

Accessed on April 14, 2023.

Marecel Keller, Gert Laessee Mikkelsen, and Andy Rupp. 2012. Efficient thresh-
old zero-knowledge with applications to user-centric protocols. In Intl. Conf.
Information Theoretic Security. 147-166.

Shahram Khazaei, Tal Moran, and Douglas Wikstrém. 2012. A mix-net from any
CCAZ2 secure cryptosystem. In Intl. Conf. Theory and Application of Cryptology
and Information Security. 607-625.

Shahram Khazaei and Douglas Wikstrom. 2013. Randomized partial checking
revisited. In CT-RSA. 115-128.

Taechan Kim and Razvan Barbulescu. 2016. Extended tower number field sieve:
A new complexity for the medium prime case. In Annual international cryptology
conference. Springer, 543-571.

Ralf Kiisters, Johannes Miiller, Enrico Scapin, and Tomasz Truderung. 2016. sElect:
A lightweight verifiable remote voting system. In CSF. 341-354.

Ralf Kiisters and Tomasz Truderung. 2016. Security analysis of re-encryption
RPC mix nets. In EuroS&P. 227-242.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. 2014. Formal analysis of
Chaumian mix nets with randomized partial checking. In IEEE S&P. 343-358.
Yehuda Lindell. 2017. Fast secure two-party ECDSA signing. In CRYPTO. 613-644.
David Lundin and Peter Y. A. Ryan. 2008. Human readable paper verification of
Prét a Voter. In ESORICS. 379-395.

Ben Lynn. 2013. PBC library (pbc-0.5.14). https://crypto.stanford.edu/pbc/.
[Accessed June 10, 2019].

Alfred Menezes, Palash Sarkar, and Shashank Singh. 2016. Challenges with assess-
ing the impact of NFS advances on the security of pairing-based cryptography.
In International Conference on Cryptology in Malaysia. 83-108.

Ralph C Merkle. 1987. A certified digital signature. CRYPTO (1987), 218-238.
Arvind Narayanan and Vitaly Shmatikov. 2008. Robust de-anonymization of
large sparse datasets. In IEEE S&P. 111-125.

C Andrew Neff. 2001. A verifiable secret shuffle and its application to e-voting.
In CCS. 116-125.

Lan Nguyen. 2005. Accumulators from bilinear pairings and applications. In
CT-RSA. 275-292.

Alex Ozdemir and Dan Boneh. 2022. Experimenting with collaborative zk-
SNARKS: zero-knowledge proofs for distributed secrets. In USENIX Security.
4291-4308.

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-
uosity classes. In Intl. Conf. Theory and Applications of Cryptographic Techniques.
223-238.

Torben P. Pedersen. 1991. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO. 129-140.

Ronald L Rivest, Adi Shamir, and Yael Tauman. 2001. How to leak a secret. In
ASIACRYPT. 552-565.

Bruce Schneier. 2007. Applied cryptography: protocols, algorithms, and source code
in C. John Wiley & Sons.

Bjorn Terelius and Douglas Wikstrém. 2010. Proofs of restricted shuffles. In Intl.
Conf. Cryptology in Africa. 100-113.

Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart. 2019.
Asymmetric message franking: content moderation for metadata-private end-to-
end encryption. In CRYPTO. 222-250.

Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. 2019. Traceback for end-to-end
encrypted messaging. In CCS. 413-430.

Luis Von Ahn, Andrew Bortz, Nicholas] Hopper, and Kevin O’Neill. 2006. Selec-
tively traceable anonymity. In PETS. 208-222.

Barry WhiteHat, Jordi Baylina, and Marta Bellés. 2020. Baby Jubjub elliptic curve.
Ethereum Improvement Proposal, EIP-2494 29 (2020).

Douglas Wikstrom. 2005. A sender verifiable mix-net and a new proof of a shuffle.
In Intl. Conf. Theory and Application of Cryptology and Information Security. 273—
292.

Douglas Wikstrom. 2009. A commitment-consistent proof of a shuffle. In Aus-
tralasian Conf. Information Security and Privacy. 407-421.

Bin Yang, Issei Sato, and Hiroshi Nakagawa. 2015. Bayesian differential privacy
on correlated data. In SIGMOD. 747-762.

SINGLE PROVER REVERSE SET
MEMBERSHIP

Figure 11 shows the ZKP of reverse set membership in the single
prover case. Note that in this protocol, the prover knows com-
mitment openings for each y € ® (not only for the commitment
committing v).

Proceedings on Privacy Enhancing Technologies 2024(2)

Participants: Prover P, Verifier V
Common input: ® € 2C1(set of commitments), v € Zq
#’s input: For each y, € ¢ (® indexed by 0): (0, 70) s.t. yo = gVh}
V’s output: 1if V accepts else 0
Stage 1:

#: for each y € ®: py, — NIZKPK{(v,r) : y = g{h]}

send {py |y € ®} to V
(v.

for each y € @:
abort if NIZKVer(y, py) # 1
x <i Zgy — fy
P
cy & Zg;Fy & Zg; Sy (flh?y)”cy
endfor
send y, 6y = (Sy, ¢y, fy) to P
P:
Find y, € @ s.t. yp = gVR}® // O(1) look-up if @ is indexed by v
Gy = (Sv, €0,) = Gy,
$
(bs, be,by) — (Zg xZg X Zq)
(Svs €0, Fo) (Sugi’s, ¢y + be mod g, 7y + 1y + by mod q)
send 6y = (Sy, &y, Fo) to V
Stage 2:
/] P proves (in ZK) knowledge of a BBS+ signature
/! (gyg;bs, ¢y — be mod g, 7y — by mod g) on v, ie.,
11 e(Sogy ", yfEmbe) = e(fig?he ™,) (Sec. 3.1.2):
P,V
b1 e(hy fo) b elgn, o) i bs — fr
2 (S0, ufS) [eChghY,)
81 e(So. f2): 82 < e(91.Yf;")

P
8o & Zg 81 bsbe; & — Sob
send 31 := bzbsbf" toV

P,V :
wwﬂM%@@%@m%m=w%M
(1o, =3, B3B3 A (32 = 87°8,°B; b))}
Vv
output res

Figure 11: ZKP of reverse set membership ppsm (D,0) =
PK{(r) : y = g{h] Ay € @}, if the prover knows openings
for each y € ®.

B FROM HONEST-BUT-CURIOUS TO
MALICIOUS MODEL

In this section, we mention steps required to derive secrecy (Def-
inition 4) in the general case when the adversary allows the cor-
rupted parties (all-but-two senders, all-but-one mix-servers and the
querier) to deviate from the protocol:

- Each sender S; must attach NIZK proofs of knowledge (p... p,. .

(péﬁ), pg_]:i) Jke[m]) of plaintexts encrypted by encryptions (e;,

€r;s (evgk), erlgk))ke[m]) sent by it. Each (M) k¢ [] must verify

these proofs before processing anything.

- For encryptions €, in DB-SM and eg, €c, €; in DB-RSM, the
querier must publish their randomnesses and each (Mp)ke[m]
must verify that they were created correctly. Each (My)ke[m]
must also verify that Q gave valid signatures/quasi-signatures
for each element in the requested set and invalid ones for its
complement. Note that this also involves verifying that c, # in
DB-RSM contain only elements in the range [0, q].

https://hackmd.io/@jpw/bn254
https://crypto.stanford.edu/pbc/

Proceedings on Privacy Enhancing Technologies 2024(2)

- Each (My)ke[m] must provide proofs of correct shuffle in all
the shuffle protocols. In a proof of shuffle, M. for a given input
ciphertext list € and output ciphertext list €’ proves that €’ is a
permutation and re-encryption of € under a permutation that is
consistent across Mix, DB-SM and DB-RSM protocols (i.e., the
permutation used during DB-RSM is the same as that used during
Mix and the permutation used during DB-SM is the inverse of
it). Such proofs can be given efficiently using the permutation-
commitment based techniques of [77, 83]. Each (M)k [must
verify proofs given by other mix-servers before participating in
the corresponding threshold decryption protocols.

- Each (Mg)re[m) must provide proofs of knowledge of the blind-

ing factors of homomorphically blinded signatures. During DB-SM,

this involves giving proofs p() for each e() published by M

as a blinding of €, with blinding factor b() . Note that p(k)

(k) bk b
NIZKPK{(r,b;"") : ¢o = gic," A1 = pkpgey
and eg() are parsed as ElGamal ciphertexts (co, c1) and (Co, €1)
respectlvely During DB-RSM, this involves giving NIZK proofs

}, where €4;

k k k .
(pés), l(m), pbr)) for each (ebs() ebc](), 5)), which are
(k)
encryptions ofgls] under EtEh and of b, (.k) = bcjk) +qXxe](k)
andb'(k) =b, (k)+q)(r() under Eth respectlvely Here, p().

oo bsy ®
=g N =g

NIZKPK{(r,b5;)) : & pkis} where €ps;

is parsed as the ElGamal ciphertext (o, ¢1) and pl(jz) , p;;]:)
proofs of knowledge of the plaintexts encrypted by ebc() ebr](k)

respectively.
- During the Eth .TDec and E“h .TDec protocols, each (My)ke[m]
must provide proofs that they produced correct decryption shares.
Each (My)ke[m) should proceed with stage 2 only if these proofs
pass.
- During the DB-RSM protocol, each (Mp)ke[m)

proof of knowledge of the opening of 3; (k) Each Mpkem]
should proceed only if the proof passes.

Note that the DPKs in DB-SM and DB-RSM already employ the
Fiat-Shamir heuristic [42] which makes them general ZKPs in the
random oracle model (see Section 3.1.5).

In Section C.5, we sketch a proof that our construction with the
above steps protects secrecy (Definition 4) against general malicious
adversaries.

must provide a

C PROOFS
C.1 Proof for Theorem 1

It can be inspected that when all the parties are honest, inputs to
protocols DB-SM and DB-RSM satisfy the preconditions mentioned
in Figures 8 and 9, respectively. This is also true for the reruns of
DB-SM and DB-RSM in the BTraceln/BTraceOut calls against the
complement sets. Thus, by Lemma 1, I* and I obtained by Q in
a BTraceln call satisfy I* = {i e [| v; € v}} and I = {i e 1|
v; € v’[n]\]}. Also, the correctness of Mix implies that for each
i€l C[n],v; € {v;. | j € [n]},ie., v; €V Uv[]\]forany

J € [n]. Thus, I* U I} = I, which implies that Q does not abort

250

Agrawal et al.

and outputs a ¢+ that satisfies the first condition of EXpompleteness
(Figure 3). By a similar argument using Lemma 2, it follows that Q
does not abort in a BTraceOut call and outputs a v’ that satisfies
the second condition of EXpcompleteness:

LEmMA 1. If inputs (pkeg, v, v', I, J, (Mil[s k(G,), (k)
r(k)]])ke[m]) of a DB-SM invocation satisfy the precondltzons men-
tioned in Figure 8 and all the parties are honest then Q outputs

I'={iell3je]: ZkEm]v ‘v}

ProOOF. Note that for honest mix-servers, the i DPK passes iff
M. uses (u(k), (k) b(k)) such that (0,7, bi) = (Zke[m] @ (k),
2ke[m] T r Zke m] b)) satisfy the predicate pgp,. The equa-
tion y; = g{'h]’
of (vgk), rgk)). Next, note that ¢; = (o'n_l(i))ZkE["l] b;), by the
homomorphism of EE‘G Let j € [n] be the index to which index i is

of ppp, is trivially satisfied by the correctness

mapped after permutation, i.e., i = 77(j) or equivalently 7! (i) =]

Correctness of input conditions implies u = Yke[m] v ()J) =
Zke[m] b
. .)
Yke[m] vl(k).Thus, gi= (d;)Zkflml b which equals g

Skem) b

Yke[m] f

k)
*+Skefm] o5

ifje] andg if j ¢ J. In the first case,
the second equation of pgg, passes; in the second case, it fails. Since
the DPK is run only for i € I, I* is exactly as claimed. O

Lemma 2. If inputs (pkeg, pkp,, ¥ Pys €rs o', L J, (Mg[[s ké]g,

k(k) o) (k) IDke[m)) of a DB-RSM invocation satisfy the
precondltlons mentioned in Figure 9 and all the parties are honest
* . . k
then Q outputs J* ={j € J | i € I : Yge[m] v;) = u}}.

PROOF. As in Lemma 1, let i be s.t. i = 7n(j). By correctness

. k k
of inputs, v;. = Yke[m] ul(), € — E},};.Enc(pkpa, Zke[m] rl()).
Then, it can be inspected that the following equalities hold:

PG, (k) 1 1 bs®
- S; =(fi ngE Yi h1r'+2kg[m] "i) x+ei ngke[757 ifi e Telse
i
- k
- C} =c;j+ Zke[m] bc;),

=~/

~ k k
'rj:ri*'z:ke[m]rg) 5.)

+ Yke[m)] br

—bs;

Y =
cj—bcj, r

Therefore, (5; 9. 7 }—br j) satisfies the BBS+ verification
b, v, ¥;=by; .
’)=e(fig,’h,’ 7. fo)ifi € I, where

—bs, &
J,yf‘zj

equation e(g;- 9

Traceable mixnets

(b bejsbr) = (Se(m bs . Skepm) be'| > Skefm) br). So:

7

~r —bg: & —be¢ ; . —b, ;
eSig, " uf,”) =e(fig, hy L)
~ & ~be;
eShuf,”)
< bs ; ¢ —be;
(g, uf,”)
~ &
e85, uf,")
e(flgl h1 . f2)
~ ¢ _b.. —be.b.:
e(S}, f)Pere(gryf, N PSTe(hy, o) Prie(gy, fo)Psibes

bc; bsj byj bsibc;
S 32 =9 jgz jbl jsz !

o', ¥.—b,;
= e(flgljhlj J)fZ)

©)

Thus, with the mix-servers holding shares of (bg B bc s b, j) and
81 = bg jbc j and &2 := 8y by, all equations of the predicate PBBS+;
of the DPK are satisfied if i € I. If i ¢ I, the last equation of PBBS+;
is not satisfied. The claim follows. o

C.2 Proof for Theorem 2

Suppose for contradiction that there is a PPT adversary A such that

EXPgoundness (Figure 4) outputs 1 with non-negligible probability.

Note first that Q always outputs I* C I in DB-SM and J* C]

in DB-RSM. Thus, ¢+ C ¢y and v}* C v}. We now consider the

following cases:

Case I: ¢+ # {c;i € ¢ | v; € v}} This leads to the following

sub-cases:

- Case1.1:3c; €cpr :v; ¢ v}. As per Figure 7, ¢; contains y; =
g7*hi" for some r; € Zg4. Since ¢; € ¢+, y; € yp.. Thus, by
Lemma 3, a PPT extractor can extract a tuple (j*, r*) such that

’

J
that v; # v}*. This allows producing two different openings

U/-* *
yi=g9," k] and v}* € v’. The requirement v; ¢ 0} thus implies
(v;.*, r*) and (v;, r;) for Pedersen commitment y;, which is a
contradiction under the discrete logarithm assumption in Gj.
Case 1.2:3c; € e+ : v; € v}. Note that since Q produces a
cr- and does not abort, it must be that I* U I¥ = I during the
BTraceln call. Thus, I = I\ I*. Further, since all ul{s are distinct,
. ’ —_— . ’ . .

vi €0 v; ¢ Y /Thus, this case can be restated as
O Oy .
for the second DB-SM call in BTraceln and proceeding as the
previous case, we conclude that this case is not possible.

follows: 3¢; € cpr . Thus, by applying Lemma 3

Case 2: v}* # {v} € v} | v;. € oy}. This leads to the following
sub-cases:

_ . ’ ’
Case 2.1: Elvj € v]*

o .
extractor can extract a tuple (i*,r*) such that y;. = g,”h] and
s

: v;. ¢ v;. Since u} € v’,, by Lemma 4, a PPT

As per Figure 7, p;« gi}i* h;"* for some 7+ € Zg. This allows
producing two different openings (v}, r*) and (v, r) for y .,
which leads to a contradiction.

Case 2.2: 30;. € v}\ﬁ : v;. € v;. Note that since Q produces a

U}* and does not abort, it must be that J* U J¢ = J during the
BTraceln call. Thus, J© = J\ J*. Further, since all ;s are distinct,

v;. €v = v;. ¢ v[n)\1- Thus, this case can be restated as

i* € I. Since i* € I, the requirement v} ¢ oy implies u;. # ;.

251

Proceedings on Privacy Enhancing Technologies 2024(2)

1 8(pkeg Pkpar ¥: Py, 0, L)

2 & for each i € I: (v;,7;) « E1(y;, py;)

3 &—-C: (vi)ier (BBS+ signature queries)

4 C—o& vy (oiie

5 & for each i € [n]:

6 ifi € I: (Si,ci,r;) =04 Fie—ri—r;

7 else: §; «— flo; ci <i Zg; P <£ Zq

8 endfor

9 (€s, €c, €) — (Eg‘G.Enc(pkEG, S), E},ha.Enc(kaa,),

Eh Enc(pkp,. 7))

10 E-5 A y,6:=(5cF)es:= (€5 €c€p)

11 A->E o' = (gl,é', 7)

12 & for each j e J:

13 Compute g1, 92, b1, b2, b3, 31,32 from & == (5}, e
14 (bs j, bcj. by j, 80, 81, 82) — E2(91, 82, b1, b2, b3, 31, 32)
15 o) = (879, & ~be). ¥}~ b))

16 for eachicI:

17 if (v; = v}): output (i,r;)

18 endfor

19 output (u}, a})
20 endfor

Figure 12: Extractor &.

follows: 30} € oy v} € v[,)\1- Thus, by applying Lemma 4
for the second DB-RSM call in BTraceOut and proceeding as the
previous case, we conclude that this case is not possible.

LEmMmA 3. If Q participates in the DB-SM protocol with common
input (pkgg,y,0’, 1, J) and outputs I*, then for all PPT adversaries
A controlling (Mg)re[m] and for ally; € y., there exists a PPT

T
i — J ’ ’
extractor & that outputs a (j*,r*) such thaty; = g,” h] A vl €0

Proor. Note that the verification steps of Q in DB-SM for a
given y; € y; are exactly those of the verifier of the single-prover
ZKP of set membership [19] for commitment y; against set ¢ := zz}
when extended to our asymmetric pairing setting. Thus, for each
y; € y-» by the special soundness of the single-prover ZKP [19]
under the n-Strong Diffie-Hellman assumption in (Gy, G3), a PPT
extractor &’ can extract 0¥, r* such that y; = gf*hq* Av* € ¢. 8
simply runs &’, finds j* such that o* = v}* and outputs (j*,r*). O

LEMMA 4. IfQ participates in the DB-RSM protocol with common
input (pkeg, pkpas ¥ Pys €r,v’, 1,]) and outputs J*, then for all PPT
adversaries A controlling (M)re[m) and for all v} € v}*, there
exists a PPT extractor & that outputs an (i*,r*) such that y; =
gi)jhg* Ai* el

Proor. We construct an algorithm & that for each v} € v,
either outputs a desired tuple (i*,r*) or forges a BBS+ signature,
using extractors &; for the NIZK proofs of knowledge of commit-
ment openings p,, and &; for the DPKs for ppps+,. On one end, &
interacts with adversary A controlling (My)ie[m] in the DB-RSM
protocol; on the other, with the challenger C of the BBS+ signature
unforgeability game. See Figure 12.

For each i € I, & first extracts opening (v;, r;) of commitment y;
from the NIZK proof p,,; using extractor & (line 2). It then obtains

BBS+ public key y and signatures for each (v;);er from the BBS+
challenger C (lines 3-4), derives quasi-signatures from them using

Proceedings on Privacy Enhancing Technologies 2024(2)

r; (line 6) and forwards the quasi-signatures and their encrypted
versions to A, along with invalid quasi-signatures for i ¢ I — similar
to Q (lines 5-10). A responds with blinded permuted signatures
&’ (line 11), as (My)e[pm] do in the real protocol at the end of
stage 1. In stage 2, for each j € J, & extracts blinding factors for the
blinded signature &} using extractor &y (lines 13-14), from which
it obtains an unblinded signature O’} (line 15). & then attempts to
find an opening v; extracted by &; for some commitment y; € y;
such that v; = v}, and returns the corresponding tuple (i, r;) (lines
16-18). If no such v; exists, it outputs the message-signature tuple
(v;., a}) (line 19).

Note that Q produced some J* and did not abort. In this case,
the view produced by & to A is identical to that produced by Q to
(Mk)ke[m]- Further, for some v;. ev,, ifo; = v;. for some i € I,

(i,ri) output in line 17 is a desired tuple since y; = gi"'hlr" = g;ljhlri

and i € I (the first equality follows by the soundness of the proof of

knowledge of commitment openings; the second because v; = v}.).

If no such v; exists, we show that the tuple (v}, a}) output in line

19 is a valid BBS+ signature forgery:

- Since for alli € I, v; # v;., a BBS+ signature for v;. was not
queried from C in line 3.

- Since v} € v}*, the DPK for ppps+; must have passed. Thus, by
the soundness of DPKs:

bs;i. s
31 = I)zsjbgo ®)
be;
3 =by'b2, ©)
be; bs;. by
32=0,"9,°’p,"p" (7)

. bs jbc ;. Sobc
From Equations 5 and 6, E)ZS’ jb30 J = bgl E);sz. It must be

that §; = bsjbcj, otherwise two different openings (J1, d2) and

’ can be pro-

. - be; bs; by bsibe; .
duced. Equation 7 thus implies 32 = g,/ 925] b, ’I)ZS’ ¢/ which
—bs;

1 ,E;. ~bc;, F} — by ;) satisfies the BBS+
signature verification equation on message v} under public key

(bsjbcj, 50bcj) for the Pedersen commitment 3fc
implies that O’} = (§}g

v eSg," s ") = elfigy b ",) (see Equation 4
Lemma 2).
Since at most n signature queries could have been made, forging a
BBS+ signature is not possible under the n-Strong Diffie Hellman
assumption in (Gy, Gy) [4]. Thus, for each v} € v/,,somei €[
such that v; = v;. must exist and a desired tuple (i, r;) must have
been produced. O

C.3 Proof for Theorem 3

We prove the theorem by considering the following sequence of

hybrid experiments (the complete hybrid experiments are shown in

Figures 13 to 32; solid boxes denote lines changed in a given hybrid

and dashed boxes denote lines that change in the next hybrid):

- Ey (Figure 13): Ey is the original secrecy game Expgecrecy, instan-
tiated for our protocol.

- Ej (Figure 14): In E», NIZKPKs Py;, and py;, are simulated. E;
is indistinguishable from E; in the random oracle model because
of the ZK property of the NIZK proof.

252

Agrawal et al.

- Es3 (Figure 15): In E3, shares of v;,r; for i € {iop, i1} are drawn

$ * *
as (vgk), rgk))k;tk* — Zg and vlfk) Vi — Dkrkr vgk), rgk)

Fi— Dksk rgk). Es is indistinguishable from E; because the ad-
ditive secret sharing is information-theoretically secure.
- E4 (Figure 16): In E4, instead of decrypting evgk), erl(k) for
i € {ip, i1} during Mix, vgk*), r?k*) are obtained by directly us-
ing their corresponding values in the Enc call for ip/i;. E4 is

indistinguishable from E3 because of correctness of decryption.
) er® fori e
€l

i

Es (Figure 17): In Es, instead of decrypting ev
[n]\{io, i1} during Mix, vl(k*) , rgk*) are obtained by rerunning the
Enc algorithm on input o; for sender S; using the randomnesses
from the random tape issued to A. Es is indistinguishable from

E4 because of correctness of decryption.

() erF) ey!¥), grlk)
in the Enc calls for iy, i are replaced by encryptions of 0. E¢ is
indistinguishable from Es by the IND-CPA security of E.

- E7 (Figure 19): In E7, responses of/\/[]’g in EE%.TDec and Eg;.TDec
protocols are simulated by first obtaining the correct decryp-
tion m of the given ciphertext ¢ using ideal decryption oracles

h h
EW,.TDec’ TE;*;.TDec
¢, m and secret keys for (My)gzx+. E7 is indistinguishable from
Eg by the security of the threshold decryption protocols of EtE%

th th
and EPa' For EEG’

- Eg (Figure 18): In Eg, encrypted shares ev

and then simulating MZ’S responses using

it follows straightforwardly because given

sk .
¢ =(co,c1) € C(EE‘G) and m = c1/[Igegmy ¢, *° obtained fr(()gl
sk,

) l—] EG

‘7:1:; , the simulator can output 4= kelm) G

EEG.TDCC skEG SkEG

m [] c c1 I1 ¢,
k#k* k#k*
)

=c¢, * , which is exactly the decryption share output by the

rez}l /\]/;k*- For Etpg, Damgérd et al. provide a proof (see Theorem
4;129)).

. . . R h
Es (Figure 20): In Eg, instead of using v’ given by (}-I;[;P;‘TDec

dur-

ing Mix, it is set as o’ « (v;(j))je[n]- Here, 7 (M o

.o (D is obtained using the experimenter-selected)
and (ﬂ(k))kik* obtained from the random tape issued to A,
(9i)iefip,i;) are obtained from their values in Enc calls for ip, i1,
and (9i)ie[n]\{i,i,} are obtained from A’s input for senders
(Si)ie[n]\{ip,i1}- Es is indistinguishable from E7 by the correct-

ness of Shuffle and Eg;.TDec protocols.
Ey (Figure 21): In Eg, instead of using o given by Tﬂt‘]
Eg;-TDec

DB-SM, it is set as & «— ((a;fl(i))b"),-e[n]. Here o’ denotes BB

during

signatures sent by A at the beginning of DB-SM, is as obtained
. k
in Eg and b; == Yige[m] bi()

selected b;k*) and (bl(k))k;tk* obtained from A’s random tape.
Ey is indistinguishable from Eg by the correctness of Shuffle and

is obtained using the experimenter-

EtE%.TDec protocols.
- Eqg (Figure 22): In E1¢, instead of using S,, ¢"”, " givenby ‘7‘-13}“
Egg-TDec
h
and ?_E;Z.TDec
€ e (en(j) +bef)jern). 7" (Pu(j) +7r(j) +br]) je[n). Here,

during DB-RSM, they are set as$ — (S,r(j)gﬁsj)je[n],

Traceable mixnets

(S, ¢, 7) denote BBS+ quasi-signatures sent by A at the begin-

ning of DB-RSM, 7 is as obtained in Eg, bs; « Zke[m] bs()

cf — Zkelm] bcj) mod N, brA — Zke[m]b v) mod N are
obtained using experimenter-selected bs(k) b' (k) =b. (k*)

e pr K)
%) 5 = p, (0

+qxe® and (bs M b'(k) b, <k>

qXe; + q)(r;))k;ek* computed using A’s ran-
dom tape, (rl)le{,o’,l} are obtained from the Enc calls for i, iy
and (7i)ie[n]\{i,i; } are obtained from the random tape given to
A. Eq is indistinguishable from Eg by the correctness of Shuffle,

EtEhG.TDec and E})Z.TDec protocols.

E11 (Figure 23): In Eq1, all encryptions/re-encryptions under
are replaced by encryptions of 0. Eq; is indistinguishable to Eqg
by the IND-CPA security of Etpl; under the DCR assumption [73].

: . : : th
E1z (Figure 24): In E2, all encryptrons/re—encryptrons under EEG

Eth

are replaced by encryptions of g1 Ej2 is indistinguishable to E11

by the IND-CPA security of EtEI'('3 under the DDH assumption.

Eq3 (Figure 25): In Ej3, My+’s responses during the DPKs in

DB-SM are simulated using shares of (Mp.)gk+, as follows:

- For i € {ip, i1}, My+’s responses are simulated completely
if 771(ip) € J; otherwise only the responses corresponding

Zke[m] U Zke r® .
to the first equation y; = "I are sim-

ulated. For simulating the DPK completely, (vi ,rgk)) ktk*
are obtained from their values in the Enc calls for ip/i; and
(bllk)) k2k+ are chosen as the ones obtained in Eg. For simulat-

ing only the first component of the DPK, My-’s responses cor-

responding to the first equation are simulated using (v(), (k) Viek

obtained from the Enc calls for ip /i1, but My+’s strategy is fol—
lowed for the second component except that a freshly sampled
bgk*) is used instead.

For i € [n] \ {io, i1}, the DPK is not simulated, i.e., values
vlgk‘), rgk*), b*) are used exactly as Mg~ does.

Eq3 is indistinguishable from E12 because a) by the correctness
of the blinded signatures, the DPK for iy passes iff jo = 771 (ip) €
J (otherwise the blinded signature is invalid), b) by the assert
condition in the OTraceln call, the DPK for i; passes iff the DPK
for ip passes and c¢) even when these DPKs do not pass, their first
component always passes.

E14 (Figure 27): In Eq4, Mg+’s responses during the DPKs in
DB-RSM are simulated using shares of (Mp)xzx+, as follows:

- For j € {jo, j1} where jo, j; are s.t. vg = 0}0 and v, = U}l, the

DPK is simulated completely if 7(jo) € I; otherwise only its
first two components are simulated. For simulating the DPK

completely, (bsﬁk), bcﬁ.k), br;k))kik* are chosen as the ones
obtained in Ej, (5(§k))k#k+ are obtained from the random tape
issued to A and (51(k),52(k))k¢k* are obtained by applying
the Mult algorithm to inputs (8", bs!*)) and (5", bc{*))
respectively. For simulating only the first two components,
Mj+’s responses corresponding to the first two equations are
simulated using (bg (k), bcﬁ.k), 5ék), §(k), 52(k))k+k+ obtained as

Jj
above whereas for the third equation, My+’s strategy is fol-

lowed except with a freshly sampled br(k)

253

Proceedings on Privacy Enhancing Technologies 2024(2)

- For j € [n] \ {Jo,j1}, the DPK is not simulated, i.e., values
b5\, b, b,) 51D 5K
M+ does.

E14 is indistinguishable from E13 because a) by the correctness

of the blinded signatures, the DPK for jg passes iff ip = 7(jo) €

I (otherwise the blinded signature is invalid), b) by the assert

condition in the OTraceOut call, the DPK for j; passes iff the

DPK for jy passes, and c¢) even when these DPKs do not pass,

their first two equations do pass.

) R 55k*)) are used exactly as

E1s5 (Figure 28): In Ej5, 3(o in DB-RSM is chosen uniformly at
random from Zg. Ey5 is 1ndistinguishable from E14 because of
perfect blinding using & (k).

E16 (Figure 29): In Eq¢, shares u(), l(ﬂk), (k), (k) during the
Enc calls for iy, i1 are set as 0. El(J is 1ndlst1ngulshable from Eis
because these shares are not used anymore.

Ej7 (Figure 30): In E17, commitments Yio Vi, in above Enc calls
commit 0. Eq7 is indistinguishable from E;¢ because Pedersen
commitments are perfectly hiding and the committed values are
not used anywhere.

E1g (Figure 31): In Eqg, 6}, 6;, during DB-SM are replaced by
randomly drawn elements from Gy. E;g is indistinguishable from

E17 because bgk*),bglk*) used in computing &, 6;, are chosen
uniformly at random from Zg.

E19 (Figure 32): In Eq9, Sjo,
randomly drawn elements from Gy; Z‘}', ¢ i
"’ + Zkik* bl (k), ¢’’’ + Zk K b () where ¢ C] ;:' (— Z

/ .
j, during DB-RSM are replaced by

7 are computed as

Il

and (b! (k) pr (k))kik* are the ones obtarned in Eqo; and 7/

Cjo 7 Ch Joo T
are computed as r !+ Zkgﬁk*b 7 (k), P Yk k*b () where
=11 "’/// /(k) /(k)
roL (— Zogrqe and (brjo b’]l)k;tk* are the ones obtained

in Eqg. E19 is 1ndrst1ngulshable from E1g because bs(") bs(k*)

used in computing s S , are chosen uniformly at random from

Jo>
Zg and b'ﬁk) b'J(k) (resp. b' (k) b' (k)) used in computing

c;(; i (resp. r }:) are chosen umformly at random from
an exponentrally larger space than the corresponding messages

Cr(jo) €xjr) (CSP- Fr(j)> Fr(jy))-

//

In E19, A’s view is identical for both b = 0 and b = 1 because in this
experiment only v’ sent at the end of the Mix protocol depends on
vj,,0;, and v’ is identically distributed for any choice of b because
) is uniformly distributed over Perm(n). Thus, by a standard
hybrid argument, the theorem holds.

C.4 Proof for Theorem 4

In this case, the proof proceeds exactly as above except that in ex-
periment Ej3, DPKs for both i, i1 are always simulated completely
and in experiment E14, DPKs for both jo, j; are always simulated
completely. E13 and Ej4 are indistinguishable from their previous
experiments because in this case, even though (A is not restricted by
the constraints at OTraceln/OTraceOut calls, A does not control
Q anymore and thus does not even learn whether a DPK passed or
not by the property of the DPKs (see Section 3.1.5).

Proceedings on Privacy Enhancing Technologies 2024(2)

C.5 Secrecy in the malicious model

In this section, we sketch a proof that when the additional steps of
Appendix B are applied then our construction protects secrecy (Def-
inition 4) even against general malicious adversaries. We assume
that secure MPC protocols are used for Beaver triples generation
and for Eg}3 and Eg; distributed key generation.

The proof essentially follows the structure of the proof in Ap-
pendix C.3 with the following differences:

(k)

- InEs5 0;" 7, ri(k*) for i € [n] \ {io, i1} are obtained by extracting

them from proofs (pé]\fl) , pg?) ke[m]; the corresponding proofs
for i € {ip, i1} are simulated. Es is indistinguishable from E4 by
knowledge soundness of pgfl) péﬁ) for i € [n] \ {io, i1} and their
zero-knowledgeness for i € {ip, i1 }.

- In Eg, (x(F) k+k+ are obtained by extracting them from proofs of
shuffle produced by (M) and (9i)ie[n]\ {i,i, } are obtained
by extracting them from proofs p., fori € [n]\ {io, i1}. Proofs of
shuffle for My and proofs Pe; for i € {ip, i1} are simulated. Eg
is indistinguishable to E7 by a) knowledge soundness of proofs
of shuffles for (M)£k, b) knowledge soundness of p, for
i € [n]\ {io,i1}, ¢) zero-knowledgeness of proofs of shuffle
for My, d) zero-knowledgeness of pe, forie {io, i1}, and e)

correctness of threshold decryption protocol EtPh .TDec.
a

The corresponding proofs for k = k* are simulated. Eq is indis-
tinguishable from Eg by a) verification of correct construction
of €/, from ¢”, b) knowledge soundness of proofs of shuffle that
prove that each (M)gzx+ shuffled encrypted signatures in this
phase correctly using the inverse of the permutation 7k it ap-
plied during mixing, ¢) knowledge soundness of (Pg:))k;tk*s d)
zero-knowledgeness of proofs of shuffle for k = k*, e) zero-
(k)

knowledgeness of p. ’, and f) correctness of threshold decryp-

; th
tion protocol Et,.TDec.

In Eq, (bsﬁ.k), b(’,](.k),b;;k))kik* are obtained by extracting them

(k) (k) (k)

frOm (prJ’ prj’ pbrj

) respectively and r ;) is obtained by

(k*) (k") (k")

b, * Poc, » Por,) and

Pe, sPe, aresimulated. Eqg is indistinguishable from Eg by a)
io Tiy

extracting them from p,_ . Proofs (p
z(j

verification of correct construction of (eg, €c, €;) from (S, ¢, 7),
b) knowledge soundness of the proofs of shuffle that prove that
each My shuffled encrypted signatures in this phase correctly
using k) applied during mixing, ¢) knowledge soundness of

(P;(,’;),’ pl(j;) pl(j:)), d) zero-knowledgeness of proofs of shuffle for
J J J

(k) (k")
be; ’pbrj and pfrio’peril’

and f) correctness of threshold decryption protocols EtEhG .TDec

and EH;.TDec.
- In Ej3, the correctness of blinded signatures is ensured through
the additional verification that signatures 0;. for each j € J are

k = k*, e) zero-knowledgeness of p

valid BB signatures on ¢’; and are invalid signatures for j ¢ J.

In E14, the correctness of blinded signatures is ensured through
the additional verification that quasi-signatures (S;, ¢;, 7;) for
each i € I are valid BBS+ quasi signatures using commitment y;

In Eo, (bgk))k+k+ are obtained by extracting them from (pgc) Vietk*-

254

Agrawal et al.

and invalid for i ¢ I. Note that correctness of quasi-signatures
implies correctness of full BBS+ signatures for i € {io, i1} be-
cause encryptions €y, are generated by honest senders. Fur-

ther, in this case, (éék), 1) (k), 52(k))k¢k* are obtained by extracting
(5ék) from proofs of knowledge of the opening of (3§k))k¢k* and
computing (51(k), (52(k))k¢k* using the Mult algorithm on inputs
k k k k . k k

(5(()), bSJ(-)) and (55)’bC§')) respectively, where bSJ(-), bcj.)=

k
(b
quires Beaver triples held by (M})k« which are provided by

the ideal functionality for the MPC protocol for Beaver triple
generation).

mod q) are the ones obtained in Ejo (note that this re-

D PRIVACY RISK ANALYSIS OF
TRACEIN/TRACEOUT QUERIES

In this section, we provide formal rules to analyse the privacy risk
impact of allowing a given set of Traceln/TraceOut queries to a
querier in an application. Since the goal of the analysis is to apriori
decide whether to allow the queries or not, we assume that we
only have query inputs and not their outputs. Further, we assume
that no query’s input depends on other queries’ outputs. Given
this, we adopt a static analysis approach where we conservatively
estimate the information potentially leaked by the queries. If the
actual information leaked by a query depends on its output, we con-
servatively assume that the query potentially leaks the information
corresponding to both the outputs.

Consider a mixnet with input ciphertexts (¢;);e[] and output
plaintexts (v;) je[n]- Let Q denote the set of proposed allowed
queries containing elements of the form (Traceln, i, J) and (TraceOut,
I, j) fori, j € [n] and I,] C [n] representing the Traceln(i, J) and
TraceOut(l, j) queries respectively (BTraceln/BTraceOut queries
can be compiled to this format). Let K(i, J) denote the fact that the
querier potentially knows that ciphertext ¢; encrypts a plaintext
in set v}. Let K(I, j) (with an index set as the first argument and
an index as the second argument) denote the fact that the querier
potentially knows that plaintext o, is encrypted in some ciphertext
in set c;. We therefore have the following rules:

RO.1: Vi € [n] : K(i, [n]).

RO0.2:Vj € [n] : K([n], j).

R1.1: Vi € [n],]J C [n] : (Traceln,i,J) € Q = K(i,]) A

K(i, [n] \).

- R1.2:Vj € [n],I € [n] : (TraceOut, L, j) € Q = K(I,j) A

K([n]\ L, j).

R2.1:Vi€ [n],].]

II

[n] : K(L,J) AK(L,J) = K(@iJNJ).
[n] : K, j) AK(I',j) = K(INT,j).
Jc[nl:KGDAKILHANIgINjeE] =

]’] g
R2.2:Vj e [n],LI' C

- R3.1:Vi, j € [n],
K@@ J\A{jD-
R3.2:Vi,je [n],LJC [n] : K(L)AK(Lj)rhielINjg] =
KT\ Ai},).

Rules R0.1 and R0.2 encode the fact that the querier initially
knows that each input ciphertext encrypts a plaintext in the output
list and each output plaintext is encrypted in a ciphertext in the
input list. R1.1 (symmetrically R1.2) encodes that a Traceln(i, J)
query leads to either the querier learning that c; encrypts a plaintext
in v} (if the query passed) or that ¢; encrypts a plaintext in v'[n]\ 7

Traceable mixnets

(if the query failed). Thus, potentially, the querier may learn both.

R2.1 (symmetrically R2.2) encodes that if the querier knows that ¢;
encrypts a value in v} and in v}, then it knows that ¢; encrypts a
value in u} NG R3.1 (symmetrically R3.2) encodes that if the querier
knows that ¢; encrypts a value in o’ but there exists a j € J that is
known to be encrypted in a ciphertext in a set I that does not include
i, then it knows that ¢; cannot encrypt v;. because of distinctness
of encrypted values.

Given these rules, the goal of our analysis is to output a) for
each i € [n], the smallest set Jiin, such that K(i, Jimin,) holds; and
b) for each j € [n], the smallest set Iyin; such that K(Iyin;, i)
holds. Note that if for some i, no Traceln(i, J) query exists in Q
then Jinin, = [n] (similarly for Iminj)~ The Jmin, Imin outputs tell

exactly what information is potentially leaked by the queries in Q.

This information can directly feed to the application-level security
analysis. Since each implication rule monotonically decreases the
size of either the J set for K(i, J) or the I set for K(I, j), Jmin, and
Imin, can both be obtained in finite time for a finite set Q using a
fixed-point algorithm.

255

Proceedings on Privacy Enhancing Technologies 2024(2)

Proceedings on Privacy Enhancing Technologies 2024(2)

Ev (14, k*, i, i1, b)

Agrawal et al.

// Keygen:
E: pk*) sk(k") E Keygen(11)
P
Eo A: PkEGaSkl(;c.) Eg‘G.Keygen(lA, (Mkﬂ)k#k*)
E o A: pkp,, sk(D Eg;.Keygen(lA, (Mkﬂ)k;tk*)
E— A pk®), PkEG’ Pkpa
A—E (pk®)ppe
A > E: 00,01, (Ci)ie[n]\{inir}
E: if (b = 0) then (v;,,v;,) = (vo, v1) else (v, v;,) = (v1,00)
/! Enc calls forig, iy:
E: for i € {ip,i1}:
— E;};.Enc(pkpa,u,)
g Pa R
ri —Zgy; — gllhr’ ‘pyl — NIZKPK{((v;, 1)) : y; =
Eth Enc(pkp,, r,) 777777777777777777777
(o)) Sharemm (@) (r,?"%qm] Sharepm(ri)
k
(ev <k)>ke[m] — (EEnc(pk®), o])>k eim]
()ke[m] - IEE EnC(Pk(k)))ke[]
E— A: = (Ez,y,-, (eV§)ke[m]:Pyi»Eri)
endfor
// Mix:
E: 7k & Perm(n)
A—E e® D=)
E: ek Eth REnc(pkp,, ek l>)
. k) (k*) (k*
E- A) (e i)y €y ()
A—>E €
A E: forje[n]:v] — E;Z.TDec(e},sk}(,];), (Mkﬂ)k#k*)

fori e [n]:
vgk) E.Dec(sk(k*),evgk)); rl(k)
// OTraceln call:

— E.Dec(sk(k*), erl(k*))

A — E: OTraceln(l,])
E: assert g € v} = v € u}
A — E: y,0’, €, // DB-SM call (repeat for [n] \ J)
A—E €%/ shuffling
EadA: e®) — (Egg;,REnc(pkEG,ea<(m L Dietn
A —>E €5
E: b)) & Zg // homomorphic blinding
E— A &F) — Eth REnc(pkeg, et
~(k

A—E (& ’)k% .
E: éa < &8 E P e
E o A: Eth TDec(e"’Skl(EG (Mﬂ)k¢k) threshold decryption
E: for i€ I stage 2

~ k* k* k*
Eo A DPK((y;60y) s, (@ \r) b)), (M) @)

with pgg, = (y; = 93" h]* A e(51.y) = e(g1,92)P (51, 92))

E: endfor

// OTraceOut call:

A — E:

E:

A — E:

E:

A — E:
E— A:

E— A:
E— A:
A — E:

E:

E— A:

A — E:

E o A:

531

E— A:
A — E:

Eo A:

OTraceOut(I, J)
assertcj, €c; < ¢, €cy
Y, (S,c,F), (€s, €c, €;) // DB-RSM call (repeat for [n] \ I)
€ — €p€r
es'K 1) Jec kD) g (k=1
S(k

shuffling
h (k*-1)
— (EfR; .REnc(pkeg, ESzjk*)(i)))ie[n]
e — (Eth REnc(pkp,, ecjr(k:)l()i)))ie[n]
" k-
&) — (E!R REnc(pkp,, erfr(kql()i)))ie[n]

eS, ec, err
(b(k) b(k) 4— (Z" X Z" Zg) homomorphic blinding
ng) (k) S Zn

k) (k) (K b
ek, ek el >) — (E Enc(pkec.9,°).

k* k* k*
Eth. EHC(pkpa, b)+qx£), E Enc(pkp,. b + qx)

k k k
(el(;s)’ () ())k "
e® ¢ (k)

(&', & &) — (es” 1 , €€ M)
e celm) ‘bs ke[m] be’™ keim) “br

§ <—E - TDec(és’, skF(s (Mi)kske) // threshold decryption
th TDec(&’, sk L Mk

P e E"‘ TDec(&,sk&) (M)ears)

& e modq,r — 7 modq

by —e(hy, 2) " b2 —e(g, o)~
forjeJ:

5 & 7, (5<k>5

L B3 « fr // stage 2
)y (Mu]t(b(k) b)) Mult(8). b))
N (k%)

3fkk) ‘_bZSJ bgso

(Eap B)

~ C'. U r
31— ierm) 3332 — e ufy) /e(fig, by fo)
a1 — e(3). f2): g2 — e(gryfy)
DPK((81, 82, b1, b2, 93,31, 32). pBBS+>5
(k) (k) (k) (&) (k) s(k)y pen
(b5, 5. 59,609, 6), (MPsic @7

ith — — bs; 8 — ~be; 5,5,
with peps+; == (31 =D, "b5" Alg, =3, by'h3*A
be, 'bs; br, s
32=9; 78, b ’b,")
endfor

Figure 13: E: The original Expye ..., €xperiment instantiated for our construction.

256

Traceable mixnets

Ey (14, k*,ig, i1, b)

Proceedings on Privacy Enhancing Technologies 2024(2)

// Keygen:
E: pk) sk(K) — E Keygen(1%)
E o A pk ,sk(E) gth Keygen(14, (M) 1)
EG EG EG k Tk
Ee A pkpa,sk(D EEZ.Keygen(lA, (M}f{)k#k*)
E— A: pk®), pkeg, pkpy
A—E (pk®)pe
A — E: 09,01, (€i)ie[n]\ {ioir}
E: if (b = 0) then (v;,,v;,) = (vo, 1) else (v, v;,) = (v1,00)
// Enc calls for iy, i1:
E: for i € {ip,i1}:
— Eth Enc(pkp,, vi)
ri iZq Yz < g7'h1s | py; — Slizeek ()
e PEncpkegr) :
3 (U)ke[m] « Sharem,m(0:); (r)ke[m] « Sharep, m(rz)
(e))ke[m] — (E.Enc(pk®, U(E)))k e[m]
(er;eetm) — (EEnc(pk®,r))ecim)
E— A: ci = (€,y; (ev(k),ergk))kelm],pyi, €r;)
endfor
// Mix:
E: k) <i Perm(n)
A—E kD .= (G(k 1))ze[n]
E: e — Eth REnc(pkp,, e*"~1)
Eo A) (633’(1)’ it ()
A—E: €
A E: for e [n]: 0} — Ef TDec(e,skir), (M)skr)

fori € [n]:
v}k) E.Dec(sk(k»),evl{k));
// OTraceln call:

rfk*) — E.Dec(sk(k*),ergkq)

A — E: OTraceln(1,])
E: assert g € v} = v € v}
A — E: y,0’, €. // DB-SM call (repeat for [n] \ J)
A—-E e ® D)/ shuffling
. k* th (k™+
Eo A ek) (ELG-REnc(pkeg, €5 i 1(})))15[,,]
A—>E: €5
E: k) & Zg // homomorphic blinding
E— A: ”((,kx) — E"h G -REnc(pkgg, egtk))
Ak (W) Y
E: & — & € e .
Eo A 0« EEI};.TDeC(é(y, Skgé), (Mg{)k#k*) threshold decryption

E: fori e I:// stage 2

Eo A DPK(y;619).pes,. 0 (™ bE)), MP)ar, @7)
with pap, := (y; = g;'h}* Ae(61,y) = e(g1,92)%e(51,92)7%")
E: endfor

// OTraceOut call:

A — E:

E:

A — E:

E:

A — E:
E— A:

E— A:
E— A:
A — E:

E:

E— A:

A — E:

E o A:

=21

E— A:
A — E:

E o A:

OTraceOut(I,])

assertcj, Ec; < ¢j, €cy
vy, (S,c,F), (€s, €c, €;-) // DB-RSM call (repeat for [n] \ I)
€r — €4€r

esK=D g (K'=1) ¢ (K-1)

k*—

esK) (EEIE.REHC(PkEG,esj(z(k*)l()i)))ie[n]
e k) (Eg‘a.REnc(kaa, €

shuffling

iy Dictn]
e &) (B REnc(pkpg. e '\ Diciny

es’ ec’, e’

(bgk*)’b(ckv,b(rk*)) <i (Z[’; X Z['; X Z;‘) homomorphic blinding
ng*) (k*) S 7zn

(k) (% b
(el ek elk)) (Eth. Enc(pkso,gﬁ).
k* k* k*
Eth. Enc(pkpa, ()+qx()) E Enc(pkpa,b(r)+qx£)))
(e e)
bS’ k#k*

(Es,ec,Er)<—(€s

11 &R e’ 11 1(7’;) ﬂ (k))
ke[m] ke[m] ke[m

.§ <—E TDec(és Sklz s Mpkzk)

Eth TDec(ér’, k% (Mp)ears)

e Eth TDec(&’, skPa) (MOkers)

threshold dCL ryption

¢ cmodq,r «— 7”mod q
b1 — e(h1, o) i b2 — e(g1, o) ' b3 — fr // stage 2
for jeJ:

k) $ k* k* k* k* k* k*
8 & 745 (5%, 6))<—(Mult(b(sj L b Mult(s(5) b))
n bs*) 5 (k)
I
(EpYe) o

~ c’ o, ¥,
31— Miepm 3132 — eSlouf, N /e(fig) by f)

[6(5},f2); g2 — 6(91,yfzcj)
DPK((81, 92, 91, b2, b3, 31, 32), pBBS+)>

k) (k) 5 (k) (k) (k) s(k
B¢ b8 b1 50,69, 619), (M, @7

ith — _pbsics _ L he 806,
with pgps+; == 31 =D, "b3" Alg, =3, "Dy hgA
bc; bs; br;_s
32=9,’6,7b,’D,")
endfor

Figure 14: Ez: Simulating p,, io and Py; -

257

Proceedings on Privacy Enhancing Technologies 2024(2)

Es(14, k*, g, i1, b)

Agrawal et al.

// Keygen:

E:

E e A:
E o A:
E— A:
A — E:
A —> E:
E.

pk) sk(K) — E Keygen(1%)

k* 5
pkeg Sk(éc)) — E; Keygen(14, (M) i)
pkpz,sk — EEZ.Keygen(lA, (M}f{)k#k*)
pk!):PkEG»kaa
(Pk ™) jege

00,91, (€i)ien]\ {ip.ir }
if (b = 0) then (v;,,v;,) = (vo, 1) else (v, v;,) = (v1,00)

// Enc calls for iy, i1:

E:

E— A:

// Mix:

A — E:

E— A:
A — E:
A < E:

for i € {ip, i1}:
— Eth Enc(pkp,, vi)

$
Yi ‘_Zq Yi = 9y'h" py = Sz (v)
€r; < Eth EnC(PkPas ri)

k k
(”f))k¢k*"‘())k¢k* —Zq

K k). (k k
o) Co— 3 oM) Lyl y B

k#k* k#k

(ev(:))ke[m] « (E.Enc(pk(k), U(:)))ke[m]
(er ety = (EEnc(pk®. e imy

k k
ci=(eny; (evg),erf >)ke[m]vpyi:er,~)
endfor

pAL) & Perm(n)

D = (V)

ek E“’l REnc(pkp,, €K"~1)
K (k) (k)

ek (e <k‘)(1)""’en‘k*)(n))

for j € [n]: 0} — ER TDec(e, sk(k) MV

// OTraceln call

A — E:
E:
A — E:
A — E:
E— A:
A — E:
E:
E— A:
A —> E:
E:
E o A:
E:
E o A:

E:

OTraceln(I,])

assert g € u} = v € v}

y,0’, €. // DB-SM call (repeat for [n] \ J)
e *D // shuffling

¢ (Bl REnc(pkeq. €01l "y Djein)
€o
(k) «i Z" homomorphic blinding
~((,k) HEth .REnc(pkgg, o b())

k
(&)M« .
&g — e @y
G — Eth .TDec(ég, sk G (M‘ﬂ)k;tk) threshold decryption
forie I stage 2

~ k* k* k*
DPK((y;. 31, 9). pes,- (0 r) b)), (MP) . @)
with pgg, = (y; = 91" h]* A e(51.y) = e(g1,92)7 (51, 92)™77)

endfor

// OTraceOut call:

A — E: OTraceOut(l,))

E: assertc;, €c; < c;, €cy

A — E: y,(ScF),(€s, €c, €) // DB-RSM call (repeat for [n] \ I)
E: € — €j€r

A — E: es(k -1 , €c (k*=1) , €r (k*=1) shuffling
k-
Eo A esK) (ES‘G.REnc(pkEG,esi(k*)l()i)))ie[n]
. (A
Eo A ek« (Eg;-REnc(kaa! eCfr(k*)l()i)))iE["]
. K h (k*-1)
E— A &*) — (E REnc(pkp,, Er”(k*)(»))ie[n]
A—>E e’ e, e’
E: (bgk*),b(ck”,b(rk*)) & (Z§ x 2§ x Zg) // homomorphic blinding
ng) (k) & zn
(k) (k) (k*) th by
E->A: (ep57.€,. ") — (Egg Enc(pkEG,g1),
k* k* k*
%‘1 E:c(plzpa, b 4), Eth Enc(pkp, X +qx¥))
A — E: I(>S’ (k) ())kk
E: (&', éc",&") — (es” T1 el(j;)aec, 1(7’;) n (k))
ke[m] ke[m] kelm
Eo A: 5 — E G- TDec(és’, sklz s (My)kgk+) // threshold dcu}pnon
E'“ TDec(é' sky,) M)
7’ <—Et" .TDec(&,’, sk (Mk)k;tk*)
E: ¢ cmodq,r — 7 modq
E: b1 e(h, 2) 71 b2« e(gr, fo) s b3 fr // stage 2

E: for jeJ:
* $ * * - &
53 < 2g (60.8) — (Mutd) b, Mute(s*

. bk *
E—- A: 3l(kk) — bZS/ bg" !
A=E G e B o
~ e o, "
E: 31— Miepm 3132 — eSlouf, N /e(fig) by f)
a1 — e)i g2 — egryfy”)
Eo A DPK((g1,92 b1, 2, 93,31, 32). PBBS+»
k) (k) 5 (k) (k) (k) s(k
5§95 b1 55,619, 61, M) sre @7
: — _ bs/’ o _ _bcj 511,02
with pgps+; == 31 =D, "b;" Algy =3, "Dy hyA
be, bs, b,
32=0,79,79,"755)
E: endfor

Figure 15: E3: Send random values as shares to (M)i+

258

-
" b))

Traceable mixnets Proceedings on Privacy Enhancing Technologies 2024(2)

E4(1M K%, dg, i1,) :

/! Keygen:
E: pk(k*),sk(k*) — EKeygen(IA) /! OTraceOut call:
Eo A: pkEG,skélg) — EtEhGAKeygen(l/l, (Mkﬂ)k#k*) A — E: OTraceOut(L, J)
X (k%) th A A E: assertcj, €c; < c¢j, €cy
Eo A: kaziSkpa - Epa.Keygen(l ’(Mk Jkzk*) A —E y (Sec i“) (es €c, €;-) // DB-RSM call (repeat for [n] \ I)
E— A: pk(k),ka_G, pkpa E: € —
:;_) ? (pk)()ki)k* A—->E e 1) , €c (k D, &* =1 // shuffling
= & 00,01 (Cidig[n]\ {io.ir } . (k th (k*=1) \y.
E: if (b = 0) then (v;,,v;,) := (vo,v1) else (viy, vi,) = (v1,00) E=A: e < (EEG'REnC(pkEG’eSzr"")(i)))’e["]
0> Uiy 0> Uiy . (k-1)
// Enc calls for iy, iy: E-o A eF) (Eth REnc(pkp,, ec ,‘* (,)))ig[n]
E: for i € {ip,i1}:

E5 A)« (Eth REnc(pkp,, er X))ze[n]

A—>E e e &’

NIZKPK(Y ;) E: (b(k‘) b<k*) b(k*)) ﬁ (Zg X Zg X Zg) homomorphic blinding
ng) (k) ‘_ Zn

: EE,I"a.Enc(pkpa, v;)
ri —Zgy; <—g;’h ipy; < S
€r; < Eth EnC(Pkpa,r,)

(k
(v))k¢k* ())kik(<_Zq

ke £ k (k)
Ulg ><_u Zv, <) i er Eo A (l(j;)’ Zl;))<_(Em Enc(pkmgf),
ekt th B 4 oK)y pth B 4 gy ()
(ev)ke[m] — (EEnc(pk®, 0¥))ke[m] Ep E"c(kaa’ +qxe) EpEnc(pkp,, by’ +qxy)
{o (k) k) A — E: (e(k),e(k) (k))k K
(er; ie[m] P(IEE.En(Ck()pk 1 Nkerm) bs (0, ® ®
. e (e E: ,€c’y s s
E— A: enc(‘i,f; (e, y; (ev; ' er; ieim]s Py €r:) (~es &' &") « (es’ kel;[] €bs kel;[m] €pe €r kEI[Tm] €pr)
J/ Mix: EoA: § < E G- TDec(és X (Mk)kik*) threshold decryption
E 25 & permi(n) Eth TDec(é, sk(*)),(Mk)kgtk*)
: _ K= P e E”‘ TDec(&,sky. |, (Mi)ksks)
A= B EEIZ)U —t(he(! Jicin] (k*=1) E: ¢ e modq,r Lr "mod q i
E IORN i E: b1 e(hn,) 15y — e(gn fo) 15 b e fir I/ stage 2
E— A: — (e “‘*)(1) E”(kﬂ(")) E: for j €]
’
A—E: e ; s & 7, (5(“ 5"y = (Muttbg b), Mutt(sg) b))
Ao E forj e [n]: o) — Efi TDec(e, skpr |, (M7)isk) . -
E— A: afk) — bzsj b;s"

Geto®), <k*> k)

lo 11

) from the Enc calls for i,
Ty rom the Enc calls for i, i1 A E (31(k))k¢k*

[for i € [n] \ {io,ir}:]! E: 31— ierm) 3332 — e ufy) /e(fig, by fo)

L B ~ -
T &) (k). (k) (k) oK) a1 — e(S},)i 92 — eg1.ufy”)
l v;" * « EDec(sk'™), ev;”);r;” © E.Dec(sk e") ‘ Eeo A DPK((81, 92, b1, b2, b3, 31, 32), pBS+)»
77777777777777777777777777777777777777 k k k k k k
// OTraceln cull (béj)rb(cj)rbg',)r‘sé)’51< >)5é)), (M}Cﬂ)kﬂc*saﬂ)
A — E: OTraceln(L,)) ith (3 = BB A1 =2 POt n
E: assert vy € v} = v €V, W pBBcsfj =G ;)2 bs or =3 b;hs
— J J J 1
A — E: y,0’ €, // DB-SM call (repeat for [n] \ J) 32=0; 78, 'b byY)

A—>E eg® D /) shuffling E: endfor

. K th (k*
E—A: ek (EEG.REnc(pkEG,ea (k*)‘ U)))jE[HJ
A—>E €4
E: bk & Zg // homomorphic blinding
E— A: E((,k*) — Egh.REnc(pkEG,eg(k))

~(k

A= B @
E: &5 — €8s X
Eo A 6« Eg&.TDec(ég, Skgé), (M]f‘)kik*) threshold decryption
E: fori e I:// stage 2

k*) k* 9
Eo A DPK(yn60y). s, (0) r) b)), (M), @7

with pgg, = (y; = g;"h]" A e("’i:y) = e(g1,92)Pe(61,92)7%)
E: endfor

Figure 16: E4: Do not use sk(K) for decrypting evgk*), erfk*) fori € {ig,i1}-

259

Proceedings on Privacy Enhancing Technologies 2024(2) Agrawal et al.

Es(14, k*, g, i1, b)

// Keygen:
E: pk) sk(K) — E Keygen(1%) // OTraceOut call:
E o A: pkEGaSkélg) EtE%.Keygen(ll, (M,;f')k,.tk*) Eﬂ — E: OTraceOut(I,])
. (k%) th 2 A : assertcj, Ec; < ¢j, €cy
Eo A: Pkfz:;‘k — Ep) Keygen(1%, (M) k) A > E: y,(Sct),(€s, e €;) // DB-RSM call (repeat for [n] \ I)
E— A pk . , Pkegs Pkpa E: €r — €€
A E (pkl))k?tk‘ A—E es® D k=D ¢ (K"-1) /) shuffling
A — E: 09,01, (€i)ien]\ {ioir} .) th (k*-1) |
E: if (b = 0) then (v;,,;,) := (vo, v1) else (vj,,v;,) := (v1,00) E- A e/« (EEG-RE"C(PkEc,esﬂik*)m)),e[n]
// Enc calls for iy, iy: E— A eF) — (Eh REnc(pkp,, Ec,(,lfk?f()i))),-e[n]
E: for i € {ip,i1}: . K h (k*-1)
— Eth Enc(pkp,, vi) E- A &) e (Epy-REnc(pkp,, er”(k*)(i)))ie[n]
; PKpa> Vi A—E e’ e, e’
ri «—7Z, — h i — S . . *
! - gthyénc(gll(i)Pyl N[ZKPK(Y) E: (bgk),b(ck >,b(rk)) <i (Z['; X Z;‘ X Z;‘) homomorphic blinding
€r; Pa> ; (k*) (k*) $ n
@ st st < Z4 Xe -z
ey ®,) () k) (k) (K b
Ui < oi _k;%c* v; ki’ r; E—>A: (e és , l(7c), ()) — (Eth Enc(pkEG,glS),
—————————————————————————— B! Eth Enc(pko., (D ray®) E " Enc(pk DU 4 g KD
Vet = (EEnc(pk®), o) i | it (pk”a e) (Plpacbr)
g ke[m] ke[m]+ A—E (e () ())k o
__________________________ P
k k k
(er())ke[m] — (E Enc(pk®), r()))kE[m] | E: (65 €, &) — (es’ k];]]El(,s),ec'k];]] l(w) kl;[el))
b (7(5 77777777777) e[m e e
E—-A: f:llf'_ (eiy; (ev Jke[m]> Py €r:) EodA: § < E G- TDec(és’, sklz , (My)ksk+) // threshold decryption
// Mix: e E“‘ TDec(&, sk) (Mk)kik*)
E: 2k & Perm(n) P Eth TDeC(€r Sk (Mk)k;tk*)
A b kD (e(k) E: ¢ mod ({,lr — 7 mod '171 ‘
SR 0 i€[n] ket E: b1 —e(h, f2) 75 b2 — e(g1, f2) s b3 « fr // stage 2
E: € —Ep R)Enc(pkp (e)) E: for jeJ:
ek (el o k) 8 k) sk k) 5 (K k) o (k
Eodt et (€ i) (12 €2 (my) 53 < 2g (60.817) = (Muitbg bE), Mute(eg) b))
A—>E: € - - bs;k*) PN
A E: forje [n]:v) « Etg TDec(e} sk() (le{)k#*) E— A: 31(k) b, b3
Get z)(k), l(k), ,(k T ,(lk) from the Enc calls for ip, i1 A= E: (31 Ve ® . o
fori € [n] \ {io,i1}: E: 31 kepm) 31 332 < €S ufy ") /e(figy " hy's f2)
~ &’
(k) (k) , . a1 < e(S}, f2): 62 — e(91.4f, ")
o G;t v; ',r;" 7 from A’s random tape and input for sender S; o A DPK((gl,]gz,fn, b2, b5, 30, 32),25554,1.,
raceln call: (k) (k) ¢ (k) o(k) (k) o(k) A A
A — E: OTraceln(1,]) (bs]- ’bcj ’brj >0y ’(Slb 26, 7), (Mk)k;_tl;;»Q‘)
E: assert o) €), = 01 €0} with pepss; = (31 =9, "D Alg, =3, BIDA
A — E: y,0’, €, // DB-SM call (repeat for [n] \ J) 3= qbcz qbs.ibb'; f)él)
A — E: (k*+1) 1/ shuffling 2781 9 h %
: €o shuttling ** E: endfor
Eo A k) (EEhGREnc(pkEG,EU (k” 1()))]e[,,]
A —>E: €5
E:) i Z" homomorphic hlinding‘
E—o A &*) E“‘ REnc(pkeg, e2”)
AE E g
E: €5 — e((,)(éf:r))k#c‘ N
Eo A o6« EEG.TDec(ég, ské’é >, (M,‘(ﬂ)k#kA) threshold decryption
E: forieI:// stage 2
- k* k* k*
Eo A DPK((y;60y) s, @ \r) b)), (M) @)
with pgp, = (y; = V'h}" A e(61,y) = e(g1,92) P e(51, g2) ™)
E: endfor

Figure 17: Es: Do not use sk for decrypting evgk*), ergk*) for i € [n]\ {io,i1}-

260

Traceable mixnets

Es (14, k", i, i1, b) :

Proceedings on Privacy Enhancing Technologies 2024(2)

/] Keygen:

E:

Ee A:
E o A:
E— A:
A — E:
A — E:
E:

pk(k*),sk(k*) — E.Keygen(l’\)

P
PkEG’Sk(ékg)) — Eth Keygen(1%, (M)
kaZ;SkPa — Eg‘a.Keygen(l’\, (Mi?)k¢k*)
pk"), pkeg, pkpg
(Pk®) g

00,01, (€i)ie[n]\ {ip,i}
if (b = 0) then (v;,,v;,) := (vo,v1) else (vj,,v;,) = (v1,00)

/! Enc calls for i, iy:

E:

E— A:

/I Mix:

A — E:

E— A:
A — E:
A e E:

for i € {ip,i1}:
: E%,];4Enc(pkpa, v;)
ri —Zgy; <—g1 h pyl<—S

x Nizicpk (¥1)
€r; Et EnC(PkPaa rz)

k
(v }(c))kik* rik))k;tk* —Zq
vlg)<—v 2 v) (k) -2 r
k#k* k#k*
(ev')sre — (EEnc(pk®), 0! >))k#k*;ev§"*) — E.Enc(pk®, 0) ‘
(e f Vezke — (E. Enc(pk(k),rgk)))k;tk*;ergk*) — E.Enc(pk®), 0) ‘
k k
ci = (€ny; (ev()’ r;))ke[m]spyi, €r;)
endfor

&) ﬁ Perm(n)

ek -1 = (6<k)ze[n]

e Eth REnc(pkp,, e®"~1)
?k*))

(k")
€ — (e e”(k*)(n)

‘forj € [n]: 0} « Eth TDec(e7, sk

Get ol Qflk’), 9 ftr;r;lit};eilgnicic;llisifgriz(; i1

for i e [n] \ {io, i1}:

Get v(k), fk*) from A’s random tape and input for sender S;

/| OTraceln call:

A — E:
E:
A — E:
A — E:
E— A:
A — E:
E:
E— A:
A — E:
E:
Eo A:
E:
Eeo A:

OTraceln(I, J)
assert vy € v, = v €0/,

y, o', €. // DB-SM call (repeat for [n] \ J)
e, (K +D)

oK) — (EE]"G.REnc(pkEG, eg<

shuffling

(,(*, 1()))]E[n]
€0

p*") & Zg // homomorphic blinding

) Eth REnc(pkeg, et

(&6 s

ea — e(7)(e())k K

for i€ I stage 2
~ k* k* k* 9
DPK((y; 61.9). pes,» (0)", by)>,(Mf'>k¢k*,aﬂ>
with pgg, = (y; = ’hl” Ae(5iy) = e(g1.92)bie(51.92))
endfor

Figure 18: E¢: Replace evl(k*)

261

// OTraceOut call:

A — E:

E:

A — E:

E:

A — E:
E— A:

E— A:
E— A:
A — E:

E:

E— A:

A — E:

E e A:

o

E— A:
A — E:

E e A:

OTraceOut(I,))

assertcj, Ec; < ¢j, €cy
vy, (S,c,F), (€s, €c, €;-) // DB-RSM call (repeat for [n] \ I)
€r — €4€r

esK=D g (k=1 g (K1)

k-
esK) (EEIE.REHC(PkEG,esj(z(k*)l()i)))ie[n]

shuffling

) — (Eh REnc(pkp,, chj;:)l()i)))ie[n]
&) (E:,Z.REnc(kaa, Ersz:)]()i)))ie[n]

es’ e’ &’

(bgk*),b(ck”,b(rk*)) & (Z§ x 2§ X Zg) // homomorphic blinding
ng*) (k*) S o

(k™)

k*) (K k* b
(el ek elk)) (Eth. Enc(pkso,gﬁ v ‘
Et}| Enc(pkpa, ()+qx(k)) E Enc(pkpa,b(rk)+qx£k)))
(e e 0)
€ps € k#k*
(Es,ec,t?r)<—(€s M el T ele n)
ke[m] ke[m] ke[m
Pomm oo S
S HEth .TDec(és’, sk (Mk)k¢k*)w threshold dccryplion
187 — Eth TDec(éc, ki), (Mpisre) |

\;'// — Eth TDec(&’,s pa »(Mk)k:tk) K

c — ¢”mod ¢; ¥/ «— ¥""mod q

b1 — e(hi, o) b2 — e(g1, f2) "L b3 « fr // stage 2
for j €]
5(k) <— Zq
(5“) sk)) - (Mult(b(k L bED), Mult(s(*), b))
((k%)
i) <y, B
G ke

31— er[mJ 3! R), 35 e(S],yf2)/e(ﬁgl’h 7)

g1 < e(S f2); 82 < e(g1, yfz

DPKIS(gl,Igz, bl};bZ 1)13,31,22) PI?BSJrj,
(bgj{bgj),b(rj),gé 0,55, 50, (MP)i, @)

. bs; s, =be; 5.5,
with ppgs+; = (31 =9, 'b3° Algr =3, 'D;'D3°A
be; bs; br; s
32=6, '8, 'b; 'by")
endfor

, ergk) fori e {io, i1} by encryptions of zeros.

Proceedings on Privacy Enhancing Technologies 2024(2) Agrawal et al.

E7(1/1, k*,io,i1,b) :

/] Keygen:
E: pk<k*),sk(k*) — E.Keygen(1%) /| OTraceOut call:
Eo 4A: pkEG’Sk}(glg) - Eg&.Keygen(l)L, (Ml?)k¢k*) A — E: OTraceOut(l,))
.) th 2 A E: assertcj, €c; & ¢; €cy
Eo A: pkl(’];::)Skpa — Ep)-Keygen(1 ’(Mk Je#k*) A —E y (Sec i“) (€s, €c, €7) // DB-RSM call (repeat for [n] \ I)
E—> A pk s pkeg, Pkpa E: € — €p€r
ﬁ_’? (pk ()k?;k* A—->E e 1) e D =1/ shuffling
— £ 00,01, (Ci)ie[n]\ {ip.ir} . <k th (k*=1) yy.
E: if (b =0) then (v;),v;,) == (vo,01) else (v, ;) := (v1,00) Em A et e (EEG'REnC(pkEG’ eSﬂjk"(i)))'e["]
// Enc calls for iy, i1 : E-o A eF) (Eth REnc(pkp,, Gc(k,‘:l())))ie[n]
E: for i € {ip, i1}: k*) th
E— A: Ep -RE k)
« Eg;Enc(PkPa,Ui) - &) (ne(pkpa, Er))le[n]

o) A—>E e’ e’ &’
Nizkpk Vi E: (b(k‘) b<k*) b(k*)) & (Z§ x Z§ x Z) // homomorphic blinding
ng) (k) 8 z,

ri iZq Vi <—g1 h pyl<—S
€, — Eth Enc(pkpa, r,)

(z(’;(]f)))kik*’ri)k;tk(‘k)‘_ %?*) e

P k%ﬁ v, kz}c r E— A: (el(j;), €l<;]z~),) — (Elh .Enc(pkeg, gl), .

(ev(Vi — (E. Enc(pk (k)))k P ev(k*) — E. Enc(pk ,0) Eth Enc(pkp (k : +qu?k))’ Eth Enc(pkp,, by by qx(rk)))

b . (k) (k) (k)
(er())k¢k* — (E Enc(pk(k) r;)));#k er() E. Enc(pk®),0) A—E (e.€, 2 Viezke
E— A: l= (0,7, (ev! (k) o) Py €r) E: (&', €., &) — (es” TI ;)1;), e’ I E;,k),fr’ I1 Ei,k))
endfor e ’ l kelml-Pyi € ke[m] ke[m] °¢ ke[m] 7"
/I Mix: E: § ‘f::m TDec (€s’, sk(k> (sk(k))k#*) threshold decryption
“ $
E: k) & Perm(n)
~ k k
A—E e® D= (e)i & Tk e skpy | (5K i)
E: e —Eth. REnc(ka etk
*) h &’ skl k(k)
E—- A) (5 (k*)(l) efjk*)(n)) 7::’:10“(& +Skpy s (skpy Desk)
. e =
A—E € ______ . Eo A s;'h Tec (PkEG: €578
| ; k) o (R |
E: for j e [nl:0f e Fih (€, skpn), (skpe esre) ! 7 — —
| ! Eufhee 0 T J SE;,';_TDec(kaa &) SE"‘ TDec (PP &7
Ao E |forje[n]:S b TDec(kaa €, v') E: ¢/ — ¢”mod ¢q; 7' — ¥”mod q
) F)) (k) E: b1 — e(hi, 2) 71 bz — e(gr, 2) 71 bs — fr // stage 2
Get o, o Ly from the Enc calls for i, i1 E: for j €]
fori e [n] \ {iop,i1}: 5(1<) (_ 7,
Get vfk),rfk) from A’s random tape and input for sender S; (5(k) 5(k)) - (Mult(b(k) b(k)) Mult(5<k) b(k)))
// OTraceln call: B .
A > E: OTraceIn(I,]/) , E— A: 35"*) . bzsj bf”
E: assert v € vy & v €] A E: (ﬁik))k;tk*
A — E: y,0’,€, // DB-SM call (repeat for [n] \ J)) Ny
A—E eo®*D // shufiling E: 31— nke[m] 3 ik e(S, yfz)/e(f191 h f2)
E->A: ek (Eg“G.REnc(pkEG,ea((m 5 Njeln) 81 <« e(S L f2); 82« e(g1, yfz
A E: O Eeo A: DPK((81,82, b1, b2, b3, 31, 32), PBBS+>
—E €o s (b(k) bgk) pR) sk) 5(k) 5(k)) M) Q7
* P L SR i i * B
E: pk) & ZZ homomorphic blinding 5 ’ 70 lbs. 25 k —be, 5 &
* * 5 — — J 00 — €j KO1RO2
E— A: é((,k) Eg‘G.REnc(pkEG, eg(k)) with PBI?ESfj = (5:_;)2 b" Algr =3 'hy'bA
A—>E (€90 32=9, "0, 'b, 'byh)
E: &y — &) @y E: endfor
E: o — ‘fém TDec(ea’ sk (sk(k))kik*) threshold decryption
A~ E: Sglh TDec (pkeg, €5, 0)
E: fori e I:// stage 2

Eo A DPK(yy65y).pes,, 0 ri) b)), (M), @7

with pgg, = (y; = g7"h]" A E(Gz,y) =e(g1,92)P e(61,92)7%)
E: endfor

Figure 19: E7: Simulate threshold decryption protocols using ideal decryption oracles.

262

Traceable mixnets

Es (14, k", i, i1, b) :

Proceedings on Privacy Enhancing Technologies 2024(2)

/] Keygen:

E:

Ee A:
E o A:
E— A:
A — E:
A — E:

E:

pk(k*),sk(k*> — E.Keygen(1%)

pkEG,skgg) — Eg“G.Keygen(l’l, (Mf{)kﬁc*)
pkpa, sk'()}:) — E;Z.Keygen(l/l, (Mkﬂ)k;ékx)
pk*). pkeg, pkp,

(P

00,01, (€i)ie[n]\ {iois }
if (b = 0) then (v;,,v;,) := (vo,v1) else (vj,,v;,) = (v1,00)

/! Enc calls for iy, iy:

E:

E— A:

/l Mix:

A — E:

E— A:
A — E:

A o E:

for i € {ip,i1}:
— E},];.Enc(pkpa, v;)

$
ri < Zgy; < 67 h" Py, = Sz (v)
€r; Eth EnC(PkPaa rz)
(k)
(v
(ke

Ui — U

k
etk T r))kﬂc* <—Zk
-3 l) (k)

ik
(ev())k¢k* «— (E.Enc(pk®
(er;));#k* — (E.Enc(pk(k>,ri)))k K ,erg) E.Enc(pk(k),O)
- (k) (k)
ci = (€1, y;, (ev; er;
endfor

s

)ke[m]spyi’ €r,)

) <i Perm(n)
k-1 = (5(k -)ze [n]
ek —gth. REnc(pkp e(k’=1))
k* k"))
k) (e 2 (1) €l)(n))

€

Get ()

Vezk+ using A’s random tape; 7 «— 7™ o 0 (1)

for j € [n]: u} — (Un(j))je[n]

forj € [n] S‘ .TDec
Get v(k) rl0 flk*), r;lk*) from the Enc calls for i, i1
for i E [n]\ {10,11}

Get v(k), ik‘) from A’s random tape and input for sender S;

(Pkpa: €7.))

// OTraceln call:

A — E:

E:

A — E:
A — E:
E— A:

A — E:

E:

E— A:
A — E:

E:
E:

A o E:

E o A:

OTraceln(I, J)
assert vy € v, & v €0/,
y, o', €. // DB-SM call (repeat for [n] \ J)
eo KD shuffling
e) (B REnc(pkeg o'l jetn)
€o
bk & Zy // homomorphic blinding
~(k* (k*)

() Eg};.REnc(pkEc, eg)

(e“‘))k#k»

& —
‘ ?ltz"' .TDec
L e e e o m - - J

SEm TDec (pkeg: €5, 0)
for i €I:// stage 2
. k) (k) (ke
DPK((y;. 31, 9). pes,» (0 r)), (M, @7
with ppg, = (y; = g'h}" A e(51,y) = e(g1,92)i (51, 92))
endfor

k#k*
(k)))k s ev(k) — E.Enc(pk®, 0)

// OTraceOut call:

A — E:

E:

A — E:

E:

A — E:
E— A:

E— A:
E— A:
A — E:

E:

E— A:

A — E:

E o A:

m

E— A:
A — E:

E o A:

OTraceOut(I, J)

assertcj, €c; < ¢, €c|
y, (S, ¢, F), (€s, €c, €;) // DB-RSM call (repeat for [n] \ I)
e, — €p€r

1) Jec kD) g (=1
— (Eth .REnc(pkgg, Esi]?kr)l())))ie[n]
%) — (Eth REnc(pkp,, €c ‘*

shuffling
(k
))te[n]
(k* th

r) (Epa-REnC(PkPa: er”'kv)(i)))ze[n]
ES,, ec,, er’
(b(k*) b(k*) (k*)) 43 (Zg X Zg X Zg) homomorphic blinding
ng) (k) 8 Zn

(K*)

k k (k* b
(k). ek el UH(E"' Enc(pkeg.9;°),

k* k* k*
Eth. EHC(pkpa,b()+qx(c), ER Enc(pkp,. b + qx)

(e<k> 0) o) .
bS”’
(k) (k) ,
(&', & ,€)<—(Es I1 , M e 1 e
e ke“bs ke[]bc 'ke[]br
§ ‘_?;u. “TDec (&', Sk(k) (Sk)k¢k*) threshold decryption
k k
e fl'i"‘ TDec(ec ’Skl(Da)’ (Sk())k?tk‘)
k k
f;'?h e (@ kb L (ki)
Sgtlh TDec (pkec &5
SEF’;TD (Pkpy, €c”,€"); SE“‘ 1Dec PkPar &)

¢ —¢"mod q; 7 — ¥’ modq

b1 — e(h1, 2)71 b2 — e(g1, f2) 1 b3 « fr // stage 2
for j e]
5(k) <— Zgq
(5“‘) sk >) — (Mu[t(b(k Vb Mult(6{), b))
ka) - bzs; bagotk*
G ek

31 < [lkem) 31()3 — E(SJ yfz
g1 — e(sj)fZ)QQZ — 6(91,ny)

DPK((81, 82, 91, b2, b3, 31, 32), pBBS+)>»
(bbb, 669 69, 6{9). M sr @7

/e(flgljh g f2)

. bs; s =be; 505
with ppgs+; = (31 =1, 'b3° Alg, =3, 'y'D5*A

c; bs; by,
32=0,"8,"9, B
endfor

Figure 20: Eg: Obtain v’ without decryption.

263

Proceedings on Privacy Enhancing Technologies 2024(2)

Eg(l/l, k*,io,i1,b) :

Agrawal et al.

/] Keygen:

E:

Ee A:
E o A:
E— A:
A —> E:
A — E:
E:

pk<k*),sk(k*) — E.Keygen(1%)

P
PkEGaSk(ékg)) — Eg‘G.Keygen(l)L, (Mkﬂ)k#k*)
pkp,, skp, © — Eg;.Keygen(lA, (Mkﬂ)k;ékx)
pk"), pkeg, pkp,
(Pk™)jege

00,01, (€i)ie[n]\ {ip,ir }
if (b = 0) then (v;,,v;,) := (vo,v1) else (vj,,v;,) = (v1,00)

/! Enc calls for i, iy:

E:

E— A:

/I Mix:

A — E:

E— A:
A — E:

A - E:

for i € {ip, i1}:
: Eg;Enc(kaa,ui)
ri —Zgy; <—g1 h pyl<—S

gt Nizipk (¥1)
€, — Et Enc(pkpa, r,)

k
(U}Ek))kik*)", kstke ‘_Z%
v;)<—v,-— ngk);rgk) Zr
k#k* k#k* .
(ev!)es — (EEnc(pk® <k’)>k jiev) — EEnc(pk®,0)

(er(Niske = (E. Enc(pk<k> PO ries er®) < E Enc(pk®),0)

1
(k
= (&1, y; (EV),e T)ke[m]’Py,weri)
endfor

&) <i Perm(n)
_ k*
ek=1 = (6(1>)1€ n)

[
e —Eth. REnc(ka e(k’=1))
K (k)
ek (e (,(*)(1) €k ()
6/

Get (n(k>)k¢k~ using A’s random tape; 7 — (™ o... 0 z(1)
for j € [n]:u’ — (x(;))jeln]

forje[n].S‘ﬂ (pk pa,e.,v})

Eth TDec

Get v (Ok), fok), l(,k* N z(,k) from the Enc calls for i, iy

fori e [n]\ {io,i1}:
Get v <k) fk) from A’s random tape and input for sender S;

/| OTraceln call:

A — E:
E:

A — E:
A — E:
E— A:
A — E:
E:

E— A:
A — E:
E:

E:

A o E:

Eo A:

OTraceln(I,])
assert vy € v} = v1 €0/
y,0’, €. // DB-SM call (repeat for [n] \ J)

ea(k*“) shuffling

ek — (EfEhGREnc(pkEG,ea) jeln]

<k*) 1(j)
€o

k") i Z" homomorphic blinding
(k* (k*)

f,) Eth REnc(pkeg, €2)

G)k;ek*

€5 ea)(e(k))k k*

Get (b;k))]#k»« from A’s random tape. | // threshold decryption

(k*) (k)
& — (o,lbi +2kzkr by
T

)

ﬂ - ~
SE'E"G.TDec(pkEG’ea’ %)
foriel:

. k) (k) (K
DPK((y; 51.9). pes,» (0} (™) b)), (M sre, @)
with pgg, = (y; = g3 h]* A e(51,y) = e(g1,92)Pi (51, 92))
endfor

)ie[n)

stage 2

// OTraceOut call:

A — E:

E:

A — E:

E:

A — E:
E— A:

E— A:
E— A:
A — E:

E:

E— A:

A — E:

Eo A:

o

E— A:
A — E:

Ee A:

OTraceOut(I, J)

assertcj €c; < ¢, €cJ

v, (S,c, i“) (€s, €c, €7) // DB-RSM call (repeat for [n] \ I)
€ — €€
es k' 1) e kD) g,
S(k

_1)
k*-1

— (E‘E%.REnc(pkEg, Esir(kw()i)))ie[n]
eeX) (Ef REnc(pkp,, ec<’1:1(>)>>,»e[n]

&) (Eth REnc(pkp,, er X

es’ e’ &’

(b(k‘) b<k*) b(k*)) ti (Zg X Zg X Zg) homomorphic blinding

ng) (k) 8 Zn

shuffling

))ze[n]

k) (k b
(61(75),GZC),) — (Elh -Enc(pkeg,9,°),
EW Enc(pkpn. b (k>+qx(ck)),E”‘ Enc(pkp b +qx i)
0 (k) _(k
(fz(,s)» 0) o) .
(&', €, &) —(es’ I e;f?,ec' I ¥ e e;,k))
kel ke[m] ke[m] °"

1§ - ‘ftt'h (&', sk(k) (sk(k)),#k) 1// threshold decryption
S S
[I
&= Tg;., rec Ee” skik), (ki ske) !
F::::::i::::::::::::::::::

~ o k* k
e S
L,,,,,,i ,,,,,,,,,,,,,,,,, m)
sA (pkeg. €s”.S)

Eth TDec P EG .
SE'F" .TDec(kaa’ &) SEth TDec (Pkpg, & 77)

¢ —¢"mod q; 7 — 7’ modq

b1 — e(hy, 2) 71 b2 — e(g1, o)1 b3 « fr // stage 2
for j €]
5 &z,
(5”‘) s)) - (Mult(b(k) b)), Mult(s)"”. b))
. bs*) s)
3fkk) ng] b50
G ek

x A o, ¥
31— Miem) 31532 — el ufy) fe(fig, by, f2)
. o
a1 — e(§}. o) 82 — e(g1.uf,”)
DPK((g1, 82, b1, b2, b3, 31, 32). PBBS+ ;>
k k k k k k
(5§ b b1 53619 51, M are @7
bs . —b..
with ppps+; = (31 = v, f)?” Algy =3, ’b?lb;sz/\

be, bs. by,
322=9, ’9,”’b, ’bﬁl)
endfor

Figure 21: Eg: Obtain ¢ during DB-SM without decryption.

264

Traceable mixnets

E1o (1%, k%, g, i1, b)

Proceedings on Privacy Enhancing Technologies 2024(2)

// Keygen:

E:

Ee A:
E o A:
E— A:
A — E:
A — E:

E:

pkc) sk(k) — E Keygen(11)

P
pkec, Sk(é(;)) — Ef Keygen(1%, (M)
pkpz, skp, © Eg;.Keygen(lA, (Mkﬂ)k;&k*)
pk(k), PkEG’ Pkpa
(k)

00,91, (€i)ie[n]\ {ipir}
if (b = 0) then (v;,,v;,) = (vo, 1) else (v, v;,) = (v1,00)

/! Enc calls for i, iy:

E:

E— A:

/I Mix:

A — E:

E— A:
A —> E:

A o E:

for i € {i, 11}
r

Ti “Zq: Yz < gy'hy Pyi SI{I-IIZKPK(yi)

| €ry Enc(kaa’rl) i
71; ,,,,,,,,,,,,
(0§*>)k¢k N)k#k* <— Zq
vl{k) - % o)’ (k) rie 3 r(k)

k#k* k#k* .
(ev)k¢k «— (E.Enc(pk (k) u(k)))k P v E Enc(pk k). 0)
(erf Yk (E. Enc(pk<k>) e er(k) EEnc(pk®, 0)
k
= (€ny; (ev(),er)kE[mJ Py €r,)
endfor

&) <i Perm(n)

ffkii”, = et
ek Eth REnc(kaa,e(k _1))

L ,,,,,,,,,,,,,,,,,,,,
K (k%) (k%)

e() < (E,r(k*) (1)’ e 6”1k*)(,,))

6’

Get (ﬁ(k))k¢k* using A’s random tape; 7 — (™ o...0 7z}
for j € [n]: 0} — (0,(j)) je[n)

A o
for j € [nl: 74 1 (Pkper).2))
Get v(k) rfok),ul(lk)

for i e [n] \ {io, i1}:
Get v;k), r;k) from A’s random tape and input for sender S;

s r?ki) from the Enc calls for i, iy

// OTraceln call:

A — E:

E:

A — E:
A — E:
E— A:

A — E:

E:

E— A:
A — E:

E:
E:

A E:

E o A:

OTraceln(I,])
assert g € u} = v € u}
y,0’, €. // DB-SM call (repeat for [n] \ J)

es K+ shuffling

k* th (K
s k) (EFy-REnc(pkeg, €o (k‘) 1()))]e[,,]
€o
b)) & Zg // homomorphic blinding

&) E“‘ REnc(pkg. e2”)

Get (b.))kik* from .?(s random tape. // threshold decryption

- b; k) +Z * b
[(‘7 a1(3i) ek)1E[n]
S;‘}‘ TDec(pkEG’ ém &)

for i €l:// stage 2
- K (k) (K
DPK((y;. 1.9). pee,s (0 o™ b)) (M) @)
with pgg, = (y; = 91" h]* A e(51.y) = e(g1,92)Pe(51.92) ™)
endfor

// OTraceOut call:

A — E: OTraceOut(l,])

E: assertcj, €c; & cj, €cy

A—-E y (Sec i“) (€s, €c, €7) // DB-RSM call (repeat for [n] \ I)
E: €r — €j€f

A — E: (k l> ,€c (k*=1) | Er (k*=1) shuﬂliug

E— A: (k — (Eth .REnc(pkgg, 65 ,(y Q))ze[n]
Eo A \e () (Eth REnc(pkp,, Ec”(k*)(i)))ié[n] |
E— A &) (BN REnc(pkpy € (k)(1)))te[nJ |

A — E: es’,ec’,er’
E: (b(k«) b(k*) b(ka)) i (Zg X Zg X Zg) homomorphic blinding
ng) (k) & Zn

x Bk
Eo A (e ey epy 1>:<,Ef‘1 Encpkeegy®)
k* k* k*
‘E“‘ Enc(pkpa b 4 gx), Eih Enc(pkp,, b b¥) 4+ gyl)))‘
;M
A E: (e, h ,(,I?)k;sk*
E: (o2 2) (es' I e’ T e T)
ke[m] ke[m] ke[m]
E: Get (Fi)ie[n]\ {io,ir }> (bs®, b2 ") b2)y, 1. from A’s random tape.
- bs" < bs'P)
§ (S,,(j)gls’ sk b)je[n] |/ threshold decryption
k*
& — (cq()) +bc()+q}(c + sk b c]),e[n]
7 — (f'”(j) + () +br k) +qu +Zk¢k brj)jE[nl
~ =7
E o A: SE{‘h tDec (PKeG: €575)
SE:,ha.TD (kaa’ €c ’C) SE“‘ TDec (kaa’ ér,’;,,)
E: ¢ «—¢&"mod q; 7' — 7’ modq
E: b —e(hi. f2) 7 b2 — e(g1. f2) "1 b3 — fr // stage 2
E: for j €]
S(k)& Zgq

(5”‘) 5“) e (Mult(b(k) b)), Mult(s)"”. b))

Bk)
Eoa 3% e gt

A - E: (sik))k;w ., -
. . o P
E 31— Miem 3132 — e} ufy N fe(fig) by f2)
a1 — (), f): 02 < egruf,’)
Eo A: DPK((g1, 82, b1, b2, 93,31, 32). PBBS+;>
k k k k k k
5§55 b1 53,69 51 M)z @7
. — — bs/’ S _ _bcj 511,02
with peps+; == (31 =D, "b5" Alg, =3, "by'hy"A

c; bs; by.
32=8,"9,75," b
E: endfor

Figure 22: Eqo: Obtain §', &, 7 during DB-RSM without decryption.

265

Proceedings on Privacy Enhancing Technologies 2024(2) Agrawal et al.

E11 (14, k*, ig, i1, b)

/! Keygen:
E: pk(k*),sk<k*) — E.Keygen(ll) // OTraceOut call:
Eeo A: pkEG,skélg) — EtEhGAKeygen(l/\, (MIZ{)"*"') A — E: OTraceOut(L, J)

. (k%) th 2 A E: assertc €c; & ¢, €cy
Eo A pkp;:iSkPa — Ep,-Keygen(1”, (M D)iz+) A—>E y (Sec f’) (es, €c, €7) // DB-RSM call (repeat for [n] \ I)
E— A: pk(k),ka_G, pkpa E: € —
A= E: (pk())kik‘ A — E: (k 1) ,Ec (k -0 , Er (k-1) shuffling
A= E: 00,01, (€D)ie[n]\ {in.ir} ‘ ”(I;)*””th* ******************
E: if (b =0) then (vj),v;,) = (vo,v1) else (v, v;,) = (v1,00) E—>A: e — (Eg RE”C(PkEG’eSﬂW))te[n] |
/] Enc calls for iy, iy: TP R
E: for i € {ip,i1}: E- A |e*) (Ep}-Enc(pkp,, 0))ie[n]

— Et > -Enc(pkp,, 0) E-A: | « (E:,';.Enc(pkpa, 0))ie[n]

. 3 7 77
ri & Zg;¥i < 97115 Py; < Sfizkox (V) A—E s, e e

€, — Eth " Enc(pkp,, 0) ‘ E: (b(k k) b (K)) — (Zg x Zg x Zg) // homomorphic blinding
X(k) (k) $
@})k;tk* r))k¢k —Zq e oXr T -
ke (k*)) N

i Z U ; i _kg‘(* r E— A: ‘ (e“;),ezlz), ;)kr)) — (Eth .Enc(pkeg, 91 .

(ev(())k#k* — (E Enc(pk(k>))k#k* ev(]i*) — E.Enc(pk(k>,0) Erh Enc(pkp,, 0), Eth “Enc(pkp,, 0)) o

(er;)kik* — (E.Enc(pk(k) k>))k¢k er(k) E.Enc(pk®), 0) 3 3

! k) (k) A — E: (e(),e ,e())k P
E-> A ci=(enyp(evy,er; Die(m), Py €ri) bS helbr ® (k) 0]
endfor E: (&, &c" &) « (es’ kH ebS’EC H ebc’e" l_[€)
. m
I/ M W) 3 Perm(n) E: Get (rl),g[n]\{,0 i) (bs®), b’(k) b;. (k))k;tk* fromﬂ s random tape.
E: m < Perm(n K 45 e s
A—-E kD= (e(k*_l))ie[n] (S,[(])gl « *)Hk S() jeln] ﬂn‘(’zllg)n]d decryption
1
E: ‘ (&) Eth Enc(pkp,, 0) ‘ « Cxp +he; +q{k) +Z(k:}>(‘ &)"E["Ek)
: 2 - N
e o P (Fa() i) ¥hry T adry” + Tiake b7 e)
E— A: ek (e) E())
: 2 (1) 2% () Eo A: S;‘h TDec (pkegs €s”, S)

A—>E € e
E: Get (n(k))k;tk* using A’s random tape; 7 — (™ o... 0 71 SE:,*;.TD (Pkpa, €c”,€"); SE"‘ .TDec (Pkpa, &7
E: for j € [n]: v' — (Vx(j))jeln) E: ¢ —¢"mod ¢; 7 — 7’ mod q
ASE forje [n]: ST E: by elhn, f2) 13 Bo — e(gn, o) 15 s fi // stage 2

’ ’
Eth TDec(pkpa’ Ej’vj) E: for j € J:
Get u(k) rl(ok >,ull), Ek) from the Enc calls for ig, i1 5(k*) i 7
f e , (P £ " . . .
ori €[]\ lip, n}: (65, 68) — Mt b)), Mult(s§) b))
J
(K*)

Get ugk*), rgk*) from A’s random tape and input for sender S;

// OTraceln call: E— A (k* - bb bgo(k*)
A — E: OTraceln(,]) (k 2 3
E: assert v 4 4 A= E (Dk
: 0 €0} = v €Y ® o, ¥
J

A — E: y,0’ €, // DB-SM call (repeat for [n] \ J) E: 31 < [lkepm) 31 332 < e(s])yfz)/e(fig," by, f2)
A — E: 5, &Yy shuffling a1 e8], f2): 02 — e(gn.ufy”)
EoA: ek — (B REHC(pkEG,GU(]:k*)l,)I Njeln] 1 Eo A Dplféfgl%lg)?’b(l];)bz’(b;)’31;2)2)’1(’:)591’ ”

L ,,,,,,,,,,,,,,,,,,, T,,,(,J),,,,,J (bs.’bcj :brj :50 ’51 ,52)’(Mk)k¢k*,aﬂ)
A—E: €5 wi]th (1 = I)bsj 1)50 A = 3—bcj balbﬁz/\
E: b(k)& Zg // homomorphic blinding PBZESES+,b-SV b: s 23 Gr =0 27

77777777777777777 G 7)7 32=9,; 192 jbl jbzl)

] ~(k) th !

E— A: : — Eg REnc(pkEG, Ea) E: endfor
,,,,,,,,,,,,,,,,,, d
A= E: (E ket
E: éq <—E()(é())k k*
E: Get (b;k))]#k* from A’s random tape. // threshold decryption
)Y s BF

6;‘— (0" L™ Diem
A < E: SEth TDec(pkEG’ é5,6)
E: forz € I // stage 2

k) 5 (K
Ee A DPK((y; 609)pee,, @) orit b)), (M s, @7
with pgg, = (y; = g7k} Ae(51.y) = e(g1.92)Pe(51.92) ")
E: endfor

Eth

Figure 23: E11: Send encryptions of zeros in place of all E;} encryptions.

266

Traceable mixnets

E1p (14 k%, g, i, b)

Proceedings on Privacy Enhancing Technologies 2024(2)

// Keygen:

E:

Ee A:
E o A:
E— A:
A — E:
A — E:

E:

pk&) sk(k) E Keygen(11)

P
pkec, Sk(é(;)) — Ef Keygen(1%, (M)
pkpz, skp, © Eg;.Keygen(lA, (Mkﬂ)k;&k*)
pk(k), PkEG’ Pkpa
(Pk®) s

00,01, (€i)ie[n]\ {i0is }
if (b = 0) then (v;,,v;,) := (vo, v1) else (vj,,vi,) := (v1,00)

/I Enc calls for i, i1:

E:

E— A:

/I Mix:

A — E:

E— A:
A > E:

A < E:

for i € {ip, i1}:
: E;};.Enc(pkpa, 0)
ri —Zgy; <—g1‘hr’ Py; «— S
€, — Eth Enc(pkpa, 0)

k
(U;(f)k;tk*) r;

Ui)(—U

Niziek (¥1)

)k;ek* & Z]g
kz vf) (k) kz r

(v)z — (EEnc(pk®, o)) ev!®) EEnc(pk®,0)

(er;))k¢k* — (E.Enc(pk(k),ri)))kik ,erg) E.Enc(pk(k),O)

ci = (€Y (evgk),erfk)
endfor

)ke[m]’Py,w €r,)

(k%) i Perm(n)
. k-

e(k* D= (6§ U)ie[n]

e —Eth. Enc(pkpa, 0)
K k*) (k)

6() «— (E f"*)(l) en(k*)(n))

6/

Get (1))~ using A’s random tape; 7 «— 7™ o--. 0

for j € [n]: 0} — (v2()) je[n]

for j € [n]Sg{h TDec (pk Pase»,UQ

Get v (k) (k) (k%)

ip lo >0

fori € [n]\ {io,i1}:

Get v (k) l(k)

e

,r l(lk) from the Enc calls for i, i1

from A’s random tape and input for sender S;

/| OTraceln call:

A — E:

E:

A — E:
A — E:

E— A:
A — E:

E:

E— A:
A — E:

E— A:

A — E:

E— A:

OTraceln(I,])
assert vy € v} = v €0/

y, o', €. // DB-SM call (repeat for [n] \ J)

(k*+1)

€o shuffling

k) — (E}E}‘G.Enc(pkEG,g(l)))je[n]
€5
pk) & z
=(k")

‘ea <—E

homomorphic blinding

-Enc(pkeg, 99)

~(k

(Efy))k;ez;g .

& — & @ e
Get (b\¥)

)k#k+ from A’s random tape. // threshold decryption

E“‘ TDec (pkgg, €5, 0)

forzEI stage 2

‘rl(hk‘) (k") (k*) S

I
T Ty, q

2k

’r,’

z(k))<—(rk>—cu.(k), r(x) i T, b

endfor

Figure 24: E12: Send encryptions of 9(1) in place of all

267

// OTraceOut call:

A — E:

E:

A —> E:

E:

A — E:
E— A:

E— A:
E— A:
A —> E:

E:

E— A:

A — E:

E o A:

s

E— A:
A — E:

Ee A:

OTraceOut(I,)

assertcj, Ec; < ¢j, €cy

y, (S,c, i’) (€s, €c, €7) // DB-RSM call (repeat for [n] \ I)
€r —

#+€r
Es(k 1) L €c (k*=1) L €r (k*=1) shuffling

es®) — (E®. REnc(pkeg. 9))ie(n)

e ™) (g Enc(pkpy, 0))ic[n]

™) (E]} Enc(pkpy, 0))ic[n]

esl’ ecl, er/

(b(k*> b(k*) b(k*)) ﬁ (Zg X Z; X Z;) homomorphic blinding

$
Lt

k
(()

bS B bc B br')(_ (E Enc(pkEG 51)

EPa Enc(pkp,,0),E
(e (k) e(k (k))

€ps > be’ k#k
(&', éc",&") «— (es’ kl_[

a.Enc(kaa, 0))

B e

® ¢)

k) _ s

I €, € H
kelm) P77 kelm]
Get (h)xe[n]\(,n i) (bs ™, b’ (®), b2)y, 4 from A’s random tape.
+3 + bs'
* >k:k sj(k)> et k)
—(ex() +hej " H+qXe; F Dkzkr éj)je[n]

k K

7 y;— (Pr(j) +Tx(j) t/br;) +q)(r;) + D kkr b
SE"‘ TDec PKEGS &'.S")

S kpy, €/, ¢"); SA
F_;,';.TD (Pkpas & €7); Et" TDec

¢ —¢"mod ¢; 7 — 7’ modq
b1 —e(h, £2) 7 b2 —e(gr)7 bs — fr
for je J:

5) o (3, 61K)) (Mult(bg’;”,bg’f)),Muh((sé"*),bg_’j‘)))

threshold decryption

ﬁx

) etnl

(PkPa» ér/» ;;//)

stage 2

PR .
o 5 **)
35) bzbl b50

G sk
31— Meem 3532 e<s,,yf2) fe(fig By, f)
a1 — (5 f): 02 — egryf,”)
DPK((g1, 82, b1, b2, 3, 31, 32). PBBS+>
(b(k) b(k) b&’;)’sék)’él(k),éék))’ (M,;ﬂ)k¢k*,aﬂ)

bs, s -be, 55
with ppgs+; = (31 =0, 'b° Algy =3, 'b'D5*A
be; bs; br; s
32=9;, "9, 'b; 'b")
endfor

EthG encryptions.

Proceedings on Privacy Enhancing Technologies 2024(2)

E13(14, k*, ig, i1, b)

Agrawal et al.

// Keygen:
Eeo A:
E— A:
A — E:
A — E:

E:

pk(k*), pkegs Pkpas sk(kv), skl(_:lg), skl(,ls) « ... // as before
Pk(k> PKeG: Pkpa

(k)

00,91, (€0)ie[n]\ {ip.in}

if (b = 0) then (vj,,v;,) := (vo,v1) else (vjy,v;,) := (v1,00)

// Enc calls for iy, i1:

E:

E— A:

/1 Mix:

A — E:

E— A:
A — E:

A & E:

for i € {ip,i1}:
$ i i
E;Z.Enc(pkpa, 0)ri & Zgiy; — g7'h] ;in — SﬁIZKPK(yi)
k k
€r; — Eth Enc(pkp 0); (vﬁ))k;tk* ¢ >)k¢k" —Zg
o) -3 o) e b

k#k*
(eviF >>k¢k« - (E Enc(pk®), v<)>>k gsev!) e EEnc(pk®,0)
(er)k,—tk* «— (E. Enc(pk(k))k#k* er(k) E.Enc(pk(k),o)
cj= (ez, Vi (evgk),)ke[m]spyi:eri)
endfor
AL <i Perm(n)
. k-
e(k* D= (€%) icrm
ek E;Z.Enc(pkpa, 0)
(k") (k")

(k)
€ — (e”(m(l),“.,e”(k*)(n))

€’

Get (ﬂ(k))k#(* using A’s random tape; 7 — 7(™ o... 0 7V
for j € [n]: 0} — (02(j)) je[n)

for j € [n]: SEm TDec (pkpa,e v’)

Get v(k) z((,k) z(1k)

forie [n] \ {io, i1}:
Get ugk), r?k) from A’s random tape and input for sender S;

T z(1k) from the Enc calls for i, i1

// OTraceln call:

A — E:

E:

A — E:
A — E:
E— A:
A — E:

E:

E— A:
A > E:

E:
E:

A & E:

E— A:

E— A:

A — E:

E— A:

OTraceln(I, J)
assert vy € v} = v € v}
y,0’, €. // DB-SM call (repeat for [n] \ J)

e *D // shuffling
€6k — (B Enc(pkec. 99)) jefn)
€5
k) izg homomorphic blinding
~(k*
e Eth Enc(pkec. 99)
(k)
(€6 Diexrs

~ ~ (k) ~(k

& — &) €M s

Get (bfk))k#» from A’s random tape.
(K*) (k)

5 (o
p (i)

SEth TDe C(Pkr_csea,)

for i € I:// stage 2

threshold decryption

)ie[n]

if i € {ip,i1} and vy € v’;: |// simulate the entire DPK

J

2))

$
-2, c—Zq

(k%) (k") (k) (k)
(k*) Zy, | Zp: o r;
ay, g]”’ hly‘ (Yi/nk:#k' gll gll)¢

N (CONS _ (k%) G
0 elgrg)™ e(Gig ™ e)

»(F)
IT e(g91.92)"
kzk*

~ ot
e(Gi.92) ™"

(ay, (k) (j.())ktk*‘

. k k
Set H(yi, 65, Y, [1re[m] a§,~>, [Mkerm af;l>) =c
(k%) (k) (k")

Zy 5 Zp 57y

else if i € {ip,i;} and vy ¢ U}: ‘ simulate DPK’s first component

E:

E:

E:

E:

E:

s

E— A:

A — E:

E— A:

E— A:

A — E:

E— A:

A — E:

A — E:
E— A:
A — E:

E— A:
A — E:

Eeo A:

E— A:
A — E:

Ee A:

A 0 60 00 87
(k%) (k" RG]
K Zo; Zn Ti
o g B (il ke 9, 9y
. (k") o
“f":) —e(g1.92)"" e(Gi,g2) "
k
(a()k)k k*

. k k
Set H(yi, 66, , [ke [m] a)(/,-)’nke[mj af-,,.)) =c

b;k*) i Zg; z[(j:‘) — rlgf*) - cbl.(kk)

(k%) (k")

v o *ri

)

[else:]// proceed as M,
r(()ff‘)’ r(k) (k*) (EZ
ay) g rg()hgllk '; “E}I,»cx) —e(g1,92) o8 e(61,92)" i
(g, al s
¢ — H(yi, 6.y, [kepm ayl [kepm a(k))
AT) () a0))
endfor

// OTraceOut call:
A — E:

OTraceOut(I,])
assertcj, €c;y & ¢j, €cJ
y, (S, ¢, 7), (€s, €c, €;) // DB-RSM call (repeat for [n] \ I)
€ — €j€r
ek 71) e KD, g (K1) shuffling

(k) — (EtEPE;'REnC(pkEG’g?))iE[n]5 ec®) e (k)
es’,ec’,er'
®) B, b““)) & @nxznxz
20) 8 g
(e(k) e(k) <’<>)H
z? Iyl
0 5 ())k .

(esyec,e‘r)‘—(es

// as before

homomorphic blinding

. // as before

(k) s k) _ s (k)
IT eg.e” 11 e & I1 €.)
kelm) PS7 kem) P kelm)
Get (rl)zelnl\{to ,1} (bs(k) b’ (*) b’(k)),#k* from A’s random tape.
b (k)
(s”(ﬂgls]

(C,r J) +b¢

+ gt bs ;)

<>+qx<>

7 <—(r,r(1 +r,,(J)+b (k)+q)(
A
SE“‘ TDec PkeG: & s
/ /’
SE;‘;.TDec(kaa’) SE"‘ TDec
¢ —¢"mod ¢; 7 — 7’ modq

by —e(hy, o) by —e(gn, o) b3 — fr
for je J:

* $ * * * * * *
55 < 2q (00.8)7) — (Muttd g b, Mute(s) b))

[n] // threshold decryption

k
+ Siwke bl Dietn)

k
AR YRy T P

(kaa’ ér/: ;:I/)

stage 2

(k%) *
(k%) bs 8o K5
3 b7 by

G ke
31~ lkein TR e(s,,ng N fe(figr B fo)
91— e(S ,f2); 82 < e(g1, yf2
DPK((Ql,Qz, 91, b2, b3, 31, 32). PBBS >
g b b1 53619 81 M7)zre @7

with pggs+; =
endfor

. // as before

Figure 25: Eq3: Simulate DPKs in DB-SM call.

268

Traceable mixnets

Ei3(1 K%, dg, i1, b) :

Proceedings on Privacy Enhancing Technologies 2024(2)

/I Keygen:
E o A: pk(k”, pkegs pkpa,sk(k*),skg&),skg) . // as before
E—- A: pk(k*>, pkegs Pkpa
A =B (pk®)pype
A > E: 00,01, (€i)ien]\{ipir}
E: if (b = 0) then (v;,,v;,) := (vo,v1) else (vjy,v;,) := (v1,00)
// Enc calls for iy, iy:
E: forie {10, i1}:

€; — E Enc(pkpa,O)

ri - Zq’yz < g7 py; < Sizer ()

€r, — Et 2 -Enc(pkp,, 0)

"))k;tk* ())kﬂa 4—21
U;) Z”)s (k)Hr o lﬁk)
k#k*
(evi* >>k¢k* r—" o) s
evg)) — E.Enc(pk®, 0))
er s = (EEnc(pk®, r{))ppe

erg) E Enc(pk(k) 0)

E— A: ci = (€, y; (eV,- b er! r;))ke[m],Pyl-s €r;)
endfor
// Mix:
E: &) i Perm(n)
A — E: e(k*_l) = (elgk 71))ie[n]
E: e — Eth Enc(pkp,, 0)
. ek k))
Eo A et e (e gy)
A—E: €
E: Get (ﬂ(k));#k* using A’s random tape; 7 — 7™ o ... 0 (1)
E: for j € [n]: v’ — (Ox(j))jeln)]
A < E: forj € [n]: SEm D (pkpas e;.,v;.)
Get v(k) l(ok), l(lk) (lk*) from the Enc calls for i, i1

for i E [n] \ {io, i1}:

Get u(k) (k) from A’s random tape and input for sender S;
// OTraceln call:

A — E: OTraceln(1,])
E: assert o) € u} = v € u}
A — E: y,0’ €. // DB-SM call (repeat for [n] \ J)
A—E ex® D/ shuffling
E— A ec®) — (Ef Enc(pkec. 99)je(n]
A—>E €5
E: bk i Zg homomorphic blinding
E— A: ~£(7k,) — Eth .Enc(pkEG,g?)
~(k
A—E (&)))k¢ki
E: &5 — €5 (E0)enn
E: Get (b(>)k¢k* from A’s random tape. // threshold decryption
)45 i B
& (" 10 R Y ieln)
A e E: S;‘h TDec (PkEG’ €5,0)
k k k
E: ‘SDPK pe-sm(¥: 70, ((U() () b())kqtk*)ze{i",il}v‘

‘ (@, b e mien) (in)
// OTraceOut call:
A — E: OTraceOut(I,)
E: assertcj €c; < ¢, €cy

A — E: y,(S,¢F),(€s, € €;) // DB-RSM call (repeat for [n] \ I)
E: €r — €4€p

A — E: es(k*_l), ec(k*_l), er(k*_l) shuffling

E— A: es(k*) — (EthG,REnc(pkEG,g(l)))ig[n]

E- A €K — (BN Enc(pkp,, 0))ic[n]

E-A: &) « (EE;.Enc(kaa, 0))ic[n]

A — E:

E— A:

A — E:

E & A:

o

E— A:

A — E:

E— A:

E— A:

Ee A:

E— A:

es’ec’ &’
®$) B b)) & (zn xzn xzn)
2) S

q
k k k
(e(bs),egc), e;)r)) — (E .Enc(pkgg, gl)
EPa Enc(pkp,,0), EPa Enc(pkpa 0))
((k) (k)
(e, ¥ etk

(ES é’ &) — (es’

homomorphic blinding

k) o k) _ (k)
I e M oela I e
ketm1 P57 ke P g
Get (r,)le[n]\{lﬂ i} L (bs®, b’ (*) b’(k))]#k* from A’s random tape.
bs)45 aper bs'
— (Se(jy9; (k;’k sj(k))E[n] b
+ Yktk éj)jeln]

— (cx(j) +bc +qXec;
k* k* k
P (r,,(j) +r”(_}) +br;.) +q)(r;) +Zk#k* b;]))jg[n]

- ~7
57 1ec(Phec €578

S kpy, €, ¢"); SA
E:,};ATD (kpa, €c”.€"); Eth TDec

¢ —¢"mod ;7 — 7’ modq
b1 —e(h,)75 b2 — e(gr,)7 bs — fr

threshold decryption

(pkp,, &7, 7")
stage 2

B
us“‘) & 24 (07, 617) — (Mule v), mute(af b)) |

F““““““ 777777777,7777777777777777774

LR LR (k) (k) (k* (k‘) $!
Ths 2 The 2 Tor oTsy 0Ts 0TS, Zq.

I k) K Gy U (k*) ,
k* g & k* T Ts ’s,
:a;l) ‘_bzbs b, 0 ;a;;) —3 be b," b, 2 |
e 4

I (k) (kY (k) KD \

(k" T T LEA

‘agz)(_gbc bs bbr b, |
e

1 (KT (k’) k) (k) (k) CN |

1931 ’asq i (a R ; 2 a3,)k* *

F ::::::::::::::::::::::::ﬁ ,,,,,,,,,,,,,,

U a;5<>, e, 1 (k>>‘
| ke[m] °' ke[m]

F

k k* k* k* k* k*) . _(k k*
L’(’S) 5 _ o);Z;(m)*fzfc) be¥); 20 o ik oy — b, ¢ >
;Z;? . 5“‘*)~z<k*)ergk*’—csfk*);zgz*)<—r§f*’— 5K

\(k)z(k) (k") (k* (k) (k)\
‘bS’bc’br’ﬁg’él’SzJ‘

L
endfor

Figure 26: Same as E;3 but DPK simulation steps during DB-SM are abstracted out.

269

Proceedings on Privacy Enhancing Technologies 2024(2)

E14 (1% k%, g, i1, b)

Agrawal et al.

/! Keygen:
Eo A: pk(g), pkegs pkpa,sk(k*),ské]z}),sk}(,lz1) ... // as before
E— A pk®), pkec, pp,
A—E (pk®)pe
A = E: 00,01, (€i)icn]\ {ioyir }
E: if (b = 0) then (v;,,v;,) = (vo,01) else (vjy,v;;) = (v1,00)
/] Enc calls for iy, iy:
E: fori € {ip,i1}:
€j — Eth EnC(PkPaa 0); 7 (— Zq,yl — 91 h] 3Py < SNIZKPK(yl)
$
€r; < Eth Enc(pkp,, 0); ("(>)k=ek ,r)k#k* —Zq
v —vi— X ul(k); r?k) Z r
k#k* k#k*
(evgk))k#k* — (E.Enc(pk(k)))k#k* ev(k) E.Enc(pk(k),O)
(er k>)k¢k* — (F;CEnc(I[:k(k), ik Nkzk er;) EEnc(pk(k),O)
E—- A Ci = (Ez,y,,(ev),el’}))ke[mJ,Pyiyer,-)
endfor
/I Mix:
E:) i Perm(n)
A—E k.= (e}k _1))ie[n]
E: e() e Eth Enc(pkpa, 0)
. (k)
E— A: (e (’f*>(1) ”(k*)(n))
A—>E €
E: Get (ﬂ(k))k¢k* using A’s random tape; 7 «— (™ o ... 0 71
E: for j € [n]:u’ — ())]E[n]
A e E: forje[n]:S £ TDec(kaa €, v’)
Get v(k),r(k),vflk),rglk) from the Enc calls for i, i1
fori E [n] \ {io, i1}:

Get ugk‘), r;kv) from A’s random tape and S;’s input

// OTraceln call:

A — E: OTraceln(I,])
E: assert o) € v, & vy €0/,
A — E: y,0’ €. // DB-SM call (repeat for [n] \ J)
A-E eg % /) shuffling
E-A: ek (Eg‘G.Enc(pkEG,g(l)))jg[n]
A—>E €5
E: bk i Z; homomorphic blinding
E— A: E‘(,kw) «— Eth Enc(pkeg, 97)
~(k
A—E (&))k#]v; .
E: & &8 (@) e
E: Get (bgk))k;tkk from A’s random tape. // threshold decryption
~ ’+Z b
&= (0" L™ ietm)
A o E: sg'h tDec (PKEG: €0.8)
k k k
E: SH.. (D§ SM()y)Ekt; ((v(),r() b(>)k$k*)t€{i0,i1}:
((v; b Dkem)ien]\ o })
// OTraceOut call
A — E: OTraceOut(I,])
E: assertcj, €c; < ¢, €cy
A —E: y(Sec r‘*) (es €c, €;) // DB-RSM call (repeat for [n] \ I)
E: e,
A—>E el _1) ,€c (k D, &® -1 // shuffling
E— A: k) — (EEG~REnC(pkEGag(1)))i€[n]; ec®), & K) — .. // as before
A —>E: €5’ e, e’
E: B b)) & @z ez)) Szn
E>A: (e Eis)) (:) W)) — (Eth .Enc(pkgc. g9)....) // as before
A—E (.6, e)kik* ® ® ®
E: (5", € &") — (es’ T1 EbS’EC, I1 Ebc’Er, I1 ebr)
kelm] ke[m] ke[m]

o

E o A:

E o A:

E— A:

E o A:

E— A:

Get (r,)le[n]\{m i) (bs®, b'(k) b;. (k))k,.tk from A’s random tape.

bs)45 bs
(Sn(])gl .) je[n]

— (cq(j) +bc(k*) +axe +Zk¢k* éjk)Je[n]
F <—(rn(,)+rn(,>+b()+qx)+ Shore br,)je[n]
Sg“" Tpec PkeG &> §)
SE;,';.TDec(kaa’ ¢ SE"‘ TDec

¢ —¢”"mod q; 7 — 7’ modq

threshold decryption

(Pkpas & ")

b1 — e(h1, 2) 71 b2 — e(g, f2) s b3 fr // stage 2
forjeJ:
,,,,,,,,,,,,, B
| bs®) 5 & i
| 50(16) iz 3(k) (_bzsj ;so H
I I
,,,,,,,,,,,,,,,,,,,,,,,, .y

k* k
3 6 e

k s
31— I ai);32He(S},yfz’
ke[m]

Ve(figy b, f)

- e
g1 — (S})02 — elgryf,))

Get (Bék))kgtk* from A’s random tape

k k k k k k
617,60 s — (Mult(bs), b (), Mult (8, be)z

ifig e I ‘ simulate the entire DPK

LK) (k) (k) (k*) (k*) LK) $
Zys Zpe 2 Zpr 225, R 0%s, €T Zq
k*) (k) <k) (k)
K ¢ s
a¥) i bf“ 1/t B, 520)¢
LK K (k) <k; k) (k)
k* S o
a;; >F Fre bé‘ 5362 (1o /T ksrs 31 7 p,!)
K (kYK LK) (Is) bs (k) b, (k) (k)
k* Zp. z) Zp, 5
a! N S T HUC B I A AT
) (k) (k). (k) (K
o)., o @, a0 o)
k k k
Set H(81,92, 91, b2, b3, 31,32, [1 ll;l) [1 ;) [1 a§2))=c
kelm] ke[m] 3 ke[m]
(k) (k) (k) (k) (k*) (k*)
Zbs 2 Zbe Ebr 0Rs, Es 0 Fs,

‘ else: ‘ simulate the first two components of the DPK

(k) (k) (k) (k) (k) (k%) (k) (k) (k) 8
Zps Zpe 2E5, 1S 2Es, Ths The Thr o5 € Lg

(k) (k) (k)

* (k*)
ai(lk) bzb_s b360 (31/Hkik“ I)Z 30)c

LK k
) H é(k 5(k)

e b‘“ B, (lay /Tkske 31 7 b,)¢

(k') (k%) (k) r(()k)
{_gllzc bs‘ blhr b21
(k%) (k). (k) (k) (k)
a > a3, ’(a31 ’aa' » a3,)kv*-k*

’

Ay

2%
31

29
3

(k")
3

BO) 2o
[T a;°,

Py =c
elml " kelm] “

Set H(g1,92, b1, b2, b3, 31, 32, .

kelm]

b) &

—Zg; z(k* — z}(;’:*) - Cbr;kﬂ

(k) (k7)) (k)

(k")
bS *Zbe 2 Zbr

(k)
,250

(k)
’Z(Sl

z
02,

‘ else: ‘

... // proceed as My«

endfor

Figure 27: E14: Simulate DPKs during DB-RSM.

270

Traceable mixnets

Ers (14 k%, g, i1, b)

Proceedings on Privacy Enhancing Technologies 2024(2)

// Keygen:
E: pk(k*),sk(k*) — E.Keygen(1%)
P
E o A: pkEG,skéG) Eg‘G.Keygen(l)L, (Mkﬂ)k#k*)
E o A: pkp,, sk(D EF,Z.Keygen(lA, (Mkﬂ)k;tk*)
E— A pk®), PkEG’ Pkpa
A E (pkW)psge
A > E: 00,01, (Ci)ie[n]\{ipir}
E: if (b = 0) then (v;,, v;,) = (vo, 1) else (v, v;,) = (v1,00)
/! Enc calls for i, i1:
E: for i € {ip, i1}:
€ — Eth Enc(pkp,,0)
$
ri & Zg v < 7R py; — Sizek (V)
€ — Eth Enc(pkpa, 0)
k
ﬁ"(,))bskz e £z,
:ugk) v, > ul(k),rgk*) —ri— > r:k) :
L k#k* k#k !
(ev ;E)),#k* «— (E. Enc(pk(k) zE)))k P evrk—*f«— E.Enc(pk(k),O)
b
(sk (E Enc(pk®), 7)) ert e EEnc(pk(®),0)
E— A: = (€1, y; (ev<), f))kE[m]:Py,-,Er,»)
endfor
// Mix:
E: &) i Perm(n)
A—E k- .= (e?k 71))1«6["]
E: eEZ; — Eg%}f)nc(pkpa, 0)(;«)
E->A: € — (e”(kk)(l),...,e”(m(n))
A—>E €
E: Get (ﬂ(k))kik* using A’s random tape; 7 — (™ o... 0 7z}
E: for j € [n]'U;‘_(Un(j))je[n]
A o E: for}E[]S (pkpa,e u)

Eth TDec
Get v(k) rl(ok),vl(lk),rglk) from the Enc calls for i, i1
for i e [n] \ {io.i1}:
Get vfk*), rfk*) from A’s random tape and input for sender S;
// OTraceln call:

A — E: OTraceln(I,])
E: assert vy € v} = v € v}
A — E: y,0’, €, // DB-SM call (repeat for [n] \ J)
A—E e %D)/ shuffling
Eo A ek) (EE%.Enc(pkEG,g?))jg[n]
A—>E: €4
E: bk & Zg // homomorphic blinding
E—A: &) — Eh Enc(pkec. ¢?)
A—E (&))k#;: .
E: & — e (@)
E: Get (b,(k))k,-ek* from A’s random tape. // threshold decryption

~ lbi'k*)"'Zk#k* bgk)

A G)ie[n]

ﬂ ~ ~
A o E: SE"' TDec(pkEG’e”’ o)
~ k k k
E: DPK P? SMk()y’)?t)T ((U()»r() b())k;tk‘)ie{ig,il)’
b Dkem)ieln)\ {ioi})

// OTraceOut cull

A — E: OTraceOut(l,])

E: assertcj, €c; < c¢j, €cy

A = E: y,(S ¢ F),(€s, €, €;) // DB-RSM call (repeat for [n] \ I)
E: €r < €€

A — E: (k _l) cec KD g (K- 1 shuffling

E— A: <’<> — (E®. REnc(pkec, 99))ie(n]

E— A: (k) (Eth Enc(pkp,, 0))ic[n)

E— A: <k — (E”; Enc(pkpa: 0))ie[n]

A — E: es’, e’ &’

Figure 28: E15: Use random group element for 3

271

E— A:

A — E:

E o A:

E o A:

E— A:

E o A:

E— A:

(bék*) b(kx) b(k*)) & (2§ x Z§ x Zg) // homomorphic blinding
(k*) (k) $

(el(:;),e(k >, (&)) — (Eth .Enc(pkgg, g1)
Eth Enc(kaa’ 0) E Enc(kaa’ 0))

k k k
,(,j,) el))k k*
(k) ’ (k) ’ (k)
(&', € ,6)<—(€ IT €.’ I1 € .&" Tl)
S > €c, €r S kelm] bs > €c ke[m] be’ T ke[m] €br

Get (rl-)ie[,,]\(im,;1) (bs®, b(,l.(k),b:‘(k))k¢k~ from A’s random tape.
lhleshuld decryption
+ Zk#k* cj)]E[n]

<>+qx<>

P (r,,(] +r,,;(j)+br
S,?}. tpec (PkEG: €57 §)
SE'P*;.TD (Pkpg, éc”,2"); SE“' TDec
¢ —¢"mod q; 7' — ¥’ modq
b1 — e(h1, 2) 71 b2 — e(g1, fo)”
for jeJ:

if v’ € {vg,v1}:

+ Zkzk by rj)je[n]
(pkpy, &', F")

Ly — fr

stage 2

3“ (3§k B o
~r C o, r.
we Il 3(V30 — eSiufy) le(fig, by f2)

Jkk?

41— e<sj,fz); 0 e(gryf,’)
Get (5(§k))kzk+ from A’s random tape
(81,85 s = (Mult(bs . be), Mutt (6] be) s

if ip € I: // simulate the entire DPK

LK) L) (R (k) (k") (k*) $
bS’bc’br ’(ké) ’51’ C(—Z
k*) (k) (k)
k* 5
a!! S b, Gu/Tlesk B, B)°
&%) (KY) (k%)) o(k) (k)
k ~Zpe —be;” 57 6,
aff) 3,7y, 6 Gy /M5, 80 508
(K*) (k%) _(k*) k%) (k) (k) (k) (k)
k . S be bs b, L
(k> g gt b bk;‘ [T S A S
(), (1) ()(() () ())kk‘
k k k
Sf?tH(Ql,gz,bl,bz,b3,31,32, H ag,), [1 g) [1 ())*C
ke[m] 3 ke[m]
(k) (k") (k) (k") (k) (k‘)
Zbs 2 Fbe 2 Fbr 0R5, 2Rs 0 Fs,
else: // simulate the first two components of the DPK
2K LK) () () () (k) (R (k) () Sz
bS ’ bc 8o (ké)l 52 bS kb)c br 51 ’ q
& k) bs (5(}:)
alk) g Go/ [B, 03")C
(k") LK) (k%) (k) 5(k)
k -z, S 5,
u(,) 307 0,7 0. (o Tk 31 bz b*)¢
S
) gl
(k) (k) (k) (k) (k) (k)
a4, agay ey a4 e
k k k
Set H(81, 92,91, b2, b3, 31,32, [1 a;), [1 ;), [1 a§2)>:c
ke[m] ke[m] 1 ke[m]
b, K <—Z z(k*) 25 _p, (KD
Ly oot e e et
Zbs > Fbe 2 Fbr %S, %5 0 %S,
else:
. // proceed as My~
endfor
(k%)

1

Proceedings on Privacy Enhancing Technologies 2024(2)

E16(14, k*, ig, i1, b)

Agrawal et al.

/! Keygen:

E:

E o A:
E & A:
E— A:
A — E:
A — E:

E:

pk(k*),sk<k*) «— E.Keygen(1%)

P
pkegs sk(%{g)) — EtEhGAKeygen(l/\, (MIZ{)"#')
PKpg, skp, . — Et .Keygen(1%, (M)izcr)
pk"), pkeg, pkpg
(pk ™)z

00,91, (€i)ien]\ {ip.ir}
if (b = 0) then (v;,,v;,) = (vo,01) else (vj,,v;,) = (v1,00)

/] Enc calls for iy, iy:

E:

E— A:

// Mix:

A — E:

E— A:
A — E:

A & E:

for i € {ip, 11}
€i <T gth 2 -Enc(pkp,, 0)

Lr’ <_Zq’ Yi 9 py, < SN[ZKPK(yl) ‘

(v ())k#c*: 0 ere <—Zq

o) o)

(ev)k;ek* « (E. EnC(Pk<k) v; k)))k¢k* ev() E Enc(pk<k) 0)
(er)kik* «— (E. Enc(pk(k k)))k¢k er(D E Enc(pk®), 0)

ci=(€ry; (evi)ke[m], Py €r;)
endfor

) ﬁ Perm(n)
. k-

K0 = (e Dierny
k) — Eth Enc(pkpa, 0)

k* k) (k)

ek (e E”(kﬂ(n))
E/
Get (n(k))k;tk* using A’s random tape; 7 « alm o ..
for j € [n]: 0 — (02(j))je[n)
for j € [n]: SElh TDec(kaa’ ej,vj)

Geto®, <k> MUSINC
11 11

for i € [n] \ {lo,n}
Get vgk), r;k) from A’s random tape and input for sender S;

ox(V

) from the Enc calls for iy, i1

// OTraceln call:

A — E:

E:

A — E:
A — E:
E— A:
A — E:

E:

E— A:
A — E:

E:
E:

A E:

Figure 29: Eq4: Setv

OTraceln(1,])

assert vy € u} & vy € u}

y,0’, €, // DB-SM call (repeat for [n] \ J)
€K *D // shuffling

k) — (E®. Enc(pkec. 99)) jern)

€0
k) <i Zg homomorphic blinding
~(k*
ek Eth Enc(pkec. 9)
~(k
(8 s

~ ~(k*) ~(k
& — &) €M s
Get (bgk))]#k* from A’s random tape.

(* k
b+ T b

threshold decryption

6 (" L,)ie[n]
Sé‘h TDec (pkeg: €0, 0)

DPK s <yya<<v P b e vy
(o0 00 b
)ke[m])lelnl\{zozl})
(k) o)

11’

(k*) (k)
T L

E:

E:

E:

t

272

A — E:
A — E:
E— A:
E— A:

E— A:
A — E:

E— A:

A — E:

E o A:

// OTraceOut call:
A — E:

OTraceOut(I, J)

assertc; €c; < c¢j, €c1
y,(S,c, f’) (es, €c, €;-) // DB-RSM call (repeat for [n] \ I)
€ —

(k 1) ,€c (k D, e k- shuffling
es“‘j - (E‘“G.REnc(pkEc,g?»iqn]
e¥) e (Ep)-Enc(pkpa: 0))icn]

& k) (BN Enc(pkp, 0))ic(n]
es/, Ec,, Er/
B, bE) b)) & (zn xzn X 2Z1)

k* k) $
At S

k’
b) (B

homomorphic blinding

(ebs ,ebC e ‘Enc(pkeg, 97).
.Enc(pkp,,0), EPa Enc(pkp,,0))
15 e e

(65 &) — (65)

(k) (k) _»
o 9 I e S
Get (rl)le[n]\{,o i) (bs(k) b'(k) b;. (k))k;tk* from A’s random tape.
bs Gk)+Zk¢k bs
= Sr(nay
— (cx(j) +bc(k raxe)+Zk¢k‘ é§k>)je[n]
(k")

k
7o (Fr(j) +720)) +br5.) +qxr;

je[n] // threshold decryption

) (k
+ Dkzkr brﬁ'))je[n]

~ o
Sg,‘h 1Dec PKEG: €57.5)
SE:,*;.TD (PkPa / N) SE”‘ TDec (PkPa’ ér,’;,’)

¢ —¢”"mod ¢; 7 — 7’ modq

b1 —e(h o) lib2 — e(gr. o) i bs — fr

H T Y
Spopk-pp-rsm (B: 0 (5, € F),

K o (k) 5 (k
((bs;):bc§~),br;))k#k*)je{n’l(io),n’l(il)}"

stage 2

k k k
((65{bel b im0 100) |

as zeros (also abstracted out the DPK simulation steps during DB-RSM).

Traceable mixnets

E17(14, k*, ig, i1, b)

Proceedings on Privacy Enhancing Technologies 2024(2)

/! Keygen:

E:

E o A:
E & A:
E— A:
A — E:
A — E:
E.

pk(k*),sk<k*) «— E.Keygen(1%)

P
pkegs sk(%{g)) — EtEhGAKeygen(l/\, (MIZ{)"#')
PKpg, skp, . — Et .Keygen(1%, (M)izcr)
pk"), pkeg, pkpg
(pk ™)z

00,91, (€i)ien]\ {ip.ir}
if (b = 0) then (v;,,v;,) = (vo,01) else (vj,,v;,) = (v1,00)

/] Enc calls for iy, iy:

E:

E— A:

// Mix:

A — E:

E— A:
A — E:

A & E:

for i € {ip,i1}:
— EE,I"a.Enc(kaa, 0)

$)
ri = Zgy; < Rh py; = Sz (v)
€r, — Eth Enc(pkp,, 0)
(v }E))k#c* ri))kﬂc ‘_Zq
R «— 0
(ev(’”)k;th — (EEnc(pk®, o)) s ev®) — E.Enc(pk®), 0)

(er g (EEnc(pk®,) s er®) E Enc(pk®),0)
Ci = (EUY[’(eV(),e *))kE[m] Py,’fr,)
endfor

7 & Perm(n)
_ k—

E(k* V= (E,(1))ie[n|
e®) — Eh Enc(pkp,, 0)

K k") (k")
) (emk“(n"”’E;r(k*)(n))

’
Get (n(k))k;tk* using A’s random tape; 7 — (™ o... 0 71
for j € [n]: 0} — (0,(j))je[n)

’ 7

for j € [n]: SEth TDec(PkPa’ ej,uj)

(k%) (k) (k%) . (k")
Getui0 LA

fori € [n]\ {io,i1}:
Get ugk), rl(k) from A’s random tape and input for sender S;

from the Enc calls for iy, i1

// OTraceln call:

A — E:
E:
A — E:
A — E:
E— A:
A — E:
E:
E— A:
A — E:
E:
E:

A E:
E:

OTraceln(I, J)
assert g € v} = v €0/
y,0’, €. // DB-SM call (repeat for [n] \ J)
eq K+ shuffling
ea(k) (EEhGE”C(PkEG:g?))jeln]
€q

(k) S n
b — Zq
&)

homomorphic blinding
o — Egh.Enc(pkEG,gg)

(€5 itk X

& — & (€ s

Get (b())k¢kv from A’s random tape. // threshold decryption

,,,,,,,,,,,,,, .
\ . +Z pk) |
e (0" 51(1-) e T)le[n]‘
e
SEﬁ TDec (pkeg. €0, 0)

DPK s <yya<<v P b e iy
(o0 00 b
)ke[m])lelnl\{zozl})

// OTraceOut call:

A — E: OTraceOut(l,])
E: assertc €c; & ¢, €cy
A —E: y(Sc f’) (es, €c, €;-) // DB-RSM call (repeat for [n] \ I)
E: €r —
A — E: (k 1) ,€c (k D, e k- shuffling
E— A: es(k) (E”“G.REnc(pkEG,g(l)))iE[n]
E— A: ec(k) — (E},a.Enc(kaa, 0))ie[n]
E->A: &%)« (E;Z.Enc(pkpa, 0))ie[n]
A —>E: e’ e’ &’
E: (bgkk) b(k*) bg.k*>) i (Zg X Zg X Zg) homomorphic blinding
k* k) $
Ao 2o,
k
E— A: (ebs ,ebc ,el(]r)) — (E .Enc(pkgg, 91)
.Enc(pkp,,0), EPa Enc(pkpa 0))
: 15 e e
A — E:) k#k
k k k
E: (65 b)) (65 o e e’ T e 1 el
m] ke[m] ke[m]
E: Get (rl)le[n]\{,o i) (bs(k) b'(k) b;. (k))k;tk* from A’s random tape.
bs'<) bs!
(S,,(])gls R S je[n] // threshold decryption
k* k
— (en(p +bc(D axe!)+Zk¢k‘ é; >)j€[n]
k k* k
F' = (Fr(j) +Tr(p) +br§') +‘1er V4 Dk b;ﬁ-))je[n]
~ ~7
Eo A: SEj}h TDec (pkeg €s”.S)
SE:,*;.TD (PkPa ’, N) SE”‘ TDec (PkPa’ ér,’;,’)
E: ¢ —¢”"mod ¢; 7 — 7’ modq
E: b1 —e(hi, o)\ b2 e(gl,fz) '3« fr // stage 2
E: SgPK D RSM(y’U (8".&.7),

((bs jk; (k) %k))k?tk')JE{”ﬂ(io),ﬂ"(il)}’
((bsj- sbe; by))ké[m])jg{n’l(io),n’l(il)})

Figure 30: E17: Set y; ,¥; as commitments of zeros.

273

Proceedings on Privacy Enhancing Technologies 2024(2)

E1g(14, k*,ig, i1, b)

Agrawal et al.

/! Keygen:
E: pk(k*),sk<k*) «— E.Keygen(1%)
P
Eo A PkEG’Skf;G) — EtEhGAKeygen(l/\, (MIZ{)"#')
S
Eo A ppy,skps | ER Keygen(1%, (M) zir)
E— A: pk*), pkeg, pkp,
A—E (kP g
A > E: 00,91, (€)ien]\ {ip.i }
E: if (b = 0) then (v;,,v;,) = (vo,v1) else (vjy,v;,) = (v1,00)

/] Enc calls for iy, iy:

E: for i € {ip,i1}:
— E},I"a.Enc(pkpa, 0)
$
ri & Zg: v < Bhis py; — Sz (7))
€, — Eth Enc(pkp,, 0)
k
}i))k#c* ())k;tk <_Zq
Dot o
<ev(Uk#k* — (EEnc(pk®, o)) s ev) — EEnc(pk¥),0)
(er st (E. Enc(pk“ k>)>k¢k* erl®) E Enc(pk®),0)
E—- A Cj = (Ez,yi, (eVE)aer,()kE[mJ’PYi’ Er,-)
endfor
/I Mix:
E: ﬂ<k*) i Perm(n)
A — E: k-1) = (E 1))ie[n]
E: (k) Eﬂ'I Enc(pkp,, 0)
. k) k*) (k")
E—->A: € — (en(k*)(l) € (n>)
A—>E €
E: Get (1)) 41 using A’s random tape; 7 — 7™ o -+ 0 £ (D
E: for j € [n]: v’ — (Un(j))je[n]
A < E: forj € [n]: SElh D (pkpas e}.,v})
Geto (k) l(ok) z(1k), l(lkk) from the Enc calls for iy, i1
for i E [n] \ {io, i1}:
Get vl(k), r;k) from A’s random tape and input for sender S;
// OTraceln call:
A — E: OTraceln(I,])
E: assert vy € u} = vy €7/,
A — E: y,0’ €. // DB-SM call (repeat for [n] \ J)
A E ex® D /) shuffling
E—A: ek (EE}E.Enc(pkEG,g?))je[n]
A —>E €5
E: b*) Ezn phic blinding
M q Oomomor p 11C DIINC III‘Q
~(k*
E— A: eg k) — E:_:'}J,Enc(pkEG,gf)
A—E (& %g .
E: o — eX @Ry
E: Get (bgk))k;ek* from A’s random tape. // threshold decryption
for i € {ig i1): 61 & Gy
(k%) Lo
fori € [n]\ {i,i1): &; « o’>0, FEkek i
71(i)
A o E: s;‘h 1Dec (PKeG: €02 0)
k k
E DPK P? SM(y’ }E"’ ((” > () b<))kik*)ie{io.il}’
((v; b)ke[m])ze[n]\{to i)

// OTraceOut call:

A — E: OTraceOut(l,])
E: assertc €c; & ¢ €cy
A —E: y(Sc f’) (es, €c, €;-) // DB-RSM call (repeat for [n] \ I)
E: €r —
A — E: (k 1) ,€c (k D, ek - shuffling
E— A: es(k*) — (E”“G.REnc(pkEG,g(l)))iE[n]
E— A: ec(k) — (E},a.Enc(kaa, 0))ie[n]
E->A: &%)« (E;Z.Enc(pkpa, 0))ic[n]
A —>E: e’ e, e’
E: (bgkk) b(k*) b$£.k*>) i (Zg X Zg X Zg) homomorphic blinding
k* k*
Ao 2o,
k
E— A: (ebs ,ebc ,el(]r)) — (E -Enc(pkeg. g9),
'; Enc(pkpa 0), EPa Enc(pkpa 0))
k k k
E: (65 & & > . (65 o e e’ T e 1 el
m] ke[m] ke[m]
E: Gft,(,rk)lﬁl"ﬂ{lo i) 7(!)57(1‘)7 l}i(lj)ilfl(k))k#k* from A’s random tape.
bk . ek i
S — (S”(])gls’ ke b)je["u threshold d(u\ptmn
IS SN
e <—(c,[(j)+b(. >+qx()"'Zk;ek*)}E[n]‘
i ,,,,1
k*
VP H(r;z(1)+"n(,)+br(L ()+Zk¢k* r])Je[njl
e
E o A: S%G.TDec(pkEG’ és’, s)
A
SE{:'L.TDec(kaa’ &' e"); SE“‘ TDec(kaa’ &)
E: ¢/ —¢”mod q; 7 — F’ modq
E: b1 —e(h, 2)7h f)z —e(gr o) bs fr // stage 2
E: g0, (8, &, F),

SH (
DPI;D& RSM ® b)
« e o bry Dkt jeamt o).t (i) e

W, o, o
((bs; ™ be ;" br; Dietm]) je 1 (i), n1 (i) 1)

Figure 31: Eq3: Replace 6;,, 6;, by elements randomly drawn from Gy.

274

Traceable mixnets

E19(1%, k*,ig, i1, b)

Proceedings on Privacy Enhancing Technologies 2024(2)

/! Keygen:

E:

E o A:
E & A:
E— A:
A — E:
A — E:
E.

pk(k*),sk<k*) — E.Keygen(1%)

P
pkegs sk(%{g)) — EEhGAKeygen(l/\, (MIZ{)"#')
PKpg, skp, . — Et .Keygen(1%, (M)izcr)
Pk, pkeg, pkpg
(pk ™) s

00,91, (€i)ien]\ {ip.ir}
if (b = 0) then (v;,,v;,) = (vo,01) else (v, v;,) = (v1,00)

/] Enc calls for iy, iy:

E:

E— A:

// Mix:

A — E:

E— A:
A — E:

A E:

for i € {ip,i1}:
— E},I"a.Enc(kaa, 0)
$
ri & Zg: v < hys py; < Sz (7))
€, — Eth Enc(pkp,, 0)
k
())k#c* (k))k;tk <_Zq
f«)
«— 0; r
<ev(Uk#k* (EEnc(pk®,0%)) s ev!®) — EEnc(pk®), 0)
Nisre « (E. Enc(pk“ k>)>k¢k* erl®) E Enc(pk®,0)

ci = (eny; (ev}), er;)ke[mJ’P)’p €r;)
endfor

<—0

(er

) i Perm(n)

“ ko
e® D = (e ey
ek — EE,I" .Enc(pkp,, 0)

(k) k*) (k*)
€ — (en(k*)(l) € (n>)
e/
Get (10)) 41 using A’s random tape; 7 — 7™ o -0 £ (D

for j € [n]: 0 & (0x(}))je[n]
for j € [n]: SE(h TDec (pkpa, e}’v})
Get v (k) (k) (k)

Tiy Y%

for i € [n] \ {lo,n}
Get vl(k

, l(lkk) from the Enc calls for i, i1

), r;k*) from A’s random tape and input for sender S;

// OTraceln call:

A — E:
E:
A — E:
A — E:
E— A:
A — E:
E:
E— A:
A — E:
E:
E:

A & E:

OTraceln(I, J)

assert o) € u} — v; €7

y,0’, €. // DB-SM call (repeat for [n] \ J)
eo KD shuffling

ea(k) (EEhG-EnC(pkEGvg(l)))je[n]

€s

bk & zn
)

homomorphic blinding

— E:_:'}J,Enc(pkEG,gf)

Get (bgk))k;ek* from A’s random tape. // threshold decryption

fori € {io,i1}: 1 < Gy

(k)
for i € [n] \ {i0,i1}: & — o ‘_1(;2
S,ﬁ'h e PKEG- €02 0)

k) o (k
DPKP? SM(y’V’k‘7 ((” ”<) b< ke ielipir b
((v; b())ke[m Die[n]\{ioir})

// OTraceOut call:

A — E:

E:

A — E:

E:

A — E:
E— A:
E— A:
E— A:
A — E:

E:

E— A:

A — E:

E o A:

s

OTraceOut(I,])

assertc; €c; < c¢j, €c1
y,(S,c, f’) (es, €c, €;-) // DB-RSM call (repeat for [n] \ I)
€ —

(k 1) ,€c (k D, k- shuffling
es“‘j - (E‘“G.REnc(pkEc,g?»iqn]
e¥) e (Ep)-Enc(pkpa: 0))icn]

& k) (BN Enc(pkp,, 0))ic(n]
es/, Ec,, Er/
b, bE) b)) & (zn xzn X 21)

k* k) $
A S

k
(ebs ,ebc ,el(]r)) — (E .Enc(pkgg, 91)
'; .Enc(pkp,,0), EPa Enc(pkpa 0))
k

(k) (k))
k+k
(53 é &') — (GS

homomorphic blinding

k) (k) s <k)
H el e’ [l € & [2
ml P ketm) PO keim)
Get (ri)iec[n]\{ipir}> (bs(k) b'(k) b;. (k))k;tk* from A’s random tape.

for j € {71 (ip), 7~ (i) }:

threshold decryption

S(—G

AR

& e e;." + Sk b;j. e
[for j & [n]\ {x~(io). 7~ (i2)}:

K)
bs} D4 skt bs;- ’

$
— qu+q2

P+ Siure by ‘

=7
5j < Sz()h%

- k* k* k
c}’<—c,,(j)+bc;)+q)(§)+Zk¢k*bé(»)‘

~ N k
P Fa() + a0 +bry)+ + i b ‘

Sé‘n rDec PKEG: €5,)

S (pkpp e &) ST

Eh TDec Eh TDec
2

¢ —¢”"mod ;7 — 7’ modq
b1 —e(hi, £2) 7' be < e(gr.) b3 — fr
SSPK-D(%RSM(%’ o', Ef} &L F),

((bs; ", be ;" br i Dicxke) je (1 (ig) 1 (in))

k k k
(s be i br e tm) jg rt oyort 1))

(PkPa: ér,x ;//)

stage 2

Figure 32: E1o: Replace S’j, &, 7" for j € {x71(ip), 71 (i1)} by randomly drawn elements.

275

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Formal definitions
	2.1 Completeness
	2.2 Soundness
	2.3 Secrecy

	3 Preliminaries
	3.1 Key cryptographic primitives

	4 Our construction
	4.1 Single prover case
	4.2 Overview of our construction
	4.3 Technical details

	5 Security analysis
	5.1 Privacy risk analysis of query outputs

	6 Implementation and benchmarks
	7 Conclusion
	Acknowledgments
	References
	A Single prover reverse set membership
	B From honest-but-curious to malicious model
	C Proofs
	C.1 Proof for Theorem 1
	C.2 Proof for Theorem 2
	C.3 Proof for Theorem 3
	C.4 Proof for Theorem 4
	C.5 Secrecy in the malicious model

	D Privacy risk analysis of TraceIn/TraceOut queries

