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ABSTRACT

Training machine learning models on data from multiple entities

without direct data sharing can unlock applications otherwise hin-

dered by business, legal, or ethical constraints. In this work, we

design and implement new privacy-preserving machine learning

protocols for logistic regression and neural network models. We

adopt a two-server model where data owners secret-share their

data between two servers that train and evaluate the model on the

joint data. A significant source of inefficiency and inaccuracy in ex-

isting methods arises from using Yao’s garbled circuits to compute

non-linear activation functions. We propose new methods for com-

puting non-linear functions based on secret-shared lookup tables,

offering both computational efficiency and improved accuracy.

Beyond introducing leakage-free techniques, we initiate the ex-

ploration of relaxed security measures for privacy-preserving ma-

chine learning. Instead of claiming that the servers gain no knowl-

edge during the computation, we contend that while some informa-

tion is revealed about access patterns to lookup tables, it maintains

𝜖-𝑑X-privacy. Leveraging this relaxation significantly reduces the

computational resources needed for training. We present new cryp-

tographic protocols tailored to this relaxed security paradigm and

define and analyze the leakage. Our evaluations show that our

logistic regression protocol is up to 9× faster, and the neural net-

work training is up to 688× faster than SecureML [58]. Notably,

our neural network achieves an accuracy of 96.6% on MNIST in 15

epochs, outperforming prior benchmarks [58, 76] that capped at

93.4% using the same architecture.
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1 INTRODUCTION

Machine learning (ML) has become an indispensable tool in vari-

ous domains, from advertising and healthcare to finance and retail,

enabling the training of predictive models. The accuracy of these

models is significantly enhanced when trained on vast datasets

aggregated from diverse sources. However, numerous challenges,

such as privacy concerns, stringent regulations, and competitive
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business landscapes, often hinder collaborative data-sharing en-

deavors.

Privacy-Preserving Machine Learning (PPML) using secure com-

putation allows multiple entities to train models on their aggre-

gated data without revealing their individual datasets. In this para-

digm, data owners distribute their private data among several non-

colluding servers using secret-sharing techniques. These servers

then perform training on the combined data without gaining in-

sights into the individual datasets.

Past works on PPML have focused on training logistic regression

models [58, 81] and neural networks [26, 57, 58, 76]. A significant

bottleneck in existing work is using expensive protocols, such as

Yao’s garbled circuits, for computing non-linear activation func-

tions. Furthermore, prior works [58, 76] resort to non-standard or

approximate activation functions, resulting in accuracy loss.

In this work, we present two novel protocols Hawk
Single

and

Hawk
Multi

, designed for accurate and efficient computation of ac-

tivation functions and their derivatives. These protocols leverage

secret shared precomputed lookup tables. We begin by introducing

theHawk
Single

protocol, which offers plaintext accuracy and robust

security in a semi-honest adversary model. Its primary limitation,

however, is its reliance on consuming one lookup table for each

function computation, necessitating a vast number of such tables.

To mitigate this limitation, we subsequently introduce Hawk
Multi

,

enabling lookup table reusability. The Hawk
Multi

protocol poses

several security and efficiency challenges, which we further address

to achieve a fast and secure protocol. Although methods such as

Oblivious RAM (ORAM) [36] can be employed to eliminate infor-

mation leakage in our context, we opt for a slightly relaxed security

model to prioritize performance improvements. Our Hawk
Multi

protocol permits table reuse but at the cost of revealing limited

information about the access patterns. We rigorously analyze the

leakage of the Hawk
Multi

protocol and prove that it preserves 𝜖-

𝑑X-privacy for the leaked access patterns.

Building on Hawk
Single

and Hawk
Multi

we develop efficient

PPML protocols tailored for logistic regression and neural network

training in a two-server secure computation environment. Our eval-

uations, conducted on Amazon EC2, showcase the performance

gains of our system.

1.1 Our Contributions

Computing Standard Activation Functions.We propose a novel

method to accurately compute activation functions in a secure com-

putation setting and achieve accuracy similar to plaintext training.
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Past methods either use non-standard activations or approximate

them. As shown in Figure 9, using non-standard activation functions

may cause accuracy to plummet to random guess levels, potentially

affecting convergence. Hence, using standard activation functions

is crucial to harness machine learning advancements rather than

relying on makeshift functions for secure computation.

Generic Method for Precise Univariate Function Computa-

tion.We introduce a universal method for securely computing any

univariate function. It can be directly used to compute any univari-

ate activation function, which constitutes most of the activation

functions used in all but the last layer of a neural network. Our

method computes activations much faster than the state-of-the-art.

This method creates secret shared lookup tables for all possible

inputs; we use recent advances in low-precision machine learning

to confine the size of the lookup tables.

Precise Computation of Multivariate Functions.We demon-

strate the application of our method to compute multivariate acti-

vations, notably Softmax. We highlight that this is the first method

to compute Softmax in a secure computation setting accurately.

Beyond Activation Functions. While we demonstrate the ap-

plicability of our protocols for activation function computation,

their potential extends far beyond these specific functions. The

underlying principle of precomputed lookup tables can be applied

to a wide range of MPC applications where the input domain can

be bounded. For example, in private set intersection [44], our pro-

tocol can enable efficient comparison of elements in private sets.

Similarly, secure auctions [12] can benefit from lookup tables to

ensure privacy while evaluating bids. Furthermore, our protocols

can be used to securely compute histograms [55], enabling private

data analysis. These applications highlight the versatility of our

protocols for MPC across various domains.

An Alternate Representation for DReLU Activation. We

present an alternate representation of the DReLU activation func-

tion for fixed-point numbers, which allows us to reduce the entries

in the lookup table for DReLU by a factor of 2
11
.

Relaxed Security Setting. In addition to introducing leakage-free

methods using HawkSingle, we initiate the study of a new security

model for PPML. This relaxed model allows some information leak-

age about access patterns, but the leakage is proven to preserve

𝑑X-privacy. We leverage this model to develop HawkMulti protocol

to significantly reduce computational resources while training.

Experimental results. We implement our framework and per-

form various experiments for training and inference of logistic

regression and neural networks using six different datasets in both

LAN and WAN settings. Section 8 shows that our protocols are

significantly faster than state-of-the-art in a two-party setting and

achieve accuracy similar to plaintext training.

2 RELATEDWORK

This section overviews prior studies across fields such as access

pattern privacy, PPML, and secure MPC pertinent to our work.

Access Pattern Privacy literature focuses on achieving full or

partial obliviousness during data retrieval. ORAM [36] algorithms

provide complete obliviousness by ensuring that the physical access

patterns for any two equal-length logical patterns are indistinguish-

able. While ORAM addresses access pattern leakage and has been

extensively studied in both client-server [5, 36, 62, 67, 70] and multi-

party [28, 37, 62, 79, 85] settings, it carries an inevitable overhead

of Ω(𝑙𝑜𝑔(𝑛)) [15, 36, 50].
A natural approach for circumventing this overhead is relaxing

full obliviousness for a weaker privacy notion, such as differen-

tial privacy. Differential privacy introduces a neighborhood con-

cept and ensures closeness between neighboring access sequences

rather than all sequences. Despite the relaxation, [61] show that the

Ω(𝑙𝑜𝑔(𝑛)) lower bound also applies to DP-ORAM [75] structures.

Nonetheless, various studies have employed differentially private

access patterns to offer performance enhancements for specific

algorithms, such as searchable symmetric encryption (SSE) [66],

sorting and merging of lists [20], histograms [2], and graph-parallel

computation [55]. The performance enhancement for these algo-

rithms stems from the fact that they generally rely on a full memory

scan. Therefore, the problem of access pattern privacy is reduced

to hiding the number of accesses for each element. For lookup ta-

bles, where only a limited number of elements are accessed, these

algorithms fail to deliver an efficient solution.

PPML Using Secure MPC. Previous MPC studies have explored

decision trees [52], K-means clustering [16, 45], SVM [72, 84], and

regression techniques [30, 65, 69, 80]. However, these works incur

high efficiency overheads and lack implementation. SecureML [58]

provides protocols for secure training and inference of linear regres-

sion, logistic regression, and neural networks in a two-server setting.

They present alternate functions to approximate the non-linear ac-

tivations (Sigmoid, ReLU, and Softmax), which are evaluated using

garbled circuits. However, garbled circuits have a high communi-

cation overhead, and approximating activation functions reduces

the model’s accuracy. QUOTIENT [1] presents protocols for neural

network training in a two-server setting, utilizing quantization for

various network components. However, using garbled circuits and

oblivious transfer produces high overheads.

SecureNN [76] and ABY
3
[57] present privacy-preserving neu-

ral network training protocols in a three-server honest majority

setting. Like SecureML, they approximate Softmax, which reduces

the model accuracy, as discussed in Section 8.4. Falcon [77] com-

bines techniques from SecureNN [76] and ABY
3
[57] to improve

the training performance. Our two-server protocol, as shown in

Section 8, outperforms these in efficiency. Another pertinent work

in the three-server setting is Pika [73], which adopts a lookup table-

centric approach to computing non-linear functions. Pika relies on

Private Information Retrieval (PIR) and Function Secret Sharing

(FSS) [14] to hide access patterns. Despite providing full oblivious-

ness, their protocol has an overhead of 𝑂 (𝑛) stemming from FFS

key generation, FFS evaluation, and dot product operation with

all lookup table elements. In fact, Ω(𝑛) overhead is intrinsic to

PIR [10]. Pika only provides performance evaluations for generic

functions and inference tasks. We compare our protocols with Pika

for sigmoid function computation in Appendix F.

A parallel line of work focuses on secure neural network in-

ference. A party or a group of parties evaluates the model on a

client’s private data, keeping the model private. Gilad-Barach et

al.[29] employ HE for secure inference, albeit with accuracy com-

promises. MiniONN [53] optimizes the secure inference protocols of

SecureML [58] by reducing the offline cost of matrix multiplication.

Using a third-party dealer, Chameleon [64] removes the oblivious
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transfer protocols required for multiplication. Gazelle [46] opti-

mizes linear operations using specialized packing schemes for HE.

Baccarini et al. [7] present ring-based protocols for MPC operations

applied to NN inference. SIRNN [63] presents a lookup table based

protocol that uses digit decomposition with oblivious transfers to

compute non-linear functions efficiently. We compare our protocols

with SIRNN for sigmoid function computation in Appendix F.

Other PPML Approaches. Shokri and Shmatikov [68] explore

privacy-preserving neural network training with horizontally parti-

tioned data. The servers train separately and share only parameter

updates, using differential privacy [31] to minimize leakage. Wu

et al.[81] and Kim et al.[49] employ homomorphic encryption for

logistic regression, approximating the logistic function with poly-

nomials. The complexity is exponential in the polynomial degree,

and the approximation reduces the model accuracy. Crawford et

al. [22] use fully homomorphic encryption to train logistic regres-

sion models using encrypted lookup tables. However, the approach

incurs high overhead, and using low-precision numbers reduces the

model’s accuracy. In contrast, our protocols are orders of magnitude

more efficient and achieve accuracy similar to plaintext training.

We primarily compare our techniques with SecureML [58] as

this is the only work we found for logistic regression and neural

network training in a two-server client-aided setting. While recent

works exist [1, 57, 76, 77], their settings differ, making direct com-

parisons challenging. We compare our online cost with theirs as

they lack an offline phase. We further remark that the idea of em-

ploying lookup tables for function evaluation is not novel with past

works [14, 24, 27, 48, 63] suggesting circuit and FSS-based protocols.

However, these works necessitate representing functions as either

boolean or arithmetic circuits, with each gate evaluated using a

lookup table. It is non-trivial to directly represent functions like

exponential, logarithm, etc, used in ML activation, as circuits. This

complexity typically leads to reliance on circuit-friendly approxi-

mations, such as the Taylor series, which compromises accuracy

and introduces inefficiencies (see Figure 9). Our lookup table based

protocols are fundamentally different as they enable direct computa-

tion of ML activations without resorting to circuit approximations.

Furthermore, our main contribution is the Hawk
Multi

protocol that

allows for the reuse of a lookup table by leveraging metric differen-

tially private access patterns, missing in prior research.

3 PRELIMINARIES

3.1 Machine Learning

Logistic Regression is a binary classification algorithm commonly,

often used for tasks like medical diagnosis. Given 𝑛 training ex-

amples 𝒙1, 𝒙2, ..., 𝒙𝒏 ∈ R𝐷 with binary labels 𝑦1, 𝑦2, ..., 𝑦𝑛 , the goal

is to learn a coefficient vector 𝒘 ∈ R𝐷 which minimizes the dis-

tance between 𝑔(𝒙 𝒊) = 𝑓 (𝒙 𝒊 .𝒘) and the true label 𝑦𝑖 . The acti-
vation function 𝑓 is used to bound the dot product of 𝒙 𝒊 and 𝒘
between 0 and 1 for binary classification. The Sigmoid function

is typically chosen for 𝑓 , defined as: 𝑓 (𝑧) = 1

1+𝑒−𝑧 . To learn 𝒘 ,
we define a cost function 𝐶 (𝒘) and find𝒘 using the optimization

argmin𝒘 𝐶 (𝒘). We use the cross-entropy cost function defined as:

𝐶𝑖 (𝒘) = −𝑦 log 𝑓 (𝒙 𝒊 .𝒘) − (1−𝑦) log(1− 𝑓 (𝒙 𝒊 .𝒘)), with the overall

cost being the average across all examples: 𝐶 (𝒘) = 1

𝑛

∑𝑛
𝑖=1𝐶𝑖 (𝒘).

Neural Networks extend logistic regression to handle more com-

plex tasks. A neural network consists of 𝑙 layers where each layer

𝑖 contains 𝑑𝑖 neurons. The output of each neuron is computed by

applying a non-linear activation to the dot product of its coeffi-

cient vector𝒘 and the input 𝒙 . Activation functions, like the ReLU:

𝑓 (𝑧) = 𝑚𝑎𝑥 (0, 𝑧), are commonly used. The first layer receives in-

puts from the dataset, with each subsequent layer performing calcu-

lations and forwarding the output to the next layer using ‘forward

propagation’. For classification, the probability of the input example

belonging to each class is computed by applying the Softmax func-
tion: 𝑓 (𝑧𝑖 ) = 𝑒𝑧𝑖∑𝑑𝑙

𝑖=1
𝑒𝑧𝑖

to each neuron in the output layer, where 𝑑𝑙

denotes the total neurons in the output layer. The Softmax output
is a probability value between 0 and 1 for each class, summing

up to 1. To train the network, we apply the Stochastic Gradient

Descent (SGD) algorithm and update the coefficients of all neurons

recursively, starting from the last layer and moving towards the

first layer in a ‘backward propagation’ step. For further details on

related ML concepts like SGD and batching, refer to Appendix A.

3.2 Secure Computation

Secure computation allows parties to compute a joint function of

their data while keeping their data private.

PreprocessingModel of Secure Computation divides a protocol

into two phases: a data-independent offline phase used to create cor-

related randomness and an online phase. This model allows most of

the heavy computation to be delegated to the offline preprocessing

phase, rendering the online phase more computationally efficient.

Additive Secret-Sharing. In a secure two-party computation (2PC)

setting, secret values are additively secret-shared between the par-

ties 𝑃0 and 𝑃1. To share a secret 𝑥 ∈ Z𝑛 , a random 𝑟 ∈ Z𝑛 is

generated. The share for the first party is computed as ⟨𝑥⟩0 = 𝑟 ,

while the second party’s share is ⟨𝑥⟩1 = 𝑥 − 𝑟 (mod 𝑛). To recon-

struct 𝑥 , one party sends its share to the other party, which then

computes 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1 (mod 𝑛), denoted as 𝑅𝑒𝑐 (𝑥0, 𝑥1). We use

⟨𝑥⟩𝑖 to denote 𝑃𝑖 ’s share of 𝑥 .

Secure Addition. The parties can non-interactively add two secret-

shared values 𝑥 and 𝑦 where each 𝑃𝑖 computes ⟨𝑧⟩𝑖 = ⟨𝑥⟩𝑖 + ⟨𝑦⟩𝑖
(mod 𝑛) as their share of the sum.

Secure Multiplication. To multiply two secret-shared values 𝑥

and 𝑦, the parties use Beaver’s multiplication triples [8]. Initially,

the parties possess shares of 𝑎, 𝑏, and 𝑐 where 𝑎 and 𝑏 are random

values in Z𝑛 and 𝑐 = 𝑎𝑏 (mod 𝑛). Each party 𝑃𝑖 computes ⟨𝑑⟩𝑖 =
⟨𝑥⟩𝑖 − ⟨𝑎⟩𝑖 (mod 𝑛) and ⟨𝑒⟩𝑖 = ⟨𝑦⟩𝑖 − ⟨𝑏⟩𝑖 (mod 𝑛) and compute

𝑑 = 𝑅𝑒𝑐 (𝑑0, 𝑑1) and 𝑒 = 𝑅𝑒𝑐 (𝑒0, 𝑒1) to reconstruct 𝑑 and 𝑒 . Each

party 𝑃𝑖 then computes ⟨𝑧⟩𝑖 = ⟨𝑥⟩𝑖𝑒 + ⟨𝑦⟩𝑖𝑑 + ⟨𝑐⟩𝑖 − 𝑖𝑑𝑒 as their
share of the product.

3.3 Metric Differential Privacy (𝒅X-privacy)

Definition 1. A randomized algorithm L is 𝜖-differentially
private if for all datasets 𝐷1 and 𝐷2 differing in a single value and
for all 𝑆 ⊂ 𝑅𝑎𝑛𝑔𝑒 (L): 𝑃𝑟 [L(𝐷1) ∈ 𝑆 ] ≤ 𝑒𝜖𝑃𝑟 [L(𝐷2) ∈ 𝑆 ], where the
probability space is over the coin flips of the mechanism L.

While the above definition captures differential privacy in a

centralized setting, there are scenarios where data privacy at the

44



Hawk: Accurate and Fast PPML Using Secure Lookup Table Computation Proceedings on Privacy Enhancing Technologies 2024(3)

individual level is paramount. Local Differential Privacy (LDP) ob-

fuscates individual data records when clients distrust the central

curator, altering data before statistical analysis.

Definition 2. A randomized algorithm L provides 𝜖-LDP if for
each pair of inputs 𝑥 and 𝑥 ′ and for all 𝑆 ⊂ 𝑅𝑎𝑛𝑔𝑒 (L): 𝑃𝑟 [L(𝑥) ∈
𝑆 ] ≤ 𝑒𝜖𝑃𝑟 [L(𝑥 ′) ∈ 𝑆 ].

In this work, we adopt a natural generalization of the conven-

tional differential privacy [31] presented by Chatzikokolakis et

al. [21]. This extension is particularly relevant when the domain X
is viewed as a metric space. Termed as metric differential privacy or

𝑑X-privacy, this approach is adept at modeling situations where in-

distinguishability is best expressed through a metric between secret

inputs. Geo-Indistinguishability is presented as a canonical example

for 𝑑X-privacy [3, 21], where a user wishes to share their location

with a service to receive nearby restaurant recommendations. In-

stead of disclosing the precise coordinates, the user can employ

𝑑X-privacy to share an approximated location to receive relevant

suggestions without compromising their exact whereabouts.

The input domain X for an activation function can be viewed

as a metric space. For instance, if for some 𝑥, 𝑥1, 𝑥2 ∈ X, |𝑥 − 𝑥1 | <
|𝑥−𝑥2 |, then usually, 𝑓 (𝑥1) provides a better approximation of 𝑓 (𝑥)
than 𝑓 (𝑥2). Mechanisms from standard or local DP can be adapted

to suit 𝑑X-privacy by choosing a fitting metric for the confidential

data. We leverage local 𝑑X-privacy to obfuscate each individual

table lookup in ourHawkMulti protocol, ensuring enhanced privacy

from computing servers.

Definition 3. A randomized algorithm L provides local 𝜖-𝑑X-
privacy if for each pair of inputs 𝑥 and 𝑥 ′ and for all 𝑆 ⊂ 𝑅𝑎𝑛𝑔𝑒 (L):
𝑃𝑟 [L(𝑥) ∈ 𝑆 ] ≤ 𝑒𝜖.𝑑X (𝑥,𝑥′)𝑃𝑟 [L(𝑥 ′) ∈ 𝑆 ], where 𝑑X (., .) is a distance
metric.

We define the distance metric as the absolute difference between

two points, i.e., 𝑑X (𝑥, 𝑥 ′) = |𝑥 − 𝑥 ′ |. We choose 𝑑X-privacy as

the noising mechanism to obfuscate table lookups while ensuring

the noised value remains close to the original. This proximity is

crucial for maintaining model accuracy. By definition, 𝑑X-privacy
offers a stronger privacy guarantee for inputs that are close to

each other due to similar output distributions after adding noise.

We can achieve a stronger guarantee for distant input values by

adding large noise but at the cost of utility. Our protocol aims

to balance privacy, accuracy, and efficiency. Opting for stronger

privacy guarantees and higher accuracy would require more lookup

tables, each with a smaller privacy budget but at a higher offline

phase and storage costs. Conversely, optimizing for privacy and

efficiency would necessitate adding more noise to each lookup,

potentially compromising accuracy. Lastly, for leakage analysis, it

is common in related studies [55] to focus on access pattern leakage.

Analyzing potential leaks for the underlying input data tends to be

quite complex.

Differential privacy employs various mechanisms to introduce

controlled randomness to query results. In general, mechanisms

designed for differential privacy can be extended to𝑑X-privacy. The
geometric mechanism adds integer-valued noise from a symmetric

geometric distribution to the output of 𝑓 , ensuring 𝜖-𝑑X-privacy.

Definition 4. Let 𝑓 : X → Z and let 𝛾 be drawn from a
symmetric geometric distribution with the probability mass function:
𝐺𝑥 = 1−𝑒−𝜖

1+𝑒−𝜖 · 𝑒−𝜖 ·𝑑X (𝑥,𝑥 ′) . Then, A(.) = 𝑓 (.) + 𝛾 is 𝜖-𝑑X-private.

We provide the proof in Appendix C.

Figure 1: Overview of our PPML setup.

4 SECURITY MODEL

We consider a setting where clients 𝐶0, ..,𝐶𝑛−1 want to train ML

models on their joint data. The data can be horizontally or vertically

partitioned among the clients. The clients outsource the compu-

tation to two untrusted but non-colluding servers, 𝑃0 and 𝑃1. The

clients secret share the input data between 𝑃0 and 𝑃1 that employ

secure 2PC techniques to train ML models on this data. Figure 1

depicts an overview of the setup.

Client-Aided Offline Phase. We use a client-aided offline phase.

Since clients must initially upload their data to the servers, we

further mandate them to generate and transmit random numbers

and lookup tables, which are later utilized in the online phase. This

strategy considerably enhances the efficiency of the offline phase

by imposing only a marginal additional load on the clients, who are

uninvolved post this phase. An alternative is the server-aided offline

phase, where the computing servers use homomorphic encryption

and oblivious transfer based techniques to generate required ran-

domness. However, as noted by past work [58], this method is a

significant bottleneck for PPML due to extensive cryptographic

tasks. Aiming for practical PPML protocols, we adopt a client-aided

offline phase, which provides a significant speed up as seen in Ta-

ble 5. The only limitation of a client-aided offline phase is that the

participating clients can not collude with the computing servers.

This “Client-Aided Setting” has been formalized and adopted in

several past works on PPML [34, 47, 58]. It is worth noting that

each client supplies randomness and lookup tables exclusively for

their specific batch of training data. We refer to the client executing

the offline phase as a Client − Aide.

4.1 Security Definition

We consider a semi-honest adversaryA, which adheres to protocol

specifications but tries to obtain information about the clients’ data.

We assume A can corrupt at most one of the two servers and any

client subset, provided corrupt clients don’t collude with servers.

The security definition requires that adversary A only learns the

data of corrupted clients and the final trained model but does not

learn the data of any honest client.
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We prove the security of our protocols using the simulation

paradigm [17, 19, 35]. The universal composition framework [19]

facilitates security arguments for diverse protocol compositions.

End-to-end training security follows from the composition of un-

derlying protocols. Security is modeled using two interactions: a

real interaction where the servers run a two-party protocol Π in the

presence of an adversary A as defined above and an environment
Z, and an ideal interaction where the servers send the inputs to a

functionality F that performs the desired computation truthfully.

Definition 5. A protocol Π securely realizes F if, for every
adversary A acting in the real world Real[Z,A,Π, 𝜆], there is an
adversary S in the ideal world Ideal[Z,S, F , 𝜆], such that the proba-
bility ofA succeeding in the real world interaction and the probability
of S succeeding in the ideal world interaction, given the security pa-
rameter 𝜆, are related as:
|𝑃𝑟 [Real[Z, A,Π, 𝜆] = 1] − 𝑃𝑟 [Ideal[Z, S, F, 𝜆] = 1] | = negl(𝜆)

We introduce two important modifications to the security defi-

nition to establish security for HawkMulti protocol, which permits

access pattern leakages. Firstly, we allow some leakage in the ideal

world to mirror the information learned by the adversary in the real

world by observing the lookup table accesses. The leakage function

is a randomized function of the access patterns. Secondly, we im-

pose an extra condition requiring this leakage function to maintain

𝑑X-privacy. In the ideal interaction, each party 𝑃𝑖 forwards its input
to the ideal functionality. The ideal functionality reconstructs the

input received 𝑥1, 𝑥2, .., 𝑥𝑛 , computes the output 𝑓 (𝑥1, 𝑥2, ..𝑥𝑛), and
sends ⟨𝑓 (𝑥1, 𝑥2, ..𝑥𝑛)⟩0 to 𝑃0 and ⟨𝑓 (𝑥1, 𝑥2, ..𝑥𝑛)⟩1 to 𝑃1. Concur-

rently, the ideal functionality computes a leakage function L of the

input and sends L to the simulator S. Our protocols operate in a

hybrid world with access to secure, ideal functionalities, which we

substitute with secure computation techniques in our application.

Per Canetti’s classic result [18], proving security involves treating

these as trusted functionality calls.

Definition 6. A protocol Π securely realizes F with leakage
L and (𝜆, 𝜖)-security, while making calls to an ideal functionality
G, if, L is 𝜖-𝑑X-private, and for every adversary A acting in the G-
hybrid world Hybrid[G,Z,A,Π, (𝑋0, 𝑋1), 𝜆], there is an adversary
S in the ideal world Ideal[Z,S(L(X)), F , (𝑋0, 𝑋1), 𝜆], such that
the probability of A succeeding in the hybrid world interaction and
the probability of S succeeding in the ideal world interaction, on valid
inputs 𝑋0 and 𝑋1, are related as:
|𝑃𝑟 [Hybrid[G,Z, A,Π, (𝑋0, 𝑋1), 𝜆] = 1] −
𝑃𝑟 [Ideal[Z, S(L(X)), F, (𝑋0, 𝑋1), 𝜆] = 1] | = negl(𝜆)

5 ACCELERATING SECURE COMPUTATION

WITH LOOKUP TABLES

We propose two novel secure computation protocols that employ

lookup tables to evaluate a specific univariate function, 𝑦 = 𝑓 (𝑥).
These protocols enable the secure computation of non-linear activa-

tions. Furthermore, we detail how to extend our method to devise

specialized protocols for certain multivariate functions. Specifically,

we present a protocol for computing the Softmax function using

univariate functions. We use the prepossessing model of secure

computation discussed in Section 3.2.

Algorithm 1 Table Generation: Πoffline
HawkSingle (Client−Aide)

Input: Total number of lookup tables𝑚, function 𝑓 : 𝑋 → 𝑌 , and a

cryptographic hash function 𝐻 .

Output: 𝑃𝑖 gets lookup tables 𝐿
𝑓 ,𝑐

𝑖
for 0 ≤ 𝑐 < 𝑚.

1 Client − Aide sends a random key 𝑘𝑖 to 𝑃𝑖 .

2 For 0 ≤ 𝑐 ≤ 𝑚 − 1:

2.1 For all 𝑥 ∈ 𝑋 :
a Client − Aide computes additive secret shares ⟨𝑦⟩0 and
⟨𝑦⟩1 of 𝑦 = 𝑓 (𝑥).

b Client − Aide adds the 𝑘𝑒𝑦 : 𝐻 (𝑥 + 𝐻 (𝑘1 | |𝑐)), 𝑣𝑎𝑙𝑢𝑒 :

⟨𝑦⟩0 pair in 𝐿𝑓 ,𝑐
0

.

c Client − Aide adds the 𝑘𝑒𝑦 : 𝐻 (𝑥 + 𝐻 (𝑘0 | |𝑐)), 𝑣𝑎𝑙𝑢𝑒 :

⟨𝑦⟩1 pair in 𝐿𝑓 ,𝑐
1

.

2.2 Client − Aide randomly permutes all key value pairs in

𝐿
𝑓 ,𝑐

0
and 𝐿

𝑓 ,𝑐

1
.

3 Client − Aide sends all 𝐿𝑓 ,𝑐
0

for 0 ≤ 𝑐 < 𝑚 to 𝑃0.

4 Client − Aide sends all 𝐿𝑓 ,𝑐
1

for 0 ≤ 𝑐 < 𝑚 to 𝑃1.

Algorithm 2 Query Table: Πonline
HawkSingle (𝑃0,𝑃1)

Input: For 𝑖 ∈ {0, 1}, 𝑃𝑖 holds key 𝑘𝑖 , ⟨𝑥⟩𝑖 , and a cryptographic

hash function 𝐻 .

Output: 𝑃𝑖 gets secret share ⟨𝑦⟩𝑖 of 𝑦 = 𝑓 (𝑥).
Initialization: 𝑃𝑖 receives lookup tables 𝐿

𝑓 ,𝑐

𝑖
for all 0 ≤ 𝑐 < 𝑚

from Client − Aide. 𝑃0 and 𝑃1 initialize 𝑐 = 0.

1: 𝑃𝑖 computes ⟨𝑥⟩𝑖 + 𝐻 (𝑘𝑖 | |𝑐) and sends it to 𝑃1−𝑖 .
2: 𝑃𝑖 computes𝐻 (𝑥 +𝐻 (𝑘1−𝑖 | |𝑐)) = 𝐻 (⟨𝑥⟩𝑖 + ⟨𝑥⟩1−𝑖 +𝐻 (𝑘1−𝑖 | |𝑐)).
3: 𝑃𝑖 retrieves the value: ⟨𝑦⟩𝑖 corresponding to the key: 𝐻 (𝑥 +
𝐻 (𝑘1−𝑖 | |𝑐)) from 𝐿

𝑓 ,𝑐

𝑖
.

4: 𝑃0 and 𝑃1 increment 𝑐 = 𝑐 + 1.

5: 𝑃𝑖 outputs ⟨𝑦⟩𝑖 .

During the offline phase, for a party 𝑃𝑖 , a lookup table 𝐿
𝑓

𝑖
can be

constructed, where 𝑓 : 𝑋 → 𝑌 is a univariate function and 𝑋 and

𝑌 are the domain and range of 𝑓 , respectively. Each entry in 𝐿
𝑓

𝑖
is

of the form 𝑘𝑒𝑦 : PRF(𝐾, 𝑥), 𝑣𝑎𝑙𝑢𝑒 : ⟨𝑓 (𝑥)⟩𝑖 for every 𝑥 ∈ 𝑋 . Here
PRF(𝐾, ·) denotes a pseudo-random function with key 𝐾 . In the

online phase, 𝑃𝑖 holds a secret share ⟨𝑥⟩𝑖 and seeks to determine

⟨𝑓 (𝑥)⟩𝑖 . As ⟨𝑥⟩𝑖 is a secret share generated in the online phase,

it cannot directly serve as a key for the value ⟨𝑓 (𝑥)⟩𝑖 . The key

for this value must be deterministically derived from 𝑥 . During

the online phase, computation parties collaborate to securely com-

pute PRF(𝐾, 𝑥) from the shares ⟨𝑥⟩𝑖 and use it to retrieve ⟨𝑓 (𝑥)⟩𝑖
from the lookup table 𝐿

𝑓

𝑖
. To this end, we propose two protocols

Hawk
Single

and Hawk
Multi

. While Hawk
Single

provides perfect se-

curity, it comes with a higher offline cost and increased storage

overhead. In contrast, Hawk
Multi

permits table reuse, substantially

reducing these overheads, but it does introduce some access pattern

leakage, which is proved to be 𝑑X-private.
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Figure 2: a) MNIST (|B| = 128) b) Arcene (|B| = 100)

Accuracy comparison of plaintext training with our PPLR

protocol considering different bit representations for the

Sigmoid function.

5.1 HawkSingle: Single Use Lookup Table

Protocol

In the online phase ofHawk
Single

, each computation of 𝑓 consumes

an entire table. We generate a distinct table for every lookup during

the offline phase. The offline and online phases are detailed in Algo-

rithms 1 and 2, respectively. Here, 𝑐 ensures each table has distinct

keys. For practical utility, the size of the table for Hawk
Single

must

be minimized. Note that each Client − Aide supplies lookup tables

exclusively for their specific batch of training data.

Reducing the Size of Lookup Tables. We harness recent ad-

vancements in low precision machine learning [39, 71], discussed

in Appendix B, to trim the table size. Neural networks trained with

16-bit fixed-point values retain their accuracy [39]. By adopting

16-bit values for activation function inputs and outputs, our lookup

tables are constrained to 2
16

entries.

Our experiments on the MNIST dataset (classifying as “0” or

“not 0”) and the Arcene dataset (distinguishing “cancer” from “nor-

mal”) validate that 16-bit fixed-point numbers suffice for activation

functions without compromising model accuracy. Figure 2 shows

accuracy results for privacy-preserving logistic regression (PPLR)

using our protocols, which employ 16-bit fixed-point representa-

tion for Sigmoid, and provides a comparison with plaintext training

using 32-bit floating-point numbers. We observe that our protocol

retains the model accuracy. Specifically, allocating 11 to 13 bits for

the fractional component and the remaining for the integer part

yields accuracy nearly identical to plaintext training.

Optimizing Lookups for Derivatives. In certain cases, we can

compute the derivative from the activation function or vice versa.

For instance, DSigmoid(𝑥) = Sigmoid(𝑥) (1 − Sigmoid(𝑥)) and
ReLU(𝑥) = 𝑥DReLU(𝑥)), where DSigmoid and DReLU represent

the derivative of Sigmoid and ReLU respectively. Our protocol,

which leverages this relationship for ReLU and DReLU, is detailed
in Algorithm 7. Once the parties have DReLU(𝑥), they can use a

secure multiplication to compute ReLU(𝑥). This substantially cuts

down the need for additional lookup tables. While the concept of

computing ReLU(𝑥) from DReLU(𝑥) is not novel [76], our contri-
bution lies in harnessing this relationship to halve the lookup tables

needed for neural networks, thereby streamlining the offline phase.

An Alternate Representation for DReLU.We present an alter-

nate representation of the DReLU activation, aiming to reduce the

size of its associated lookup table substantially. Note thatDReLU(𝑥)
= 1 if 𝑥 > 0 and 0 otherwise. Our key observation is that, un-

like other activation functions, DReLU does not require precise

numbers. For instance, given 𝑥1 = 2 and 𝑥2 = 2.57, both yield

DReLU(𝑥1) = DReLU(𝑥2) = 1. This suggests that the fractional

component of the number can be disregarded without affecting

the computation of DReLU. However, for 0 < 𝑥 < 1, eliminat-

ing the fractional component results in 𝑥 = 0, leading to incor-

rect computation of DReLU(𝑥) = 0. To address this, we propose

the following representation for DReLU for fixed point numbers:

DReLU(𝑥) = 1 iff

⌊
𝑥 + (2𝑙𝑑 − 1)

⌋
≥ 1 and 0 otherwise, where 𝑙𝑑

represents bit count for the decimal part and ⌊.⌋ signifies truncation
by 𝑙𝑑 bits. This novel representation can substantially reduce the

DReLU lookup table entries, allowing us to drop fractional bits

and only retain integer bits. For instance, if 𝑙𝑑 bits represent the

fractional segment of a number and 𝑙𝑖 bits correspond to the integer

segment, a lookup table requires 2
𝑙𝑑+𝑙𝑖

entries. With our proposed

representation, only 2
𝑙𝑖
entries are needed, reducing the lookup

table size for DReLU by a factor of 2
𝑙𝑑
. In our context, this factor

is 2
13
. As highlighted in previous work [58], each participant 𝑃𝑖

can locally truncate their share of 𝑥 . However, as this truncation

introduces a small error (refer to Theorem 1 in [58] for details), we

opt to retain one fractional bit instead of truncating all of them.

Addressing Storage Overhead. Despite our optimizations, the

storage demands of lookup tables render Hawk
Single

suitable only

for logistic regression and secure inference but not for neural net-

work training, as shown in Table 5. To address this, we introduce

Hawk
Multi

, which permits multiple reuses of a single lookup ta-

ble. While this approach introduces some leakage regarding access

patterns, we prove the leakage is bounded by 𝜖-𝑑X-privacy.

Algorithm 3 Πonline
SC(𝑃0,𝑃1) : Share Conversion Protocol

Input: For 𝑖 ∈ {0, 1}, 𝑃𝑖 knows 𝑛 and 𝑁 where 𝑁 > 𝑛. 𝑃𝑖 holds

⟨𝑥⟩𝑛
𝑖
and shares of a random 𝑟 ; ⟨𝑟 ⟩𝑛

𝑖
and ⟨𝑟 ⟩𝑁

𝑖
.

Output: 𝑃𝑖 gets fresh share ⟨𝑥⟩𝑁
𝑖

of 𝑥 .

1: 𝑃𝑖 computes ⟨𝑥⟩𝑛
𝑖
− ⟨𝑟 ⟩𝑛

𝑖
and sends it to 𝑃1−𝑖

2: Each party reconstructs 𝑧 = 𝑥 − 𝑟 .
3: 𝑃0 outputs ⟨𝑥⟩𝑁

0
= 𝑧 + ⟨𝑟 ⟩𝑁

0
and 𝑃1 outputs ⟨𝑥⟩𝑁

1
= ⟨𝑟 ⟩𝑁

1
as

their share of 𝑥 in Z𝑁
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Algorithm 4 Table Generation: Πoffline
HawkMulti (Client−Aide)

Input: A function 𝑓 : 𝑋 → 𝑌 , total tables required𝑚, cryptographic hash

function 𝐻 , field modulus 𝑛, order of an elliptic curve 𝑁 , generator

of the curve𝐺 .

Output: For 𝑖 ∈ {0, 1}, 𝑃𝑖 gets lookup tables 𝐿
𝑓 ,𝑐

𝑖
for 0 ≤ 𝑐 <𝑚.

1 Client − Aide generates random keys 𝑘𝑖 and 𝑠𝑖 mod 𝑁 and sends

to 𝑃𝑖 .

2 For 0 ≤ 𝑐 ≤𝑚 − 1:

2.1 Client − Aide computes random 𝑠𝑐
0
= 𝐻 (𝑠0 | |𝑐) mod 𝑁 .

2.2 Client − Aide computes random 𝑠𝑐
1
= 𝐻 (𝑠1 | |𝑐) mod 𝑁 .

2.3 For all 𝑥 ∈ 𝑋 :

a Client − Aide computes 𝜅 = 𝑘0𝑘1 × (𝑥𝐺 + 𝑠𝑐
0
𝐺 + 𝑠𝑐

1
𝐺) .

b Client − Aide computes additive secret shares ⟨𝑦⟩0 and ⟨𝑦⟩1
of 𝑦 = 𝑓 (𝑥) .

c Client − Aide adds 𝑘𝑒𝑦 : 𝐻 (𝜅), 𝑣𝑎𝑙𝑢𝑒 : ⟨𝑦⟩0 in 𝐿
𝑓

0
.

d Client − Aide adds 𝑘𝑒𝑦 : 𝐻 (𝜅), 𝑣𝑎𝑙𝑢𝑒 : ⟨𝑦⟩1 in 𝐿
𝑓

1
.

2.4 Client − Aide randomly permutes all key-value pairs in 𝐿
𝑓 ,𝑐

0
and

𝐿
𝑓 ,𝑐

1
.

3 Client − Aide sends all 𝐿𝑓 ,𝑐

0
for 0 ≤ 𝑐 <𝑚 to 𝑃0.

4 Client − Aide sends all 𝐿𝑓 ,𝑐

1
for 0 ≤ 𝑐 <𝑚 to 𝑃1.

Algorithm 5 Query Table: Πonline
HawkMulti (𝑃0,𝑃1)

Input: For 𝑖 ∈ {0, 1}, 𝑃𝑖 holds random keys 𝑘𝑖 and 𝑠𝑖 , ⟨𝑥 ⟩𝑛𝑖 , a crypto-

graphic hash function 𝐻 , ⟨𝑟 ⟩𝑛
𝑖
and ⟨𝑟 ⟩𝑁

𝑖
, order of an elliptic curve 𝑁 ,

share of 𝑑X-private noise ⟨𝛾 ⟩𝑛
𝑖
.

Output: 𝑃𝑖 gets secret share ⟨𝑦⟩𝑖 of 𝑦 = 𝑓 (𝑥) .
Initialization: 𝑃𝑖 receives lookup tables 𝐿

𝑓 ,𝑐

𝑖
for all 0 ≤ 𝑐 < 𝑚 from

Client − Aide, 𝑃𝑖 initializes 𝑐 = 0. 𝑃𝑖 receives per query privacy budget

𝜖 and total privacy budget 𝜖𝑇 . 𝑃𝑖 initializes 𝜖𝑟 = 𝜖𝑇 .

1: 𝑃𝑖 computes noisy input ⟨𝑥 ⟩𝑛
𝑖
= ⟨𝑥 ⟩𝑛

𝑖
+ ⟨𝛾 ⟩𝑛

𝑖

2: 𝑃𝑖 executes Π
online
𝑆𝐶 (𝑃0,𝑃1 )

with inputs ⟨𝑥 ⟩𝑛
𝑖
, ⟨𝑟 ⟩𝑛

𝑖
and ⟨𝑟 ⟩𝑁

𝑖
and receives

output ⟨𝑥 ⟩𝑁
𝑖
.

3: 𝑃0 computes random value 𝑠𝑐
0
= 𝐻 (𝑠0 | |𝑐) mod 𝑁 .

4: 𝑃1 computes random value 𝑠𝑐
1
= 𝐻 (𝑠1 | |𝑐) mod 𝑁 .

5: 𝑃0 computes 𝑘0 ( ⟨𝑥 ⟩𝑁
0
𝐺 + 𝑠𝑐

0
𝐺) and sends it to 𝑃1.

6: 𝑃1 computes 𝑘1 ( ⟨𝑥 ⟩𝑁
1
𝐺 + 𝑠𝑐

1
𝐺) and sends it to 𝑃0.

7: 𝑃0 computes 𝑘0𝑘1 ( ⟨𝑥 ⟩𝑁
1
𝐺 + 𝑠𝑐

1
𝐺) and sends it to 𝑃1.

8: 𝑃1 computes 𝑘1𝑘0 ( ⟨𝑥 ⟩𝑁
0
𝐺 + 𝑠𝑐

0
𝐺) and sends it to 𝑃0.

9: 𝑃𝑖 computes 𝜅 = 𝑘0𝑘1 (𝑥𝐺 + 𝑠𝑐
0
𝐺 + 𝑠𝑐

1
𝐺) ≡ 𝑘0𝑘1 ( ⟨𝑥 ⟩𝑁

1
𝐺 + 𝑠𝑐

1
𝐺) +

𝑘0𝑘1 ( ⟨𝑥 ⟩𝑁
0
𝐺 + 𝑠𝑐

0
𝐺) .

10: 𝑃𝑖 retrieves the value: ⟨𝑦⟩𝑖 corresponding to the key: 𝐻 (𝜅) from 𝐿
𝑓 ,𝑐

𝑖
,

and outputs ⟨𝑦⟩𝑖 .
11: 𝑃𝑖 computes 𝜖𝑟 = 𝜖𝑟 − 𝜖 .

12: If 𝜖𝑟 == 0 :

1.1 𝑃𝑖 increments 𝑐 = 𝑐 + 1.

2.2 𝑃𝑖 sets 𝜖𝑟 = 𝜖𝑇

5.2 HawkMulti: Multi-Use Lookup Table

Protocol

Algorithms 4 and 5 detail the offline and online phases of

our Hawk
Multi

protocol, respectively. The core concept of the

Hawk
Multi

protocol is the efficient reuse of a lookup table for multi-

ple lookups. However, naively reusing a lookup table poses several

challenges, as elaborated below.

Lookup Table Reuse. Directly reusing a lookup table to com-

pute 𝑓 (𝑥) for identical 𝑥 values multiple times risks leaking the

frequency distribution of 𝑥 . While parties might not directly learn

𝑥 , they can deduce a histogram representing each key’s access fre-

quency in the table. As demonstrated by Naveed et al. [60], this

leakage may reveal plaintext when combined with auxiliary data.

Rather than entirely eliminating this access pattern leakage as

in ORAM which has an inherent overhead of Ω(𝑙𝑜𝑔(𝑛)) [15, 36,
50], our Hawk

Multi
protocol employs 𝑑X-privacy to limit it. This

approach offers a balance between efficiency and privacy, precisely

quantifying the leaked information. We analyze this leakage in

detail in Section 6.1. With the Hawk
Multi

protocol, a lookup table

remains reusable until the allocated privacy budget 𝜖𝑇 is depleted.

Once exhausted, the table is discarded in favor of a new one.

Secure Deterministic Key Lookup. The objective is to securely

compute a deterministic key PRF(𝐾, 𝑥) from the shares ⟨𝑥⟩𝑖 and
use it to retrieve the value ⟨𝑓 (𝑥)⟩𝑖 from the lookup table 𝐿

𝑓

𝑖
. In the

Hawk
Single

, this is achieved by using the same pseudorandom pad

𝐻 (𝑘𝑖 | |𝑐) to obscure 𝑥 for every key-value pair in a lookup table.

This approach remains secure as each table is utilized once per

activation function computation, and the pad is never reused.

In the Hawk
Multi

protocol, we utilize the hardness of the el-
liptic curve discrete logarithm problem (ECDLP) [43] to securely

compute PRF(𝐾, 𝑥). ECDLP, foundational to elliptic curve cryptog-

raphy (ECC), posits that given elliptic curve points 𝑃,𝑄 ∈ 𝐸 (F𝑞),
determining 𝑎 such that 𝑄 = 𝑎𝑃 is computationally challenging.

ECC is integral to Hawk
Multi

for two additional properties, homo-

morphism and efficiency. ECC naturally supports homomorphic

operations such as 𝑥𝐺 = ⟨𝑥⟩𝑁
0
𝐺 + ⟨𝑥⟩𝑁

1
𝐺 , where 𝑁 denotes the

elliptic curve order and 𝐺 is the curve generator. We leverage this

homomorphism to securely compute PRF(𝐾, 𝑥). Furthermore, com-

pared to RSA, ECC requires 12× smaller keys for 128 bits of security,

leading to faster computations and reduced communication [54].

We iteratively detail the protocol design, starting with the core

concept and refining it to the finalized protocol. Suppose parties 𝑃0
and 𝑃1 possess shares ⟨𝑥⟩𝑁

0
and ⟨𝑥⟩𝑁

1
of 𝑥 . They also have secret

random keys 𝑘0 and 𝑘1, respectively. In the subsequent section,

we present a protocol to convert a share ⟨𝑥⟩𝑖 of 𝑥 from ⟨𝑥⟩𝑛
𝑖
to

⟨𝑥⟩𝑁
𝑖
. 𝑃0 computes 𝑘0 (⟨𝑥⟩𝑁

0
𝐺) and forwards it to 𝑃1 which then

computes 𝑘1𝑘0 (⟨𝑥⟩𝑁
0
𝐺). Similarly, 𝑃1 sends 𝑘1 (⟨𝑥⟩𝑁

1
𝐺) to 𝑃0 which

computes 𝑘0𝑘1 (⟨𝑥⟩𝑁
1
𝐺). Due to the ECDL assumption, 𝑘𝑖 (⟨𝑥⟩𝑁𝑖 𝐺)

does not leak information about ⟨𝑥⟩𝑁
𝑖

or 𝑘𝑖 . Subsequently, 𝑃1 sends

𝑘1𝑘0 (⟨𝑥⟩𝑁
0
𝐺) to 𝑃0 and 𝑃0 sends 𝑘0𝑘1 (⟨𝑥⟩𝑁

1
𝐺) to 𝑃1. Each party 𝑃𝑖

can then compute 𝜅 = 𝑘0𝑘1 (𝑥𝐺) ≡ 𝑘0𝑘1 (⟨𝑥⟩𝑁
1
𝐺) + 𝑘0𝑘1 (⟨𝑥⟩𝑁

0
𝐺).

This allows 𝑃0 and 𝑃1 to securely compute PRF(𝐾, 𝑥), where 𝐾 =

𝑘0𝑘1 which can be used as a key for table lookup.

Converting Additive Shares To A Larger Group. For the

Hawk
Multi

protocol, we start by converting additive shares from

Z𝑛 to Z𝑁 , where 𝑁 > 𝑛 and 𝑁 is the order of the elliptic curve 𝐸.

Algorithm 3 presents a one-round protocol for share conversion

based on [25]. The protocol requires shares of a random 𝑟 in both

Z𝑛 and Z𝑁 , which can be precomputed in the offline phase.

Mitigating Malleability. Given 𝑘0𝑘1 (𝑥𝐺), it is possible to com-

pute 𝑘0𝑘1· (𝑎𝑥𝐺) ≡ 𝑎 × (𝑘0𝑘1 (𝑥𝐺)) for any arbitrary 𝑎. While this
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does not directly reveal 𝑥 , it might leak crucial information in our

protocol when multiple lookups are performed on a table. A ma-

licious party could compute 𝑘0𝑘1 (𝑎𝑥𝐺) for various 𝑎 values and

cross-check all past and future lookups 𝑘0𝑘1 (𝑏𝐺) to determine if

any 𝑘0𝑘1 (𝑎𝑥𝐺) = 𝑘0𝑘1 (𝑏𝐺), thereby inferring if 𝑏 is a multiple of

𝑥 . To counter this, we use 𝑘0𝑘1 (𝑥𝐺 + 𝑠0𝐺 + 𝑠1𝐺) as the lookup table

key. Here 𝑘0 and 𝑠0 are random keys known only to 𝑃0, while 𝑘1
and 𝑠1 are known only to 𝑃1. Having these two sets of keys ensures

no party 𝑃𝑖 can independently compute 𝑘0𝑘1 (𝑎𝑥𝐺 + 𝑠0𝐺 + 𝑠1𝐺).
Furthermore, instead of directly using 𝑠0 and 𝑠1, the parties use

distinct 𝑠𝑐
0
and 𝑠𝑐

1
for each table where 𝑐 denotes the lookup table

index and 𝑠𝑐
𝑖
= 𝐻 (𝑠𝑖 | |𝑐). This guarantees that the lookup key differs

for each 𝑥 across different lookup tables.

Reducing Number of Elliptic Curve Scalar Multiplications.

Optimization 1. During the offline phase, a Client − Aide must gen-

erate𝑚 tables, each of size 2
16
. A significant computational bot-

tleneck in our Hawk
Multi

protocol arises when computing elliptic

curve scalar multiplications in step 2.3a of Algorithm 4. This step

requires four scalar multiplications and two point additions on the

elliptic curve. This translates to a daunting𝑚 × 2
18

scalar multi-

plications and𝑚 × 2
17

point additions in total. We introduce an

optimization to reduce these numbers drastically: scalar multipli-

cations are cut down to 𝑚 + 1, and point additions to 𝑚 × 2
16
.

Specifically, the Client − Aide initially calculates (𝑘0𝑘1) ·𝐺 . For a
table 𝐿𝑓 ,𝑐 , it then computes (𝑘0𝑘1) (𝑠𝑐

0
+ 𝑠𝑐

1
) ·𝐺 . The key for 𝑥 = 0

is set as PRF(𝐾, 0) = (𝑘0𝑘1) (𝑠𝑐
0
+ 𝑠𝑐

1
) · 𝐺 . All subsequent keys are

iteratively determined as PRF(𝐾, 𝑖) = PRF(𝐾, 𝑖 − 1) + (𝑘0𝑘1) · 𝐺 ,
requiring only a single point addition.

Optimization 2. In Algorithm 5, steps 5 and 6, if executed directly,

demand three scalar multiplications and one point addition for

each party on the elliptic curve. We suggest an optimization to

bring this down to a single scalar multiplication per party. Each

party 𝑃𝑖 first evaluates 𝑘𝑖 (⟨𝑥⟩𝑁𝑖 + 𝑠𝑐
𝑖
), and subsequently computes

𝑘𝑖 (⟨𝑥⟩𝑁𝑖 + 𝑠𝑐
𝑖
) ·𝐺 , which requires just one scalar multiplication.

Ensuring Differentially Private Access Patterns. While our

Hawk
Multi

protocol conceals the input 𝑥 during lookups, repeated

lookups on the same table might inadvertently reveal a histogram

of the frequency of each pseudorandom key’s access in the table. To

address this, our Hawk
Multi

protocol uses 𝑑X-privacy to limit this

leakage. Rather than using their actual input share ⟨𝑥⟩𝑖 , each party

computes a perturbed input share ⟨𝑥⟩𝑖 by incorporating 𝑑X-private
noise ⟨𝛾⟩𝑖 as outlined in step 1 of Algorithm 5. This ensures that the

parties only learn noisy access patterns, maintaining 𝜖-𝑑X-privacy.
The shares of noise 𝛾 are generated in the offline phase.

5.3 Computing Activation Functions

We now describe how we compute different activation functions

using our protocols. We use Πonline
Lookup to denote either Πonline

HawkSingle

or Πonline
HawkMulti

.

ReLU and DReLU. Algorithm 6 and 7 describe our protocols for

computing DReLU and ReLU respectively. We use the property:

ReLU(𝑥) = 𝑥DReLU(𝑥), to compute ReLU(𝑥) from DReLU(𝑥).

Algorithm 6 DReLU: ΠDReLU(𝑃0,𝑃1)

Input: 𝑃𝑖 holds ⟨𝑥⟩𝑖 , lookup table 𝐿DReLU
𝑖

.

Output: 𝑃𝑖 gets ⟨𝑧⟩𝑖 = ⟨DReLU(𝑥)⟩𝑖
1: 𝑃𝑖 calls Πonline

Lookup(𝑃𝑖 ,𝑃1−𝑖 ) with inputs (
⌊
⟨𝑥⟩𝑖 + 𝑖 × (2𝑙𝑑 − 1)

⌋
,

𝐿DReLU
𝑖

)
2: 𝑃𝑖 learns ⟨𝑧⟩𝑖 = ⟨DReLU(𝑥)⟩𝑖 .

Algorithm 7 ReLU: ΠReLU(𝑃0,𝑃1)

Input: 𝑃𝑖 holds ⟨𝑥⟩𝑖 , ⟨DReLU(𝑥)⟩𝑖 .
Output: 𝑃𝑖 gets ⟨𝑧⟩𝑖 = ⟨ReLU(𝑥)⟩𝑖
1: For 𝑖 ∈ {0, 1}, 𝑃𝑖 calls ΠSecMul(𝑃𝑖 ,𝑃1−𝑖 ) having inputs

(⟨DReLU(𝑥)⟩𝑖 , ⟨𝑥⟩𝑖 ) and learns ⟨𝑧⟩𝑖 = ⟨𝑥DReLU(𝑥)⟩𝑖 . Here
ΠSecMul denotes secure multiplication using Beaver’s triples.

2: 𝑃𝑖 outputs ⟨𝑧⟩𝑖 = ⟨ReLU(𝑥)⟩𝑖 = ⟨𝑥DReLU(𝑥)⟩𝑖 .

Algorithm 8 Sigmoid: ΠSigmoid(𝑃0,𝑃1)

Input: 𝑃𝑖 holds ⟨𝑥⟩𝑖 , lookup table 𝐿
Sigmoid
𝑖

.

Output: 𝑃𝑖 gets ⟨𝑧⟩𝑖 = ⟨Sigmoid(𝑥)⟩𝑖 .
1: For 𝑖 ∈ {0, 1}, 𝑃𝑖 calls Πonline

Lookup(𝑃𝑖 ,𝑃1−𝑖 ) with inputs

(⟨𝑥⟩𝑖 , 𝐿Sigmoid
𝑖

)
2: 𝑃𝑖 learns ⟨𝑧⟩𝑖 = ⟨Sigmoid(𝑥)⟩𝑖 .

Algorithm 9 Softmax: ΠSoftmax(𝑃0,𝑃1)

Input: For 𝑖 ∈ {0, 1} and 𝑗 ∈ {1, .., 𝑑𝑙 }, 𝑃𝑖 holds ⟨𝑥 𝑗 ⟩𝑖 , lookup tables
𝐿
exp

𝑖
and 𝐿inverse

𝑖
.

Output: For neuron 𝑗 ∈ {1, .., 𝑑𝑙 }, 𝑃𝑖 gets ⟨Softmax(𝑥 𝑗 )⟩𝑖 .
1: For 𝑗 ∈ {1, .., 𝑑𝑙 }, 𝑃𝑖 calls Πonline

Lookup(𝑃𝑖 ,𝑃1−𝑖 ) with inputs

(⟨𝑥 𝑗 ⟩𝑖 , 𝐿exp𝑖
) and learns ⟨𝑒𝑥 𝑗 ⟩𝑖 .

2: 𝑃𝑖 locally computes ⟨𝑠⟩𝑖 =
∑𝑑𝑙

𝑗=1
⟨𝑒𝑥 𝑗 ⟩𝑖 as the sum of the expo-

nential terms.

3: 𝑃𝑖 calls Π
online
Lookup(𝑃𝑖 ,𝑃1−𝑖 ) with inputs (⟨𝑠⟩𝑖 , 𝐿inverse𝑖

) and learns

⟨ 1𝑠 ⟩𝑖 as the share of the inverse of the sum 𝑠 .

4: For 𝑗 ∈ {1, .., 𝑑𝑙 }, 𝑃𝑖 runs ΠSecMul(𝑃𝑖 ,𝑃1−𝑖 ) with inputs

(⟨𝑒𝑥 𝑗 ⟩𝑖 , ⟨ 1𝑠 ⟩𝑖 ) and learns ⟨Softmax(𝑥 𝑗 )⟩𝑖 .

Sigmoid. Algorithm 8 describes our protocol to compute

Sigmoid(𝑥). It is worth noting that the prior works [58, 76] do

not provide any method to compute Sigmoid accurately.

Softmax. Algorithm 9 describes our protocol for computing

Softmax. As Softmax involves𝑑𝑙 inputs, using our protocols naively
requires 2

𝑛×𝑑𝑙
entries in the lookup table given 𝑥 𝑗 is an 𝑛-bit num-

ber, which is impractical. We introduce a method that substan-

tially reduces the lookup table size, albeit with a slight increase

in online computation. Rather than directly computing Softmax
using a single lookup table, we employ two distinct tables: one

for the exponential function, exp(𝑥) = 𝑒𝑥 , and another for the in-

verse, inverse(𝑥) = 1

𝑥 . Existing literature lacks a precise method for

Softmax computation, resorting to non-standard functions [58, 76],

which leads to accuracy degradation ( see Figure 9 ).
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Protocol

Rounds Communication

Hawk
Single

Hawk
Multi

Hawk
Single

Hawk
Multi

ΠLookup 1 3 𝑙 𝑙 + 2𝑙 ′

ΠDReLU 1 3 𝑙 𝑙 + 2𝑙 ′

ΠReLU (after DReLU) 1 1 𝑙 𝑙

ΠSigmoid 1 3 𝑙 𝑙 + 2𝑙 ′

ΠSoftmax 3 7 𝑙 (1 + 2𝑑𝑙 ) 𝑙 (1 + 2𝑑𝑙 ) + 2𝑙 ′(1 + 𝑑𝑙 )
Table 1: Total rounds and communication complexity of

Hawk
Single

and Hawk
Multi

protocols. (𝑙 = 64 bits, 𝑙
′
= 256

bits)

5.4 Rounds and Communication Complexity

Table 1 details the rounds and communication complexities of sub-

protocols employed in training both logistic regression models and

neural networks. For the Hawk
Single

protocol, with 𝑙-bit numbers

(𝑙 = 64), the associated protocols: ΠLookup, ΠSigmoid and, ΠDReLU,

demand a single communication round with a complexity of 𝑙 bits.

The ΠReLU requires an extra round due to an additional secure mul-

tiplication following DReLU. Meanwhile, ΠSoftmax requires three

rounds, attributed to the computations of the exponential function,

the inverse function, and a secure multiplication. Here, 𝑑𝑙 denotes

the number of neurons in the output layer.

For the Hawk
Multi

protocol, we adopt numbers of 𝑙 ′ = 256 bits.

The associated protocols: ΠLookup, ΠSigmoid, and ΠDReLU, require

three communication rounds with a complexity of 𝑙 + 2𝑙 ′. The
Hawk

Multi
based protocol ΠSoftmax requires a total of seven rounds.

The efficiency improvements in training PPML models in our

case, relative to SecureML, stem from the fast computation of non-

linear activations such as ReLU, Sigmoid, Softmax, and their deriva-
tives. Past works [46, 53, 58] leveraged Yao’s garbled circuits for

these computations. Transitioning secret shares between arithmetic

and Yao sharing introduces an overhead of 7𝑙𝜅 + (𝑙2 + 𝑙 )/2 [26].

6 SECURITY ANALYSIS

Our privacy-preserving training and inference protocols primar-

ily modify SecureML’s activation function computation, replacing

it with our Hawk
Single

or Hawk
Multi

based protocols: ΠSigmoid,

ΠReLU, ΠDReLU, and ΠSoftmax. Each protocol either exclusively

employs Πonline
HawkSingle

or Πonline
HawkMulti

, or combines them with secure

multiplication. Consequently, our security analysis focuses on the

Πonline
HawkSingle

andΠonline
HawkMulti

protocols, given their composability. The

overall security of our protocols follows from SecureML’s subpro-

tocols composed with our Πonline
HawkSingle

or Πonline
HawkMulti

protocols.

Functionality FSingleLookup
Parameters: Servers 𝑃0, 𝑃1
Data: On input ⟨𝑥⟩0 and ⟨𝑥⟩1, store ⟨𝑥⟩0 and ⟨𝑥⟩1 internally.
Computation: On input 𝑓 from 𝑃0 or 𝑃1, reconstruct 𝑥 =

⟨𝑥⟩0 + ⟨𝑥⟩1 (mod 𝑛), compute 𝑦 = 𝑓 (𝑥), create additive shares
⟨𝑦⟩0 and ⟨𝑦⟩1, and send ⟨𝑦⟩0 to 𝑃0 and ⟨𝑦⟩1 to 𝑃1.

Figure 3: Ideal Functionality FSingleLookup

Functionality FSC
Parameters: Servers 𝑃0, 𝑃1
Data: On input ⟨𝑥⟩𝑛

0
and ⟨𝑥⟩𝑛

1
, store ⟨𝑥⟩𝑛

0
and ⟨𝑥⟩𝑛

1
internally.

Computation: On input 𝑁 > 𝑛 from 𝑃0 or 𝑃1, reconstruct

𝑥 = ⟨𝑥⟩𝑛
0
+ ⟨𝑥⟩𝑛

1
(mod 𝑛), create random additive shares ⟨𝑥⟩𝑁

0

and ⟨𝑥⟩𝑁
1

of 𝑥 , and send ⟨𝑥⟩𝑁
0

to 𝑃0 and ⟨𝑥⟩𝑁
1

to 𝑃1.

Figure 4: Ideal Functionality FSC

Functionality FMultiLookup
Parameters: Servers 𝑃0, 𝑃1
Data: On inputs ⟨𝑥⟩0 and ⟨𝑥⟩1, store internally.
Computation:

1 Reconstruct 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1 (mod 𝑛).
2 Compute 𝑥 = 𝑥 + 𝛾 (mod 𝑛), with 𝛾 drawn using geometric

mechanism in Definition 4.

3 On input 𝑓 from 𝑃0 or 𝑃1, compute 𝑦 = 𝑓 (𝑥).
4 Create additive shares ⟨𝑦⟩0 and ⟨𝑦⟩1 of 𝑦.
5 Send ⟨𝑦⟩0 to 𝑃0 and ⟨𝑦⟩1 to 𝑃1.

Figure 5: Ideal Functionality FMultiLookup

Theorem 1. Protocol Πonline
HawkSingle

in Algorithm 2 securely realizes

the functionality FSingleLookup against semi-honest adversaries.

Proof Sketch. Consider an adversary A that corrupts either

𝑃0 or 𝑃1. Without loss of generality, let’s focus on the case where

A corrupts 𝑃0. We construct a simulator S that simulates A in the

ideal world. The simulator S runs A. S generates a random value

𝑟 to mimic the honest server 𝑃1’s message ⟨𝑥⟩1 +𝐻 (𝑘1 | |𝑐) (mod 𝑛)
and forwards it to A. To simulate the honest server’s output, S
uses ⟨𝑦⟩1 received from FSingleLookup.

The indistinguishability between the real and ideal worlds stems

from the fact that the sole message exchanged, ⟨𝑥⟩1 + 𝐻 (𝑘1 | |𝑐)
(mod 𝑛), is computationally indistinguishable from a random value

𝑟 , owing to the one-time pseudorandom pad 𝐻 (𝑘1 | |𝑐). □

Theorem 2. Protocol Πonline
SC in Algorithm 3 securely realizes the

functionality FSC against semi-honest adversaries.

Proof Sketch. Given the symmetry of our protocol with re-

spect to both servers, we focus on the scenario where an adversary

corrupts party 𝑃0. To simulate the honest server 𝑃1 in the ideal

world, the simulator S generates a random value 𝑠 representing the

message ⟨𝑥⟩𝑛
1
+ ⟨𝑟 ⟩𝑛

1
(mod 𝑛) and sends it to A. S employs ⟨𝑥⟩𝑁

1

obtained from FSC to simulate the honest server’s output.

The indistinguishability between the real and ideal worlds stems

from the fact that the sole message exchanged is ⟨𝑥⟩𝑛
1
+ ⟨𝑟 ⟩𝑛

1

(mod 𝑛), with ⟨𝑟 ⟩𝑛
1
being a random share of 𝑟 . Consequently,

⟨𝑥⟩𝑛
1
+ ⟨𝑟 ⟩𝑛

1
(mod 𝑛) is computationally indistinguishable from

a random 𝑠 of equivalent length. □
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6.1 Leakage Analysis

We begin by discussing the leakage function L for our HawkMulti
protocol. Intuitively, our HawkMulti protocol leaks a perturbed pro-

file of access patterns to a lookup table 𝐿𝑓 ,𝑐 , where 𝑐 is the table

index. Note that the protocol does not reveal the input 𝑥 to any

party. Instead, it only reveals a distorted frequency distribution of

accesses to a table 𝐿𝑓 ,𝑐 without associating access to a specific input

𝑥 due to the pseudorandom nature of the key 𝜅. For instance, if

we access a lookup table r
Multi

= 10 times, each with 𝜖-𝑑X-privacy,
before exhausting our total privacy budget 𝜖𝑇 , theHawkMulti proto-

col merely discloses if the ten lookups were distinct or if there were

repeated lookups for a particular key 𝜅 . Furthermore, adding noise

𝛾 to 𝑥 before each lookup ensures that parties remain unaware

if a key repetition was genuine or noise-induced. We employ the

geometric mechanism in Definition 4 to sample the noise 𝛾 .

Definition 7. The leakage function L is 𝜅 , where 𝜅 is a pseudo-
random key for a lookup table 𝐿𝑓 ,𝑐 and 𝜅 = 𝑘0𝑘1 (𝑥𝐺 + 𝑠𝑐

0
𝐺 + 𝑠𝑐

1
𝐺),

where 𝑘𝑖 and 𝑠𝑐𝑖 are secret random keys of a party 𝑃𝑖 ,𝐺 is the genera-
tor of an elliptic curve 𝐸, and 𝑥 = 𝑥 + 𝛾 , with 𝛾 being random noise
as per Definition 4.

Theorem 3. The leakage function L is local 𝜖-𝑑X-private as per
Definition 3.
The preservation of local 𝜖-𝑑X-privacy byL is a consequence of our

utilization of the geometric mechanism, as defined in Definition 4, to

sample noise 𝛾 . We prove this mechanism to preserve 𝜖-𝑑X-privacy
in Appendix C. Given the post-processing resilience of differential

privacy [31, 32], L also maintains 𝜖-𝑑X-privacy.

Theorem 4. Protocol Πonline
HawkMulti

in Algorithm 5 securely realizes
the functionality FMultiLookup with L leakage in (FSC)-hybrid model
as per Definition 6.

Proof Sketch. Consider an adversary A that corrupts either

server 𝑃0 or 𝑃1. Given the protocol’s symmetry concerning both

servers, we focus on the scenario whereA corrupts 𝑃0. We describe

a simulator S to simulate A in the ideal world. The simulator S
runs A. S employs random 𝑠 to simulate the honest server 𝑃1’s

output of FSC. S also generates random points 𝑅 and 𝑆 on the

elliptic curve 𝐸 to simulate 𝑃1’s messages 𝑘1 (⟨𝑥⟩𝑁
1
𝐺 + 𝑠𝑐

1
𝐺) and

𝑘1𝑘0 (⟨𝑥⟩𝑁
0
𝐺+𝑠𝑐

0
𝐺) and sends it toA.S also sends leakage function

L in Definition 7 to A. S uses ⟨𝑦⟩1 received from FMultiLookup to

simulate the honest server’s output.

The adversary A’s view in the ideal and real worlds is indistin-

guishable because ⟨𝑥⟩𝑁
1

is computationally indistinguishable from

a random value 𝑠 . Moreover, according to the elliptic curve discrete
log assumption 𝑘1 (⟨𝑥⟩𝑁

1
𝐺 + 𝑠𝑐

1
𝐺) and 𝑘1𝑘0 (⟨𝑥⟩𝑁

0
𝐺 + 𝑠𝑐

0
𝐺) are indis-

tinguishable from random points 𝑅 and 𝑆 on 𝐸 as ⟨𝑥⟩𝑁
0
, ⟨𝑥⟩𝑁

1
, 𝑘0,

𝑘1, 𝑠
𝑐
0
, and 𝑠𝑐

1
are uniform random in Z𝑁 . The only leakage in the

real world and the ideal world is L as defined in Definition 7 which

is proved to preserve 𝜖-𝑑X-privacy. □

7 END-TO-END TRAINING PROTOCOLS

7.1 Privacy-Preserving Logistic Regression

Logistic regression necessitates the computation of the Sigmoid
function. While previous studies have approximated Sigmoid using

polynomials [4], achieving satisfactory accuracy demands high-

degree polynomials, leading to inefficiencies. SecureML uses a piece-

wise function and Yao’s garbled circuits for Sigmoid approximation,

but the overhead and accuracy loss from this method remain a

concern. We introduce the ΠSigmoid protocol to directly compute

Sigmoid, enabling efficient training of logistic regression models

without compromising plaintext training accuracy. Algorithm 10

in Appendix D presents our complete PPLR protocol. After the dot

product computation of input examples with coefficients during the

forward pass, parties employ ΠSigmoid for Sigmoid computation,

subsequently proceeding to backward propagation.

7.2 Privacy-Preserving Neural Network

Training neural networks securely introduces complexity and inef-

ficiency primarily during the computation of non-linear activations,

such as ReLU, DReLU, and Softmax. SecureML employs Yao’s gar-

bled circuits for ReLU and DReLU computations. They also suggest

an approximation for Softmax as 𝑓 (𝑧𝑖 ) = 𝑅𝑒𝐿𝑈 (𝑧𝑖 )∑𝑑𝑙
𝑗=1

𝑅𝑒𝐿𝑈 (𝑧 𝑗 )
. However,

this function demands a division garbled circuit, leading to ineffi-

ciencies, and the approximation compromises accuracy, as high-

lighted in Section 8.4.

In Section 5.3, we introduce efficient protocols for computing

ReLU, DReLU, and Softmax. We can adeptly train diverse neural

networks by integrating the methods from Section 7.1 and the proto-

cols in Section 5.3. For instance, SecureML’s 3-layer neural network,

comprising two fully connected layers with ReLU activation and an

output layer with Softmax activation, can be implemented in the for-

ward pass using ΠSecMul, ΠReLU, and ΠSoftmax. Back-propagation,

on the other hand, requires ΠSecMul and ΠDReLU. Although our

framework is readily extendable to CNNs, we focus on DNNs in

our evaluation and defer CNNs to future work.

8 EVALUATION

8.1 Implementation

We implement our system in C++ with ∼ 13, 570 lines of code. We

use the Eigen library [38] for matrix operations, libsecp256k1 [82]

for EC implementation, and Crypto++ [23] for cryptographic oper-

ations.

We adopt a field size of 2
64

and represent numbers using C++’s

native unsigned long integer datatype. Following SecureML’s fixed-

point representation [58], we allocate 13 bits to the fractional com-

ponent. For lookup tables, numbers are represented with 16 bits

divided between integer and fractional parts. The lookup tables for

Sigmoid allocate 3 bits for the integer and 13 for the fractional part.

For DReLU tables, based on the alternate representation from Sec-

tion 5.1, we use 4 integer bits and 1 fractional bit. For the Softmax
tables, the exponential function is represented with 6 integer and

10 fractional bits, while the inverse function uses 14 integer and 2

fractional bits, ensuring the necessary high dynamic range. In our

experiments involving HawkMulti protocol, 𝑁 is set to match the

order of the SECP256K1 curve.
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Figure 6: a) LAN setting (d=784) b) LAN setting (n=10,000) c) WAN setting (d=784) d) WAN setting (n=10,000)

Comparison of our PPLR protocols with SecureML. Here n denotes number of data records, and d denotes the data dimension.

8.2 Experimental Setup

Our experiments utilize two “Amazon EC2 c4.8x large” instances,

aligning with the setup in previous work [58]. We assess perfor-

mance in both LAN and WAN settings:

LAN setting: Both "Amazon EC2 c4.8x large" instances are hosted

within the same region, achieving an average bandwidth of 620

MB/s and a network delay of 0.25ms.

WAN setting: The instances are hosted in separate regions: US

East and US West. This configuration yields an average bandwidth

of 32 MB/s and a network delay of 48 ms.

We use these datasets to evaluate our protocols: MNIST [51],

Gisette [41, 42], Arcene [40, 42], Fashion MNIST [83], Iris [33], and

the Adult dataset [9]. We describe each dataset in Appendix E.

Each data point represents the average of 10 runs. To assess

scalability, we create synthetic datasets from MNIST by altering

record count and data dimensions. For our Hawk
Multi

protocol, we

experiment by adjusting the total privacy budget, 𝜖𝑇 , of the lookup

tables, where 𝜖𝑇 = 𝜖×r
Multi

, with 𝜖 as the per-access privacy budget

and r
Multi

denoting each lookup table’s reuse frequency.

8.3 Privacy Preserving Logistic Regression

This section evaluates our PPLR protocol’s performance and scala-

bility, compares it with SecureML [58], and assesses the accuracy

against plaintext training.

Framework MNIST Gisette Arcene Fashion MNIST

Tensorflow 99.19 98 86 95.97

Hawk
Single

99.21 98.1 86 95.97

Hawk
Multi

(𝜖𝑇 = 0.01) 99.21 98.1 86 95.97

Hawk
Multi

(𝜖𝑇 = 0.001) 99.20 97.1 85 95.89

Hawk
Multi

(𝜖𝑇 = 0.0005) 98.80 95.2 85 95.51

Table 2: Accuracy comparison of our PPLR protocols with

plaintext training (r
Multi

= 10).

Accuracy Performance. Table 2 indicates our Hawk
Single

pro-

tocol matches plaintext training accuracy across various datasets.

For Hawk
Multi

, there is no accuracy loss at 𝜖𝑇 = 0.01 and only a

minor decline at 𝜖𝑇 = 0.0005, suggesting that Hawk
Multi

offers

robust privacy without significant accuracy compromises. Figure 7

illustrates the training trajectory on MNIST and Gissette datasets
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Figure 7: a) MNIST dataset b) Gissette dataset

Training trajectory for PPLR across various 𝝐𝑻 values

Framework LAN (s) WAN (s) Offline (s) Storage

SecureML 10.84 612.78 - -

Hawk
Single

3.2 70.2 57.58 36.62 GB

Hawk
Multi

(𝜖𝑇 = 0.01) 4 144 18.3 0.37 GB

Table 3: Comparison of PPLR with SecureML on MNIST (|B|

= 128, r
Multi

= 100). SecureML does not report the offline cost.

with Hawk
Multi

, highlighting the influence of varying 𝜖𝑇 . Compar-

ing with SecureML [58], in the task of classifying MNIST digits as

zero vs. non-zero, our protocols achieve 99.21% accuracy, closely

followed by a Tensorflow model at 99.19%. In contrast, SecureML

reaches 98.62%. Notably, SecureML’s accuracy suffers more from

non-standard activations, especially with neural networks, with a

drop of ∼ 3% for the MNIST dataset, as discussed in Section 8.4.

Computation and Communication Performance. Table 3 de-

tails our PPLR experiments in LAN and WAN environments. The

online phase for Hawk
Single

requires 3.2s (LAN) and 70.2s (WAN)
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Here 𝜶 denotes learning rate and for Hawk
Multi

, 𝝐𝑻 = 0.1.
The Softmax approximation used by past works causes accu-

racy drop.

with a lookup table storage overhead of 36.62GB per party. In con-

trast,Hawk
Multi

has an online duration of 4s (LAN) and 144s (WAN)

but reduces storage cost to 0.37GB for r
Multi

= 100. This table

underlines the balance between privacy, offline cost, and storage.

While Hawk
Single

offers perfect security with a faster online phase,

Hawk
Multi

demands fewer lookup tables, ensuring 𝑑X-privacy
against access pattern leaks. Relative to SecureML, our methods

are up to 3.4x and 8.7x faster in LAN and WAN, respectively.

For scalability experiments, we vary the dataset size 𝑛 and the

data dimension 𝑑 . Figure 6 illustrates that PPLR training time scales

linearly with 𝑛. As 𝑑 grows, our PPLR time increases sublinearly,

while SecureML’s rises linearly. In WAN, with 𝑑 ranging from 200

to 1000, SecureML’s time increases from 72s to 124s. In contrast,

our protocols remain steady at around 12s for Hawk
Single

and 24s

for Hawk
Multi

, as 𝑑 increases. In WAN, the overall time is largely

influenced by communication time, which, for our protocols, stays

nearly constant as 𝑑 increases.

8.4 Privacy Preserving Neural Networks

To evaluate our protocols for training neural networks, we consider

an architecture similar to prior works [58, 76]. The neural network

is fully connected, consisting of 2 hidden layers, each with 128

neurons and an output layer with 10 neurons. The hidden layers

use ReLU, and the output layer uses Softmax activation.

Framework MNIST Iris Adult

Tensorflow 96.6 96.56 85.4

Hawk
Single

96.6 95.56 85.4

Hawk
Multi

(𝜖𝑇 = 0.1) 96.34 96.56 85.4

Hawk
Multi

(𝜖𝑇 = 0.05) 96.09 96.56 85.2

Hawk
Multi

(𝜖𝑇 = 0.02) 95.99 96.56 85.2

Table 4: Accuracy comparison of our PPNN protocols with

plaintext training(r
Multi

= 10).

Accuracy Performance. The neural network trained on MNIST

using our PPNN protocol can reach an accuracy of 96.6% within 15

epochs, similar to a Tensorflow model. Neural networks trained on

Iris [33] and the Adult dataset [9] using our Hawk
Single

protocol

closely match plaintext training accuracies, as shown in Table 4.

However, with Hawk
Multi

, accuracy slightly diminishes as 𝜖𝑇 de-

creases. For instance, at 𝜖𝑇 = 0.02, MNIST accuracy drops by ∼ 0.5%.

Figure 8 depicts the MNIST training trajectory under Hawk
Multi

,

emphasizing the effect of different 𝜖𝑇 values. Additionally, Figure 11

illustrates the correlation between the total number of lookup ta-

bles required and various privacy budget thresholds necessary to

achieve specific accuracy levels. As expected Hawk
Single

protocol

requires the highest number of lookup tables. For the Hawk
Multi

protocol, a decrease in 𝜖𝑇 in case of the Adult dataset necessitates

an increase in the number of lookup tables to maintain the same

level of accuracy.

Previous studies [57, 58, 76] report around 93.4% accuracy on

MNIST using the same setup. This discrepancy primarily stems

from their use of a non-standard activation function for Softmax.
Figure 9 contrasts our training protocol’s accuracy with plaintext

training. When we emulate the Softmax approximation (𝑓 (𝑧𝑖 ) =
𝑅𝑒𝐿𝑈 (𝑧𝑖 )∑𝑑𝑙
𝑗=1

𝑅𝑒𝐿𝑈 (𝑧 𝑗 )
) from prior works [57, 58, 76] in a plaintext NNmodel,

we notice a decline in accuracy and delayed convergence. Notably,

our protocol surpasses 90% accuracy onMNIST in under 1.06 epochs,

while earlier works [57, 58, 76] need more epochs for compara-

ble results. As shown in Figure 9, our protocol benefits from a

larger learning rate, leading to quicker convergence. In contrast,

the Softmax approximation can cause accuracy to plummet after

a certain number of epochs. This decline, consistent across var-

ious learning rates, suggests that such approximations might be

even more detrimental for more complex tasks, potentially causing

substantial accuracy losses.

Computation and Communication Performance. Table 5 com-

pares our PPNN protocols with SecureML [58]. While we also ref-

erence other works [1, 57, 76, 77] that encompass both 2PC and

3PC protocols, a direct comparison is challenging due to differing

settings, as highlighted in Section 2. In LAN, our PPNN protocol’s

online phase outperforms SecureML’s client-aided approach by

26− 144×. SecureML, in the WAN context, omits client-aided proto-

col training times, offering only metrics for the setting with server-

generated random shares. This method increases offline costs but

reduces online time through matrix multiplication speed gains. Our

WAN-based PPNN protocol is 159 − 281× faster than SecureML’s

server-aided variant. For the client-aided variant, factoring in a 2.45

slowdown from the LAN setting, our protocol’s speed advantage
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Figure 10: a) LAN setting (d=784) b) LAN setting (n=10,000) c) WAN setting (d=784) d) WAN setting (n=10,000)

Comparison of our PPNN protocols with SecureML. Here, n denotes number of data records, and d denotes the data dimension.

Framework

LAN WAN

Offline (hours) Online (hours) Offline (hours) Online (hours) Lookup Table Storage

Hawk
Single

0.47 0.02 0.47 0.21 407.5 GB

2PC

Hawk
Multi

(𝜖𝑇 = 1) 0.35 0.11 0.35 0.37 4.1 GB

SecureML (server-aided) [58] 80.5 1.17 4277 59 -

SecureML (client-aided) [58] 4.15 2.87 - - -

Quotient [1] - 8.72 - 50.74 -

3PC

Falcon [77] - 0.17 - 3.76 -

ABY
3
[57] - 0.75 - - -

SecureNN [76] - 1.03 - 7.83 -

Table 5: Comparison of privacy-preserving neural network training using MNIST dataset (|B| = 128, r
Multi

= 100).

Framework

Logistic Regression Neural Networks

LAN (ms) WAN (ms) LAN (s) WAN (s)

Offline Online Offline Online Offline Online Offline Online

SecureML (server-aided) 51 3.9 2010 429 13.8 0.20 472 1.2

Hawk
Single

96 3.7 96 171 1.43 0.08 1.43 0.82

Table 6: Secure inference time comparison with SecureML on MNIST for 100 samples.

over SecureML in WAN surges to 391 − 688×. While our PPNN

protocol drastically reduces offline costs compared to SecureML,

ourHawk
Single

adds a lookup table storage overhead of 407.5GB. In

contrast, our Hawk
Multi

reduces this overhead to 4.1GB per party.

Compared with Quotient [1], another 2PC protocol, our PPNN pro-

tocol’s online phase is 79 − 436× and 137 − 242× faster in LAN and

WAN, respectively. Our PPNN protocols even outperform several

3PC protocols, including SecureNN, ABY
3
, and Falcon [57, 76, 77],

boasting speeds up to 52× in LAN and 37× in WAN.

Figure 10 presents our scalability experiments. Our protocol’s

training times scale linearly with 𝑛 and sub-linearly with 𝑑 . Se-

cureML only provides results for the client-aided LAN setting.

8.5 Secure Inference

In this section, we evaluate the efficacy of our protocol for secure

inference using the MNIST dataset [51]. Our Hawk
Single

protocol

is better suited for secure inference than Hawk
Multi

due to its

reduced online cost. The cost of secure inference using Hawk
Single

for both logistic regression and neural networks is shown in Table 6,

alongside a comparison with SecureML [58]. The neural network

architecture referenced is the same as discussed in Section 8.4.

SecureML [58] only presents the inference times for their server-

aided protocol. For neural networks, they only report inference

times using the square activation function. While the square acti-
vation is faster than ReLU, it compromises slightly on accuracy,

as highlighted in SecureML [58]. Our client-aided protocol has a

higher online cost for dot product operation because matrix multi-

plication isn’t feasible [58]. Moreover, we employ the ReLU activa-

tion function, ensuring the preservation of plaintext accuracy. In

terms of secure inference, our Hawk
Single

protocol’s online phase

is up to 2.5× faster than SecureML for both logistic regression

and neural networks. Additionally, the offline phase of Hawk
Single

outperforms SecureML across most scenarios.

9 CONCLUSION

In this work, we present novel lookup table protocols for PPML that

achieve both accuracy and efficiency in activation function com-

putation. We present Hawk
Single

, offering leakage-free security,

and Hawk
Multi

, enabling table reuse at the cost of leakage which

preserves 𝑑X-privacy. Our PPML protocols for logistic regression

and neural networks demonstrate significant performance gains,

reaching up to 688× faster training for neural networks than Se-

cureML [58] with plaintext accuracy. Beyond activation functions,

our approach applies to various MPC applications, paving the way

for wider adoption of PPML and secure collaborative data analysis.

54



Hawk: Accurate and Fast PPML Using Secure Lookup Table Computation Proceedings on Privacy Enhancing Technologies 2024(3)

ACKNOWLEDGMENTS

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

REFERENCES

[1] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià Gascón. 2019.

QUOTIENT: Two-Party Secure Neural Network Training and Prediction (CCS
’19). 1231–1247.

[2] Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga Ohrimenko,

and Sergey Yekhanin. 2019. An algorithmic framework for differentially private

data analysis on trusted processors. Advances in Neural Information Processing
Systems 32 (2019).

[3] Miguel E. Andrés, Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and

Catuscia Palamidessi. 2013. Geo-Indistinguishability: Differential Privacy for

Location-Based Systems. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS ’13). Association for Computing

Machinery, 901–914.

[4] Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and LihuaWang. 2016. Scalable

and Secure Logistic Regression via Homomorphic Encryption. In Proceedings of
the Sixth ACMConference on Data and Application Security and Privacy (CODASPY
’16). 142–144. https://doi.org/10.1145/2857705.2857731

[5] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and

Elaine Shi. 2020. OptORAMa: optimal oblivious RAM. In Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings,
Part II 30. Springer, 403–432.

[6] Kartik Audhkhasi, Osonde Osoba, and Bart Kosko. 2013. Noise benefits in back-

propagation and deep bidirectional pre-training. Proceedings of the IJCNN, 1–8.
[7] Alessandro N. Baccarini, Marina Blanton, and Chen Yuan. 2023. Multi-Party

Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving

Machine Learning. Proc. Priv. Enhancing Technol. 2023 (2023), 608–626.
[8] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.

In Annual International Cryptology Conference. Springer, 420–432.
[9] Barry Becker. 1994. Adult Data Set. https://archive.ics.uci.edu/ml/datasets/Adult.

[10] Amos Beimel, Yuval Ishai, and Tal Malkin. 2004. Reducing the Servers’ Com-

putation in Private Information Retrieval: PIR with Preprocessing. Journal of
Cryptology 17 (2004), 125–151.

[11] C. M. Bishop. 1995. Training with Noise is Equivalent to Tikhonov Regularization.

Neural Computation 7 (1995), 108–116.

[12] Peter Bogetoft, Ivan Damgård, Thomas Jakobsen, Kurt Nielsen, Jakob Pagter,

and Tomas Toft. 2006. A Practical Implementation of Secure Auctions Based on

Multiparty Integer Computation. In Financial Cryptography and Data Security.
Springer Berlin Heidelberg, 142–147.

[13] Léon Bottou and Olivier Bousquet. 2008. The Tradeoffs of Large Scale Learning.

In Advances in Neural Information Processing Systems. 161–168.
[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In

Advances in Cryptology - EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 337–367.

[15] Elette Boyle and Moni Naor. 2016. Is there an oblivious RAM lower bound?. In

Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science. 357–368.

[16] Paul Bunn and Rafail Ostrovsky. 2007. Secure Two-Party k-Means Clustering.

In Proceedings of the 14th ACM Conference on Computer and Communications
Security (CCS ’07). Association for Computing Machinery, 486–497.

[17] Ran Canetti. 1998. Security and Composition of Multi-party Cryptographic

Protocols. Cryptology ePrint Archive, Report 1998/018.

[18] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-

cols. Journal of Cryptology 13 (2000), 143–202.

[19] R. Canetti. 2001. Universally composable security: a new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. 136–145.

[20] T.-H. Hubert Chan, Kai-Min Chung, Bruce Maggs, and Elaine Shi. 2022. Foun-

dations of Differentially Oblivious Algorithms. J. ACM 69, 4 (Aug. 2022), 1–49.

https://doi.org/10.1145/3555984

[21] Konstantinos Chatzikokolakis, Miguel E. Andrés, Nicolás Emilio Bordenabe, and

Catuscia Palamidessi. 2013. Broadening the Scope of Differential Privacy Using

Metrics. In Privacy Enhancing Technologies, Emiliano De Cristofaro and Matthew

Wright (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 82–102.

[22] Jack Crawford, Craig Gentry, S. Halevi, Daniel Platt, and V. Shoup. 2018. Doing

Real Work with FHE: The Case of Logistic Regression. Proceedings of the 6th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography (2018).

[23] Wei Dai et al. 2019. Crypto++. https://www.cryptopp.com/.

[24] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. 2017.

The TinyTable Protocol for 2-Party Secure Computation, or: Gate-Scrambling

Revisited. In Advances in Cryptology – CRYPTO 2017.
[25] Ivan Damgård and Rune Thorbek. 2008. Efficient Conversion of Secret-shared

Values Between Different Fields. IACR Cryptology ePrint Archive 2008 (01 2008),
221.

[26] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS.
[27] G. Dessouky, F. Koushanfar, A. Sadeghi, T. Schneider, Shaza Zeitouni, andMichael

Zohner. 2017. Pushing the Communication Barrier in Secure Computation using

Lookup Tables. IACR Cryptol. ePrint Arch. (2017).
[28] Jack Doerner and Abhi Shelat. 2017. Scaling ORAM for Secure Computation.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, Dallas Texas USA, 523–535. https://doi.org/10.1145/

3133956.3133967

[29] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. Technical Report.

[30] Wenliang Du, Yunghsiang Han, and Shigang Chen. 2004. Privacy-Preserving

Multivariate Statistical Analysis: Linear Regression And Classification. (04 2004).

https://doi.org/10.1137/1.9781611972740.21

[31] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differ-

ential Privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (Aug. 2014), 211–407.

https://doi.org/10.1561/0400000042

[32] Natasha Fernandes. 2022. Differential privacy for metric spaces: information-

theoretic models for privacy and utility with new applications to metric domains.

(10 2022). https://doi.org/10.25949/21365637.v1

[33] R. A. FISHER. 1936. THE USE OF MULTIPLE MEASUREMENTS IN TAXO-

NOMIC PROBLEMS. Annals of Eugenics 7 (1936). https://doi.org/10.1111/j.1469-

1809.1936.tb02137.x

[34] A. Gascón, Phillipp Schoppmann, B. Balle, Mariana Raykova, Jack Doerner, Samee

Zahur, and David Evans. 2016. Secure Linear Regression on Vertically Partitioned

Datasets. IACR Cryptol. ePrint Arch. (2016).
[35] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game

(STOC ’87).
[36] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. J. ACM 43, 3 (May 1996), 431–473. https://doi.org/10.1145/

233551.233553

[37] S Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,

Mariana Raykova, and Yevgeniy Vahlis. 2012. Secure two-party computation in

sublinear (amortized) time. In Proceedings of the 2012 ACM conference on Computer
and communications security. 513–524.

[38] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

[39] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

2015. Deep Learning with Limited Numerical Precision. In Proceedings of the
32nd International Conference on International Conference on Machine Learning -
Volume 37 (ICML’15). 1737–1746.

[40] Isabelle Guyon. 2003. Arcene Data Set.

https://archive.ics.uci.edu/ml/datasets/Arcene.

[41] Isabelle Guyon. 2003. Gisette Data Set.

https://archive.ics.uci.edu/ml/datasets/Gisette.

[42] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. 2005. Result Analysis

of the NIPS 2003 Feature Selection Challenge. In NIPS 17, L. K. Saul, Y. Weiss,

and L. Bottou (Eds.). 545–552.

[43] Darrel Hankerson and Alfred Menezes. 2005. Elliptic Curve Discrete Logarithm
Problem. Springer US, Boston, MA, 186–189.

[44] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. 2017. Scalable

Multi-party Private Set-Intersection. In Public-Key Cryptography – PKC 2017,
Serge Fehr (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 175–203.

[45] Geetha Jagannathan and Rebecca N. Wright. 2005. Privacy-Preserving Dis-

tributed k-Means Clustering over Arbitrarily Partitioned Data. In Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining (KDD ’05). Association for Computing Machinery, 593–599.

[46] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference.

In Proceedings of the 27th USENIX Conference on Security Symposium (SEC’18).
1651–1668.

[47] Seny Kamara, Payman Mohassel, and Mariana Raykova. 2011. Outsourcing

Multi-Party Computation. Cryptology ePrint Archive, Report 2011/272.

[48] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-

Vazquez, and Srinivas Vivek. 2017. Faster Secure Multi-Party Computation of

AES and DES Using Lookup Tables. Cryptology ePrint Archive, Report 2017/378.

[49] Miran Kim, Yongsoo Song, Shuang Wang, Xia Yuhou, and Xiaoqian Jiang. 2017.

Secure Logistic Regression Based on Homomorphic Encryption: Design and

Evaluation. JMIR Medical Informatics (08 2017).
[50] Kasper Green Larsen and Jesper Buus Nielsen. 2018. Yes, there is an oblivious

RAM lower bound!. In Annual International Cryptology Conference. Springer,
523–542.

[51] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit

database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

55

https://doi.org/10.1145/2857705.2857731
https://doi.org/10.1145/3555984
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1145/3133956.3133967
https://doi.org/10.1137/1.9781611972740.21
https://doi.org/10.1561/0400000042
https://doi.org/10.25949/21365637.v1
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553


Proceedings on Privacy Enhancing Technologies 2024(3) Saleem et al.

[52] Yehuda Lindell and Benny Pinkas. 2000. Privacy Preserving Data Mining. In

Advances in Cryptology — CRYPTO 2000. Springer Berlin Heidelberg, 36–54.

[53] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network

Predictions via MiniONN Transformations. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’17). 619–631.
https://doi.org/10.1145/3133956.3134056

[54] Kerry Maletsky. 2020. RSA vs ECC Comparison for Embedded Systems.

https://ww1.microchip.com/downloads/en/DeviceDoc/00003442A.pdf.

[55] Sahar Mazloom and S. Dov Gordon. 2018. Secure Computation with Differentially

Private Access Patterns. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Toronto Canada, 490–507.

https://doi.org/10.1145/3243734.3243851

[56] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich

Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh

Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=r1gs9JgRZ

[57] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework

for machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 35–52.

[58] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. 19–38.

[59] Alan F. Murray and Peter J. Edwards. 1994. Enhanced MLP Performance and

Fault Tolerance Resulting from Synaptic Weight Noise During Training. IEEE
Transactions on Neural Networks 5 (1994), 792–802.

[60] Muhammad Naveed, Seny Kamara, and Charles VWright. 2015. Inference attacks

on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 644–655.

[61] Giuseppe Persiano and Kevin Yeo. 2023. Lower bound framework for differentially

private and oblivious data structures. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 487–517.

[62] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Advances
in Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings 30. Springer, 502–519.

[63] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta,

Rahul Sharma, Nishanth Chandran, and Aseem Rastogi. 2021. SiRnn: A Math

Library for Secure RNN Inference. 2021 IEEE Symposium on Security and Privacy
(SP) (2021), 1003–1020.

[64] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure

Computation Framework for Machine Learning Applications. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (ASIACCS
’18). 707–721. https://doi.org/10.1145/3196494.3196522

[65] Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and Jerome P. Reiter. 2004. Privacy

Preserving Regression Modelling via Distributed Computation. In Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’04). Association for Computing Machinery, 677–682.

https://doi.org/10.1145/1014052.1014139

[66] Zhiwei Shang, Simon Oya, Andreas Peter, and Florian Kerschbaum. 2021. Ob-

fuscated access and search patterns in searchable encryption. arXiv preprint
arXiv:2102.09651 (2021).

[67] Elaine Shi, T H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O ((log N) 3) worst-case cost. In Advances in Cryptology–ASIACRYPT
2011: 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17.
Springer, 197–214.

[68] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep Learning. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security (CCS ’15). 1310–1321. https://doi.org/10.1145/2810103.2813687

[69] Aleksandra B. Slavkovic, Yuval Nardi, and Matthew M. Tibbits. 2007. Se-

cure Logistic Regression of Horizontally and Vertically Partitioned Distributed

Databases. In Proceedings of the Seventh IEEE International Conference on Data
Mining Workshops (ICDMW ’07). IEEE Computer Society, 723–728. https:

//doi.org/10.1109/ICDMW.2007.84

[70] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM:

an extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[71] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkatara-

mani, Vijayalakshmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash

Gopalakrishnan. 2019. Hybrid 8-bit Floating Point (HFP8) Training and Inference

for Deep Neural Networks. In Advances in Neural Information Processing Systems
32. 4900–4909.

[72] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. 2008. Privacy-preserving SVM

classification. Knowledge and Information Systems 14 (02 2008), 161–178. https:

//doi.org/10.1007/s10115-007-0073-7

[73] Sameer Wagh. 2022. Pika: Secure Computation using Function Secret Sharing

over Rings. Proceedings on Privacy Enhancing Technologies 2022, 4 (oct 2022),

351–377. https://doi.org/10.56553/popets-2022-0113

[74] Sameer Wagh. 2022. Pika: Secure Computation using Function Secret Sharing

over Rings. Proceedings on Privacy Enhancing Technologies 2022, 4 (Oct. 2022),
351–377. https://doi.org/10.56553/popets-2022-0113

[75] SameerWagh, Paul Cuff, and PrateekMittal. 2018. Differentially Private Oblivious

RAM. Proceedings on Privacy Enhancing Technologies 2018, 4 (Aug. 2018), 64–84.
https://doi.org/10.1515/popets-2018-0032

[76] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: Effi-

cient and Private Neural Network Training. In Privacy Enhancing Technologies
Symposium. (PETS 2019).

[77] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-

tal, and Tal Rabin. 2021. Falcon Honest-Majority Maliciously Secure Framework

for Private Deep Learning. Proceedings on Privacy Enhancing Technologies 2021,
1 (2021).

[78] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash

Gopalakrishnan. 2018. Training Deep Neural Networks with 8-bit Floating Point

Numbers. In Advances in Neural Information Processing Systems 31. 7675–7684.
[79] Xiao Shaun Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi.

2014. SCORAM: oblivious RAM for secure computation. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 191–202.

[80] Wenliang Du and M. J. Atallah. 2001. Privacy-preserving cooperative scientific

computations. In Proceedings. 14th IEEE Computer Security Foundations Workshop,
2001. 273–282.

[81] Shuang Wu, Tadanori Teruya, and Junpei Kawamoto. 2013. Privacy-preservation

for Stochastic Gradient Descent Application to Secure Logistic Regression. In

The 27th Annual Conference of the Japanese Society for Artificial Intelligence.
[82] Pieter Wuille, Tim Ruffing, et al. 2013. libsecp256k1. https://github.com/bitcoin-

core/secp256k1.

[83] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms.

[84] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. 2006. Privacy-Preserving SVM

Classification on Vertically Partitioned Data. In Advances in Knowledge Discovery
and Data Mining. 647–656.

[85] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David

Evans, and Jonathan Katz. 2016. Revisiting Square-Root ORAM: Efficient Random

Access in Multi-party Computation. 218–234. https://doi.org/10.1109/SP.2016.21

ISSN: 2375-1207.

A MACHINE LEARNING

Stochastic Gradient Descent (SGD) is a commonly used iterative

algorithm to find the local minimum of a function. We use SGD to

minimize the cross-entropy cost function and learn𝒘 . The coeffi-

cient vector𝒘 is first initialized to 0 or random values. Then in each

iteration, we randomly select a data point (𝒙 𝒊, 𝑦𝑖 ) and update𝒘 as

𝑤 𝑗 = 𝑤 𝑗 − 𝛼 𝜕𝐶𝑖 (𝒘)
𝜕𝑤𝑗

, where 𝛼 is the learning rate that controls the

step towards the minimum taken in each iteration. Substituting the

cost function, we get the update rule:𝑤 𝑗 = 𝑤 𝑗 −𝛼 (𝑓 (𝒙 𝒊 .𝒘) −𝑦𝑖 )𝑥𝑖 𝑗 .
Batching. Instead of updating𝒘 using a single data sample in each

iteration, the dataset is divided into random batches of size |𝐵 | and
𝒘 is updated by averaging the partial derivative of the samples in

a batch. With batching, the vectorized form of the update rule for

the 𝑘th batch is given as:𝒘 = 𝒘 − 𝛼 1

|𝐵 |𝑿
𝑇
𝑘
(𝑓 (𝑿𝑘 ×𝒘) − 𝒀𝑘 ). One

pass through the training samples is called an epoch.

Learning Rate. The learning rate 𝛼 determines the step size of the

SGD towards the minimum. A large 𝛼 corresponds to larger steps,

which may result in divergence due to overstepping the minimum.

In contrast, a small 𝛼 may increase the total iterations required.

Termination. When the cost does not decrease significantly for

several iterations, SGD is considered to have converged to a mini-

mum, and we can terminate. We can then use the learned coefficient

vector𝒘 for inference.
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Algorithm 10 Logistic Regression: ΠLogistic(𝑃0,𝑃1)
Input: ⟨𝑿⟩, ⟨𝒀 ⟩
Output:𝒘
Common Randomness: ⟨𝑼 ⟩, ⟨𝑽 ⟩, ⟨𝒁⟩, ⟨𝑽 ′⟩, ⟨𝒁 ′⟩,
1. Initialize lookup table counters 𝑐1, . . . , 𝑐𝑚 = 0, where m is the number of clients.

2. For 𝑖 ∈ {0, 1}, 𝑃𝑖 computes ⟨𝑬⟩𝑖 = ⟨𝑿⟩𝑖 − ⟨𝑼 ⟩𝑖 . The parties reconstruct 𝑬 using 𝑅𝑒𝑐 (⟨𝑬⟩0, ⟨𝑬⟩1).
3. For 1 ≤ 𝑗 ≤ 𝑡
3.1. Parties select a mini-batch denoted by 𝐵 𝑗 .

3.2. For 𝑖 ∈ {0, 1}, 𝑃𝑖 computes ⟨𝑭 𝑗 ⟩𝑖 = ⟨𝒘⟩𝑖 − ⟨𝑽 [ 𝑗]⟩. The parties reconstruct 𝑭 𝑗 using 𝑅𝑒𝑐 (⟨𝑭 𝑗 ⟩0, ⟨𝑭 𝑗 ⟩1).
3.3. For 𝑖 ∈ {0, 1}, 𝑃𝑖 computes ⟨𝑮𝐵 𝑗

⟩𝑖 = ⟨𝑿𝐵 𝑗
⟩𝑖 × 𝑭 𝑗 + 𝑬𝐵 𝑗

× ⟨𝒘⟩𝑖 + ⟨𝒁 𝑗 ⟩𝑖 − 𝑖 · 𝑬𝐵 𝑗
× 𝑭 𝑗

3.4. For 𝑖 ∈ {0, 1}, 𝑃𝑖 calls ΠSigmoid(𝑃0,𝑃1) with inputs (⟨𝑮𝐵 𝑗
⟩𝑖 , 𝐿Sigmoid

𝑖
) and sets the output as ⟨𝒀 ∗

𝐵 𝑗
⟩𝑖 .

3.5. For 𝑖 ∈ {0, 1}, 𝑃𝑖 computes ⟨𝑫𝐵 𝑗
⟩𝑖 = ⟨𝒀 ∗

𝐵 𝑗
⟩𝑖 − ⟨𝒀𝐵 𝑗

⟩𝑖
3.6. For 𝑖 ∈ {0, 1}, 𝑃𝑖 computes ⟨𝑭 ′

𝑗
⟩𝑖 = ⟨𝑫𝐵 𝑗

⟩𝑖 − ⟨𝑽 ′
𝑗
⟩𝑖 . The parties reconstruct 𝑭

′
𝑗
using 𝑅𝑒𝑐 (⟨𝑭 ′

𝑗
⟩0, ⟨𝑭

′
𝑗
⟩1).

3.7. For 𝑖 ∈ {0, 1}, 𝑃𝑖 computes ⟨𝚫⟩𝑖 = ⟨𝑿𝑇
𝐵 𝑗
⟩𝑖 × 𝑭

′
𝑗
+ 𝑬𝑇

𝐵 𝑗
× ⟨𝑫𝐵 𝑗

⟩𝑖 + ⟨𝒁 ′
𝑗
⟩𝑖 − 𝑖 · 𝑬𝑇𝐵 𝑗

× 𝑭
′
𝑗

3.8. For 𝑖 ∈ {0, 1}, 𝑃𝑖 truncates ⟨𝚫⟩𝑖 element-wise to get ⌊⟨𝚫⟩𝑖 ⌋
3.9. For 𝑖 ∈ {0, 1}, 𝑃𝑖 updates the coefficient vector as ⟨𝒘⟩𝑖 := ⟨𝒘⟩𝑖 − 𝛼

|𝐵 | ⌊⟨𝚫⟩𝑖 ⌋
4. The parties reconstruct𝒘 using 𝑅𝑒𝑐 (⟨𝒘⟩0, ⟨𝒘⟩1) and output𝒘 .

B REDUCED PRECISION TRAINING

ML algorithms are inherently resilient to error, setting them apart

from conventional algorithms that demand precise computations

and high dynamic range number representations. High precision

computation for training ML algorithms is unnecessary [13]. In

fact, introducing minor noise during training can enhance neural

network generalization, thereby mitigating over-fitting [6, 11, 59].

A recent trend in neural network training is to use approxi-

mate computing techniques to reduce memory requirements and

improve computing efficiency [56]. Gupta et al. [39] show that

training neural networks using 16-bit fixed-point representation

with stochastic rounding can yield accuracy similar to the 32-bit

floating-point format. Wang et al. [78] employ a combination of

16-bit and 8-bit floating-point numbers for various deep-learning

tasks. Sun et al. [71] present an 8-bit hybrid floating-point format

and demonstrate its robustness by training neural networks for

various tasks while preserving accuracy.

C PROOFS

Theorem 5. The geometric mechanism defined in Definition 4
satisfies 𝑑X-privacy.

Proof Sketch. Let 𝑥, 𝑥 ′ ∈ X. Let 𝑝𝑥 and 𝑝𝑥 ′ denote the proba-

bility mass functions of 𝐺𝑥 and 𝐺𝑥 ′ respectively. Then, for some

𝑧 ∈ Y, we have,

𝑝𝑥 (𝑧)
𝑝𝑥 ′ (𝑧)

=

1−𝑒−𝜖
1+𝑒−𝜖 · 𝑒−𝜖 ·𝑑X (𝑥,𝑧)

1−𝑒−𝜖
1+𝑒−𝜖 · 𝑒−𝜖 ·𝑑X (𝑥 ′,𝑧)

=
𝑒−𝜖 ·𝑑X (𝑥,𝑧)

𝑒−𝜖 ·𝑑X (𝑥 ′,𝑧)

= 𝑒𝜖 · (𝑑X (𝑥 ′,𝑧)−𝑑X (𝑥,𝑧))

Using the triangle inequality for the metric 𝑑X (., .) and as

𝑑X (𝑥, 𝑥 ′) = 𝑑X (𝑥 ′, 𝑥) , we get:

𝑝𝑥 (𝑧)
𝑝𝑥 ′ (𝑧)

≤ 𝑒𝜖 ·𝑑X (𝑥,𝑥 ′)

which completes the proof.

□

D LOGISTIC REGRESSION PROTOCOL

We present our complete Logistic Regression protocol in Algo-

rithm 10. To implement logistic regression, we use SecureML’s

linear regression algorithm and add our ΠSigmoid protocol for com-

puting the Sigmoid function.

We can denote the input matrix for the 𝑖th layer as a |𝐵 | × 𝑑𝑖
matrix 𝑿 𝒊 and the coefficient matrix as a 𝑑𝑖−1 × 𝑑𝑖 matrix𝑾𝒊 . In

iteration 𝑘 , during the forward pass, the input to the first layer 𝑿0
is initialized as batch 𝑘 of the input data, and 𝑿 𝒊 , for each layer 𝑖 ,

is computed as 𝑿 𝒊 = 𝑓 (𝑿 𝒊−1 ×𝑾𝒊). During the back propagation,

given a cost function𝐶 (𝑾 ), such as the cross-entropy function, we

first compute 𝚫𝒊 =
𝛿𝐶 (𝑾 )
𝛿𝒁𝒊

for each layer 𝑖 , where 𝒁𝒊 = 𝑿 𝒊−1 ×
𝑾𝒊 . For the output layer 𝑙 , 𝚫𝒍 is computed as: 𝚫𝒍 =

𝛿𝐶 (𝑾 )
𝛿𝑿𝒍

⊙
𝛿 𝑓 (𝒁𝒍 )
𝛿𝒁𝒍

; here
𝛿 𝑓 (𝒁𝒍 )
𝛿𝒁𝒍

is the derivative of the activation function and

⊙ represents element-wise multiplication. Given 𝚫𝒍 for the output

layer, 𝚫𝒊 for previous layers is computed as: 𝚫𝒊 = (𝚫𝒊+1 ×𝑾𝑻
𝒊 ) ⊙

𝛿 𝑓 (𝒁𝒊)
𝛿𝒁𝒊

. The coefficients 𝑾𝒊 in layer 𝑖 are then updated as: 𝑾𝒊 =

𝑾𝒊 − 𝛼 1

|𝐵 | (𝑿 𝒊 × 𝚫𝒊). We use 𝑅𝑒𝑐 to denote share reconstruction.

E DATASETS

We use the following datasets in our experiments to compare our

results with the previous works [58, 76] and evaluate the scalability

of our protocols.
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Figure 11: Lookup tables required by our PPNN protocols to achieve a certain accuracy level i.e. 96% for MNIST, 85% for Adult,

and 96% for Iris dataset.(r
Multi

= 10).

Mode 100 101 102 103 104 105

Pika

LAN

0.0007 0.001 0.006 0.059 0.539 5.329

SIRNN _ 0.115 0.116 0.147 0.289 2.089

Hawk
Single

0.0002 0.0004 0.0004 0.0013 0.0060 0.0482

Hawk
Multi

0.0008 0.0016 0.0038 0.0209 0.1855 1.8193

Pika

WAN

0.183 0.195 0.198 0.356 1.375 9.030

SIRNN _ 7.683 7.690 7.816 9.313 32.702

Hawk
Single

0.050 0.059 0.059 0.062 0.066 0.116

Hawk
Multi

0.179 0.180 0.185 0.192 0.318 2.160

Table 7: Comparison ofHawkwith Pika and SIRNN semi-honest protocols. Time is in seconds and the computation is a sigmoid

function on a batch of 100, 101, 102, 103, 104, and 105 in both the LAN and WAN settings.

MNIST. The MNIST dataset [51] contains images of handwritten

digits from ‘0’ to ‘9’. The training set consists of 60,000 images, and

the test set contains 10,000 images. Each sample consists of 784

features representing a 28 × 28 image with pixel values ranging

from 0 to 255.

Gisette. The Gisette dataset [41, 42] is constructed from the MNIST

dataset, and the task is to classify the highly confusible digits ‘4’ and

‘9’. The dataset contains 13,500 samples, each with 5,000 features,

with values ranging from 0 to 1,000.

Arcene. The Arcene dataset [40, 42] contains mass-spectrometric

data, and the task is distinguishing cancer from normal patterns.

The dataset contains 900 instances, each with 10,000 features, with

values ranging from 0 to 1000.

Fashion MNIST. The dataset contains Zalando’s article images

in 10 classes [83]. The training set consists of 60,000 images, and

the test set contains 10,000 images. Each sample consists of 784

features with values ranging from 0 to 255. The dataset can be used

as a drop-in replacement for MNIST.

Iris. The Iris dataset [33] contains 3 classes of 50 instances, each

where each class is a type of iris plant, and each instance consists

of 4 features.

Adult. The dataset consists of census data with 48,842 instances,

each with 14 attributes. The classification task is to predict if an

individual’s income exceeds $50K/year. The dataset also contains

missing values.

F COMPARISONWITH RELATEDWORKS

Table 7 provides comparison of our Hawk
Single

and Hawk
Multi

protocols with Pika [74] and SIRNN [63] for sigmoid function com-

putation. Our protocols outperform both Pika and SIRNN in all

settings.
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