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ABSTRACT
While location trajectories represent a valuable data source for
analyses and location-based services, they can reveal sensitive in-
formation, such as political and religious preferences. Differentially
private publication mechanisms have been proposed to allow for
analyses under rigorous privacy guarantees. However, the tradi-
tional protection schemes suffer from a limiting privacy-utility
trade-off and are vulnerable to correlation and reconstruction at-
tacks. Synthetic trajectory data generation and release represent a
promising alternative to protection algorithms. While initial pro-
posals achieve remarkable utility, they fail to provide rigorous pri-
vacy guarantees. This paper proposes a framework for designing
a privacy-preserving trajectory publication approach by defining
five design goals, particularly stressing the importance of choosing
an appropriate Unit of Privacy. Based on this framework, we briefly
discuss the existing trajectory protection approaches, emphasising
their shortcomings. This work focuses on the systematisation of the
state-of-the-art generative models for trajectories in the context of
the proposed framework. We find that no existing solution satisfies
all requirements. Thus, we perform an experimental study evalu-
ating the applicability of six sequential generative models to the
trajectory domain. Finally, we conclude that a generative trajectory
model providing semantic guarantees remains an open research
question and propose concrete next steps for future research.

KEYWORDS
Trajectory Privacy, Differential Privacy, Location Privacy, Deep
Learning, Generative Adversarial Networks

1 INTRODUCTION
Location trajectories are valuable for several applications, from
navigation services over research to pandemic control. Moreover, a
large amount of location data is collected daily through the increas-
ing number of sensor-equipped devices, particularly smartphones.
However, the information content of location trajectories poses a
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risk of exposing sensitive details about individuals, such as reli-
gious, political, or sexual beliefs [2, 58]. For instance, researchers
showed in 2013 that only four locations provided through the con-
nection to mobile phone antennas suffice to uniquely identify 95 %
of users [16]. In the case of an anonymised dataset released by a
New York taxi company, a Redditor identified which taxi drivers
are practising Muslims by correlating the drivers’ break times with
mandatory prayer times [25]. Such examples illustrate that mobility
datasets require appropriate protection when released.

Various protection mechanisms based on 𝑘-Anonymity [70] and
Differential Privacy (DP) [26, 33, 35, 36, 42] have been proposed.
Recent works favour DP [19] for its resistance to background knowl-
edge attacks [10, 30, 37]. However, DP introduces a privacy-utility
trade-off by adding noise [59]. Numerous works point out that the
existing DP approaches degrade utility to a level that is no longer
useful for analyses [46, 60, 63]. Moreover, the added noise can lead
to structural differences, enabling reconstruction attacks [5, 64].
Importantly, Miranda-Pascual et al. [52] uncovered flawed proofs
in key DP works like Hua et al. [35] and Li et al. [42], affecting
their privacy claims. Recent approaches [10, 77] based on these
mechanisms are subsequently impacted by the same issues.

Hence, we propose a design framework for privacy-preserving
trajectory publication approaches based on five design goals, aim-
ing to address and avoid the shortcomings evident in prior research.
These design goals include: (i) ensuring proven privacy guarantees,
(ii) defining and emphasising the Unit of Privacy (UoP), (iii) valu-
ing practical privacy assessments alongside theoretical guarantees,
(iv) prioritising high utility and its thorough evaluation, and (v) con-
sidering the practical implementation of the approach. Using this
framework, we systematically examine existing DP trajectory pro-
tection mechanisms, underscoring their limitations.

Acknowledging the difficulty of balancing high utility with strict
privacy in (DP) methods, a vision paper [44] proposed trajGANs –
Generative Adversarial Networks designed for trajectory data syn-
thesis. Synthetic data could replace real data in analyses, thereby
safeguarding individual privacy. Our work systematises approaches
inspired by this vision, focusing on their alignment with our pro-
posed design goals. LSTM-TrajGAN [63] represents a widely recog-
nised work following this vision. While LSTM-TrajGAN achieves
high utility with the generated data, the approach fails to provide
rigorous semantic privacy guarantees. We show the practical im-
plications by successfully applying the attack proposed in [5] to

75

https://orcid.org/0000-0001-9962-5665
https://orcid.org/0000-0001-9695-7947
https://orcid.org/0000-0001-8938-2364
https://orcid.org/0000-0002-3289-6599
https://orcid.org/0000-0002-1835-3475
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0068


Proceedings on Privacy Enhancing Technologies 2024(3) Erik Buchholz, Alsharif Abuadbba, Shuo Wang, Surya Nepal, and Salil S. Kanhere

LSTM-TrajGAN. Moreover, we find that no other proposed genera-
tive trajectory model achieves sufficient privacy guarantees yet.

These findings motivate an experimental study evaluating the
applicability of generative models from other domains to trajectory
generation. In particular, we consider two simple Recurrent Neural
Network (RNN)-based models [34], a privacy-enhanced adaption
of LSTM-TrajGAN [63], Recurrent GAN (RGAN) [23] successful
for medical signal generation, WaveGAN [18] used for audio gen-
eration, and a sequential adaptation of GeoPointGAN (GPG) [14]
used for location generation. First, we test the models on a toy
dataset, MNIST Sequential (MNIST-Seq), before evaluating all mod-
els on two well-known trajectory datasets, Geolife and Foursquare
NYC [17] (FS-NYC). While all models produce acceptable results
on the toy dataset, no model can adequately capture the point dis-
tribution of the trajectory datasets. Despite the underwhelming
performance, our findings suggest that Conv1D-based models may
outperform RNN-based ones and indicate the potential of an en-
semble approach that combines point and sequential properties. We
also identify the use of Differentially Private Stochastic Gradient
Descent (DP-SGD) as a promising method to attain genuine DP
guarantees, considering an appropriate UoP in generative trajec-
tory models. Our analysis concludes that designing a trajectory-
generating model that offers robust privacy guarantees remains an
urgent and open research gap. This systematisation of knowledge
contributes to the field of trajectory privacy in the following ways:

• We propose a framework for developing privacy-preserving
trajectory publication approaches based on five pivotal de-
sign goals (Section 3).

• We contrast traditional trajectory protection methods with
synthetic trajectory generation (Sections 4 and 5).

• We critically assess the prevailing privacy-preserving trajec-
tory synthesis techniques, identifying gaps in the current
state-of-the-art (Section 6).

• We reproduce the results of proposed generative models
and perform additional measurements, e.g., showing the suc-
cess of the Reconstruction Attack on Protected Trajectories
(RAoPT) attack against LSTM-TrajGAN (Section 6).

• We evaluate the adaptability of six generative models to
trajectory data in an experimental study, finding that none
of the models is easily applicable (Section 7).

• We make all our experimental code available online1, ensur-
ing reproducibility and facilitating future work.

2 BACKGROUND
This section discusses the background knowledge for this work.
Section 2.1 formally defines trajectory datasets and introduces the
datasets used for evaluation. Section 2.2 explains DP, and Section 2.3
looks at DP-SGD, the most common application of DP to deep learn-
ing. Then, we introduce generative models in Section 2.4. Finally,
Section 2.5 describes attacks against trajectory privacy methods.

2.1 Trajectory Datasets
A trajectory dataset 𝐷 consists of a number of trajectories 𝐷 =

{𝑇𝑢1,𝑇𝑢2, . . . ,𝑇𝑧𝑚} where 𝑇𝑢𝑖 refers to the 𝑖𝑡ℎ trajectory of user
𝑢. Each user might contribute one or multiple trajectories to the
1https://github.com/erik-buchholz/SoK-TrajGen

dataset. A trajectory 𝑇 can be represented as an ordered sequence
of locations: 𝑇 = (𝑙1, . . . , 𝑙𝑛). Each location has at least two co-
ordinates, typically latitude and longitude 𝑙𝑖 = (𝑙𝑎𝑡𝑖 , 𝑙𝑜𝑛𝑖 ), with
optional additions like elevation for greater precision [81]. Addi-
tionally, trajectories can include semantic information such as Point
of Interests (POIs) (e.g., restaurant, shop, gym) to provide context
to locations [71]. While such additional information can increase
the utility of a dataset for analyses, semantic information facili-
tates Trajectory User Linking (TUL) [50, 71]. In a pure semantic
trajectory, each location only represents a semantic location, such
as a shop, without associated location information, e.g., credit card
transaction datasets. In this work, we assume each location con-
sists of spatial coordinates, i.e., latitude and longitude. Semantic
information is optional as not all datasets record it.

2.2 Differential Privacy
Privacy notions are typically categorised into two types [47]: syn-
tactic and semantic notions. Differential Privacy (DP) [20] represents
the main semantic privacy notion used to protect personal infor-
mation [30, 47]. The central intuition of differential privacy is that
adding or removing any user’s data to a dataset does not signifi-
cantly change the output. Accordingly, participation does not harm
users’ privacy as they have plausible deniability regarding partici-
pation. The mathematical definition is as follows [20]:

Definition 2.1 (Differential Privacy). A mechanism K provides
(𝜀, 𝛿)-differential privacy if for all neighbouring datasets 𝐷1 and 𝐷2,
and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (K) holds

P[K(𝐷1) ∈ 𝑆] ≤ 𝑒𝜀 ×P[K(𝐷2) ∈ 𝑆] + 𝛿 (1)

Based on this definition, determining when two datasets are
considered neighbouring is pivotal for ensuring privacy guarantees.
Therefore, we dedicate Section G2 to discussing the definition of
neighbourhood in the context of trajectory datasets.

ConsidermechanismK computing a noisy average over a dataset.
If the data of another user is added to the dataset𝐷1 yielding dataset
𝐷2, the change of the probabilities for the outputs of K is bounded
through 𝜀. The smaller 𝜀 is chosen, the higher the provided privacy
level. In the literature, common values for 𝜀 range from 0.01 to
10 [22]. However, in machine learning using DP-SGD, larger values
for 𝜀 might be used in practice [57]. The value 𝛿 represents a failure
probability for which 𝜀-DP can be violated. The best practice is to
choose 𝛿 = 1

𝑛 where 𝑛 is the number of records in the dataset, such
that no entire record can remain unprotected [57]. The most com-
mon way to design a differential private mechanism is through the
Laplace mechanism [20], Gaussian mechanism [20], or Exponential
Mechanism (EM) [51]. Differential privacy offers a few valuable
properties that aid in the design of more complex mechanisms:
Post-Processing. Differential privacy is immune to post-process-
ing [20]. This means that the output of any differential private mech-
anism can be post-processed to enhance the utility of the output
without reducing the provided privacy guarantees [20]. However,
the post-processing must not access the original data.
Sequential Composition. Moreover, the Sequential Composition
Theorem states that the sequential composition of 𝑛 (𝜀𝑖 , 𝛿𝑖 )-DP
mechanism provides

∑𝑛
𝑖=1 (𝜀𝑖 , 𝛿𝑖 )-DP. This allows designing a DP

algorithm as a combination of multiple individual algorithms.
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Parallel Composition. In cases where the records of a dataset
are partitioned and processed by separate algorithms providing
(𝜀𝑖 , 𝛿𝑖 )-DP, such that each record is only accessed by exactly one
algorithm, the combined algorithm provides (max𝑖 𝜀𝑖 ,max𝑖 𝛿𝑖 )-DP.

2.3 Differentially Private Deep Learning
Giving users or third parties access to a trained Deep Learning (DL)
model represents a common business practice [15]. Used datasets
are commonly private because they contain sensitive information
about individuals and business secrets, or sharing is limited by
legislative constraints. For instance, a DL-powered text-to-image
converter might be trained on a business’s internal and private texts
and images. However, Membership Interference Attacks (MIAs) [66]
can recover (sensitive) training data from a released model even if
the data itself is not published. To prevent the leakage of private
training data, differential privacy has been introduced to DL [1, 57].

We refer the reader to a recent report by Ponomareva et al.
[57] for a thorough analysis of differentially private DL. Here, we
briefly describe Differentially Private Stochastic Gradient Descent
(DP-SGD) [1], which represents the most widely implemented ap-
plication of DP to deep learning [57]. The first step of DP-SGD
is clipping the gradients to a clipping norm 𝐶 such that the influ-
ence of each training sample is bounded. Second, Gaussian noise is
added to the gradients based on this clipping norm 𝐶 and a noise
multiplier 𝜎 . Third, privacy accounting tracks the 𝜀 budget during
training to ensure a (𝜀, 𝛿)-DP guarantee upon completion.

2.4 Generative Models
Generative models for sequential data [21], such as trajectories,
have been proposed to generate more data for domains with limited
data available or to generate synthetic data in order to replace real
data that is sensitive, e.g., in the medical domain [23]. Here, we
focus on those architectures used in the context of trajectories.
Recurrent Neural Network (RNN). RNNs sequentially process
inputs by maintaining a memory of previous inputs through a
hidden state that is passed on from one cell to the next. This makes
RNNswell-suited for trajectories, as each location relies on previous
ones. The most common type of RNN in the context of trajectories
is the Long Short-Term Memory (LSTM) [34], which improves the
ability to understand long-term dependencies.
Autoencoder (AE). AEs [4] consist of an encoder that encodes a
given input into a lower-dimensional latent representation and a
decoder that aims at reconstructing the original input. Common
applications are dimensionality reduction and denoising. The latent
bottleneck forces outputs to be different, while the most important
information is preserved if the model is trained correctly.
Variational Autoencoder (VAE). VAEs [41] are a probabilistic
extension of AEs. The encoder maps inputs to latent distributions,
enforced by minimising the KL divergence to the target distribution.
The decoder then samples from the latent space distributions to
generate data. This enables VAEs to both reconstruct and generate.
Generative Adversarial Network (GAN). GANs [29] are com-
posed of two separate models, the generator𝐺 and the discriminator
𝐷 . The generator𝐺 receives noise as input and tries to generate sam-
ples that are indistinguishable from real data samples. Meanwhile,
the discriminator 𝐷 judges whether a given input sample comes

from the real dataset or the generator. The resulting zero-sum game
is represented by the adversarial loss [29]:

min
𝐺

max
𝐷
E𝑥∼𝑝data [log𝐷 (𝑥)] + E𝑧∼𝑝𝑧 [log(1 − 𝐷 (𝐺 (𝑧)))] (2)

Here, 𝑝data is the real data distribution, and 𝑝𝑧 is 𝐺 ’s input noise
distribution. The generator and discriminator train iteratively until
𝐺 produces samples that can barely be distinguished from real data.
Adversarial Autoencoder (AAE). AAEs [48] combine AEs with
the adversarial concept of GANs. The encoder transforms inputs
into latent representations that approximate a target distribution.
In contrast to VAEs, AAEs employ an adversarial loss, i.e., a dis-
criminator’s feedback, to ensure the latent space adheres to the
designated distribution. Like VAEs, AAEs can reconstruct input
data and generate new synthetic data.

2.5 Practical Attacks against Trajectory Privacy
Several attacks on trajectory protection highlight the risks of in-
sufficient protection. Miranda-Pascual et al. [52] provide a compre-
hensive overview. Here, we focus on two practical attacks, namely
RAoPT [5] and TUL [50], which provide open-source code [6, 45]
such that we propose them for empirical evaluation in Section G3.
TUL. While a single trajectory might not reveal sensitive infor-
mation or allow identification, linking multiple trajectories to the
same user increases these risks [50, 63]. Therefore, some protection
mechanisms [24, 63, 65, 67] utilise TUL to evaluate the provided
privacy level, with a lower TUL success rate implying better privacy.
One recent and openly available [45] TUL algorithm is MARC [50].
This DL model consisting of embedding, RNN, and softmax layers
matches multi-aspect trajectories containing semantic information,
e.g., POI information, to users.
RAoPT. Buchholz et al. [5] note that the perturbation of DP pro-
tectionmechanisms causes structural differences in the outputs, e.g.,
zigzag patterns. They develop the RAoPT DL model, which trains
on protected samples as inputs and real samples as targets to un-
derstand their relationship. The trained model can then reconstruct
versions closer to the originals from unseen protected trajectories,
thereby reducing perturbations and compromising privacy.

3 DESIGN GOALS
This section introduces our design framework for privacy-preserv-
ing trajectory publication mechanisms. The overarching goal can
be defined as: The release of high-utility trajectory data without
revealing private information about the individuals participating in
the dataset. In the following, we discuss the five goals forming our
design framework. These goals are not ordered by importance, as
this depends on the specific dataset and use case.

G1: Formal Privacy Guarantees
Ensuring stringent privacy guarantees is essential when releasing
trajectory datasets. While practical privacy evaluations against
specific attacks have advantages, as we discuss in Section G3, formal
guarantees are irreplaceable. First, testing against a designated
attack only demonstrates resistance to that specific threat. It does
not vouch for protection against other existing attacks, unforeseen
future threats, or enhanced algorithms of the same attack. Second,
this method lacks quantifiable privacy guarantees. In a commercial
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context, evidence of rigorous efforts to safeguard shared data is
necessary. Leveraging formal guarantees, like DP with established
𝜀 and 𝛿 parameters, provides such evidence. It signifies that state-
of-the-art protection, endorsed by the research community at the
time of release, was implemented. In case of a privacy incident,
these guarantees testify to the releasing entity’s earnest attempts
at privacy preservation. Differential privacy stands out as the de
facto standard for semantic privacy guarantees. However, specific
scenarios might allow for DP relaxations. One notable example is
Local Label Differential Privacy (LLDP) used by GPG (ref. Section 6).
Local Differential Privacy (LDP). In standard (global) DP, a
central entity applies protections, such as noise addition, to data
collected from clients before sharing it. This requires trust from the
clients in the central entity. LDP eliminates this trust requirement
by applying protection locally on the client’s device before sending
it to the central entity, enhancing privacy guarantees at the cost
of potentially greater utility loss. This work presumes trust in the
central data collector as global DP is the most common notion
for trajectory privacy. However, we highlight when approaches
provide the stronger LDP guarantees.
Common Pitfalls. Miranda-Pascual et al. [52] demonstrate that
multiple foundational works on DP trajectory protection rely on
erroneous proofs, making quantifying the provided privacy level
challenging. We highlight similar issues affecting further works
in Sections 5 and 6. While the formal proofs for these flaws are
provided in [52], we summarise the most common pitfalls:
(1) Not Considering All Elements [52]: A DP mechanism must
be able to output any possible value independent of the dataset [52].
However, some methods [73, 77–80] only add noise to existing
elements, leaving unobserved elements with a count of 0. Conse-
quently, an element 𝑒 not present in dataset 𝐷 would always have
a count of 0. If neighbouring dataset 𝐷 ′ contains 𝑒 , the difference
between 𝐷 and 𝐷 ′ cannot be bounded by 𝜀 (ref. Equation 1). This
contradicts the definition of 𝜀-DP.
(2) Exponential Mechanism (EM) Application [52]: The EM’s
outputs depend on a score function 𝑢 (𝑑, 𝑟 ) : 𝐷 ×𝑅 → R that assign
a score 𝑢 to each possible output 𝑟 ∈ 𝑅 based on the dataset 𝑑 ∈ 𝐷 .
However, the set of all possible datasets 𝐷 and outputs 𝑅 must be
well-defined. Several studies [10, 32, 35, 42, 46, 75] inaccurately
define 𝑅 as dependent on the selected dataset 𝑑 . This renders the
EM indefinable and invalidates any DP claim based on it [52].
(3) Access to Real Data: The post-processing property permits
any manipulation of DP outputs not accessing the original data (ref.
Section 2.2). However, certain methods [74] access the raw data via
side channels, undermining any DP protection measures.
Conclusion. Semantic privacy guarantees are inevitable even in
the presence of privacy evaluations. The gold standard is Differ-
ential Privacy, but relaxations might be justifiable. LDP provides
stronger guarantees, making it a preferable choice when achievable.
Rigorous verification of privacy claims is essential, highlighted by
some baseline studies’ flawed DP proofs.

G2: Unit of Privacy
For privacy guarantees, choosing the correct unit of data to protect
is of utmost importance. The choice of a Unit of Privacy (UoP) is
equivalent to the question of what makes two inputs (datasets) of

a DP mechanism “neighbouring“ (ref. Section 2.2). A larger UoP
requires more obfuscation to achieve the same privacy level. Thus,
the UoP should be chosen as small as possible yet large enough
to ensure privacy. Protecting a too-small unit of data is a com-
mon problem and can lead to vulnerability to correlation [52] or
reconstruction attacks [5]. Recent literature discussed the UoP, e.g.,
Ponomareva et al. [57] focusing on machine learning and Miranda-
Pascual et al. [52] (using the term level of granularity) for trajectory
data. We use the term UoP and provide a consolidated systematisa-
tion specific to location trajectories. This shall support researchers
in selecting the appropriate UoP for their application. In the follow-
ing, we consider the dataset 𝐷1 consisting of multiple trajectories
𝐷1 = (𝑇𝑢1,𝑇𝑢2 . . . ,𝑇𝑧𝑚), where 𝑇𝑢𝑖 is the 𝑖𝑡ℎ trajectory of user 𝑢.
User-level Privacy corresponds to the original definition of dif-
ferential privacy [20]. For a trajectory dataset 𝐷1, 𝐷2 can be ob-
tained by removing all trajectories belonging to one user 𝑢: 𝐷2 =
𝐷1 \ {𝑇𝑣𝑖 |𝑣 = 𝑢}. While user-level privacy offers the most robust
protection, it often leads to a notable reduction in data utility. As
user-level privacy represents the original definition of DP, all of
the following units of privacy constitute relaxations thereof.
Instance-Level Privacy, or example-/trajectory-level privacy, safe-
guards individual trajectories 𝑇𝑢𝑖 with a specific privacy guarantee.
According to the composition theorem (ref. Section 2.2), 𝜀 instance-
level differential privacy yields𝑚𝜀 user-level differential privacy
for a user contributing𝑚 trajectories. Hence, instance-level and
user-level privacy are equivalent for datasets containing one trajec-
tory per user. Due to the protection of a trajectory as one unit, this
level protects against any attack exploiting the correlation within a
trajectory. Instance-level DP is the most common level in DL [57],
as DP-SGD provides instance-level privacy for the training samples.
Location-Level Privacy refers to event-level privacy in the gen-
eral setting [52]. In the case of a trajectory 𝑇 = (𝑙1, . . . , 𝑙𝑛), each
location 𝑙𝑖 is protected with the privacy guarantee independent
of the other locations. This weakest level of privacy requires the
least perturbation. While literature [36, 40] uses location-level pri-
vacy for trajectory protection, it is vulnerable to correlation and
reconstruction attacks. Early works on location privacy [3] already
warned against using such solutions for trajectory projection.
Multi-event-level Privacy bridges instance- and location-level
privacy, accommodating notions such as𝑤-event-level and 𝑙-tra-
jectory-level privacy (see [52] for a detailed discussion). It covers a
window of multiple events within a trajectory, equating to location-
level privacy at 𝑤 = 1 and instance-level at 𝑤 = max{|𝑇𝑖 | ∈ 𝐷}.
This approach is useful when sensitive information, like a hospital
visit, spans multiple locations such that location-level privacy is
insufficient, yet trajectory-level privacy is too restrictive.
Example. To demonstrate the significance of selecting the appro-
priate UoP, consider the trajectory protection methods CNoise and
the SDD mechanism [36]. Despite their DP guarantees, reconstruc-
tion attacks [5, 64] successfully target these mechanisms. These
attacks do not contradict the rigorous definition DP. Instead, both
attacks leverage the correlations between and within trajectories.
The wrong UoP, i.e., protecting individual locations instead of the
entire trajectory, makes these mechanisms vulnerable. Neverthe-
less, recent works [40] still use location-level approaches in the
context of trajectory privacy (ref. Section 6).
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Preservation Statistics

Point HD Range Query
Level Density Hotspot Preservation

Trajectory DTW† Travelled Distance
Level HD† Segment Length

Table 1: UtilityMetric Systematisation.Metrics with † require
a 1:1-mapping between input and output trajectories.

Conclusion. Given these findings, we strongly advise researchers
to carefully select the UoP and refrain from using location-level pri-
vacy for trajectories. We view instance-level privacy as a promising
balance between utility and privacy due to the protection against
intra-trajectory correlations and its applicability to DL. However,
employing instance-level privacy requires special care for recurring
locations in multiple trajectories, such as home or work.

G3: Empirical Privacy
Proof of formal privacy guarantees (G1) and adherence to the ap-
propriate UoP (G2) might make a practical privacy assessment
seem unnecessary. However, as Miranda-Pascual et al. [52] showed,
numerous DP trajectory protection mechanisms are built on flawed
DP proofs. Additionally, vulnerabilities can arise from the incor-
rect selection of the UoP, as elaborated in Section G2. Given these
common challenges, we advocate for integrating practical privacy
evaluations into future publications to identify potential issues and
emphasise the achieved privacy levels.

Recent studies [24, 63, 65, 67] have employed the publicly avail-
able Trajectory User Linking (TUL) algorithm MARC [45, 50] as
practical privacy assessment. Additionally, the novel reconstruction
attack RAoPT [5] provides publicly available code [6], making it a
suitable evaluation tool for trajectory protection mechanisms. Sev-
eral approaches [10, 42, 43, 74, 75, 77] use the Mutual Information
(MI) metric to measure the provided privacy level. MI measures the
dependence of the protected dataset on the original dataset such
that a lower value indicates better privacy. However, as the goal
for the published dataset is to retain as much useful information as
possible while removing all private information, a low MI might
also indicate low utility. Therefore, we consider the aforementioned
practical attacks more meaningful in quantifying practical privacy.
Conclusion. While not strictly necessary, we recommend evaluat-
ing trajectory publication approaches against at least one practical
attack, even with formal privacy guarantees. The open-source at-
tacks TUL [45], and RAoPT [6] represent suitable candidates.

G4: Utility
The primary aim of a released dataset is the usability for down-
stream tasks and analyses. Any protection mechanism has to trade
off privacy and utility [59]. Thus, utility represents our fourth de-
sign goal. We systematise utility metrics, discuss data aggregation
and precision, and address environmental constraints.
Utility Metrics. Recent studies [52, 68] have analysed various
trajectory utility metrics. Rather than reiterating these, we aim
to establish a selection framework. The large number of metrics
highlights the core issue. The absence of a universally adopted

Figure 1: Density problem of Hausdorff Distance (HD). A
single outlier significantly reduces the HD but not the WD.

metric makes comparing different methodologies difficult. Thus,
we recommend using established metrics in future research.

We propose classifying utility metrics along two axes as shown
in Table 1. First, metrics can be separated into data preservation and
statistical metrics [52]. Data preservation metrics evaluate original
data retention, while statistical metrics assess the conservation
of overall patterns. Second, metrics can be oriented towards point
properties or sequential properties. A prevailing trend is emphasising
point-level metrics, potentially neglecting sequential coherence.

We present example metrics covering all categories, focusing
on continuous, spatial coordinate trajectories. For a comprehen-
sive list, see [52, 68]. Metrics concentrate on spatial dimensions as
minimal information of trajectories (ref. Section 2.1). Datasets with
additional properties, like semantics, should incorporate these, e.g.,
via the Spatial-Temporal-Categorical Distance (STC) [12, 52]. For
point preservation, the Hausdorff Distance (HD) is commonly used
[10, 35, 43], comparing the distance of points in one dataset to their
nearest counterparts in another. However, it may not effectively
capture discrepancies in point distributions’ densities. Consider
the two clusters 𝐴 (red) and 𝐵 (blue) in Figure 1. First, assume
that the clusters are distinct, i.e., ignore the single point with the
opposite cluster. Then, the black line represents the HD with the
value 6.38. However, with a single outlier of 𝐵 in the centre of 𝐴,
the HD reduces to the green line, resulting in a value of 1.48. This
sensitivity to outliers limits the HD’s effectiveness for comparing
generated (𝐵) and real (𝐴) point clouds. Therefore, we suggest ad-
ditionally comparing the spatial distributions using metrics like
the Wasserstein Distance (WD) or Jensen Shannon Distance (JSD).
In the example, the value of the WD remains consistent at 0.14.
In terms of point statistics, range queries [12–14, 31, 35, 43] and its
discrete counterpart count queries [8, 9, 32, 69] have gained promi-
nence, often paired with hotspot preservation queries [12–14, 31, 72].
Trajectory preservation metrics usually require a 1:1-mapping for
comparison, i.e., each output trajectory should match an original
trajectory. However, some generative models, such as GANs, create
new samples from noise input (ref. Section 2.4) without a clear
link to an original sample. This makes it unclear which trajectories
to match for comparison. Hence, applying trajectory preservation
metrics to some generative models is difficult. One possible solution
is matching each generated trajectory to the closest original. If a
1:1 mapping is given, the spatial metrics HD [38, 40, 43, 46, 63]
and Dynamic Time Warping (DTW) [36, 38, 76] represent suitable
candidates. Note that in this case, the HD between trajectories are
computed, whereas, for point preservation, the HD between (an
equal-sized subset of) all points of the original and protected dataset
is evaluated. We note a research gap in trajectory preservation met-
rics for generative models without 1:1 mapping. Lastly, Trajectory
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statistics should focus on the sequential properties. Therefore, we
deem the total Travelled distance [26, 31–33, 38, 72] and the Segment
lengths [31, 33] as appropriate metrics. The former computes the
total distance travelled from start to end point for each trajectory,
while the latter computes the distance between any two consec-
utive points. Then, the resulting distributions of the original and
generated dataset are compared, e.g., via JSD or WD. However,
metrics are not the only utility evaluation factor.
Aggregation. Various DP methods release aggregated datasets,
presenting counts for representative trajectories [10, 35, 42, 43].
This approach requires less location obfuscation since the infor-
mation from multiple trajectories can be consolidated. However,
aggregation invariably results in detail loss. Thus, individual trajec-
tory release is preferable for maximal utility, especially if the data’s
eventual application is unknown at release time.
Precision. Utility in data preservation is directly linked to preci-
sion. Broadly, trajectories can be categorised into POI-trajectories
and coordinate trajectories. The former involves locations from a
predefined, countable set of POIs. In contrast, the latter typically in-
volves arbitrary coordinates, like latitude and longitude. Generally,
POI-based methods yield higher utility at a given privacy level than
coordinate-based ones. However, this article focuses on coordinate
trajectories due to their broader applicability.
Grid Approaches. Some solutions [26, 33] convert the continuous
space into a grid, discretising the data by assigning each location
to a grid cell. While this shares some benefits with POI trajectories,
it introduces challenges. The precision is constrained by grid gran-
ularity [72], which is limited by computational considerations. A
finer grid translates into a more extensive range of values, increas-
ing the computational effort. Furthermore, the grid’s spatial extent
is typically limited (e.g., to a city) to maintain meaningful cell sizes.
Environmental Constraints. Recent literature [5, 12–14, 52, 54,
69] underlines the importance of environmental constraints. Protec-
tion methods can cause violations such that obfuscated trajectories
may pass through rivers or physical barriers [5, 12], consecutive
locations may not be reachable [13], or cars do not follow the road
network [5]. Considering these constraints improves utility and
prevents using this knowledge for reconstruction attacks [5].
Conclusion. For meaningful comparisons among approaches, it
is vital to employ established utility metrics. These metrics should
cover both point and trajectory aspects and ideally evaluate both
data preservation and statistical attributes. The release of individual
trajectories is preferable over aggregated data. Solutions for coor-
dinate trajectories are most generally applicable, but POI datasets
or grid-based approaches might present optimised results for some
cases. Finally, considering environmental constraints is essential.

G5: Practicality
Releasing a dataset usually occurs once, making computational cost
a secondary concern to utility and privacy. However, practicality
remains crucial, i.e., protection approaches must not require high-
cost, specialised equipment but commodity hardware should suffice.
Furthermore, a predictable runtime is preferable. For example, the
Sampling Distance and Direction (SDD) mechanism’s [36] proba-
bilistic sampling can yield uncertain and extended runtimes of many

Trajectory Publication
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Protection

Section 5

Deep learning-
based Generation

Section 6 Section 7

Syntactic Privacy

Figure 2: Categorisation of trajectory publication.

hours as confirmed by the RAoPT artefacts [6]. Moreover, evalua-
tions should consider at least two datasets, ideally publicly available.
Trajectory datasets differ significantly in granularity (5 s vs. per
minute), span (city-level vs. global), and additional information. Be-
yond the challenges of differing datasets and metrics, reproducibil-
ity remains a hurdle, often due to insufficient publication details
and unresponsive authors. LSTM-TrajGAN [63] demonstrates the
benefits of publishing source code (ref. Section 6). While LSTM-
TrajGAN influences many generative trajectory models, models
without public code often receive limited attention.
Conclusion. The trajectory publication approach should (i) run
on commodity hardware, (ii) have a deterministic runtime, (iii) be
evaluated on at least two public datasets, and (iv) ideally share the
source code for reproducibility. Based on these five goals, we exam-
ine existing trajectory publication schemes in the following.

4 SYSTEMATISATION OF APPROACHES
We outlined our design framework for trajectory publication mech-
anisms in the preceding section. Such mechanisms are classified
based on several attributes, highlighted in Figure 2. The primary dis-
tinction hinges on the targeted privacy notion, typically categorised
into syntactic and semantic notions [47]. Syntactic privacy notions,
such as 𝑘-Anonymity [70], though common, are susceptible to back-
ground knowledge attacks and do not provide rigorous guarantees
[3, 10, 74, 77]. Conversely, DP (ref. Section 2.2), the leading semantic
privacy notion, represents the current de facto privacy standard due
to its strong guarantees. Furthermore, some methods, like GANs-
based ones, ensure privacy by generating new data rather than
targeting specific privacy notions. Yet, these mechanisms may also
incorporate privacy notions alongside their generative properties.

This work discusses DP protection mechanisms (Section 5) and
Deep Learning (DL)-based trajectory generation (Section 6 and 7).
To explore k-anonymity-based methods, readers are referred to
[39]. The separation between protection and generation approaches
overlaps, as some obfuscation-based protections, such as DPT [33],
record noisy statistics of the original dataset and sample from these
to generate protected trajectories. We achieve clarification by cate-
gorising approaches based on DL as DL-based trajectory generation
while we discuss all other approaches jointly as DP protection mech-
anisms. The DL-based trajectory generation approaches represent a
recent development, with the first vision proposed in 2018 [44]. To
the best of our knowledge, they have not been thoroughly discussed
and systemised regarding privacy preservation and represent the
focus of this work. Next, we discuss the protection mechanisms
and describe the state-of-the-art trajectory generation in Section 6.
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Category Approach(es) In [52] UoP G1 G2 G3 G4 G5 Main Shortcoming

A Tree-based [8, 9] ✓ Instance ✓ − ✗ ✗ Requires pre-defined location domain

B Noisy Count [73, 78–80] ✓ Instance ✗ ✓ − ✗ ✓
Broken DP proof: Only existing traj.
considered (Pitfall 1)

C Clustering Based
[10, 35, 42] ✓ Instance ✗ ✓ − ✗ ◦ Broken DP proof (EM – Pitfall 2); Ag-

gregated output
[46, 75]

✗ Instance ✗ ✓ − ✗ ◦ Broken DP proof (EM – Pitfall 2); Ag-
gregated output

D Location Privacy [3, 7, 36] ✗ Location ✗ ✗ ◦ ◦ Wrong UoP; Successful attack known
for [36]; Length-based utility decline

E Grid-Cell based [26, 33, 69] ✗ Instance ✓ − ◦ ◦ Grid cell granularity limits precision or
performance

F
Environmental
Constraints

[32] ✗ Instance ✗ ✓ − ✓ ✓ Broken DP Proof (EM – Pitfall 2)
[12] ✗ Location ✗ − ✓ ✓ Generates points only

G POI protection [13] ✓ Instance ✓ − ✗ ✓
Only for POI data; Requires public
knowledge to be available

Table 2: Overview of Differentially Private Protection Mechanisms discussed in Section 5. The table lists each approach’s
inclusion in the SoK [52], targeted UoP, adherence to design goals from Section 3, and primary shortcomings. Symbols: ✓ (goal
satisfied), ◦ (partially satisfied), and ✗ (unsatisfied). For G1, ✗ denotes known DP proof errors; the absence of a symbol means
we are unaware of any flaw. For G3, ✗ indicates demonstrated attacks and approaches with − have not been evaluated.

5 DIFFERENTIAL PRIVACY PROTECTION
Chen et al. [8] first introduced the application of Differential Pri-
vacy (DP) to location trajectories in 2011. Since this pioneering
work, various approaches have evolved in the DP trajectory protec-
tion field. This Section briefly addresses these protection methods,
highlighting their limitations in meeting the design goals outlined
in Section 3. These limitations motivate alternative solutions, such
as DL-based approaches for trajectory generation (Section 6), which
represent the focus of this work. Miranda-Pascual et al. [52] provide
a comprehensive analysis of DP trajectory protection mechanisms
in their SoK. Table 2 summarises our observations and indicates
the approaches detailed by Miranda-Pascual et al. [52].
A Tree-based Approaches. The first DP mechanism [8] is
based on noisy prefix trees, i.e., a tree representing all possible
sequences of locations. The occurrences of each prefix are counted,
and Laplace noise is added to achieve DP before reconstructing
output trajectories based on the noisy tree. The authors improved
the approach’s utility by using n-grams in subsequent work [9].
However, all mechanisms in this line of research rely on a pre-
defined set of discrete locations. Hence, these approaches only apply
to POI datasets but not to general coordinate trajectories, violating
G4: Utility. Enumerating all locations within a particular area, e.g.,
using a grid, incurs unreasonable computational overhead as the
tree size increases exponentially [52], violating G5: Practicality.
B Noisy Count-based Approaches. Other approaches [73, 78–
80] utilising noisy counts are summarised in [52]. The authors show
that these methods contain an error in their DP proofs, violating
G1: Formal Privacy Guarantees. Only the counts for existing
sequences are perturbed, but not for all possible (count zero) se-
quences (Pitfall 1). However, a DP mechanism has to produce any
output with a probability larger than zero. Otherwise, the mecha-
nism’s outputs cannot be bounded (ref. [52] for a formal proof).
C Clustering-based Approaches. One line of research [10,
35, 42, 46, 75] is based on clustering the locations at timestamps,

followed by sampling from these clusters. Miranda-Pascual et al.
[52] show that the EM is used incorrectly by these approaches
(Pitfall 2), breaking the formal DP proof: Proper EM application
requires dataset-independent output sets, whereas these methods
use the dataset-dependent set of possible partitions, breaching G1:
Formal Privacy Guarantees. Recent studies [46, 75], not covered
in [52], repeat this error. Furthermore, they aggregate data into
reference trajectories with noisy counts, thereby reducing utility
(G4: Utility). They also risk generating implausible trajectories due
to poor cluster representation choices and assume uniform lengths
and sampling rates, which is impractical for real-world data [52].
D Location-level Privacy. Other approaches protect each tra-
jectory location individually, such as the SDD mechanism and
CNoise [36]. The former samples a distance and direction from
one location to the next, while the other adds Laplace noise to
each location. These mechanisms violate G2: Unit of Privacy,
as the privacy budget 𝜀 is used for a single location. This makes
the protection vulnerable to reconstruction attacks like RAoPT [5]
(violating G3: Empirical Privacy). Moreover, the SDD mecha-
nism requires probabilistic sampling until a suitable next location
is found, which can lead to run times of several hours for datasets
such as Geolife [81] (see Algorithm 5 [36] or implementation [6]).
This stays in conflict with G5: Practicality. Other approaches like
Geo-Indistinguishability (Geo-Ind)[3], aimed at location privacy,
are not directly applicable to trajectory privacy due to location
correlation, as outlined in G2: Unit of Privacy. The predictive
mechanism [7] addresses these correlations. The next location is
predicted based on the previously protected locations. Only a small
privacy budget is used to test if the predicted location is close to
the next real location. Then, the location is released without using
further budget. Otherwise, a standard noise mechanism is used to
perturb the next location, spending more budget. While the predic-
tive mechanism significantly reduces the required privacy budget
from 𝑛𝜀, necessary to protect a trajectory with standard Geo-Ind
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and DP composition, it still causes severe utility degradation for
long trajectories (G4: Utility). An advantage of these approaches
is strong LDP guarantees (ref. Section G1).
E Grid-based Approaches, such as DPT [33], TGM [26], and Sun
et al. [69], first divide the map covered by the dataset into grid cells.
Then, the transition probabilities between cells are recorded, and
synthetic trajectories are constructed based on these. Grid usage al-
lows blocking certain cells, e.g., based on environmental constraints.
However, the accuracy of the generated trajectories depends on the
size of the smallest grid cells, and increased granularity yields in-
creased computational effort (ref. Section G4). Moreover, capturing
movements within grid cells is not possible. While grid-based ap-
proaches offer some appealing properties, they limit the achievable
level of utility (G4: Utility) [72].
F Environmental Constraints. Existing methods often over-
look environmental constraints (ref. Section G4), resulting in trajec-
tories that ignore geographical features like road networks [5, 14,
52, 54, 69]. Haydari et al. [32] address this shortcoming by incorpo-
rating geographical constraints through DP-based map matching.
Yet, this approach shares the EM application issue of the aforemen-
tioned clustering-based approaches, violating G1: Formal Privacy
Guarantees. The use of dataset-dependent candidate paths for
the EM contradicts the need for dataset-independent outputs (Pit-
fall 2). Cunningham et al. [12] leverage the publicly available road
network to enhance the quality of generated locations. However,
they produce sets of locations, not trajectories, making trajectory
reconstruction from outputs non-trivial. Despite focusing on loca-
tions rather than trajectories, we include this work as an example
of successful environmental constraint incorporation for DP.
G POI protection. Cunningham et al. [13] also accounts for envi-
ronmental constraints, utilising public knowledge to refine outputs.
Moreover, this approach offers LDP for enhanced guarantees com-
pared to standard DP. However, it is limited to POI datasets, making
it unsuitable for general coordinate trajectories (ref. Section 2.1).
Conclusion. Despite the development of various trajectory pro-
tection mechanisms, no optimal solutions exist. Many approaches
lack sufficient privacy due to incorrect UoP selection (G2: Unit of
Privacy) [36], flawed DP proofs (G1: Formal Privacy Guaran-
tees) [10, 35, 42], or susceptibility to reconstruction attacks (G3:
Empirical Privacy) [5, 64]. Additionally, high utility is hard to
achieve, withmethods releasing only aggregated data [10, 35, 42, 43]
or relying on grid cells [26, 33, 69], restricting granularity. These
limitations inspired researchers to explore DL-based trajectory gen-
eration as a promising alternative [44], discussed in the following.

6 DL-BASED TRAJECTORY GENERATION
In 2018, a vision paper [44] proposed the idea of using a Generative
Adversarial Network (GAN) (ref. Section 2.4) to generate synthetic
trajectory data. This concept relies on the principle that releasing
synthetic data safeguards privacy by distributing generated fake
data, not real individuals’ data. This section explores implementa-
tions of the trajGAN concept summarised in Table 3.

1 LSTM-TrajGAN. The most notable implementation of this con-
cept is LSTM-TrajGAN [62, 63], which consists of a trajectory gen-
erator and a trajectory discriminator with similar architectures.

The generator aims to produce realistic trajectories, while the dis-
criminator seeks to differentiate them from actual trajectories (ref.
Section 2.4). Real trajectories are normalised by encoding location
offsets from a central point and using one-hot encodings for tem-
poral and semantic attributes. These encoded trajectories are fed
into the generator’s embedding layer, which embeds each feature
individually. A Fully Connected (FC) feature fusion layer fuses
these embeddings with a noise vector. A sequence-to-sequence
LSTM layer processes the resulting latent representation. Finally,
synthetic trajectories are generated using a FC layer for continu-
ous properties, like locations, and softmax layers for categorical
properties. The discriminator, mirroring the generator’s structure
with embedding, feature fusion, LSTM, and output layers, evaluates
these synthetic trajectories during training, returning a value in the
range [0, 1] for each input. LSTM-TrajGAN employs a specialised
loss function, TrajLoss, as an alternative to the standard adversarial
loss, defined by:

TrajLoss(𝑦𝑟 , 𝑦𝑝 , 𝑡𝑟 , 𝑡𝑠 ) = 𝛼𝐿𝐵𝐶𝐸 (𝑦𝑟 , 𝑦𝑝 ) + 𝛽𝐿𝑠 (𝑡𝑟 , 𝑡𝑠 ) (3)
+ 𝛾𝐿𝑡 (𝑡𝑟 , 𝑡𝑠 ) + 𝑐𝐿𝑐 (𝑡𝑟 , 𝑡𝑠 )

In this equation, 𝐿𝐵𝐶𝐸 represents the standard adversarial loss, 𝐿𝑠
is a Mean Squared Error (MSE) loss measuring spatial similarity,
and 𝐿𝑡 and 𝐿𝑐 are cross-entropy losses assessing temporal and
categorical similarities, respectively.

LSTM-TrajGAN demonstrates remarkable utility and is the first
to evaluate against TUL practically, reducing its top-1 accuracy
success from 93.8 % to 45.9 %. Despite its important contribution,
this approach faces limitations. Primarily, it lacks formal privacy
guarantees, violating G1: Formal Privacy Guarantees. A practi-
cal evaluation is valuable but insufficient (ref. Section G1). LSTM-
TrajGAN is robust against the MARC [50] TUL model, but it might
be susceptible to other attacks or improved TUL algorithms. Sec-
ondly, the model’s architecture raises further privacy concerns. The
model uses an encoded real trajectory as generation input, with
noise only concatenated and intermingled with the remaining input
in the FC feature fusion layer. This structure allows the model to
learn to disregard the noise to generate more realistic outputs, as de-
tailed in Appendix B theoretically and practically in Appendix C.1.
Training LSTM-TrajGAN for the specified 2, 000 batches [63] results
in differing prediction outputs: about 8 % of predicted hours vary,
and the average location distance exceeds 800m on the FS-NYC
dataset (ref. Table 4). Extending training to 10× this amount, which
only takes ≈ 25min on our system (specified in Section 7), leads to
0 differently predicted hours and reduces the location distance to
183m. This suggests that LSTM-TrajGAN may learn to neglect the
input noise with longer training, yielding outputs nearly identical
to the input trajectories. Hence, LSTM-TrajGAN’s privacy relies
heavily on the model not being trained for too long, a decision
dependent on the end-user, and not providing robust guarantees. It
could be argued that LSTM-TrajGAN’s latent space acts as a bot-
tleneck, akin to AE architectures, preventing precise replication of
original trajectories. However, quantifying the modification caused
by this compression is challenging and should not represent the
primary basis for the provided privacy preservation.
Reconstruction Attack. We evaluated the performance of the
RAoPT [5] reconstruction attack on samples produced by LSTM-
TrajGAN. This attack significantly reduces distances between the
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Category Approach UoP G1 G2 G3 G4 G5 Main Shortcoming

LSTM-based

1 LSTM-TrajGAN [63] Instance ✗ ✓ ✓ (TUL) / ✗ (RAoPT) ✓ ✓ No privacy guarantees
2 Shin2023 [65] Instance ✗ ✓ ✓ (TUL) ✓ ✓ Inherited from LSTM-TrajGAN
3 Ozeki2023 [55] Instance ✗ ✓ ◦ (MIA) ✓ ✓ Inherited from LSTM-TrajGAN
4 Song2023 [67] Instance ✗ ✓ ✓ (TUL) ✓ ✓ Inherited from LSTM-TrajGAN
5 Fontana2023 [24] Instance ✗ ✓ ✓ (TUL) ✓ ✓ Inherited from LSTM-TrajGAN
6 LGAN-DP [77] Instance ✗ ✓ − ◦ ✓ Flawed DP proof (Pitfall 1)
7 DP-TrajGAN [74] Instance ✗ ✓ − ◦ ✓ Flawed DP proof (Pitfall 1)

AAE-based 8 Kim2022 [40] Location ✗ − ◦ ✓ UoP; Grid-based
Clustering-based 9 RNN-DP [10] Instance ✗ ✓ − ✓ ✓ Flawed DP proof (Pitfall 2)

Two Stage GANs 10 TSG [72] Instance ✗ ✓ − ✓ ✓ No guarantees
11 TS-TrajGEN [38] Instance ✗ ✓ − ✓ ✓ No guarantees

Point Generation 12 GeoPointGAN [14] Location ✗ − ✓ ✓ Targets location generation
Table 3: Overview of Trajectory Generation Approaches. The table lists the targeted UoP, adherence to design goals from
Section 3, and primary shortcomings. Symbols used are ✓ (goal satisfied), ◦ (partially satisfied), and ✗ (unsatisfied). Regarding G1,
✗ denotes known DP proof errors; the absence of a symbol means we are unaware of any flaw. For G3, ✗ indicates demonstrated
attacks and approaches with − have not been evaluated against practical attacks.

original and generated trajectories: over 20 % for FS-NYC and be-
tween 33 % and 50 % for Geolife. It also improved the overlap of
the convex hulls, determined by the Jaccard index, by over 60 % for
Geolife and by over 14 % for FS-NYC. For detailed measurements
and discussion, see Appendix C.3. These findings underscore the
insufficiency of practical guarantees alone, as elaborated above. Al-
though LSTM-TrajGAN effectively protects against the TUL attack,
it remains susceptible to other attacks, like RAoPT.
Is LSTM-TrajGAN a GAN? Lastly, we claim that LSTM-TrajGAN
operates mainly as a transformative model with minimal use of
the discriminator. To verify this, we removed the discriminator
feedback from the loss function (𝐿𝐵𝐶𝐸 in Equation 3) and evaluated
the model with and without a discriminator on the same dataset
(FS-NYC) used in [63]. Table 5 in Appendix Section C.2 shows the
results. Performance remains similar whether or not the discrim-
inator’s feedback is included in the loss. Location quality drops
slightly without the discriminator, but categorical properties (e.g.,
hour) improve. Suppose we remove all components of the loss and
train the generator based only on the discriminator’s feedback. In
that case, the model provides barely any utility, outputting over
85 % different categorical values (compared to 1 %-10 % before), and
increasing the location distances more than 20-fold. In other words,
the discriminator has little impact on the model’s performance.

LSTM-TrajGAN Extensions. Due to the promising results obtained
by LSTM-TrajGAN, especially in terms of utility and the openly
available source code, several works [24, 65, 67, 74, 77] aim to im-
prove themodel. 2 Shin et al. [65] introduced a Trajectory Category
Auxiliary Classifier (TCAC) to counteract mode collapse, a common
issue in GANs. However, unlike conventional GANs that rely solely
on noise input, LSTM-TrajGAN uses real samples as generator in-
puts, avoiding mode collapse. We observed no mode collapse during
our experiments. Thus, the effectiveness of the auxiliary classifier
remains unclear, and without access to the source code, we could
not verify these claims. Moreover, the approach does not improve
on LSTM-TrajGAN’s privacy limitations.

3 The model used byOzeki et al. [55] appears identical to LSTM-
TrajGAN, mirroring even parameters and loss function. Their model

generates privacy-preserving trajectories for taxi demand predic-
tion. Yet, without any alterations from LSTM-TrajGAN, the same
limitations persist in their approach. The authors claim their solu-
tion would offer equivalent privacy to DP. However, this statement
is based on an evaluation regarding the MIA success rate, which
is problematic for two reasons: First, using one existing attack
does not allow extending the findings to any attack, as discussed
in Section G1. Second, the approach is compared to CNoise [36]
and Geomasking, which do not provide trajectory-level DP as dis-
cussed in Section 5, Consequently, it is uncertain how their method
measures up against an instance-level DP mechanism.

4 Song et al. [67] extend LSTM-TrajGANby an Except-Condition
GAN (exGAN). This approach allows sensitive regions to be ex-
cluded from the generated data by specifying certain labels to be
excluded. The model is evaluated on the FS-NYC dataset, where it
achieves similar utility to LSTM-TrajGAN while reducing the TUL
success rate. However, the approach neither adds any privacy guar-
antees nor addresses the other shortcomings of LSTM-TrajGAN.

5 Fontana et al. [24] combine LSTM-TrajGAN [63] and MARC
[50], a model used for assessing the TUL success rate by some LSTM-
based approaches [63, 65, 67]. Moreover, they introduce a novel
Next Week Trajectory Prediction model to evaluate the utility of
generated trajectories. This model mostly equals LSTM-TrajGAN’s
generator. However, instead of generating synthetic trajectories,
the model receives one week’s trajectories and predicts the fol-
lowing week’s trajectories for a given user. This model underlines
the adaptability of the LSTM-TrajGAN architecture to other tasks.
Moreover, the authors evaluate the models on two datasets, FS-NYC,
used by most related works, and the breadcrumbs dataset [53]. This
evaluation confirms the effective balance of utility and privacy of
LSTM-TrajGAN. However, the work does not enhance the genera-
tion process and thus shares LSTM-TrajGAN’s privacy limitations.

6 LGAN-DP [77] targets the extension of LSTM-TrajGAN by
DP guarantees. First, synthetic trajectories are generated through
a simplified version of LSTM-TrajGAN, only considering spatial
information. Differential Privacy is not achieved through the ac-
tual generation model but through post-processing. In particular,
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Figure 3: Application of GeoPointGAN [14] to the FS-NYC
and Geolife datasets. Compare Figure 5 for baseline.

a combination of the clustering-based approach by Hua et al. [35]
and the constrained Laplace noise from [79] is implemented. Both
these baselines are discussed in Section 5 and have been critiqued
for flawed DP proofs [52]. Without a comprehensive DP proof for
LGAN-DP, it likely inherits similar flaws. As thoroughly discussed
by Miranda-Pascual et al. [52], DP requires adding Laplace noise to
all possible outputs, not only to a restricted number of candidates
(Pitfall 1). Based on the available information, LGAN-DP appears
to construct a candidate set from the cluster centres and only per-
turbs the corresponding counts, thus failing to meet G1: Formal
Privacy Guarantees. Applying a DP protection mechanism to
LGAN-DP’s outputs likely results in lower utility than directly ap-
plying such a mechanism to the real dataset, making the benefits of
LGAN-DP over the methods from Section 5 unclear. Moreover, the
post-processing is expected to significantly reduce utility compared
to other generative approaches such as LSTM-TrajGAN. We could
not confirm this assumption due to unavailable source code.

7 DP-TrajGAN [74] also targets DP guarantees. Its architecture
differs slightly from LSTM-TrajGAN. However, the general flow
remains the same, i.e., a real trajectory concatenated with random
noise serves as input for the generator. Unlike LSTM-TrajGAN,
the real trajectory is perturbed to achieve DP before being fed
into the generator. This method could ensure DP for the output
via the post-processing property (ref. Section 2.2), provided no
further steps access raw data. However, the work states: ”But the
discriminator takes the real trajectory as input without adding noise
because 𝐷 needs to identify the original trajectory distribution
more accurately, thus providing more accurate weight gradients for
𝐺” [74]. Since the discriminator’s feedback indirectly exposes the
generator to unprotected trajectories through gradient updates, this
contradicts DP (Pitfall 1). Thus, DP-TrajGAN fails to offer robust
privacy guarantees, violating G1: Formal Privacy Guarantees.

AAE-based Approaches. While the architectures abovemirror LSTM-
TrajGAN closely, alternative architectures have been proposed.
8 Kim and Jang [40] propose a AAE-based architecture for the tra-
jectory generation. First, the real trajectory data is protected with
the established location DP mechanism Geo-Indistinguishability
(Geo-Ind) [3]. Then, the perturbed data is encoded with a Geo-
Indistinguishability (Geo-Ind)-aware location encoding to offset
some of the utility loss. This client-side protection offers LDP guar-
antees, an advantage over the standard DP guarantees of other
approaches. The AAE’s encoder consists of a many-to-many LSTM
followed by a FC layer, while the decoder consists of a FC layer
followed by an LSTM. The discriminator of the AAE compares the
latent space representation produced by the encoder with the real
data distribution. During generation, noise is sampled from a Gauss-
ian distribution and fed into the decoder to generate a synthetic

trajectory. Unlike the LSTM-based models, this method does not
use real trajectories during generation, preventing privacy leaks.
While similar to DP-TrajGAN, the DP protection is achieved during
pre-processing, the raw data is not accessed in later steps, ensuring
DP guarantees via the post-processing property (ref. Section 2.2).

However, the approach has two key drawbacks. First, the used
privacy mechanism Geo-Ind provides location privacy but not tra-
jectory privacy, violating G2: Unit of Privacy (ref. Section 5).
While the usage of an AAE for trajectory generation adds another
layer of privacy on top of Geo-Ind, quantification of the trajectory-
level privacy this solution can provide is challenging (conflicting
with G1: Formal Privacy Guarantees). Second, the approach
relies on splitting the geographical area into a grid. The results pro-
vided do not clarify the accuracy of the data generated. However,
the finest used grid, dividing Beijing into a 20×20 grid, seems coarse.
Grid cell usage limits the provided utility (ref. G4: Utility) [72].

Clustering-based Approaches. 9 Chen et al. [10] proposed another
RNN-based model for trajectory generation. To provide DP guaran-
tees, they post-process the generated trajectories with the trajectory
publication mechanism based on clustering proposed by Hua et al.
[35]. However, this mechanism cannot provide DP guarantees due
to the incorrect application of the EM [52] violating G1: Formal
Privacy Guarantees (Pitfall 2).

Two Stage GANs. 10 Wang et al. [72] propose a Two-Stage-GAN
(TSG) for trajectory generation. The first stage GAN consists of a
Convolutional Neural Network (CNN), generating a grid represen-
tation of a trajectory where each grid cell records the stay duration.
The link module transfers this representation into a sequence of
grid cells. The result serves as input for the second-stage GAN,
which combines it with an encoded road map image to incorpo-
rate geographical constraints and outputs coordinate trajectories.
Through the two-stage approach, grid cells can be used to generate
the overall structure. Still, the second stage allows for generating
coordinate trajectories for improved accuracy. While this approach
introduces a promising architecture, TSG neither provides any pri-
vacy guarantees nor is it evaluated against any practical attacks.

11 TS-TrajGEN [38] is a second two-stage GAN for trajectories.
The first stage generates a region-level (i.e., coarse) trajectory based
on recorded origins and destinations. Based on this regional-level
trajectory, the second stage creates a more detailed coordinate Tra-
jectory. TS-TrajGEN incorporates the road network through the
usage of the A*-Search algorithm. While the approach thoroughly
evaluates the utility based on seven metrics, it neither provides pri-
vacy guarantees (G1: Formal Privacy Guarantees) nor evaluates
the achieved level of privacy (G3: Empirical Privacy) in any way.

Point Generation. 12 GeoPointGAN (GPG) [14] represents a genera-
tive model for location sets, not trajectories, which we would like
to highlight for its impressive and reproducible point-generation
capabilities. GPG employs a classic GAN structure: the generator
uses Gaussian noise to create synthetic points, and the discrimina-
tor classifies points as real or synthetic. For privacy, GPG applies
Local Label Differential Privacy (LLDP), a variant of LDP treating
only labels as sensitive. Labels indicating whether a location is real
or fake are probabilistically flipped to achieve LLDP. Our evalu-
ations show that GPG accurately captures point distributions of
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Figure 4: MNIST-Seq dataset generation. All models perform reasonably well on this dataset. The two RNN models generate the
same image as each step depends on the previous, but the first row consists only of black pixels.

the considered datasets, as depicted in Figure 3, and consistently
yields stable results. However, adapting GPG for trajectory genera-
tion is challenging, as we discuss in Section 7. The model provides
location-level privacy by design, so transferring to trajectory-level
privacy might significantly degrade utility. Moreover, while LLDP
yields quantifiable privacy guarantees and some researchers argue
that the notion provides sufficient privacy guarantees for the deep
learning setting [14, 27], ultimately, a solution providing standard
DP guarantees would represent the gold standard.

Conclusion. Several generative models have been published since
the first vision paper [44] proposing the usage of GANs for the
privacy-preserving generation of trajectory data. However, none of
the existing solutions can provide sufficient privacy guarantees yet.
The largest group of approaches [24, 38, 55, 63, 65, 67, 72] relies on
the obfuscation caused by the generation itself. However, this does
not allow quantifying the provided privacy level as discussed in G1:
Formal Privacy Guarantees. Other approaches cannot provide
acceptable guarantees due to flaws in their privacy proofs, either
due to privacy leakage in the model design [74] or errors inherited
from baseline works [10, 77]. The design of a fully differential pri-
vate generative model remains an open research question. However,
solutions such as GPG [14], which can provide LLDP guarantees
for robust spatial point generation, show a promising direction.

7 GENERATIVE MODELS
Current deep learning-based generative models show promise but
fail to meet all our design goals (ref. Section 3), with inadequate
privacy guarantees as the primary issue (Table 3). The ideal model
would offer at least instance-level (preferable user-level) (G2) differ-
ential privacy guarantees (G1), while achieving practical privacy
(G3) and high utility (G4) with reasonable computational costs (G5),
and is evaluated on public datasets with established metrics.

DP-SGD (ref. Section 2.3) is the prevalent method for DP in
DL [57], offering instance-level DP for training data. Thus, models
trained with DP-SGD ensure trajectory-level privacy when each tra-
jectory is a training sample. The fundamental concept aligns with
the objectives of trajectory generation. DP-SGD ensures that mod-
els capture overall data distribution while minimising individual
samples’ impact. Likewise, trajectory generators aim at encapsulat-
ing dataset traits without specific trajectory retention. This finding
motivates the following proposal: (1) Create a generative model
independent of input trajectories during prediction, enabling the in-
tegration of DP-SGD. As DP-SGD only protects the training dataset,
the method cannot be applied to a model like LSTM-TrajGAN re-
quiring input during prediction. (2) Upon achieving this, the next

step involved applying DP-SGD [57] to ensure DP for the dataset. In
the following, we evaluate six generative models for sequential data
to determine their suitability. All source code is made available2.
Evaluation Setup. We performed all measurements on a server
(2x Intel Xeon Silver 4208, 128GB RAM, Ubuntu 20.04.01 LTS) with
4 NVIDIA Tesla T4 GPUs (16GB RAM each) using one GPU per
experiment. Appendix D lists all used (hyper-)parameters.
Datasets. We use three datasets for our evaluation: MNIST Se-
quential (MNIST-Seq) [23] as a simple sequential toy dataset to
confirm the correctness of our implementations and the two tra-
jectory datasets Geolife [81] and Foursquare NYC [17] (FS-NYC).
While FS-NYC contains relatively coarse (restaurant) check-ins,
Geolife consists of finer trajectories, 91 % having a sampling rate of
smaller or equal 5 s [81]. The diversity between datasets allows for
comparing the approaches for various use cases. Results on MNIST-
Seq are shown in Figure 4, and on trajectory datasets in Figure 5.
We detail the three datasets and their pre-processing below.
MNIST-Seq. The standard MNIST dataset consists of handwritten
digit images and serves as a benchmark for image processing. The
MNIST-Seq dataset transforms these standard 28 × 28 images into
sequences of length 28with 28 values each [23], i.e., each row of the
images represents one time step. It has been used as a benchmark
for sequence generation [23]. Though not a trajectory dataset, we
utilise this simple sequential dataset to confirm ourmodels’ capacity
to correctly generate sequences, ensuring that weak results on
trajectory datasets are not due to implementation errors.
FS-NYC. Like related works [50, 63], we use FS-NYC as provided in
the LSTM-TrajGAN repository [62] without further pre-processing.
This version reduces the size of the original dataset [17] to 66 962
check-ins and 193 users and uses categorical features.
Geolife. The Geolife dataset spans a large area of the globe. There-
fore, using it as-is is unsuitable for three reasons: i) Most existing
trajectory generation models target city-scale datasets, ii) it makes
visualisation very challenging, and iii) dataset cleaning is required
for use with DLmodels.We decided on the following pre-processing
steps: (1) All points outside a bounding box defined by the 5th ring
of Beijing are removed. (2) All trajectories are re-sampled to a con-
stant sampling rate of one location per 5 s because over 90 % have a
finer granularity than that [81]. (3) Trajectories are split on ≥ 60 s
breaks as we consider separate trips as distinct trajectories. (4) We
truncate all remaining trajectories to 200 points as some approaches
require a defined upper length. (5) Finally, all trajectories shorter
than 10 points are dropped. Both datasets are normalised to [0; 1]

2https://github.com/erik-buchholz/SoK-TrajGen
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Figure 5: Overview of generative models. No considered sequential generative model can adequately capture the point distribu-
tion of the original trajectory datasets FS-NYC and Geolife.

by subtracting a reference point defined as:

𝑟𝑒 𝑓 =

(
max{𝑙𝑜𝑛} −min{𝑙𝑜𝑛}

2
,
max{𝑙𝑎𝑡} −min{𝑙𝑎𝑡}

2

)
and division through a scaling factor defined as:

𝑠 𝑓 = (max{𝑙𝑜𝑛} − 𝑟𝑒 𝑓𝑙𝑜𝑛,max{𝑙𝑎𝑡} − 𝑟𝑒 𝑓𝑙𝑎𝑡 )
Noise-TrajGAN (NTG). Considering LSTM-TrajGAN’s [63] suc-
cess (ref. Section 6), incorporating DP-SGD in its training process
may appear promising. However, LSTM-TrajGAN-based models
require real trajectory input for generation, while DP-SGD only
protects training samples. Therefore, a mere integration with a
DP-SGD library is insufficient. To overcome this limitation, we
developed a variant of LSTM-TrajGAN, named NTG, adhering to a
more traditional GAN structure. The key difference is that the gen-
erator only receives a (Gaussian) noise vector instead of trajectory
as input. The discriminator remains mostly unmodified. Figure 4
shows that NTG can sequentially generate MNIST digits, although
the digits are slightly blurrier than those produced by other models.

However, Figure 5 shows that the model cannot capture the point
distribution of trajectory datasets. Despite over 20 trials with varied
loss functions (like WGAN-GP and modified trajLoss), noise shapes,
optimizers, learning rates, and RNN layers, no notable improve-
ments emerged. Based on this finding, we examined LSTM-TrajGAN
in more detail, described in Section 6, and found that the discrimina-
tor minimally impacts the model’s performance. Accordingly, solely
relying on the discriminator’s feedback does not appear promising.
This insight directed us to explore different architectures.
Simple RNN Models. RNN-based models have been applied suc-
cessfully to various domains. LSTM [34] and GRU [11] are the most
widely used RNN types. Indeed, most related works (ref. Section 6)
incorporate RNNs in their models. We evaluated multiple simple
RNN-based models, focusing on Autoregressive RNN (AR-RNN) and
Start-Point RNN (START-RNN) in the following.

The initial RNN cell of the AR-RNN model receives Gaussian
noise and produces a latent encoding, which is processed by an
output layer into the desired output format, e.g., (𝑙𝑎𝑡, 𝑙𝑜𝑛). This
serves as input to the next cell alongside the previous hidden (and
cell) state. During training, real values replace each cell’s output
after every step to prevent error propagation. This results in high-
quality images generated during training for MNIST-Seq. Yet, in

the prediction phase, AR-RNN consistently yields identical outputs
(ref. Figure 4). The initial row of black pixels, shared by all dig-
its, predetermines subsequent rows, yielding near-identical output.
Moreover, Figure 5 reveals the model’s failure to represent point
distributions, possibly because initial noise lacks placement infor-
mation, causing clustering around the dataset’s centre of gravity.

Inspired by these findings, we developed START-RNN, using
a dataset’s real starting point for guidance. As this represents a
privacy leakage, a final solution would have to generate start points
privately, e.g., using GPG (ref. Section 6). On the MNIST-Seq dataset,
START-RNN still only produces identical digits because the digits
cannot be distinguished based on the first row. Trajectory dataset
outputs improve, but Figure 5 shows challenges in capturing details
like road networks. Consequently, we consider more sophisticated
generative models that are successful in other domains.
RGAN [23]. The Recurrent GAN (RGAN) [23] represented the
first application of the GAN architecture to real-valued sequences,
avoiding discretization drawbacks (ref. Section G4). This model em-
ploys a standard GAN setup: A generator creates sequences from
noise, and a discriminator differentiates these from real training
samples. Both models consist of a LSTM layer followed by a FC out-
put layer. The input shape is (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛, 𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑚),
with𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑚 set to 5 in [23].We reproduced the results onMNIST-
Seq but observed mode collapse with the original hyper-parameters,
yielding only some of the 10 digits. Applying WGAN-LP [56] im-
proved results in Figure 4. Nevertheless, RGAN failed on the trajec-
tory datasets (ref. Figure 5). Though effective for sequential data
like MNIST-Seq and medical signals, RGAN fails to capture spatial
point distributions. The generated point distributions vary greatly
between gradient updates, indicating unstable training. Multiple
practitioners report difficulties in training GANs containing RNN
layers and report better results using Conv1D layers instead [49].
CNN-GAN. One notable example is WaveGAN [18], which pro-
poses a Conv1D-based GAN for the generation of audio signals
and performs better than compared RNN-based models. WaveGAN
represents an adaption of the popular and robust [28] DCGAN [61]
architecture to the 1D setting. In particular, the 5 × 5 convolutional
filters are flattened to Conv1D filters with kernel size 25 and both
stride and upsampling are increased from 2 to 4 [18]. As WaveGAN
produces a minimum sequence length of 16 384, we modified the
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model to accommodate shorter sequences required by MNIST-Seq
(length 28) and our trajectory datasets (lengths up to 200). We re-
tained a kernel size of 25 to enable the model to consider multiple
past and future points during generation. To reduce upsampling,
we reduced the stride to 1. We calculate the initial FC layer’s output
size based on the dataset’s maximum sequence length. The resulting
model, trainedwith theWGAN-LP loss, achieves results comparable
to RGAN on MNIST-Seq. Although the generated points’ distribu-
tion is much closer to the dataset’s and the model trains more stable
than previous models, the CNN-GAN remains unable to replicate
the datasets’ detailed spatial distributions (ref. Figure 5). However,
the improved results indicate that Conv1D layers are more suitable
for capturing point distributions than RNNs.
GeoTrajGAN. A prevailing pattern of the previous experiments is
the models’ inability to capture the datasets’ location distribution.
Therefore, we considered GPG [14], discussed in Section 6, which
can generate detailed point distributions (ref. Figure 3) and intended
to extend it to a trajectory generation model called GeoTrajGAN
(GTG). The first challenge relates to the selection of batches. Origi-
nally, GPG randomly samples 7 500 points per batch, so each batch
resembles the dataset’s distribution. We found that using randomly
sampled trajectories and concatenating their points already impairs
the model’s ability to represent point distributions accurately. We
attributed this to the use of batch norm, as the trajectory batches
provide less diversity than point batches because locations within
one trajectory are correlated. Replacing batch norm by layer norm
solved this problem but required reducing the learning rate from
4E-5 to 1E-6 and adding a STN to the discriminator. In contrast,
GPG only uses an STN in the generator. These changes increase
the discriminator’s parameter count 12.9×, slowing down training.
GTG takes ≈ 500 epochs to reach a comparable state to GPG after
100 epochs. Moreover, the street network details are not as sharp
when using layer norm, but most roads remain visible. However, the
resulting model still produced points only. To produce trajectories,
we tried several modifications, achieving the best results with a
bidirectional LSTM in the generator and two separate discrimina-
tors: one similar to GPG’s (with layer norm adjustments) and a new
LSTM-based discriminator for assessing the sequential quality.

Figure 5 shows that GTG somewhat captures FS-NYC’s point
distribution but still fails on Geolife despite its larger size and longer
training. Moreover, the generated distributions do not reach the de-
tail captured by the original GPG model (ref. Figure 3). While being
the most promising of all evaluated models, the GTG approach re-
quires substantial future work to be suitable for privacy-preserving
trajectory generation. Nevertheless, the findings highlight that an
ensemble model consisting of a model specialised in capturing the
distribution of locations and another model capturing sequential
properties appears to be a promising direction for future research.

Discussion. Our evaluations highlight that applying sequential GAN
models from other domains to trajectory datasets is challenging.
We identified the application of DP-SGD as a promising methodol-
ogy for generating trajectories with rigorous privacy guarantees.
Relying on this well-researched algorithm could solve the privacy
limitations of existing generative trajectory models (ref. Section 6).
However, to enable the application of DP-SGD, developing a gener-
ative model that does not access the real dataset during generation

is essential. We are unaware of an existing model achieving this
for trajectories with a continuous location domain. Moreover, we
empirically evaluated multiple generative models targeting contin-
uous sequential data but found none could capture the distribution
of locations in a trajectory dataset. The design of an ensemble
model combining one part for point distribution and another for
sequential properties presents a promising direction for future re-
search. Additionally, our experiments indicated that Conv1D layers
perform better than RNN-based models for generating trajectories.

Our experiments’ main takeaway is that developing a generative
model for trajectory datasets with strong semantic privacy guaran-
tees remains an important open research question. Concrete next
steps for future work could be: (1) Developing a generative model
for trajectory data without real data access during generation. Such
a model could be based on a model ensemble favouring Conv1D
over RNN layers. (2) Integrating this model with the DP-SGD algo-
rithm to provide trajectory-level privacy guarantees. As DP-SGD
introduces noise to the training process, further model adaptions
might be required. (3) Considering alternative approaches like la-
bel DP, as used by GPG, if the impact of DP-SGD on utility is too
detrimental. (4) Special purpose solutions for POI and discrete tra-
jectories could offer improved utility under full privacy guarantees
for certain use cases. These developments should be guided by the
design framework proposed in Section 3. With these suggestions
for future work, we conclude in the following section.

8 CONCLUSION
This study examined the current state-of-the-art privacy-preserving
trajectory dataset generation, focusing on deep learning techniques.
We proposed a framework comprised of five design goals to guide
the future development of generative trajectory approaches. We
emphasised the ”Unit of Privacy”, which is frequently overlooked
in current methods, and proposed a novel systematisation of util-
ity metrics. Our analysis of current trajectory protection methods
revealed a lack of robust solutions, with multiple works grounded
in flawed differential privacy proofs. The influence of these flawed
proofs on subsequent research highlights the importance of diligent
assessment of such guarantees. Deep learning-driven generative
models reveal their potential as an alternative to protection mecha-
nisms, especially regarding utility. Yet, they fall short of delivering
robust trajectory-level differential privacy guarantees. Furthermore,
our extensive experimental study suggests that generative models
designed for other sequential domains are not readily transferable
to trajectory datasets. The main outcome of this work is that the
design of a generative deep-learning model providing DP guaran-
tees represents a compelling open research question. We identify a
GAN-based model trained with DP-SGD as a promising research
direction that we intend to pursue as future work.
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Section 2.3.
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89

https://ptal-io.github.io/lopas2018/papers/LoPaS2018_Liu.pdf
https://github.com/bigdata-ufsc/petry-2020-marc
https://doi.org/10.3390/ijgi10070454
https://doi.org/10.1109/MSEC.2022.3188365
http://arxiv.org/abs/1511.05644
https://github.com/martinarjovsky/WassersteinGAN
https://github.com/martinarjovsky/WassersteinGAN
https://doi.org/10.1080/13658816.2019.1707835
https://doi.org/10.1109/FOCS.2007.66
https://doi.org/10.56553/popets-2023-0065
https://doi.org/10.56553/popets-2023-0065
https://doi.org/10.1145/3347146.3359341
https://doi.org/10.1145/3347146.3359341
https://doi.org/10.1145/3363449
https://doi.org/10.1109/MDM58254.2023.00044
https://doi.org/10.48550/arXiv.1709.08894
https://doi.org/10.48550/arXiv.2303.00654
https://doi.org/10.1109/COMST.2018.2873950
https://doi.org/10.48550/arXiv.1410.7744
https://doi.org/10.48550/arXiv.1410.7744
https://doi.org/10.1007/s11432-019-2834-x
https://doi.org/10.1007/s11432-019-2834-x
http://arxiv.org/abs/1511.06434
https://github.com/GeoDS/LSTM-TrajGAN
https://doi.org/10.4230/LIPIcs.GIScience.2021.I.12
https://doi.org/10.4230/LIPIcs.GIScience.2021.I.12
https://doi.org/10.1109/TDSC.2020.2972334
https://doi.org/10.1109/BigComp57234.2023.00063
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1007/978-3-031-39821-6_23
https://doi.org/10.1007/978-3-031-39821-6_23
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.1109/TITS.2023.3241290
https://doi.org/10.1109/TITS.2023.3241290
https://doi.org/10.1142/S021848850200165X
https://doi.org/10.1109/TNSM.2018.2877790
https://doi.org/10.1109/TNSM.2018.2877790
https://doi.org/10.6339/21-JDS1004
https://doi.org/10.1016/j.eswa.2021.115215
https://doi.org/10.1016/j.future.2022.12.027
https://doi.org/10.1016/j.future.2022.12.027
https://doi.org/10.1016/j.future.2023.01.008
https://doi.org/10.26599/TST.2023.9010072
https://doi.org/10.26599/TST.2023.9010072
https://doi.org/10.1016/j.future.2022.12.011
https://doi.org/10.1109/ACCESS.2020.3048394
https://doi.org/10.1016/j.eswa.2019.07.008
https://doi.org/10.1016/j.knosys.2020.105940
https://doi.org/10.1016/j.knosys.2020.105940
https://doi.org/10.1145/1526709.1526816


Proceedings on Privacy Enhancing Technologies 2024(3) Erik Buchholz, Alsharif Abuadbba, Shuo Wang, Surya Nepal, and Salil S. Kanhere

Dataset Epochs Batches Haversine Mean [m] Euclidean Mean Hour [%] Day [%] Category [%]

Foursquare NYC 250 2000 837.74 1.50 7.78 0.01 0.79
Foursquare NYC 2500 20000 182.99 0.35 0.00 0.00 0.01
GeoLife 11 2000 492.06 8.52 3.24 0.01 N/A
GeoLife 110 20000 132.58 2.51 0.01 0.00 N/A
GeoLife Spatial 11 2000 230.02 4.12 N/A N/A N/A
GeoLife Spatial 110 20000 92.28 1.57 N/A N/A N/A

Table 4: LSTM-TrajGAN [63] Convergence. The generated trajectories converge towards the generation inputs if the model is
trained long enough. The table records the mean distances of the predicted values from the original dataset after 2 000 batches
as used in the paper [63] and after training 10× as long, i.e., after training for 20 000 batches.

exGAN Except-Condition GAN.
FC Fully Connected layer. Also called Dense or Linear layer.
FS-NYC Foursquare NYC [17].
GAN Generative Adversarial Network.
Geo-Ind Geo-Indistinguishability.
GPG GeoPointGAN [14].
GTG GeoTrajGAN.
HD Hausdorff Distance.
JSD Jensen Shannon Distance.
LDP Local Differential Privacy.
LLDP Local Label Differential Privacy.
LSTM Long Short-Term Memory.
MI Mutual Information.
MIA Membership Interference Attack.
MNIST-Seq MNIST Sequential Dataset: Images are transformed

to sequences of length 28 with 28 features each [23].
MSE Mean Squared Error.
NTG Noise-TrajGAN.
POI Point of Interest.
RAoPT Reconstruction Attack on Protected Trajectories.
RGAN Recurrent GAN.
RNN Recurrent Neural Network.
SDD Sampling Distance and Direction.
START-RNN Start-Point RNN.
STC Spatial-Temporal-Categorical Distance.
STN Large Spatial Transformer Network.
TCAC Trajectory Category Auxiliary Classifier.
TSG Two-Stage-GAN.
TUL Trajectory User Linking.
UoP Unit of Privacy.
VAE Variational Autoencoder.
WD Wasserstein Distance.
WGAN-LP WGAN with Lipschitz Penalty [56].

B MINIMAL EXAMPLE TRAJLOSS
In Section 6, we describe LSTM-TrajGAN’s [63] potential to ignore
the input noise. This is due to noise being added by concatenation,
followed by a FC layer. We demonstrate this with a simplified
example:

(1) 𝑥 is the encoded input of shape 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝑙𝑒𝑛 × 𝑑𝑖𝑚

(2) 𝑛 is the random noise of shape 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑚
(3) Generator 𝐺 (𝑥, 𝑛): 𝐺 : R𝑙𝑒𝑛×(𝑑𝑖𝑚+𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑚) → R𝑙𝑒𝑛×𝑑𝑖𝑚

(4) Discriminator 𝐷 (𝑥): 𝐷 : R𝑙𝑒𝑛×𝑑𝑖𝑚 → [0, 1]
The noise vector𝑛 is repeated for all time steps 𝑙𝑒𝑛 to map the shape
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑚 to 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 𝑙𝑒𝑛 × 𝑛𝑜𝑠𝑖𝑒_𝑑𝑖𝑚. LSTM-
TrajGAN uses TrajLoss as loss function [63]:

TrajLoss(𝑦𝑟 , 𝑦𝑝 , 𝑡𝑟 , 𝑡𝑠 ) = 𝛼𝐿𝐵𝐶𝐸 (𝑦𝑟 , 𝑦𝑝 ) + 𝛽𝐿𝑠 (𝑡𝑟 , 𝑡𝑠 ) (4)
+ 𝛾𝐿𝑡 (𝑡𝑟 , 𝑡𝑠 ) + 𝑐𝐿𝑐 (𝑡𝑟 , 𝑡𝑠 )

For generator training, 𝑦𝑟 is 1, 𝑦𝑝 = 𝐷 (𝐺 (𝑥, 𝑛)), 𝑡𝑟 is the real sam-
ple (𝑡𝑟 = 𝑥), and 𝑡𝑠 is the generated sample (𝑡𝑠 = 𝐺 (𝑥, 𝑛)). The
generator’s goal is to minimise this loss.

argmin
𝐺 (𝑥,𝑛)

TrajLoss(1, 𝐷 (𝐺 (𝑥, 𝑛)), 𝑥,𝐺 (𝑥, 𝑛)) (5)

= argmin
𝐺 (𝑥,𝑛)

𝛼𝐿𝐵𝐶𝐸 (1, 𝐷 (𝐺 (𝑥, 𝑛)) + 𝛽𝐿𝑠 (𝑥,𝐺 (𝑥, 𝑛))+ (6)

𝛾𝐿𝑡 (𝑥,𝐺 (𝑥, 𝑛)) + 𝑐𝐿𝑐 ((𝑥,𝐺 (𝑥, 𝑛))

The spatial loss 𝐿𝑠 is the MSE, computed as 𝑀𝑆𝐸 (𝑥,𝐺 (𝑥, 𝑛)) for
generator training. This part of the loss is minimised for 𝐺 (𝑥, 𝑛) =
𝑥 , as 𝑀𝑆𝐸 (𝑥, 𝑥) = 0. Temporal similarity 𝐿𝑡 and 𝐿𝑐 are softmax
cross entropies, also minimised for 𝐺 (𝑥, 𝑛) = 𝑥 . With an optimally
trained discriminator, the adversarial loss 𝐿𝐵𝐶𝐸 is minimised for
𝐺 (𝑥, 𝑛) = 𝑥 , as in this case, the real and generated samples are
identical. This leads in:

argmin
𝐺 (𝑥,𝑛)

[TrajLoss(1, 𝐷 (𝐺 (𝑥, 𝑛)), 𝑥,𝐺 (𝑥, 𝑛))] = 𝑥 (7)

The generator may learn to ignore the noise with sufficient training.
The model employs a FC fusion layer 𝐹 , merging encoding 𝑥 with
noise 𝑛: 𝐹 (𝑥, 𝑛) =𝑊 (𝑥 | |𝑛) + 𝑏. This formula simplifies to 𝐹 (𝑥, 𝑛) =
𝑊𝑥𝑥+𝑊𝑛𝑛+𝑏. As𝑥 and𝑛 are only concatenated, we can simplify this
to 𝐹 (𝑥, 𝑛) =𝑊𝑥𝑥 +𝑊𝑛𝑛 + 𝑏. With prolonged training, if the loss is
minimal for 𝐹 (𝑥, 𝑛) = 𝑥 , weights in𝑊𝑛 related to𝑛will tend towards
zero. Although LSTM-TrajGAN’s generator𝐺 is more complex than
𝐹 , the key fusion component in 𝐺 operates similarly to 𝐹 . Given
that the fusion layer is biased towards ignoring the noise, we infer
this issue could extend to LSTM-TrajGAN’s more intricate structure.
This is concerning for privacy, as it suggests that the model’s noise
input does not ensure the output trajectories differ significantly
from the input trajectories. Especially with a large latent space, the
model could end up reproducing the real trajectories it was fed
instead of creating distinct synthetic ones. We demonstrate this
issue practically with experiments in Appendix C.1.
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Dataset Loss Haversine Mean [m] Euclidean Mean Hour [%] Day [%] Category [%]

Foursquare NYC STD 762.65 1.35 9.05 0.02 0.78
Foursquare NYC NO BCE 788.88 1.36 5.56 0.00 1.42
Foursquare NYC BCE ONLY 14973.26 26.09 95.71 86.82 90.90
GeoLife STD 451.00 7.82 2.49 0.01 N/A
GeoLife NO BCE 440.32 7.54 2.70 0.01 N/A
GeoLife BCE ONLY 9090.44 163.93 94.13 85.80 N/A
GeoLife Spatial STD 191.21 3.64 N/A N/A N/A
GeoLife Spatial NO BCE 276.48 4.73 N/A N/A N/A
GeoLife Spatial BCE ONLY 6403.59 126.27 N/A N/A N/A

Table 5: Evaluation of LSTM-TrajGAN [63] with different losses. The results show that the discriminator has a minimal impact
on model performance and that the BCE-loss alone does not yield reasonable utility.

C LSTM-TRAJGAN EVALUATIONS
In Section 6, we report on three evaluations performed with LSTM-
TrajGAN [63]. In this section, we describe these measurements in
more detail. All experiments described in this section have been
recorded with 5-fold cross-validation on the system specified in
Section 7. Except for those parameters specified in the following
sections, we used the parameters as specified in the respective pub-
lications. The FS-NYC and Geolife datasets introduced in Section 2.1
are used for all measurements. The dataset denoted as Geolife Spa-
tial is equivalent to the Geolife dataset except that only the spatial
information, i.e., latitude and longitude, are used, while temporal
information is ignored. Section C.1 describes the evaluation testing
whether LSTM-TrajGAN can learn to ignore the input noise. In
Section C.2, we evaluate the influence of the discriminator’s feed-
back on LSTM-TrajGAN’s training. Finally, Section C.3 evaluates
the effectiveness of RAoPT, proposed in [5], on LSTM-TrajGAN.

C.1 LSTM-TrajGAN Convergence
In Section 6, we describe that the LSTM-TrajGAN’s architecture
does not guarantee that the input noise influences the generated
trajectories. This is because the input noise is only concatenated to
the input trajectory before being processed by FC feature fusion
layer, allowing the model to learn to ignore the noise. We elaborate
on this theoretically in Section B. To show this behaviour prac-
tically, we performed the following evaluation. First, we trained
LSTM-TrajGAN for 2 000 batches, as done in the original paper [63],
on the FS-NYC and the Geolife datasets and recorded the difference
between the input trajectories of the test set and the generated
trajectories. Concretely, we measured the haversine and Euclidean
distances between each pair of locations and the percentage of all
categorical values that differ between input and output trajectories.
Then, we trained the mode for 10× as long, i.e., 20 000 batches and
recorded the same values. The results for these measurements are
provided in Table 4. If LSTM-TrajGAN is trained for 2 000 batches,
the results show a clear difference between the generation inputs
and the generated trajectories. On the FS-NYC dataset, distances
differ by over 800m on average, and ≈8 % of hour values are differ-
ent in the output. On the Geolife dataset, the predicted locations
have an average distance of ≈500m if the time is part of the model
and 230m if only the spatial information is considered. After 20 000
batches, the differences between input and output trajectories are

significantly reduced. Instead of an average distance of 800m, the
output locations only differ by 180m, which might be within line of
sight for many places. Moreover, nearly all categorical features are
identical to the values from the original dataset. The same is true
for the Geolife dataset, where the locations are even closer to those
from the original dataset, and the categorical features are nearly
identical, too. These results highlight that LSTM-TrajGAN provides
little privacy if trained for too long, as the generated trajectories
closely resemble the trajectories from the original dataset used as
generation inputs. Thus, as discussed in Section 6, the privacy pro-
vided by the model depends on the number of epochs the model is
trained for, which provides limited privacy guarantees.

C.2 LSTM-TrajGAN Loss
In Section 6, we raise the question to what extent the model oper-
ates as a GAN [29], and to which extent the modification caused
by the model are simply transformative due to the latent space
compression of the input. To evaluate this question, we trained the
model with three different loss functions and recorded all results
in Table 5. First, we used the TrajLoss loss (ref. Equation 3) pro-
posed by the authors [63] and denoted as standard (STD) in Table 5.
Second, we excluded the discriminator from the model’s training
process by setting 𝛼 = 0 in Equation 3, i.e., excluding the Binary
Cross Entropy (BCE)-loss from the loss computation. This case is
denoted as NO BCE. Third, we trained the model with the BCE-loss
only by setting all other factors in TrajLoss to 0, denoted as BCE
ONLY. Again, we record the differences between the input and out-
put trajectories of the test set by measuring the locations’ mean
haversine and Euclidean distance and the percentage of categorical
attributes that differ. In this evaluation, lower values are better, as
the model tries to generate trajectories that are as close as possible
to those used as input (ref. Section C.1).

Table 5 shows that the difference between the models trained
with (STD) and without (NO BCE) the discriminator is very small.
While on the FS-NYC and the Geolife Spatial datasets, the location
differences are slightly smaller when the model is trained with the
discriminator, the model performs even better without the discrimi-
nator on the Geolife dataset with categorical features. Moreover, the
results show that the discriminator’s feedback alone is insufficient
for successfully training the model. The mean distance is increased
≈ 20× on all datasets when the model is trained with the BCE-loss
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Dataset Euclidean Improvement [%] Hausdorff Improvement [%] Jaccard Improvement [%]

GeoLife Spatial 33.40 50.15 60.51
GeoLife 34.95 45.57 69.15
Foursquare NYC 24.94 19.81 14.30

Table 6: The table shows the percentage reduction of the Euclidean and Hausdorff distances and the increase of the Jaccard
Index of the convex hull after applying RAoPT [5] on a dataset generated with LSTM-TrajGAN [63].

only compared to the standard TrajLoss. Likewise, the difference
in categorical features increases from 9 % (hour) and ≤ 1 % (day
and category) to over 85 % in all cases. These results highlight that
LSTM-TrajGAN trains differently than traditional GANs, such as
DCGAN [61], and explain why our Noise-TrajGAN (ref. Section 7)
performed so poorly on the trajectory datasets.

C.3 RAoPT on LSTM-TrajGAN
Finally, in Section 6, we ask whether LSTM-TrajGAN is susceptible
to existing attacks against trajectory protection approaches, such as
RAoPT [5]. To evaluate this, we used the authors’ RAoPT implemen-
tation [6] and ran it on trajectories generated by LSTM-TrajGAN.
Concretely, we performed the measurements as follows. For each of
the 5 runs, we randomly split the dataset into two equal-sized sets
𝑡𝑟𝑎𝑖𝑛𝑡𝑟𝑎 𝑗𝐺𝐴𝑁 and 𝑡𝑒𝑠𝑡𝑡𝑟𝑎 𝑗𝐺𝐴𝑁 . Then, we trained LSTM-TrajGAN
for 2 000 batches, as used in [63], on 𝑡𝑟𝑎𝑖𝑛𝑡𝑟𝑎 𝑗𝐺𝐴𝑁 . After complet-
ing the training, we generated trajectories based on 𝑡𝑒𝑠𝑡𝑡𝑟𝑎 𝑗𝐺𝐴𝑁 .
The resulting set of generated trajectories, 𝑔𝑒𝑛𝑡𝑟𝑎 𝑗𝐺𝐴𝑁 , was split
in proportion 2 : 1 into the larger set 𝑡𝑟𝑎𝑖𝑛𝑅𝐴𝑜𝑃𝑇 , and the smaller
𝑡𝑒𝑠𝑡𝑅𝐴𝑜𝑃𝑇 . While 𝑡𝑟𝑎𝑖𝑛𝑅𝐴𝑜𝑃𝑇 was used for training of the RAoPT
model, we performed the final measurements on 𝑡𝑒𝑠𝑡𝑅𝐴𝑜𝑃𝑇 and
show the results in Table 6. As we used the RAoPT implementa-
tion without modification, we recorded the same values as used
in [5]. RAoPT can reduce both the Euclidean and the Hausdorff
distances and increase the Jaccard index of the trajectories’ con-
vex hull, which serves as a representation of the overlap of two
trajectories’ activity spaces [5]. While the reconstruction is not as
significant as for those protection mechanisms considered in [5],
the attack still reduces the Euclidean distance by over 30 % on both
variants of the Geolife dataset, and the Hausdorff distance even by
over 45 %. Moreover, on the Geolife dataset, the Jaccard index can
be increased by over 60 % through the reconstruction. In summary,
while LSTM-TrajGAN seems significantly less susceptible to the
attack than some traditional trajectory protection mechanisms, the
reconstruction still succeeds to some extent.

D MODEL PARAMETERS
In this section, we record the (hyper-)parameters used for the eval-
uation of generative models in Section 7, which produce Figures 4
and 5. Note that these parameters are also recorded in the pro-
vided code repository3. We follow the same order as Section 7. An
overview of all (hyper-)parameters is provided in Table 7.

D.1 Noise-TrajGAN
On all datasets, we use a batch size of 10, PyTorch’s AdamW op-
timiser with a learning rate of 0.0003 for the discriminator and
0.0001 for the generator, 𝛽1 = 0.5 and 𝛽2 = 0.999. We update the
3https://github.com/erik-buchholz/SoK-TrajGen

discriminator 5× more frequently than the generator. Both the di-
mensionality of the input noise vector and the LSTM’s hidden size
are chosen as 100. The discriminator’s embedding dimensions are
chosen as 28 for MNIST-Seq, 64 for the combined spatial features,
and equal to the input size for categorical features. We train the
models with the WGAN with Lipschitz Penalty (WGAN-LP) loss.
On MNIST-Seq and Geolife, we train for 100 epochs, and on FS-NYC
for 300 due to its smaller size. All other (hyper-)parameters are kept
as their respective default values.

D.2 AR-RNN and START-RNN
Both RNN-based models use a batch size of 512, the AdamW op-
timiser with a learning rate of 0.001, 𝛽1 = 0.9, and 𝛽2 = 0.999 for
all datasets. On MNIST-Seq, the models are trained for 30 epochs,
on FS-NYC for 300, and on Geolife for 100. The dimensionality
of the input noise used by AR-RNN is chosen as the feature di-
mensionality of the dataset, i.e., 28 for MNIST-Seq and 2 for the
trajectory datasets. The initial FC layer uses the output size as the
input size. An LSTM with a hidden size of 100 is used for both
models. Both models use the MSE as the loss function. All other
(hyper-)parameters are kept as their respective default values.

D.3 RGAN
The RGAN uses a batch size of 28, and PyTorch’s AdamW optimiser
with 𝛽1 = 0.5 and 𝛽2 = 0.999 for both generator and discrimina-
tor. On MNIST-Seq and Geolife, both learning rates are chosen as
0.0001, while the discriminator is trained with a learning rate of
0.0003 on FS-NYC. All cases use the WGAN-LP loss and train the
discriminator 5× per generator update. For the input noise, a di-
mension of 5 is used as in the original paper [23], and the LSTM’s
hidden size is chosen as 100. On MNIST-Seq, the model is trained
for 300 epochs, on FS-NYC for 500, and on Geolife for 100. All other
(hyper-)parameters are kept as their respective default values.

D.4 CNN-GAN
Our CNN-gan uses a batch size of 32 on all datasets, PyTorch’s
AdamW optimiser with 𝛽1 = 0.5 and 𝛽2 = 0.999 and a learning rate
of 0.0003 for the discriminator and 0.0001 for the generator. The
generator and discriminator are updated with the same frequency
(𝑛𝑐𝑟𝑖𝑡𝑖𝑐 = 1), and WGAN-LP is used as the loss. On MNIST-Seq and
Geolife, the model is trained for 300 epochs, and on FS-NYC for
1 000 epochs. For the input noise, a shape of (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 100) is
used, i.e., the noise has a dimensionality of 100. The model uses
batch norm on MNIST-Seq, while no batch norm is used on the
trajectory datasets. All other (hyper-)parameters are kept as their
respective default values.
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Model Dataset Epochs Batch Size Optimizer LR Gen LR Dis 𝛽1 𝛽2 Loss 𝑛𝑐𝑟𝑖𝑡𝑖𝑐

NTG MNIST-Seq 100 10 AdamW 1E-4 1E-4 0.5 0.999 WGAN-LP 5
NTG FS-NYC 300 10 AdamW 1E-4 3E-4 0.5 0.999 WGAN-LP 5
NTG Geolife 100 10 AdamW 1E-4 3E-4 0.5 0.999 WGAN-LP 5
AR-RNN MNIST-Seq 30 512 AdamW 1E-3 N/A 0.9 0.999 MSE 1
AR-RNN FS-NYC 300 512 AdamW 1E-3 N/A 0.9 0.999 MSE 1
AR-RNN Geolife 100 512 AdamW 1E-3 N/A 0.9 0.999 MSE 1
START-RNN MNIST-Seq 30 512 AdamW 1E-3 N/A 0.9 0.999 MSE 1
START-RNN FS-NYC 300 512 AdamW 1E-3 N/A 0.9 0.999 MSE 1
START-RNN Geolife 100 512 AdamW 1E-3 N/A 0.9 0.999 MSE 1
RGAN MNIST-Seq 300 28 AdamW 1E-4 1E-4 0.5 0.999 WGAN-LP 5
RGAN FS-NYC 500 28 AdamW 1E-4 1E-4 0.5 0.999 WGAN-LP 5
RGAN Geolife 100 28 AdamW 1E-4 1E-4 0.5 0.999 WGAN-LP 5
CNN-GAN MNIST-Seq 300 32 AdamW 1E-4 3E-4 0.5 0.999 WGAN-LP 1
CNN-GAN FS-NYC 1 000 32 AdamW 1E-4 3E-4 0.5 0.999 WGAN-LP 1
CNN-GAN Geolife 300 32 AdamW 1E-4 3E-4 0.5 0.999 WGAN-LP 1
GTG FS-NYC 1 000 256 AdamW 1E-5 1E-5 0.5 0.999 BCE 1
GTG Geolife 1 000 256 AdamW 1E-5 1E-5 0.5 0.999 BCE 1

Table 7: EvaluationHyperparameters. The table shows the hyperparameters of themodels from Section 7 used for the evaluation
and Figures 4 and 5.

D.5 GeoTrajGAN
We did not test GTG on MNIST-Seq as we already knew from our
experiments with GPG (ref. Section 6), that the baseline model
can capture the point distribution of the considered datasets (ref.
Figure 3). For both FS-NYC and Geolife, we use a latent dimension
of 256 for both the generator and the discriminator. The main
architecture differences to GeoPointGAN [14] are the use of layer
norm instead of batch norm in both models, an LSTM with hidden
size 64 in the generator, and the usage of Large Spatial Transformer
Network (STN) in the point-level discriminator. Moreover, we add
a sequential discriminator consisting of an LSTM with hidden size
64 followed by two FC layers. The feedback of both discriminators
is combined via addition. A standard BCE-loss is used as the loss
function. Both the generator and the combined discriminator are
trained with the same frequency (𝑛_𝑐𝑟𝑖𝑡𝑖𝑐 = 1) using the AdamW
optimizer with a learning rate of 1E-5, 𝛽1 = 0.5, 𝛽2 = 0.999 and
a batch size of 256. We train the model on both datasets for 1000
epochs as GTG only produced a reasonable point distribution for
FS-NYC despite the larger size of the Geolife dataset (yielding more
updates per epoch). All other (hyper-)parameters are kept as their
respective default values.
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