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ABSTRACT
Medical data donation involves voluntarily sharing medical data

with research institutions, which is crucial for advancing health-

care research. However, the sensitive nature of medical data poses

privacy and security challenges. The primary concern is the risk of

de-anonymization, where users can be linked to their donated data

through background knowledge or communication metadata. In

this paper, we introduce Anonify, a decentralized anonymity proto-

col offering strong user protection during data donation without

reliance on a single entity. It achieves dual-level anonymity protec-

tion, covering both communication and data aspects by leveraging

Distributed Point Functions, and incorporating 𝑘-anonymity and

stratified sampling within a secret-sharing-based setting. Anonify
ensures that the donated data is in a form that affords flexibility

for researchers in their analyses. Our evaluation demonstrates the

efficiency of Anonify in preserving privacy and optimizing data util-

ity. Furthermore, the performance of machine learning algorithms

on the anonymized datasets generated by the protocol shows high

accuracy and precision.
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1 INTRODUCTION
Medical data donation1 is a voluntary act where individuals share

their health-related information with researchers to support sci-

entific research, medical advancements, and public health initia-

tives [4]. However, medical data donation faces significant chal-

lenges primarily due to privacy and security concerns based on

the sensitivity of medical data. The most critical concern revolves

around the potential for the risk of individuals being identifiable

through their data [35, 40]. Therefore, it is crucial to provide strong

protection guarantees for users when they donate their medical

data.

Medical data is typically provided to researchers in the form

of a relational (tabular) structure. A table is composed of columns

(attributes) and rows (records), with attributes categorized as direct
identifiers, quasi-identifiers (QIDs), sensitive attributes (SAs), or non-
sensitive attributes [26]. Direct identifiers, such as names or social

security numbers, explicitly identify record owners. QIDs, like age,

job, sex, or zip code, may not identify individuals on their own

but could if combined. SAs encompass sensitive person-specific

information, such as diseases. Non-sensitive attributes include those

that do not fit into the above categories.

Simply removing direct identifiers from data is not sufficient

to prevent re-identification [38]. It has been shown that if an in-

dividual’s record is unique based on QIDs, an attacker with this

information can directly link the record to its owner, leading to

identity disclosure.
Even in cases where a group of individuals in a dataset shares

identical QID values, the absence of diversity in the SA values

within the records of these individuals can make them vulnerable

to attribute disclosure attacks [26]. In Table 1, we present an example

of such attacks, illustrating two groups where individuals in each

exhibit similarity in QID values. Specifically, the first three records

belong to one group, while the remaining records belong to another

group. An adversary can deduce that any individual with a record

in the first group has hepatitis, as all records in the group share

1
In medical data donation scenarios, data is gathered by research institutes from

individuals through apps, such as the Corona-Datenspende app [30]. The set of data

donors may include both those currently experiencing health issues and those in good

health. This differs from traditional medical data collection scenarios, where data is

usually collected by hospitals or medical institutions as part of the treatment process.
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Table 1: Example for the attribute disclosure attacks.

No. Age Sex Zip Code Disease

1 43 Male 56126 Hepatitis

2 43 Male 56126 Hepatitis

3 43 Male 56126 Hepatitis

4 35 Female 56121 Coronary Heart Disease

5 35 Female 56121 Arrhythmia

6 35 Female 56121 Valve Disease

identical SA values. Similarly, each individual in the second group

can be inferred to have a heart-related disease due to SA values in

the records that imply a shared trait.

To mitigate de-anonymization, various techniques have been

introduced, with the most popular ones being 𝑘-anonymity for ad-

dressing identity disclosure attacks, and ℓ-diversity and 𝑡-closeness

for mitigating attribute disclosure attacks. These techniques are

designed for a centralized setting where a single entity is responsi-

ble for aggregating all individuals’ medical data [6]. This implies

that the entity has knowledge about each individual and their cor-

responding medical information, requiring users to place trust in

this entity. Such a requirement may potentially reduce users’ will-

ingness to donate their medical data. Furthermore, the centralized

nature of this entity introduces a single point of failure. In the event

of a data breach, the privacy of all users could be compromised.

This paper addresses de-anonymization attacks, specifically iden-

tity and attribute disclosure, and issues arising from centralized

medical data sharing. It proposesAnonify, a decentralized anonymity

protocol designed for medical data donation. It offers dual-level

anonymity protection: (1) at the communication and (2) at the data

level. Anonify guarantees anonymous communication to prevent

any linkability between users and their communicated records, en-

abling users to donate data without the need to place their trust

in a single entity. This protection is achieved through a secret-

sharing-based method for anonymous writing called Distributed
Point Functions (DPF)[7], coupled with a broadcasting-based ap-

proach for anonymous data retrieval. Additionally, to defend against

de-anonymization risks associated with donated medical data, it

employs 𝑘-anonymity[38] and stratified sampling [28], all within

decentralized settings.

Anonify consists of two phases: the registration phase and the

publishing phase. In the registration phase, users employ DPF to

anonymously submit records containing their QID values to an

aggregator operated by multiple collaborating servers. To guard

against identity disclosure attacks,Anonify applies𝑘-anonymization

to these records and organizes them into groups based on QID

similarity. Using a broadcast-based approach, users can then anony-

mously learn their corresponding group. In the second phase, using

DPF, users anonymously transmit their medical data (SA values)

associated with their group identifier to the aggregator. To pro-

tect against attribute disclosure attacks, Anonify conducts stratified

sampling on encrypted data, revealing only a portion of records

in each group. Finally, the protocol disseminates the anonymized

sampled donated data to researchers.

Contributions: In this paper, we make the following contributions:

• We introduce Anonify, a decentralized protocol for anony-

mous medical data donation, ensuring protection at commu-

nication and data levels. By leveraging DPF, Anonify aggre-

gates data from users and applies 𝑘-anonymity and stratified

sampling without relying on a single entity. This prevents

the aggregator from de-anonymizing users, even with com-

munication metadata or identity and attribute disclosure

attacks. Additionally, our novel application of DPF facilitates

the employment of stratified sampling without requiring

trust in the aggregator with the entire set of records.

• We conduct a security analysis to demonstrate that Anonify
achieves our security goals in terms of anonymous commu-

nication and data anonymity.

• We assess the efficiency of Anonify, utilizing a realistic med-

ical dataset to simulate user-submitted records. Our evalua-

tion incorporates multiple utility and privacy metrics, along

with an examination of the data distribution characteris-

tics post-application of Anonify. To ensure the anonymized

data allows accurate analysis, we tested eight well-known

machine learning classifiers on the anonymized dataset, re-

vealing results closely resembling those of the original non-

anonymized dataset.

The remainder of this paper is organized as follows: Section 2

provides the necessary background knowledge about anonymous

communication and data anonymity. In Section 3, we explain our

system and threat model, along with the security properties pro-

vided by our protocol. Section 4 introduces our protocol for de-

centralized anonymous medical data donation. In Section 6, we

describe the evaluation of our approach. Section 7 presents related

work, and in Section 8, we conclude our paper.

2 BACKGROUND
In this section, we explain the methods we use in our protocol,

namely DPF, 𝑘-anonymity, generalization, and sampling.

2.1 Distributed Point Functions
Distributed Point Functions (DPF) [7, 13] are cryptographic con-

structs designed to facilitate secure and privacy-preserving compu-

tations in distributed or decentralized environments. DPF enables

users to write in a database 𝐷 distributed across a set of servers 𝑆

without any of the servers being able to link any user to the specific

message they wrote. This guarantee is achieved if at least one of

the servers is honest.

To describe how anonymous writing can be done using DPF, we

first introduce a basic secret-sharing-based approach, then explain

how DPF improves this approach to enable efficient anonymous

writing.

Suppose there are 𝑛 servers, with each server storing a full copy

of a database 𝐷 . All servers collectively maintain the contents of

this database. A user aims to submit a message𝑚𝑖 to 𝐷 without

the 𝑛 servers storing 𝐷 being able to link the message to the user’s

identity. The naive approach to achieve this is as follows:

Initially, the user computes a vector 𝑣 with the same length as

the database 𝐷 . This vector contains the message𝑚 at a randomly

selected index 𝑡 (chosen locally by the user) and 0 at all other
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indices. Subsequently, the user generates 𝑛 secret shares 𝑣1, . . . , 𝑣𝑛
that satisfy the following properties:

(1)

∑𝑛
𝑖=1 𝑣𝑖 = 𝑣

(2) Any combination of 𝑛 − 1 secret shares does not reveal in-
formation about𝑚 or the index where𝑚 is located.

The user then distributes these shares to the servers, with the

𝑖-the server, 𝑠𝑖 ∈ 𝑆 , receiving 𝑣𝑖 . Each 𝑠𝑖 adds 𝑣𝑖 to its database

instance 𝐷𝑖
using the operation 𝐷𝑖 ← 𝐷𝑖 + 𝑣𝑖 .

After processing requests from multiple users, the servers col-

laborate to compute a combined database 𝐷 =
∑𝑛
𝑖=1 𝐷

𝑖
. Assuming

each user selected a unique index for their messages, 𝐷 contains

all original messages.

For this method to work, transmitting a vector with the same

size as the database for each write request is needed, making this

method inefficient. To address this inefficiency, Corrigan-Gibbs

et al. [7] proposed DPF to compress the shares transmitted to the

servers.

Definition 1 (DPF). Let 𝑓𝑡,𝑚 : {0, . . . , ℓ} ↦→ F be a point function
with

𝑓𝑡,𝑚 ( 𝑗) =
{
𝑚 for 𝑗 = 𝑡

0 for 𝑗 ∈ {0, . . . , ℓ} \ 𝑡
𝑓𝐴, 𝑓𝐵 : {0, . . . , ℓ} ↦→ F are distributed point functions of 𝑓𝑡,𝑚 if:
(1) neither 𝑓𝐴 nor 𝑓𝐵 individually reveal any information about

𝑚 or 𝑡 , and
(2) ∀ 𝑗 ∈ {0, . . . , ℓ} : 𝑓𝐴 ( 𝑗) + 𝑓𝐵 ( 𝑗) = 𝑓𝑡,𝑚 ( 𝑗)
To generate 𝑛 DPF-shares 𝑓1, . . . , 𝑓𝑛 containing𝑚 at a random in-

dex 𝑡 , the user employs GenDPF(𝑚, 𝑡). These shares are distributed
among the servers, with each server 𝑠𝑖 receiving 𝑓𝑖 . The server

𝑠𝑖 can derive 𝑣𝑖 by evaluating 𝑓𝑖 ( 𝑗) at every point 𝑗 ∈ {0, . . . , ℓ}.
Current research indicates that sending a DPF share instead of 𝑣𝑖
reduces the communication cost to 𝑂 (𝜆 · log ℓ + |𝑚 |) bits, where 𝜆
is a security parameter [5].

2.2 𝑘-anonymity
To mitigate identity disclosure attacks, it is crucial to anonymize

the QID values in datasets. A widely used concept for this is 𝑘-
anonymity [38], which modifies the dataset to ensures that at least

𝑘 records in the dataset share the same QID values. 𝑘-anonymity

guarantees that even if an attacker knows the QID values of a

record owner, that record owner remains anonymous within a

group, known as an equivalence class. The parameter 𝑘 acts as

a control for the level of anonymity offered, with larger values

enhancing anonymity but potentially reducing data utility. Table 1

provides an example of 𝑘-anonymity with 𝑘 = 3.

The main limitation of 𝑘-anonymity arises from the potential of

similar or identical SA values in the equivalence classes, which

can constrain the anonymity protection it offers. Therefore, 𝑘-

anonymity cannot protect against attribute disclosure attacks.

2.3 Generalization
Generalization stands out as the main non-perturbative technique

employed with 𝑘-anonymity. Non-perturbative techniques, in gen-

eral, reduce data information by minimizing or suppressing detail

without altering the content, preserving data truthfulness. Gener-

alization enhances data anonymity by replacing QID values with

any

medical professional

nurse surgeon

artist

dancer writer

Figure 1: Example VGH for the categorical attribute job

more generalized yet semantically consistent values [37]. For cat-

egorical attributes, such as gender or job, specific values can be

replaced with more general values using a value generalization

hierarchy (VGH) [32]. For each attribute, a VGH is described as a

tree structure whose leaves contain the values of the attribute and

non-leaf nodes define generalized values. Figure 1 shows a VGH

for the attribute Job, as an example. In this figure, jobs like surgeon

and nurse are generalized to the broader category of medical pro-

fessional. For numerical attributes, such as age, exact values can be

replaced by intervals containing the exact values. For example, the

age 45 could be generalized to the interval "[41-60]".

While there are various approaches to achieving 𝑘-anonymity,

our focus in this paper is on 𝑘-anonymization based on general-

ization. This choice is driven by the non-perturbative nature of

generalization, which aids in preserving data truthfulness com-

pared to perturbative techniques that often introduce new infor-

mation. Although suppression (deleting specific QID values and

replacing them with a special symbol, e.g., *) is non-perturbative,

we exclude it due to its tendency to lower data utility [20]. There-

fore, to maintain high data utility, generalization appears to be a

more favorable option than suppression. It is important to note that

over-generalization can negatively impact data analysis results [26].

2.4 Sampling
Sampling involves retaining only a portion of records from an orig-

inal dataset and can occur either before (pre-sampling) or after

(post-sampling) 𝑘-anonymizing the dataset [39]. Pre-sampling re-

duces the input dataset size for 𝑘-anonymization, thereby lowering

computing power requirements. Post-sampling allows for advanced

techniques that leverage the 𝑘-anonymous dataset generated after

generalization. Combining both pre-sampling and post-sampling is

feasible for very large datasets.

Sampling can be employed using different methods. The most

common methods are simple random sampling and stratified sam-

pling [28]. Simple random sampling involves randomly removing

the desired number of records, ensuring no bias by definition. How-

ever, it does not guarantee equal removal from each equivalence

class, leading to an unfair distribution in protection against de-

anonymization attacks [39]. Stratified sampling addresses this issue

by proportionally removing records from each equivalence class

based on its size. This ensures a certain level of uncertainty for

each record. As this method relies on equivalence classes, it is only

applicable as a post-sampling method.
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Data Donor Data Recipient

Adversary
Observing Observing

External
Knowledge

Controlling

Accessing

Data Aggregator

Figure 2: An overview of the system and threat model.

In our protocol, we employ post-stratified sampling, a choice

that aligns well with the assumptions we outline for our system

model and threat model, as detailed in the next section.

3 MODELS & PROPERTIES
This section describes the systemmodel and the design assumptions

of our proposed protocol, Anonify. It also discusses the adversary’s

goal and capabilities and presents the security properties of our

protocol.

3.1 System Model
We consider a model that consists of three main components: the

data donors (users), the data aggregator, and the data recipients

(researchers), see Figure 2.

Data Donors. We assume a set of users𝑈 that represent the data

donors who participate by sending their data to the data aggregator.

Each user 𝑢𝑖 ∈ 𝑈 has a record 𝑟𝑖 that consists of a set of QIDs

(personal information) and a set of SAs (medical data). Each QID is

denoted as 𝑞𝑖𝑑 𝑗 , and each SA is denoted as 𝑠𝑒𝑛𝑠 𝑗 . That means 𝑟𝑖 can

be represented as 𝑟𝑖 = {𝑞𝑖𝑑1, 𝑞𝑖𝑑2, . . . , 𝑞𝑖𝑑𝑥 , 𝑠𝑒𝑛𝑠1, 𝑠𝑒𝑛𝑠2, . . . , 𝑠𝑒𝑛𝑠𝑦}.
To guarantee truthfulness at the record level, we assume that

every user 𝑢𝑖 is truthful and does not falsify their data. Each record

𝑟𝑖 collected by the system matches with an existing individual in

real life [15].
2

Data Aggregator. The data aggregator G is responsible for col-

lecting users’ data and making it accessible to the data recipient(s).

The responsibilities of the aggregator G are distributed across 𝑛

servers, implying that G is managed by multiple servers to avoid de-

pendence on a single entity. Each of these servers maintains a copy

of a database 𝐷 , and collectively, the servers manage the contents

of this database. The servers are assumed to employ methods that

enable anonymous communication. Furthermore, the aggregator G
is expected to ensure data anonymity for users through the imple-

mentation of 𝑘-anonymity and stratified sampling in decentralized

settings.

2
Data truthfulness is crucial in the context of medical data donation because the

donated data can be used for treatments or the analysis of the effects of medicines [8].

Falsified data can lead to incorrect treatments and analyses.

Data Recipient. The entity that needs the donated data is referred
to as the data recipient T . In some scenarios, there might be several

data recipients, such as multiple research institutes. We assume

that the recipient gets an anonymized dataset of the users’ records

(𝑅′). Each record in 𝑅′ corresponds to a unique user and contains

an anonymized information about the user’s personal information

and medical data. It is important to note that we only consider the

case where the exchanged data between users and researchers is

unidirectional. In other words, we focus on the situation where

researchers collect users’ data but do not provide anything in return,

such as feedback or analysis results, to the users.

3.2 Threat Model
We consider the presence of an adversary, denoted as A, whose

goal is to de-anonymize users by identifying their SA values to

gain insights into their health details. A can have background

knowledge about some of the users, specifically information about

their QID values. The set𝑈 ′ represents users about whom A has

no knowledge of their QID values. Additionally, since each user is

assumed to generate their SA values locally and these values are

only known to the user,A is assumed to have no information about

the SA values of any users in the set𝑈 .

A is a global passive adversary who is capable of observing all

incoming and outgoing network traffic in the system. However,

A is not able to manipulate the traffic, such as dropping, altering

transmitted messages, or injecting new messages. Neither can it

gain any information about the actual content of messages while

transmission due to message end-to-end encryption. Further, it

lacks the capability to associate users based on message size, given

our assumption of fixed message size.

We assume that the adversary collaborates with the data re-

cipients; therefore, we consider the data recipient(s) as untrusted.

Besides, A can have control over a subset of G’s servers, meaning

at least one of the servers must be honest. Even under the assump-

tion that a subset of G’s servers may be malicious, G is expected

to maintain honesty in executing the protocol. Without this as-

sumption, anonymity is unaffected (see Section 5), but availability

could be compromised as malicious servers may deny the service by

manipulating their database instances. All users are also assumed

to be honest, as this is important for ensuring data truthfulness and

maintaining system availability. It is worth noting that a malicious

user cannot manipulate others’ data but can submit false data or

compromise availability by submitting corrupted DPF shares.

3.3 Security Properties
Anonify aims to provide the following properties:

3.3.1 Anonymous Communication. Our protocol is designed to pro-
tect communication between users (data donors) and G by provid-

ing the following two anonymity properties: sender anonymity and

receiver anonymity. These properties preventA from de-anonymizing

users based on communication metadata such as IP addresses, or

the time of sending or receiving.

Informally, sender anonymity is the property where, A cannot

determine which user in 𝑈 ′ wrote specific messages in the data-

base 𝐷 any better than making random guesses.
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Definition 2 (sender anonymity). When A lacks prior knowl-
edge about the message’s content, the protocol guarantees sender
anonymity. For each message within 𝐷 , sender anonymity is achieved
if the protocol ensures thatA cannot significantly reduce the probabil-
ity of accurately identifying the user 𝑢𝑖 ∈ 𝑈 ′ responsible for writing
a specific message in 𝐷 to less than 1/|𝑈 ′ |.

Essentially, this implies that the adversary cannot de-anonymize

𝑢𝑖 (i.e., associate a message with a specific user) more effectively

than random guessing from the set of users 𝑈 ′. The strength of

the sender anonymity property depends on the size of𝑈 ′, where a
larger |𝑈 ′ | implies a larger anonymity set size, thereby ensuring

stronger anonymity. To ensure a minimum level of anonymity, the

size of𝑈 ′ should be larger than or equal to a certain threshold.

During the protocol execution, particularly in the registration

phase, each user will need to retrieve specific information from G
to proceed to the publishing phase. This information should be ob-

tained anonymously. As a result, the protocol provides the receiver

anonymity property for users, ensuring that no adversary can learn

which piece of information a user is interested in retrieving from G.

Definition 3 (receiver anonymity). WhenA lacks prior knowl-
edge regarding the content that the user 𝑢𝑖 wants to retrieve from G,
the protocol provides receiver anonymity. This is achieved when the
protocol ensures that A has only a negligible probability of success-
fully deducing the specific data 𝑢𝑖 ∈ 𝑈 ′ intends to retrieve, with this
probability being close to 1/|𝑈 ′ |.

Our protocol guarantees that all users can access the data of

interest from the aggregator while minimizing the likelihood of A
successfully discovering which data 𝑢𝑖 is retrieving down to 1/|𝑈 ′ |.

3.3.2 Data Anonymity. Our protocol protects users at the data level
by providing the following two anonymity properties: 𝑘-anonymity
and sensitive attribute (SA) uncertainty. These properties protect
users from data de-anonymization attempts, particularly by defend-

ing against identity and attribute disclosure attacks that may target

the donated data.

𝑘-anonymity necessitates that a minimum of 𝑘 individuals have

identical QID values in the anonymized dataset 𝑅′. In this manner,

even if A acquires knowledge of the QID values associated with

a particular record owner, that individual still retains anonymity

concerning QID values within their equivalence class.

Definition 4 (𝑘-anonymity). The protocol provides𝑘-anonymity
if for each unique combination of QID values that is present in𝑅′, there
exist at least 𝑘-1 other records in 𝑅′ with the identical combination of
these QID values.

The 𝑘-anonymity property serves as a safeguard against identity

disclosure attacks. The 𝑘 parameter represents the minimum size of

an equivalence class within the anonymized dataset 𝑅′. The value
of 𝑘 determines the level of anonymity offered, where higher values

of 𝑘 lead to stronger anonymity protection.

Relying solely on the 𝑘-anonymity property may not provide

sufficient data protection for users. While 𝑘-anonymity can guaran-

tee protection against identity disclosure attacks, it cannot ensure

protection against attribute disclosure attacks. These can compro-

mise the data anonymity of users when there is a lack of diver-

sity in SA values within equivalence classes in 𝑅′. In a scenario

where A knows the QIDs for a user 𝑢𝑖 , it can identify the equiv-

alence class to which 𝑢𝑖 belongs. If all records within this class

share identical SA values, A can then learn the SA values of 𝑢𝑖 . To

address this, our protocol introduces an additional property known

as SA uncertainty. This property ensures that A cannot determine

whether 𝑢𝑖 ’s record is among the records in 𝑅′. Consequently, even
if all records in 𝑅′ share a specified SA value, A cannot ascertain

if 𝑢𝑖 has this value. This property is achieved in our protocol by

applying stratified sampling.

Definition 5 (sa uncertainty). The protocol provides SA un-
certainty if the probability that A can guess that 𝑢𝑖 ’s record is one
of the records in 𝑅′ is 𝜌 . The value of 𝜌 is calculated as the ratio of
the number of records in 𝑢𝑖 ’s equivalence class before sampling to the
number after sampling.

The parameter 𝜌 defines the protection level granted by the

SA uncertainty property. Smaller 𝜌 values indicate greater uncer-

tainty for A regarding the SA values of users, resulting in higher

protection.

SA uncertainty, like 𝑡-closeness and ℓ-diversity, protects against

attribute disclosure attacks. However, both 𝑡-closeness and ℓ-diversity

require centralization, whereas SA uncertainty can be achieved by

a decentralized system. Additionally, SA uncertainty ensures that

adversaries cannot determine the presence of a user’s SA values in

𝑅′, whereas 𝑡-closeness and ℓ-diversity do not conceal the presence
of a user record in 𝑅′.

4 PROTOCOL ARCHITECTURE
In this section, we describe Anonify, our decentralized protocol

designed to enable medical data donation. Anonify operates in two

phases: the registration phase and the publishing phase. The main

steps of the protocol are illustrated in Figure 3.

4.1 Registration Phase
The protocol begins with a registration phase, during which users

are required to submit their personal information (QID values) to G.
To prevent G from linking users to their submitted data through

the exploitation of communication metadata, our protocol employs

the DPF method. Other anonymous communication systems, such

as onion routing or mix networks, can also be used to maintain

unlinkability between users and the data they send to the aggregator.

However, these alternatives may have weaker security guarantees

compared to the DPF method we use, as they are known to be

vulnerable to traffic analysis attacks by an adversary controlling

a substantial portion of the network or monitoring multiple links

within it [9].

Algorithm 1 depicts the details of the registration phase. The

users first write their data anonymously in 𝐷 using DPF. After a

specific number of users contribute their records into 𝐷 , the G’s
servers collaboratively share and combine their database instances

to unveil the content in 𝐷 . Subsequently, they apply 𝑘-anonymity,

categorizing records into equivalence classes based on the similarity

of QID values.
3
This categorization guarantees that each class 𝐸𝐶 𝑗 ∈

3
All servers are assumed to execute the protocol honestly, allowing any individual

server to perform 𝑘-anonymization. However, advocating for uniform execution by

all servers ensures process integrity and consistent results.

98



Anonify: Decentralized Dual-level Anonymity for Medical Data Donation Proceedings on Privacy Enhancing Technologies 2024(3)

Submit the QID

values to G
using DPF

Apply 𝑘-

anonymity

on the QID

values

Broadcast the

information

of equivalence

classes to

all users.

Submit the SA

values and the

equivalence

class ID to

G using DPF.

Apply sampling

while the SA

values are in an

encrypted form.

Reveal the

sampled data

and publish

them to T

Figure 3: The main steps of the Anonify protocol, with the initial three steps corresponding to the registration phase and the
subsequent three steps associating with the publishing phase.

𝐸𝐶 consists of a minimum of 𝑘 records. The servers allocate an

identifier 𝑒 𝑗 to each class 𝐸𝐶 𝑗 , followed by broadcasting a message

to all users.
4
This message contains a list of class identifiers and

the personal identifiers of users assigned to each class. Each user

independently determines their class identifier by checking which

equivalence class their personal identifier 𝑝𝑖 is associated with. It is

important to note that each user generates their personal identifiers

locally.

Algorithm 1 Registration Phase

1. Prepare Registration Message. For each user 𝑢𝑖 , let

𝑝𝑖 be a randomly generated identifier, and 𝑞𝑟𝑖 =

{𝑞𝑖𝑑1, 𝑞𝑖𝑑2, . . . , 𝑞𝑖𝑑𝑥 } represents a record of QID values. The

user 𝑢𝑖 creates a message𝑚𝑖 = (𝑝𝑖 , 𝑞𝑟𝑖 ).
2. Submit DPF Shares. Each user 𝑢𝑖 :

• generates DPF shares: {𝑓1, . . . , 𝑓𝑛} = GenDPF(𝑚𝑖 , 𝑡),
where 𝑡 is a random index in 𝐷 .

• submits one share to each of the 𝑛 servers of G. The share
is encrypted using the receiving server’s public key.

3. Reveal the Database Content. Each server of the 𝑛 servers

of G:
• uncompresses the 𝑢𝑖 ’s DPF share and adds the result to its

instance of 𝐷 .

• If the number of new users registering on the servers

exceeds a predefined threshold,𝑈 is defined as this group

of new users.

• exchanges its database instances with the other servers

and combines all instances to get the messages written to

𝐷 by users in𝑈 .

4. Apply 𝑘-anonymity. The servers:
• group the users’ records (i.e., 𝑞𝑟𝑖 ) into equivalence classes

based on the similarity of QID values.

• apply generalization to the records in each equivalence

class 𝐸𝐶 𝑗 ∈ 𝐸𝐶 .
• allocate a distinct identifier 𝑒 𝑗 to each equivalence class

𝐸𝐶 𝑗 .

5. Broadcast Classes IDs. The servers send, to all users, a

message that contains each class’s identifier 𝑒 𝑗 along with

the set of users’ identifiers attached to the records in 𝐸𝐶 𝑗 .

6. Get Class ID. Each user 𝑢𝑖 looks for her identifier 𝑝𝑖 in the

broadcasted message and finds the corresponding equiva-

lence class identifier (𝑒 𝑗 ).

4
Any of the servers can perform this step. Another approach involves dividing the

set of users among the servers, with each server broadcasting the message to only a

specific subset of users.

In Figure 4, Table (a) presents an example of the data that the

servers have after revealing the messages users wrote in 𝐷 , while

Table (b) illustrates the equivalence classes generated through the

𝑘-anonymization step. Each equivalence class is associated with a

class identifier 𝑒 𝑗 , QID values representing users within the class,

and the identifiers of users belonging to that specific class. As

shown in the table, users belonging to each class share the same

generalized personal information (QID values) with all other users

in the same class, making them indistinguishable within this specific

equivalence class in terms of QID values.

Collisions. It is crucial to consider the problem of collision when

users generate their random personal identifiers. Since each user

𝑢𝑖 generates 𝑝𝑖 locally, this can potentially create a situation where

two users end up with the same identifiers. To significantly reduce

the likelihood of this happening, we recommend that each user

generates a random 128-bit number as their identifier.

Another collision issue can arise when users write their mes-

sages anonymously using DPF. As each user independently and

randomly chooses the index to write their message in the data-

base 𝐷 , there is a risk of concurrent selections leading to two users

attempting to write messages to the same index. In such cases,

the content of these messages becomes irretrievable as one user’s

message overwrites another’s. To address this issue, the size of 𝐷

should be configured in a manner that significantly minimizes the

probability of collisions. In other words, the size of 𝐷 should be suf-

ficient to accommodate the anticipated number of messages while

maintaining a high probability of writing success without encoun-

tering collisions. In the work presented in [7], a formula is provided

to compute the expected writing success rate for a given database

size ℓ . This formula can assist in choosing a size that minimizes the

likelihood of collisions:

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒 ≈ 1 − 𝑅𝑒𝑞𝐶𝑜𝑢𝑛𝑡

𝐷𝐵𝑆𝑖𝑧𝑒
+ 1

2

(
𝑅𝑒𝑞𝐶𝑜𝑢𝑛𝑡

𝐷𝐵𝑆𝑖𝑧𝑒

)
2

For example, to handle writing requests from 100,000 users

(𝑅𝑒𝑞𝐶𝑜𝑢𝑛𝑡 = 100, 000 with each user having one writing request)

and achieve an expected success rate of 90%, the database size

𝐷𝐵𝑆𝑖𝑧𝑒 should be set to 1,000,000.

4.2 Publishing Phase
After users complete the registration phase, they proceed to the

publishing phase, where they send their SA values (i.e., medical

data) to G. In this phase, communication between users and G is

also established through the DPF method. Further, Anonify safe-

guards against the inference of users’ SA values during this phase

by employing protection against attribute disclosure attacks. This
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PID Sex Age
3 F 32

5 F 26

8 M 45

9 M 37

12 M 42

16 F 28

(a)

CID Sex Age PIDs
1 F 25-35 3, 5, 16

2 M 35-45 8, 9, 12

(b)

Figure 4: The information that G’s servers have during the
registration phase. PID stands for the user’s random identi-
fier (𝑝𝑖 ), while CID stands for the class identifier (𝑒 𝑗 ).

CID Test result
1 Positive

1 Negative

1 Positive

2 Negative

2 Negative

2 Negative

(a)

CID Test result
1 Negative

1 Positive

2 Negative

2 Negative

(b)

Figure 5: The information that G’s servers have during the
publishing phase includes Table (a) in encrypted form and
Table (b) in plain text.

protection is achieved through the use of stratified sampling, where

servers only reveal a portion of records within each equivalence

class. Leveraging DPF, Anonify applies stratified sampling in a

decentralized manner and on encrypted records, eliminating the

necessity to trust the aggregator with entire records before sam-

pling.

Algorithm 2 describes the steps for the publishing phase. First,

each user selects a random index 𝑡 ′ in the database 𝐷 and anony-

mously writes their class identifier at this index. Next, servers

randomly select a fixed number of indices in 𝐷 associated with

each class. They designate these indices as locations where records

will not be revealed (note that this occurs before users submit their

actual records containing their SA values). Subsequently, each user

anonymously writes their records to 𝐷 at the same index 𝑡 ′. The
servers then delete the records at indices in 𝐷 marked not to be

revealed; this process occurs while the records are still in an en-

crypted form. Therefore, servers remain unaware of the content of

unreleased (deleted) records. After the sampling process, servers

create a dataset from the remaining records in 𝐷 and transmit this

dataset to T .
An example of the sampling is illustrated in Figure 5, where Table

(b) represents a sample of the data in Table (a). In this example, only

two records are released for each class, indicating that one record

is deleted in each class.

Multiple Iterations of Medical Data Donation. In certain

scenarios, data recipients (researchers) may require users to period-

ically submit their medical data (SA values). For instance, consider

Algorithm 2 Publishing Phase

1. Reserve Index. Each user 𝑢𝑖 ∈ 𝑈 :

• generates DPF shares: {𝑓1, . . . , 𝑓𝑛} = GenDPF(𝑒 𝑗 , 𝑡 ′),
where 𝑡 ′ is a random index in 𝐷 .

• submits one share to each of the 𝑛 servers of G. The share
is encrypted using the receiving server’s public key.

2. Identify Indices Related to Each Class. The servers:
• add the received shares to their database instances and

collaboratively reveal the content of 𝐷 after all users in𝑈

submit their shares.

• identify indices that contain a similar class identifier 𝑒 𝑗 .

3. Choose the Unconsidered Indices. The servers randomly

select 𝜇 indices associated with each 𝑒 𝑗 . The set of all selected

indices is defined as 𝑍 .

4. Send SA Values. Each user 𝑢𝑖 ∈ 𝑈 :

• generates DPF shares: {𝑓1, . . . , 𝑓𝑛} = GenDPF(𝑠𝑟𝑖 , 𝑡 ′),
where 𝑠𝑟𝑖 = {𝑠𝑒𝑛𝑠1, 𝑠𝑒𝑛𝑠2, . . . , 𝑠𝑒𝑛𝑠𝑦} represents the 𝑢𝑖 ’s
record of SA values.

• submits one share to each of the 𝑛 servers of G. The share
is encrypted using the receiving server’s public key.

5. Apply Stratified Sampling. Each server:

• waits until adding to its database instance the shares re-

ceived from every 𝑢𝑖 ∈ 𝑈 .

• deletes the content of the indices in its database instance

that are part of 𝑍 (refer to step 3).

• exchanges its updated instance with the other servers and

combines all instances to unveil the remaining records in

𝐷 .

6. Create the Anonymized Dataset. The servers create the
dataset 𝑅′ by grouping together the records in 𝐷 written in

indices associated with the same class identifier 𝑒 𝑗 .

7. Forward to the Recipient. The servers transmit 𝑅′ to the

data recipient T along with the corresponding QID values

that represent each class.

the "safevac" app introduced by the Paul-Ehrlich Institute (PEI) dur-

ing the COVID-19 pandemic for a study on the vaccine’s effects [25].

This study involves users downloading the app and responding to

surveys at specific intervals following vaccination. In such cases,

the typical single execution of the publishing phase is replaced by

multiple iterations. This necessitates certain adjustments to the pub-

lishing phase. One key requirement is enabling data recipients to

link data points from the same source, as this is pivotal for effective

data analysis. To achieve this while safeguarding user anonymity,

the following updates should be made to the publishing phase:

In the initial iteration where users submit their SA values, the

steps of the publishing phase as outlined in Algorithm 2 must be

followed. However, a crucial modification is required in step 4.

Specifically, the message passed to the GenDPF function should

be 𝑚𝑖 = (𝑝 ′
𝑖
, 𝑠𝑟𝑖 ) instead of passing 𝑠𝑟𝑖 only, where 𝑝 ′

𝑖
denotes

a locally generated random identifier by a user 𝑢𝑖 . Importantly,

𝑝 ′
𝑖
should be distinct from the identifier 𝑝𝑖 created by 𝑢𝑖 during

the registration phase. This differentiation is important, as any

similarity between these identifiers would enable servers to link

the QID values submitted by the user in the registration phase with
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the SA values provided during the publishing phase. Such a linkage

would compromise user anonymity, undermining the protocol’s

fundamental objective.

In the following iterations where users need to provide new SA

values to the data recipients, each user must consistently submit

their message to the same index denoted as 𝑡 ′, which they initially

selected during the first iteration of the publishing phase. Addi-

tionally, in these subsequent iterations, only steps 4 through 7 of

Algorithm 2 should be carried out. This implies that, across all

iterations, the protocol always removes the records submitted to

the indices that are part of the set 𝑍 , and 𝑍 is defined only once

in the first iteration of the publishing phase. As a result, the proto-

col releases records from the same set of users in every iteration.

This approach effectively prevents any information leakage to A
across iterations regarding which users have records that have been

published and which users have had their records removed by the

protocol, thus protecting against intersection attacks [16, 17].

5 SECURITY ANALYSIS
In this section, we show thatAnonify reaches the security properties
that are defined in Section 3.3. Anonify achieves sender anonymity

and receiver anonymity only for the set of users 𝑈 ′ ∈ 𝑈 (see

Section 3.2). It achieves 𝑘-anonymity and SA uncertainty for the

set of all users𝑈 .

SenderAnonymity. Anonify ensures sender anonymity for users

in𝑈 ′ during both the registration and publishing phases. To achieve
sender anonymity, the users should be unlinked to the messages

they write in 𝐷 . In our protocol, this is achieved through secret

sharing based on DPF. The anonymity guarantees of DPF were

proven in [7].

We prove the sender anonymity property in our protocol by

showing that A cannot use any of its abilities to compromise this

property.

• Passive Observation. In each protocol phase, all users adhere

to the protocol, ensuring that they each send the same num-

ber of shares to the servers. All messages exchanged between

users and servers have the same size and are encrypted using

the public key of the receiving server. The servers add all

incoming shares to the database 𝐷 and disclose all messages

written by all users in 𝐷 at once. Therefore, A is unable

to link messages to senders through passive observation of

requests between users and servers.

• Server Corruption. As per our assumptions, A has the capa-

bility to corrupt all but one of the G’s servers. A can link a

user with the share they send. However,A can learn at most

𝑛 − 1 out of the 𝑛 DPF-shares from users. Existing literature

provides formal proof that combining 𝑛 − 1 shares does not
disclose any information about the content of the enclosed

message [19].

Receiver Anonymity. Anonify guarantees receiver anonymity

for users in𝑈 ′. This property is only required during the registra-

tion phase, as users need to retrieve their corresponding equivalence

class identifier. Receiver anonymity is achieved through a broad-

cast mechanism that ensures A cannot link users to their class

identifiers.

We prove the receiver anonymity property in our protocol by

demonstrating thatA is incapable of utilizing any of its abilities to

break this property.

• Passive Observation. Messages are only delivered to users

when the servers broadcast a message containing the equiva-

lence classes identifiers and the list of the personal identifiers

of users assigned to each equivalence class. Since all users

receive the same message from the servers, A cannot de-

termine the class identifier of a user 𝑢𝑖 ∈ 𝑈 ′ by simply

observing communication between users and servers.

• Server Corruption. Since users generate their personal identi-
fiers locally,A is unable to associate 𝑢𝑖 ∈ 𝑈 ′ with their class

identifier in the message by leveraging 𝑢𝑖 ’s personal identi-

fier. Furthermore, since A lacks prior knowledge about the

QID values of 𝑢𝑖 , it cannot establish a link between 𝑢𝑖 ∈ 𝑈 ′
and their equivalence class identifier in the message by ex-

ploiting 𝑢𝑖 ’s QID values.

𝑘-anonymity. Anonify ensures that the dataset 𝑅′ achieves 𝑘-
anonymity. With this property, A cannot link a user 𝑢𝑖 ∈ 𝑈 to

their SA values in the dataset 𝑅′ by exploiting the 𝑢𝑖 ’s QID values,

subject to the restriction that the size of the equivalence class of 𝑢𝑖
is at least 𝑘 . 5

We prove the 𝑘-anonymity property in our protocol by showing

that A cannot use any of its abilities to break this property.

• Background Knowledge about QID values. The dataset 𝑅′ con-
sists of equivalence classes, each containing a minimum of

𝑘 records, with each record within an equivalence class con-

taining SA values. Due to the shared QID values among all

records within the same class, A is unable to identify a spe-

cific record for a user𝑢𝑖 , even ifA has knowledge of the QID

values of 𝑢𝑖 and can specify the class to which 𝑢𝑖 belongs.

• Server Corruption. Although A may have control over spe-

cific servers, it is unable to manipulate or interfere with the

protocol execution, as even malicious servers are obligated

to honestly execute the protocol. As a result, the dataset 𝑅′ is
constructed in an honest manner, with each record sharing

identical QID values with at least 𝑘 other records.

SA Uncertainty. Anonify ensures SA uncertainty, leaving A
uncertain about the inclusion of SA values for user𝑢𝑖 ∈ 𝑈 in𝑅′. The
capability of A is limited to probabilistically guessing whether the

SA values of user 𝑢𝑖 are present in 𝑅′, with a probability denoted

by 𝜌 . We prove the SA uncertainty property in our protocol by

demonstrating that A is unable to leverage any of its capabilities

to break this property.

• Background Knowledge about QID values.A, with background

knowledge of 𝑢𝑖 ’s QID values, can identify the equivalence

class in 𝑅′ to which 𝑢𝑖 belongs. However, even with knowl-

edge of all classes and their associated users, A cannot be

certain about the inclusion of 𝑢𝑖 ’s specific record within the

records released in an equivalence class in 𝑅′. This uncer-
tainty arises due to the protocol’s employment of stratified

sampling. The protocol selects random records from each

5
Due to sampling, the sizes of equivalence classes in 𝑅′ are smaller than their sizes in

the registration phase. Therefore, this should be considered when setting the value of

𝑘 during registration to ensure that the final 𝑘 value in 𝑅′ is not very low.
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equivalence class to be released in 𝑅′. Thus, the presence of
the 𝑢𝑖 ’s record among the released records becomes proba-

bilistic, with the likelihood determined by the ratio 𝜌 (see

Section 3.3).

• Server Corruption. All servers, including potentially mali-

cious ones, adhere to honest execution of the protocol. The

use of DPF and the local selection of the message index in

𝐷 by each user 𝑢𝑖 prevents A from identifying the specific

index to which 𝑢𝑖 wrote their SA values in 𝐷 . The stratified

sampling step is done while the records are in an encrypted

form in 𝐷 which means the G’s servers cannot determine

which records that are deleted. Single servers cannot decrypt

records before the stratified sampling step because the DPF

method ensures that only collaborative decryption is possi-

ble. The stratified sampling protects against the A’s ability

to determine whether or not 𝑢𝑖 ’s record containing their SA

values is among the records in 𝑅′. Therefore, even if all the

records in 𝑅′ share a specified value for SA, A cannot be

sure if 𝑢𝑖 has this value because 𝑢𝑖 ’s records might be one of

the deleted records.

Impact of Weakening Assumptions on Anonymity. We as-

sume that all servers, including potentiallymalicious ones, faithfully

adhere to the protocol during execution (see Section 3.2). This as-

sumption is made to ensure system availability, not anonymity, as

the anonymity protection remains uncompromised without this

assumption. The reason behind this is that the protocol relies on

the following:

• DPF: This method guarantees that the content of submitted

messages can only be revealed when all servers collabo-

rate, with the condition that at least one server is honest.

In the scenario where 𝑛-1 servers cooperate, the disclosure

of message content becomes impossible. Therefore, sender

anonymity and SA uncertainty cannot be broken, even in the

presence of malicious servers deviating from the protocol.

• Equivalence classes agreement: The protocol requires that

all servers reach the same set of equivalence classes. This

ensures that malicious servers cannot manipulate the 𝑘-

anonymization step or the list containing each class’s identi-

fier and the associated personal identifiers without detection

by honest servers. Thus, malicious servers are unable to

compromise 𝑘-anonymity and receiver anonymity.

To demonstrate the deterministic guarantees of Anonify, we
assume user honesty and A’s lack of knowledge regarding SA

values. A malicious user cannot compromise the anonymity of

other users unless they collude withA and disclose their SA values

to it. However, if the malicious users refrain from collusion withA,

their influence is limited to affecting system availability and data

truthfulness, not anonymity.

When A lacks knowledge of SA values, the certainty of A re-

garding 𝑢𝑖 ’s record being in 𝑅′ is calculated deterministically. It is

expressed as the ratio of the number of records in 𝑢𝑖 ’s equivalence

class before sampling to the number after sampling. When A is

aware of the SA values of some users in the equivalence class to

which 𝑢𝑖 belongs, the certainty about a 𝑢𝑖 ’s record being in 𝑅′ be-
comes entirely probabilistic and complex. It depends on factors such

as the number of users in the class whose SA values are unknown to

A, and whether the records of these users are part of the sampled

dataset 𝑅′. As sampling is done randomly within each class, the

records in 𝑅′ may be exclusively drawn from users with unknown

SA values, from users with known SA values, or from a combina-

tion of both sets of users. Adding to the complexity, the certainty

of A is also affected by the potential scenario where users with

unknown SA values may share similar values with users whose

values are known. This can significantly complicate the differen-

tiation between records in 𝑅′ belonging to users with known SA

values and those belonging to users with unknown SA values.

6 EVALUATION
Anonymization approaches that alter data to meet anonymity needs

often do so at the expense of data utility. Therefore, to evaluate

such approaches, it’s vital to assess both their anonymity impact

and the utility of the anonymized data. In this section, we provide

the performance results of Anonify in terms of anonymity and data

utility.

As mentioned earlier, our protocol aims to ensure both anony-

mous communication and data anonymity. In our evaluation, we

focus on assessing the data anonymity aspect. On the one hand, the

protocol’s guarantees regarding anonymous communication are

deterministic, and their verifiability is demonstrated in Section 5.

On the other hand, the bandwidth overhead in our protocol gen-

erally remains low, given that the number of messages users need

to submit or receive is limited (see Section 4). Moreover, the use of

DPF does not introduce high bandwidth overhead, as each share a

user needs to send should have a bitlength of𝑂 (𝜆 · log ℓ + |𝑚 |)[13].
For example, the share size is expected to be 10.096 KB when the

security parameter 𝜆 is set to 128 (as in[13]), the message size |𝑚 | is
10 KB, and the database size ℓ is 1,000,000. Additionally, concerning

latency overhead, it is crucial to note that the medical data donation

scenario typically tolerates higher latency. Furthermore, employ-

ing DPF for anonymous writing has been proven to introduce low

latency, even with a large user base, as demonstrated in [13, 18].

Nevertheless, it is important to emphasize that multiple parame-

ters influence the latency and bandwidth overhead resulting from

employing Anonify. A key parameter is 𝑛, representing the number

of servers running G. With an increase in the number of servers,

more shares must be sent, and more database instances need to

be combined, resulting in higher bandwidth overhead and latency.

Another significant factor is the size of𝑈 , as it directly impacts the

size of the database 𝐷 . A larger 𝑈 leads to a substantially larger

database, causing increased latency when adding shares to a data-

base instance and necessitating more computation time to combine

all instances.

6.1 Dataset
In our evaluation, we simulate the records that the users send

to G using the diabetes prediction dataset
6
. This dataset contains

100,000 records, each representing a distinct individual. It includes

medical and demographic data, along with the diabetes status (i.e.,

whether individuals have diabetes or not). The dataset consists of

features such as age, gender, body mass index (BMI), hypertension,

heart disease, smoking history, HbA1c level, and blood glucose

6
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
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level. It can be used to train machine learning models to predict

diabetes in patients based on their medical history and demographic

information. Further, researchers can use this dataset to investigate

the links between various medical and demographic factors and

the chance of developing diabetes.

In our evaluation, we use the entire dataset, i.e., the size of𝑈 is

100,000 individuals. We designate the attributes—age, gender, and

BMI—as QIDs because we assume that they can potentially be ac-

quired by an adversary, for example, through information available

on social networks. Conversely, we classify the remaining attributes

as SAs since they pertain to vital health-related information that

we presume the adversary does not have access to.

6.2 Data Utility Assessment
We assess the effectiveness of our protocol by measuring data util-

ity using the Normalized Certainty Penalty (NCP) metric [43]. Ad-

ditionally, we evaluate data utility by examining the change in

data distribution after anonymization. Furthermore, we assess the

performance of machine learning classification algorithms on the

anonymized datasets produced by our protocol.

6.2.1 Information Loss. The NCP metric can quantify the informa-

tion loss resulting from anonymization. This metric captures the

uncertainty created by generalization [43]. It is very suitable to be

used when the exact usage of the data is not well defined yet by

the recipients [22], i.e., general-purpose data.

Let a dataset 𝑅 with quasi-identifiers (𝑛𝑢𝑚1, 𝑛𝑢𝑚2, . . ., 𝑛𝑢𝑚𝑥 ,

𝑐𝑎𝑡1, 𝑐𝑎𝑡2, . . ., 𝑐𝑎𝑡𝑦 ), where (𝑛𝑢𝑚1, 𝑛𝑢𝑚2, . . ., 𝑛𝑢𝑚𝑥 ) are numerical

attributes and (𝑐𝑎𝑡1, 𝑐𝑎𝑡2, . . ., 𝑐𝑎𝑡𝑦 ) are categorical attributes. NCP

defines the uncertainty for both of these attribute types. For a record

𝑟𝑖 ∈ 𝑅, the NCP is computed as follows:

𝑁𝐶𝑃 (𝑟𝑖 ) =
∑𝑥

𝑗=1 𝑁𝐶𝑃𝑛𝑢𝑚 𝑗 (𝑟𝑖 ) +
∑𝑦

𝑗=1
𝑁𝐶𝑃𝑐𝑎𝑡 𝑗 (𝑟𝑖 )

𝑥 + 𝑦
Where 𝑁𝐶𝑃𝑛𝑢𝑚 𝑗 (𝑟𝑖 ) represents the NCP of 𝑟𝑖 with respect to

𝑛𝑢𝑚 𝑗 , and 𝑁𝐶𝑃𝑐𝑎𝑡 𝑗 (𝑟𝑖 ) denotes the NCP of 𝑟𝑖 with respect to 𝑐𝑎𝑡 𝑗 .

The NCP for the entire dataset 𝑅 is the sum of NCP values for

all records:

𝑁𝐶𝑃 (𝑅) =
∑ |𝑅 |
𝑖=1

𝑁𝐶𝑃 (𝑟𝑖 )
|𝑅 |

The data utility of the 𝑘-anonymized dataset is influenced by

both the value of 𝑘 and the specific 𝑘-anonymization method ap-

plied. Therefore, in our evaluation using NCP, we conducted tests

with various 𝑘 values. Further, we considered three different 𝑘-

anonymity methods: Mondrian [23], one-pass 𝑘-means (OKA) [24],

and ARX [29].

Figure 6 shows the results of our data utility experiments using

the NCP metric. As depicted in the figure, we systematically varied

the value of 𝑘 , starting with an initial value of 50 and incrementing

it in steps of 50. These experiments encompassed the entire dataset.

The results obtained with the ARX method significantly outper-

formed those of the Mondrian and the OKA, even with higher 𝑘

values. Moreover, our observations revealed a consistent increase

in the NCP values across all methods as the 𝑘 value increased. This

phenomenon can be attributed to the fact that larger 𝑘 values lead

to larger minimum size of equivalence classes. Thus, it becomes

increasingly challenging for records within the same equivalence

Figure 6: The impact of the 𝑘 value and the 𝑘-anonymization
method on data utility.

class to reach an agreement on attribute values. Consequently, more

generalization is required to satisfy the 𝑘-anonymity criterion, re-

sulting in a reduction in data utility. These findings underscore the

inherent trade-off between data utility and anonymity.

Since ARX produces the best results, we base our analysis on its

results in all the experiments discussed in the following subsections.

Furthermore, in all the upcoming experiments, we set the value of 𝑘

to 250, as this choice strikes a favorable balance between anonymity

and data utility.

6.2.2 Data Distribution. We compare the data distribution among

three versions of the dataset: the original dataset, a 𝑘-anonymized

dataset (referred to as "Anonymized" in the figures, representing the

original dataset after 𝑘-anonymization), and a sampled anonymized

dataset (representing𝑅′, i.e., displaying only a percentage of records
from every equivalence class in the 𝑘-anonymized dataset). This

data distribution comparison provides an indication of how the

data has changed and illustrates the impact of anonymization.

In the experiments, when the sampling percentage is set at 70%, it

indicates that 𝜇 (see Section 4.2) equals 100− 70 = 30, meaning 30%

of the records in each equivalence class in the𝑘-anonymized dataset

were deleted. Lower sampling percentages imply more protection

but typically at the expense of data utility. It’s worth highlighting

that in all our sampling experiments, we ran each experiment 10

times and computed the average results. This is necessary because

the selection of records to be released within each equivalence class

is performed randomly.

Figure 7 illustrates the average blood glucose levels for different

age ranges across the original dataset, the 𝑘-anonymized dataset,

and the sampled anonymized dataset (with a sampling percent-

age of 50%). Notably, the results show that both the 𝑘-anonymized

dataset and the sampled anonymized dataset closely resemble the

original dataset. This suggests a minimal impact of anonymiza-

tion on the data distribution, as even when only 50% of records in

the 𝑘-anonymized dataset are sampled, the distribution is still not

noticeably affected. A similar finding is demonstrated in Figure 8

which depicts the number of individuals with hypertension based
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Figure 7: The average blood glucose level within different
age ranges (𝑘=250, Sampling percentage=50%).

Figure 8: The average number of people with hypertension
within different gender groups (𝑘=250, Sampling percent-
age=50%).

on the gender attribute. The sampled anonymized dataset exhibits

slight variations but remains well-aligned with the other datasets.

However, the sampled anonymized dataset appears to induce

more noticeable alterations in the distribution of individuals with

diabetes compared to the original dataset for older age ranges, par-

ticularly for age 60 years and above, as shown in Figure 9. This

difference in data distribution is influenced by the chosen sampling

percentage. Lower percentages, such as 50%, result in more devi-

ations, while higher (e.g., 80%) percentages may yield only slight

differences. This highlights the importance of carefully selecting the

sampling percentage to achieve anonymity preservation without

undermining data quality. In summary, the results demonstrate the

effectiveness of our protocol, which integrates 𝑘-anonymity and

stratified sampling, in maintaining anonymity without jeopardiz-

ing data distribution, especially when the parameters are carefully

chosen.

Figure 9: The average number of people with diabetes within
different age ranges (𝑘=250, Sampling percentage=50%).

Figure 10: Accuracy (𝑘=250, Sampling percentage=90%, 70%,
50%, and 30%).

6.2.3 Machine Learning Classifiers’ Performance. Data recipients
may require training machine learning models on the dataset gen-

erated by Anonify for diabetes prediction. Thus, we assess the

performance of machine learning classification algorithms on the

anonymized datasets produced by Anonify. More specifically, we

compare the performance of eight well-known machine learning

classification algorithms on the original dataset, the 𝑘-anonymized

dataset, and different sampled anonymized datasets (with sampling

percentages: 90%, 70%, 50%, and 30%). The considered algorithms

include Decision Tree (DT), Naïve Bayes (NB), k-Nearest Neigh-

bors (kNN), Support Vector Machine (SVM), Random Forest (RF),

Logistic Regression (LR), AdaBoost (AB), and Bagging (BG). These

algorithms offer various trade-offs in terms of simplicity, accuracy,

robustness, and sensitivity to noise. For a detailed understanding

of each, refer to [1, 3].

We assess the classifiers’ performance in terms of Accuracy,

Precision, Recall, and F1-score, which are defined based on True
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Positives (TP), True Negatives (TN), False Positives (FP), and False

Negatives (FN) values. These four metrics are computed as follows:

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁 , Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 ,

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , F1-Score = 2 · Recall · Precision
Recall + Precision

In our experiment, we designated the "diabetes" attribute in the

dataset as the class label, with values "1" indicating diabetes and "0"

representing the absence of diabetes. We partitioned each dataset

version into a 75% training set and a 25% test set. Subsequently, we

trained the classifiers using the training data and evaluated their

performance on the test dataset.

Figure 10 shows the accuracy scores, serving as indicators of

the classifiers’ proficiency in data classification, with higher values

denoting superior performance. The results for the original dataset,

𝑘-anonymized dataset, and different sampled datasets show no

noticeable differences, as they all exhibit close accuracy scores.

Even when sampling only 30% of records from each equivalence

in the 𝑘-anonymized dataset, the accuracy score remains high and

is comparable to or slightly better than the result of the original

data. This demonstrates the protocol’s capability to be employed

without negatively impacting classification accuracy.

Furthermore, this trend extends to recall, precision, and F1 score

( as shown in Figure 13, 14 and 15 in Appendix A ), reinforcing the

fact that applying 𝑘-anonymity and sampling maintains the good

performance of thesemetrics, as the results for sampled anonymized

datasets remaining closely aligned with or better than those of the

original dataset.

6.3 Data Anonymity Assessment
Data anonymization techniques (e.g., 𝑘-anonymity and differen-

tial privacy) involve altering or removing information in datasets

to prevent the identification of individuals [27]. While effective in

reducing direct identification risks, they cannot guarantee complete

immunity from re-identification risks [14]. To assess re-identification

risks in datasets anonymized by Anonify, we employed the Jour-

nalist Risk and Certainty metrics, which are commonly considered

for this type of assessment [29, 39].

6.3.1 Journalist Risk (JR). It measures the probability of linking a

specific record 𝑟𝑖 to a targeted user [12]. Let the equivalence class

𝐸𝐶 𝑗 ∈ 𝐸𝐶 is denoted as 𝐸𝐶
𝜇

𝑗
∈ 𝐸𝐶𝜇

after the sampling step, where

𝐸𝐶𝜇 ⊂ 𝐸𝐶 . JR is calculated by multiplying the probability that 𝑟𝑖

remains in the equivalence class 𝐸𝐶 𝑗 after sampling (i.e.,

|𝐸𝐶𝜇

𝑗
|

|𝐸𝐶 𝑗 | )

with the probability that the attacker selects the correct record from

that sampled equivalence class (i.e.,
1

|𝐸𝐶𝜇

𝑗
| ) :

𝐽𝑅(𝑟𝑖 ) =
|𝐸𝐶𝜇

𝑗
|

|𝐸𝐶 𝑗 |
· 1

|𝐸𝐶𝜇

𝑗
|
=

1

|𝐸𝐶 𝑗 |
, where 𝑟𝑖 ∈ 𝐸𝐶𝜇

𝑗

The journalist risk serves as an indicator of the level of risk

associated with the anonymization process. A lower index implies

more protection, and vice versa. Figure 11 provides an evaluation of

the journalist risk index on the 𝑘-anonymized dataset and different

sampled anonymized datasets. The journalist index results for all

Figure 11: Journalist risk (𝑘=250, Sampling percentage=90%,
70%, 50%, and 30%).

versions of the datasets exhibit very low values, indicating a higher

level of anonymity. Additionally, as expected, reducing the number

of records released, as seen in lower sampling percentages, leads

to lower journalist index values. For example, at a 30% sampling

percentage, the average journalist index reaches a significantly low

value of 0.057075, indicating a substantially reduced risk.

6.3.2 Certainty Metric. This metric represents the likelihood that

a record 𝑟𝑖 is contained within the anonymized dataset [39]. It is

computed as follows:

𝐶 (𝑟𝑖 ) =
|𝐸𝐶𝜇

𝑗
|

|𝐸𝐶 𝑗 |
, where 𝑟𝑖 ∈ 𝐸𝐶𝜇

𝑗

For each record 𝑟𝑖 in the original (non-anonymized) dataset,

certainty is 100%, given that all records naturally exist in this dataset.

The same principle applies to the 𝑘-anonymized dataset, where

we solely rely on generalization without employing suppression

(i.e., removing outlier records in terms of QIDs). This ensures the

inclusion of records from all users in the 𝑘-anonymized dataset.

Figure 12 displays the percentage values of certainty. As ex-

pected, in the 𝑘-anonymized dataset (referred to as "Anonymized"

in the figure), the highest level of certainty is maintained at 100%.

This value indicates that all records are retained in the released

dataset, ensuring the utmost level of confidence in data presence

and predictability. In contrast, the sampled anonymized datasets,

particularly as the sampling percentages increase, introduce un-

certainty and reduce the confidence in the presence of records

within the dataset sent to data recipients. Striking a balance be-

tween anonymity concerns and the necessity for certainty in the

outcomes suggests the importance of adjusting the sampling per-

centage to a value that isn’t excessively low. This ensures a better

trade-off between data anonymity and the reliability of the results.
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Figure 12: Certainty (𝑘=250, Sampling percentage=90%, 70%,
50%, and 30%).

7 RELATEDWORK
In this section, we discuss techniques commonly applied in prac-

tice [14] to safeguard privacy and anonymity within the context of

medical data sharing.

Differential privacy (DP) is a technique that protects privacy

by introducing noise to data, minimizing the impact of individ-

ual records on analysis results. Unlike other methods such as 𝑘-

anonymity, ℓ-diversity, and 𝑡-closeness, DP doesn’t rely on assump-

tions about attackers’ knowledge [10]. Initially designed for inter-

active queries [10]—where data recipients can query the system

interactively without access to the complete dataset—DP was later

extended to non-interactive scenarios [11]. DP can employ noise

addition in a local or global manner [26]. In local DP, noise is ap-

plied to individual data points independently, potentially causing

more distortion than necessary due to a lack of consideration for

the overall dataset. In contrast, global DP adds noise to the overall

output, allowing characteristics of the dataset to be considered and

generally leading to more accurate results. However, global DP,

like 𝑘-anonymity, requires trust in the data aggregator from record

owners to ensure privacy preservation. While effective against cer-

tain privacy threats, DP has drawbacks [21], including its inability

to prevent all linkage attacks, introduced communication overhead,

and potential hindrance of pattern detection in small populations

or rare events due to added noise. Additionally, repeated queries on

differentially private datasets can lead to privacy risks over time.

Similarly to the challenges in 𝑘-anonymity, where selecting appro-

priate QIDs and finding a balanced 𝑘 value is crucial, determining a

suitable epsilon (𝜖) in DP presents a challenge due to the inevitable

trade-off between privacy and utility.

Many data sharing protocols have been proposed, leveraging se-

cure multi-party computation (SMPC) [34, 36, 41] or homomorphic

encryption (HE) [31, 33, 42]. These protocols aim to ensure strong

protection guarantees with minimal trust requirements. SMPC al-

lows computations on distributed datasets without exposing raw

data, ensuring each party retains control while defending against

malicious attacks. Drawbacks of SMPC include computational over-

head, increased communication complexity, and limited scalabil-

ity [44]. On the other hand, HE enables computations on encrypted

data, ensuring end-to-end confidentiality and eliminating the need

for a central trusted authority. However, it faces challenges such

as computational intensity, and slowing down processing, which

limits its practicality [2]. Another common issue in data sharing

protocols relying on SMPC or HE is their tendency to support spe-

cific or limited types of statistical analyses, hence limiting flexibility

for researchers in conducting their studies.

Given the limitations of DP, SMPC, and HE, we assert that our

protocol design offers superior flexibility to researchers compared

to solutions based on any of these methods.We provide anonymized

data to researchers without assuming the exact usage or nature

of the studies, enhancing adaptability to diverse research needs.

Furthermore, our protocol ensures better anonymity and data util-

ity when compared to DP. The dataset anonymized by Anonify
mitigates privacy risks associated with repeated queries, a con-

cern inherent in differentially private datasets. Anonify depends on

DPF, whose capability to support scalability without imposing high

bandwidth and computational burdens has been demonstrated in

the literature [13, 18]. That can position Anonify as a potentially

superior option over solutions based on SMPC or HE in terms of

scalability, bandwidth and computational efficiency.

8 CONCLUSION
Anonify is a decentralized anonymity protocol specifically designed

for medical data donation. It offers users anonymous communi-

cation and data anonymity when donating their data without the

need to trust a single entity. This is achieved through the utilization

of a secret-sharing-based method called DPF, facilitating the anony-

mous sending of records, complemented by a broadcasting-based

approach for anonymous data retrieval. Moreover, to mitigate data

de-anonymization risks, we have employed 𝑘-anonymity and strat-

ified sampling within a decentralized setting. Our comprehensive

evaluation, encompassing various privacy and data utility metrics,

demonstrates the effectiveness of Anonify in ensuring strong pro-

tection without compromising data utility.
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A APPENDIX
The following figures show the eight machine learning classifiers’

performance in terms of Recall, Precision, and F1-score, respec-

tively.
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Figure 13: Recall (𝑘=250, Sampling percentage=90%, 70%, 50%,
and 30%).

Figure 14: Precision (𝑘=250, Sampling percentage=90%, 70%,
50%, and 30%).

Figure 15: F1 Score (𝑘=250, Sampling percentage=90%, 70%,
50%, and 30%).
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