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ABSTRACT
This work introduces MicroSecAgg, a framework that addresses

the intricacies of secure aggregation in the single-server landscape,

specifically tailored to situations where distributed trust among

multiple non-colluding servers presents challenges. Our protocols

are purpose-built to handle situations featuring multiple successive

aggregation phases among a dynamic pool of clients who can drop

out during the aggregation. Our different protocols thrive in three

distinct cases: firstly, secure aggregation within a small input do-

main; secondly, secure aggregation within a large input domain;

and finally, facilitating federated learning for the cases where mod-

erately sized models are considered. Compared to the prior works

of Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020), and the recent

work of Ma et al. (S&P 2023), our approach significantly reduces the

overheads. In particular, MicroSecAgg halves the round complexity

to just 3 rounds, thereby offering substantial improvements in com-

munication cost efficiency. Notably, it outperforms Ma et al. by a

factor of 𝑛 on the user side, where 𝑛 represents the number of users.

Furthermore, in MicroSecAgg the computation complexity of each

aggregation per user exhibits a logarithmic growth with respect to

𝑛, contrasting with the linearithmic or quadratic growth observed

in Ma et al. and Bonawitz et al., respectively. We also require linear

(in 𝑛) computation work from the server as opposed to quadratic

in Bonawitz et al., or linearithmic in Ma et al. and Bell et al. In

the realm of federated learning, a delicate tradeoff comes into play:

our protocols shine brighter as the number of participating parties

increases, yet they exhibit diminishing computational efficiency as

the sheer volume of weights/parameters increases significantly.

We report an implementation of our system and compare the

performance against prior works, demonstrating that MicroSecAgg

significantly reduces the computational burden and the message

size.

1 INTRODUCTION
In the realm of secure aggregation protocols, a group of 𝑛 users 𝑃𝑖
for 𝑖 ∈ [𝑛], each holding a private value 𝑥𝑖 , wish to learn the sum∑
𝑖 𝑥𝑖 in collaboration with one or more server(s) without leaking
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any information about the individual 𝑥𝑖 . Diverging from the conven-

tional multi-party computation setup that relies on point-to-point

channels, communication in this context is confined to interactions

between individual clients and the server(s). Consequently, direct

inter-client communication is precluded, necessitating clients to

exclusively engage with the intermediary server(s) for communica-

tion.

Versatile in their scope, secure aggregation protocols find rele-

vance across a spectrum of domains, including secure voting, pre-

serving privacy in browser telemetry [2, 24, 25, 41], federated learn-

ing [10, 11, 37] and driving analytics for digital contact tracing [8].

Unlike the multi-server setting of [2, 24, 25, 41], our paper centers

its focus on the single-server context where multiple users can drop

out during the execution of the protocol. This setting emerges as

the preferred option when grappling with the complexities of en-

trusting multiple non-colluding entities with mutual trust. On the

flip side, this scenario presents greater challenges. Unlike the multi-

server scenario where parties can secret share their inputs among

servers for aggregation, the single-server setting lacks this option

due to the presence of only one server. The single-server model

also comes as the preferred model in privacy-preserving federated

learning introduced by [11]. Secure aggregation protocols designed

to withstand dropout parties within the single server setting have

solely emerged within the realm of federated learning [10, 11, 37].

However, the works of [10, 11] suffer from some inefficiencies. More

specifically, in every aggregation (learning) iteration the protocols

in [10, 11] reveal part of the masks used to protect the inputs from

the server. That said, the masks cannot be reused to mask the inputs

in later iterations and fresh masks are generated at each iteration

introducing more communication. Furthermore, every user needs

to exchange information about the freshly generated masks with

a number of other users (either all other users in [11] or a subset

of users in [10]) in every iteration, resulting in the communication

cost growing significantly as the total number of users increases.

Regarding the round complexity, the number of times messages are

exchanged between the users and the server, it is 5 in [11] and 6

in [10].

This paper presents a novel overarching framework for secure

aggregation within the single-server context. Our protocols are

specifically designed to suit scenarios in which multiple consecu-

tive aggregation phases occur within a pool of clients. Even in cases

where a fraction of clients may dropout during certain phases, our

protocols remain resilient. At the heart of our methodology lies

the initiation of a secret sharing configuration among the clients —
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an initial setup executed only once yet seamlessly reused through-

out all subsequent aggregation phases. This results in a notable

reduction in both round complexity and communication complexity

compared to previous approaches. Numerous situations involving

a group of clients demand recurrent aggregation sessions spanning

a duration, such as browser telemetry, contact tracing, federated

learning and IoT devices periodically gathering area data to under-

stand daily usage patterns.

The subsequent works, Flamingo and Lerna [32, 37] borrow our

idea of reusable setup and reduce the round complexity of [10]

while relying on a special groups of users to help with the masking

process.

1.1 Our Results
We propose secure aggregation protocols in which the server and

the users interact several times (multi-iteration) to compute multi-

ple sums. Our novelty is the use of two phases, the Setup phase and

the Aggregation phase. The Setup phase is independent of the user

private inputs and runs only once at the beginning of the execution.

We model an adversary that can launch two kinds of attacks: (1)

honest users that disconnect/drop out or are too slow to respond

as a result of unstable network conditions, power loss, etc. Users

can dynamically drop out and come back in a later iteration; and

(2) arbitrary actions by an adversary that controls the server and

a bounded fraction of the users. Overall, we assume that the mali-

cious adversary controls the server and at most 𝛾 fraction of users

which it decides to corrupt before each protocol execution, and that

at most 𝛿 fraction of users are offline in every iteration. We assume

a static adversary (Flamingo does too) since the neighborhoods per

iteration are fixed in the setup phase.

More specifically, we propose three multi-iteration secure

aggregation protocols, MicroSecAgg𝐷𝐿 , MicroSecAgg𝑔𝐷𝐿 and

MicroSecAgg𝐶𝐿 which are applicable across three aggregation sce-

narios:

• Small Input Domain Aggregation.Our aggregation proto-
cols MicroSecAgg𝐷𝐿 and MicroSecAgg𝑔𝐷𝐿 (a version which

uses groups of neighbour users a la Bell et. al [10]) involve

the consolidation and analysis of data with a restricted range

of possible values. This concept is crucial in scenarios where

data falls within a constrained input domain, offering bene-

fits in terms of computational efficiency and privacy preser-

vation. In various domains, especially in data analysis and

machine learning, the concept of Small Input Domain ag-

gregation finds significance. One common scenario where

Small Input Domain aggregation is employed is in the ag-

gregation of survey responses. For example, to calculate

the average rating of merchandise, the aggregation is usu-

ally performed on a small domain, e.g., the rating from 1

to 5 or 1 to 10. Other applications include voting, browser

telemetry, contact tracing, and gradient sparsification [3–

6, 23, 33, 38, 42], quantization, and weight regularization

areas [17, 26, 31, 46, 49] in federated learning. Both quan-
tization and gradient sparsification are methods commonly

used to reduce the cost of communicating gradients between

nodes in the scenario of data-parallel Stochastic Gradient De-

scent (SGD). There is a collection of works for quantization,

gradient compression and sparsification as well as clustering

leading to smaller weights. Our secure aggregation protocols,

suitable to smaller weights, can be used to execute the above

methods in a privacy-preserving way for federated learning

settings. Moreover, weight regularization [31, 46] is a widely

used technique to reduce overfitting by keeping the weights

of the model small.

For the small input domain scenarios our algorithm is

based on general cyclic groups based on the Decisional

Diffie–Hellman (DDH) assumption. It is not efficient for

large input domain because the server needs to compute

discrete logarithm to recover the final sum.

• Large Input Domain aggregation. This type of aggrega-
tion is tailored to handle the amalgamation of data stem-

ming from a vast range of possible inputs. Our algorithm

MicroSecAgg𝐶𝐿 for large input domain is based on class

groups of unknown order which allow us to avoid the com-

putation of discrete logarithm. Since the order of group with

class groups needs to stay unknown, the protocol relies on

secret sharing over an integer interval which involves com-

putation over large integers containing 𝑛! where 𝑛 is the

number of shares generated. That said, as the current com-

putation architectures do not have very efficient support

for computation over large integers, this solution is more

suitable for the group version (using the same technique

as MicroSecAgg𝑔𝐷𝐿) with each group containing 𝑂 (log𝑛)
users where 𝑛 is the total number of users as the secret

sharing only happens within each group.

• Aggregation for Federated Learning formoderate sized
models. Our protocol can be used in federated learning

and considerably reduce the communication and computa-

tion overheads of [10, 11] with reusable setup as mentioned

above while achieving the same provable security guaran-

tees provided by [10, 11]. Our protocol demonstrates better

performance as the user count increases. However, it ex-

cels particularly with moderately sized models that possess

fewer weights, as the number of exponentiations in our ap-

proach scales with the length of weight/input vectors. The

subsequent works of [32, 37] do not face this caveat.

In Tables 1 and 2 we list the communication and computational

complexity of our protocols compared to prior work, respectively.

Notable improvements of MicroSecAgg over previous single server

aggregation protocols BIK+17, BBG+20, and Flamingo [10, 11, 37]

include the following. MicroSecAgg halves the round complexity

to 3 rounds and thus improving the communication cost further. It

also improves the communication cost over Flamingo by a factor

of 𝑛 where 𝑛 is the number of users. Moreover, the computation

complexity of each aggregation for each user increases logarithmi-

cally with 𝑛 in MicroSecAgg𝐶𝐿 while that of [10, 11, 37] both grow

linearithmic or quadratically in 𝑛. The full asymptotic computation

and communication cost comparison is included in Table 2, We

refer the reader to Appendix E.1 and E.2 for the detailed analysis of

the asymptotic performance.

Standard vs. group version of our protocols. MicroSecAgg𝑔𝐷𝐿 and

the group version MicroSecAgg𝐶𝐿 are more suitable for a larger
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number of parties and for use cases where weaker security guaran-

tees are sufficient. For example, the adversary cannot adaptively

corrupt all parties in a single group neighborhood. If such an event

happens the privacy is lost. The group version in [10] also cannot

support adaptive corruptions and has a weaker security definition:

for some parameter 𝛼 between [0, 1], honest inputs are guaranteed
to be aggregated at most once with at least 𝛼 fraction of other inputs

from honest users. Flamingo [37] also uses groups of neighbours

and additionally relies on a special group of users called decryp-

tors to do partial decryption of masks used to hide user’s input.

That said, Flamingo also needs to accommodate additional corrup-

tion of the decryptors (additionally to the corruption of users and

neighbhoods).

We summarize our results in the following two (informal) theo-

rems:

Theorem 1.1. The aggregation protocol MicroSecAgg𝐷𝐿 running
with a server S and 𝑛 users guarantees privacy in the presence of a
semi-honest (malicious) adversary who can corrupt less than 1

2
( 1

3
)

fraction of the users and correctness for an adversary who can drop
out less than 1

2
( 1

3
) fraction of the users.

Theorem 1.2 (Group version). Let 𝛾, 𝛿 be two parameters such
that 𝛾 + 2𝛿 < 1. The aggregation protocol MicroSecAgg𝑔𝐷𝐿 (and
MicroSecAgg𝐶𝐿) running with a server S and 𝑛 users guarantees
privacy in the presence of a semi-honest (malicious) adversary who can
corrupt less than 𝛾 = 1

2
(𝛾 = 1

3
) fraction of the users and correctness

for an adversary who can drop out less than 𝛿 fraction of the users.

Note: the requirement 𝛾 + 2𝛿 < 1 is required for the proof to go

through. As in this protocol we divide all users into small groups,

this condition is needed to guarantee that each group only has too

many offline or corrupt users with negligible probability. It is the

same requirement as in [10]. The detailed analysis can be found in

Appendix C.1.

Correctness means that when parties follow the protocol the

server gets a sum of online users at the end of each learning iteration

even if dropouts happen during the computation of the summation.

Privacy refers to the fact that an adversary (who may deviate from

the protocol) cannot learn any individual user 𝑖’s input 𝑥𝑖,𝑘 for any

training iteration 𝑘 . Our protocols do not introduce any noise and

thus do not affect the accuracy of the models. We test our protocol

by running a logistic regression algorithm on the Census adult

dataset [27] and compare the learning result with plain federated

learning in which the users send the plain text of model update

to the server. The two experiments provide models with the same

accuracy (0.81).

Implementation and evaluation. We implemented the pro-

posed system and report performance in Section 6. Our protocol

MicroSecAgg𝐷𝐿 outperforms BIK+17 [11] by 100 times in computa-

tion time with 500 total participants, while MicroSecAgg𝑔𝐷𝐿 runs

more than 5 times faster than BBG+20 [10] when the connectiv-

ity of the user communication graph is 100 and the total number

of users is 500. For 1000 participants, MicroSecAgg𝑔𝐷𝐿 is 5 times

faster than MicroSecAgg𝐷𝐿 . With class group, the computation

time of our protocol can be further reduced. With 1024 participants,

neighborhood size 64, and input of 32 bit length, MicroSecAgg𝐶𝐿

with class group is 10 times faster than Flamingo on both user and

server side.

1.2 Related Works
Our work is inspired by the line of works on secure aggregation

protocols [10, 11]. Federated learning empowers users, often with

limited resources, to collectively improve a global model guided by

a central server. The raw data remains private. In each iteration,

the central server shares the model with users, who refine it using

local data. These updates are merged by the server to enhance the

global model, which is then redistributed. However, this approach

can risk individual user’s privacy due to trained models and local

updates can leak information about training data [40]. To tackle

this problem, Bonawitz et al. [11] introduced a secure aggregation

protocol, letting users mask their local updates, preserving privacy

for individual updates except for the aggregate result. Bell et al. [10]

later reduced bandwidth costs, increasing round complexity and

guaranteeing probabilistic correctness i.e., when there are enough

number of honest users online, the server learns the correct aggre-

gated result with overwhelming probability.

There are several other works [28, 34, 36, 48] exploring the secure

aggregation problem. However, all of them either only consider

semi-honest adversaries or do not allow offline users to come back

online again. Another line of works [44, 47] adopt differential pri-

vacy which is a generic privacy protection technique in database

and machine learning areas.

The work, ACORN, by Bell et al. [9] follows the same line

of work [10, 11] and introduces input verifiability and robust-

ness to the secure aggregation protocol. However, as it does not

give the reusability of the secret masks, ACORN still suffers from

higher round complexity and communication costs. Our concept

of reusability has the potential to enhance the complexity of their

work while maintaining input verification functionality. Yet, our

exploration revealed multiple challenges in merging the two ap-

proaches, making it a complex task. As such, we acknowledge this

as an area for future investigation and development.

Our protocol can also be combined with other secure aggrega-

tion solutions. A recent work by Liu et al. [35] uses a Learning

With Rounding (LWR)-based homomorphic PRG to improve effi-

ciency by removing the need for one layer of symmetric masks

while introducing noise growing in proportion to the number of

users. Their solution uses existing secure aggregation protocols

as a black box to aggregate the seeds of PRG from users, which is

an application suitable for MicroSecAgg as MicroSecAgg is more

efficient than the protocol [10, 11] used in the paper. Combining

with a homomorphic PRG also reduces the computation cost of

our protocol for use cases with long vector inputs. The differential

privacy in hybrid approaches introduced in [44] can also be applied

to our protocol. See Appendix F for more discussion.

2 OUR APPROACH
In this section, we explain the high-level idea of our constructions.

2.1 Revisiting BIK+17
We first revisit the idea of BIK+17 [11] which sprouts from the

following simple idea: to let the server learn the sum of the inputs
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Round Communication cost per user (bits)

BIK+17 BBG+20 Flamingo MicroSecAgg𝐷𝐿 MicroSecAgg𝑔𝐷𝐿 MicroSecAgg𝐶𝐿

1 𝑂 (𝑛𝜅) 𝑂 (𝜅) 𝑂 (𝐿ℓ + 𝑛𝜅) 𝑂 (𝜅𝐿)+𝑛 𝑂 (𝜅𝐿)+𝑂 (log𝑛) 𝑂 (𝜅𝐿)+𝑂 (log𝑛)
2 𝑂 (𝑛𝜅) 𝑂 (𝜅 log𝑛) 𝑂 (𝜅 log𝑛) 𝑂 (𝑛𝜅) 𝑂 (𝜅 log𝑛) 𝑂 (𝜅 log𝑛)
3 𝑂 (𝐿ℓ)+𝑛 𝑂 (𝜅 log𝑛) 𝑂 (𝑛𝜅 log𝑛) 𝑂 (𝜅𝐿) 𝑂 (𝜅𝐿) 𝑂 (𝜅𝐿)
4 𝑂 (𝑛𝜅) 𝑂 (𝐿ℓ + log𝑛)
5 𝑂 (𝑛𝜅) 𝑂 (𝜅 log𝑛)
6 𝑂 (𝜅 log𝑛)

Table 1: Communication overhead per user in every round of each aggregation protocol with semi-honest/malicious security (the extra rounds
required for privacy in the malicious setting is marked as blue and underlined in the table). 𝜅 denotes the security parameter, 𝑛 the total
number of users, 𝐿 the vector length of the input vector and ℓ the bit-length of each element in the input vector. The overhead includes both
sent and received messages per user. The cost refers to field elements with high constant coefficients as opposed to the teal colored costs which
indicate bit vectors.

Protocol round

Computation cost Communication cost

Server User Server User

Setup Agg. Setup Agg. Setup Agg. Setup Agg.

BIK+17 − | 5 – 𝑂 (𝑛2𝐿) – 𝑂 (𝑛2 + 𝑛𝐿) – 𝑂 (𝑛𝐿ℓ + 𝑛2𝜅) – 𝑂 (𝐿ℓ + 𝑛𝜅)
BBG+20 − | 6 – 𝑂 (𝑛 log

2 𝑛 + 𝑛𝐿 log𝑛) – 𝑂 (log
2 𝑛 + 𝐿 log𝑛) – 𝑂 (𝑛𝐿ℓ + 𝑛𝜅 log𝑛) – 𝑂 (𝐿ℓ + 𝜅 log𝑛)

Flamingo 5 | 3 forwarding 𝑂 (𝑛𝐿 + 𝑛 log
2 𝑛) 𝑂 (log

2 𝑛) 𝑂 (𝐿 + 𝑛 log𝑛) 𝑂 (𝜅 log
3 𝑛) 𝑂 (𝑛𝐿ℓ + 𝑛𝜅 log

2 𝑛) 𝑂 (𝜅 log
2 𝑛) 𝑂 (𝐿ℓ + 𝑛𝜅 log𝑛)

MicroSecAgg𝐷𝐿 3 | 3 𝑂 (𝑛) 𝑂 (𝑛𝐿 + 2
ℓ/2𝐿) 𝑂 (𝑛2) 𝑂 (𝑛𝐿) 𝑂 (𝑛2𝜅) 𝑂 (𝑛𝜅 (𝐿 + 𝑛)) 𝑂 (𝑛𝜅) 𝑂 (𝜅 (𝐿 + 𝑛))

MicroSecAgg𝑔𝐷𝐿 5 | 3 𝑂 (𝑛 log
2 𝑛) 𝑂 (𝑛𝐿 + 2

ℓ/2𝐿) 𝑂 (log
2 𝑛) 𝑂 (𝐿 log𝑛) 𝑂 (𝑛𝜅 log𝑛) 𝑂 (𝑛𝜅 (𝐿 + log𝑛)) 𝑂 (𝜅 log𝑛) 𝑂 (𝜅 (𝐿 + log𝑛))

MicroSecAgg𝐶𝐿 5 | 3 𝑂 (𝑛 log
2 𝑛) 𝑂 (𝑛𝐿) 𝑂 (log

2 𝑛) 𝑂 (𝐿 log𝑛) 𝑂 (𝑛𝜅 log𝑛) 𝑂 (𝑛𝜅 (𝐿 + log𝑛)) 𝑂 (𝜅 log𝑛) 𝑂 (𝜅 (𝐿 + log𝑛))

Table 2: Total asymptotic computation cost for all rounds per aggregation with malicious security. 𝑛 denotes the total number of users, 𝐿
denotes the length of the input vector, and ℓ denotes the bit length of each element in the input vector. The round column indicates the number
of rounds in the one-time setup phase (on the left, if applicable) and in each aggregation phase (on the right). We assume the number of
offline users is𝑂 (𝑛) in every aggregation iteration in this table. See Table 3 for the case where a 𝛿 fraction of users is offline each iteration.
“forwarding” means that the server only forwards the messages from the users.

𝑥1, . . . , 𝑥𝑛 while hiding each individual input 𝑥𝑖 , each user 𝑖 adds

a mask ℎ𝑖 to its secret input 𝑥𝑖 which is hidden from the server

and all other users and can be canceled out when all the masks

are added up, i.e.,

∑
𝑖∈[𝑛] ℎ𝑖 = 0, and sends 𝑋𝑖 = ℎ𝑖 + 𝑥𝑖 to the

server. By adding all 𝑋𝑖 up, the server obtains the sum of all 𝑥𝑖 .

More concretely, assuming 𝑖 > 𝑗 without loss of generality, each

pair of users 𝑖, 𝑗 first agree on a random symmetric secret mask

mk𝑖, 𝑗 = mk𝑗,𝑖 , then they mask their inputs by user 𝑖 adding mk𝑖, 𝑗
to 𝑥𝑖 while user 𝑗 subtracting mk𝑗,𝑖 from 𝑥 𝑗 . In other words, each

user 𝑖 computes a mask ℎ𝑖 =
∑
𝑗<𝑖 mk𝑖, 𝑗 −

∑
𝑗>𝑖 mk𝑖, 𝑗 and sends

the masked input 𝑋𝑖 = 𝑥𝑖 + ℎ𝑖 to the server. The server can get the

sum of all 𝑥𝑖 by adding the masked inputs up as mk𝑖, 𝑗 and −mk𝑖, 𝑗
for each pair of 𝑖, 𝑗 add up to zero. As long as there are at least

two honest users not colluding with other users or the server, the

honest users’ inputs are hidden from the corrupt parties.

However, this solution only works when all user are always

online. If masked input 𝑋𝑖 of some user 𝑖 is missing, the sum of ℎ 𝑗
of online users 𝑗 will not cancel out in the final sum. To tolerate

the fail-stop failure, the protocol adopts 𝑡-out-of-𝑛 Shamir’s secret

sharing scheme. More specifically, each user 𝑖 shares its masks

mk𝑖, 𝑗 with all 𝑛 users using Shamir’s secret sharing before sending

the masked input to the server. If any users then fail to send their

masked inputs later, the online users can help the server reconstruct

those users’ masks as long as there are at least 𝑡 users are still online.

Also, to prevent the server from directly reconstruct the secret when

it forwards the shares for the users, each pair of users 𝑖, 𝑗 first agree

on a symmetric encryption key ek𝑖, 𝑗 (with a key exchange algorithm

which is introduced in Section 3) and encrypts the shares before

they send the shares to each other.

This fix brings another problem. When the server is controlled

by a malicious adversary it can lie about the online set and ask

online users to help reconstruct mk𝑖, 𝑗 of an online user 𝑖 . With

both the 𝑋𝑖 and ℎ𝑖 , the server can obtain the secret input 𝑥𝑖 . To

tolerate a malicious adversary, each honest user adds another layer

of mask 𝑟𝑖 which is uniformly randomly chosen by itself and also

secret-shared, shares are denoted by 𝑟𝑖, 𝑗 , among all users and adds

it to the masked input, i.e., 𝑋𝑖 = 𝑥𝑖 + ℎ𝑖 + 𝑟𝑖 . To obtain the sum of

all 𝑥𝑖 of the online user set O, the server needs to remove

∑
𝑖∈O 𝑟𝑖

of the online users from

∑
𝑖∈O 𝑋𝑖 and cancel

∑
𝑖∈O ℎ𝑖 with

∑
𝑖∉O ℎ𝑖 .

Thus, if user 𝑖 is online in the view of at least 𝑡 honest users, then

𝑟𝑖 is reconstructed and can be removed from its masked input, and

ℎ𝑖 is kept hidden and can be cancelled with other users 𝑗 ’s mask ℎ 𝑗 ;

otherwise, if user 𝑖 is offline in at least 𝑡 honest users’ view, these

honest users help the server reconstructmk𝑖, 𝑗 . Moreover, all honest

users 𝑖 use an extra round to agree on the online set in their view by

signing the online set and sending to other users their signatures

which can be verified with their public keys and cannot be forged

by other parties, as otherwise the server can ask different sets of

users to help it reconstruct the masks of different subsets of users.

By appropriately setting the threshold 𝑡 , for each user the server

can recover at most one mask while the other mask is kept hidden

so that the input is securely covered.
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2.2 Our first solution: MicroSecAgg𝐷𝐿
In the construction above, in each iteration, for every user 𝑖 either

𝑟𝑖 or ℎ𝑖 is revealed, thus two layers of masks are need and none of

them can be reused. The most intuitive change is to let the server

only learn the sum of masks rather than each individual mask —

this is achievable with the additively homomorphic property of

the Shamir secret sharing scheme. In other words, the server can

reconstruct the sum of secrets with the sum of shares of different

secrets. In this way, only one layer of mask is needed. Each honest

user 𝑖 first uniformly randomly chooses a mask 𝑟𝑖 , secret shares it to

{𝑟𝑖, 𝑗 } 𝑗 ∈[𝑛] with all users 𝑗 , and sends the masked input 𝑋𝑖 = 𝑥𝑖 + 𝑟𝑖
to the server. Let O denote the set of online users 𝑖 who successfully

send the server 𝑋𝑖 . Then the server requires

∑
𝑖∈O 𝑟𝑖, 𝑗 from online

users 𝑗 . As long as at least 𝑡 users 𝑗 reply, the server can reconstruct∑
𝑖∈O 𝑟𝑖 and removes it from the sum of 𝑋𝑖 to get the sum of 𝑥𝑖 .

Although the server cannot directly reconstruct any individual

mask now, this modification does not allow reusing 𝑟𝑖 . As the server

reconstructs the sum of all 𝑟𝑖 of a set of users in every iteration, it

can still learn a single user’s random mask by accumulating the

information of the sums of masks of different user sets in multiple

training iterations. For example, if each user 𝑖 uses the same 𝑟𝑖 in

every iteration, then when user 1 drops offline in some iteration

𝑘 > 1 while all other users are always online, the server can learn

user 1’s random mask 𝑟1 from the difference of the sum of 𝑟 ’s

and immediately learn all its historical inputs (and future inputs).

To avoid this problem, we further hide the sum of 𝑟𝑖 from the

server. Let 𝐻 (·) be a hash function mapping a fresh input value to a

random generator of a cryptographically secure cyclic group which

is easy to compute but very hard to invert. In every iteration 𝑘 , each

user and the server calculate the hash value 𝐻 (𝑘) of the iteration
number 𝑘 . Instead of sending 𝑋𝑖 = 𝑟𝑖 + 𝑥𝑖 and the sum of shares∑
𝑗 ∈O 𝑟 𝑗,𝑖 , now each user sends 𝐻 (𝑘)𝑋𝑖 and 𝐻 (𝑘)

∑
𝑗∈O 𝑟 𝑗,𝑖

to the

server. The server can then reconstruct𝐻 (𝑘)
∑
𝑖∈O𝑟𝑖 in the exponent

as described in Section 3. Intuitively, the sum of 𝑟𝑖 is hidden in this

way because the finite field is very large so that it is impractical to

find the discrete log of 𝐻 (𝑘)
∑
𝑖∈O 𝑟𝑖 which is uniformly random. At

the same time, as

∑
𝑖∈O 𝑥𝑖 is much smaller, the server can obtain it

by calculating the discrete log of 𝐻 (𝑘)
∑
𝑖∈O 𝑋𝑖 /𝐻 (𝑘)

∑
𝑖∈O 𝑟𝑖 .

2.3 Reducing Communication Cost:
MicroSecAgg𝑔𝐷𝐿

In this section, we introduce the second construction,

MicroSecAgg𝑔𝐷𝐿 , which improves the communication effi-

ciency of MicroSecAgg𝐷𝐿 .

In MicroSecAgg𝐷𝐿 , in every iteration, each user still needs to

receive the online set from the server which is of size 𝑂 (𝑛). To fur-

ther reduce the communication cost, we divide all users into small

groups so that each user only needs to know the status of a small

number of neighbors in the same group in every iteration. The sim-

plest construction is that each group of users run MicroSecAgg𝐷𝐿

with the same central server in parallel. The server obtains the

sum of all users’ inputs by summing up the results of all protocol

instances. Obviously, this strategy violates the security requirement

that for each iteration, the server can only learn the sum of inputs

of a single large subset of users. Thus, we add the mask ℎ𝑖 gener-

ated in a similar way as introduced above so that

∑
𝑖∈[𝑛] ℎ𝑖 = 0 to

protect the sum of inputs of each small group. As the sum of ℎ𝑖 for

users 𝑖 in any single group is random and not known to the server,

the server can only learn the global sum in which all ℎ𝑖 cancel out.

This mask should also be secret shared in the group in the same

way as sharing 𝑟𝑖 and can also be reused when it is protected in

the same way as 𝑟𝑖 . The protocol description of the Aggregation

phase is included in Section 4. Due to the page limit, we delay the

security proofs to Appendix C. With analysis shown in Appendix C,

we can choose groups of size 𝑂 (log𝑛), thus reduce the asymptotic

communication cost per user from 𝑂 (𝑛) to 𝑂 (log𝑛).

2.4 Handling larger Input Domain:
MicroSecAgg𝐶𝐿

The solutions introduced above require calculating discrete loga-

rithm in a large group. As there is no known efficient algorithm for a

large range of discrete logarithms, it limits the domain of user inputs.

To solve problems with a larger input domain, we use the primitive

of a group G with generator 𝑔 in which the DDH assumption holds

whereas it contains a subgroup Fwith generator 𝑓 in which discrete
logarithm is easy to compute. This primitive is formalized in [20]

and can be instantiated with class groups as introduced in the same

work. The intuition is to store the input in the exponent of 𝑓 so

that the discrete logarithm calculation used to recover the sum of

inputs is easy while the random mask is still in the exponent of 𝑔 to

cover the secret input. The same technique can be applied to both

our protocols MicroSecAgg𝐷𝐿 and MicroSecAgg𝑔𝐷𝐿 . In Section 5

we give a modified version of MicroSecAgg𝑔𝐷𝐿 using class groups

instead of general cyclic groups.

In recent years, class groups have been gaining renewed interest

due to their usefulness in designing encryption schemes to mul-

tiparty computation protocols, as exemplified by [1, 12, 14, 17, 22,

26, 30, 49]. For a more comprehensive understanding of the class

group assumptions and more constructions, we refer the readers to

Section 3, Appendix A.3, and the BICYCL work [13].

Remark (About Sybil attack). Sybil attacks in federated learn-
ing involve malicious entities creating multiple fake or forged identi-
ties to manipulate the collaborative learning process. In this context,
these attackers generate numerous false client nodes or identities to
participate in the federated learning network, aiming to influence the
model’s training process or learn information on the summation of the
honest parties sum. Sybil-attacks are a common issue in single-server
protocols using threshold-secret-sharing if the threshold of corrupted
parties is exceeded by the attacker. If the adversary obtains enough
number of secret shares in the threshold-secret-sharing schemes, it
can recover the secret and thus breach the privacy. Sybil-attacks affect
all secure aggregation protocols and it has been an ongoing challenge
that we do not address in this work if the server introduces more than
our corruption threshold fake devices. Only the recent work of David
Byrd et al. [16] which is based on oblivious distributed differential
privacy to counter client collusion privacy provides an aggregation
solution to limit such attacks.
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3 PRELIMINARIES
3.1 Notations and Cryptographic Primitives
We use [𝑛1, 𝑛2] for two integers 𝑛1, 𝑛2 to denote the set of integers

{𝑛1, . . . , 𝑛2}, and we omit the left bound if it equals to 1, i.e., [𝑛]
denotes the set {1, . . . , 𝑛}.

Let 𝑝, 𝑞 be two primes such that 𝑝 = 2𝑞+1. A finite fieldZ𝑝 is a set
of elements {0, 1, . . . , 𝑝−1}withmultiplication and addition (as well

as division and subtraction) operations. Basically, multiplication

and addition between elements are conducted as normal arithmetic

operations with modulus 𝑝 .

Negligibility and Indistinguishability. A function 𝑓 : N→ R is

a negligible function if for every positive integer 𝑐 there exists an

integer 𝑛𝑐 such that for all 𝑛 > 𝑛𝑐 , 𝑓 (𝑛) < 1

𝑛𝑐 .

We say that an event happens with negligible probability if

its probability is a function negligible in the security parameter.

Symmetrically, we say that an event happens with overwhelming

probability if it happens with 1 but negligible probability.

We say that two ensembles of probability distributions {𝑋𝑛}𝑛∈N
and {𝑌𝑛}𝑛∈N are computationally indistingsuishable (denoted with

≈𝑐 ) if for all non-uniform PPT distinguisher D, there exists a negli-

gible function 𝑓 such that for all 𝑛 ∈ N,���� Pr

𝑡←𝑋𝑛
[D(1𝑛, 𝑡) = 1] − Pr

𝑡←𝑌𝑛
[D(1𝑛, 𝑡) = 1]

���� < 𝑓 (𝑛) .

Finite Field and Cyclic Group. Let 𝑝, 𝑞 be two primes such that

𝑝 = 2𝑞 + 1. Z𝑝 denotes a finite field with elements {0, 1, . . . , 𝑝 − 1}
and Z∗𝑝 denotes a group {1, . . . , 𝑝 − 1}. G refers to a subgroup of

Z∗𝑝 of order 𝑞, which is also a cyclic group and every element in it

is a generator of the group. In other word, for any element 𝑔 ∈ G,
G = {𝑔0, 𝑔1, . . . , 𝑔𝑞−1}. In the protocol description in this paper,

by uniformly randomly choosing some value, we mean uniformly

randomly choosing an element from Z𝑞 if not noted explicitly;

by computing 𝑔𝑟 or log𝑔 𝑅 for some element 𝑔 ∈ G, we mean

comparing the power and discrete log computation happening in

group G.

Shamir’s Secret Sharing. We use Shamir’s 𝑡-out-of-𝑛 secret shar-

ing in [43] to tolerate offline users. Informally speaking, it allows

the secret holder to divide the secret into 𝑛 shares such that anyone

who knows any 𝑡 of them can reconstruct the secret, while anyone

who knows less than 𝑡 shares cannot learn anything about the se-

cret. More specifically, let 𝑠, 𝑋1, . . . , 𝑋𝑛 ∈ Z𝑞 for some prime 𝑞. The

Shamir’s Secret Sharing scheme consists of two algorithms:

• SS.share(𝑠, {𝑋1, 𝑋2, . . . , 𝑋𝑛}, 𝑡) → {(𝑠1, 𝑋1), . . . , (𝑠𝑛, 𝑋𝑛)},
in which 𝑠 denotes the secret, 𝑋1, . . . , 𝑋𝑛 denotes the 𝑛 in-

dices, and 𝑡 denotes the threshold of the secret sharing. This

function returns a list of shares 𝑠𝑖 of the secret 𝑠 with their

corresponding indices 𝑥𝑖 .

• SS.recon({(𝑠1, 𝑋1), . . . , (𝑠𝑛, 𝑋𝑛)}, 𝑡) = 𝑠 , in which each pair

(𝑠𝑖 , 𝑋𝑖 ) denotes the share 𝑠𝑖 on index 𝑋𝑖 . This function re-

turns the original secret 𝑠 .

Furthermore, we define an extension of the standard Shamir’s se-

cret sharing above, SS.expoRecon((𝑔𝑠1 , 𝑋1), . . . , (𝑔𝑠𝑛 , 𝑋𝑛), 𝑡) = 𝑔𝑠 ,
which allows the reconstruction of the secret 𝑠 with shares 𝑠1, . . . , 𝑠𝑛

being performed in the exponents of finite field elements. We de-

lay the detail of the definition and the implementation of these

functions to Appendix A.1.

Authenticated Encryption. We use symmetric authenticated en-

cryption to guarantee that the messages between honest parties

cannot be either extracted by the adversary or be tampered without

being detected. An authenticated encryption scheme consists of

three algorithms: AE.gen(1𝜅 ) → 𝑘 , which randomly generates a

key 𝑘 ; AE.enc(𝑚,𝑘) → 𝑐 , which encrypts message𝑚 with a key

𝑘 and generates a ciphertext 𝑐; and AE.dec(𝑐, 𝑘) → 𝑚, which de-

crypts the ciphertext 𝑐 with the key 𝑘 and outputs the original

message𝑚. We assume that the scheme we use satisfies IND-CCA2

security.

Decisional Diffie-Hellman (DDH) Assumption. In our protocol,

we assume that the following assumption holds: Let 𝑝, 𝑞 be two

primes, 𝑝 = 2𝑞 + 1. Let 𝑔 be a generator of Z∗𝑝 . Then the following

two distributions are computationally indistinguishable, given that

𝑎, 𝑏, 𝑐 are independently and uniformly randomly chosen from Z𝑞 :

(𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) and (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 ) .

Diffie-Hellman Key Exchange. The Diffie-Hellman key exchange

algorithm allows two parties to securely agree on a symmetric

secret over a public channel, assuming the DDH problem is compu-

tationally hard. It consists of three algorithms,

• KA.setup(𝜅) → (G′, 𝑔, 𝑞, 𝐻 ), in which G′ is a group of order
𝑞 with a generator 𝑔, 𝐻 is a cryptographically secure hash

function;

• KA.gen(G′, 𝑔, 𝑞, 𝐻 ) → (𝑥,𝑔𝑥 ) in which 𝑥 is uniformly sam-

pled from Z𝑞 . This algorithm generates a pair of keys used

later in key exchange. The secret key 𝑥 should be kept secret,

while the public key 𝑔𝑥 will be disclosed to other parties for

key exchange.

• KA.agree(𝑥𝑢 , 𝑔𝑥𝑣 ) → 𝑠𝑢,𝑣 = 𝐻 ((𝑔𝑥𝑣 )𝑥𝑢 ). This algorithm

allows party 𝑢 to obtain the symmetric secret 𝑠𝑢,𝑣 = 𝑠𝑣,𝑢
between party 𝑢 and party 𝑣 with its own secret key 𝑥𝑢 and

the public key 𝑔𝑥𝑣 of party 𝑣 .

DDH Group with an Easy DL Subgroup. To accommodate larger

input, we use an assumption from [20]. Intuitively, it assume the

existence of a group 𝐺 = ⟨𝑔⟩ with a subgroup 𝐹 = ⟨𝑓 ⟩ such that

the DDH assumption holds in 𝐺 and discrete logarithm is easy to

calculate in group 𝐹 . More formally, we use the following definition

from [20]:

Definition 3.1 (DDH Group with an Easy DL Subgroup [20]).

A DDH group with an easy DL subgroup is a pair of algo-
rithms (cl.gen, cl.solve). The cl.gen algorithm is a group generator
which takes as input two parameters 𝜆 and 𝜇 and outputs a tuple
(𝐵, 𝑁, 𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ). The integers 𝐵, 𝑁, 𝑝 and 𝑠 are such that 𝑠 is a
𝜆-bit integer, 𝑝 is a 𝜇-bit integer, 𝑔𝑐𝑑 (𝑝, 𝑠) = 1, 𝑁 = 𝑝 · 𝑠 , and 𝐵 is an
upper bound for 𝑠 . The set (𝐺, ·) is a cyclic group of order 𝑛 generated
by 𝑔, and 𝐹 ⊂ 𝐺 is the subgroup of 𝐺 of order 𝑝 and 𝑓 is a generator
of 𝐹 . The upper bound 𝐵 is chosen such that the distribution induced

by {𝑔𝑟 , 𝑟 $←− {0, ..., 𝐵𝑝 − 1}} is statistically indistinguishable from the
uniform distribution on 𝐺 . We assume that the canonical surjection
𝜋 : 𝐺 → 𝐺/𝐹 is efficiently computable from the description of𝐺,𝐻
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and 𝑝 and that given an element ℎ ∈ 𝐺/𝐹 one can efficiently lift ℎ in
𝐺 , i.e., compute an element ℎℓ ∈ 𝜋−1 (ℎ). We suppose moreover that:

(1) The DL problem is easy in 𝐹 . The cl.solve algorithm is a de-
terministic polynomial time algorithm that solves the discrete
logarithm problem in 𝐹 :

Pr[𝑥 = 𝑥∗ :(𝐵, 𝑁, 𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ) $←− cl.gen(1𝜆, 1𝜇 ),

𝑥
$←− Z/𝑝Z, 𝑋 = 𝑓 𝑥 ,

𝑥∗ ← cl.solve(𝐵, 𝑝, 𝑔, 𝑓 ,𝐺, 𝐹, 𝑋 )] = 1

(2) The DDH problem is hard in𝐺 even with access to the cl.solve
algorithm:

| Pr[𝑏 = 𝑏∗ :(𝐵, 𝑁, 𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ) $←− cl.gen(1𝜆, 1𝜇 ),

𝑥,𝑦, 𝑧
$←− Z/𝑁Z, 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦,

𝑏
$←− {0, 1}, 𝑍0 = 𝑔𝑧 , 𝑍1 = 𝑔𝑥𝑦,

𝑏∗
$←− A(𝐵, 𝑝, 𝑔, 𝑓 ,𝐺, 𝐹, 𝑋,𝑌, 𝑍𝑏 , cl.solve(·))] −

1

2

|

is negligible for all probabilistic polynomial time adversary
A.

3.2 Security Definition
In this section, we formally define the secure aggregation protocol

and the security property for a multi-iteration secure aggregation

protocol.

Definition 3.2 (Aggregation Protocol). An aggregation pro-
tocol Π(U,S, 𝐾) with a set of users U, a server S, integers 𝐾 as
parameters consists of two phases: the Setup phase and the Aggrega-
tion phase. The Setup phase runs once at the beginning of the execution,
then the Aggregation phase runs for 𝐾 iterations. At the beginning
of each iteration 𝑘 ∈ [𝐾] of the Aggregation phase, each user 𝑖 ∈ U
holds a input 𝑥𝑘

𝑖
, and at the end of each iteration 𝑘 , the server S

outputs a value𝑤𝑘 =
∑
𝑖∈U 𝑥

𝑘
𝑖
.

We define the correctness property of the protocol below and

the privacy property in Appendix A.4.

Definition 3.3 (Correctness with Dropouts). Let 𝑛 = |U|.
An aggregation protocol Π guarantees correctness with 𝛿 offline

rate if for every iteration 1 ≤ 𝑘 ≤ 𝐾 and for all sets of offline
users offline𝑘 ⊂ U with |offline𝑘 | < 𝛿𝑛, the server outputs 𝑤𝑘 =∑
𝑖∈U\offline𝑘 𝑥𝑖,𝑘 at the end of iteration 𝑘 if every user and the server

follows the protocol except that the users in offline𝑘 drops offline at
some point in iteration 𝑘 .

4 MicroSecAgg𝑔𝐷𝐿 PROTOCOL
In this section, we introduce the construction of the secure aggrega-

tion protocol MicroSecAgg𝑔𝐷𝐿 . Due to the length limit, we include

the security proofs in Appendix C.

For simplicity, we assume that the group assignment is provided

by the trusted third party as part of the inputs, but the assignment

can also be implemented with a distributed randomness generation

protocol to allow all users to decide on the assignment together.

We choose the group size in the same way and under the same as-

sumptions as how the neighborhood size is chosen in BBG+20 [10].

4.1 Protocol
In this section, we describe the Setup phase and the Aggregation

phase of MicroSecAgg𝑔𝐷𝐿 in Algorithm 1 and Algorithm 2 respec-

tively. The parts that are only needed to protect privacy against

a malicious adversary are marked with blue color and underlines.

In the protocol description, we call one round of back-and-forth

messaging between the users and the server a round. In other words,
in one round, the users first sends the server messages and then

receive messages from the server.

We also depict the high-level idea of the Setup phase and the

Aggregation phase in Figure 7 and Figure 8 in Appendix B.

Algorithm 1 Setup phase (MicroSecAgg𝑔𝐷𝐿)

This protocol uses the following algorithms defined in

Section 3: public key infrastructure, a Diffie-Hellman

key exchange scheme (KA.setup,KA.gen,KA.agree);
a CCA2-secure authenticated encryption scheme

(AE.enc,AE.dec); a Shamir’s secret sharing scheme

(SS.share, SS.recon, SS.expoShare, SS.expoRecon); It also

accesses a random oracle 𝐻 (·), which has range in Z∗𝑝 . It
proceeds as follows:

Input: A central serverS and a user setU of𝑛 users. Each user can

communicate with the server through a private authenticated

channel. All parties are given public parameters: the security

parameter𝜅 , the number of users𝑛, a threshold value 𝑡 , honestly

generated 𝑝𝑝 ← KA.setup(𝜅) for key agreement, the input

space X, a field F for secret sharing.
Moreover, all clients are uniformly randomly divided into

𝐵 groups 𝐺1, . . . ,𝐺𝐵 , each of which contains 𝑛/𝐵 clients. For

convenience, in the description of the protocol, let 𝐺−1 = 𝐺𝐵 ,

and 𝐺𝐵+1 = 𝐺1. The user 𝑖 in group 𝑑 holds the group index 𝑑 ,

its own signing key 𝑑𝑆𝐾
𝑖

and a list of verification keys 𝑑𝑃𝐾
𝑗

for

𝑗 ∈ [𝑛]. The server S also has all users’ verification keys.

Output: Every user 𝑖 ∈ U who is online through the Setup phase

either obtains a set of usersU𝑖 of size at least 𝑡 and two shares

𝑟 𝑗,𝑖 , ℎ 𝑗,𝑖 for each 𝑗 ∈ U𝑖 or abort. The server either obtains a
set of usersUS such that |US | ≥ 𝐵𝑡 and a global mask ℎS or

abort.

Round 1: Key Exchange:
1: Each user 𝑖 ∈ 𝐺𝑑 : It generates a pair of encyption keys

(pk𝑖 , sk𝑖 ) and two pairs of masking keys (pk1

𝑖 , sk
1

𝑖 ) and

(pk−1

𝑖 , sk−1

𝑖 ). It sends the three public keys with signatures

on them to the server.

2: Server S: LetU1

S denotes the set of users send the server pub-

lic keys with valid signatures. For 𝑖 ∈ U1

S ∩ 𝐺𝑑 , the server

distributes the public encryption key pk𝑖 and the signature re-

ceived from user 𝑖 ∈ 𝐺𝑑 to all users inU1

S∩(𝐺𝑑∪𝐺𝑑−1
∪𝐺𝑑+1),

and distributes the public masking key pk𝑏
𝑖
with the signatures

to all users inU1

S ∩𝐺𝑑+𝑏 for 𝑏 ∈ {−1, 1}.

Round 2: Secret Mask Key Sharing:
3: Each user 𝑖 ∈ 𝐺𝑑 :

On receiving (pk𝑗 , pk𝑏𝑗 𝜎 𝑗 ) from the server where 𝑏 = 1

or −1, each user 𝑖 verifies the signature 𝜎 𝑗 with pk𝑗 . It aborts
if any signature verification fails, or if it receives messages
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from less than 𝑡 users from any one of groups 𝐺𝑑 ,𝐺𝑑−1
and

𝐺𝑑+1 after processing all messages. Otherwise, it puts 𝑗 into a

user listU1

𝑖
and stores ek𝑖, 𝑗 = KA.agree(pk𝑗 , sk𝑖 ) and mk𝑖, 𝑗 =

KA.agree(pk𝑏
𝑗
, sk−𝑏

𝑖
).

It then calculates 𝑡-out-of-𝑛
𝐵
secret shares of sk𝑏

𝑖
among

users in 𝐺𝑑+𝑏 to generate {sk𝑏
𝑖,𝑗
} 𝑗 ∈𝐺𝑑+𝑏 , and encrypts each

share with ek𝑖, 𝑗 to generate cipher text 𝑐sk
𝑏

𝑖, 𝑗
for 𝑏 = {−1, 1}. It

then sends all encrypted shares to the server.

4: Server S: LetU2

S denote the set of users who successfully send

the server messages. If for any group𝐺𝑑 , |U2

S ∩𝐺𝑑 | < 𝑡 , abort.
Otherwise, For each group 𝑑 ∈ [𝐵] and each 𝑖 ∈ U2

S ∩𝐺𝑑 , The
server sends each encrypted share 𝑐sk

𝑏

𝑖, 𝑗
to the corresponding

receiver 𝑗 ∈ 𝐺𝑑+𝑏 .
Round 3: Mask Sharing:

5: Each user 𝑖 ∈ 𝐺𝑑 : Denote the set of users 𝑗 ∈ 𝐺𝑑−𝑏 from who

user 𝑖 receives 𝑐sk
𝑏

𝑗,𝑖
for 𝑏 = {1,−1} with U2

𝑖
. It decrypts the

encrypted share by sk𝑏
𝑗,𝑖

= AE.dec(𝑐sk𝑏
𝑗,𝑖
, ek𝑖, 𝑗 ). If any 𝑐sk

𝑏

𝑗,𝑖
for

𝑗 ∈ U2

𝑖
∩𝐺𝑑−𝑏 cannot be correctly decrypted, remove 𝑗 from

U2

𝑖
. It then checks if for 𝑏 ∈ {1,−1}, |U2

𝑖
∩𝐺𝑑+𝑏 | < 𝑡 . If yes,

abort.

Otherwise, user 𝑖 uniformly randomly chooses a self mask

(𝑟 -mask) and calculates the ℎ-mask ℎ𝑖 =
∑
𝑗 ∈U2

𝑖
∩𝐺𝑑−1

mk𝑖, 𝑗 −∑
𝑗 ∈U2

𝑖
∩𝐺𝑑+1 mk𝑖, 𝑗 . Then it calculates the shares of 𝑟𝑖 and ℎ𝑖

among 𝑗 ∈ U1

𝑖
∩ 𝐺𝑑 and encrypts the shares with ek𝑖, 𝑗 to

generate ciphertext 𝑐𝑟
𝑖, 𝑗
, 𝑐ℎ
𝑖,𝑗

for each share for user 𝑗 . It then

sends the encrypted shares {𝑐𝑟
𝑖, 𝑗
, 𝑐ℎ
𝑖,𝑗
} 𝑗 ∈U1

𝑖
∩𝐺𝑑 to the server.

6: Server S: Denote the set of all users 𝑖 who successfully sends

the server encrypted shares with U3

S . If for any group 𝐺𝑑 ,

|U3

S ∩ 𝐺𝑑 | < 𝑡 , abort. Otherwise, It sends the shares to the

corresponding receiver 𝑗 for each 𝑖 ∈ U3

S , and an offline set of

group 𝑑 offline𝑑 = 𝐺𝑑 ∩ (U2

S\U
3

S) to users inU3

S ∩ (U𝑑−1
∪

U𝑑+1). (The server doesn’t need to send this offline set in the

malicious setting. Instead, it waits for the users to send the

offline sets in their views with their signatures as described in

the red underlined part of Round 4.)

Round 4: Agreeing on the Offline User Set:
7: Each user 𝑖 ∈ 𝐺𝑑 : It decrypts each received encrypted share by

𝑟 𝑗,𝑖 = AE.dec(𝑐𝑟
𝑗,𝑖
, ek𝑖, 𝑗 ), and ℎ 𝑗,𝑖 = AE.dec(𝑐ℎ

𝑗,𝑖
, ek𝑖, 𝑗 ). If the

decryption of the share from user 𝑗 fails, it ignores the message

from user 𝑗 . Otherwise, it puts 𝑗 into a user setU3

𝑖
and stores

𝑟 𝑗,𝑖 and ℎ 𝑗,𝑖 . If U3

𝑖
< 𝑡 after processing all shares, it aborts.

Then it signs and sends a user list offline𝑖 = (U1

𝑖
∩𝐺𝑑 )\U3

𝑖
with the signature 𝜎𝑖 on the list to the server.

8: Server S: If the server receives offline𝑖 with valid signatures

𝜎𝑖 from less than 𝑡 users 𝑖 from any group𝐺𝑑 , abort. Otherwise,

denote the set of users 𝑖 who send the offline lists with valid

signatures to the server withU4

S . The server sends the list and
the signature (offline𝑖 , 𝜎𝑖 ) for all 𝑖 ∈ 𝐺𝑑 ∩U4

S to all users in

(𝐺𝑑−1
∪𝐺𝑑+1) ∩ U4

S .

Round 5: Reconstructing Offline Users’ Masks:

9: Each user 𝑖 ∈ 𝐺𝑑 : After receiving all user lists with the sig-

nature (offline𝑗 , 𝜎 𝑗 ) from the server, it verifies the signatures

and aborts if any signature verification fails. It also aborts if

it receives less than 𝑡 offline lists with valid signatures from

group 𝐺𝑑−1
or 𝐺𝑑+1. Otherwise, for group 𝐺𝑑−1

, it checks if

there is any user 𝑗 ′ ∈ 𝐺𝑑−1
∩U2

𝑖
being included in at least 𝑡

offline lists it receives from users in 𝐺𝑑−1
. If yes, put them in a

list offline𝑑−1
. It repeats the process on group 𝐺𝑑+1. it sends

sk1

𝑗 ′,𝑖 for 𝑗
′ ∈ offline𝑑−1

and sk−1

𝑗 ′,𝑖 for 𝑗
′ ∈ offline𝑑+1 to the

server. It also storesU𝑖 = U3

𝑖
and 𝑟 𝑗,𝑖 , ℎ 𝑗,𝑖 for 𝑗 ∈ U𝑖 .

10: Server S: For each group 𝑑 , if for a user 𝑖 ∈ 𝐺𝑑 the server

receives at least 𝑡 shares sk𝑏
𝑖,𝑗

from both groups 𝐺𝑑+𝑏 for

𝑏 ∈ {−1, 1}, the server puts 𝑖 into a user list offlineS . Each
user in this list fails to share their 𝑟 - and ℎ-masks with their

group members in Round 3, while the symmetric masking

keys mk𝑖, 𝑗 between itself and the member 𝑗 of 𝑖’s neighbor

group have been included in the ℎ 𝑗 . Thus, the server needs

to calculates ℎ𝑖 by reconstructing sk𝑏
𝑖
for 𝑏 = ±1, running

the key exchange algorithm for 𝑖 and user 𝑗 ∈ U2

S ∩ 𝐺𝑑−1

by mk𝑖, 𝑗 = KA.agree(pk1

𝑗 , sk
−1

𝑖 ) and for 𝑖 and user 𝑗 ∈
U2

S ∩ 𝐺𝑑+1 by mk𝑖, 𝑗 = KA.agree(pk−1

𝑗 , sk
1

𝑖 ), and calculating

ℎ𝑖 =
∑
𝑗 ∈U2

S∩𝐺𝑑−1

mk𝑖, 𝑗 −
∑
𝑗 ∈U2

S∩𝐺𝑑+1
mk𝑖, 𝑗 . Then it obtains

US = U2

S\offlineS and ℎS =
∑
𝑖∈offlineS ℎ𝑖 .

Algorithm 2 Aggregation phase (MicroSecAgg𝑔𝐷𝐿)

This protocol uses the following algorithms defined in Section 3:

public key infrastructure, a Shamir’s secret sharing scheme

(SS.share, SS.recon, SS.expoShare, SS.expoRecon); a random

oracle 𝐻 (·) which returns a random generator of Z∗𝑝 on a fresh

input. It proceeds as follows:

Input: Every user 𝑖 ∈ 𝐺𝑑 holds its own signing key 𝑑𝑆𝐾
𝑖

and every

user 𝑗 ’s verification keys 𝑑𝑃𝐾
𝑗

, 𝑟𝑖 , ℎ𝑖 , a list of users U𝑖 ⊆ 𝐺𝑑
with 𝑟 𝑗,𝑖 , ℎ 𝑗,𝑖 for every 𝑗 ∈ U𝑖 . Moreover, for every iteration 𝑘 ,

it also holds a secret input 𝑥𝑖,𝑘 . The server S holds all inputs it

receives in the Setup phase, and the list of usersUS it outputs

in the Setup phase.

Output: For each iteration 𝑘 , if all users are honest and there are at

least 𝑡 users being always online in each group during iteration

𝑘 , then at the end of iteration𝑘 , the serverS outputs

∑
𝑖∈O𝑘 𝑥𝑖,𝑘 ,

in which O𝑘 denotes a set of at least 𝐵𝑡 users.

Note: For simplicity of exposition, we omit the superscript 𝑘

of all variables when it can be easily inferred from the context.

1: for Iteration 𝑘 = 1, 2, . . . do
Round 1: Masked Input:

2: User 𝑖: It masks the input by 𝑋𝑖 = 𝑥𝑖 + 𝑟𝑖 + ℎ𝑖 and sends

𝐻 (𝑘)𝑋𝑖 to the server.

3: Server S: If it receives messages from less than 𝑡 users from

any group, abort. If it receives messages from a user not inUS ,
ignore the message. Otherwise, let O denote the set of users 𝑖

who successfully send the masked input to the server. For each

group 𝐺𝑑 , the server sends O𝑑 = O ∩𝐺𝑑 to all users 𝑖 ∈ O𝑑 .
Round 2: Online Set Checking:
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4: User 𝑖: On receiving O𝑑 from the server, it checks that

|O𝑑 | ≥ 𝑡 and signs it with its signing key. Then it sends the

signature 𝜎𝑖 to the server.

5: Server S: On receiving the signatures from user 𝑖 ∈ 𝐺𝑑 ,
It verifies the signature on O𝑑 and user 𝑖’s verification key. If

the signature is invalid, ignore it. If it receives less than 𝑡 valid

signatures from any group, abort. Otherwise, it forwards all

valid signatures on O𝑑 to user 𝑖 ∈ O𝑑 for each group 𝐺𝑑 .

Round 3: Mask Reconstruction:
6: User 𝑖: it checks that it receives at least 𝑡 valid signatures

from the members of 𝐺𝑑 on O𝑑 . If any signature is invalid,

abort. Then it calculates 𝜁𝑖 = 𝐻 (𝑘)
∑
𝑗∈O𝑑 𝑟 𝑗,𝑖−

∑
𝑗∈U𝑖 \O𝑑 ℎ 𝑗,𝑖 and

sends 𝜁𝑖 to the server.

7: Server S: If it receives 𝜁𝑖 from less than 𝑡 users in any group

𝐺𝑑 , abort. Otherwise, the server calculates

𝑧 = log(𝐻 (𝑘)
∑
𝑖∈O 𝑋𝑖 /∏

𝑑∈[𝐵 ]
SS.expoRecon({𝜁 𝑗 , 𝑗} 𝑗 ∈O′

𝑑
, 𝑡))

by brute force. Here O′
𝑑
denotes the users from 𝐺𝑑 who send

𝜁 to the server in the previous round. Then it calculates∑
𝑖∈O 𝑥𝑖 = 𝑧 + ℎS , in which ℎS is from the server’s output

in the Setup phase.

8: end for
For simplicity of exposition, in the description of the proto-

col, we assume that the input vector is of length 1. To handle

input vectors of length 𝐿, we only need to use a vector of inde-

pendently randomly chosen generator in every iteration as the

base of exponentiation, for example, by substituting 𝐻 (𝑘) with a

vector 𝐻 ((𝑘 − 1)𝐿 + 1), 𝐻 ((𝑘 − 1)𝐿 + 2), . . . , 𝐻 ((𝑘𝐿), and for each

index 𝑙 ∈ [𝐿], masking the input with 𝐻 ((𝑘 − 1)𝐿 + 𝑙)𝑋𝑖,𝑙 (in which

𝑋𝑖,𝑙 = 𝑥𝑖,𝑙 + 𝑟𝑖 + ℎ𝑖 ) in Round 1 of Algorithm 2 of MicroSecAgg𝑔𝐷𝐿 .

Remark (About group sizes and dynamic participation). In
this work, we make the assumption that all groups are of the same size
and all the participants are predetermined for simplicity in analyzing
group properties. Our protocol can work with various group sizes
as long as each group contains a proportion of honest and online
nodes greater than the secret-sharing threshold. To allow dynamic
joining, we need a more complex model describing the behavior of
the users, e.g., the distribution of corrupt users in the new joiners, the
communication model of new users, etc., which we leave out of the
scope of this paper.

4.2 Group Properties
To achieve security and correctness at the same time, there should

not be toomany corrupt or offline line nodes in each group.We show

that if we choose the size𝑁 = 𝑛/𝐵 of each group and the threshold 𝑡

appropriately, this requirement can be satisfied with overwhelming

probability. We follow the same reasoning and calculation with the

same assumptions as in [10]. First, we define the requirements as

the following two good events:

Definition 4.1 (Not too many corrupt members). Let 𝑁, 𝑡
be integers such that 𝑁 < 𝑛 and 𝑡 ∈ (𝑁 /2, 𝑁 ), and let C ⊂ [𝑛].
Let G = (𝐺1, . . . ,𝐺𝐵) is a partition of [𝑛] so that |𝐺𝑑 | = 𝑁 for each

𝑑 ∈ [𝐵]. We define event 𝐸1 as

𝐸1 (C,G, 𝑁 , 𝑡) = 1 iff ∀𝑑 ∈ [𝐵] : |𝐺𝑑 ∩ C| < 2𝑡 − 𝑁 .

Definition 4.2 (Enough shares are available). Let 𝑁, 𝑡 be
integers such that 𝑁 < 𝑛 and 𝑡 ∈ (𝑁 /2, 𝑁 ), and let 𝐷 ⊂ [𝑛]. Let
G = (𝐺1, . . . ,𝐺𝐵) is a partition of [𝑛] so that |𝐺𝑑 | = 𝑁 for each
𝑑 ∈ [𝐵]. We define event 𝐸2 as

𝐸2 (𝐷,G, 𝑁 , 𝑡) = 1 iff ∀𝑑 ∈ [𝐵] : |𝐺𝑑 ∩ ([𝑛]\𝐷) | ≥ 𝑡 .

We say a distribution of grouping is nice grouping if the above

two events happen with overwhelming probability. In other words,

with a nice grouping algorithm, each group has neither too many

corrupt members nor too many offline members with 1 but negligi-

ble probability.

Definition 4.3 (Nice Grouping). Let 𝑁, 𝜎, 𝜂 be integers and let
𝛾, 𝛿 ∈ [0, 1]. Let C ⊂ [𝑛] and |C| ≤ 𝛾𝑛. Let D be a distribution over
pairs (G, 𝑡). We say that D is (𝜎, 𝜂, C)-nice if, for all set 𝐷 ⊂ [𝑛]
such that |𝐷 | ≤ 𝛿𝑛, we have that

(1) Pr[𝐸1 (C,G′, 𝑁 , 𝑡 ′) = 1 | (G′, 𝑡 ′) ← D] > 1 − 2
−𝜎 ,

(2) Pr[𝐸2 (𝐷,G′, 𝑁 , 𝑡 ′) = 1 | (G′, 𝑡 ′) ← D] > 1 − 2
−𝜂 .

Lemma 4.4. Let 𝛾, 𝛿 ≥ 0 such that 𝛾 + 2𝛿 < 1. Then there exists
a constant 𝑐 making the following statement true for all sufficiently
large 𝑛. Let 𝑁 and 𝑡 be such that

𝑁 ≥ 𝑐 (1 + log𝑛 + 𝜂 + 𝜎), 𝑡 = ⌈(3 + 𝛾 − 2𝛿)𝑁 /4⌉ .

Let C ⊂ [𝑛], such that C ≤ 𝛾𝑛, be the set of corrupt clients. Then for
sufficiently large 𝑛, the distribution D over pairs (𝐺, 𝑡) implemented
by uniformly randomly assigning all 𝑛 users into 𝑛/𝑁 groups each of
size 𝑁 is (𝜎, 𝜂, C)-nice.

Due to page limit, we defer the proof to Appendix C.1.

4.3 Correctness with Dropouts
The protocol guarantees correctness when there are enough number

of users online in each group so that the server can reconstruct the

sum of 𝑟𝑖 for online users 𝑖 and the sum of ℎ 𝑗 for offline users 𝑗 .

Theorem 4.5 (Correctness with dropouts). Let 𝛾, 𝛿 be two
parameters such that 𝛾 < 1/3, 𝛾 + 2𝛿 < 1, and 𝜎 and 𝜂 be two
security parameters. The protocol Π be an instantiation of Algorithm 1
and Algorithm 2 running with a server S and 𝑛 users guarantees
correctness with 𝛿 offline rate with probability 1 − 𝐾 · 2−𝜂 , when the
grouping algorithm is (𝜎, 𝜂, C)-nice for C ⊂ U with |C| < 𝛾 |U|.

Proof. As all users and the server are assumed to follow the

protocol, the participants of the Aggregation phase should be the

same in all users’ and the server’s view. Denote the participants of

the Aggregation phase withU, and let 𝐺𝑑 denote the participants

of the Aggregation phase in group 𝑑 . As the grouping algorithm is

(𝜎, 𝜂, C)-nice, by definition, event 𝐸2 fails to happen with proba-

bility 2
−𝜂

. By union bound, the event that in every iteration there

are at least 𝑡 users online in every group happen with probability

at least 1 − 𝐾 · 2−𝜂 . If in iteration 𝑘 , for each group 𝐺𝑑 , there are

at least 𝑡 users online at the end of the iteration, then in the last

round of the iteration, the server can reconstruct

𝑅𝑑 = SS.expoRecon({𝜁𝑖 }𝑖∈O𝑑 , 𝑡) = 𝐻 (𝑘)
∑
𝑖∈O𝑑 𝑟𝑖−

∑
𝑖∈𝐺𝑑 \O𝑑 ℎ𝑖 ,
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and by calculating the discrete log of 𝐻 (𝑘)
∑
𝑖∈O 𝑋𝑖 /∏𝑑∈[𝐵 ] 𝑅𝑑 , the

server obtains 𝑧 =
∑
𝑖∈O 𝑋𝑖 −

∑
𝑖∈O 𝑟𝑖 +

∑
𝑖∈U\O ℎ𝑖 =

∑
𝑖∈O 𝑥𝑖 +∑

𝑖∈U ℎ𝑖 . As
∑
𝑖∈offline ℎ𝑖 +

∑
𝑖∈U ℎ𝑖 = 0, by adding ℎS to 𝑧, the

server gets the sum

∑
𝑖∈O 𝑥𝑖 . □

4.4 Privacy against Semi-Honest and Malicious
Adversaries

It is easy to see that this protocol provides perfect privacy when the

server is honest, as the joint view of any set of users does not depend

on the input value of other users. We also omit the privacy proof

against semi-honest adversary as it is a simplified version of the

more complex malicious proof without any part related to public-

key infrastructure. With malicious adversaries who control both

the server and corrupt clients, we provide the privacy described in

Theorem 4.6. We defer the proof to Appendix C due to the page

limit.

Theorem 4.6 (Privacy against Malicious Adversary). Let 𝛾
and 𝛿 be two parameters such that 𝛾 < 1/3, 𝛾 + 2𝛿 < 1, and 𝜎 and
𝜂 be two security parameters. The protocol Π being an instance of
Algorithm 1 and Algorithm 2 guarantees privacy against 𝛾-fraction
of malicious adversary with 𝛿 offline rate with probability 1 − 2

−𝜎

when the grouping is (𝜎, 𝜂, C)-nice. The Setup phase of the protocol
runs in 5 rounds with 𝑂 (𝑛) communication complexity per user and
the Aggregation phase runs in 3 rounds with 𝑂 (𝑛) communication
complexity per user.

Remark (About Output Delivery with Malicious Adver-

sary). In the malicious setting, if the attack the adversary performs
is only controlling the corrupt users to drop out during the execution
of the protocol and the total number of users who stay online and
follow the protocol is more than (1 − 𝛿)𝑛 where 𝑛 is the total num-
ber of users, MicroSecAgg𝑔𝐷𝐿 can guarantee that the server obtains
the aggregation result. In other words, the corrupt users maliciously
keeping silent does not halt the protocol, as long as there are enough
number of users online and following the protocol. The intuition is
that every round only requires the number of online participants to
be larger than the threshold to continue when every online user is
following the protocol. The protocol does not provide full robustness
which means the server can both identify misbehaving clients and
remove them. If the malicious users perform other attacks, only the
privacy of honest users is guaranteed and the server might not obtain
the result. Note that none of previous works other than ACORN [9]
achieves robustness, and ACORN gives full robustness, in a theoretical
construction without implementation, but at the expense of 𝑂 (log𝑛)
round complexity which is prohibitive.

4.5 MicroSecAgg𝐷𝐿: Special Case with One
Single Group

The first solution, MicroSecAgg𝐷𝐿 , introduced in Section 2 can be

viewed as a special case of MicroSecAgg𝑔𝐷𝐿 where there is only

one group which contains all the users. As there is only one group,

the ℎ-mask which is intended to hide the sums of individual groups

is not needed. Therefore, for the Setup phase, the Protocol 1 can be

simplified as described below:

• In Round 1 (line 1 and 2), each user 𝑖 only needs to generate

one pair of encryption keys pk𝑖 , sk𝑖 and send pk𝑖 to the

server who then forwards it to all users.

• Round 2 and Round 3 can be combined and simplified as

following. In line 3, each user 𝑖 runs one instance of key

agreement with every other user 𝑗 to agree on the symmetric

encryption key ek𝑖, 𝑗 . As now the ℎ-mask is not needed, the

second part of line 3where user 𝑖 secret shares the secret keys

for ℎ-mask generation is no needed. Thus, user 𝑖 can directly

continue to line 5 and it only needs to randomly choose

and secret share an 𝑟 -mask. User 𝑖 then sends the ciphertext

of the shares 𝑐𝑟
𝑖, 𝑗

encrypted with ek𝑖, 𝑗 to the server who

forwards them to the corresponding receivers as described

in line 5 and 6.

• Round 4 and 5 can be skipped, as they are used to help the

server reconstruct the ℎ-masks for users who drop offline in

the Setup phase. Now that the ℎ-mask is removed, these two

rounds can also be reduced.

Moreover, for the Aggregation phase, the Protocol 2 can be sim-

plified as described below:

• In line 2, user 𝑖 computes 𝑋𝑖 = 𝑥𝑖 + 𝑟𝑖 .
• In line 6, user 𝑖 computes 𝜁𝑖 = 𝐻 (𝑘)

∑
𝑗∈O 𝑟 𝑗,𝑖

, whereO denotes

the online set of all users.

• In line 7, no ℎS is needed.

The simplified protocol MicroSecAgg𝐷𝐿 has a Setup phase re-

quiring only two rounds and achieves stronger security guarantee.

5 MicroSecAgg𝐶𝐿: HANDLING LARGE INPUT
DOMAINS WITH CLASS GROUP

To overcome the limitation that the solution using discrete loga-

rithm in general cyclic groups can only handle small-scale problems,

we propose an alternative version of our protocol based on the class

group primitive as defined in Definition 3.1. Let G be the group

with the DDH assumption and F be its subgroup in which discrete

logarithm is easy. The core idea is to leverage the subgroup F to
hide secret inputs so that large inputs can be easily recovered while

still using the group G to hide the masks. Once the sum of masks in

the exponent of the generator of the large group is reconstructed

and removed, the server only needs to calculate the easy discrete

logarithm in the subgroup to recover the sum of secret inputs.

To guarantee the security of the protocol, the server should only

learn the order of the easy subgroup F to perform discrete logarithm

in it while not knowing the order of the hard large group G. Section

2.6.2 of [45] further states that the running time to find the order of

group G is computationally infeasible (at least as hard as factoring).

Thus, even if the server colludes with users, the security of the

protocol won’t be compromised as the order of group G is unknown

to all parties. The masks and the shares cannot be sampled from a

finite field but from integers within a bounded interval, as the server

who performs reconstruction in the exponent of the generator of G
does not know the order of groupG. Therefore, we use the modified

version of Shamir secret sharing which works on a bounded integer

interval as introduced in Appendix A.1. As the modified version

of Shamir secret sharing on integer interval scales the shares of

masks up by 𝑛! in which 𝑛 denotes the number of parties the secret
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is shared with, this method is more suitable for a relatively smaller

set of users or the group version in which each secret is only shared

within a small group of users.

We describe the protocol of MicroSecAgg𝐶𝐿 . The Setup phase

is the same as the Setup phase of MicroSecAgg𝑔𝐷𝐿 in Algorithm 1.

We describe the Aggregation phase in Algorithm 3. We mark the

part of execution that only needed in malicious settings with blue

color and underlines.

Same as in Algorithm 2, we assume at the end of Setup phase,

each user 𝑖 in group 𝐺𝑑 holds a random mask 𝑟𝑖 , a mutual mask ℎ𝑖 ,

and a share 𝑟 𝑗,𝑖 and ℎ 𝑗,𝑖 of masks for each of its neighbor 𝑗 ∈ 𝐺𝑑
and the server holds a value ℎS . We assume that

∑
𝑖∈U ℎ𝑖 +ℎS = 0.

Algorithm 3 Aggregation (MicroSecAgg𝐶𝐿)

This protocol uses the following algorithms defined in Section 3:

public key infrastructure, a Shamir’s secret sharing scheme

(SS.share, SS.recon, SS.expoShare, SS.expoRecon). It proceeds
as follows:

Input: Every user 𝑖 holds its own signing key 𝑑𝑆𝐾
𝑖

and all users’

verification key 𝑑𝑃𝐾
𝑗

for 𝑗 ∈ [𝑛], 𝑟𝑖 , ℎ𝑖 , a list of usersU𝑖 ⊆ 𝐺𝑑
with 𝑟 𝑗,𝑖 , ℎ 𝑗,𝑖 for every 𝑗 ∈ U𝑖 . Moreover, it also holds a secret

input 𝑥𝑖,𝑘 for every iteration 𝑘 . All users also hold a tuple

(𝐵, 𝑁, 𝑝, 𝑠, 𝑓 ,𝐺, 𝐹 ) which is honestly generated by a pair of

algorithms (cl.gen, cl.solve) as described in Definition 3.1.

The server S holds a tuple (𝐵, 𝑝, 𝑠, 𝑓 ,𝐺, 𝐹 ) and has access

to algorithm cl.solve(·). It also holds all users’ verification keys,

all public parameters and inputs it receives in the Setup phase,

and the list of usersUS it outputs in the Setup phase.

Moreover, in every iteration𝑘 , both all users and the server

has access to a fresh random generator 𝑔𝑘 of group 𝐺 .

Output: For each iteration 𝑘 , if there are at least 𝑡 users being

always online during iteration 𝑘 , then at the end of iteration 𝑘 ,

the server S outputs

∑
𝑖∈O𝑘 𝑥𝑖,𝑘 , in which O𝑘 denotes a set of

users of size at least 𝑡 .

Note: For simplicity of exposition, we omit the superscript 𝑘

of all variables when it can be easily inferred from the context.

1: for Iteration 𝑘 = 1, 2, . . . do
Round 1: Secret Sharing:

2: User 𝑖: It calculates and sends 𝑋𝑖 = 𝑔
𝑟𝑖+ℎ𝑖
𝑘

𝑓 𝑥𝑖 to the server.

3: Server S:
If it receives messages from less than 𝑡 users from any

group, abort. If it receives messages from a user not in US ,
ignore the message. Otherwise, let O denote the set of users 𝑖

who successfully send the masked input to the server. For each

group 𝐺𝑑 , the server sends O𝑑 = O ∩𝐺𝑑 to all users 𝑖 ∈ O𝑑 .
Round 2: Online Set Checking (Only needed in Malicious
setting):

4: User 𝑖: On receiving O𝑑 from the server, it checks that

|O𝑑 | ≥ 𝑡 and signs it with its signing key. Then it sends the

signature 𝜎𝑖 to the server.

5: Server S: On receiving the signatures from user 𝑖 ∈ 𝐺𝑑 ,
It verifies the signature on O𝑑 and user 𝑖’s verification key. If

the signature is invalid, ignore it. If it receives less than 𝑡 valid

signatures from any group, abort. Otherwise, it forwards all

valid signatures on O𝑑 to user 𝑖 ∈ O𝑑 for each group 𝐺𝑑 .

Round 3: Mask Reconstruction on the Exponent:

6: User 𝑖: On receiving signatures from the server, it first

verifies the signatures of the other users. If there are less

than 𝑡 valid signatures, abort. Otherwise, it calculates 𝜁𝑖 =

𝑔

∑
𝑗∈O𝑑 𝑟 𝑗,𝑖−

∑
𝑗∈U𝑖 \O𝑑 ℎ 𝑗,𝑖

𝑘
. It sends 𝜁𝑖 to the server.

7: Server S: If it receives 𝜁𝑖 from less than 𝑡 users in any group

𝐺𝑑 , abort. Otherwise, the server calculates

𝑅O𝑑 = SS.expoRecon({𝜁 𝑗 , 𝑗} 𝑗 ∈O′
𝑑
, 𝑡)

in which O′
𝑑
denotes the users from 𝐺𝑑 who send 𝜁 to the

server in the previous round. It then calculates∑︁
𝑖∈O

𝑥𝑖 ← cl.solve

(
𝐵, 𝑝, 𝑔, 𝑓 ,𝐺, 𝐹,

∏
𝑖∈O

𝑋𝑖/
∏
𝑑

𝑅O𝑑

)
to obtain

∑
𝑖∈O 𝑥𝑖 .

8: end for

6 PERFORMANCE
To measure the concrete performance, we provide end-to-end im-

plementations of our protocols [7], as well as three benchmark

protocols, BIK+17, BBG+20 and Flamingo with ABIDES [15], a dis-

crete event simulation framework with modifications to enable

simulation of multi-iterative aggregation protocols, in Python lan-

guage. In all implementations, we assume semi-honest settings, thus

we omit the marked parts of the protocols that are only needed

in the malicious setting. The experiments are run on an AWS EC2

r5.xlarge instance equipped with 4 3.1 GHz Intel Xeon Platinum

8000 series processors CPUs and 32GB memory. We are using large

machine instances so that we can simulate a large number of parties.

Each user and the server is single-threaded.

Comparisonwith BIK+17 andBBG+20. In the first two graphs
in Figure 1, we compare the local computation time of four proto-

cols (taking the average time of 10 aggregations) with the length

of the result fixed to 20 bits and group/neighbor size fixed to 100

for MicroSecAgg𝑔𝐷𝐿 and BBG+20. As shown in the graph, the com-

putation time of MicroSecAgg𝐷𝐿 is about 100 times shorter than

BBG+20 when the total number of users is 500, and the computa-

tion time of MicroSecAgg𝑔𝐷𝐿 is about 20 times faster than BBG+20

when the total number of users is 1000. In the two graphs on the

right side, we compare the bandwidth cost per iteration of different

protocols, with the length of the result fixed to 20 bits and the

group/neighbor size is fixed to 100. The size of outgoing messages

of each user of MicroSecAgg𝐷𝐿 and MicroSecAgg𝑔𝐷𝐿 are almost

the same, which is about 1000 times smaller than BIK+17 and about

200 times smaller than BBG+20 when the total number of users

is 500. The size of incoming messages from the server per user of

MicroSecAgg𝐷𝐿 is also almost the same asMicroSecAgg𝑔𝐷𝐿 , which

is about 50 times smaller than BIK+17 and 10 times smaller than

BBG+20 when the total number of users is 500. The improvement

of computation time and bandwidth cost will be larger when the

total number of users increases.

We stress that all experiments in Figures 1 are run with brute

force discrete logarithm. With class groups in MicroSecAgg𝐶𝐿 , the

server computation time can be further significantly reduced. For

example, computing discrete logarithms using brute force on a 20-

bit range takes 1.14 seconds, while it takes only 673 nanoseconds to
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Figure 1: Wall-clock local computation time and outbound message sizes of one iteration of the aggregation phase as the number of users
increases. The length of the sum of inputs is fixed to ℓ = 20 bits, i.e., the input of each user is in the range [2ℓ /𝑛] when the total number of users
is 𝑛. For the protocol MicroSecAgg𝑔𝐷𝐿 and BBG+20, the group/neighbor size is set to 100.
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Figure 2: The left two graphs show the wall-clock local computation time of one iteration of the aggregation phase as the number of users
increases. The right two graphs are the outbound bandwidth cost (bytes) on the user and the server side when the total number of users grows.
In the legend, “vl” denotes the length of input vector, “gs” denotes group size for MicroSecAgg𝐶𝐿 , “c” denotes the number of decryptors for
Flamingo.

compute on a 32-bit range with class group library [13] instantiated

with 256-bit primes in the same environment.

Comparison with Flamingo.We also give a performance com-

parison between our protocol instantiated with the class group
MicroSecAgg𝐶𝐿 and Flamingo [37] in Figure 2. As shown in the

graph, for a single input, our protocol allows shorter computation

time and lower communication costs. When the vector length of

inputs is larger, our user and server computation time grows in

proportion as the number of exponentiations by each user and the

number of reconstructions on exponent by the server grow in pro-

portion to the vector length. This is because our protocol does not

utilize a PRG to extend a random secret to a long masking vector

as in BIK+17, BBG+20 or Flamingo. On the other hand, the compu-

tation time of Flamingo is not affected by the input vector length

significantly. While we provide worse server computation time

when the vector length grows, it is of lesser importance as servers

typically run on much more powerful machines and the server

computation of share reconstructions can also be easily parallelized.

Last but not least, our protocol provides better user computation

time and bandwidth cost when the total number of participants is

large. For example, with 1024 users, neighbor/committee size 128,

vector length 100, the user in our protocol is 3 times faster and has

10 times lower bandwidth.

Aggregation phase performance. Figure 3 shows how the

local computation time of each iteration of the Aggregation phase

(y-axis) of each user and the server changes as the total number

of users (x-axis) grows. As shown in the graph, the running time

of MicroSecAgg𝐷𝐿 is not affected significantly by the number of

users but is affected more by the size of the sum of inputs. On

the contrary, the performance of BIK+17 is impacted by the total

number of users and does not change with different input sizes.

This is because of the different methods the two protocols use to

obtain the result. In BIK+17, in all scenarios we are using the same

finite field, which means the size of each share (which is a field

element) and the time it requires to share and reconstruct the secret

is the same in these scenarios. Each user needs to share two secrets

with all other users and the server needs to reconstruct a secret for

each user with shares from a linear fraction of all users in every

iteration, thus the running time of both the user and the server

increases as the number of users increases. In the Aggregation

phase of MicroSecAgg𝐷𝐿 , each user only calculates and sends one

field element to the server in each round and the server only needs

to run the reconstruction in the exponent once no matter howmany

users are participating. Thus, the total running time does not grow

obviously with the total number of users when compared with

the benchmark protocol. As the server calculates the aggregated

result with discrete log, the running time increases when the range

of the result enlarges. This relevance does not exist when using

class groups when the input is within the group order of the easy

subgroup, which allows input size of hundreds of bits.

Full execution performance. In Figure 4, we report the com-

putation and communication costs of both the setup phase (if appli-

cable, e.g., in MicroSecAgg and Flamingo) and 10 iterations of the

aggregation phase to give a whole picture of the performance of

different protocols. All the protocols are executed with one single in-

put, 20-bit aggregation result, and group/neighborhood/committee

of size 100 when applicable. We assume all users are online during

the whole process. As shown in the figure, all three of our protocols

outperform BIK+17, BBG+20, and Flamingo regarding computa-

tion and communication cost under this setting. More specifically,
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for 500 users, MicroSecAgg𝐶𝐿 is 6 times faster than BBG+20 and

42 times faster than Flamingo (decryptor) on the user side and 7

times faster than BBG+20 and 10 times faster than Flamingo on the

server side; it also causes communication overhead 5 times less than

BBG+20 and 11 times less than Flamingo on the user (decryptor

for Flamingo) side, and 3 times less than BBG+20 and 19 times less

than Flamingo on the server side.

One thing to note is that in practice, the device on the user side

is usually with more limited resource while the server usually runs

on more powerful machines than the AWS machine we use in the

experiments.

In WAN environment. In Figure 5, we provide a comparison

of the server running time from the start of the protocol to the

end of 10 aggregation iterations. The Setup phase is included if

applicable. We simulate the WAN environment assuming users are

distributed in major cities in different continents over the world. We

assume the server resides in New York City and the longest latency

from the users to the server is from Sydney, Australia. The ping

latency between the two cities is on average 200ms. We assume

the bandwidth to be 100 Mbps. We only report the server running

time as the users are responsive and reply only when they receive

messages from the server. In particular, in each round, the server

needs to wait for a fixed amount of time to collect the messages

from all users, we set the waiting interval of the server based on the

estimated calculation time of the users and the estimated longest

communication time between the users and the server.

Other results. In Appendix E.4, we also include results

comparing the performance of different group sizes between

MicroSecAgg𝑔𝐷𝐿 and BBG+20 (Figure 9), the performance

of MicroSecAgg𝐷𝐿 and MicroSecAgg𝑔𝐷𝐿 with different offline

rates (Figure 10), and the performance of the Setup phase of

MicroSecAgg𝑔𝐷𝐿 (Figure 11). We also run a federated learning pro-

tocol with MicroSecAgg𝐷𝐿 on the adult census income dataset [27]

to show that our secure aggregation solution does not affect accu-

racy (see Appendix E.4).

7 CONCLUSION AND FUTUREWORK
In this work, we propose a new construction of multi-iteration

secure aggregation protocol that has better round complexity while

keeping the same asymptotic communication cost. We provide cor-

rectness and privacy proofs in semi-honest and malicious settings,

respectively.

As the next step, we are interested in using our secure aggre-

gation protocol as a building tool for the more complex setting of

vertical federated learning where the feature space for the machine

learning model across all devices is different. We are also interested

in reducing the communication cost further with compressing tech-

niques when the model update is sparse.
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A PRELIMINARIES (CONTINUED)
A.1 Extension of Shamir’s Secret Sharing
We define the function SS.expoRecon as mentioned in Section 3

and its counterpart SS.expoSharewhich is used later in the security

proofs as an extension of Shamir’s secret sharing. Let 𝑝, 𝑞 be primes

such that 𝑝 = 2𝑞 + 1. Let G be the multiplicative cyclic subgroup

of order 𝑞 of Z∗𝑝 and let 𝑔 be a generator of G. Let 𝑠, 𝑠𝑖 𝑗 , 𝑎𝑖 ∈ Z𝑞 for

𝑖 ∈ [𝑡] and 𝑖 𝑗 ∈ [𝑞] for 𝑗 ∈ [𝑛]. We define two functions:

• SS.expoRecon((𝑔𝑠1 , 𝑋1), . . . , (𝑔𝑠𝑛 , 𝑋𝑛), 𝑡) =

{𝑔𝑠 , 𝑔𝑎1 , . . . , 𝑔𝑎𝑡−1 }: With the shares 𝑔𝑠1 , . . . , 𝑔𝑠𝑛 , it re-

turns the secret and the polynomial coefficients of

the Shamir secret sharing in the exponent. More

precisely, it returns {𝑔𝑠 , 𝑔𝑎1 , . . . , 𝑔𝑎𝑡−1 } such that for

𝑓 (𝑥) = 𝑠 + 𝑎1𝑥 + . . . + 𝑎𝑡−1𝑥
𝑡−1

, 𝑓 (𝑋𝑖 ) = 𝑠𝑖 for 𝑖 ∈ [𝑛]. This
function can be implemented without knowing 𝑠1, . . . , 𝑠𝑛 by

performing all the linear operations of function SS.recon in

the exponent.

• SS.expoShare(𝑔𝑠 , 𝑔𝑎1 , . . . , 𝑔𝑎𝑡−1 , 𝑋 ) = 𝑔𝑠𝑋 : with the coeffi-

cients of the polynomial in the exponent, it returns a new

share in the exponent at index 𝑋 . More precisely, it returns

𝑔𝑠𝑋 = 𝑔𝑠 · (𝑔𝑎1 )𝑋 · . . . · (𝑔𝑎𝑡−1 )𝑋 𝑡−1

. This function can also be

implemented without knowing the exponents 𝑠, 𝑎1, . . . , 𝑎𝑡−1.

Moreover, as all involved calculation is linear operations, we can

implement calculation of the rest of shares of a secret 𝑠 for indices
{𝑋𝑖 }𝑖∈[𝑚+1,𝑡 ] fixing the shares 𝑓 (𝑋𝑖 )𝑖∈[𝑚] when both the secret

and the shares are in the exponent of 𝑔.

Shamir secret sharing on integer interval. The above imple-

mentation requires the secret and shares to be elements in a finite

field. Now we provide a modified version of SS.share and SS.recon
which can secret share and reconstruct secrets in a bounded interval

of integers. We follow the algorithm described in [14]. The algo-

rithm is similar to the implementation of Shamir secret sharing over

a field with the key difference that as there is no modulo operation,

the shares should not leak the remainder of the secret when divided

by𝑋𝑖 and the division reconstruction steps need to happen in the in-

teger set. Thus, we scale the secret 𝑠 by Δ =
∏
𝑖∈[𝑛] 𝑋𝑖 times before

secret sharing to guarantee that every share modulo 𝑋𝑖 for any 𝑖

equals 0, and scales the coefficients in the Lagrange basis polynomi-

als to integers by scaling them by Δ times. The reconstructed secret

is therefore 𝑠 · Δ2
. For simplicity of exposition, we overload the

algorithm names SS.share, SS.recon, SS.expoShare, SS.expoRecon
when which version of the algorithm is needed can be clearly in-

ferred from the context.

A.2 Two Oracle Diffie-Hellman (2ODH)
Assumption

Same as [11], we adopt Two Oracle Diffie-Hellman (2ODH) assump-

tion:

Definition A.1. Let G(𝑘) → (G′, 𝑔, 𝑞, 𝐻 ) be an efficient algo-
rithm which samples a group G′ of order 𝑞 with generator 𝑔 and a
function 𝐻 : {0, 1}∗ → {0, 1}𝑘 . Consider the following probabilistic
experiment, parameterized by a PPT adversary M, a bit 𝑏 and a secu-
rity parameter 𝑘 :
2ODH − Exp𝑏G,𝑀 (𝑘):

(1) (G′, 𝑔, 𝑞, 𝐻 ) ← G(𝑘)
(2) 𝑎 ← Z𝑞 ;𝐴← 𝑔𝑎

(3) 𝑏 ← Z𝑞 ;𝐵 ← 𝑔𝑏

(4) if 𝑏 = 1, 𝑠 ← 𝐻 (𝑔𝑎𝑏 ), else 𝑠 $←− {0, 1}𝑘
(5) 𝑀O𝑎 ( ·),O𝑏 ( ·) (G′, 𝑔, 𝑞, 𝐻,𝐴, 𝐵, 𝑠) → 𝑏 ′

(6) Output 1 if 𝑏 = 𝑏 ′, 0 otherwise.
where O𝑎 (𝑋 ) returns 𝐻 (𝑋𝑎) on any 𝑋 ≠ 𝐵 (and an error on input

𝐵) and similarly O𝑏 (𝑋 ) returns𝐻 (𝑋𝑏 ) on any𝑋 ≠ 𝐴. The advantage
of the adversary is defined as

𝐴𝑑𝑣2𝑂𝐷𝐻
G,𝑀 (𝑘) :=

|𝑃𝑟 [2ODH − Exp1

G,𝑀 (𝑘) = 1] − 𝑃𝑟 [2ODH − Exp0

G,𝑀 (𝑘) = 1] |
We say that the Two Oracle Diffie-Hellman assumption holds for G if
for all PPT adversaries M, there exists a negligible function 𝜖 (·) such
that 𝐴𝑑𝑣2𝑂𝐷𝐻

G,𝑀 (𝑘) ≤ 𝜖 (𝑘).
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A.3 Class Groups Framework
Castagnos et al. [21] first introduced the idea of a composite order

group whose order is unknown, but there is a subgroup of known

order where the discrete algorithm is easy. Subsequently, this defini-

ton has been refined and updated by a series of works which have

successfully leveraged the group to create an assortment of crypto-

graphic primitives [14, 17, 18, 22].

Broadly, the framework is defined by two functions -

cl.gen, cl.solve with the former outputting a tuple of public param-

eters. The elements of this framework are the following:

• Input Parameters: 𝜅𝑐 is the computational security parameter,

𝜅𝑠 is a statistical security parameter, a prime 𝑝 such that

𝑝 > 2
𝜅𝑐
, and uniform randomness 𝜌 that is used by the

cl.gen algorithm and is made public.

• Groups: ˆG is a finite multiplicative abelian group,G is a cyclic

subgroup of
ˆG, F is a subgroup of G, G𝑝 = {𝑥𝑝 , 𝑥 ∈ G}

• Orders: F has order 𝑝 , ˆG has order 𝑝 · 𝑠 , G has order 𝑝 · 𝑠 such
that 𝑠 divides 𝑠 and 𝑔𝑐𝑑 (𝑝, 𝑠) = 1, 𝑔𝑐𝑑 (𝑝, 𝑠) = 1, G𝑝 has order

𝑠 and therefore G = F × G𝑝 .
• Generators: 𝑓 is the generator of F, 𝑔 is the generator of G,
and𝑔𝑝 is the generator ofG

𝑝
with the property that𝑔 = 𝑓 ·𝑔𝑝

• Upper Bound: Only an upper bound 𝑠 of 𝑠 (and 𝑠) is provided.

• Additional Properties: Only encodings of ˆG can be recognized

as valid encodings and 𝑠, 𝑠 are unknown.

• Distributions: D (resp. D𝑝 ) be a distribution over the set

of integers such that the distribution {𝑔𝑥 : 𝑥
$←− D} (resp.

{𝑔𝑥𝑝 : 𝑥
$←− D𝑝 }) is at most distance 2

−𝜅𝑠
from the uniform

distribution over G (resp. G𝑝 ).

• Additional Group and its properties: ˆG𝑝 = {𝑥𝑝 , 𝑥 ∈ ˆG}, ˆG

factors as
ˆG𝑝 ×F.1 Let �̄� be the group exponent of

ˆG𝑝 . Then,

the order of any 𝑥 ∈ ˆG𝑝 divides �̄� .2

Remark. The motivations behind these additional distributions
are as follows. One can efficiently recognize valid encodings of ele-
ments in ˆG but not G. Therefore, a malicious adversary can run our
constructions by inputting elements belonging to ˆG𝑝 (rather than in
G𝑝 ). Unfortunately, this malicious behavior cannot be detected which
allows to obtain information on the sampled exponents modulo �̄�
(the group exponent of ˆG𝑝 ). By requiring the statistical closeness of
the induced distribution to uniform in the aforementioned groups
allows flexibility in proofs. Note that the assumptions do not depend
on the choice of these two distributions. Further, the order 𝑠 of G𝑝

and group exponent �̄� of ˆG𝑝 are unknown and the upper bound 𝑠
is used to instantiate the aforementioned distribution. Specifically,
looking ahead we will set D𝑝 to be the uniform distribution over the
set of integers [𝐵] where 𝐵 = 2

𝜅𝑠 · 𝑠 . Using Lemma A.2, we get that
the distribution is less than 2

−𝜅𝑠 away from uniform distribution in
G𝑝 . In our constructions we will set 𝜅𝑠 = 40. We will make this sam-
pling more efficient for our later constructions. We refer the readers to
Tucker [45, §3.1.3, §3.7] for more discussions about this instantiation.
Finally, as stated we will also set ˆD = D and ˆD𝑝 = D𝑝 .

1
Recall that 𝑝 and 𝑠 are co-prime.

2
This follows from the property that the exponent of a finite Abelian group is the least

common multiple of its elements.

We also have the following lemma from Castagnos, Imbert, and

Laguillaumie [19] which defines how to sample from a discrete

Gaussian distribution.

Lemma A.2. Let G be a cyclic group of order 𝑛, generated by 𝑔.
Consider the random variable 𝑋 sampled uniformly from G; as such
it satisfies Pr[𝑋 = ℎ] = 1

𝑛 for all ℎ ∈ G. Now consider the random
variable 𝑌 with values in G as follows: draw 𝑦 from the discrete

Gaussian distributionDZ,𝜎 with 𝜎 ≥ 𝑛
√︃

ln(2(1+1/𝜖))
𝜋 and set𝑌 := 𝑔𝑦 .

Then, it holds that:
Δ(𝑋,𝑌 ) ≤ 2𝜖

Remark. By definition, the distribution {𝑔𝑥 : 𝑥
$←− D} is statisti-

cally indistinguishable from {𝑔𝑦 : 𝑦
$←− {0, . . . , 𝑝 · 𝑠 − 1}}. Therefore,

it follows that {𝑥 mod 𝑝 · 𝑠 : 𝑥
$←− D} is statistically indistinguish-

able from {𝑥 : 𝑥
$←− {0, . . . , 𝑝 · 𝑠 − 1}}. Similarly, {𝑥 mod 𝑠 : 𝑥

$←−
D𝑝 } is statistically indistinguishable from {𝑥 : 𝑥

$←− {0, . . . , 𝑠 − 1}}.
Furthermore, sampling a value 𝑥 corresponding toD is statistically in-
distinguishable from the uniform distribution in {0, . . . , 𝑠−1} because
𝑠 divides 𝑝 · 𝑠 .

Definition A.3 (Class Group Framework). The framework is
defined by two algorithms (cl.gen, cl.solve) such that:

• pp = (𝑝, 𝜅𝑐 , 𝜅𝑠 , 𝑠, 𝑓 , 𝑔𝑝 , ˆG, F.D,D𝑝 , ˆD, ˆD𝑝 , 𝜌)
$←−

cl.gen(1𝜅𝑐 , 1𝜅𝑠 , 𝑝; 𝜌)
• The DL problem is easy in F, i.e., there exists a deterministic
polynomial algorithm cl.solve that solves the discrete loga-
rithm problem in F:

Pr

𝑥 = 𝑥 ′
pp =

$←− cl.gen(1𝜅𝑐 , 1𝜅𝑠 , 𝑝; 𝜌)
𝑥

$←− Z/𝑝Z, 𝑋 = 𝑓 𝑥 ;

𝑥 ′ ← cl.solve(pp, 𝑋 )

 = 1

When dealing with groups of known order, one can sample

elements in a groupG easily by merely sampling exponents modulo

the group order and then raising the generator of the group to that

exponent. Unfortunately, note that here neither the order of G
(i.e., 𝑝𝑠) nor that of G𝑝 (i.e. 𝑠) is known. Therefore, we instead

use the knowledge of the upper-bound 𝑠 of 𝑠 to instantiate the

distributions D and D𝑝 respectively. This choice of choosing from

the distributions D and D𝑝 respectively allows for flexibility of

various proofs.

A.4 Ideal Functionality and Privacy Definitiion
To define privacy property, we first describe an ideal functionality

which allows the adversary to learn the sum of secrets of all honest

and online users chosen by the adversarial server in every itera-

tion. More formally, Ideal𝛿{𝑥𝑘
𝑖
}𝑖∈U\C,𝑘

is an ideal oracle which can

be queried once for each iteration 𝑘 ∈ [𝐾]. When queried with a

large enough set of honest users 𝑈 and the iteration 𝑘 , it provides∑
𝑖∈𝑈 𝑥

𝑘
𝑖
. More specifically, given a set of users 𝑈 and an iteration

number 𝑘 , it operates as follows:

Ideal𝛿{𝑥𝑘
𝑖
}𝑖∈U\C,𝑘

(𝑈 , 𝑘) =


∑
𝑖∈𝑈 𝑥

𝑘
𝑖

if𝑈 ⊆ (U\C)
and |𝑈 | > (1 − 𝛿) |U| − |C|,

⊥ otherwise.
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ˆG

Group Order

𝑝 · 𝑠

G := ⟨𝑔 = 𝑓 · 𝑔𝑝 ⟩

cyclic subgroup

𝑝 · 𝑠

G𝑝 := ⟨𝑔𝑝 ⟩ = {𝑥𝑝 : 𝑥 ∈ G}
F := ⟨𝑓 ⟩

F : 𝑝

G𝑝 : 𝑠

factors as

Figure 6: A brief overview of the class group framework we employ.
Here, ˆG is a finite multiplicative abelian group. 𝑠, 𝑝 are co-prime and
𝑠 divides 𝑠. Further, 𝑠 is unknown but an upperbound 𝑠 is known.
Finally, only encodings of ˆG are recognizable. Therefore, specifically
the assumption we will rely on is that one cannot identify if a given
group element belongs to G or G𝑝 . The last property we will rely on
is that discrete logarithm is efficient in the subgroup F.

Definition A.4 (Privacy against Semi-honest/Malicious Ad-

versary). Let 𝐾,𝑛 be integer parameters. Let Π be a multi-iteration
secure aggregation protocol running with one central server S and a
set of 𝑛 usersU = {1, . . . , 𝑛}. An aggregation protocol Π guarantees

privacy against 𝛾 fraction of semi-honest/malicious adversary with

𝛿 offline rate if there exists a PPT simulator SIM such that for all
𝑘 = 1, . . . , 𝐾 , all inputs vectors 𝑋𝑘 = {𝑥𝑘

1
, . . . , 𝑥𝑘𝑛 } for each iteration

1 ≤ 𝑘 ≤ 𝐾 , and all sets of corrupted users C ⊂ U with |C| < 𝛾𝑛

controlled by an honest-but-curious/malicious adversary𝑀C which
also controls the server S, the output of SIM is computationally indis-
tinguishable from the joint view of the server and the corrupted users
in that execution, i.e.,

REALU,𝐾C (𝑀C, {𝑥𝑘𝑖 }𝑖∈U\C,𝑘∈[𝐾 ] )

≈𝑐 SIM
U,𝐾,Ideal𝛿

{𝑥𝑘
𝑖
}𝑖∈U\C,𝑘∈[𝐾 ] (𝑀C)

A.5 Hypergeometric Distribution
The hypergeometric distribution 𝑋 ∼ HyperGeom(𝑁,𝑚,𝑛) is a
discrete probability distribution that describes the probability of

picking 𝑋 objects with some specific feature in 𝑛 draws, without

replacement, from a finite population of size𝑁 that contains exactly

𝑚 objects with that feature.

We use the same tail bounds for 𝑋 ∼ HyperGeom(𝑁,𝑚,𝑛) used
in [10]:

• ∀𝑑 > 0 : Pr[𝑋 ≤ (𝑚/𝑁 − 𝑑)𝑛] ≤ 𝑒−2𝑑2𝑛
,

• ∀𝑑 > 0 : Pr[𝑋 ≥ (𝑚/𝑁 + 𝑑)𝑛] ≤ 𝑒−2𝑑2𝑛
.

B INTUITION OF THE TWO PROTOCOLS
We include the graphs high-levelly depicting the Setup phase and

the Aggregation phase of MicroSecAgg𝑔𝐷𝐿 in this section.

C SECURITY PROOFS FOR MicroSecAgg𝑔𝐷𝐿
C.1 Proof of Group Properties

Proof. (for Lemma 4.4) We first prove that constraint 1 in

Definition 4.3 is satisfied. Let 𝑚 =
𝛾𝑛𝑁
𝑛−1
+

√︃
𝑁
2
(𝜎 log 2 + log𝑛).

Fixing an arbitrary honest user 𝑖 , let 𝑋 denote the number of

corrupt users falling in the same group as user 𝑖 . Then 𝑋 ∼
HyperGeom(𝑛 − 1, 𝛾𝑛, 𝑁 ). By the tail bound of the hypergeometric

distribution,

Pr[𝑋 ≥ 𝑚] = Pr

[
𝑋 ≥

(
𝛾𝑛

𝑛 − 1

+
√︂

1

2𝑁
(𝜎 log 2 + log𝑛)

)
· 𝑁

]
≤ 𝑒−2𝑁 · 1

2𝑁
(𝜎 log 2+log𝑛) =

1

𝑛
· 2−𝜎 .

As 𝑡 ≥ (3 + 𝛾 − 2𝛿)𝑁 /4, we have that 2𝑡 − 𝑁 ≥ (1 + 𝛾 − 2𝛿)𝑁 /2.
Then as long as

𝑁 ≥ 𝜎 log 2 + log𝑛

2

(
1 + 𝛾 − 2𝛿

2

− 𝛾𝑛

𝑛 − 1

)−2

,

we have that 2𝑡 −𝑁 ≥ 𝑚, i.e., Pr[𝑋 ≥ 2𝑡 −𝑁 ] ≤ 1

𝑛 · 2
−𝜎

. Taking the

union bound over all users, we have that event 𝐸1 happens with

overwhelming probability. This can be achieved by choosing

𝑐 ≥ 1

2

(
1 + 𝛾 − 2𝜎

2

− 𝛾𝑛

𝑛 − 1

)−2

.

For the second constraint, let𝑌 denote the number of offline users

in the honest and online user 𝑖’s group. Then 𝑌 ∼ HyperGeom(𝑛 −
1, 𝛿𝑛, 𝑁 ). Let𝑚′ = 𝛿𝑛𝑁

𝑛−1
+

√︃
𝑁
2
(𝜂 log 2 + log𝑛). Then we have

Pr[𝑌 ≥ 𝑚′] ≤ 1

𝑛
· 2−𝜂 .

If 𝑁 − 𝑡 ≥ 𝑚′, then by the same argument, we have the second

constraint holds. By choosing

𝑁 ≥ 𝜂 log 2 + log𝑛

2

(
3 + 𝛾 − 2𝛿

4

− (1 − 𝛿)𝑛
𝑛 − 1

)−2

,

we have𝑁−𝑡 ≥ 𝑚′when𝑛 is sufficiently large. This can be achieved

by setting

𝑐 >
1

2

(
3 + 𝛾 − 2𝛿

4

− (1 − 𝛿)𝑛
𝑛 − 1

)−2

.

Both bounds of 𝑐 are bounded when 𝑛 is sufficiently large. Thus,

we can choose a constant 𝑐 that is larger than these two bounds.

□

C.2 Privacy
Before proving the privacy guarantee against malicious adversary,

we define several notions used in the proof.

Participation in the Aggregation phase. For a user 𝑖 ∈ 𝐺𝑑 , we say
the user 𝑖 participates in the Aggregation phase if it is included in

less than 𝑡 − |𝐺𝑑 ∩ C| honest users’ offline lists at the end of the

fourth round of the Setup phase.

Lemma C.1. Assume event 𝐸1 happens, i.e., there are less than
2𝑡 − 𝑛

𝐵
corrupt users in any group. If for any user 𝑖 , sk−1

𝑖 and sk1

𝑖
are reconstructed by the server, then 𝑖 must not participate in the
Aggregation phase; if user 𝑖 participates in the Aggregation phase, at
least one of sk−1

𝑖 and sk1

𝑖 is hidden from the server.
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Users 𝑖 ∈ 𝐺𝑑 Server S

Round 1

generates keys pk𝑖 , sk𝑖 ,
and pk1

𝑖 , sk
1

𝑖 , pk
−1

𝑖 , sk
−1

𝑖 ,

signs pk𝑖 , pk
1

𝑖 , pk
−1

𝑖 with 𝑑𝑆𝐾
𝑖

pk𝑖 , pk
1

𝑖 , pk
−1

𝑖 , 𝜎𝑖

Verifies signatures
{pk𝑗 , pk1

𝑗 , pk
−1

𝑗 , 𝜎 𝑗 } 𝑗∈U1

S∩(𝐺𝑑∪𝐺𝑑±1
)

Round 2

gets common keys

ek𝑖,𝑗 with pk𝑗 , sk𝑖
andmk𝑏𝑖,𝑗 with pk−𝑏𝑗 , sk

𝑏
𝑖

for 𝑏 = ±1;

secret shares sk𝑏𝑖 among𝐺𝑑+𝑏
encrypts the shares for 𝑗 using ek𝑖,𝑗 encrypted shares {𝑐sk

𝑖,𝑗
} 𝑗∈𝐺𝑑+1∪𝐺𝑑−1

{𝑐sk
𝑗,𝑖
}
𝑗∈U2

S∩(𝐺𝑑+1∪𝐺𝑑−1
)

Round 3

ℎ𝑖 =
∑
𝑗∈𝐺𝑑−1

mk𝑖,𝑗 −
∑
𝑗∈𝐺𝑑+1 mk𝑖,𝑗 ;

randomly chooses 𝑟𝑖
secret shares 𝑟𝑖 , ℎ𝑖 among𝐺𝑑

encrypts the shares for 𝑗 with ek𝑖,𝑗
encrypted shares {𝑐𝑟

𝑖,𝑗
, 𝑐ℎ
𝑖,𝑗
} 𝑗∈𝐺𝑑

{𝑐𝑟
𝑗,𝑖
, 𝑐ℎ
𝑗,𝑖
}
𝑗∈U3

S∩𝐺𝑑

Round 4

offline𝑖 : users 𝑗 in𝐺𝑑
who sends pk𝑗 in the first round

but fails sending the encrypted shares

in the third round

sign offline𝑖 with 𝑑𝑆𝐾𝑖 offline𝑖 , 𝜎′𝑖

{offline𝑗 , 𝜎′𝑗 } 𝑗∈U4

S∩(𝐺𝑑−1
∪𝐺𝑑+1 )

,

Round 5

sk𝑏
𝑗′,𝑖 if 𝑗

′
is in 𝑡 offline𝑗 from𝐺𝑑−𝑏 for 𝑏 = ±1

reconstructs sk1

𝑗′ , sk
−1

𝑗′
calculatesmk𝑖′, 𝑗′
for all 𝑖′ in the adjacent groups of 𝑗

then calculates ℎ 𝑗′
adds ℎ 𝑗′ up to get ℎS
which is the sum of ℎ-masks

of users who fail to share their ℎ-masks

in round 3

Figure 7: An overview of the Setup phase of MicroSecAgg𝑔𝐷𝐿

Proof. If sk1

𝑖 for a user 𝑖 ∈ 𝐺𝑑 is reconstructed by the server,

theremust be at least 𝑡 members of group𝐺𝑑+1 sending the shares to
the server in the fifth round of the Setup phase, at least 𝑡−|C∩𝐺𝑑+1 |
of which are from honest users. All of these honest users must have

received at least 𝑡 valid signatures on offline sets that includes user

𝑖 . At least 𝑡 − |C ∩𝐺𝑑 | of these signatures come from honest users

in 𝐺𝑑 who have put 𝑖 in their offline list. By definition, 𝑖 is not

participating in the Aggregation phase. □

Common online set of a group. For some iteration 𝑘 of the Aggre-

gation phase, we say a user set O𝑑 ⊆ 𝐺𝑑 is a common online set of
group 𝑑 if some honest user in𝐺𝑑 receives at least 𝑡 valid signatures

on O𝑑 in the third round. This set might not exist when the server

is corrupt. Then we have the following fact:

Fact C.2 (Uniqe Common Online Set each Group). When
2𝑡 > 𝑛/𝐵 + |C ∩𝐺𝑑 |, there is at most one common online set O𝑑 for
each group 𝑑 in every iteration.

Proof. For the sake of contradiction, assume that there are two

common online sets O𝑑 and O′
𝑑
for group 𝑑 in some iteration. In

other words, in the joint view of the honest users in group 𝑑 , there

are at least 𝑡 valid signatures on both sets. At most 𝑐 signatures

are from corrupt users. As 𝑡 > 2

3
𝑛 and 𝑐 < 𝑛 − 𝑡 < 1

3
𝑛, we have

2(𝑡 − 𝑐) > 𝑛 − 𝑐 . In other words, there must be an honest user

signing both on O𝑑 and O′
𝑑
, which is not possible. □

Now, we give the proof for Theorem 4.6.

Proof. (of Theorem 4.6) By saying that an honest user uses

𝑟 ′ (or ℎ′) as 𝑟 -mask (or ℎ-mask) in iteration 𝑘 of the Aggregation

phase, we mean that in the first round of the iteration 𝑘 , the user

uses 𝑟 ′ (or ℎ′) to calculate 𝑋𝑖 ; it also calculates the shares 𝑟 ′
𝑖, 𝑗

of

𝑟 ′ for honest users in its group fixing the shares that have already

been sent to its corrupt neighbors. Then in the third round, every

honest user 𝑗 in its group uses 𝑟 ′
𝑖, 𝑗

or ℎ′
𝑖, 𝑗

to calculate the sum of

shares.

As the good events happen with overwhelming probability when

the grouping algorithm is (𝜎, 𝜂, C)-nice, we only considers the case
when both events 𝐸1 and 𝐸2 happen. We first define the behavior

of the simulator SIM:

• In the Setup phase:

– Round 1: The simulator simulates each honest user fol-

lowing the protocol.

– Round 2: Each honest user 𝑖 receives the public keys and

the signatures (pk𝑗 , 𝜎 𝑗 ) from the server, and verifies the

signatures as described in Algorithm 1, except that the

simulator additionally aborts if some honest user 𝑖 receives
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Users 𝑖 ∈ 𝐺𝑑 Server S

Round 1

𝑋𝑖 = 𝑥𝑖 + ℎ𝑖 + 𝑟𝑖
𝐻 (𝑘)𝑋𝑖

O𝑑 : list of online users in𝐺𝑑

Round 2

Sign O𝑑 with 𝑑𝑆𝐾
𝑖 The signature 𝜎𝑖

{𝜎 𝑗 } 𝑗∈𝐺𝑑

Round 3

verify signatures

𝐻 (𝑘)
∑
𝑗∈O𝑑 𝑟 𝑗,𝑖−

∑
𝑗∈𝐺𝑑 \O𝑑 ℎ𝑗,𝑖

For each group𝐺𝑑 :

reconstruct 𝐻 (𝑘)
∑
𝑗∈O𝑑 𝑟 𝑗 −

∑
𝑗∈𝐺𝑑 \O𝑑 ℎ𝑗

calculate 𝐻 (𝑘)
∑
𝑗∈O𝑑 𝑥𝑗 =

𝐻 (𝑘)
∑
𝑗∈O𝑑 𝑋𝑗 −(

∑
𝑗∈O𝑑 𝑟 𝑗 −

∑
𝑗∈𝐺𝑑 \O𝑑 ℎ𝑗 )

calculate 𝐻 (𝑘)
∑
𝑗∈O𝑋 𝑗 =

∏
𝑑∈[𝐵 ] 𝐻 (𝑘)

∑
𝑗∈O𝑑 𝑋𝑗

calculate discrete log to get the final result

Figure 8: An overview of the Aggregation phase of MicroSecAgg𝑔𝐷𝐿

a valid signature of an honest user 𝑗 on a public encryption

key different from what user 𝑗 sends to the server in the

previous round. Then for each corrupt user 𝑗 ∈ U1

𝑖
∩ C,

an honest user 𝑖 stores ek𝑖, 𝑗 = KA.agree(pk𝑗 , sk𝑖 ). For
each pair of honest users 𝑖, 𝑗 , the simulator uniformly

randomly chooses a symmetric encryption key ek∗𝑖, 𝑗 , and

sets ek∗𝑗,𝑖 = ek∗𝑖, 𝑗 . For each 𝑗 ∈ U1

𝑖
∩ (𝐺𝑑−1

∪ 𝐺𝑑+1),
each honest user 𝑖 also stores mk𝑖, 𝑗 . Then it follows the

protocol, except that for honest user 𝑗 ∈ 𝐺𝑑−1
, instead of

encrypting the share sk−1

𝑖, 𝑗 , it encrypts some dummy value

by 𝑐sk
−1∗

𝑖, 𝑗
← AE.enc(0, ek∗𝑖, 𝑗 ), and for honest user 𝑗 ∈ 𝐺𝑑+1

it does the same symmetrically.

– Round 3: Each honest user 𝑖 decrypts the shares as de-

scribed in the protocol to get sk−1

𝑗,𝑖 (or sk1

𝑗,𝑖 ) for each

𝑗 ∈ U2

𝑖
∩ 𝐺𝑑+1 (or 𝑗 ∈ U2

𝑖
∩ 𝐺𝑑−1

). In this process,

the simulator additionally aborts if for any honest user

𝑗 ∈ U2

𝑖
, the decryption succeeds while the result is dif-

ferent from what 𝑗 encrypts in the previous round. More-

over, the simulator uniformly randomly chooses mk∗𝑖, 𝑗 for
each pair of honest users 𝑖 ∈ 𝐺𝑑 and 𝑗 ∈ 𝐺𝑑+1, and let

mk∗𝑖, 𝑗 = mk𝑖, 𝑗 for each honest user 𝑖 ∈ 𝐺𝑑 and each cor-

rupt user 𝑗 ∈ 𝐺𝑑±1
. Then each honest user 𝑖 calculates

ℎ∗
𝑖
=

∑
𝑗 ∈U2

𝑖
∩𝐺𝑑−1

mk∗𝑖, 𝑗 −
∑
U2

𝑖
∩𝐺𝑑+1 mk∗𝑖, 𝑗 . Then it fol-

lows the protocol to secret shares 𝑟𝑖 and ℎ𝑖 among group

members of𝐺𝑑 and encrypts the shares except that it sub-

stitutes the encrypted shares sent to honest user 𝑗 ∈ 𝐺𝑑
with the encryption of a dummy value with ek∗𝑖, 𝑗 .

– Round 4: Each honest user 𝑖 decrypts the shares for 𝑗 ∈
U3

𝑖
as described in protocol. In this process, the simulator

additionally aborts if for any honest user 𝑗 ∈ U3

𝑖
, the

decryption succeeds while the result is different fromwhat

𝑗 encrypts in the previous round. Then each user 𝑖 follows

the protocol to sign the offline list offline𝑖 and sends the

list and the signature to the server.

– Round 5: On receiving (offline𝑗 , 𝜎 𝑗 ) from the server, the

user 𝑖 aborts if any signature is invalid. The simulator

additionally aborts if any honest user 𝑖 receives offline′𝑗 ≠
offline𝑗 for another honest user 𝑗 with valid signature

with respect to 𝑝𝑘 𝑗 . Otherwise, each honest user 𝑖 follows

the protocol in this round.

At the end of the Setup phase, for each group 𝐺𝑑 , the simu-

lator checks if there is any honest user 𝑖 ∈ 𝐺𝑑 such that at

least 𝑡 − 𝑛C shares sk1

𝑖, 𝑗 (or sk
−1

𝑖, 𝑗 ) are sent to the server from

honest users 𝑗 ∈ 𝐺𝑑+1 (or æ ∈ 𝐺𝑑−1
) and puts such users 𝑖

in a user list offlineSIM.

• In the 𝑘-th iteration of the Aggregation phase:

– Round 1: Each honest user 𝑖 uniformly randomly chooses

𝑋 ∗
𝑖
and sends 𝐻 (𝑘)𝑋 ∗𝑖 to the server.

– Round 2: For all group 𝐺𝑑 , each honest user 𝑖 ∈ 𝐺𝑑
follows the protocol, signs O𝑑 and sends the signature to

the server.

– Round 3: For each group𝐺𝑑 , the simulator checks if there

are some honest users 𝑖 ∈ 𝐺𝑑 receiving at least 𝑡 valid

signatures on O𝑑 it receives in Round 2.

∗ If there are such users in every group, then let O =

∪𝑑∈[𝐵 ]O𝑑 , the simulator queries the ideal functionality

to get𝑤 = Ideal(O\C, 𝑘). The simulator then uniformly

randomly chooses 𝑤∗
𝑖
for 𝑖 ∈ O under the restriction

that

∑
𝑖∈O\C 𝑤

∗
𝑖
= 𝑤 . For each iteration 𝑘 ∈ [𝐾], it

uniformly randomly picks ℎ∗
𝑖
under the constraint that∑

𝑖\offlineSIM ℎ
∗
𝑖
=

∑
𝑖\offlineSIM ℎ𝑖 . It then calculates 𝑟∗

𝑖
=

𝑋 ∗
𝑖
− 𝑤∗

𝑖
− ℎ∗

𝑖
, and calculates the shares 𝑟∗

𝑖, 𝑗
of 𝑟∗

𝑖
for

𝑖 ∈ 𝐺𝑑 and 𝑗 ∈ 𝐺𝑑\C based on 𝑟𝑖, 𝑗 for 𝑗 ∈ 𝐺𝑑 ∩ C that

have already been sent to the corrupt users in the Setup

phase. Let 𝑟∗
𝑖, 𝑗

= 𝑟𝑖, 𝑗 for 𝑖 ∈ C. The simulator sends 𝜁 𝑟∗
𝑖
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and 𝜁ℎ∗
𝑖

calculated as described in the protocol to the

server, except that they are calculated with 𝑟∗
𝑗,𝑖

and ℎ∗
𝑗,𝑖
.

∗ if for any group 𝑑 ∈ [𝐵] there is no such O𝑑 , the sim-

ulator uniformly randomly chooses the random mask

𝑟∗
𝑖
and the mutual mask ℎ∗

𝑖
of each honest user 𝑖 , and

calculates the shares of 𝑟∗
𝑖
and ℎ∗

𝑖
based on the shares

that have already been sent to the corrupt users in the

Setup phase. Then each honest user calculates 𝜁 ∗
𝑖
using

the new shares and sends to the server.

We describe a series of hybrids between the joint view of corrupt

parties in the real execution and the output of the simulation. Each

hybrid is identical to the previous one except the part explicitly

described. By proving that each hybrid is computationally indistin-

guishable from the previous one, we prove that the joint view of

corrupt parties in the real execution is indistinguishable from the

simulation.

Hyb0 This random variable is the joint view of all parties in C in

the real execution.

Hyb1 In this hybrid, a simulator which knows all secret inputs

of honest parties in every iteration simulates the execution

with𝑀C .
The distribution of this hybrid is exactly the same as the

previous one.

Hyb2 In this hybrid, the simulator aborts if 𝑀C provides any of

the honest parties 𝑗 in the Setup phase with a valid signature

with respect to an honest user 𝑖’s public key 𝑑𝑃𝐾
𝑖

on public

encryption and masking keys different from what 𝑖 provides.

The indistinguishability between this hybrid and the pre-

vious one is guaranteed by the security of the signature

scheme.

Hyb3 In this hybrid, for any pair of two honest users 𝑖, 𝑗 , the en-

cryption of shares they send between each other in Round

2 and Round 3 of the Setup Phase are encrypted and de-

crypted using a uniformly random key ek∗𝑖, 𝑗 instead of ek𝑖, 𝑗
obtained through Diffie Hellman key exchange in Round 1

of the Setup Phase.

The indistinguishability between this hybrid and the previ-

ous one is guaranteed by 2ODH assumption as introduced

in Appendix A.2.

Hyb4 In this hybrid, each encrypted share sent between each two

honest parties 𝑖, 𝑗 in the Setup phase in the previous hybrids

is substituted with the encryption of a dummy value ⊥ with

ek∗𝑖, 𝑗 .
The indistinguishability is guaranteed by IND-CPA security

of the encryption scheme.

Hyb5 In this hybrid, in every iteration 𝑘 , each honest user 𝑖 sub-

stitutes 𝐻 (𝑘)𝑋𝑖 it sends to the server in the first round with

𝐻 (𝑘)𝑋 ∗𝑖 for a uniformly randomly chosen 𝑋 ∗
𝑖
. Moreover,

in the third round, for each honest user 𝑖 , SIM calculates

𝑟∗
𝑖
= 𝑋 ∗

𝑖
− 𝑥𝑖 −ℎ𝑖 and the shares 𝑟∗𝑖, 𝑗 for honest users 𝑗 based

on the shares which have already been sent to corrupt users

in the Setup phase, i.e., it calculates 𝑟∗
𝑖, 𝑗

for 𝑗 ∈ U\C mak-

ing sure that 𝑟∗
𝑖
= SS.recon({𝑟∗

𝑖, 𝑗
, 𝑗} 𝑗 ∈U𝑖\C, {𝑟𝑖, 𝑗 , 𝑗} 𝑗 ∈C). For

corrupt users 𝑗 ∈ C, let 𝑟∗
𝑗,𝑖

= 𝑟 𝑗,𝑖 . Then each honest user

𝑖 ∈ 𝐺𝑑 who receives the common online setO𝑑 with at least 𝑡

valid signatures calculates 𝜁 ∗
𝑖
= 𝐻𝑐 (𝑘)

∑
𝑗∈O𝑑 𝑟

∗
𝑗,𝑖−

∑
𝑗∈U𝑖 \O𝑑 ℎ 𝑗,𝑖

and sends 𝜁 ∗
𝑖
to the server.

Hyb6 In this hybrid, in the third round of each iteration, for each

honest user 𝑖 ∈ 𝐺𝑑 not included in O𝑑 and each 𝜌 ∈ [𝑎],
instead of setting 𝑟∗

𝑖
= 𝑋 ∗

𝑖
−𝑥𝑖 −ℎ𝑖 , SIM uniformly randomly

picks 𝑟∗
𝑖
and uses it to calculate the shares for the honest

users as described in the previous hybrid.

This hybrid is identical to the previous one as there is atmost

one unique O𝑑 and if an honest user is not included in O𝑑 ,
the share 𝑟∗

𝑖, 𝑗
for honest user 𝑖 not in O will not be included

in 𝜁 ∗
𝑗
of honest user 𝑗 . Thus, the adversary will not receive

any information about 𝑟∗
𝑖
in the third round of the iteration.

Hyb7 In this hybrid, in the third round of each iteration, for each

user 𝑖 ∈ O𝑑\C, instead of setting 𝑟∗
𝑖
= 𝑋 ∗

𝑖
− 𝑥𝑖 − ℎ𝑖 , SIM

randomly picks 𝑟∗
𝑖
under the constraint that

∑
𝑖∈O𝑑\C 𝑟

∗
𝑖
=∑

𝑖∈O𝑑\C 𝑋
∗
𝑖
−∑

𝑖∈O𝑑\C (𝑥𝑖 + ℎ𝑖 ).
This hybrid is indistinguishable from the previous hybrid, as

𝑟∗
𝑖
are still uniformly random, and the sum of 𝑟∗

𝑖
the server

can reconstruct from the shares for each group keeps the

same.

Hyb8 In this hybrid, at the end of the Setup phase, the simulator

uniformly randomly chooses mk∗𝑖, 𝑗 for each pair of honest

users 𝑖, 𝑗 ∉ offlineSIM from two adjacent groups. For honest

user 𝑖 ∈ 𝐺𝑑\offlineSIM and user 𝑗 ∈ (C ∪offlineSIM) ∩𝐺𝑑±1
,

letmk∗𝑖, 𝑗 = mk𝑖, 𝑗 obtained in the Setup phase. The simulator

then uses mk∗𝑖, 𝑗 to calculates ℎ∗
𝑖
for each honest user 𝑖 ∉

offlineSIM and uses ℎ∗
𝑖
as ℎ𝑖 in the Aggregation phase.

This hybrid is indistinguishable from the previous one, as

the server does not know any information about sk±1

𝑖 for

any honest user 𝑖 ∉ offlineSIM (guaranteed by the security

of Shamir secret sharing). Thus, mk𝑖, 𝑗 for honest users 𝑖, 𝑗 ∉
offlineSIM is indistinguishable from mk∗𝑖, 𝑗 chosen uniformly

randomly.

Hyb9 Instead of choosing mk∗𝑖, 𝑗 for each pair of honest users 𝑖, 𝑗 ∉

offlineSIM, the simulator just choose ℎ∗
𝑖
for each honest user

𝑖 ∉ offlineSIM uniformly at random under the constraint that∑
𝑖∉offlineSIM ℎ

∗
𝑖
=

∑
𝑖∉offlineSIM ℎ𝑖 .

By Lemma C.7, this hybrid is identical to the previous one.

Hyb10 In this hybrid, instead of using fixed ℎ∗
𝑖
chosen at the end of

the Setup phase, the simulator uniformly randomly chooses

ℎ∗
𝑖
for each honest user 𝑖 ∉ offlineSIM under the same con-

straint

∑
𝑖∉offlineSIM ℎ

∗
𝑖
=

∑
𝑖∉offlineSIM ℎ𝑖 at the beginning of

each iteration.

This hybrid is indistinguishable from the previous one.

Hyb11 WhenO𝑑 exists for each𝑑 ∈ [𝐵], instead using the constraint∑
𝑖∈O𝑑\C 𝑟

∗
𝑖

=
∑
𝑖∈O𝑑\C 𝑋

∗
𝑖
− ∑

𝑖∈O𝑑\C (𝑥𝑖 + ℎ
∗
𝑖
) for each

𝑑 ∈ [𝐵] to randomly pick 𝑟∗
𝑖
for each 𝑖 ∈ O𝑑\C, the simulator

uses the constraint

∑
𝑖∈O\C 𝑟

∗
𝑖
=

∑
𝑖∈O\C 𝑋

∗
𝑖
−∑

𝑖∈O\C (𝑥𝑖 +
ℎ∗
𝑖
).

This hybrid is identical to the previous one, as it is the

same as the following hybrid: in the third round of iter-

ation 𝑘 , each honest user first chooses ℎ∗
𝑖
under the con-

straint that

∑
𝑖∉offlineSIM ℎ

∗
𝑖

=
∑
𝑖∉offlineSIM ℎ𝑖 , then it uni-

formly randomly chooses ℎ∗∗
𝑖

for each 𝑖 ∈ O𝑑\C under

the constraint that

∑
𝑖∈O𝑑\C ℎ

∗∗
𝑖

=
∑
𝑖∈O𝑑\C ℎ

∗
𝑖
. The ℎ∗∗

𝑖
for other honest user 𝑖 ∉ offlineSIM are randomly chosen
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such that

∑
𝑖∉offlineSIM ℎ

∗∗
𝑖

=
∑
𝑖∉offlineSIM ℎ𝑖 . Then 𝑟

∗
𝑖
is cho-

sen under the constraint that

∑
𝑖∈O𝑑\C 𝑟

∗
𝑖
=

∑
𝑖∈O𝑑\C 𝑋

∗
𝑖
−∑

𝑖∈O𝑑\C (𝑥𝑖 + ℎ
∗∗
𝑖
). In this hybrid, {ℎ∗

𝑖
} and {ℎ∗∗

𝑖
} have

the same distribution. Thus, the distribution of 𝑟∗
𝑖
does not

change, either.

Hyb12 In this hybrid, if for some group𝐺𝑑 , there is no large enough

O𝑑 with at least 𝑡 valid signatures in the view of any honest

node in 𝐺𝑑 , the simulator uniformly randomly chooses 𝑟∗
𝑖

for honest users 𝑖 in group 𝐺𝑑′ such that O𝑑′ exists.
This hybrid is indistinguishable from the previous one, as

no information about 𝑟∗
𝑖
or ℎ∗

𝑖
for honest 𝑖 ∈ 𝐺𝑑 will be

revealed to the server by the security of Shamir’s secret

sharing scheme. Thus, the distribution ℎ∗
𝑖
for 𝑖 ∈ 𝐺𝑑′ is

identical to uniformly random distribution in the server’s

view.

Hyb13 Instead of using the inputs 𝑥𝑖 to calculate

∑
𝑖∈O\C 𝑥𝑖 , the

simulator queries the ideal functionality by𝑤 = Ideal(O, 𝑘)
if there is a common online set O exists in iteration 𝑘 and

uses𝑤 as the sum.

The distribution of this hybrid is exactly the same as the dis-

tribution of the previous hybrid. In this hybrid, the simulator

does not know 𝑥𝑖 for any user 𝑖 .

Now we have proved that the joint view of𝑀C in the real exe-

cution is computationally indistinguishable from the view in the

simulated execution. □

Lemma C.3 (Extension of the DDH Assumption). Let 𝑝
and 𝑞 be two primes while 𝑝 = 2𝑞 + 1. Let 𝑔 be a generator of
field Z∗𝑝 . If the DDH assumption holds, then for uniformly random
𝑎, 𝑏1, . . . , 𝑏𝑡 , 𝑏

′
1
, . . . 𝑏 ′𝑛 ∈ Z𝑞 , the following two distributions are com-

putationally indistinguishable:

(𝑔𝑎, 𝑔𝑏1 , . . . , 𝑔𝑏𝑛 , 𝑔𝑎𝑏1 , . . . , 𝑔𝑎𝑏𝑛 ) (1)

(𝑔𝑎, 𝑔𝑏1 , . . . , 𝑔𝑏𝑛 , 𝑔𝑎𝑏
′
1 , . . . , 𝑔𝑎𝑏

′
𝑛 ) (2)

Proof. We define hybrids Hyb𝑖 =

(𝑔𝑎, 𝑔𝑏1 , . . . , 𝑔𝑏𝑛 , 𝑔𝑎𝑏1 , . . . , 𝑔𝑎𝑏𝑖 , 𝑔𝑎𝑏
′
𝑖+1 , . . . , 𝑔𝑎𝑏

′
𝑛 ) for 𝑖 ∈ [0, 𝑛].

Based on the DDH assumption, we prove that the two neighboring

hybrids are computationally indistinguishable. For the sake of

contradiction, assume there is a PPT adversary A which can

distinguish between Hyb𝑖−1
and Hyb𝑖 for some 𝑖 ∈ [1, 𝑛]. Then,

we construct the following distinguisher D(𝐴, 𝐵,𝐶) for DDH

tuples: it first uniformly randomly picks 𝑏1, . . . , 𝑏𝑖−1, 𝑏𝑖+1, . . . , 𝑏𝑛
and 𝑏 ′

𝑖+1, . . . , 𝑏
′
𝑛 . Then it invokes A with the tuple

(𝐴,𝑔𝑏1 , . . . 𝑔𝑏𝑖−1 , 𝐵, 𝑔𝑏𝑖+1 . . . , 𝑔𝑏𝑛 , 𝐴𝑏1 , . . . 𝐴𝑏𝑖−1 ,𝐶,𝐴𝑏
′
𝑖+1 . . . , 𝐴𝑏

′
𝑛 )

and outputs the bit A outputs. Let 𝐴 = 𝑔𝑎 , 𝐵 = 𝑔𝑏 . Then, when

𝐶 = 𝑔𝑎𝑏 , the distribution D feeds A is just the distribution of

Hyb𝑖 , and when 𝐶 = 𝑔𝑎𝑏
′
for a uniformly random 𝑏 ′, the distri-

bution D feeds A is the distribution of Hyb𝑖−1
. D succeeds if A

successfully distinguishes between the two hybrids. If the DDH

assumption holds, suchA does not exist, and Hyb𝑖−1
and Hyb𝑖 are

computationally indistinguishable.

As the distribution (1) is the same as Hyb𝑛 , and the distribu-

tion (2) is the same as Hyb
0
, the two distributions in the lemma are

computationally indistinguishable. □

Lemma C.4. Let 𝑛, 𝑡, 𝑛C, 𝐾 be integer parameters, 𝑛C ≤ 𝑛−𝑡 < 𝑡 .
Let 𝑤 be an element in Z𝑞 , and 𝑤𝑖 ∈ Z𝑞 for 𝑖 ∈ [𝑛] be shares of
𝑤 calculated with 𝑡-out-of-𝑛 Shamir secret sharing algorithm, i.e.,
{𝑤𝑖 }𝑖∈[𝑛] ← SS.share(𝑤, [𝑛], 𝑡).

For each 𝑘 ∈ [𝐾], let𝑤𝑘
𝑖
for 𝑖 ∈ [𝑛 − 𝑛C] be elements of Z𝑞 such

that𝑤 = SS.recon({𝑤𝑘
𝑖
, 𝑖}𝑖∈[𝑛−𝑛C ] , {𝑤𝑖 , 𝑖}𝑖∈[𝑛−𝑛C+1,𝑛] , 𝑡). Let𝐻 (·)

be a random oracle that returns a random element of Z∗𝑝 on each fresh
input.

The following two distributions are computationally indistinguish-
able:

𝑤, {𝑤𝑖 }𝑖∈[𝑛−𝑛C+1,𝑛] , {𝐻 (𝑘)
𝑤𝑖 }𝑖∈[𝑛−𝑛C ],𝑘∈[𝐾 ] (3)

𝑤, {𝑤𝑖 }𝑖∈[𝑛−𝑛C+1,𝑛] , {𝐻 (𝑘)
𝑤𝑘
𝑖 }𝑖∈[𝑛−𝑛C ],𝑘∈[𝐾 ] (4)

Proof. We define a hybrid Hyb
0
to be identical to the distribu-

tion (3), and a sequence of hybrids Hyb𝑘 for 𝑘 ∈ [𝐾] as following:
Hyb𝑘 is the same asHyb𝑘−1

except that inHyb𝑘 ,𝐻 (𝑘)
𝑤𝑖
𝑖∈[𝑛−𝑛C ] are

substituted with 𝐻 (𝑘)𝑤
𝑘
𝑖

𝑖∈[𝑛−𝑛C ] . Thus, Hyb𝐾 is identical to distribu-

tion (4). Then we prove that any two adjacent hybrids Hyb𝑘0−1
and

Hyb𝑘0

for 𝑘0 ∈ [𝐾] are computationally indistinguishable.

For the sake of contradiction, assume there exists a PPT distin-

guisher

D(𝑤, {𝑤𝑖 }𝑖∈[𝑛−𝑛C+1,𝑛] , {𝑍
𝑘
𝑖 }𝑖∈[𝑛−𝑛C ],𝑘∈[𝐾 ] )

which distinguishes between the two distributions. Then, we con-

struct the following distinguisher

D ′(𝐴, 𝐵1, ..., 𝐵𝑡−𝑛C−1,𝐶1, ...,𝐶𝑡−𝑛C−1) :

D ′ uniformly randomly picks {𝑤𝑖 }𝑖∈[𝑛−𝑛C+1,𝑛] as the

second part of the input to D, and calculates 𝑊𝑖 =

SS.expoRecon((𝑔𝑤 , 0), {𝐵 𝑗 , 𝑗} 𝑗 ∈[𝑡−𝑛C−1] , {𝑔𝑤𝑗 , 𝑗} 𝑗 ∈[𝑛−𝑛C+1,𝑛] , 𝑡, 𝑖)
for 𝑖 ∈ [𝑡 − 𝑛C, 𝑛 − 𝑛C]. For 𝑘 ∈ [𝐾] and 𝑘 ≠ 𝑘0 it uniformly

randomly picks 𝑠𝑘 ∈ Z𝑞 , and sets 𝐻 (𝑘) = 𝑔𝑠𝑘 .
• For 𝑘 ∈ [𝑘0 − 1], it calculates fresh shares 𝑤𝑘

𝑖
of 𝑤 such

that 𝑤 = SS.recon({𝑤𝑘
𝑖
}𝑖∈[𝑛−𝑛C ] , {𝑤𝑖 }𝑖∈[𝑛−𝑛C ] , 𝑡) and it

sets 𝑍𝑘
𝑖
= 𝑔𝑤

𝑘
𝑖
𝑠𝑘

for 𝑖 ∈ [𝑛 − 𝑛C] ;
• For 𝑘 ∈ [𝑘0 + 1, 𝐾], it sets 𝑍𝑘

𝑖
= 𝐵

𝑠𝑘
𝑖

for 𝑖 ∈ [𝑡 − 𝑛C − 1] and
𝑍𝑘
𝑖
=𝑊

𝑠𝑘
𝑖

for 𝑖 ∈ [𝑡 − 𝑛C, 𝑛 − 𝑛C] ;
• Then it sets 𝐻 (𝑘0) = 𝐴, 𝑍𝑘0

𝑖
= 𝐶𝑖 for 𝑖 ∈ [𝑡 − 𝑛C − 1], and

runs

𝑍𝑘𝑗 = SS.expoRecon((𝐴𝑤 , 0), {𝐶𝑖 , 𝑖}𝑖∈[𝑡−𝑛C−1] , {𝐴𝑤𝑖 , 𝑖}𝑖∈[𝑛−C+1,𝑛] , 𝑡, 𝑗)
for 𝑗 ∈ [𝑡 − 𝑛C, 𝑛 − 𝑛C].

Then it outputs the bit D outputs.

When the input to D ′ is from the distribution (1), then distribu-

tion of D’s input is identical to Hyb𝑘0−1
, and if the input to D ′ is

from the distribution (2), then distribution of D’s input is identical

to Hyb𝑘0

. Thus, D ′ wins with the probability that D succeeds. By

Lemma C.3, such a distinguisher D ′ does not exist. Thus, we have
a contradiction. □

Lemma C.5. Let 𝑛, 𝑡, 𝑛C, 𝐾 be integer parameters, 𝑛C ≤ 𝑛 − 𝑡 < 𝑡 .
Let 𝑥1, . . . , 𝑥𝑛−𝑛C be uniformly random elements of some finite field
F. Let 𝑥𝑖, 𝑗 ∈ Z𝑞 for 𝑖 ∈ [𝑛−𝑛C] and 𝑗 ∈ [𝑛] be shares of 𝑥𝑖 calculated
with 𝑡-out-of-𝑛 Shamir secret sharing algorithm, i.e., {𝑥𝑖, 𝑗 } 𝑗 ∈[𝑛] ←
SS.share(𝑥𝑖 , [𝑛], 𝑡) for 𝑖 ∈ [𝑛 − 𝑛C].
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For each 𝑘 = 1, . . . , 𝐾 , let 𝑦𝑘
1
, . . . , 𝑦𝑘𝑛−𝑛C also be uniformly ran-

domly chosen from F. Let 𝑦𝑘
𝑖,𝑗

for 𝑖, 𝑗 ∈ [𝑛 − 𝑛C] be elements of Z𝑞
such that 𝑦𝑘

𝑖
= SS.recon({𝑦𝑘

𝑖,𝑗
, 𝑗} 𝑗 ∈[𝑛−𝑛C ] , {𝑥

𝑘
𝑖,𝑗
, 𝑗} 𝑗 ∈[𝑛−𝑛C+1,𝑛] , 𝑡).

Let 𝐻 (·) be a random oracle that returns a random element of Z∗𝑞 on
each fresh input.

Then the following two distributions are computationally indistin-
guishable if the DDH assumption holds:

{𝑥𝑖, 𝑗 }𝑖∈[𝑛−𝑛C ], 𝑗 ∈[𝑛−𝑛C+1,𝑛] , {{𝐻 (𝑘)
𝑥𝑖 }𝑖∈[𝑛−𝑛C ] ,

{𝐻 (𝑘)𝑥𝑖,𝑗 }𝑖, 𝑗 ∈[𝑛−𝑛C ] }𝑘∈[𝐾 ]
(5)

{𝑥𝑖, 𝑗 }𝑖∈[𝑛−𝑛C ], 𝑗 ∈[𝑛−𝑛C+1,𝑛] , {{𝐻 (𝑘)
𝑦𝑘
𝑖 }𝑖∈[𝑛−𝑛C ] ,

{𝐻 (𝑘)𝑦
𝑘
𝑖,𝑗 }𝑖, 𝑗 ∈[𝑛−𝑛C ] }𝑘∈[𝐾 ]

(6)

Proof. We prove the indistinguishability with a sequence

of hybrids. Let Hyb
0

equal to the distribution (5). Then

for each 𝑘 ∈ [𝐾], Hyb𝑘 is the same as Hyb𝑘−1
except

that {𝐻 (𝑘)𝑥𝑖 }𝑖∈[𝑛−𝑛C ] , {𝐻 (𝑘)
𝑥𝑖,𝑗 }𝑖, 𝑗 ∈[𝑛−𝑛C ] are susbstituted with

{𝐻 (𝑘)𝑦𝑘𝑖 }𝑖∈[𝑛−𝑛C ] , {𝐻 (𝑘)
𝑦𝑘
𝑖,𝑗 }𝑖, 𝑗 ∈[𝑛−𝑛C ] . Defined in this way,

Hyb𝐾 is identical to the distribution (6) in the lemma. Then between

Hyb𝑘 andHyb𝑘+1 for𝑘 ∈ [0, 𝐾−1], we additionally defineHyb𝑘,0 =

Hyb𝑘 and a sequence of hybrids Hyb𝑘,𝑖 for 𝑖 ∈ [𝑛 − 𝑛C]: Hyb𝑘,𝑖
is the same as Hyb𝑘,𝑖−1

except that 𝐻 (𝑘)𝑥𝑖 , {𝐻 (𝑘)𝑥𝑖,𝑗 } 𝑗 ∈[𝑛−𝑛C ] in
Hyb𝑘,𝑖−1

is substituted with𝐻 (𝑘)𝑦𝑘𝑖 , {𝐻 (𝑘)𝑦
𝑘
𝑖,𝑗 } 𝑗 ∈[𝑛−𝑛C ] . Note that

Hyb𝑘,𝑛−𝑛C is identical to Hyb𝑘+1.
Then we prove that the two adjacent hybrids Hyb𝑘0,𝑖0−1

and

Hyb𝑘0,𝑖0
are computationally indistinguishable. For the sake of con-

tradiction, assume that there exists a distinguisher

D({𝑥𝑖, 𝑗 }𝑖∈[𝑛−𝑛C ], 𝑗 ∈[𝑛−𝑛C+1,𝑛] , {𝑍𝑘,𝑖 }𝑖∈[𝑛−𝑛C ] ,
{𝑍𝑘,𝑖, 𝑗 }𝑖, 𝑗 ∈[𝑛−𝑛C ] }𝑘∈[𝐾 ] )

can distinguish between these two distributions. Then we construct

the following PPT distinguisher

D ′(𝐴, 𝐵1, ..., 𝐵𝑡−𝑐 ,𝐶1, ...,𝐶𝑡−𝑐 ) :

For 𝑖 ∈ [𝑛 − 𝑛C], it uniformly randomly samples 𝑥𝑖 and calcu-

lates the 𝑡-out-of-𝑛 Shamir secret sharing of 𝑥𝑖 by {𝑥𝑖, 𝑗 } 𝑗 ∈[𝑛] ←
SS.share(𝑥𝑖 , [𝑛], 𝑡). For 𝑘 < 𝑘0, it also it unifromly randomly sam-

ples𝑦𝑘
𝑖
for 𝑖 ∈ [𝑛−𝑛C] and secret shares each𝑦𝑘𝑖 to generate shares

{𝑦𝑘
𝑖,𝑗
} 𝑗 ∈[𝑛] . Moreover, for 𝑘 ∈ [𝐾] and 𝑘 ≠ 𝑘0, D ′ uniformly ran-

domly chooses 𝑠𝑘 and assigns𝐻 (𝑘) := 𝑔𝑠𝑘 , and for 𝑘0, it assigns𝐴 to

𝐻 (𝑘0). Then it feeds the following input to the distinguisherD: For

the first part, it feedsD with 𝑥𝑖, 𝑗 for 𝑖 ∈ [𝑛−𝑛C], 𝑗 ∈ [𝑛−𝑛C +1, 𝑛];
then for the second part:

• For𝑘 < 𝑘0, it sets𝑍𝑘,𝑖 = 𝑔
𝑠𝑘𝑦

𝑘
𝑖 and𝑍𝑘,𝑖, 𝑗 = 𝑔

𝑠𝑘𝑦
𝑘
𝑖,𝑗
; for𝑘 > 𝑘0,

let 𝑍𝑘,𝑖 = 𝑔
𝑠𝑘𝑥𝑖

and 𝑍𝑘,𝑖, 𝑗 = 𝑔
𝑠𝑘𝑥𝑖,𝑗

for 𝑖, 𝑗 ∈ [𝑛 − 𝑛C] .
• For 𝑖 < 𝑖0, let 𝑍𝑘0,𝑖 = 𝐴

𝑦𝑘
𝑖 and 𝑍𝑘0,𝑖, 𝑗 = 𝐴

𝑦𝑘
𝑖,𝑗
; for 𝑖 > 𝑖0, let

𝑍𝑘0,𝑖 = 𝐴
𝑥𝑖

and 𝑍𝑘0,𝑖, 𝑗 = 𝐴
𝑥𝑖,𝑗

.

• It sets 𝑍𝑘0,𝑖0 and {𝑍𝑘0,𝑖0, 𝑗 } 𝑗 ∈[𝑛−𝑛C ] in the following way: It

calculates 𝑋𝑖0 by

𝑋𝑖0 ,𝐶1, . . .𝐶𝑡−1 = SS.expoRecon(
(𝐵1, 1), . . . (𝐵𝑡−𝑛C , 𝑡 − 𝑛C),
(𝑔𝑥𝑖0,𝑛−𝑛C+1 , 𝑛 − 𝑛C + 1), . . . , (𝑔𝑥𝑖0,𝑛 , 𝑛), 𝑡),

and the remaining shares 𝑋𝑖0, 𝑗 for 𝑗 ∈ [𝑡 − 𝑛C + 1, 𝑛 − 𝑛C]
by

𝑋𝑖0, 𝑗 = SS.expoShare( 𝑗, 𝑋𝑖0 ,𝐶1, . . . ,𝐶𝑡−1).
Let 𝑍𝑘0,𝑖0 = 𝑋𝑖0 . For 𝑗 ∈ [𝑡 − 𝑛C], let 𝑍𝑘0,𝑖0, 𝑗 = 𝐶 𝑗 , and for

𝑗 ∈ [𝑡 − 𝑛C + 1, 𝑛 − 𝑛C], let 𝑍𝑘0,𝑖0, 𝑗 = 𝑋𝑖0, 𝑗 .

Then D ′ returns the bit D outputs.

When 𝐶𝑖 = 𝑔𝑎𝑏𝑖 for 𝑖 ∈ [𝑡 − 𝑐], the distribution of the input

for D is exactly the same as Hyb𝑘0,𝑖0−1
; when 𝐶=𝑔

𝑐𝑖
for uniformly

random 𝑐𝑖 for 𝑖 ∈ [𝑡 − 𝑐], the distribution of the input for D is

exactly the same asHyb𝑘0,𝑖0
. Thus,D win the games with the same

probability as A distinguishes between Hyb𝑘0,𝑖0−1
and Hyb𝑘0,𝑖0

.

However, by Lemma C.3, there is no such a distinguisher D ′. Thus,
we have a contradiction.

□

Lemma C.6. Let 𝑛, 𝑡, 𝑛C, 𝐾 be integer parameters, 𝑛C ≤ 𝑛 −
𝑡 < 𝑡 . Let 𝑥1, . . . , 𝑥𝑛−𝑛C be uniformly random elements in Z𝑞 , and∑
𝑖∈[𝑛−𝑛C ] 𝑥𝑖 = 𝑤 . Let 𝑥𝑖, 𝑗 ∈ Z𝑞 for 𝑖 ∈ [𝑛 − 𝑛C] and 𝑗 ∈ [𝑛] be

shares of 𝑥𝑖 calculated with 𝑡-out-of-𝑛 Shamir secret sharing algo-
rithm, i.e., {𝑥𝑖, 𝑗 } 𝑗 ∈[𝑛] ← SS.share(𝑥𝑖 , [𝑛], 𝑡) for 𝑖 ∈ [𝑛 − 𝑛C].

For each 𝑘 = 1, . . . , 𝐾 , let 𝑦𝑘
1
, . . . , 𝑦𝑘𝑛−𝑛C also be uniformly ran-

domly chosen from Z𝑞 such that
∑
𝑖∈[𝑛−𝑛C ] 𝑦

𝑘
𝑖

= 𝑤 . Let 𝑦𝑘
𝑖,𝑗

for
𝑖, 𝑗 ∈ [𝑛 − 𝑛C] be elements of Z𝑞 such that

𝑦𝑘𝑖 = SS.recon({𝑦𝑘𝑖,𝑗 , 𝑗} 𝑗 ∈[𝑛−𝑛C ] , {𝑥
𝑘
𝑖,𝑗 , 𝑗} 𝑗 ∈[𝑛−𝑛C+1,𝑛] , 𝑡) .

Let 𝐻 (·) be a random oracle that returns a random element of Z∗𝑝 on
each fresh input.

Then the following two distributions are computationally indistin-
guishable if the DDH assumption holds:

𝑤, {𝑥𝑖, 𝑗 }𝑖∈[𝑛−𝑛C ], 𝑗 ∈[𝑛−𝑛C+1,𝑛] ,
{{𝐻 (𝑘)𝑥𝑖 }𝑖∈[𝑛−𝑛C ] , {𝐻 (𝑘)

𝑥𝑖,𝑗 }𝑖, 𝑗 ∈[𝑛−𝑛C ] }𝑘∈[𝐾 ]
(7)

𝑤, {𝑥𝑖, 𝑗 }𝑖∈[𝑛−𝑛C ], 𝑗 ∈[𝑛−𝑛C+1,𝑛] ,

{{𝐻 (𝑘)𝑦
𝑘
𝑖 }𝑖∈[𝑛−𝑛C ] , {𝐻 (𝑘)

𝑦𝑘
𝑖,𝑗 }𝑖, 𝑗 ∈[𝑛−𝑛C ] }𝑘∈[𝐾 ]

(8)

Proof. We prove the indistinguishability between the two dis-

tributions by proving that any two adjacent hybrids defined below

are computationally indistinguishable:

Hyb1 It is the same as distribution (7), except that in this hy-

brid, we calculates 𝑡-out-of-𝑛 shares of𝑤 by {𝑤 𝑗 } 𝑗 ∈[𝑛] ←
SS.share(𝑤, [𝑛], 𝑡) first, then secret shares 𝑥𝑖 for 𝑖 ∈ [𝑛−𝑛C−
1] as described in the Lemma. Then, instead of secret shar-

ing 𝑥𝑛−𝑛C , we calculates 𝑥𝑛−𝑛C , 𝑗 = 𝑤 𝑗 −
∑
𝑖∈[𝑛−𝑛C−1] 𝑥𝑖, 𝑗

for each 𝑗 ∈ [𝑛].
This hybrid is identical to distribution (7) by the additive

homomorphic property of Shamir Secret sharing scheme.

Hyb2 It is the same as the previous hybrid, except that for each

𝑘 ∈ [𝐾], we calculates 𝑤𝑘
𝑗
for 𝑗 ∈ [𝑛 − 𝑛C] such that

𝑤 = SS.recon({𝑤𝑘
𝑗
, 𝑗} 𝑗 ∈[𝑛−C] , {𝑤 𝑗 , 𝑗} 𝑗 ∈[𝑛−𝑛C+1,𝑛] , 𝑡), and

we calculates 𝑦𝑘
𝑛−𝑛C , 𝑗 = 𝑤

𝑘
𝑛−𝑛C −

∑
𝑖∈[𝑛−𝑛C−1] 𝑥𝑖, 𝑗 . We sub-

stitutes 𝐻 (𝑘)𝑥𝑛−𝑛C with 𝐻 (𝑘)𝑦
𝑘
𝑛−𝑛C and 𝐻 (𝑘)𝑥𝑛−𝑛C , 𝑗 with

𝐻 (𝑘)𝑦
𝑘
𝑛−𝑛C , 𝑗 for 𝑗 ∈ [𝑛 − C].

By Lemma C.4, This hybrid is indistinguishable from the

previous one.
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Hyb3 It is the same as the previous hybrid, except that in this hy-

brid, for each 𝑘 ∈ [𝐾], and 𝑖 ∈ [𝑛 − 𝑛C − 1], we choose

𝑦𝑘
𝑖

uniformly at random, calculates {𝑦𝑘
𝑖,𝑗
} 𝑗 ∈[𝑛−𝑛C ] such

that 𝑦𝑖 = SS.recon({𝑦𝑘
𝑖,𝑗
, 𝑗} 𝑗 ∈[𝑛−𝑛C ] , {𝑥𝑖, 𝑗 , 𝑗} 𝑗 ∈[𝑛−𝑛C+1,𝑛] ).

Then we substitutes 𝐻 (𝑘)𝑥𝑖 with 𝐻 (𝑘)𝑦𝑘𝑖 and 𝐻 (𝑘)𝑥𝑖,𝑗 with
𝐻 (𝑘)𝑦

𝑘
𝑖,𝑗

for 𝑖 ∈ [𝑛 − C − 1], 𝑗 ∈ [𝑛 − C].
By Lemma C.5, This one is indistinguishable from the previ-

ous one. This hybrid is also identical to distribution (8).

□

Lemma C.7. Let 𝑛, 𝐵 be two integer parameters. Let 𝑥𝑑
𝑖,𝑗

for 𝑖, 𝑗 ∈
[𝑛] and 𝑑 ∈ [𝐵] be uniformly random elements from some finite field
F. Let ℎ𝑑

𝑖
=

∑
𝑗 ∈[𝑛] 𝑥

𝑑−1

𝑗,𝑖
−∑

𝑗 ∈[𝑛] 𝑥
𝑑
𝑖,𝑗

for each 𝑖 ∈ [𝑛] and 𝑑 ∈ [𝐵],
in which we define 𝑥0

𝑗,𝑖
= 𝑥𝐵

𝑗,𝑖
for 𝑖, 𝑗 ∈ [𝑛] for convenience. Let 𝑦𝑑

𝑖
for

𝑖 ∈ [𝑛] and 𝑑 ∈ [𝐵] also be uniformly randomly chosen elements in F
such that

∑
𝑖∈[𝑛],𝑑∈[𝐵 ] 𝑦

𝑑
𝑖
= 0. Then the following two distributions

are the same:

{ℎ𝑑𝑖 }𝑖∈[𝑛],𝑑∈[𝐵 ] and {𝑦𝑑𝑖 }𝑖∈[𝑛],𝑑 ∈[𝐵 ] .

This lemma can also be easily proved with induction.

D SECURITY PROOFS OF MICROSECAGG𝐶𝐿
In this section, we discuss the privacy guarantee against semi-

honest adversaries with a compromised server. The idea is similar

to the security proofs of previous protocols.

We give a sketch of the proof with the simulator specification

and hybrids which is very similar to those in the proof of Appen-

dix C.2. For simplicity, here we consider the non-group version, i.e.,

instantiation of MicroSecAgg𝐷𝐿 with class group rather than the

generic cyclic group. Based on the security proof of this version,

it is straightforward to apply the difference between the proofs

of MicroSecAgg𝐷𝐿 and MicroSecAgg𝑔𝐷𝐿 and prove the security of

MicroSecAgg𝐶𝐿 .

The same as in previous protocols, for some iteration 𝑘 of the

Aggregation phase, We say a user set O ⊆ U is a common online
set if some honest user receives at least 𝑡 valid signatures on O in

the third round. This set might not exist when the server is corrupt.

Fact D.1 (Uniqe Common Online Set). When 𝑡 > 2

3
𝑛 and

|C| < 1

3
𝑛, There is at most one common online set O in every iteration.

Proof. For the sake of contradiction, assume there exists two

different common online set O1 and O2 in some iteration 𝑘 . Let

U1 andU2 denote the set of honest users who sign on O1 and O2

respectively. By the definition of common online set, |U1 | ≥ 𝑡 − |C|
and |U2 | ≥ 𝑡 − |C|. Thus |U1 | + |U2 | ≥ 2𝑡 −2|C| > 4

3
𝑛− 1

3
𝑛− |C| =

𝑛 − |C|, which is total number of honest users. Thus we have a

contradiction as an honest user will only sign on one online set. □

We first define the behavior of a simulator SIM:

• In the Setup phase:

– Round 1: For each honest user 𝑖 , SIM generates a pair of

encryption keys (𝑒𝑘𝑝𝑟𝑖𝑣,𝑖 , 𝑒𝑘𝑝𝑢𝑏,𝑖 ) ← KA.gen(𝑝𝑝), signs
the public encryption key 𝑒𝑘𝑝𝑢𝑏,𝑖 with sk𝑖 , and sends

(𝑒𝑘𝑝𝑢𝑏,𝑖 , 𝜎𝑖 ) to the server, in which 𝜎𝑖 denotes the sig-

nature.

– Round 2: Each honest user 𝑖 receives (pk𝑗 , 𝜎 𝑗 ) from the

server, and verifies the signatures, except that the simula-

tor aborts if some honest user 𝑖 receives a valid signature

of an honest user 𝑗 on a public encryption key different

from what user 𝑗 sends to the server in the previous round.

Then for each corrupt user 𝑗 ∈ U𝑖 ∩ C, an honest user 𝑖

stores ek𝑖, 𝑗 = KA.agree(pk𝑗 , sk𝑖 ). For each pair of honest

users 𝑖, 𝑗 , the simulator uniformly randomly chooses a

symmetric encryption key ek∗𝑖, 𝑗 , and sets ek∗𝑗,𝑖 = ek∗𝑖, 𝑗 .

Then, for each corrupt user 𝑗 ∈ U1

𝑖
∩ C, user 𝑖 uni-

formly randomly chooses 𝑟𝑖, 𝑗 , encrypts it by 𝑐𝑖, 𝑗 ←
AE.enc(𝑟𝑖, 𝑗 , ek𝑖, 𝑗 ); for each honest user 𝑗 ∈ U1

𝑖
\C, user 𝑖

encrypts a dummy value by 𝑐𝑖, 𝑗 ← AE.enc(⊥, ek∗𝑖, 𝑗 ). Each
honest user 𝑖 sends {𝑐𝑖, 𝑗 } 𝑗 ∈U𝑖 to the server.

– Users Receiving Shares: For each honest user 𝑖 , on re-

ceiving 𝑐 𝑗,𝑖 from the server, each honest user 𝑖 follows the

protocol except that it additionally aborts if for any hon-

est 𝑗 , the decryption succeeds while the result is different

from the value user 𝑗 encrypts in the previous round.

• In the 𝑘-th iteration of the Aggregation phase:

– Round 1: Each honest user 𝑖 uniformly randomly chooses

𝑋 ∗
𝑖
and sends 𝑔

𝑋 ∗𝑖
𝑘

to the server.

– Round 3: If any honest user receives at least 𝑡 valid sig-

natures on the online set O it receives in the previous

round, the simulator queries the ideal functionality to get

𝑤 = Ideal(O\C, 𝑘). Then for each 𝑖 ∈ O\C, the simu-

lator uniformly randomly samples 𝑤∗
𝑖
for 𝑖 ∈ O\C un-

der the restriction

∑
𝑖∈O\C 𝑤

∗
𝑖
= 𝑤 . Then for all honest

users 𝑖 ∈ O𝑖\C, the simulator uniformly randomly sam-

ples𝑤∗
𝑖
for 𝑖 ∈ O𝑖\C under the restriction

∑
𝑖∈O𝑖\C 𝑤

∗
𝑖
=

𝑤 . Moreover, the simulator SIM calculates the shares

𝑅∗
𝑖, 𝑗

for all honest users in the online set 𝑗 ∈ O𝑖\C
such that SS.expoRecon({𝑅∗

𝑖, 𝑗
, 𝑗} 𝑗 ∈O𝑖\C, {𝑔

𝑟𝑖,𝑗

𝑘
} 𝑗 ∈C) =

𝑔
𝑋 ∗𝑖
𝑘
/𝑓 𝑤∗𝑖 where 𝑟𝑖, 𝑗 for 𝑗 ∈ C are the shares that have

already been sent to the corrupt users in the Setup phase.

Let 𝑅∗
𝑗,𝑖

= 𝑔𝑟 𝑗,𝑖 for 𝑗 ∈ C and honest user 𝑖 . We refer the

readers to Section A.1 for the implementation of this part.

Then for the honest users 𝑖 who receives O with at least 𝑡

valid signatures from the server in the second round, the

simulator sends 𝜁 ∗
𝑖
=

∏
𝑗 ∈O𝑖 𝑅

∗
𝑗,𝑖

to the server on behalf

of user 𝑖 .

By Fact D.1, there will be at most one unique set O that collects

enough number of valid signatures and the Ideal functionality will

be queried at most once each iteration.

We describe a series of hybrids between the joint view of cor-

rupt parties in the real execution and the output of the simulation

described above. Each hybrid is identical to the previous one ex-

cept the part explicitly described. By proving that each hybrid is

computationally indistinguishable from the previous one, we prove

that the joint view of the corrupt parties in the real execution is

indistinguishable from the simulation.

Hyb0 This random variable is the joint view of all parties in C in

the real execution.
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Hyb1 In this hybrid, a simulator which knows all secret inputs

of honest parties in every iteration simulates the execution

with𝑀C following the protocol.

The distribution of this hybrid is exactly the same as the

previous one.

Hyb2 In this hybrid, the simulator aborts if 𝑀C provides any of

the honest parties 𝑗 in the Setup phase with a valid signature

with respect to an honest user 𝑖’s public key 𝑑𝑃𝐾
𝑖

on pk∗𝑖
different from what 𝑖 provides.

The indistinguishability between this hybrid and the pre-

vious one is guaranteed by the security of the signature

scheme.

Hyb3 In this hybrid, for any pair of two honest users 𝑖, 𝑗 , the en-

cryption of shares 𝑐𝑖, 𝑗 and 𝑐 𝑗,𝑖 they send between each other

are encrypted and decrypted using a uniformly random key

ek∗𝑖, 𝑗 instead of ek𝑖, 𝑗 obtained through Diffie Hellman key

exchange in Setup Phase.

The indistinguishability between this hybrid and the previ-

ous one is guaranteed by 2ODH assumption.

Hyb4 In this hybrid, we substitute each encrypted share 𝑐𝑟
𝑖, 𝑗

=

AE.enc(ek∗𝑖, 𝑗 , 𝑟𝑖, 𝑗 ) sent between honest parties in the Setup

phase in the previous hybrid with the encryption of a dummy

value, i.e., 𝑐𝑟
𝑖, 𝑗
∗ = AE.enc(⊥, ek∗𝑖, 𝑗 ).

The indistinguishability is guaranteed by IND-CPA security

of the encryption scheme.

Hyb5 In this hybrid, in every iteration 𝑘 , each honest user 𝑖

substitutes 𝑔
𝑟𝑖
𝑘
𝑓 𝑥𝑖 it sends to the server in the first round

with 𝑔
𝑋 ∗𝑖
𝑘

for a uniformly randomly chosen 𝑋 ∗
𝑖
. Moreover,

in the third round, for each honest user 𝑖 , SIM calculates

𝑅∗
𝑖
= 𝑔

𝑋 ∗𝑖
𝑘
/𝑓 𝑥𝑖 the shares 𝑅∗

𝑖, 𝑗
for honest users 𝑗 based on the

shares which have already been sent to corrupt users in the

Setup phase, i.e., it calculates 𝑅∗
𝑖, 𝑗

for 𝑗 ∈ U\C making sure

that 𝑅∗
𝑖
= SS.expoRecon({𝑅∗

𝑖, 𝑗
, 𝑗} 𝑗 ∈U𝑖\C, {𝑔

𝑟𝑖,𝑗

𝑘
, 𝑗} 𝑗 ∈C). For

corrupt users 𝑗 ∈ C, let 𝑅∗
𝑗,𝑖

= 𝑔
𝑟 𝑗,𝑖

𝑘
. Then each honest user

𝑖 who receives O with at least 𝑡 valid signatures calculates

𝜁 ∗
𝑖
=

∏
𝑗 ∈O𝑖 𝑅

∗
𝑗,𝑖

and sends 𝜁 ∗
𝑖
to the server.

Hyb6 In this hybrid, in each iteration, if some honest user receives

O with at least 𝑡 valid signatures in the second round, then in

the third round, for each user 𝑖 ∈ O\C, instead of using 𝑅∗
𝑖
=

𝑔
𝑋 ∗𝑖
𝑘
/𝑓 𝑥𝑖 when calculating the shares for honest users, SIM

randomly picks 𝑅∗
𝑖
under the constraint that

∏
𝑖∈OS\C 𝑅

∗
𝑖
=∏

𝑖∈OS\C 𝑔
𝑋 ∗𝑖
𝑘
/𝑓 𝑥𝑖 . The simulator then uses 𝑅∗

𝑖
to calculate

the shares {𝑅∗
𝑖, 𝑗
} 𝑗 ∈U\C for user 𝑖 ∈ O\C.

This hybrid is indistinguishable from the previous hybrid,

as 𝑅∗
𝑖
are still uniformly random, and

∏
𝑖∈O\C 𝑅

∗
𝑖
that the

server can reconstruct from the shares keeps the same.

Hyb7 In this hybrid, in each iteration, if some honest user receives

O with at least 𝑡 valid signatures in the second round, then

in the third round, for each honest user 𝑖 ∉ O, the simulator

sets 𝑅∗
𝑖
as 𝑔𝑘 and calculates the shares for 𝑖 and 𝑗 ∈ U\C.

This hybrid is identical to the previous one as there is only

one unique O and if an honest user is not included in O, the
share 𝑅∗

𝑖, 𝑗
for 𝑗 ∈ U\C will not be included in any 𝜁 ∗

𝑗
sent to

server. Thus, the adversary will not receive any information

about 𝑅∗
𝑖
in the third round of the iteration.

Hyb8 Instead of receiving the inputs from the honest parties and

using

∑
𝑖∈O\C 𝑥𝑖 to sample 𝑅∗

𝑖
for 𝑖 ∈ O\C, the simulator

makes a query to the functionality Ideal with the user set

O\C and iteration counter 𝑘 and use the output value to

sample random value 𝑅∗
𝑖
in every iteration with |O\C| ≥

𝑡 − 𝑛C . Note that the Ideal functionality will not return ⊥ in

this case.

The distribution of this hybrid is exactly the same as the dis-

tribution of the previous hybrid. In this hybrid, the simulator

does not know 𝑥𝑖 for any user 𝑖 .

Now we have proved that the joint view of𝑀C in the real exe-

cution is computationally indistinguishable from the view in the

simulated execution.

E PERFORMANCE ANALYSIS
We include asymptotic performance analysis of MicroSecAgg𝐷𝐿

(which is the same as MicroSecAgg𝐶𝐿) and MicroSecAgg𝑔𝐷𝐿 in

Appendix E.1 and Appendix E.2 respectively, and include more

experiment results in Appendix E.4. In this section, we use 𝑛 to

denote the total number of users, 𝐿 to denote the total length of

input vectors, and use 𝑅 = 2
ℓ
to denote the size of the range of

results, i.e., the sum of inputs the server learns in each iteration is

assumed to be in the range [𝑅].
We include full comparison of asymptotic performance between

different protocols in Table 2. One thing to notice here is that

in practice different operations take different amounts of time. In

BIK+17, BBG+20, and Flamingo, the multiplier 𝐿 in the computation

cost of both server and user sides come from extending the secrets

to length 𝐿 and adding up the vectors of length 𝐿, which is fast in

practice; on the contrary, the 𝐿 multiplier in the computation cost

of MicroSecAgg𝐷𝐿 , MicroSecAgg𝑔𝐷𝐿 , and MicroSecAgg𝐶𝐿 comes

from the fact that the server needs to do the reconstruction of shared

secrets on the exponent and the user needs to do the exponentiation

for every index of the input vector, which ismore expensive. Besides,

BIK+17, BBG+20, Flamingo, MicroSecAgg𝑔𝐷𝐿 , and MicroSecAgg𝐶𝐿

have part of the computation cost depending on the number of

offline users. In Table 2, we assume that the offline rate is a constant,

i.e., the number of offline users is𝑂 (𝑛). We include a more detailed

analysis in Table 3.

E.1 Asymptotic Performance of MicroSecAgg𝐷𝐿
E.1.1 Semi-Honest Protocol.

Communication. In the Setup phase, each user sends one public

encryption key (𝑂 (𝑘)) to the server and receives public encryption

keys of all other users (𝑂 (𝑛𝑘)), then it sends encrypted shares for

all other users of its random mask chosen from Z𝑞 to the server and
receives one encrypted share of mask of each other user (𝑂 (𝑛𝑘)).
This results in 𝑂 (𝑛𝑘) communication cost for each user. As the

message the server sends to each user is of the same size, the

communication cost for the server is 𝑂 (𝑛2𝑘).
In the first round of the Aggregation phase, each user sends 𝐿

group elements to the server (𝑂 (𝑘𝐿)) and receives the indicator of

the online set O (𝑛 bits), which results in𝑂 (𝑘𝐿) +𝑛 communication
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Protocol

Computation cost

Server User

Setup Agg. Setup Agg.

BIK+17 – 𝑂 (𝑛2 + (1 − 𝛿)𝑛𝐿 + 𝛿𝑛2𝐿) – 𝑂 (𝑛2 + 𝑛𝐿)
BBG+20 – 𝑂 (𝑛 log

2 𝑛 + (1 − 𝛿)𝑛𝐿 + 𝛿𝑛𝐿 log𝑛) – 𝑂 (log
2 𝑛 + 𝐿 log𝑛)

Flamingo forwarding 𝑂 (𝑛𝐿 + 𝛿𝑛 log
2 𝑛 + (1 − 𝛿)𝑛 log𝑛) 𝑂 (log

2 𝑛) 𝑂 (𝐿 + 𝑛 log𝑛)
MicroSecAgg𝐷𝐿 𝑂 (𝑛) 𝑂 (𝑛𝐿 + 2

ℓ/2𝐿) 𝑂 (𝑛2) 𝑂 (𝑛𝐿)
MicroSecAgg𝑔𝐷𝐿 𝑂 (𝑛 + 𝛿𝑛 log

2 𝑛) 𝑂 (𝑛𝐿 + 2
ℓ/2𝐿) 𝑂 (log

2 𝑛) 𝑂 (𝐿 log𝑛)
MicroSecAgg𝐶𝐿 𝑂 (𝑛 + 𝛿𝑛 log

2 𝑛) 𝑂 (𝑛𝐿) 𝑂 (log
2 𝑛) 𝑂 (𝐿 log𝑛)

Table 3: Total asymptotic computation cost for all rounds per aggregation with malicious security. 𝑛 denotes the total number of users, 𝐿
denotes the length of the input vector, and ℓ denotes the bit length of each element in the input vector. The overhead includes both received
and sent messages. We assume the number of offline users is 𝛿𝑛. In the line of Flamingo, “forwarding” means that the server only forwards the
message for the users.

Protocol rd

Computation cost

Server User

Setup Agg. Setup Agg.

BIK+17 − | 4 – 𝑂 (𝑛2𝐿) – 𝑂 (𝑛2 + 𝑛𝐿)
BBG+20 − | 4 – 𝑂 (𝑛 log

2 𝑛 + 𝑛𝐿 log𝑛) – 𝑂 (log
2 𝑛 + 𝐿 log𝑛)

Flamingo 2 | 2 forwarding 𝑂 (𝑛𝐿 + 𝑛 log
2 𝑛) 𝑂 (log

2 𝑛) 𝑂 (𝐿 + 𝑛 log𝑛)
MicroSecAgg𝐷𝐿 3 | 2 forwarding 𝑂 (𝑛𝐿 + 2

ℓ/2𝐿) 𝑂 (𝑛2) 𝑂 (𝑛𝐿)
MicroSecAgg𝑔𝐷𝐿 4 | 2 𝑂 (𝑛 log

2 𝑛) 𝑂 (𝑛𝐿 + 2
ℓ/2𝐿) 𝑂 (log

2 𝑛) 𝑂 (𝐿 log𝑛)
MicroSecAgg𝐶𝐿 4 | 2 𝑂 (𝑛 log

2 𝑛) 𝑂 (𝑛𝐿) 𝑂 (log
2 𝑛) 𝑂 (𝐿 log𝑛)

Table 4: Total asymptotic computation cost for all rounds per aggregation with semi-honest security. 𝑛 denotes the total number of users, 𝐿
denotes the length of the input vector, and ℓ denotes the bit length of each element in the input vector. The “rd” column indicates the number
of rounds in the setup phase (on the left, if applicable) and in each aggregation phase (on the right). We assume the number of offline users is
𝑂 (𝑛) in every aggregation iteration in this table. “forwarding” means that the server only forwards the messages from the users.

Protocol

Communication cost

Server User

Setup Agg. Setup Agg.

BIK+17 – 𝑂 (𝑛𝐿ℓ + 𝑛2𝜅) – 𝑂 (𝐿ℓ + 𝑛𝜅)
BBG+20 – 𝑂 (𝑛𝐿ℓ + 𝑛𝜅 log𝑛) – 𝑂 (𝐿ℓ + 𝜅 log𝑛)
Flamingo 𝑂 (𝜅 log𝑛) 𝑂 (𝑛𝐿ℓ + 𝑛𝜅 log

2 𝑛) 𝑂 (𝜅 log𝑛) 𝑂 (𝐿ℓ + 𝑛𝜅 log𝑛)
MicroSecAgg𝐷𝐿 𝑂 (𝑛2𝜅) 𝑂 (𝑛𝜅𝐿 + 𝑛2) 𝑂 (𝑛𝜅) 𝑂 (𝜅𝐿 + 𝑛)
MicroSecAgg𝑔𝐷𝐿 𝑂 (𝑛𝜅 log𝑛) 𝑂 (𝑛𝜅𝐿 + 𝑛 log𝑛) 𝑂 (𝜅 log𝑛) 𝑂 (𝜅𝐿 + log𝑛)
MicroSecAgg𝐶𝐿 𝑂 (𝑛𝜅 log𝑛) 𝑂 (𝑛𝜅𝐿 + 𝑛 log𝑛) 𝑂 (𝜅 log𝑛) 𝑂 (𝜅𝐿 + log𝑛)

Table 5: Total received and sent asymptotic communication cost for all rounds per aggregation with semi-honest security. 𝑛 denotes the total
number of users, 𝜅 the security parameter, 𝐿 the length of the input vector, and ℓ the bit length of each element.

cost. In the second round, each user also sends 𝐿 element in Z∗𝑝
to the server, which results in 𝑂 (𝑘𝐿) communication cost. Thus,

the total communication cost of each user is 𝑂 (𝑘𝐿) + 𝑛. As the
size of messages between the server and each user is the same, the

communication cost of the server is 𝑂 (𝑛𝑘𝐿) + 𝑛2
.

Computation. We discuss the computation cost of each user first.

In the Setup phase, each user 𝑖 needs to 1) generate a pair of encryp-

tion keys pk𝑖 and sk𝑖 , 2) run the key exchange algorithm to obtain

ek𝑖, 𝑗 for all other users 𝑗 , 3) secret shares 𝑟𝑖 among all users, 4)

encrypt share 𝑟𝑖, 𝑗 for each other user 𝑗 with ek𝑖, 𝑗 , 5) decrypt the ci-
pher text 𝑐 𝑗,𝑖 for each other user 𝑗 with ek𝑖, 𝑗 . Thus, the computation

cost of each user in the Setup phase is 𝑂 (𝑛2). In the Aggregation

phase, the computation cost of each user consists of calculating

𝐻 (𝑘)𝑥𝑖+𝑟𝑖 and calculating 𝐻 (𝑘)
∑
𝑗∈O 𝑟 𝑗,𝑖

for each index of the input

vector, which is 𝑂 (𝑛𝐿) in total.

Then we analyze the computation cost of the server. In the Setup

phase of the semi-honest protocol, the server only forwards the

messages for users. In the Aggregation phase, the server needs to

multiply all the masked inputs it receives, reconstruct the sum of the

random masks of all online users in the exponent, and calculate the

discrete log to get the final result for each index of the input vector in

the second round of the Aggregation phase. Thus, the computation

cost of the server is 𝑂 (𝑛𝐿 + 2
ℓ/2𝐿) in Aggregation phase of the

semi-honest protocol, in which 2
ℓ/2

comes from discrete logarithm
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if the optimized algorithms, e.g., baby-step giant-step or Pollard’s

kangaroo algorithm are used.

E.1.2 Protocol guaranteeing privacy against malicious adversary. In
the protocol that protects privacy against malicious adversaries,

in addition to the communication cost listed above, each user also

sends a signature and receives signatures of all other users in the

first round of the Setup phase and the second round of the Aggre-

gation phase, which results in 𝑂 (𝑛𝑘) communication cost. Thus,

the asymptotic communication cost does not change.

Regarding the computation cost, each user needs to additionally

sign the public key ek in the Setup phase and the online set in the

Aggregation phase and also verify all other users’ signatures, which

involves 𝑂 (𝑛) computation cost. The server also needs to verify

all signatures from the users. Thus, for each user, the asymptotic

computation cost is the same as the cost of semi-honest protocol.

For the server, the computation cost is𝑂 (𝑛) in the Setup phase and

the same as the semi-honest protocol in the Aggregation phase.

E.2 Asymptotic Performance of
MicroSecAgg𝑔𝐷𝐿

E.2.1 Semi-Honest Protocol.

Communication. In the Setup phase, each user 𝑖 ∈ 𝐺𝑑 needs

to 1) send its public encryption key pk𝑖 and two public masking

keys pk1

𝑖 and pk−1

𝑖 to the server and receive the public keys of the

group members of its own group𝐺𝑑 and two neighboring groups

𝐺𝑑+1 and 𝐺𝑑−1
, 2) send the encrypted shares of sk1

𝑖 and sk−1

𝑖 to all

group members of 𝐺𝑑+1 and 𝐺𝑑−1
and receive encrypted shares

from them, 3) send the encrypted shares of 𝑟𝑖 and ℎ𝑖 to the group

members in 𝐺𝑑 and receive encrypted shares from them, 4) receive

the list of offline users in 𝐺𝑑+1 and 𝐺𝑑−1
and send the shares of

secret masking keys of those offline users to the server. When the

size of each user group is set as 𝑂 (log𝑛), the communication cost

for each user in the Setup phase is𝑂 (𝑘 log𝑛). As messages between

the server and each user is the same, the communication cost of

the Setup phase for the server is 𝑂 (𝑛𝑘 log𝑛).
The communication cost of the Aggregation phase for both the

user and the server is the same as the non-grouping version except

that now each user only needs to know the online set of its own

group. Thus, assuming the group size is 𝑂 (log𝑛), the communica-

tion cost of one iteration of the Aggregation phase is𝑂 (𝑘𝐿 + log𝑛)
for each user and 𝑂 (𝑛𝑘𝐿 + 𝑛 log𝑛) for the server.

Computation. We discuss the computation cost of each user first.

In the Setup phase, each user 𝑖 ∈ 𝐺𝑑 needs to 1) generate three

key pairs, 2) run key exchange algorithm to get the symmetric

encryption key ek𝑖, 𝑗 for group members 𝑗 of𝐺𝑑 andmk𝑖, 𝑗 for group
members of 𝐺𝑑+1 and 𝐺𝑑−1

, secret share its private masking keys

among the group members of two neighboring groups 𝐺𝑑+1 and

𝐺𝑑−1
, 3) decrypt the shares of private masking keys received from

the two neighboring groups pick the random mask 𝑟𝑖 and calculate

the mutual mask ℎ𝑖 , secret share both the masks among group

members of𝐺𝑑 , and encrypt each share, 4) decrypt the shares of the

masks received from group members of𝐺𝑑 . Thus, the computation

cost of each user of the Setup phase is 𝑂 (log
2 𝑛).

In each iteration of the Aggregation phase, each user 𝑖 needs

to compute the masked input 𝐻 (𝑘)𝑋
𝑖

and the aggregated shares

𝐻 (𝑘)
∑
𝑗∈O𝑑 𝑟 𝑗,𝑖−

∑
𝑗∈𝐺𝑑 \O𝑑 ℎ 𝑗,𝑖 for every index of the input vector,

which involves 𝑂 (𝐿 log𝑛) computation.

Now, we analyze the computation cost of the server. In the Setup

phase, excepting forwarding messages for users, the server also

needs to reconstruct mk−1

𝑖 and mk1

𝑖 and calculate ℎ𝑖 for the users 𝑖

who are online in the second round but offline in the third round. As-

suming there are 𝛿𝑛 offline users in which 𝛿 is a constant parameter,

the server needs to do 𝑂 (𝛿𝑛 log
2 𝑛) computation.

In the Aggregation phase, the server needs to reconstruct the

sum of masks in the exponent, multiply the results of all groups

together, and calculate the discrete log to get the final result for each

index of the input vector. Assuming each group is of size 𝑂 (log𝑛),
the computation cost of the server is 𝑂 (𝑛𝐿 + 2

ℓ/2𝐿), in which 2
ℓ/2

comes from discrete logarithm if the optimized algorithms, e.g.,

baby-step giant-step or Pollard’s kangaroo algorithm are used.

E.2.2 Protocol Guaranteeing Privacy against Malicious Adversary.

Communication. In addition to the communication listed in the

semi-honest case, in this version, each user 𝑖 ∈ 𝐺𝑑 needs to send

and receive signatures with the public keys and agree on two offline

lists of𝐺𝑑+1 and𝐺𝑑−1
respectively before it sends the shares of the

secret masking keys of the offline users in these two groups to the

server in the Setup phase, and agree on the online set O𝑖 by sending
and receiving signatures on the set. These introduces 𝑂 (𝑘 log𝑛)
additional communication cost to both the Setup phase and the

Aggregation phase for each user (which means 𝑂 (𝑛 log𝑛) addi-
tional cost for the server), which does not change the asymptotic

communication cost of the users and the server.

Computation. Compared to the semi-honest version of protocol,

the user needs to signs the public keys and verify signatures from

the members of its own group and two neighboring groups, and

the server also needs to verify the signatures it receives. This adds

𝑂 (log𝑛) computation to each user and 𝑂 (𝑛) computation to the

server, which does not change the asymptotic computation cost for

both the users and the server.

E.3 Asymptotic Performance of MicroSecAgg𝐶𝐿
AsMicroSecAgg𝐶𝐿 follows the same route as MicroSecAgg𝑔𝐷𝐿 , the

asymptotic performance of the two protocols is the same, except

that the server-side computation cost of the Aggregation phase of

MicroSecAgg𝐶𝐿 does not have 2
ℓ/2𝐿 which is from the inefficient

discrete logarithm calculation in the other two protocols.

E.4 Additional Experimental Results
Different group/neighborhood sizes. Figure 9 shows the local com-

putation time of each party of each iteration of MicroSecAgg𝑔𝐷𝐿

and BBG+20 for different neighbor sizes and total number of users.

By neighbor size, we mean the size of one group in our group pro-

tocol and the number of neighbors each user has in BBG+20. Note

that in real-world applications, the neighbor size should be chosen

based on the total number of users and the assumed fraction of

corrupt and dropout users. For example, when the total number

of users is 1000, the fraction of corrupted users is 0.33, and the

fraction of offline users is 0.05, the group size can be chosen as

about 80, while to tolerate both 0.33 fraction of corrupt users and

0.33 fraction of offline users, the group size should be chosen as 300

271



Proceedings on Privacy Enhancing Technologies 2024(3) Guo et al.

in the semi-honest scenario. We refer the readers to Section C.1 and

Section 3.5 of [10] for the detailed discussion about how to choose

the group size or the number of neighbors. In the experiment, we

use fixed group size just for efficiency analysis purposes. As shown

in the running result, sharing information with only a small set

of neighbors significantly improves the performance of the bench-

mark protocol BBG+20, as the number of users included in secret

sharing and reconstruction is a major factor of computation over-

head. On the contrary, the improvement brought by the grouping

over MicroSecAgg𝐷𝐿 is not significant in MicroSecAgg𝑔𝐷𝐿 as the

only two things affected by the number of neighbors in the Aggre-

gation phase are the size of the online set in each group and the

number of shares the server uses to do the reconstruction. Both

these two parts compose only a very small fraction of the total

running time. The computation time of users varies more than the

computation time of the server when the group size is different, as

in each iteration, the user needs to sum up the shares of the masks

of all online group members the running time of which depends

on the group size.

Performance with Offline users. In Figure 10 we show the lo-

cal computation time of online users (who stay online in the

whole iteration) and the server in one iteration of MicroSecAgg𝐷𝐿 ,

MicroSecAgg𝑔𝐷𝐿 , and BIK+17 with a different fraction of users

dropping out. In each iteration, a 𝛿-fraction of users are ran-

domly selected from all users and stay online before they send

the masked inputs to the server (which happens in the first round

of MicroSecAgg𝐷𝐿 , MicroSecAgg𝑔𝐷𝐿 , and in the second round of

BIK+17) and then stay silent for the rest rounds of the iteration.

The size of the sum of inputs is fixed to 20 bits. As shown in the

left graph, the dropout rate does not affect the computation time of

online users significantly in BIK+17, as each online user 𝑖 needs to

send one share of secret for each other user 𝑗 to the server no matter

whether user 𝑗 is online or not. The second graph shows that the

computation time of the server in BIK+17 decreases as more users

drop out. This is different from the experiment result reported in

[11], as in [11] the server needs to extend the symmetric masking

key between an offline user 𝑖 and all other users 𝑗 to a long vector

using a pseudorandom generator (PRG) to cover the whole input

vector which is costly. In this work we assume each input is a single

element and the server does not apply PRG over the symmetric

masking key, which makes the impact of the dropout rate less se-

vere. Moreover, we implement the reconstruction of Shamir’s secret

sharing naively using all shares received, which means the more

users drop out, the fewer shares received by the server in the next

round and the less time it takes to run the reconstruction algorithm.

In the zoom-in graphs of Figure 10, we can see a higher value of

𝛿 offline parties leads to shorter computation time for both users

and the server. This is because of the same reason as mentioned

above — the fewer users are online, the fewer shares need to be

included when computing the sum of shares on the user’s side, and

the fewer shares are included in the reconstruction in the exponent

on the server’s side.

Our protocols tolerate the same offline-rate as [10, 11]. The offline

set can be different in each iteration without the need to reshare

the masks and without efficiency loss as long as the number of

offline users in every iteration is within the offline threshold. For

practical applications, about 20% is a reasonable dropout rate. If too

many users go offline, the protocol can halt and wait for enough

users to come back, or start again with a smaller user set. As in [10]

the offline parties are chosen at random, as shown in Lemma 4.4,

with negligible probability a full group in MicroSecAgg𝑔𝐷𝐿 can go

offline, in which case correctness is lost but privacy is maintained.

Setup phase performance. In Figure 11, we report the total com-

putation time and bandwidth cost of each user and the server in the

Setup phase of MicroSecAgg𝐷𝐿 and MicroSecAgg𝑔𝐷𝐿 with differ-

ent group sizes. The graph on the left shows that the computation

time of each user in the Setup phase of the basic protocol growswith

the total number of users, while in the group protocol the computa-

tion time grows when the group size grows. In MicroSecAgg𝐷𝐿 , the

bandwidth cost on the user side grows linearly with the growth of

the total number of users as each user needs to send one encrypted

share to every other user, which also results in quadratic bandwidth

growth on the server’s side. In MicroSecAgg𝑔𝐷𝐿 , when the group

size is fixed, the bandwidth cost on the users’ side does not increase

with the total number of users, while the bandwidth cost on the

server’s side increases linearly as the number of groups increases.

Accuracy analysis with machine learning models. We also imple-

ment a federated learning protocol with MicroSecAgg𝐷𝐿 on the

adult census income dataset [27] which provides 14 input features

such as age, marital status, and occupation, that can be used to

predict a categorical output variable identifying whether (True)

or not (False) an individual earns over 50K USD per year. We run

a logistic regression algorithm on the preprocessed version used

by Byrd et al. [16] which is a cleaned version with one constant

intercept feature added based on a preprocessed version of the

dataset from Jayaraman et al. [29] The preprocessed dataset con-

tains 105 features and 45,222 records, about 25% (11,208) of which

are positive. The dataset is loaded once at the beginning of the

protocol execution and randomly split into training set (75%) and

testing set (25%). At the beginning of each training iteration, a user

randomly selects 200 records from the training data as its local

training data and test the model accuracy with the common test

set. We run both the plain federated learning in which every user

simply sends its update in plain text to the server and the version

with MicroSecAgg𝐷𝐿 in which the model updates are aggregated

with the secure aggregation protocol for 5 iterations of aggregation,

each with 50 local training iterations. We assess accuracy using

the Matthews Correlation Coefficient (MCC) [39], a contingency

method of calculating the Pearson product-moment correlation

coefficient (with the same interpretation), that is appropriate for im-

balanced (3:1) classification problems in our case. The accuracy of

the models’ output in these two scenarios are both distributed close

around 0.81, showing that using the secure aggregation protocol

does not affect the accuracy of the model learned.

F RELATEDWORKS
Secure aggregation. There are several other works exploring the

secure aggregation problem. Liu et al. propose a privacy preserving

federated learning scheme for XGBoost in [34]. However, it does

not allow offline nodes to rejoin the training process later without

sacrificing privacy. Several recent works also employ the idea of
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reconstructing one layer of mask of online users. Yang et al. pro-

poses a secure aggregation protocol LightSecAgg [48] in which

each user chooses a local mask, shares an encoding of it first, then

it sends the input covered with the mask to the server, and sends

the server the aggregated value of masks of the online users to the

server so that the server can decode the aggregated mask from the

sum of the masked inputs. The authors also discuss secure aggrega-

tion solution in asynchronous federated learning which allows the

stale updates from slow users to also contribute in learning tasks.

In SAFELearn [28] proposed by Fereidooni et at., each user the

encryption of its local update encrypted with fully homomorphic

encryption (FHE) to the server who only performs the aggrega-

tion computation on the cipher text when there is only one server

available, or shares its update among more than one non-colluding

servers who collaboratively calculates the aggregation of the model

updates with multiparty computation (MPC) or secure two-party

computation (STPC). However, both of these works consider only

semi-honest adversary model and the users also need to generate

and share the random masks in every iteration of aggregation.

Differential Privacy. Another line of works adopt differential pri-
vacy which is a generic privacy protection technique in database

and machine learning area. The high level idea is to add artificial

noises to the gradients to prevent inverting attack without losing

too much accuracy. Applying differential privacy technique in fed-

erated learning is more challenging than in traditional machine

learning scenario, as in federated learning every single user needs

to add the noises by its own. The individual noise should not be

either too weak to lose the functionality of hiding the data, or too
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strong to radically harm the accuracy of the learning result. Truex

et al. propose a hybrid approach [44] which protects the privacy

during learning process with secure multiparty computation and

prevents inference over the outputs of learning with differential

privacy. This work assumes all users are online. HybridAlpha pro-

posed by Xu et al. in [47] also adopts both differential privacy and

functional encryption. It assumes honest but curious server and

dishonest users.

G ABIDES FRAMEWORK
We use a discrete event simulation framework ABIDES [15] to

implement the simulation of our protocol. In this section, we give

an overview of this framework.

G.1 Creating Parties for a Protocol
Within the context of a discrete event simulation, any actor which

can affect the state of the system is generically called an agent. In
ABIDES, all agents inherit (in the sense of object-oriented program-

ming) from the base Agent class. This class provides a minimal

implementation for the methods required to properly interact with

the simulation kernel. It is expected that experimental agents will

override those methods which require non-default behavior.

Each party in a cryptographic protocol will therefore be an in-

stance of some subclass of Agent, customized to contain that agent’s

portion of the protocol. When a protocol calls for multiple parties

of the same type, only one specialized agent class must be cre-

ated, with the relevant parties each being a distinct instance during

the simulation, with potentially different timing, randomness, and

attributes.

The following subsections briefly describe these minimum re-

quired methods. Note that agents may additionally contain any

other arbitrary methods as required for their protocol participation.

G.1.1 Methods Called Once per Agent. The kernelInitializing
method is called after all agents have been created. It gives each

agent a reference to the simulation kernel. This method is a good

place to conduct any necessary agent initialization that could not

be handled in the agent’s __init__ method for some reason, for

example if it required interaction with the kernel.

The kernelStartingmethod is called just before simulated time

begins to flow. It tells each agent the starting simulated time. Agents

that need to take action at the beginning of the simulation, without

being prompted by a message from another agent, should use this

event to schedule a wakeup call using setWakeup. Otherwise, the
agent may never act.

The kernelStopping method is called just after simulated time

has ended, to let each agent know that no more messages will be

delivered. This is a good place to compute statistics and write logs.

The kernelTerminating method is called just before the simu-

lation kernel exits. It allows a final chance for each agent to release

memory or otherwise clean up its resources.

G.1.2 Methods Called Many Times per Agent. The wakeup method

is called by the kernel when this agent had previously requested

to be activated at a specific simulated time. The agent is given

the current time, but it is otherwise expected the agent will have

retained any required information in its internal state. An agent

can request a wakeup call with setWakeup.
The receiveMessage method is called when a communication

has arrived from another agent. The agent is given the current

time and an instance of the Message class. The kernel imposes no

particular constraint on the contents of a message. It is up to the

agents in a simulation to interpret the messages they may receive.

Most of the existing messages simply hold a Python dictionary in

Message.body that contains key-value pairs, varying with mes-

sage type. An agent can transmit a message with the sendMessage
method, and computation or latency delays will be automatically

added by the kernel during delivery scheduling.

G.1.3 Example: Shared Sum Protocol. While there may be a server

agent in a client-server protocol, it is important to understand that

there is no “one place” to write protocol logic in a linear fashion.

Just as in the real world, progress through the protocol will be

driven by individual agent actions, and each agent must constantly

work out where it stands in the protocol and what it should do next.

For example, imagine a simple multi-party computation (MPC)

protocol to securely compute a shared sum. There will need to be

two agent classes created, because a client party and a computation

service will behave quite differently. Wemight call them SumClient
and SumService. Both will inherit from the basic Agent class.

The Central View. Thinking centrally, we could write English

instructions for a simple shared sum protocol using MPC:

(1) Each party 𝑖 should send to each other party 𝑗 a randomly

generated large number 𝑛𝑖 𝑗 .

(2) Each party 𝑖 should calculate and retain 𝑠𝑜𝑢𝑡
𝑖

=
∑
𝑗 𝑛𝑖 𝑗 .

(3) After receiving a message 𝑛 𝑗𝑖 from all other parties 𝑗 , each

party 𝑖 should compute 𝑠𝑖𝑛
𝑖

=
∑
𝑗 𝑛 𝑗𝑖 .

(4) Each party 𝑖 should send to the summation service encrypted

operand value 𝑉𝑖 = 𝑣𝑖 − 𝑠𝑜𝑢𝑡𝑖
+ 𝑠𝑖𝑛

𝑖
, where 𝑣𝑖 is the cleartext

value of its operand.

(5) After receiving a message containing operand 𝑉𝑖 from all

client parties 𝑖 , the service should compute result 𝑅 =
∑
𝑖 𝑉𝑖 ,

and send messages containing result 𝑅 to all parties 𝑖 .

All parties will now have an accurate summation result despite

the summation service receiving encrypted operands and being

unable to reveal any party’s cleartext operand.

Summary of Distributed Implementation. But how will we imple-

ment the above protocol in a multi agent discrete event simulation

without “central logic”?We will need to carefully control the flow of

the simulation through individual agent actions and internal agent

state. The client parties require code for Steps 1-4 of the protocol

and the summation service requires code for Step 5.

SumClient.kernelStarting will need to request an initial

wakeup call for this client party at, or shortly after, the given

start_time, which will be the earliest possible simulated times-

tamp. This can be done by calling self.setWakeup.
SumClient.__init__ will need to receive a list of peer party ids

within the same connected subgraph and store this in an instance

variable for later use. This list is necessary to send shared secrets to

peers, and to know when all “expected” shared secrets have been

received from peers.
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SumClient.wakeup will need to implement Steps 1 and 2 of

the protocol. The protocol must begin with wakeup calls to the

agents, because there are is not yet any message flow to trig-

ger party activities. To send the shared secrets, the party will

call self.sendMessage once per peer client discovered during

__init__. The body of a message is typically a Python dictionary,

so we can set Message.body[’type’] = ’SHARED_SECRET’ and

Message.body[’secret’] to the randomly generated value for a

given peer. The sent shared secrets can be accumulated into an

instance variable for later use, for example as self.sent_sum.
SumClient.receiveMessage(msg) will need to implement

steps 3 and 4 of the protocol, because this phase is triggered

by receipt of messages from other parties. The client party can

test msg.body[’type’] to determine what kind of message has

roused it. Upon receiving a SHARED_SECRET message, the party

should accumulate the secret value and a count of received values

into instance variables, for example as self.received_sum and

self.received_count. There is no outside signal to tell a party

when it has received the final shared secret, so at receipt of each

secret, the party must compare its received count to the known

size of its peer network. When the final secret has arrived and

been accumulated, the party will call sendMessage one time with

the id of the summation service and set Message.body[’type’]
= ’SUM_REQUEST’ and Message.body[’value’] to the encrypted

operand value, which is the cleartext operand value plus the sum

of received secrets minus the sum of sent secrets.

SumService.__init__ will need to receive a count of client par-

ties from whom it should expect summation requests, and store

this in an instance variable, for example as self.num_clients.
SumService.receiveMessage(msg)will need to implement step

5 of the protocol, because it is triggered by receipt of messages

from client parties. Note that there is no need for a non-default

implementation of SumService.wakeup, because the service does
nothing until it receives client requests. Each time a SUM_REQUEST
message is received, the service must store as instance variables

the received operand values, the clients from which they were

received, and a count of received values. Once the service has

received the expected number of SUM_REQUEST messages, it can

sum the operands to a single result and call self.sendMessage
once per communicating client party to deliver the result in an

appropriate message type, perhaps SUM_RESULT.
If the client parties should do something with the summation

result, SumClient.receiveMessage(msg) is the appropriate loca-

tion for that code. Note that the client party must distinguish in-

coming SUM_RESULT messages from SHARED_SECRET messages by

testing msg.body[’type’].

G.2 Connecting Parties in a Protocol
For a multi agent discrete event simulation to be useful, the par-

ties must be able to exchange messages. For the simulation to be

realistic, those messages should experience variable, non-zero com-

munication latency or time in flight, and various parties should be

able to have different latency characteristics.

The ABIDES framework supports this through the

model.LatencyModel class, which defines a (potentially)

fully-connected pairwise network among the agents in a simu-

lation, or the parties in a protocol. Once defined, the model will

be automatically applied to all messages within the simulated

environment. The preferred latency model is currently the ‘cubic’

model.

The cubic latency model accepts up to five parame-

ters: connected, min_latency, jitter, jitter_clip, and

jitter_unit. Only the parameter min_latency is required. The

others have reasonable default values.

In brief, min_latency must be a 2-D numpy array defining the

minimum latency in nanoseconds between each pair of agents.

The matrix can be diagonally symmetric if communication speed

should be independent of communication direction, but this is not

required. The connected parameter must be either True (all parties
are pairwise connected) or a 2-D boolean numpy array denoting

connectivity. Parties that are not connected will be prohibited from

calling sendMessage with each other’s id. The remaining parame-

ters describe the cubic randomness added to the minimum latency

when each message is scheduled for delivery. Detailed documenta-

tion is contained in the docstring at the top of the LatencyModel
class code.

G.3 Realistic Computation Delays within a
Protocol

Reasonable estimation of computation time is another important

piece of a realistic simulation. The ABIDES framework supports a

per-party computation delay that represents how long the party

requires to complete a task and generate resulting messages. This

delay will be used both to determine the “sent time” for any mes-

sages originated during the activity and the next available time at

which the party could act again. Computation delays are stored in

a 1-D numpy array with nanosecond precision.

A specific party (simulation agent) has only one computation

delay value at a time, but these values can be updated at any time.

We can therefore observe the actual computation time of the activity

as it happens in the simulation, and use this to set the appropriate

delay in simulated time.

A straightforward way to handle this is to assign

pandas.Timestamp(’now’) to a variable when the activity begins,

and subtract it from a second call to pandas.Timestamp(’now’)
when the activity ends. The difference between these two can

be passed to self.setComputationDelay to update the party’s

computation cost for the current activity.

The same technique can be used to accumulate time spent by a

party in various sections of the protocol, so aggregated statistics

can be logged or displayed at the conclusion of the protocol.
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