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ABSTRACT

Conventional gradient-sharing approaches for federated learning
(FL), such as FedAvg, rely on aggregation of local models and of-
ten face performance degradation under differential privacy (DP)
mechanisms or data heterogeneity, which can be attributed to the
inconsistency between the local and global objectives. To address
this issue, we propose FedLAP-DP, a novel privacy-preserving ap-
proach for FL. Our formulation involves clients synthesizing a small
set of samples that approximate local loss landscapes by simulating
the gradients of real images within a local region. Acting as loss
surrogates, these synthetic samples are aggregated on the server
side to uncover the global loss landscape and enable global opti-
mization. Building upon these insights, we offer a new perspective
to enforce record-level differential privacy in FL. A formal privacy
analysis demonstrates that FedLAP-DP incurs the same privacy
costs as typical gradient-sharing schemes while achieving an im-
proved trade-off between privacy and utility. Extensive experiments
validate the superiority of our approach across various datasets
with highly skewed distributions in both DP and non-DP settings.
Beyond the promising performance, our approach presents a faster
convergence speed compared to typical gradient-sharing methods
and opens up the possibility of trading communication costs for
better performance by sending a larger set of synthetic images. The
source is available at https://github.com/a514514772/FedLAP-DP.
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1 INTRODUCTION
Federated Learning (FL) [36] is a distributed learning framework

that allows participants to train a model collaboratively without
sharing their data. Predominantly, existing works [19, 31, 36] achieve
this by training local models on clients’ private datasets for sev-
eral local epochs and sharing only the averaged gradients with the
central server. Despite extensive research over the past few years,
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these prevalent gradient-based methods still suffer from several
challenges [18] when training with heterogeneous clients. These
issues could result in significant degradation in performance and
convergence speed, thus making FL difficult to scale up.

Aside from the data heterogeneity that has been notoriously
known to interfere with federated optimization [16, 19, 32], po-
tential privacy breaches can still occur in the FL gradient-sharing
scheme. For instance, data reconstruction [4, 11, 13, 15, 29, 48, 61, 64]
and membership inference attacks [37, 40] have been widely stud-
ied in FL applications. In response to these emerging privacy risks,
differential privacy (DP) has been established as the golden stan-
dard for providing theoretical privacy guarantees against potential
privacy leakage. The most prevalent algorithm to ensure DP proper-
ties, namely DP-SGD [1], operates by clipping per-sample gradients
and adding Gaussian noise, thus obfuscating the influence of each
data record. Despite its guarantee, the noisy gradients introduced
by DP-SGD could induce additional heterogeneity, an aspect not
thoroughly explored in existing FL literature. This aligns with the
observation that DP noise leads to a more significant performance
drop in FL problems than in centralized settings and was partially
explored by Yang et al. [56] in a personalized FL setting.

The fundamental cause of such degradation is that the local
updates, driven by the distinct objectives of heterogeneous clients,
optimize the models towards their local minima instead of the global
objective. This inconsistency drives the (weighted) average mod-
els learned by existing approaches to sub-optimal performance or
even fails the convergence. Existing efforts have proposed various
ideas to address the issue of heterogeneity, including variance-
reduction [19], reducing the dissimilarity among clients [30, 31, 51],
or personalized models [10, 33, 35]. However, these methods mainly
focus on non-DP cases and still heavily rely on biased local updates,
which are the root cause of the degradation. Overall, the gap be-
tween DP, data heterogeneity, and objective inconsistency has yet
to be fully bridged and deserves further investigation.

As a pioneering step, this work proposes FedLAP-DP, a novel
differentially private framework designed to approximate local loss
landscapes and counteract biased federated optimization through
the utilization of synthetic samples. As illustrated in Fig. 1, unlike
traditional gradient-sharing schemes [36] that are prone to inher-
ently biased global update directions, our framework transmits
synthetic samples encoding the local optimization landscapes. This
enables the server to faithfully uncover the global loss landscape,


https://github.com/a514514772/FedLAP-DP
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0083

FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations

overcoming the biases incurred by conventional gradient-sharing
schemes and resulting in substantial improvements in convergence
speed (refer to Sec. 6). Additionally, we introduce the usage of a
trusted region to faithfully reflect the approximation quality, fur-
ther mitigating bias stemming from potential imperfections in the
local approximation within our scheme.

Based on the insights, our approach offers a novel perspective to
incorporate record-level differential privacy into federated learning.
In particular, we begin with applying DP protection mechanisms,
such as DP-SGD, to the gradients produced from real client data.
These DP-protected gradients then serve as the learning objective
for synthetic dataset optimization. Thanks to the post-process theo-
rem, we are allowed to conduct multiple optimization steps based on
the protected real gradients to further improve the approximation
quality of the synthetic data without incurring additional privacy
costs. Our formal privacy analysis demonstrates that FedLAP-DP
consumes the same privacy costs as traditional gradient-sharing
baselines. Together with the proposed trusted regions, FedLAP-DP
provides reliable utility under privacy-preserving settings, espe-
cially when considering low privacy budgets and highly skewed
data distributions.

Lastly, we note that our approach has several additional benefits.
(1) Our approach is more communication efficient as it enables
the execution of multiple optimization rounds on the server side.
This is particularly advantageous for large models, where trans-
ferring synthetic data is notably less costly than gradients in each
round. (2) While FedLAP-DP exhibits superior performance under
the same communication costs as the baselines, our method can
increase the convergence speed and further improve performance
by synthesizing a larger set of synthetic images. This opens up the
possibility of trading additional costs for better performance, which
is little explored in existing literature. Overall, we summarize our
contributions as follows.

e We propose FedLAP-DP that offers a novel perspective of fed-
erated optimization by transferring local loss landscapes to un-
cover the global loss landscape on the server side, avoiding
potentially biased local updates and enabling unbiased feder-
ated optimization on the server.

e We demonstrate how to synthesize samples that approximate
local loss landscapes and effective regions on clients, minimizing
the effect of imperfect approximation.

e Along with a formal privacy analysis, we demonstrate an inno-
vative way to integrate record-level DP into federated learning
without incurring additional privacy costs.

o Extensive experiments confirm the superiority of our formula-
tion over existing gradient-sharing baselines in terms of perfor-
mance and convergence speed, particularly when considering
tight privacy budgets and highly skewed data distributions.

2 RELATED WORK

Non-IID Data in Federated Learning. The existing gradient-
sharing schemes typically begin with training local models on local
private data for several local epochs, and the server aggregates
those models to update the global model. However, the applications
of FL may naturally introduce heterogeneity among clients due to
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the contrasting behaviors of users. Such heterogeneity inevitably
results in the inconsistency between local and global learning objec-
tives, making the (weighted) averages of local models sub-optimal
to the global learning task. This issue [18] often causes degrada-
tion in performance and convergence speed and has attracted a
significant amount of attention from the community.

To address the issue, existing efforts mainly fall into the follow-
ing categories: variance-reduction techniques [19], constraining
the dissimilarity of updates among clients [30, 31, 51], and adjust-
ing the global model to a personalized version at the inference
stage [10, 33, 35]. Variance-reduction techniques [19] consider an
additional variable to explicitly correct the error induced by the
heterogeneity. However, the variable consumes additional commu-
nication costs and could be costly. For instance, SCAFFOLD [19] con-
sumes twice the cost compared to plain FedAvg. On the other hand,
several prior works propose various methods to limit the dissimilar-
ity among clients, such as additional regularization terms [31, 51]
and contrastive learning [30]. Despite the efficacy, these meth-
ods still rely on local models that are biased toward the local op-
timum. Recently, a growing body of literature has investigated
personalizing federated models to compensate for the heterogene-
ity [10, 33, 35]. These personalized methods target different appli-
cations and may be constrained when the models are deployed for
tasks that extend beyond the original scope of the clients’ appli-
cations, such as in transfer learning scenarios, even though some
existing efforts [12] have been made to make them DP.

In contrast, our approach takes advantage of loss landscape ap-
proximation by synthetic samples, offering a new global perspective
to federated optimization. It does not rely on potentially biased lo-
cally updated models and outperforms typical gradient-sharing
schemes without introducing additional communication costs or
personalized models.

Differential Privacy in Machine Learning. To address privacy
concerns, Differential Privacy (DP) has been established as a stan-
dard framework for formalizing privacy guarantees, as outlined
in Dwork’s foundational work [9]. However, implementing DP in-
volves a compromise between model utility and privacy. This is
due to the necessity of modifying model training processes with
techniques like clipping updates and injecting noise, which can
lead to negative effects of the model performance. Current state-of-
the-art methods for training models while maintaining high utility
under DP primarily use transfer learning. This involves leveraging
models pre-trained on extensive public datasets, subsequently fine-
tuned with private data [57]. These methods have proven effective
across various fields where substantial public datasets exist, show-
ing promising results even with limited private data [46]. Moreover,
parameter-efficient fine-tuning techniques like adaptors, including
LoRA [17], have demonstrated competitiveness in transfer learn-
ing within DP contexts[46, 58]. Similarly, compression strategies
have been investigated to minimize the model’s size or its updates.
This size reduction consequently lowers the sensitivity and the
associated noise introduced by DP [20, 22]. However, only a lim-
ited number of research studies have explored the application of
DP in federated settings characterized by significant heterogeneity
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Figure 1: An overview of FedLAP-DP. FedLAP-DP addresses the limitations of methods like FedAvg, which aggregate locally
optimized gradients (blue) to meet a global objective. Such methods often lead to sub-optimal results (red) due to goal misalign-
ment. This problem further intensifies with increasing client data heterogeneity. FedLAP-DP approximates local neighborhoods
with synthetic images on the clients (local approximation, Sec. 4.2) and optimizes the model according to the reconstructed loss
landscape on the server (global optimization, Sec. 4.3). Differential privacy is integrated to introduce privacy barriers (Sec. 4.4).

among client datasets [2, 34, 41]. These approaches, similar to Fe-
dAvg, heavily rely on biased local models, which is the root cause
of performance degradation.

Dataset Distillation. Our work is largely motivated by recent
progress in the field of dataset distillation [5, 52, 60, 62], a process
aimed at distilling the necessary knowledge of model training into
a small set of synthetic samples. These samples are optimized to
serve as surrogates for real data in subsequent model training.
The concept of dataset distillation dates back to Wang et al. [52],
who formulated the dataset distillation as a bi-level optimization
problem and introduced a meta-learning approach. In this approach,
the inner optimization simulates training a neural network on a
distilled synthetic dataset, while the outer optimization updates
the synthetic dataset through gradient descent. While this method
has shown effectiveness for certain smaller networks, it requires
substantial computational resources due to the gradient unrolling
operation required in bi-level optimization, making it challenging
to be used with larger, more common models.

Recent developments have enhanced this original approach by
eliminating the need for complex bi-level optimization. In this con-
text, various directions have been explored, such as gradient match-
ing [62], distribution matching [60], and trajectory matching [5].
Our approach builds upon gradient matching, which offers more
computational efficiency and better compatibility with DP training
than trajectory matching. Furthermore, it more effectively exploits
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discriminative information from a specific global model, making it
generally more suitable for FL settings. Unlike distribution match-
ing, which tends to prioritize generalization across various down-
stream models, gradient matching focuses on specialization for a
certain global model, a subtler but more advantageous trade-off
for FL training. Specifically, our approach draws inspiration from
DSC [62] but incorporates several key distinctions to enhance the
efficacy and applicability in FL training.

The proposed FedLAP-DP (1) focuses on finding local approxima-
tion and assembling the global loss landscape to facilitate federated
optimization, (2) is class-agnostic and complements record-level
differential privacy while prior works often consider class-wise
alignment and could cause privacy risks, and (3) is designed for
multi-round training with several critical design choices. Notably,
the most closely related research to ours is PSG [7], which also
explored class-agnostic distillation with DP guarantees. However,
the focus of PSG is on single-round distillation rather than the
standard multi-round federated learning.

3 BACKGROUND
3.1 Federated Learning

In federated learning, we consider training a model w that maps the
input x to the output prediction y. We assume K clients participate
in the training, and each owns a private dataset 9. associated with
distribution pr. We use the subscript k to represent the indices
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of clients and the superscript m and ¢t to denote the m-th com-
munication round and ¢-th local step, respectively, unless stated
otherwise.

Overall, the learning objective is to find the optimal model w that
minimizes the empirical global loss over the population distribution:

N
L) =B plewny)] = < D ewaxy) ()
j=1
where ¢ could be arbitrary loss criteria such as cross-entropy and
N is the total dataset size. However, in federated settings, direct
access to the global objective is prohibited as all client data is stored
locally. Instead, the optimization is conducted on local surrogate
objectives Ly (w):

K Nk Ni 1
L(w) = kZ ~ LewW). Li(w) = Z N L5 4),
=1 Jj=

where (xj,yj) are data samples from the client dataset Dy.
Existing methods, such as FedAvg [36], simulate stochastic gra-
dient descent on the global objective by performing local gradient
updates and periodically aggregating and synchronizing them on
the server side. Specifically, at the m-th communication round, the
server broadcasts the current global model weights W;"’l to each

client, who then performs T local iterations with learning rate 7.

with — wpt! vk € [K] ©
2
W;C"’Hl = le’t - qV.Lk(wZ”),Vt € [T]

The local updates Aw;" are then sent back to the server and com-

bined to construct g™, which is essentially a linear approximation
of the true global update g™:

5 N

> T m,1

g =) ——Awl =y (W —w)

=N =N 3)
W;n+1,1 — W;n,l _ ”;ﬁz

In this work, we focus on the conventional FL setting in which
each client retains their private data locally, and the local data
cannot be directly accessed by the server. Every data sample is
deemed private, with neither the server nor the clients using any
additional (public) data, which stands in contrast to previous works
that require extra data on the server side [28, 63]. Furthermore,
all clients aim towards a singular global objective (Eq. 1), which
is distinct from personalized approaches wherein evaluations are
conducted based on each client’s unique objective and their own
data distribution [10, 33].

3.2 Non-IID Challenges

The heterogeneity of client data distributions presents several major
challenges to FL, such as a significant decrease in the convergence
speed (and even divergence) and the final performance when com-
pared to the standard IID training setting [19, 23, 31, 32]. This can
be easily seen from the mismatch between the local objectives that
are being solved and the global objective that FL ultimately aims
to achieve, i.e., L (W) # E(x,y)~p[£(W,x,y)] if p # p for some k.
Executing multiple local steps on the local objective (Eq. 2) makes
the local update Aw}" deviate heavily from the true global gradient
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VL (w), inevitably resulting in a biased approximation of the global
gradient via Eq. 3, i.e., g"\” # g™, where g™ is derived from the true
loss L(w) (See Fig. 1 for a demonstration.).

Despite significant advances achieved by existing works in alle-
viating divergence issues, these methods still exhibit a systematic
bias generally deviating from optimizing the global objective as
they rely on the submitted client updates Aw’k”, which only reflect
a single direction towards the client’s local optimum.

In contrast, our method communicates the synthetic samples Sy
that encode the local optimization landscapes, i.e., gradient direc-
tions within a trust region around the starting point that summarize
on possible trajectories (qu’l, Wm’z, WIT’TH). This differs signif-

k
icantly from traditional methods that convey only a single direction
Aw™ = w™ Tt _ ™! This fundamental change provides the cen-

tral server with a global perspective that faithfully approximates the
ground-truth global optimization (See Fig. 1 top row) than existing
approaches.

3.3 Differential Privacy

Differential Privacy provides theoretical guarantees of privacy pro-
tection while allowing for quantitative measurement of utility. We
review several definitions used in this work in this section.

Definition 3.1 (Differential Privacy [9]). A randomized mecha-
nism M with range R satisfies (¢, §)-DP, if for any two adjacent
datasets E and E’, i.e., E’ = E U {x} for some x in the data domain
(or vice versa), and for any subset of outputs O C R, it holds that

Pr[M(E) € O] < e“Pr[M(E’) € O] +6 (4)

Intuitively, DP guarantees that an adversary, provided with the
output of M, can only make nearly identical conclusions (within
an ¢ margin with probability greater than 1 — §) about any specific
record, regardless of whether it was included in the input of M or
not [9]. This suggests that, for any record owner, a privacy breach
due to its participation in the dataset is unlikely.

In FL, the notion of adjacent (neighboring) datasets used in DP
generally refers to pairs of datasets differing by either one user
(user-level DP) or a single data point of one user (record-level DP).
Our work focuses on the latter. The definition is as follows.

Definition 3.2 (Record-level DP). A randomized mechanism M
with range R is said to satisfy (¢, §) record-level DP in the context
of federated learning if, for any pair of adjacent datasets E and E’
differing by a single data point on a client (i.e., E’ = E U {x}), the
mechanism satisfies (¢, §)-DP. Here, E = |J E; denotes the union of
client datasets.

While there are established methods providing record-level DP
for training federated models [21, 44, 47], these primarily operate
on the transmitted single client gradients. In contrast, our novel
formulation allows efficient communication of comprehensive infor-
mation, thereby circumventing biased optimization and displaying
improved training stability and utility.

We use the Gaussian mechanism to upper bound privacy leakage
when transmitting information from clients to the server.

Definition 3.3 (Gaussian Mechanism [9]). Let f : R" — R< be an
arbitrary function with sensitivity being the maximum Euclidean
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Algorithm 1 FedLAP: Local Approximation

function ClientExecute(k, r, W;"’l) :
Initialize Sj: {32]’(”} from Gaussian noise or {J%Z“_l}, {Jx} to
be a balanced set
fori=1,...,R; do
/* Resample training trajectories */

Reset t « 1, model W;C"’l — w'g"’l, and S]i’o — S,’:I

while ||w,’<"’t - le’lH <rdo
Sample real data batches {(x, yi)} from Dy
Compute g2 = VLW, {(xk. yi)})
for j=1,...,R, do
/* Update synthetic set S given the real gradient */
ST = Sp = 1V s Lars 9P VLW S))
end for
fori=1,...,R;do

/* Update local models from wZ”t to w* ¥/

k

1 it t
ercn = W]:" - UV.C(WZI ,Sk)
te—t+1
end for
end while

end for
Measure ri on Dy (See Fig. 2)
Return: Synthetic set Slfi, calibrated radius ry

distance between the outputs over all adjacent datasets E and E’:
B2f = max | f(E) - f(E")l2 ®)

The Gaussian Mechanism M., parameterized by o, adds noise into
the output, ie.,

Mo (x) = f(x) + N(0,6°T).
M is (¢, 6)-DP for 0 > /21In (1.25/8) Ao f /e.

Theorem 3.4 (Post-processing [9]). If M satisfies (&, 8)-DP, G o M
will satisfy (e, 8)-DP for any data-independent function G.

(6)

Moreover, we use Theorem 3.4 to guarantee that the privacy leak-
age is bounded upon obtaining gradients from real private data in
our framework. This forms the basis for the overall privacy guaran-
tee of our framework and enables us to enhance the approximation
quality without introducing additional privacy costs.

4 FEDLAP-DP

4.1 Overview

In this section, we start by introducing FedLAP, the non-DP variant
of FedLAP-DP, to demonstrate the concept of loss approximation
and global optimization. Next, we discuss the effective integration of
record-level DP into Federated Learning (FL). This will be followed
by a detailed privacy analysis presented in Sec. 5.

Contrary to conventional methods that generally transmit local
update directions to estimate the global objective (Eq. 3), FedLAP
uniquely simulates global optimization by sending a compact set
of synthetic samples. These samples effectively represent the local
loss landscapes, as illustrated in Fig. 1.
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Figure 2: r; selection. The loss on private real and synthetic
data decreases initially but deviates later. ry is defined as the
turning points with the smallest real loss.

Let pr and the ps, be the distribution of the real client dataset
Dy and the corresponding synthetic dataset Sy, respectively. We
formalize our objective and recover the global objective as follows:

E(x,y)~pi [EOW %, 9)] = B(5,9)~ps, [E(W, X, )]

K K . 7
Lo =Y e =Y X L) 7
k=1 k=1

Thus, performing global updates is then equivalent to conducting
vanilla gradient descent on the recovered global objective, i.e., by
training on the synthetic set of samples.

We demonstrate our framework in Fig. 1. In every communica-
tion round, synthetic samples are optimized to approximate the
client’s local loss landscapes (Sec 4.2) and then transmitted to the
server. The server then performs global updates on the synthetic
samples to simulate global optimization (Sec. 4.3). Finally, Sec. 4.4
explains the integration of record-level differential privacy into
Federated Learning, resulting in the creation of FedLAP-DP.

The overall algorithm is depicted in Algorithm 1 and 2 for non-
DP settings and Algorithm 3 for DP settings, where the indices i
being the number of training trajectories observed by the synthetic
images and j being the number of updates on a sampled real batch.
For conciseness, we omit the indices in the following where their
absence does not affect clarity or understanding.

4.2 Local Approximation

The goal of this step is to construct a set of synthetic samples Sy
that accurately captures necessary local information for subsequent
global updates. A natural approach would be to enforce similarity
between the gradients obtained from the real client data and those
obtained from the synthetic set:

VWE(x,y)~pk [£(w,x,y)] ~ VWE(Q,Q)ﬁ;Sk [£(w, %,79)]
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We achieve this by minimizing the distance between the gradients:

arg min

Las (VLW D), VLW, Sp) ®)
Sk

where V.L(w, Dy)) denotes the stochastic gradient of network
parameters on the client dataset Dy, and VL(w, Sy) the gradient
on the synthetic set for brevity. Lgjs can be arbitrary metric that
measures the similarity.

Distance Metric. In this study, we utilize a layer-wise cosine
distance as described by Zhao et al. [62]. Furthermore, we have
empirically determined that incorporating a mean square error term,
which captures directional information and controls the differences
in magnitudes, enhances both stability and approximation quality.
We provide a more comprehensive explanation and analysis in
Sec. A.1. The combination of the distance metric and the mean
square error term is formalized as follows.

Lais (VWL(W, Dy), Vw L(w, Sk))
L
=> d(VW<z>£(w<l>, D), ku)z(w(l),sk)), ©)
=1

UV LD, D) = V0 LwD, Sp)lI12

where A is a hyper-parameter controlling the strength of regu-
larization, and d denotes the cosine distance between the gradients
at each layer:

Aj. - B;. ) (10)

out
d(A,B) = (1 -
;‘ [l Ai-Il|Bi-]
A;. and B;. represent the flattened gradient vectors correspond-
ing to each output node i. In fully-connected layers, the parameters
w(h) inherently form a 2D tensor, whereas the parameters of con-
volutional layers are represented as 4D tensors. To compute the
loss, we flatten the last three dimensions, converting them into 2D
tensors as well. denote the number of output and input channels,
kernel height, and width, respectively.

Effective Approximation Regions. While solving Eq. 8 for every
possible w would lead to perfect recovery of the ground-truth
global optimization in principle. However, it is practically infeasible
due to the large space of (infinitely many) possible values of w.
Additionally, as |Sg| is set to be much smaller than Nj (for the
sake of communication efficiency), an exact solution may not exist,
resulting in approximation error for some w. To address this, we
explicitly constrain the problem space to be the most achievable
region for further global updates. Specifically, we consider wy that
is sufficiently close to the initial point of the local update and is
located on the update trajectories (Eq. 12). Formally,

T
arg min Z Ldis(VL(wZL’t,Z)k), V.C(wkm’t, Sk)) (11)

Sk =
s.t. ||ka’t - WZ”IH <r, (12)
witt = wikt - gV LW Sy) (13)
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where r represents a radius suggested by the server, defining the
coverage of update trajectories, and 1 denotes the model update
learning rate shared among the server and clients.

In the m-th communication round, the clients first synchronize
the local model w'™! with the global model w”"! and initialize the

k g
synthetic features {5(2"} either from Gaussian noise or to be the

ones obtained from the previous round {ﬁ]’:‘_l }. Synthetic labels
{7 } are initialized to be a fixed, balanced set and are not optimized
during the training process. The number of synthetic samples |Sk|
is kept equal for all clients in our experiments, though it can be
adjusted for each client depending on factors such as local dataset
size and bandwidth in practice.

To simulate the local training trajectories, the clients alternate
between updating synthetic features using Eq. 11 and updating the
local model using Eq. 12. This process continues until the current
local model weight w”™' exceeds a predefined region r determined
by the Euclidean distance on the flattened weight vectors, meaning
it is no longer close to the initial point. On the other hand, the server
optimization should take into consideration the approximation
quality of Si. Thus, as illustrated in Fig. 2, each client will suggest
a radius ry indicating the distance that Sy can approximate best
within the radius r. For the DP training setting, we make the choice
of ri data-independent by setting it to be a constant (the same as r
in our experiments).

Details of Algorithm. The process is outlined in Algorithm 1.
In detail, the local model w™? is reset to the initial global model
w™1 for R; iterations. This step explores various training paths, en-
hancing generalizability. Synthesis occurs when the current model
w™! is within a certain distance, defined as the server-suggested
radius r, from the initial point w™1 For each real batch, we update
synthetic images R;, times and the local model R; times, moving
from local step ¢ to t + R;. Finally, the client assesses the effective
approximation regions and communicates the radius ry. Building
on previous studies [62], we note that the constraints are not en-
forced through classical means of constrained optimization, like
KKT conditions. Rather, they are applied via the termination of
loops, a method necessitated by the infeasibility of exact solutions.

4.3 Global Optimization

Once the server received the synthetic set S and the calibrated
radius ry, global updates can be performed by conducting gradient
descent directly on the synthetic set of samples. The global objective
can be recovered by fk (w) according to Eq. 7 (i.e., training on the
synthetic samples), while the scaling factor % can be treated as the
scaling factor of the learning rate when computing the gradients
on samples from each synthetic set Sg, namely:

K
N,
Wm,t+1 — wm,t _ n- k v L(Wm’t,sk)
g g kz:ll N Vv g (14)

N3 L1 : K
st llwg™" —wg™ || < min {r}p_,

The constraint in Eq. 14 enforces that the global update respects the
vicinity suggested by the clients, meaning updates are only made
within regions where the approximation is sufficiently accurate.
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Algorithm 2 FedLAP: Global Optimization

Algorithm 3 FedLAP-DP

function ServerExecute:
Initialize global weight w;’l, radius r
/* Local approximation */
form=1,...,Mdo
fork=1,...,Kdo
Sy, ri. < ClientExecute(k, r, w;n’l)
end for
/* Global optimization */
rg < min{rk}lk(:1
te—1
while ||W;”’1 - W;"’t” <rgdo
W 2w S T L S0
te—t+1

end while
m+1,1 m,
g Wy
end for

Return: global model weight w,

t

M+1,1
g

4.4 Record-level DP

While federated systems offer a basic level of privacy protection,
recent works identify various vulnerabilities under the existing
framework, such as membership inference [37, 40]. Though Dong
et al. [8] uncovers that distilled datasets may naturally introduce
privacy protection, we further address possible privacy concerns
that might arise during the transfer of synthetic data in our pro-
posed method. Specifically, we rigorously limit privacy leakage by
integrating record-level DP, a privacy notion widely used in FL
applications. This is especially important in cross-silo scenarios,
such as collaborations between hospitals, where each institution
acts as a client, aiming to train a predictive model and leveraging
patient data with varying distributions across different hospitals
while ensuring strict privacy protection for patients.

Threat Model. In a federated system, there can be one or multiple
colluding adversaries who have access to update vectors from any
party during each communication round. These adversaries may
have unlimited computation power but remain passive or "honest-
but-curious," meaning they follow the learning protocol faithfully
without modifying any update vectors [21, 44, 47]. These adver-
saries can represent any party involved, such as a malicious client
or server, aiming to extract information from other parties. The
central server possesses knowledge of label classes for each client’s
data, while clients may or may not know the label classes of other
clients’ data. While we typically do not intentionally hide label class
information among clients, our approach is flexible and can handle
scenarios where clients want to keep their label class information
confidential from others.

We integrate record-level DP into FedLAP to provide theoreti-
cal privacy guarantees, which yields FedLAP-DP. Given a desired
privacy budget (¢, §), we clip the gradients derived from real data
with the Gaussian mechanism, denoted by VL (W;Cn’t, Dy). The DP-
guaranteed local approximation can be realized by replacing the
learning target of Eq. 11 with the gradients processed by DP while
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function ServerExecute:

Initialize global weight w;’l, Fix the radius r
/* Local approximation */
form=1,...,Mdo

fork=1,...,Kdo

Sy « ClientsExecute(k, r, w;"’l)

end for

/* Global optimization */

te—1

while ||w;n’1 —w;"’t” <rdo

mit+l _ __m,t K 1 m,t
Wy =Wy = Ny g VwL (W Se)
te—t+1
end while
m+1,1 m,t
wy —wy
end for

Return: global model weight Wyﬂ’l

function ClientExecute(k, r, w;n’l) :
Initialize Sj: {J%I’c”} from Gaussian noise or {3?]’:‘_1}, {gr} to
be a balanced set
fori=1,...,R; do
/* Resample training trajectories */

m,1 m,1 i,0 i-1
b Wy ,andSk (—Sk

while ||w":”t - W;C"’IH <rdo

Reset t « 1, model w

Sample random batch {(x,i, y]ic)}]ll.;%:1 from Dy,
for each (x;;, y]ic) do
/* Compute per-example gradients on client data */
9P (xl) = YV b(wit, xL,yt)
/* Clip gradients with bound C */
gD (x) = g2 (x) - min(1,C/llg? (x1)Il2)
end for
/* Add noise to average gradient by Gaussian mechanism
*/
VLW, Dp) = £ 52, (92 (x)) + N(0,6°C2D))
forj=1,...,R, do
/* Update synthetic set Sy */
S =S Vs, Lass (vf(w;jf, Dy), VLW™, sk))
end for
fori=1,...,R;do
/* Update local model parameter wy */

2n,t+1 — ka,t _ T]V.E(Wzl’t,sk)
te—t+1
end for
end while

end for
Return: Synthetic set S;:"

leaving other constraints the same. Formally, we have

T
argsmin Z Lis (Vf(w;"’t, Dy), VL(WZ”, Sk))
k t=1

(15)
s.t. ||W2n’t - W;Cn’1|| <r,
Wm,t+1 _ Wm,t _ V,E(Wm’t S )
S Kk ok
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During the server optimization, we do not use a data-dependent
strategy to decide r. Instead, we use the same radius as adopted for
local approximation (c.f. Eq. 14).

K
N,
m,t+1 m,t k m,t
W, =W, — n-—VwL(w,,Sk)
g g g
; N (16)
s.t. ||w;"’t —W;"’IH <r

We describe the full algorithm of FedLAP-DP in Algorithm 3 and
present the privacy analysis of FedLAP-DP in the Sec. 5. Our anal-
ysis suggests that with equivalent access to private data, FedLAP
incurs the same privacy costs as gradient-sharing approaches. Our
method further demonstrates a better privacy-utility trade-off in
Sec. 6.3, confirming its robustness under DP noise.

5 PRIVACY ANALYSIS

5.1 Definitions

Definition 5.1 (Rényi divergence). Let P and Q be two distribu-
tions defined over the same probability space X. Let their respective
densities be denoted as p and g. The Rényi divergence, of a finite
order o # 1, between the distributions P and Q is defined as follows:

De(P1Q)2 Lo /q< )(”E ;)

Rényi divergence at orders a = 1, oo are defined by continuity.

Definition 5.2 (Rényi differential privacy (RDP) [38]). A random-
ized mechanism M : & — R satisfies (a, p)-Rényi differential
privacy (RDP) if for any two adjacent inputs E, E’ € & it holds that

Do (M(E) | M(E)) < p

In this work, we call two datasets E, E’ to be adjacent if E’ =
E U {x} (or vice versa).

Definition 5.3 (Sampled Gaussian Mechanism (SGM) [1, 39]). Let
f be an arbitrary function mapping subsets of & to R?. We define
the Sampled Gaussian mechanism (SGM) parametrized with the
sampling rate 0 < g < 1 and the noise o > 0 as

SGy,6 g f ({x : x € E is sampled with probability ¢})+N (0, 6%I;),

where each element of E is independently and randomly sampled
with probability g without replacement.

The sampled Gaussian mechanism consists of adding i.i.d Gauss-
ian noise with zero mean and variance o2 to each coordinate of
the true output of f. In fact, the sampled Gaussian mechanism
draws random vector values from a multivariate isotropic Gauss-
ian distribution denoted by N(0, 0%1;), where d is omitted if it is
unambiguous in the given context.

5.2 Analysis

The privacy analysis of FedLAP-DP and other DP baselines follows
the analysis framework used for gradient-based record level-DP
methods in FL [21, 44, 47]. In this framework, each individual lo-
cal update is performed as a single SGM (Definition 5.3) that in-
volves clipping the per-example gradients on a local batch and
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subsequently adding Gaussian noise to the averaged batch gra-
dient (Algorithm 3). The privacy cost accumulated over multiple
local updates and global rounds is then quantified utilizing the
revisited moment accountant [39], which presents an adapted ver-
sion of the moments accountant introduced in Abadi et al. [1] by
adapting to the notion of RDP (Definition 5.2). Finally, to obtain
interpretable results and enable transparent comparisons to estab-
lished approaches, we convert the privacy cost from (o, p)-RDP to
(&,6)-DP by employing Theorem 5.7 provided by [3].

Theorem 5.4. (Mironov et al. [39]). Let SGq 5 be the Sampled Gauss-
ian mechanism for some function f with Ayf < 1 for any adjacent
E,E’ € E. ThenSGy,s satisfies (a, p)-RDP if

p < Da (N(o, o) | (1= N(0,0%) + gN (1, 02))
and p < Da((l — QIN(0,6%) +gN(1,6%) || N (0, 02))

Theorem 5.4 reduce the problem of proving the RDP bound for
SGgq,s to a simple special case of a mixture of one-dimensional
Gaussians.

Theorem 5.5. [39]. Let jig denote the pdf of N(0,02), u1 denote
the pdf of N(1,02), and let i be the mixture of two Gaussians y =
(1= q)po +qp1. Let SGq 5 be the Sampled Gaussian mechanism for
some function f and under the assumption Ay f < 1 for any adjacent
E.E’ € & ThenSGy,s satisfies (a, p)-RDP if

1
p = 71 log (max{Aq, Ba'}) 17)

where Ag 2 By [(1(2)/10(2))%] and Be 2 By [ (o (2)/1(2))%]

Theorem 5.5 states that applying SGM to a function of sensitivity
(Eq. 5) at most 1 (which also holds for larger values without loss
of generality) satisfies («, p)-RDP if p < a =1 log(max{Aqy, B }).
Thus, analyzing RDP properties of SGM is equivalent to upper
bounding A, and B,.

From Corollary 7 in Mironov et al. [39], Ay > B, for any a > 1.
Therefore, we can reformulate 17 as

p < En(alg) = 1108 4a (18)

To compute Ay, we use the numerically stable computation
approach proposed in Section 3.3 of Mironov et al. [39]. The specific
approach used depends on whether « is expressed as an integer or
areal value.

Theorem 5.6 (Composability [38]). Suppose that a mechanism M
consists of a sequence of adaptive mechanisms My, ..., My where
M; : ;;11 Rj x & — R;. If all mechanisms in the sequence are
(@, p)-RDP, then the composition of the sequence is (e, kp)-RDP.

In particular, Theorem 5.6 holds when the mechanisms them-
selves are chosen based on the (public) output of the previous
mechanisms. By Theorem 5.6, it suffices to compute ép(a|q) at
each step and sum them up to bound the overall RDP privacy bud-
get of an iterative mechanism composed of single DP mechanisms
at each step.

Theorem 5.7 (Conversion from RDP to DP [3]). Ifa mechanism M
is (&, p)-RDP then it is ((p+log((a—1)/a)— (Iog 5+log a)/(a-1),6)-
DP forany 0 < § < 1.



Proceedings on Privacy Enhancing Technologies 2024(3)

Wang et al.

DSCF FedSGD (1x) FedAvg (1x) FedProx (1X) SCAFFOLD (2x)  FedDM (0.96x) Ours (0.96X)
MNIST 98.90+0.20 87.07£0.65 96.55+0.21 96.26+0.04 97.56%0.06 96.66+0.18 98.08+0.02
Fa.MNIST 83.60£0.40 75.10+0.16 79.67£0.56 79.37£0.29 82.17+0.37 83.10+0.16 87.37+0.09
CIFAR-10 53.90+0.50 60.91+£0.19 75.20+0.12 63.84+0.45 56.27+1.19 70.51+0.45 71.91+0.20

Table 1: Performance comparison on benchmark datasets. The relative communication cost of each method (w.r.t. the model

size) is shown in brackets. DSC is ported from the original paper and conducted in a one-shot centralized setting.

MNIST FashionMNIST CIFAR-10
100 90
f"_ 80
80
g 70
9 60
o 60
35
9
< 40 —— Ours —— FedSGD 50 —— Ours —— FedSGD —— Ours —— FedSGD
FedAvg —— FedDM FedAvg —— FedDM 20 FedAvg —— FedDM
20 —— FedProx 40 —— FedProx —— FedProx
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 50 100 150 200
Epoch

Figure 3: Accuracy over communication rounds with extremely non-IID data.

Theorem 5.8 (Privacy of FedLAP-DP). Forany 0 < § < 1 and
a > 1, FedLAP-DP is (¢, )-DP, with

e =min(M - En(algr) + M(T - 1) - En(algs)
+log((a — 1)/a) — (log & +log )/ (ct — 1))

Here, En/(a|q) is defined in Eq. 18, q1 = minck.]lB%Z)kl’ q2 = minkBIZ)kl’
M is the number of federated rounds, T is the total number of local
updates (i.e., total accesses to local private data) per federated round,
C is the probability of selecting any client per federated round, B is
the local batch size, and | Dy| denotes the local dataset size.

(19)

The proof follows from Theorems 5.5, 5.6,5.7 and the fact that
a record is sampled in the very first SGD iteration of every round
if two conditions are met. First, the corresponding client must be
selected, which occurs with a probability of C. Second, the locally
sampled batch at that client must contain the record, which has

a probability of at most However, the adaptive com-

B
ming | Dk |”
position of consecutive SGD iterations are considered where the
output of a single iteration depends on the output of the previous
iterations. Therefore, the sampling probability for the first batch is

Q= #}BDH while the sampling probability for every subsequent
SGD iteration within the same round is at most g2 =
ditioned on the result of the first iteration [21].

B
ming [Dx] "

6 EXPERIMENTS
6.1 Setup

Overview. We consider a standard classification task by training
federated ConvNets [27] on three benchmark datasets: MNIST [26],
FashionMNIST [54], and CIFAR-10 [24]. Our study focuses on a
non-IID setting where five clients possess disjoint class sets, mean-
ing each client holds two unique classes. This scenario is typically
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considered challenging [16] and mirrors the cross-silo setting [18]
where all clients participate in every training round while main-
taining a relatively large amount of data, yet exhibiting statistical
divergence (e.g., envision the practical scenario for collaborations
among hospitals). Our method employs a learning rate of 100 for
updating synthetic images and 0.1 with cosine decay for model up-
dates. We set by default (R;, Rj, Rp, r) = (4,2,10,1.5) and (1,0, 5, 10)
for DP and non-DP training, respectively. Additionally, we include
a weight of 0.1 for Mean Squared Error (MSE) regularization in
our method (Eq. 11). To prevent infinite loops caused by the neigh-
borhood search, we upper bound the while loops in Algorithm 1
by 5 iterations. We follow FL benchmarks [36, 45] and the official
codes for training the baselines. All experiments are repeated over
three random seeds. In this work, we only consider a balanced set-
ting where every client owns the same amount of training samples.
We acknowledge that minor sample imbalances can be managed
by existing federated algorithms via modifying the aggregation
weights, for example, Ny /N as indicated in Eq. 7. However, severe
imbalances present a significant challenge that might affect the
efficacy of both our method and gradient-sharing techniques, and
addressing this issue falls beyond the purview of the current study.

Architecture. We provide the details of the federated ConvNet
used in our paper. The network consists of three convolutional lay-
ers, followed by two fully-connected layers. ReLU activation func-
tions are applied between each layer. Each convolution layer, except
for the input layer, is composed of 128 (input channels) and 128 (out-
put channels) with 3 X 3 filters. Following prior work [5, 45, 50, 60],
we attach Group Normalization [53] before the activation functions
to stabilize federated training. For classification, the network uti-
lizes a global average pooling layer to extract features, which are
then fed into the final classification layer for prediction. The entire
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PSGT [7] DP-FedAvg DP-FedProx Ours DP-FedAvg DP-FedProx Ours
£ 32 2.79 10.18
MNIST 88.34+0.8 45.25%6.9 54.58+4.9 60.72+1.3 86.99+0.5 88.75+0.5 87.77+0.8
FMNIST 67.91+0.3 50.11+4.2 54.57+2.9 59.85+1.5 72.78+1.3 71.67+2.2 73.00+0.7
CIFAR-10 34.58+0.4 17.11£0.7 19.40+0.7 21.42+1.4 31.15+0.4 35.04+1.1 36.09+0.5

Table 2: Utility and Privacy budgets at varying privacy regimes. The high privacy regime with ¢ = 2.79 corresponds to the
first communication round, while a privacy level of ¢ = 10.18 represents the commonly considered point (¢=10) in private
learning literature. PSG' corresponds to a one-shot centralized setting and is reproduced from the official code with the default

configuration that yields ¢ = 32 in federated settings.

MNIST FashionMNIST CIFAR-10
90 /
S
=70 30
O
o
g 60 25
O
<5 —— Ours —— Ours —— Ours
DP-FedAvg 50 DP-FedAvg 20 DP-FedAvg
40 —— DP-FedProx —— DP-FedProx —— DP-FedProx
45
4 6 8 10 12 4 6 8 10 12 4 6 8 10 12

Epsilon

Figure 4: Privacy-utility trade-off with § = 107>. A smaller value of ¢ (x-axis) indicates a stronger privacy guarantee. Evaluation

is conducted at each communication round.

network contains a total of 317,706 floating-point parameters. The
model details are listed in the appendix.

6.2 Data Heterogeneity

We first demonstrate the effectiveness of FedLAP over various
baselines on benchmark datasets in a non-IID setting. Our method
assigns 50 images to each class, resulting in comparable communi-
cation costs to the baselines. The baselines include: DSC [62], the
dataset distillation method considering centralized one-shot distil-
lation; FedSGD [36], that transmits every single batch gradient to
prevent potential model drifting; FedAvg [36], the most represen-
tative FL method; FedProx [31], SCAFFOLD [19], state-of-the-art
federated optimization for non-IID distributions, and FedDM [55],
a concurrent work that shares a similar idea but without consider-
ing approximation quality. Note that DSC operates in a (one-shot)
centralized setting, SCAFFOLD incurs double the communication
costs compared to the others by design, and FedDM requires class-
wise optimization. As depicted in Table 1, our method surpasses
DSC and FedSGD, highlighting the benefits of multi-round training
on the server and client sides, respectively. Moreover, our method
presents superior performance over state-of-the-art optimization
methods, validating the strength of optimizing from a global view.
We also plot model utility over training rounds in Fig. 3, where
our method consistently exhibits the fastest convergence across
three datasets. In other words, our methods consume fewer costs
to achieve the same or better performance level and more commu-
nication efficiency.
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6.3 Privacy Protection

We evaluate the trade-off between utility and privacy costs ¢ on
benchmark datasets against two state-of-the-art methods, DP-FedAvg
(the local DP version in Truex et al. [47]) and DP-FedProx. Note
that FedDM [55] is incomparable since it considers class-wise opti-
mization, introducing additional privacy risks and a distinct privacy
notion. Our method assigns 10 images per class and is evaluated un-
der the worst-case scenario, i.e., we assume the maximum of 5 while
loops is always reached (Sec. 6.1) for the ¢ computation, despite
the potential early termination (and thus smaller ¢) caused by the
radius r (Eq. 12). To ensure a fair and transparent comparison, we
require our method to access the same amount of private data as the
baselines in every communication round and consider a noise scale
o =1 for all approaches. Fig. 4 demonstrates that our framework
generally exhibits superior performance, notably with smaller ¢
and more complex dataset such as CIFAR-10. This superiority is
further quantified in Table 1 under two typical privacy budgets of
2.79 and 10.18. Moreover, when compared to the private one-shot
dataset condensation method (PSG [7]), our approach presents a
better privacy-utility trade-off, effectively leveraging the benefits
of multi-round training in the challenging federated setting.

6.4 Ablation Study

Radius Selection. As in Sec. 4, we assess various server optimiza-
tion radius selection strategies: Fixed, Max, Median, and Min. The
Fixed strategy employs a static length of 100 iterations regardless
of quality, Max pursues swift optimization with the largest radius,
Median moderates by adhering to the majority, and Min—used in
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Min Max

72.39

Median
72.33

Fixed
71.26

71.90

Table 3: Performance comparison between radius selection
strategies.

5% 10% 50% 100%
FedAvg 55.16 (-20.04) 61.43 (-13.77) 7134 (-3.86) 75.20
Ours 5634 (-1557)  62.76 (-9.15)  68.97 (-2.94) 71.91

Table 4: Impact of different training set sizes (5%, 10%, 50%,
and 100% of the original dataset): Parenthesized values indi-
cate the reduction in performance when compared to utiliz-
ing the full training set (100%)

all experiments—targets the safest region agreed by all synthetic
image sets. Table 3 shows that strategies mindful of approximation
quality surpass the fixed approach. Detailed analysis in Sec. A.2
reveals that aggressive strategies yield inferior intermediate perfor-
mance, unsuitable for federated applications needing satisfactory
intermediate results. Among the strategies, Min proves optimal.

Size of Synthetic Datasets. We investigate the impact of syn-
thetic dataset size on approximation. In general, higher numbers
of synthetic samples submitted by clients lead to greater informa-
tion communication. To further explore this concept, we conducted
experiments on CIFAR-10, building upon the previous experiment
(shown in Fig. 3) by adding five additional settings in which we
assigned 10, 20, 100, 150, and 200 images to each class (referred to
as "Image per class” or #ipc). Our results, presented in Fig. 5, demon-
strate that our method performs best when assigning 200 images,
supporting the hypothesis that more synthetic samples convey
more information. Additionally, our method produces superior out-
comes regardless of #ipc when communication costs are restricted,
making it advantageous for resource-constrained devices.

Size of Training Sets. In this experiment, we show that given the
same amount of optimization steps, our method can approximate
the information more faithfully as the number of training examples
that each client can access decreases. Table 4 presents the impact
of varying training set sizes. We sub-sample 5%, 10%, 50%, and
100% of samples from the original CIFAR-10 dataset and repeat the
same experiments as in Table 1. In other words, each client has
500, 1000, and 5000 images, respectively. It is observed that the
performance of both methods degrades as the number of training
samples decreases. Our method demonstrates greater resilience to
reductions in training sample size than FedAvg by exhibiting less
performance degradation when compared to using the full training
set. A potential explanation is that a smaller sample size may be
simpler to approximate given the same number of optimization
steps.

6.5 Qualitative Results

We visualize the synthetic images generated at different training
stages in both DP and non-DP settings. Specifically, we consider
the same setting as in Sec. 6.2 and Sec. 6.3 on CIFAR-10. We ran-
domly sample synthetic images associated with classes airplane,
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automobile, bird, and cat at epochs 5, 50, and 196. Fig. 6 shows that
the images synthesized by our approach look drastically different
from real images even in non-DP settings. Most of the details have
been obfuscated to carry essential gradient information. Notably,
a recent work [8] arguably suggests that dataset distillation may
naturally introduce privacy protection, making models more robust
than the ones trained by plain gradients.

On the other hand, Fig. 7 visualizes the synthetic images gen-
erated under the DP protection of ¢ = {6.72,10.93,14.30}. It is
observed that even with the loosest privacy budgets (¢ = 14.30),
the images tend to look like random noise and significantly obfus-
cate most of the visual contents compared to Fig. 6. The protection
gets further stronger as the privacy budget decreases. These visu-
alizations verify the effectiveness of our approach in introducing
record-level DP and might offer a new tool to visually examine the
privacy protection of the communicated information.

6.6 Privacy Auditing

Despite the theoretical privacy protection introduced by DP, we
examine the empirical privacy protection by conducting member-
ship inference attacks [25] on both our method and FedAvg in DP
and non-DP scenarios, respectively. In particular, we consider two
attack settings. We first divide the testing set (i.e., non-members)
into two disjoint partitions and use one of them for training attack
models while using the other as the audit dataset. In the first setting,
we initially collect the loss values of the examples in a black-box
manner, which are later used to train a neural network to distin-
guish whether a given example belongs to the training set. On the
other hand, the second setting adopts the gradient norms of the
examples, providing more detailed information for membership in-
ference attacks. The access of gradient norms demands a white-box
setting, i.e., assuming the model parameters are accessible.

We present the Receiver Operating Characteristic (ROC) curves
and the Area Under the Curve (AUC) scores for both scenarios in
Figures 8 and 9. The diagonal lines present the baseline performance
of random guesses, which are characterized by AUC scores of 0.5.
Methods that perform closer to random guesses provide better
privacy protection since the adversaries hardly infer information
from the victim models. It is observed that methods without DP
protection are vulnerable to membership inference attacks. Notably,
our methods are more robust than gradient-sharing schemes, even
without DP protection. The resilience may stem from the approxi-
mation process that further limits information leakage. In contrast,
the methods with DP protection consistently produce AUC scores
around 0.5 regardless of attack settings, verifying the effectiveness
of DP protection.

7 DISCUSSION

Future Directions. While the primary contribution of FedLAP-
DP lies in utilizing local approximation for global optimization, we
demonstrate in the appendix that its performance can be further en-
hanced by improving the quality of the approximation. Moreover,
ongoing research in synthetic data generation [5, 60, 62] repre-
sents a potential avenue for future work, which could potentially
benefit our formulation. The potential directions include explicitly
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Figure 5: Ablation study on the number of images per class (#ipc).

Epoch 50

Epoch 195

Figure 6: Visualization of synthetic images at epochs 5, 50, and 196 in the non-private CIFAR-10 experiment. The pixel values
are clipped to the range [0, 1]. Each row corresponds to airplane, automobile, bird, and cat, respectively.

Figure 7: Visualization of synthetic images for ¢ = 6.72, 10.93, and 14.30 in the privacy-preserving CIFAR-10 experiment. The
pixel values are clipped to the range [0, 1]. Each row corresponds to airplane, automobile, bird, and cat, respectively.

matching training trajectories [5] or leveraging off-shelf foundation
models [6]. Moreover, we also observe that given the same amount
of optimization steps, the performance of our method may decrease
when the number of classes increases on clients. For instance, the
performance on CIFAR-10 in an IID scenario drops from 71.91 to
62.52 while FedAvg remains at a similar level of 73.5. This suggests
that if there is no performance degradation caused by data het-
erogeneity, our method loses information during image synthesis.
Future works that improve the efficiency of approximation could
further bridge such gap and enable more efficient federated learning
under extremely non-IID scenarios.

Computation Overhead. Our method suggests an alternative to
current research, trading computation for improved performance
and communication costs incurred by slow convergence and bi-
ased optimization. We empirically measured the computation time
needed for a communication round by a client. We observed an
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increase from 0.5 minutes (FedAvg) to 2.5 minutes (FedLAP) using
one NVIDIA Titan X. Despite the increase, the computation time
is still manageable in cross-silo environments, where participants
are deemed to have more computation power. A thorough analysis
can be found in Sec. B. We anticipate this work will motivate the
community to further explore the trade-off between computation
and communication resource demands beyond local epochs, as we
have demonstrated in Fig. 5.

(Visual) Privacy. Dong et al. [8] were among the first to show that
data distillation may naturally offer superior privacy protections
compared to traditional gradient information in centralized settings.
In Sec. 6.6 of our work, we extend this concept into federated
environments, although our synthetic images are not intended to
resemble realistic or class-specific content. Despite these advances,
a comprehensive analysis of existing dataset distillation approaches
in terms of privacy remains pending. This necessitates further
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Figure 8: Black-box membership inference attacks based on loss values targeting FedLAP (ours) and FedAvg under non-DP and
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Figure 9: White-box membership inference attacks based on gradient norms targeting FedLAP (ours) and FedAvg under non-DP

and DP (¢ = 10.18) settings.

exploration in diverse settings, including but not limited to, defense
against reconstruction attacks and membership inference, as well
as an in-depth privacy comparison with non-DP gradient-sharing
techniques. Beyond the realm of membership privacy, safeguarding
visual privacy—the discernible content within images—remains a
complex issue [42]. While several strategies like adversarial entropy
maximization [49] and image masking [43] have been explored,
finding the right balance between utility and privacy varies with
the use case and presents opportunities for enhancement.

8 CONCLUSION

In conclusion, this work introduces FedLAP-DP, a novel approach
for privacy-preserving federated learning. FedLAP-DP utilizes syn-
thetic data to approximate local loss landscapes within calibrated
trust regions, effectively debiasing the optimization on the server.
Moreover, our method seamlessly integrates record-level differen-
tial privacy, ensuring strict privacy protection for individual data
records. Extensive experimental results demonstrate that FedLAP-
DP outperforms gradient-sharing approaches in terms of faster
convergence on highly-skewed data splits and reliable utility under
differential privacy settings. We further explore the critical role of
radius selection, the influence of synthetic dataset size, open direc-
tions, and potential enhancements to our work. Overall, FedLAP-DP
presents a promising approach for privacy-preserving federated
learning, addressing the challenges of convergence stability and
privacy protection in non-IID scenarios.
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APPENDICES

A ADDITIONAL ANALYSIS
A.1 Matching Criteria

We analyze our design choices by using our method to fit gradients
computed on a single batch. We simplify the learning task by em-
ploying only one client that contains all training data, resembling
centralized training or FedSGD with a single client. In this setup,
the client immediately communicates the gradients to the central
server after computing them on a single batch. This scenario can
be seen as a trivial federated learning task, as it does not involve
any model drifting (non-IID) or communication budget constraints.
It is worth noting that the baseline performance in this setting is
an ideal case that does not apply in any practical FL use cases (or
out of scope of federated learning).

Gradient Magnitudes. While previous research [14, 59, 62] sug-
gests that gradient directions are more crucial than magnitudes
(Eq. 9), our study demonstrates that as training progresses, the
magnitudes of synthetic gradients (i.e., gradients obtained from
synthetic images) can differ significantly from real gradients. In
Fig. 11, we display the gradient magnitudes of each layer in a Con-
vNet. Our findings indicate that even with only 500 iterations, the
magnitudes of synthetic gradients (orange) noticeably deviate from
the real ones (blue), causing unnecessary instability during training.

Post-hoc Magnitude Calibration. To further validate the issue,
we implement a post-hoc magnitude calibration, called Calibration
in Fig. 12. It calibrates the gradients obtained from the synthetic
images on the server. Specifically, the clients send the layer-wise
magnitudes of real gradients ||V L (w, Dy )|| to the server, followed
by a transformation on the server:

VwL(w, Sg)
IVw L(w, Sp)ll

In Fig. 12, We observe that the synthetic images with the magni-
tude calibration successfully and continuously improve over the
one without the calibration (Vanilla). It implies that even with the
same cosine similarity, inaccurate gradient magnitudes could dra-
matically fail the training. It is worth noting that the performance
gap between the baseline and our method in this experiment does
not apply to federated learning since FL models suffer from non-
IID problems induced by multiple steps and clients, the gradient-
sharing schemes, such as FedAvg, overly approximate the update
signal, further enhancing the problem. Meanwhile, it also suggests
an opportunity to improve our method if future work can further
bridge the gap.

IVw L(w, D). (20)

Mean Square Error (MSE) Regularization. Although calibration
can improve performance, it is not suitable for federated learning
due to two reasons. Firstly, when the synthetic images Sy from
different clients are merged into a dataset for server optimization,
it remains unclear how to apply Eq. 9 to the averaged gradients of
the merged dataset S, especially when multiple-step optimization
is involved. Secondly, transmitting magnitudes can pose privacy
risks. Instead of explicit calibration, we propose using MSE regular-
ization (Eq. 9, termed Regularization in Fig. 12) to limit potential
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Min Max Median Fixed
71.90 72.39 72.33 71.26

Table 5: Performance comparison between radius selection
strategies.

magnitude deviations while focusing on the directions. As depicted
in Fig. 12, our proposed method remains close to the calibration
method, suggesting that regularization prevents mismatch.

Moreover, we present an additional implementation with an
MSE matching criterion (termed MSE in Fig. 12)). It solely matches
the mean square error distance between £ (w, Dy) and L(w, Sg)
regardless of gradient directional information. That is,

IV LwD, D) = vy 0 LwD, Sp)lI12 (21)

Despite the improvement over the vanilla method, it still falls
behind Calibration and Regularization, highlighting the importance
of directional information and justifying our design choice.

A.2 Radius Selection

As in Sec. 4, we evaluate different radius selection strategies for
server optimization. We consider four strategies: Fixed, Max, Me-
dian, and Min. Fixed uses a fixed length of 100 iterations, ignoring
the quality. Max aims for the fastest optimization by using the
largest radius. Median optimizes in a moderate way by considering
the majority. Min, adopted in all experiments, focuses on the safest
region agreed upon by all synthetic image sets. Table 3 reveals that
the proposed strategies consistently outperform the fixed strategy.
Meanwhile, Fig. 14 presents that a more aggressive strategy leads
to worse intermediate performance, which may not be suitable for
federated applications requiring satisfactory intermediate perfor-
mance. Among them, Min delivers the best results. Finally, Fig. 15
demonstrates that the radii proposed by different strategies change
across epochs, indicating that a naively set training iteration may
not be optimal. Additionally, this finding suggests the possibility of
designing heuristic scheduling functions for adjusting the radius
in a privacy-preserving way. The corresponding server training
iterations can be found in the appendix.

In Sec. 6.4, we show that the effective approximation regions
change across rounds. A fixed pre-defined training iterations may
cause sub-optimal performance. To complement the experiments,
we additionally plot the corresponding training iterations on the
server side in Fig. 13. We observed that Max and Median tend to
be more aggressive by updating for more epochs, granting faster
improvement, while Min optimizes more conservatively. Interest-
ingly, we found that all three proposed strategies exhibit similar
behavior in the later stages of training, which is in stark contrast
to the fixed strategy.

A.3 Qualitative Results

In this section, we examine the synthetic images. In non-private
settings, Fig. 16 displays the pixel value distributions of all synthetic
images at epochs 5, 50, 100, 150, and 195, both on the server and
the clients. We made several observations from these visualizations.
Firstly, within the same round, the distributions of pixel values
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ConvNet (
(features ): Sequential(
(0): Conv2d(3, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): GroupNorm(128, 128, eps=1e-05, affine=True)
(2): ReLU(inplace=True)
(3): AvgPool2d(kernel_size=2, stride=2, padding=0)
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): GroupNorm(128, 128, eps=1e-05, affine=True)
(6): ReLU(inplace=True)
(7): AvgPool2d(kernel_size=2, stride=2, padding=0)
(8): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): GroupNorm(128, 128, eps=1e-05, affine=True)
(10): ReLU(inplace=True)
(11): AvgPool2d(kernel_size=2, stride=2, padding=0)

)

(classifier ): Linear(in_feature

s=2048, out_features=10, bias=True)

Figure 10: Architecture of ConvNets used in the federated experiments.
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Figure 11: Discrepancy in gradient magnitudes between real and synthetic data. The noticeable difference in magnitudes during
training highlights the limitation of solely regulating gradient directions, as optimizing without magnitude information

introduces training instability.

on each client exhibit distinct behavior, indicating the diversity of
private data statistics across clients. Secondly, the distributions also
vary across different epochs. At earlier stages, the synthetic images
present a wider range of values, gradually concentrating around
zero as training progresses. This phenomenon introduces more de-
tailed information for training and demonstrates that our method
faithfully reflects the training status of each client. Additionally,
Fig. 6 displays visual examples of synthetic images corresponding
to the labels "airplane,’ "automobile,’ "bird," and "cat" These visuals
indicate that earlier epoch images exhibit larger pixel values and
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progressively integrate more noise during training, reflecting gradi-
ent details. It’s crucial to underscore that our method is not intended
to produce realistic data but to approximate loss landscapes.

B COMPUTATION COMPLEXITY

Our method suggests an alternative to current research, trading
computation for improved performance and communication costs
incurred by slow convergence and biased optimization. We present
the computation complexity analysis for one communication round
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60
40 —— Baseline
—— Vanilla
—— Calibration
20 —— Regularization
— MSE
0 500 1000 1500 2000 2500

Figure 12: Performance comparison of fitting one batch. Base-
line: FedSGD with one client. Vanilla: our method with cosine
similarity. Calibration: our method with cosine similarity
and magnitude calibration. Regularization: our method with
cosine similarity and MSE regularization (i.e., Eq. 9). MSE:
gradient matching by solely measuring mean square errors
(Eq. 21).
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Figure 13: Training iterations for different radius selection
strategies.

X 60
LE Fixed (#iter=100)
E] —— Max
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Epoch

Figure 14: Ablation study on radius selection.

below and conclude with empirical evidence that the additional
overhead is manageable, especially for cross-silo scenarios.

We begin with the SGD complexity O(d), where d denotes the
number of network parameters. Suppose synthetic samples contain
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Figure 15: Radius suggested by different strategies.

p trainable parameters; then the complexity can be formulated as
follows.

O(Ri 5. (N(d + 2Ry (d + p)) + Rld))

O(SRi -(2NRp, +R; + N)d + 10Rinp)

O(SRiN - (2Ry + % +1)d + 10Rinp)

Note that 5R; N determines how much real data we will see dur-
ing synthesis. For comparison, we make 5R;N equal in both our
method and gradient-sharing baselines (i.e., five local epochs in Fe-
dAvg with complexity O(5R;Nd)). Overall, our method introduces
2Ry, + % + 1 times more computation on network parameters and
an additional 10R;R;, term for updating synthetic samples.
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Figure 16: Pixel distributions in non-private settings. The plot illustrates the evolution of pixel values in synthetic images
during training. At the early training stage, the pixel range is wider and gradually concentrates around zero as the model
approaches convergence, implying that the synthetic images reflect the training status.
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