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ABSTRACT
Machine learning models have been shown to leak sensitive in-
formation about their training datasets. Models are increasingly
deployed on devices, raising concerns that white-box access to
the model parameters increases the attack surface compared to
black-box access which only provides query access. Directly ex-
tending the shadow modelling technique from the black-box to the
white-box setting has been shown, in general, not to perform better
than black-box only attacks. A potential reason is misalignment,
a known characteristic of deep neural networks. In the shadow
modelling context, misalignment means that, while the shadow
models learn similar features in each layer, the features are located
in different positions. We here present the first systematic analysis
of the causes of misalignment in shadow models and show the
use of a different weight initialisation to be the main cause. We
then extend several re-alignment techniques, previously developed
in the model fusion literature, to the shadow modelling context,
where the goal is to re-align the layers of a shadow model to those
of the target model. We show re-alignment techniques to signifi-
cantly reduce the measured misalignment between the target and
shadow models. Finally, we perform a comprehensive evaluation
of white-box membership inference attacks (MIA). Our analysis
reveals that internal layer activation-based MIAs suffer strongly
from shadow model misalignment, while gradient-based MIAs are
only sometimes significantly affected. We show that re-aligning the
shadow models strongly improves the former’s performance and
can also improve the latter’s performance, although less frequently.
On the CIFAR10 dataset with a false positive rate of 1%, white-box
MIA using re-aligned shadow models improves the true positive
rate by 4.5%. Taken together, our results highlight that on-device de-
ployment increases the attack surface and that the newly available
information can be used to build more powerful attacks.1

∗Work done partially at Microsoft as part of an internship and partially at Imperial
College London.
1Source code available at https://github.com/microsoft/shadow-realignment-mia.
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1 INTRODUCTION
Machine learning (ML) models are being increasingly adopted by
businesses, governments, and organisations. The datasets they are
trained on often contain information about individuals, such as
pictures, documents, and metadata.

Inference attacks have been used to empirically measure the pri-
vacy risks of ML models. Running an inference attack involves, first,
defining a secret which an adversary aims to infer from amodel, e.g.,
whether a target record was used to train the model, referred to as
a membership inference attack (MIA). Second, it involves learning
a distinguishing boundary between models having different values
of the secret. Using MIA as an example, the adversary aims to learn
a good rule for distinguishing models trained on the target record
from models trained without it [6]. The main approach for learning
this boundary relies on so-called shadow models [4, 6, 45]. Shadow
models are trained by an adversary using the same architecture as
the target model, on similar datasets, while controlling the value
of the secret in each dataset. After training shadow models, the
adversary extracts their weights [15], or queries the models on well-
chosen records, to extract features such as gradients and activations
of different layers [37, 45, 60]. These pairs of (1) a model’s behavior
(as captured through a set of well-chosen features) and (2) the cor-
responding value of the secret, can be used to train a meta-classifier
for inferring the secret (e.g., a membership classifier).

Shadow modelling has powered a broad range of inference at-
tacks against ML models, including privacy attacks aiming to in-
fer the membership of a record [6, 8, 44, 45] or to reconstruct a
record [5, 43], property inference attacks aiming to infer global prop-
erties of the dataset [4, 51, 60], and correlation inference attacks
aiming to infer correlation coefficients between input columns [9].

In spite of all this research, ML privacy risks have mostly been
studied in the black-box setting, where the adversary accesses the
model through an API [11, 39]. This threat model is inadequate for
measuring privacy risks of on-device and open-source models. In
particular, we are seeing an increasing trend in deploying models
on user devices (edge machine learning). This trend is motivated by
a need on the deployers’ end to reduce bandwidth and latency in
serving requests, as well as user privacy expectations. For instance,
users’ data should not leave their device or be accessed by third
parties [2], and personalised models, e.g., through fine-tuning on
the user’s private data, should similarly not leave the users’ devices.

Measuring the risk only through the lens of black-box adversaries
can lead to underestimating it [51]. Indeed, adversaries targeting
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open-source or on-device models have access to the model archi-
tecture and weights, which are not available in black-box access.
Open-source models are usually released as files storing the weights
(called a checkpoint) with code to load the weights in a class imple-
menting the model [14]. Models can also be extracted from devices,
e.g., Deng et al. [10] extracted 245 models from 62.5K Android apps.
While accessing and analysing app files is more difficult in iOS
compared to Android, Hu et al. [21] demonstrated that even models
deployed in iOS apps can be extracted. Another example showing
that motivated actors can reverse-engineer on-device models is
Apple’s NeuralHash model [2]. Shortly after Apple announced its
proposed system design to detect child sexual abuse images on
devices before users would upload them to iCloud, the model was
reverse-engineered and the code allowing anyone to do this was
made public [55]. Furthermore, once a model is released publicly or
on edge devices, it cannot be taken back, and stronger attacks can
be mounted at a later date. Thus, developing powerful white-box
attacks is extremely important.

However, it has been shown that the naïve extension of shadow
modelling to the white-box setting, by using features of internal
layers (such as activations or weights), leads to worse attack perfor-
mance than in the black-box setting [9, 37, 60]. Combining features
of internal layers with model confidences (already available in the
black-box setting) does not necessarily lead to better performance
compared to the black-box setting [9, 34, 48].

In this work, we focus on standard deep neural network (DNN)
architectures such as convolutional neural networks (CNN) and
multilayer perceptrons and investigate shadowmodel misalignment
as a potential reason for the sub-optimal performance of white-box
MIAs. Our starting point is that the adversary must train shadow
models on a different dataset (otherwise they would already have
perfect knowledge of the target model’s training dataset) and must
use a different randomness. Due to DNN symmetries, such as the
permutation equivalence property [3, 15] where the neurons of
internal layers can be arbitrarily permuted without changing the
network’s function, shadow models trained on different data and
randomness end up misaligned. More specifically, although they
learn similar features in the same layer, the features are not lo-
cated in the same position (see Fig. 1 for an illustration in CNN
shadow models). Ganju et al. [15] showed misalignment to affect
the performance of white-box property inference attacks, arguing
that the meta-classifier needs to learn the symmetries of its input
features in addition to the inference task. However, no work so far
has investigated the causes of misalignment in shadow models nor
quantitatively measured its impact on MIAs.

Contribution. First, we here systematically investigate the
causes of misalignment in the context of shadow models. We do
this by disentangling the impact on misalignment of the differ-
ent sources of ML randomness as well as the impact of training
shadow models on a different dataset. We show that when the ad-
versary uses a different weight initialisation for shadow models
than the target model’s, the former end up misaligned with the
latter. Conversely, an adversary having knowledge of the target
model’s initialisation is able to train shadow models which are
internally much more similar to the target model. This finding has
implications for fine-tuning and model update scenarios where the
base model is publicly available. While we focus on MIAs against

(a)

(b) Activations of a target model M𝑇

(c) Activations of shadow models (one model/row) trained by the classical adversary

(d) Activations of re-aligned shadow models

Figure 1: Visualisation of the misalignment issue in CNN
shadow models trained by the classical adversary, where
models learn similar features (marked by the same color)
located in different positions (c). We also visualise the same
models after re-alignment (d). We refer the reader to Sec. 2.4
for a detailed description of the figure.

classification models, this fundamental finding is also relevant for
any inference attack targeting DNN models, incl. attacks targeting
generative models [20, 50]. Remarkably, the other sources of ran-
domness, taken individually or combined together, and even the
use of a disjoint dataset from the same distribution, do not lead to
a noticeable difference between shadow and target models.

Second, we extend and evaluate the effectiveness of re-alignment
methods proposed in the model fusion literature [3, 32] to the
shadowmodelling context. Suchmethods aim tomodify the weights
of a model, without modifying its function, in order to reduce the
distance between its weights and the weights of another model. We
show these methods to successfully reduce the measured misalign-
ment between the target and shadow models. Our results however
suggest that re-alignment techniques are imperfect as they struggle
with re-aligning large and middle layers.

Third, we perform a comprehensive evaluation of white-box
MIAs, analysing the impact of misalignment and subsequent re-
alignment techniques on the effectiveness of white-box MIAs. We
study a range of datasets, models, feature types and threat models
to isolate the impact of mis/re-alignment. We then show that re-
alignment can improve the accuracy of MIAs, sometimes by a large
margin, while they come at no cost to the adversary. Indeed, they
require very little compute and never perform worse than the mis-
aligned shadow models. Incidentally, we discover a set of features
– the input activations entering the target’s label neuron – which
contain new membership signal unaccounted for by commonly
used output activations and gradients [37].

We find that MIAs based on activations of internal layers suffer
strongly from misalignment between shadow models, while MIAs
based on gradients are only sometimes significantly affected. We
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show that re-aligning the shadow models strongly improves the
former’s performance and, sometimes significantly, the latter’s
performance. Hence, partially exposed models, i.e., models released
without the final classification layer, e.g., for embedding purposes
are more vulnerable than previously believed as the adversary
cannot compute gradient features but only activation features.

We also find evidence that standard MIAs, i.e., combining all
types of features and layers of misaligned shadow models, can be
improved by re-alignment techniques. On the CIFAR10 dataset with
a false positive rate of 1%, white-box MIA using re-aligned shadow
models improves the true positive rate by 4.5%.

Taken together, our results highlight that on-device deployment
increase the attack surface and that the newly available information
can be used by an adversary. The further highlight that privacy risk
assessments in the white-box setting should account for the sym-
metries of the target model architecture when designing the attack,
and that re-alignment techniques provide a simple and inexpensive
means to do this while never affecting the attack performance and
improving it in some settings.

2 PROBLEM STATEMENT
2.1 Deep neural networks
In this work, we mainly focus on attacks against two broad classes
of deep neural networks: multilayer perceptrons (MLP), consisting
of fully connected layers, and standard convolutional neural net-
works2 (CNN), consisting of convolutional layers followed by fully
connected layers. Both can be written as a function 𝑓 consisting of a
sequence of 𝐿 layers: 𝑓 = 𝑔𝐿 ◦ . . . ◦𝑔1, with ◦ denoting composition.

A fully connected (FC) layer applies an affine transformation,
followed by a non-linear activation function, to the input of the
previous layer: 𝑔𝑙 (𝑥𝑙 ) = 𝜎𝑙 (𝑊 𝑙𝑥𝑙−1 + 𝑏𝑙 ), with𝑊 𝑙 ∈ R𝐷𝑙×𝐷𝑙−1

a
weight matrix, 𝑏𝑙 ∈ R𝐷𝑙

a bias vector, and where 𝜎𝑙 : R𝐷
𝑙 → R𝐷𝑙

denotes the non-linear activation function. Here, 𝑥𝑙 ∈ 𝐷𝑙 denotes
the input to the 𝑙-th layer (and the output of the previous layer)
for every 𝑙 = 1, . . . , 𝐿. For the input layer, we write 𝑥0 = 𝑥 . Popular
choices of non-linear activation functions, applied coordinate-wise,
include ReLU: 𝑥 → max(0, 𝑥), tanh : 𝑥 → 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 , and the sigmoid
𝜎 : 𝑥 → 1

1+𝑒−𝑥 . For a classification task over 𝑁𝑐 classes, the non-
linear activation function used for the output layer (𝑙 = 𝐿) is the
softmax function: 𝜎 (𝑥𝐿

𝑖
) = 𝑒𝑥𝐿𝑖 /∑𝐷𝐿

𝑗=1 𝑒
𝑥𝐿
𝑗 for 𝑖 ∈ {1, . . . , 𝐷𝐿}, where

𝐷𝐿 is set equal to the number of classes 𝑁𝑐 .
An FC layer 𝑙 consists of 𝐷𝑙 neurons, each outputting a sin-

gle activation value 𝑥𝑙
𝑑
, 𝑑 ∈ {1, . . . , 𝐷𝑙 }. The functionality of neu-

ron 𝑑 can be described by: (1) a vector of input weights 𝑤𝑙in (𝑑) =
(𝑊 𝑙
𝑑,1, . . . ,𝑊

𝑙
𝑑,𝐷𝑙−1 , 𝑏

𝑙
𝑑
) (row 𝑑 of the weight matrix and coefficient

𝑑 of the bias vector), used to compute the output activation from the
outputs of the previous layer: 𝑥𝑙

𝑑
= 𝜎𝑙 (𝑏𝑙𝑑 +∑𝐷𝑙−1

𝑑′=1𝑊
𝑙
𝑑,𝑑′

𝑥𝑙−1
𝑑′

), and
(2) a vector of output weights 𝑤𝑙out (𝑑) = (𝑊 𝑙+1

1,𝑑 , . . . ,𝑊
𝑙+1
𝐷𝑙 ,𝑑

), where
coefficient 𝑑 ′ is used to multiply the output activation 𝑥𝑙

𝑑
by the

input weight of the 𝑑 ′-th neuron in the next layer.

2In Appendix A.5, we describe the ResNet [18] architecture which has a more complex
structure than the standard CNN and present a re-alignment algorithm tailored to it.

In a convolutional layer, neurons are replaced with filters whose
outputs are activation maps instead of single activation values.
Let 𝐶𝑙 be the number of filters in the 𝑙-th layer. Each filter 𝑐 ∈
{1, . . . ,𝐶𝑙 } is represented by a 3-D weight tensor𝑊 𝑙 [𝑐] of size
𝐶𝑙−1×𝐾𝑙1×𝐾

𝑙
2, with (𝐾𝑙1, 𝐾

𝑙
2) the kernel size, and a bias term 𝑏𝑙𝑐 ∈ R.

Thus, the functionality of the layer can be represented by a 4-D
weight tensor 𝑊 𝑙 and a 1-D vector 𝑏𝑙 , after concatenating the
weight tensors (and bias terms) of individual filters. Each filter acts
independently on the input 𝑥𝑙−1, which is 3-D (e.g., an image), by
applying a convolution [17, 40]: 𝑥𝑙 [𝑐] = 𝑏𝑙𝑐 +

∑𝐶𝑙−1
𝑐′=1𝑊

𝑙 [𝑐] [𝑐 ′] ∗
𝑥𝑙−1 [𝑐 ′]. This is typically followed by non-linearity, pooling and
dropout operations. When a convolutional layer 𝑔𝑙 is followed by
an FC layer, its output 𝑥𝑙 is flattened to a 1-D vector. In summary,
the functionality of filter 𝑑 can be described by: (1) a vector of input
weights𝑤𝑙in (𝑑) = (𝑊 𝑙 [𝑑] [1], . . . ,𝑊 𝑙 [𝑑] [𝐷𝑙−1], 𝑏𝑙𝑑 ) and (2) a vector
of output weights𝑤𝑙out (𝑑) = (𝑊 𝑙+1 [1] [𝑑], . . . ,𝑊 𝑙+1 [𝐷𝑙 ] [𝑑]), each
obtained by flattening then concatenating the weight matrices.

2.2 Threat model
An entity (e.g., a company) trains a machine learning (ML) model
to perform a classification task. The goal of the model is to infer
with high accuracy the correct label 𝑦 ∈ {1, . . . , 𝑁𝑐 } of records
𝑥 where (𝑥,𝑦) is sampled from a distribution D, with 𝑁𝑐 the
number of classes. The modelM𝑇 is trained on a private dataset
𝐷𝑇 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} of 𝑛 records sampled from D with
their labels. The model is obtained by running a training algorithm
T on the dataset 𝐷𝑇 with randomness defined by a seed 𝑠𝑒𝑒𝑑𝑇 :
M𝑇 = T (𝐷𝑇 , 𝑠𝑒𝑒𝑑𝑇 ).3 The training algorithm encompasses the
choice of a network architecture A, a loss function L, and training
hyperparameters such as learning rate and batch size.

We are interested in on-device releases, where the model is de-
ployed on user devices, effectively as a white box since the architec-
ture and parameters are now accessible to the users.We furthermore
assume that each record in the dataset relates to one individual.

The key privacy question is whether a malicious user, the adver-
sary, can recover sensitive information about the individuals from
the model. MIAs, which we focus on in this work, are the standard
tool to assess privacy risks of ML models [22, 24, 33, 34, 38, 45],
aiming to infer whether a particular target record (𝑥𝑇 , 𝑦𝑇 ) was used
to train the target model M𝑇 . In the black-box setting, MIAs have
been extensively studied, leveraging the model’s confidences on 𝑥𝑇 ,
M𝑇 (𝑥𝑇 ) = (𝑦1, . . . , 𝑦𝑁𝑐 ), or the top 𝑘 predictions, to infer whether
(𝑥𝑇 , 𝑦𝑇 ) is a member [6, 45, 56]. In the white-box setting, the adver-
sary additionally knows the model architecture and weights. Given
this knowledge, the adversary can design attacks at least as strong
as a given black-box attack B, by combining the signal of the output
layer (used by B) with additional signal from the internal layers
(e.g., activations or gradients).

There are mainly two threat models in the white-box setting,
depending on the knowledge the adversary has about the private
dataset 𝐷𝑇 .

In the first threat model [37], the adversary knows (1) part of
the training dataset 𝐷in ⊂ 𝐷𝑇 (referred to as member records) and

3In Pytorch, 𝑠𝑒𝑒𝑑𝑇 represents the argument passed to torch.manual_seed and
torch.cuda.manual_seed.
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(2) a same-sized dataset of non-members 𝐷out, i.e., |𝐷out | = |𝐷in |
and 𝐷out ∩ 𝐷𝑇 = ∅. This is a strong assumption reflecting the ca-
pabilities of an auditor. To run the attack, first, the auditor feeds
records (𝑥,𝑦) ∈ 𝐷in∪𝐷out to the target modelM𝑇 to extract record-
level features F (M𝑇 , 𝑥,𝑦) such as activations of internal layers
𝑥𝑙 , 𝑙 ∈ {1 . . . , 𝐿} or gradients 𝜕L

𝜕𝑊 𝑙 (𝑥,𝑦), 𝑙 ∈ {1 . . . , 𝐿}. Second, it
labels each F (M𝑇 , 𝑥,𝑦) with the corresponding membership in-
formation (member if (𝑥,𝑦) ∈ 𝐷in and non-member otherwise, i.e.,
if (𝑥,𝑦) ∈ 𝐷out). Third, it trains a meta-classifier (MC) to infer the
label from the features. Finally, it applies the MC to the features
F (M𝑇 , 𝑥𝑇 , 𝑦𝑇 ) extracted from the target model and record.

In the second, weaker threat model [30], the adversary has some
data, e.g., an auxiliary dataset 𝐷𝐴 from the same distribution D,
which may or may not be overlapping with the private dataset
𝐷𝑇 . The adversary does not know which of these records, if any,
were used to train the model. As such, even though the adversary
can feed (𝑥,𝑦) ∈ 𝐷𝐴 to the target model M𝑇 to extract features
F (M𝑇 , 𝑥,𝑦), it cannot label them with the correct membership
information of (𝑥,𝑦) as this information is not available.

This is where shadow models are extremely useful, as the adver-
sary can train one or more models M1 = T (𝐷1, 𝑠𝑒𝑒𝑑1), . . . ,M𝐾 =

T (𝐷𝐾 , 𝑠𝑒𝑒𝑑𝐾 ) using the same training algorithm T on subsets
𝐷1, . . . , 𝐷𝐾 of 𝐷𝐴 . Since the adversary controls the shadow models’
training data, it can build pairs of features and membership labels(
F (M𝑘 , 𝑥,𝑦), I𝐷𝑘

(𝑥,𝑦)
)
, for every (𝑥,𝑦) ∈ 𝐷𝐴, 𝑘 = 1, . . . , 𝐾 , where

I𝑆 denotes the indicator function over dataset 𝑆 . The adversary can
then train a meta-classifier and run the attack on the target record
(𝑥𝑇 , 𝑦𝑇 ) as before.

In this work, we focus on the second threat model as it reflects a
weaker adversary, which is more realistic in the on-device setting.
We refer to it as the classical adversary. We make the following
assumptions on its knowledge:

Assumption 1) The adversary knows the training algorithm T ,
allowing it to train a similar model from scratch on datasets of its
choice. We make this assumption to simplify the analysis, similarly
to prior works [4, 30, 37, 51, 60]. While the model architecture
is revealed to the users (on device) and the loss function is the
standard cross-entropy in most cases, the hyperparameters may
not always be available to the adversary. They would be, e.g., when
the code to train the model or a full description of T is available.

Assumption 2) The adversary does not have access to the same
randomness (seed) as the one used to train the target model, i.e., the
adversary does not know 𝑠𝑒𝑒𝑑𝑇 . Thus, we will assume the shadow
models to be trained using a different seed 𝑠𝑒𝑒𝑑𝑘 ≠ 𝑠𝑒𝑒𝑑𝑇 , 𝑘 =

1, . . . , 𝐾 . Indeed, training scripts are often not seeded at all, or they
are seeded but the target seed 𝑠𝑒𝑒𝑑𝑇 is not hard-coded nor made
available. In the rare cases where 𝑠𝑒𝑒𝑑𝑇 is published along with
the code, ensuring reproducibility in neural network libraries is
challenging due to non-determinism in the hardware [7]. Assuming
that the adversary generates 𝑠𝑒𝑒𝑑𝑘 , 𝑘 = 1, . . . , 𝐾 randomly, the
chances of collision with 𝑠𝑒𝑒𝑑𝑇 are negligible.

Under these assumptions, shadow models differ from the target
model in the following factors:

(1) Training dataset. The training dataset of shadow models can
be partially overlapping with 𝐷𝑇 [6] or disjoint from 𝐷𝑇 [15,
45].

(2) Weight initialisation. This is the value of the model weights
at the beginning of training, typically sampled randomly and
independently from a distribution centred around zero, e.g.,
uniform or normal with parameters dependent on the layer
sizes [16, 40].

(3) Batch ordering. This is the ordering ofmini-batches onwhich
the gradient is estimated in each training step. At the begin-
ning of each epoch (representing a complete pass over the
dataset), the training dataset is randomly shuffled. Thus, the
use of different training randomness between the shadow
models and the target model leads to different batch ordering.

(4) Dropout selection. Dropout [49] is a popular regularisation
technique aiming to reduce overfitting. Dropout is applied
to the outputs of the internal layers. In each forward pass,
dropout randomly sets each value of an input vector inde-
pendently to 0 with probability 𝑝 , or multiplies it by 1

1−𝑝
with probability 1 − 𝑝 . The use of different randomness to
train shadow models and the target model leads to different
values being “zeroed out”.

While this list is exhaustive for the neural networks considered
in our analysis of the causes of shadowmodel misalignment (Sec. 4),
additional sources of randomness could be considered. For instance,
the DP-SGD algorithm, commonly used to train models with for-
mal privacy guarantees [12], randomly perturbs gradients during
training [1].

The standard way to control the randomness of factors (2)-(4) is
to use a common pseudorandom number generator (PRNG), setting
its seed at the beginning of training. In Sec. 4, we will measure the
influence of each factor by using a separate PRNG for each factor.

2.3 Symmetries in deep neural networks
Deep neural networks are known to exhibit symmetries [3, 13, 19,
32, 47, 52, 54, 59], which are essential for understanding the chal-
lenges of white-box attacks. Consider a deep neural network 𝑓𝜃 im-
plementing an architectureA. Here,𝜃 = ((𝑊 1, 𝑏1), . . . , (𝑊 𝐿, 𝑏𝐿)) ∈
W denotes its weight representation, with W the space of values
that can be taken by the weights.

Definition 2.1 (Symmetry). LetA be an architecture with weight
space W. A symmetry is a mapping 𝑇 : W → W that for every
𝜃 ∈ W preserves the function 𝑓𝜃 : ∀𝜃 ∈ W,∀𝑥, 𝑓𝑇 (𝜃 ) (𝑥) = 𝑓𝜃 (𝑥).

We denote by S(A,W) the set of symmetries over architecture
A and weight spaceW. The main types of symmetries are:

(1) Permutation equivalence: The ordering of the neurons (fil-
ters) of internal layers can be arbitrarily permuted without
changing 𝑓 , as long as their corresponding input weights,
bias, and output weights are permuted accordingly. For in-
stance, in an FC layer 𝑔𝑙 , applying a permutation to the rows
of𝑊 𝑙 , the bias vector 𝑏𝑙 , and the columns of𝑊 𝑙−1 does not
change 𝑓 .

(2) Scale invariance: The input weights and the bias of a neuron
can be multiplied by a constant 𝑐 > 0without changing 𝑓 , so
long as the output weights are multiplied by 1/𝑐 . This holds
when there is no non-linearity, or when the non-linearity is
the ReLU function.
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(3) Antisymmetry: The input weights, bias, and output weights
of a neuron can be multiplied by -1 without changing 𝑓
if the non-linearity is antisymmetric, e.g., ∀𝑥, tanh(𝑥) =

− tanh(−𝑥).
Detailed examples: Consider an architecture of two linear lay-

ers, where the first layer is followed by the ReLU non-linearity:
𝜃 = ((𝑊 1, 𝑏1), (𝑊 2, 𝑏2)), with𝑊 1 ∈ R3×2,𝑊 2 ∈ R4×3, 𝑏1 ∈ R3
and 𝑏2 ∈ R4, i.e.,W = R3×2 ×R3 ×R4×3 ×R4. The operation of the
first layer is 𝑥1

𝑖
= max(0,𝑊 1

𝑖1𝑥
0
1 +𝑊

1
𝑖2𝑥

0
2 + 𝑏

1
𝑖
), 𝑖 ∈ {1, 2, 3}. The op-

eration of the second layer is 𝑥2
𝑗
=𝑊 2

𝑗1𝑥
1
𝑗
+𝑊 2

𝑗2𝑥
1
2 +𝑊

2
𝑗3𝑥

1
3 +𝑏

2
𝑗
, 𝑗 ∈

{1, 2, 3, 4}. This architecture has permutation equivalence symme-
tries because for any permutation 𝜎 over {1, 2, 3}, the network
𝜃 ′ = ((𝑊 ′1, 𝑏 ′1), (𝑊 ′2, 𝑏 ′2)), with 𝑊 ′1 = (𝑊 1

𝜎 (𝑖) 𝑗 )1≤𝑖≤3,1≤ 𝑗≤2,
𝑏 ′1 = (𝑏𝜎 (𝑖) )𝑖=1,...,3,𝑊 ′2 = (𝑊 2

𝑘𝜎 (𝑖) )1≤𝑘≤4,1≤𝑖≤3 and 𝑏
′2 = 𝑏2 satis-

fies 𝑓𝜃 ′ (𝑥) = 𝑓𝜃 (𝑥),∀𝑥 (see [15] for a proof). It also has scale invari-
ance symmetries: if we replace𝑊 1 with𝑊 ′1 = (𝑐𝑖𝑊 1

𝑖 𝑗
)1≤𝑖≤3,1≤ 𝑗≤2,

𝑏 ′1 with (𝑐𝑖𝑏𝑖 )1≤𝑖≤3 and𝑊 2 with𝑊 ′2 = ( 1
𝑐𝑖
𝑊 2
𝑘𝜎 (𝑖) )1≤𝑘≤4,1≤𝑖≤3,

where 𝑐𝑖 > 0, 𝑖 = 1, . . . , 3, then 𝑓𝜃 ′ (𝑥) = 𝑓𝜃 (𝑥),∀𝑥 . If the non-
linearity is tanh instead of ReLU, the architecture has antisymmetry
instead of scale invariance symmetries, i.e., if we replace𝑊 1 with
−𝑊 1, 𝑏1 with −𝑏1, and𝑊 2 with −𝑊 2, then 𝑓𝜃 ′ (𝑥) = 𝑓𝜃 (𝑥),∀𝑥 .

2.4 Misalignment in shadow models
The existence of symmetries, coupled with differences in how
shadow models are trained respectively to the target model, leads
to shadow models which are misaligned respectively to the target
model. We define this concept below:

Definition 2.2 (𝑑-misalignment). Let A be an architecture with
weight spaceW. Let 𝑓𝜃1 and 𝑓𝜃2 be two models of architecture A
with corresponding weights 𝜃1, 𝜃2 ∈ W. We assume the models
to be trained for solving the same task but under different con-
ditions, such as using different datasets, randomness or training
algorithms. Let 𝑑 be a distance metric over W. We say that 𝜃1 is
𝑑-misaligned with respect to 𝜃2 if there exists a symmetry 𝑇 that
reduces its weight distance with respect to 𝜃2, i.e., ∃𝑇 ∈ S(A,W) :
𝑑 (𝑇 (𝜃1), 𝜃2) < 𝑑 (𝜃1, 𝜃2).

Definition 2.3 (𝑑-alignment). We say that 𝜃1 is 𝑑-aligned respec-
tively to 𝜃2 if for all symmetries 𝑇 , it is not possible to reduce
the weight distance with respect to 𝜃2, i.e., ∀𝑇 ∈ S(A,W) :
𝑑 (𝑇 (𝜃1), 𝜃2) ≥ 𝑑 (𝜃1, 𝜃2).

The notion of “(mis)alignment” is only meaningful if the two
models learn similar features. This is why our definition requires
the two models 𝑓𝜃1 and 𝑓𝜃2 to be trained for solving the same task.
Indeed, one could imagine a model trained to classify animal species
and another model trained to classify vehicles; since the models
likely learn different features, the notion of “(mis)alignment” is
ill-defined.

In our experiments, we use the Euclidean distance between
weights as the distance metric. For simplicity, we refer to mod-
els as “(mis)aligned” instead of “𝑑-(mis)aligned”.

While it may be theoretically possible to train shadow models
which are aligned with the target model, in practice shadow mod-
els always end up misaligned. We illustrate this phenomenon by
training a standard CNN [30], which consists of two convolutional

layers followed by two fully connected layers (see Sec. 4.2 for the
complete details).

Fig. 1b and c show the internal representations of a target model
M𝑇 as well as those of shadow models trained by the classical
adversary. This adversary has no knowledge of the seed used to
train the target model, and uses a different seed for each shadow
model. To simulate this setting, we randomly sample four mutually
disjoint subsets of the CIFAR10 dataset [26] of size 12500, using the
first subset to train a target modelM𝑇 and the others to train three
shadow models. We visualise the activations maps, computed on
an image of an aeroplane, of the first convolutional layer of each
model. The activation maps describe the functionality of the con-
volutional layer. Each activation map is a matrix of real values that
are non-negative, due to the ReLU non-linearity function applied
by the convolutional layer. We scale the values between 0 and 1
independently in each map, depicting 0 as black and 1 as white. The
values indicate which parts of the image an activation map focuses
on and which parts are “zeroed out” by the computation.

Fig. 1b and c show that while the target and shadowmodels learn
many similar features (examples are highlighted in colour), these
are not located in the same position consistently across models.
This phenomenon also affects the upper, fully connected layers, but
these cannot be visualised because their activations are scalars.

Importantly, misalignment does not affect the output classification
layer. Even though the outputs of shadow models might differ, they
have the same functionality for target and shadow models: the 𝑙-th
output consistently encodes the probability that the input image
belongs to the 𝑙-th class. This explains why black-box features
extracted from shadow models perform very well, as reported in
many works [6, 8, 45, 60].

As for white-box features, misalignment reduces the ability of
the meta-classifier to effectively perform the inference task. We
demonstrate this by training white-box MIAs against the CNN ar-
chitecture described above using features extracted from an internal
layer. More specifically, we use as features the activations of the
second to last layer 𝑥𝐿−1. To understand whether these features
have signal useful for the MIA task, we train an attack on features
extracted from the target model (implicitly assuming the auditor
threat model of Sec. 2.2). This attack reaches a high AUC of 0.805,
meaning that the features hold signal. We then train an attack on
features extracted from𝐾 = 10 shadowmodels. This attack achieves
an Area Under the Curve (AUC) of 0.509, comparable to a random
guess. The two experiments illustrate that the second to last layer
contains signal useful for the membership task, but that this signal
is not directly accessible from the shadow models through a naïve
application of the shadow modelling technique.

Finally, Fig. 1d shows the features of shadow models after ap-
plying one of the re-alignment techniques evaluated in this work,
correlation-based matching [32] (described in Sec. 5). It is clear
that re-alignment leads to more similar features across the same
position in the shadow models resp. to the target model.

3 RELATEDWORK
Misalignment has been studied in the model fusion literature
where there is a need to train multiple models and then combine the
models into a single one. Model fusion has e.g. been used to achieve
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the benefits of ensembling (better accuracy) without having to store
multiple models [3, 47], to enable crossover mutations over neural
networks in evolutionary algorithms [3], and to average models
in federated learning [54, 59]. Misalignment has also been used to
better understand neural network representations [32] and the loss
landscapes of stochastic gradient descent [13, 52]. Re-alignment
techniques have been proposed, e.g., [3, 32], which we extend and
apply for the first time to shadow models.

A handful of works have identified misalignment to be an issue
for property inference attacks (PIA), a specific use of shadow mod-
els, and proposed solutions. Ganju et al. [15] looked at permutation
equivalence-type symmetries in MLP models, and showed them
to affect the performance of the naïve PIA meta-classifier based
on the model weights. The authors propose two approaches to
tackle this challenge: weight-based neuron sorting and set-based
meta-classifiers. Recently, Suri and Evans extended set-based meta-
classifiers to CNNs [51]. Differently from these works, we system-
atically analyse the root causes of misalignment in shadow models
and explore the effectiveness of re-alignment techniques. We then
analyse the impact of misalignment and re-alignment techniques
on white-box MIAs, the standard privacy test. More specifically,
we show weight-based neuron sorting to be ineffective in reduc-
ing the misalignment and improving MIAs, and extend set-based
classifiers to MIAs, showing them to perform worse or on par with
re-alignment.

Impact of weight initialisation. Balle et al. [5]. developed
an attack using shadow models to reconstruct a training record
based on the model weights. They found that their attack fails if the
shadow models are not trained using the same weight initialisation
as the target model. Similarly, Jagielski et al. [22] obtained tighter
estimates of the privacy of the DP-SGD algorithm [1] when using
a fixed weight initialisation. Our work provides an explanation for
these empirical findings through the misalignment perspective and
suggests re-alignment as a potential solution to improve attacks
when the adversary does not know the weight initialisation.

Membership inference attacks (MIA) have been studied ex-
tensively in the black-box setting, see e.g., [6, 8, 33, 44, 45, 53]. The
features typically used are the model confidences on a record 𝑥
with the main vulnerability exploited being that the model tends to
be more confident on training records compared to unseen records.
Together, these works have built a solid understanding of the condi-
tions under which black-box MIAs are most likely to succeed, such
as when the model is overfitted [45, 57], when the targeted records
are outliers or members of subpopulations [28, 36], and when the
auxiliary data comes from the same distribution as the training
dataset and is more abundant [44, 53].

Comparatively very few works have developed white-box MIAs.
Nasr et al. [37] studied the auditor setting (described in Sec. 3), train-
ing a meta-classifier (MC) on activations and gradients extracted
directly from the target model. Shadow models are, however, not
used in this setting, since the signal available through the target
model is, by definition, perfectly aligned.

Leino and Fredrikson [31] considered an adversary who has
access to a disjoint set of records 𝐷𝐴 ∼ D, with 𝐷𝐴 ∩ 𝐷𝑇 = ∅. The
authors identify the issue of misalignment and address it by training
proxy models that share the same internal representation asM𝑇

in all the layers up to and including a given layer 𝑙 . Their method

is, however, computationally heavy. The proxy models are first: (1)
initialised with the target model’s weights up to layer 𝑙 and frozen
during training and (2) initialised randomly in the remaining, upper
layers. The function applied by the upper layers to each record is
then linearly approximated using influence functions [31]. Finally,
a meta-classifier is trained on a measure of behaviour difference
between the linear approximations of proxy and target models. The
adversary needs to repeat this procedure by training shadowmodels
to mimic the role of the target model and by training proxy models
for each shadow model and layer. For computational reasons, we
here instantiate their approach with the last layer and find that it
performs worse than the naïve attack using the same features.

Sablayrolles et al. [42] aim to answer the question of whether
the membership signal of internal layers is redundant with the
model confidences. If they were completely redundant, white-box
attacks could indeed never outperform black-box attacks. Under
specific assumptions on the distribution of the model weights, they
derive that the optimal attack only depends on the loss function.
This implies that white-box attacks could not exploit additional
membership signal to the optimal black-box attack, since the loss
can be estimated from black-box outputs. These results however
contradict empirical work that showed that white-box attacks can
perform better than black-box, reporting double-digit accuracy
gaps [33]. Further work is thus necessary to understand when the
assumptions made by Sablayrolles et al. hold in practice.

4 CAUSES OF SHADOWMODEL
MISALIGNMENT

We now analyse the causes of misalignment in shadow models
trained by the adversary who does not know the randomness used
to train the target modelM𝑇 .

Shadow models typically differ from the target model in the
training dataset, weight initialisation (WI), batch ordering (BO)
and dropout selection (DS). To understand the impact of these
individual factors, we use a separate PRNG to control their ran-
domness 𝑠𝑒𝑒𝑑𝑇 = (𝑠𝑒𝑒𝑑𝑊𝐼

𝑇
, 𝑠𝑒𝑒𝑑𝐵𝑂

𝑇
, 𝑠𝑒𝑒𝑑𝐷𝑆

𝑇
), changing one seed a

time between the target model and shadow models. For instance, to
measure the impact of weight initialisation, we train 𝐾 shadow
models M𝑘 = T (𝐷𝑇 , 𝑠𝑒𝑒𝑑𝑊𝐼

𝑘
, 𝑠𝑒𝑒𝑑𝐵𝑂

𝑇
, 𝑠𝑒𝑒𝑑𝐷𝑆

𝑇
), with 𝑠𝑒𝑒𝑑𝑊𝐼

𝑘
≠

𝑠𝑒𝑒𝑑𝑇 , 𝑘 ∈ {1, . . . , 𝐾} We then measure the resulting misalignment
in each layer using the metrics described in Sec. 4.1. Then, we
change multiple factors together, progressively increasing the ad-
versary uncertainty, up to our adversary of interest for which all
selected factors are different between shadow and target models:
𝐷𝑘 ≠ 𝐷𝑇 , 𝑠𝑒𝑒𝑑

𝑊𝐼
𝑘

≠ 𝑠𝑒𝑒𝑑𝑊𝐼
𝑇

, 𝑠𝑒𝑒𝑑𝐵𝑂
𝑘

≠ 𝑠𝑒𝑒𝑑𝐵𝑂
𝑇
, 𝑠𝑒𝑒𝑑𝐷𝑆

𝑘
≠ 𝑠𝑒𝑒𝑑𝐷𝑆

𝑇
.

From a security perspective, this means that we explore intermedi-
ate attack scenarios which may lead to lower levels of misalignment
than the one measured for our adversary (Sec. 4.2 and 4.3).

4.1 Metrics to measure the misalignment
To measure the misalignment between a shadow modelM and the
target model M𝑇 , we compute in each layer 𝑙 the weight misalign-
ment score (WMS). The WMS is defined as the Euclidean distance
between the weights and biases of neurons (filters) of M and M𝑇

in layer 𝑙 :
√︃
| |𝑊 𝑙 (M𝑇 ) −𝑊 𝑙 (M)||22 + ||𝑏𝑙 (M𝑇 ) − 𝑏𝑙 (M)||22. Here,
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we denote by𝑊 𝑙 (M) the weight matrix of the 𝑙-th layer of M
and by 𝑏𝑙 (M) its bias vector. In a convolutional layer, the metric
is defined analogously over the weights and bias of individual fil-
ters. We select this metric for its simplicity, interpretability, and to
cover the functionality of a neuron (filter) in terms of weights. In
Appendix A.1, we present and discuss results obtained with two
additional metrics based on the output activations.

Randompermutation. To contextualise the change incurred by
each factor in a layer, we compute as a baseline the WMS between
the target model and the same model where a random permutation
is applied to the neurons (filters) of the layer.

4.2 Experimental setup
Dataset. We perform experiments on the CIFAR10 dataset [26],
which consists of 60000 32 × 32 × 3 colour images labeled with one
of 10 classes. The dataset was originally partitioned into a train and
test splits of 50000 and 10000 images, respectively. We randomly
sample 12500 records from the train split as our target dataset
𝐷𝑇 and three mutually disjoint subsets (five random subsets) of
same size for experiments using shadow models trained on disjoint
datasets (overlapping datasets). In the case of overlapping datasets,
the overlap between two different models is of roughly 25%.

Model architecture and training details. We use the CNN
architecture of Leino and Fredrikson [31], consisting of two con-
volutional layers and two fully connected layers. For better util-
ity and to limit overfitting, differently from this work we use a
smaller dropout probability at the output of the fully connected
layer (𝑝 = 20%), a smaller learning rate, and early stopping. We
train the network using the Adam optimiser [25] a batch size of 64,
a learning rate of 𝜂 = 0.01, dividing it by 2 after 𝐸 = 5 epochs of
non-increasing accuracy on a validation set of 5000 random records
from the test split. We stop the training when 𝜂 drops below 10−5
or after 100 epochs, whichever comes first.

4.3 Results
Table 1 shows that the main cause for the misalignment of
shadow models trained by the adversary is their different
weight initialisation. When shadow models are trained on the
same dataset, with the same batch ordering and dropout selection as
the target model, but with a different weight initialisation, the weight
misalignment scores reach values comparable to applying a random
permutation (RP) to the neurons (filters) of the target modelM𝑇 .
In the first layer, the score computed over shadow models having a
different weight initialisation (≠WI) is 12.09, similar to applying
a random permutation to the filters of the target model (11.81). In
contrast, shadow models differing only in their batch ordering (≠
BO) or dropout selection (≠ DS) are much less misaligned to the
target model, reaching scores of 3.42 and 3.52, respectively.

Interestingly, shadow models differing from the target model in
their training dataset (but not in the other factors) are also broadly
aligned to the target model, reaching a weight misalignment score
of 4.32 and 5.11 when trained on a dataset that can be overlapping
with, respectively is disjoint from, 𝐷𝑇 . Fig. 3 and 4 in Appendix A.2
illustrate that the activationmaps of the first convolutional layer are
indeed visually aligned to those of the target model when changing
only the batch ordering, dropout selection, or the training dataset.

We also instantiate concrete attack scenarios by changing multi-
ple factors together. More specifically, Table 1 shows that changing
everything but the WI (≠ BO, ≠ DS, and disjoint dataset) results in a
score of 5.17, much lower than our adversary of interest which addi-
tionally uses a different WI (12.44). From a security perspective,
this strongly suggests that adversaries having knowledge
of the weight initialisation can train shadow models which,
internally, are much more similar to the target model than
adversaries not having this knowledge. This assumption holds
whenever the seed is available to the adversary, or when the target
model is fine-tuned and its pretrained weights are available, or
when the adversary accesses a target model before a mini-batch
update is performed [23, 43]. Fig. 5 shows that the activation maps
of these shadow models are overall well aligned to the target model.
However, since now multiple factors are different, we also observe
some differences, notably in columns 1 and 7.

The trends identified in the first layer also hold for the other
layers. Yet, we observe smaller gaps between ≠WI compared to e.g.,
≠BO. The ratio between theWMS decreases from 12.09/3.42 ≈ 3.4×
in the first layer to 1.9× and 1.4× in the second, resp. third layer.
This suggests that in some of the layers, even the smallest change
can result in large weight differences compared to the target model.

We observe similar trends using different metrics for measuring
misalignment (Table 13), different training hyperparameters (Ta-
bles 11- 12), as well as different datasets and models (Tables 9-10).
We refer the reader to Appendix A.1 for a discussion of these results.
A particularly salient finding is that shadow models always learn a
different classifier compared to the target model. Table 13A indeed
shows that even though the output activations of the last layer are
aligned (the 𝑑-th output neurons encodes the output probability for
the 𝑑-th class), the activation misalignment scores are much larger
than 0, ranging between 0.27 (≠ DS) and 0.42 (classical adversary).

We also find evidence that feature misalignment is not impacted
by the use of training datasets from different distributions. Consider
an adversary who knows the target model’s task but not the precise
training distribution. We aim to understand whether shadow mod-
els are more misaligned when trained on a different distribution,
and if they learn different features from the target model. We train
a target model on 100% older faces of the CelebA dataset [35] to
infer whether a person is smiling. We then train shadow models
either on the same distribution or on a different distribution (only
22.6% older faces) (see Appendix A.3 for details). Table 14 shows
similar WMS (and hence, levels of misalignment) between the two
scenarios, while Fig. 2 suggests that the features learnt are similar.

5 RE-ALIGNING THE LAYERS
Our findings suggest that permutation equivalence is the main type
of symmetry responsible for the misalignment between shadow
models trained by the classical adversary. Indeed, the misalignment
measured in these models is comparable to applying a random
permutation to internal layers ofM𝑇 . A natural question is whether
the internal layers of shadow models can be re-aligned to those of
the target model, by seeking the “right” way to permute the neurons
(filters) so as to minimise misalignment. While there may not be a
one-to-one mapping between the neurons, i.e., some neurons in a
shadow model may be functionally different from all the neurons in

413



Proceedings on Privacy Enhancing Technologies 2024(3) Ana-Maria Creţu, Daniel Jones, Yves-Alexandre de Montjoye and Shruti Tople

Table 1: Weight misalignment scores. Weight initialisation (WI) is the most influential factor responsible for misalignment. We
highlight in bold the classical adversary (All ≠) and the one knowing the target model initialisation (≠ BO, ≠ DS, and DD).

Difference w.r.t. target modelM𝑇
First layer Second layer Third layer Fourth layer
(20 filters) (50 filters) (500 neurons) (10 neurons)

Weight misalignment scores (↓ indicates better alignment)

Random permutation 11.81 (0.51) 16.58 (0.15) 31.87 (0.06) 12.80 (0.66)

≠Weight initialisation (WI) 12.09 (0.34) 16.24 (0.20) 30.46 (0.45) 12.54 (0.14)
≠ Batch ordering (BO) 3.42 (0.34) 8.88 (0.26) 21.51 (0.85) 6.62 (0.15)
≠ Dropout selection (DS) 3.52 (0.30) 8.72 (0.23) 21.25 (0.46) 6.47 (0.16)

Overlapping datasets 4.32 (0.36) 10.52 (0.31) 23.20 (0.60) 7.23 (0.11)
Disjoint datasets (DD) 5.11 (0.59) 11.21 (0.11) 24.24 (0.35) 7.56 (0.05)

≠ BO, ≠ DS, and DD 5.17 (0.31) 11.46 (0.03) 24.92 (0.21) 7.55 (0.07)
≠MI, ≠ BO, and ≠ DS 12.05 (0.43) 16.30 (0.21) 30.53 (0.34) 12.65 (0.18)
All ≠ (≠WI, ≠ BO, ≠ DS, and DD) 12.44 (0.36) 16.56 (0.20) 30.98 (0.50) 12.87 (0.28)

the target model, correctly re-aligning even a subset of neurons may
significantly reduce misalignment and improve MIA performance.

We here evaluate several re-alignment techniques from the ML
literature [3, 32] that are instantiations of the bipartite assignment
problem. More specifically, we keep the target modelM𝑇 fixed and
search for a symmetry 𝑇 consisting of a sequence of permutations,
𝜋1, . . . , 𝜋𝐿 , one for each layer, that will be applied to neurons (filters)
in the 𝑙-th layer of the shadow model M so as to maximise its
alignment to the 𝑙-th layer ofM𝑇 . The permutations can be applied
in a bottom-up or top-down order.

Computing the optimal permutation in layer 𝑙 . Let 𝑓1, . . . , 𝑓𝐷𝑙

be the features representing the neurons (filters)𝑛1, . . . , 𝑛𝐷𝑙
of layer

𝑙 inM and let 𝑓 𝑇1 , . . . , 𝑓
𝑇
𝐷𝑙

be the features representing the neurons
(filters) 𝑛𝑇1 , . . . , 𝑛

𝑇
𝐷𝑙

of layer 𝑙 inM𝑇 . We seek the optimal permuta-
tion of neurons ofM, 𝜋𝑙 (𝑛1), . . . , 𝜋𝑙 (𝑛𝐷𝑙

), i.e., maximising the align-
ment between neurons: 𝜋𝑙 = argmax𝜋

∑
1≤𝑑≤𝐷𝑙

𝑠𝑖𝑚(𝜋 (𝑛𝑑 ), 𝑛𝑇𝑑 ),
where 𝑠𝑖𝑚 is a similarity score based on the features representing
the neurons. We explore three options for computing 𝑠𝑖𝑚:

a) 𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 ) = −||𝑓𝑖 − 𝑓 𝑇
𝑗
| |2, with 𝑓𝑖 = 𝑤𝑙in (𝑖), i.e., the input

weights of neuron 𝑖 in M or 𝑓𝑖 = 𝑤𝑙out (𝑖), i.e., the output weights
of neuron 𝑖 in M. We pick one or the other depending on whether
re-alignment is performed in a bottom-up or top-down fashion, as
detailed in the next paragraph. 𝑓 𝑇

𝑗
is analogously defined except

that it is computed onM𝑇 .
b) 𝑠𝑖𝑚(𝑛𝑖 , 𝑛 𝑗 ) = −||𝑓𝑖 − 𝑓 𝑇𝑗 | |2, where 𝑓𝑖 =

(
(𝑥𝑙1)𝑖 , . . . , (𝑥

𝑙
𝑅
)𝑖
)
, i.e.,

the output activations of neuron 𝑖 in M over records 𝑥1, . . . , 𝑥𝑅 .
𝑓 𝑇
𝑗
is analogously defined and computed using the same records

except that it is computed onM𝑇 .
c) The Pearson correlation coefficient between the output acti-

vations of the neurons, computed from 𝑅 records [32]. We refer the
reader to Appendix A.4 for a complete description.

We use the Hungarian algorithm [27] to find optimal permuta-
tion 𝜋𝑙 and 𝑅 = 500 records to compute similarity scores b) and c).

Bottom-up re-alignment. For each layer 𝑙 = 1, . . . , 𝐿 − 1, we
perform the following:

(B1) We compute the optimal permutation 𝜋𝑙 that should be ap-
plied to neurons in the 𝑙-th layer ofM tomaximise alignment
withM𝑇 as per 𝑠𝑖𝑚. Note that under a), we use as features
the input weights, since the output weights point towards
neurons in layer 𝑙 + 1 that are not yet re-aligned.

(B2) In the current layer 𝑙 , we permute the rows of the weight
matrix𝑊 𝑙 (M) and bias vector 𝑏𝑙 (M) according to 𝜋𝑙 .

(B3) In the next (upper) layer 𝑙 + 1, we permute the columns of
the weight matrix𝑊 𝑙+1 (M) according to 𝜋𝑙 .

Top-down re-alignment. For each layer 𝑙 = 𝐿, . . . , 2, we per-
form the following:
(T1) Same as (B1), except that under a), we use as features the

output weights of the neuron, since the input weights are not
yet re-aligned betweenM andM𝑇 .

(T2) In the current layer 𝑙 , we permute the columns of the weight
matrix𝑊 𝑙 (M).

(T3) In the next (lower) layer 𝑙 − 1, we permute the rows of the
weight matrix𝑊 𝑙−1 (M) and bias vector 𝑏𝑙−1 (M).

Note that bottom-upweight-based re-alignment leads to different
internal representations ofM compared to top-down weight-based
re-alignment, while bottom-up activation-based (correlation-based)
re-alignment leads to the same result as top-down activation-based
(correlation-based) re-alignment. Indeed, the similarity scores under
b) and c) only depend on the output activations of the 𝑙-th layer,
which are not impacted by the permutation applied to the previous
layer (i.e., 𝑙 − 1 for bottom-up order and 𝑙 + 1 for the top-down
order). However, the layer order impacts the final result under a), as
the ordering of weights of a neuron is impacted by the permutation
applied to the previous layer.

These algorithms can be easily extended to convolutional layers,
replacing neurons by filters and activations by activation maps.
However, special care is required when propagating a permutation
to the next layer if the two layers are of different types, i.e., at the
junction between convolutional and FC layers in CNNs. To see how
this impacts the algorithms, take for instance bottom-up alignment.
If the current layer (to be permuted) 𝑙 is convolutional while the
upper layer 𝑙 + 1 is fully connected, steps (B1) and (B2) would be
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Table 2:Weightmisalignment scores after applying re-alignment techniques to shadowmodels trained by the classical adversary.

Re-alignment technique First layer Second layer Third layer Fourth layer
(20 filters) (50 filters) (500 neurons) (10 neurons)

Weight misalignment scores (↓ indicates better alignment)

(A0) No re-alignment 12.44 (0.36) 16.56 (0.20) 30.98 (0.50) 12.87 (0.28)

(A1) Weight sorting [15] 11.51 (0.48) 16.28 (0.29) 30.96 (0.50) 12.74 (0.24)
(A2) Re-alignment after initialisation 12.49 (0.16) 16.00 (0.14) 30.39 (0.53) 8.56 (0.21)
(A3) Bottom-up weight-based re-alignment 8.87 (0.56) 14.19 (0.19) 29.35 (0.44) 11.01 (0.21)
(A4) Top-down weight-based re-alignment 10.80 (0.81) 14.98 (0.24) 30.37 (0.48) 5.71 (0.04)
(A5) Activation-based re-alignment 9.45 (1.00) 14.51 (0.07) 30.13 (0.45) 10.54 (0.01)
(A6) Correlation-based re-alignment [32] 9.38 (0.95) 14.58 (0.11) 30.45 (0.49) 11.49 (0.06)

the same, except that they would be applied to filters instead of
neurons. However, we modify step (B3) as follows. First, we group
the columns of the weight matrix 𝑊 𝑙+1 (M) by the input filter,
reversing the flattening operation applied to the activation maps
before they are fed to the FC layer. Second, we permute the groups
of columns according to 𝜋𝑙 . Finally, we flatten the groups back to a
list of columns, thus restoring the 2-D shape of the matrix.

We also present in Appendix A.5 an extension of top-down re-
alignment for ResNet architectures which are structured differently
from the standard CNNs described so far, due to their use of skip
connections [18], thus requiring a different treatment.

Note that perfect re-alignment is not guaranteed, due to (1) the
heuristic metrics used and (2) potential errors being propagated,
and accumulated, from the first to the last layer being re-aligned.

Re-alignment after initialisation. Guided by the insight that
weight initialisation is the main factor responsible for shadow
model misalignment, we also experiment with shadow model re-
alignment after their initialisation. We use top-down weight-based
re-alignment due to its better overall performance (see Sec. 6.3).

Baseline.We further implement the weight sorting technique
of Ganju et al. [15]. This approach maps a model to its canonical
representation, by sorting its layers in a bottom-up order, according
to the sum of input weights of neurons. We extend this approach
to convolutional layers, and map the shadow models as well as the
target model to their canonical representation.

Table 2 shows that one-to-onematching techniques (A3)-(A6) can
effectively reduce the misalignment consistently. As expected, top-
down weight-based re-alignment (A4) performs best in the upper
layers, perhaps due to cumulative error effects as the algorithm
progresses to the lower layers (with similar trends for bottom-
up re-alignment). In particular, it achieves the most spectacular
improvement relatively to the no re-alignment baseline, reducing
the weight misalignment score from 12.87 to 5.71 in the fourth layer.
Correlation-based re-alignment (A6) is also effective in reducing
the misalignment, particularly in the lower layers (see Fig. 1d for a
visualisation of re-alignment results using this approach).

We observe an interesting phenomenon in the third layer. The
misalignment is only slightly reduced, from 30.98 to 29.35 using
bottom-up weight-based re-alignment (Table 2). Yet this layer does
become more aligned, since activation-based misalignment metrics
improve significantly (see Appendix A.4). We attribute the small

reduction in misalignment to the third layer being large (625.5K
weights) and placed in the middle of the network, making it sensi-
tive to re-alignment errors propagated from the other layers.

The weight sorting approach (A1) of Ganju et al. [15] performs
poorly, on par with and sometimes slightly better than the no re-
alignment baseline.We attribute its poor performance to the neuron
sorting criterion: the sum of weights may be too coarse to allow for
effective re-alignment. More generally, canonical representations
have been argued to be sensitive to small changes in weights [3].

Finally, the re-alignment after initialisation technique (A2) proves
to be ineffective, likely due to the inherent noise of matching the
yet to be trained shadow model with the fully trained target model.

Takeaways. The consistent improvements of re-alignment tech-
niques (A3)-(A6) confirm that it is possible to reduce the misalign-
ment between the target model and the shadow models. However,
re-alignment techniques are imperfect and struggle with re-aligning
large and middle layers.

6 WHITE-BOX MEMBERSHIP INFERENCE
Afinal important criterion to judge the effectiveness of re-alignment
techniques is their performance on white-box inference attacks.
In this section, we focus on white-box MIAs as a case study. Note
that by definition of symmetries (Definition 2.1), re-alignment tech-
niques do not modify the outputs of shadow models and hence
cannot impact black-box MIAs.

To understand the impact of misalignment, we evaluate attacks
relying on a membership meta-classifier (MC) trained on features
derived either (S1) from the target model or (S3) from shadow mod-
els trained on a different dataset and using a different randomness.
Under (S1), referred to as the auditor, the MC is trained on features
computed on the target model and known training/unseen records
F (M𝑇 , 𝑥,𝑦), (𝑥,𝑦) ∈ 𝐷in∪𝐷out. There is no misalignment with re-
spect to the features used at test timeF (M𝑇 , 𝑥𝑇 , 𝑦𝑇 ), which are also
computed on the target model. Under (S3), the MC is trained on fea-
tures computed on shadow models F (M𝑘 , 𝑥,𝑦), (𝑥,𝑦) ∈ 𝐷𝐴 , with
M𝑘 = T (𝐷𝑘 , 𝑠𝑒𝑒𝑑𝑘 ) and 𝑠𝑒𝑒𝑑𝑘 ≠ 𝑠𝑒𝑒𝑑𝑇 . Thus, there is misalign-
ment with respect to the features used at test time F (M𝑇 , 𝑥𝑇 , 𝑦𝑇 ).

We consider an additional scenario (S2) where the adversary
knows 𝑠𝑒𝑒𝑑𝑊𝐼

𝑇
, i.e., can train shadow models having the same

weight initialisation as the target model M𝑇 . This adversary is
informed by the findings of Sec. 4 that weight initialisation is the
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Table 3: Parameters used in the experiments. We also report the accuracy of the target models.

Dataset Architecture Train acc. Test acc. |𝐷 | 𝑁V |𝐷𝐴 | |𝐷target | 𝐷𝐴 ∩ 𝐷target |𝐷𝑇 | 𝑁train 𝑁val 𝑁test

CIFAR10 CNN4 99.9 (0.1) 67.5 (0.6) 60000 2000 28000 28000 ∅ 14000 21000 2000 5000
CIFAR10 VGG16 100.0 (0.0) 82.6 (0.4) 60000 2000 56000 56000 𝐷𝐴 = 𝐷target 50000 8000 2000 2000
Texas100 MLP5 98.8 (2.7) 48.7 (0.7) 44000 2000 20000 20000 ∅ 10000 13000 2000 5000

Purchase100 MLP4 100.0 (0.0) 80.9 (0.7) 84000 2000 40000 40000 ∅ 20000 33000 2000 5000
TinyImagenet200 ResNet18 63.0 (1.0) 32.3 (0.6) 100000 2000 96000 96000 𝐷𝐴 = 𝐷target 86000 14000 2000 4000

main reason for shadow model misalignment and that shadow
models with same WI are more aligned toM𝑇 . This adversary is
relevant in model fine-tuning (where the base model is publicly
available) or update settings.

Put informally to gain intuition, if the MC is trained on
features extracted from the same number of records under
(S1), (S2) and (S3), then (S1) upper bounds the performance
of (S2) and (S3). However, in our experiments, we extract features
from several shadow models, meaning that the MC is trained on
more data under (S2) and (S3), which is why in some cases we will
see, e.g., (S2) performing slightly better than (S1).

6.1 Evaluation setup
In each setup, we train a meta-classifier (MC) to perform the mem-
bership inference task. We consider three types of features: (1)
output activations (OA) 𝑥𝑙 computed at a given layer 𝑙 , (2) gradients
(G) of the loss function computed on the record (𝑥,𝑦) with re-
spect to the weights of a layer 𝑙 : 𝜕L/𝜕𝑊 𝑙

𝑖, 𝑗
(𝑥,𝑦), 𝑖 ∈ {1, . . . , 𝐷𝑙 }, 𝑗 ∈

{1, . . . , 𝐷𝑙−1} (and corresponding biases), and (3) input activations
(𝑊 𝐿

𝑦,𝑖
𝑥𝐿−1
𝑖

)𝑖=1,...,𝐷𝐿−1 entering the neuron that encodes the ground-
truth class 𝑦. (3) are a finer grained version of the signal encoded by
the model confidence for class 𝑦. (1) and (2) were first proposed by
Nasr et al. [37], while (3) have been used by Leino et al. [30] to learn
a displacement function with respect to the same features computed
on a proxy model. Our use of (3) is different and simpler, as we
combine these features directly with (1) and (2) and show them to
improve MIAs. We describe in Appendix A.6 the meta-classifier
(MC) architecture and how we train it.

Given a dataset 𝐷 , e.g., CIFAR10, we first set aside two disjoint
validation sets 𝑉1 and 𝑉2 of size 𝑁𝑉 that will be used as validation
data when training target and shadow models, respectively. Of
the remaining records, we sample two datasets 𝐷𝐴 (adversary’s
auxiliary knowledge) and 𝐷test on which the shadow models, resp.
target models will be trained and tested. We sample the target
dataset 𝐷𝑇 randomly from 𝐷test, and 𝐷1, . . . , 𝐷𝐾 randomly from
𝐷𝐴 to have the same size as 𝐷𝑇 . The most stringent attack scenario
is 𝐷𝐴 ∩ 𝐷test = ∅, which is useful in modelling a weak adversary.
However, this scenario limits the size of the training dataset, leading
to more overfitted models. To experiment with larger datasets, we
will also consider 𝐷𝐴 = 𝐷target = 𝐷 \ (𝑉1 ∪𝑉2). The meta-classifier
training, validation and test datasets are of size 𝑁train, 𝑁val, and
𝑁target and are balanced with respect to the membership task. We
report in Table 3 the values used for each dataset.

6.2 Datasets and models
We evaluate the attacks on three real-world datasets commonly
used to evaluate privacy risks [37, 44, 45].

CIFAR10 [26]. This dataset is described in Sec. 4.2. We train two
architectures on this dataset: the CNN network described in Sec. 4.2
(referred to as CNN4), and a VGG16 network. For the latter, we
follow the original implementation [46], except that we use smaller
hidden layer sizes for the classification head (512 instead of 4096)
for computational reasons. The training hyperparameters are the
same as for CNN4 (Sec. 4.2), except that we use a batch size of 128
and early stopping with a minimum learning rate of 10−3.

Texas100 [41] consists of 67330 records and 6169 attributes,
labeled with one of 100 classes. We randomly select 44000 records
as the dataset 𝐷 . We train the 5-layer MLP from Nasr et al. [37]
(referred to as MLP5), having layer sizes of 1024, 512, 256, 128, 100.
The hidden layers are followed by ReLU and dropout layers with
𝑝 = 5%. The other training hyperparameters are the same as for
CNN4 (Sec. 4.2), except that we use a learning rate of 0.001.

Purchase100 [41] consists of 197324 records and 600 attributes,
labeled with one of 100 classes. We randomly select 84000 records as
the dataset 𝐷 . We train a 4-layer MLP (referred to as MLP4) having
layer sizes of 512, 256, 128, 100. The hidden layers are followed
by ReLU. The other training hyperparameters are the same as for
CNN4 (Sec. 4.2), except that we use a learning rate of 0.001.

Tiny-ImageNet-200 [29] consists of 100000 64 × 64 images, la-
beled with one of 200 classes. We train a ResNet18 architecture [18]
on this dataset, using a classification layer with an output size of
200 classes. For computational reasons and to limit overfitting, we
train this model for 6 epochs when it roughly converges (training it
further would increase train accuracy without improving validation
accuracy). The other training hyperparameters are the same as for
CNN4 (Sec. 4.2), except that we use a learning rate of 0.005.

6.3 Results
We train 𝑅 = 10 different target models with different weight
initialisation (WI) on the same dataset𝐷𝑇 . For each target model, we
train 𝐾 = 10 shadow models with the same WI as the target model
for scenario (S2) and 𝐾 = 10 shadow models with a different WI
for (S3). As an optimisation, under (S3) we reuse the same shadow
models for all target models, ensuring their seeds are different from
all the target models’ seeds. For Tiny-ImageNet-200 and ResNet18,
due to computational constraints, we only run 𝑅 = 5 repetitions of
the experiment using 𝐾 = 2 shadow models for each target model.
As before, under (S3) we reuse the same 𝐾 = 2 shadow models
across target models. In each scenario, we train the MC and report
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Table 4: CIFAR10 (CNN4): Results of white-box MIA using output activation (OA) or gradient (G) features from different layers
(mean AUC with 95% confidence interval).

Source of meta-classifier training features Last layer Second to last layer Third to last layer Fourth to last layer
G OA G G G

(S1) Target model (auditor) 0.837 ± 0.012 0.805 ± 0.014 0.810 ± 0.017 0.820 ± 0.016 0.834 ± 0.010

(S2) Shadow models (same WI) 0.822 ± 0.012 0.750 ± 0.012 0.823 ± 0.015 0.811 ± 0.015 0.830 ± 0.009

(S3) Shadow models (all seeds ≠) 0.789 ± 0.021 0.509 ± 0.005 0.806 ± 0.014 0.788 ± 0.019 0.768 ± 0.024
(S4) Shadow models (all seeds ≠) + weight sorting [15] 0.789 ± 0.025 0.511 ± 0.006 0.803 ± 0.013 0.791 ± 0.020 0.770 ± 0.023
(S5) Shadow models (all seeds ≠) + bottom-up weight re-al. 0.795 ± 0.017 0.581 ± 0.029 0.818 ± 0.017 0.802 ± 0.019 0.789 ± 0.022
(S6) Shadow models (all seeds ≠) + top-down weight re-al. 0.834 ± 0.013 0.813 ± 0.010 0.822 ± 0.019 0.800 ± 0.020 0.787 ± 0.021
(S7) Shadow models (all seeds ≠) + activation re-al. 0.797 ± 0.023 0.652 ± 0.007 0.820 ± 0.015 0.803 ± 0.018 0.793 ± 0.024
(S8) Shadow models (all seeds ≠) + correlation re-al. 0.795 ± 0.013 0.639 ± 0.014 0.818 ± 0.017 0.803 ± 0.019 0.796 ± 0.021
(S9) Shadow models (all seeds ≠) + re-aligned after init. 0.818 ± 0.014 0.757 ± 0.015 0.809 ± 0.018 0.786 ± 0.019 0.768 ± 0.023

Table 5: CIFAR10 (VGG16): Results of white-box MIAs trained on output activation (OA) or gradient (G) features from different
layers (mean AUC with 95% confidence interval).

Source of meta-classifier training features Last layer Second to last layer Third to last layer
G OA G OA G

(S1) Target model (auditor) 0.655 ± 0.005 0.686 ± 0.005 0.665 ± 0.007 0.682 ± 0.006 0.672 ± 0.006

(S2) Shadow models (same WI) 0.644 ± 0.004 0.670 ± 0.008 0.648 ± 0.006 0.651 ± 0.011 0.648 ± 0.006

(S3) Shadow models (all seeds ≠) 0.643 ± 0.006 0.525 ± 0.006 0.642 ± 0.006 0.501 ± 0.012 0.648 ± 0.004
(S5) Shadow models (all seeds ≠) + bottom-up weight re-al. 0.644 ± 0.008 0.530 ± 0.013 0.645 ± 0.004 0.528 ± 0.012 0.654 ± 0.004
(S6) Shadow models (all seeds ≠) + top-down weight re-al. 0.647 ± 0.005 0.670 ± 0.008 0.647 ± 0.005 0.657 ± 0.010 0.657 ± 0.006
(S7) Shadow models (all seeds ≠) + activation re-al. 0.640 ± 0.006 0.672 ± 0.008 0.648 ± 0.004 0.673 ± 0.010 0.654 ± 0.004

its Area Under the Curve (AUC) computed on the 𝑁test records
(mean and 95% confidence interval over the 𝑅 runs).

Table 4 illustrates the impact of misalignment onwhite-boxMIAs
against CNN4. When the features used are the output activations
(OA) of the second to last layer, the AUC drops from 0.805 for
the auditor (S1) to 0.750 for the same weight initialisation (WI)
adversary (S2). Next, lacking knowledge of the WI, the classical
adversary (S3) training the meta-classifier (MC) on features derived
from misaligned shadow models achieves random performance,
at 0.509. However, the top-down weight matching technique (S6)
is able to fully recover the signal, reaching 0.813. Except weight
sorting [15], all other methods improve the AUC of MIAs.

Table 5 shows similar results on VGG16. We observe a slight
drop in AUC from 0.686 (S1) to 0.670 (S2), followed by a large drop
to 0.525 (S3) for MIAs using the OAs of the second to last layer.
Similarly, the AUC slightly drops from 0.682 (S1) to 0.651 (S2) and
then to random performance: 0.501 (S3) for MIAs using the OAs
of the third to last layer. The re-alignment techniques are able to
restore the performance of OAs, to 0.672 (S7) in the second to last
layer and 0.673 (S7) in the third to last layer.

Takeaway. When a model is only partially released, without
the last layer, e.g., for embedding purposes, the adversary cannot
compute gradients, only activations. Our results strongly suggest
that when the OAs of lower layers contain MIA signal, this signal
can be recovered by the re-aligned shadow models, while MIAs
using misaligned shadow models would perform very poorly.

The gradients are also affected by misalignment, although much
less, as we observe a small drop in AUC when moving from (S1) to
(S3). This is likely due to gradients of members and non-members
being easier to distinguish due to differences in norm [37], some-
thing which the MC can learn in spite of misalignment. On CNN4,
we find that re-alignment techniques are able to recover the sig-
nal, e.g., top-down weight re-alignment reaches 0.834 (S6), much
better than 0.789 using no re-alignment (S3), and comparable to
the auditor (S1), at 0.837. As expected, the MIA performance of the
same weight initialisation adversary (S2) is less affected by mis-
alignment, reaching 0.822. As for the first two layers, we observe
similar trends, although none of the alignment techniques fully
recovers the signal. On VGG16, re-alignment techniques provide a
small or no improvement to gradient-based MIAs.

We show in Table 6 that input activations (IA) extracted from the
last layer improve the performance of white-box MIAs consistently
across datasets. To minimise the effect of misalignment and isolate
the improvement due to IAs alone, we perform a detailed ablation
in the auditor setup (S1). Our results suggest that IAs add new mem-
bership signal that is not available in the gradients. On CIFAR10
for instance, the AUC increases from 0.816 (black-box, OA) to 0.860
(white-box, OA + IA + G), better than OA + G (white-box [37]), at
0.839. In light of these results, we believe that input activa-
tions, which are simple and inexpensive to compute, should
be incorporated in future ML privacy risks assessments.

Next, we show results of white-box MIAs that combine features
from more layers, progressively adding new layers from top to
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Table 6: MIAs using different combinations of features extracted from the last layer, in the auditor (S1) scenario. The best
results are highlighted in bold.

Dataset White-box Black-box
OA + IA + G (Ours) OA + G (Nasr et al. [37]) OA + IA (Ablation) OA (Shokri et al. [45])

CIFAR10 (CNN4) 0.860 ± 0.013 0.839 ± 0.012 0.846 ± 0.010 0.816 ± 0.010
CIFAR10 (VGG16) 0.685 ± 0.005 0.675 ± 0.004 0.680 ± 0.006 0.637 ± 0.014
Texas100 (MLP5) 0.912 ± 0.020 0.904 ± 0.021 0.907 ± 0.019 0.880 ± 0.015
Purchase100 (MLP4) 0.757 ± 0.013 0.739 ± 0.012 0.739 ± 0.014 0.733 ± 0.010
Tiny-ImageNet-200 (Resnet18) 0.693 ± 0.008 0.685 ± 0.005 0.687 ± 0.010 0.597 ± 0.010

Table 7: CIFAR10 (CNN4): Results of white-box MIAs using features from multiple layers.

Source of meta-classifier training features Black-box White-box

Last layer Last layer Last two layers All four layers

(S1) Target model (auditor) 0.816 ± 0.010 0.860 ± 0.013 0.857 ± 0.014 0.853 ± 0.015

(S2) Shadow models (same WI) 0.810 ± 0.011 0.857 ± 0.013 0.859 ± 0.019 0.862 ± 0.018

(S3) Shadow models (all seeds ≠) 0.815 ± 0.011 0.837 ± 0.014 0.837 ± 0.015 0.842 ± 0.015
(S4) Shadow models (all seeds ≠) + weight sorting [15] 0.813 ± 0.012 0.838 ± 0.014 0.840 ± 0.015 0.844 ± 0.015
(S5) Shadow models (all seeds ≠) + bottom-up weight re-al. 0.813 ± 0.012 0.853 ± 0.014 0.850 ± 0.018 0.855 ± 0.018
(S6) Shadow models (all seeds ≠) + top-down weight re-al. 0.815 ± 0.013 0.849 ± 0.017 0.851 ± 0.017 0.856 ± 0.019
(S7) Shadow models (all seeds ≠) + activation re-al. 0.815 ± 0.012 0.860 ± 0.014 0.861 ± 0.017 0.860 ± 0.017
(S8) Shadow models (all seeds ≠) + correlation re-al. 0.812 ± 0.010 0.858 ± 0.015 0.861 ± 0.015 0.863 ± 0.018
(S9) Shadow models (all seeds ≠) + re-al. after init. 0.811 ± 0.010 0.844 ± 0.015 0.843 ± 0.019 0.844 ± 0.016

Table 8: Texas100 (MLP5): Results of white-box MIAs using features from the last layer.

Source of meta-classifier training features Black-box (OA) White-box (OA + IA + G)

(S1) Target model (auditor) 0.880 ± 0.015 0.912 ± 0.020

(S2) Shadow models (same WI) 0.843 ± 0.023 0.873 ± 0.041

(S3) Shadow models (all seeds ≠) 0.859 ± 0.015 0.857 ± 0.048
(S4) Shadow models (all seeds ≠) + weight sorting [15] - 0.866 ± 0.041
(S5) Shadow models (all seeds ≠) + bottom-up weight re-al. - 0.878 ± 0.029
(S6) Shadow models (all seeds ≠) + top-down weight re-al. - 0.876 ± 0.039
(S7) Shadow models (all seeds ≠) + activation re-al. - 0.871 ± 0.045
(S8) Shadow models (all seeds ≠) + correlation re-al. - 0.859 ± 0.050

bottom. This includes as a particular case the black-box attack of
Shokri et al. [45] that uses the output activations (OA). We find
Shokri et al.’s attack to perform on par with the black-box LiRA
attack of Carlini et al. [6] in our setting, where we only use 10
shadow models (see Appendix A.8.3 for details). The white-box
attacks combine the OAs and gradients (G) of each layer with the
input activations (IA) of the last layer.

Table 7 shows that the performance of white-box MIAs on CNN4
is affected by shadow model misalignment, as it drops from 0.860
in the strong auditor scenario (S1) to 0.837 in classical adversary
scenario (S3). In contrast, the black-box MIA is not affected by
shadow model misalignment, as its accuracy is roughly constant at
0.815. The re-alignment techniques, and in particular bottom-up
correlation-based re-alignment, are able to recover the lost signal,

increasing the performance to e.g., 0.858 using features in the last
layers and 0.863 using features in all the layers. The performance
of the same model initialisation adversary (S2) is similar to the
auditor (S1), suggesting that releasing the weight initialisation
increases the risk of attacks. On the VGG16 network, we observe
no drop between (S1) and (S2), and a small drop at (S3) for white-
box attacks, with re-alignment techniques slightly improving the
average performance, e.g., from 0.679 to 0.686.

Table 8 shows that when applied to an MLP trained on Texas100,
the classical and black-box adversaries perform similarly, reach-
ing 0.857 and 0.859, respectively. Re-aligning the shadow models
however increases the performance of the classical adversary to
0.878 (bottom-up weight re-alignment) (S5), with similar results for
top-down weight (S6) and activation (S7) re-alignment (0.876 and
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0.871, respectively). We observe a noticeable performance gap com-
pared to the auditor (S1) (0.912). We also noticed that the training
procedure stopped much earlier for some shadow and target models
compared to others. We thus suspect the gap might be due to higher
variability between models which might increase misalignment.

Tables 19- 21 in Appendix A.7 reports attack results for VGG16,
MLP, and ResNet18 architectures trained on CIFAR10, Purchase100
and Tiny-ImageNet-200, respectively. On VGG16 and Purchase100,
the gap between the auditor (S1) and the classical adversary (S3)
is smaller than in previous datasets (0.689 vs 0.679 and 0.757 vs
0.745, resp.), and the re-alignment techniques do not significantly
improve the attack performance. On Tiny-ImageNet-200, the gap
is even smaller (0.690 vs 0.687) making the use of re-alignment less
interesting (0.691). We attribute these findings to the fact that while
gradient features hold most of the MIA signal, they are, in these
instances, not affected by misalignment.

Worst-case privacy. Carlini et al. [6] have argued that attacks
should be considered successful whenever they are able to confi-
dently target at least a few records, even if their accuracy is low.
We compute the complete Receiver Operator Characteristic (ROC)
curves of attacks on a log-log scale, and compare the various re-
alignment techniques according to the True Positive Rate (TPR)
for low values of the False Positive Rate (FPR). The smallest FPR
we consider is 1% as using a smaller value, e.g., 0.1% would lead
to a noisy value of TPR. We average the ROC curves over 10 ex-
periments. Fig. 7a in Appendix A.7 shows that on CIFAR10, our
white-box approach using re-alignment achieves a TPR of 12.3%
for an FPR of 1% and performs better than (1) the black-box attack
of Shokri et al. [45] (7.2%), (2) the white-box attacks with no re-
alignment (7.8%), and (3) the weight sorting technique of Ganju et
al. [15] (7.8%). Fig. 7b and c report similar results on Texas100 and
Purchase100, although the differences are less marked.

Comparison with set-based classifiers. An alternative ap-
proach to deal with the permutation equivalence symmetry, which
was explored in prior works on property inference attacks (PIA) [15,
51], is the use of set-based classifiers. A set-based classifier views
the neurons in a layer as a set and aggregates their feature represen-
tations using a permutation-invariant operation such as summation.
In PIAs, a set-based classifier is trained on the weights 𝜃 of a model
𝑓𝜃 to infer a property of the training dataset, e.g., the proportion
of females in the dataset. We here extend set-based classifiers to
white-box MIAs, using activations and gradients as features instead
of the weights. Our implementation is described in Appendix A.8.1.

Table 16 shows that on the CIFAR10 dataset, the set-based clas-
sifier performs on par with the classical adversary (S3) without
re-alignment and less well than our re-alignment techniques. On
Texas100, the set-based classifier performs similarly to our re-
alignment techniques, recovering part of the MIA signal, but less
well than the auditor setting (S1). We attribute this to the difficulty
of training set-based classifiers on large sets (here, neuron sets), as
the signal coming from individual neurons is more “smoothed”, i.e.,
averaged out. Indeed, the CIFAR10 dataset has 500 neurons in the
second to last layer, while Texas100 has only 128 neurons, making
it harder to effectively train a set-based classifier in the former case.

Comparison with Leino and Fredrikson [30]. We further
compare our approach with the Bayes-WB approach of [30] (see
Appendix A.8.2 for details). Table 17 in the Appendix shows that

Bayes-WB performs worse than the (S3) adversary using the input
activations (IA), reaching 0.708 and 0.726, resp. on CIFAR10. Our
top-down weight re-alignment technique (S6) achieves much better
performance (0.805). We conclude that although proxy models are
designed to be “aligned” in some sense with the target model at
the last layer, they do not replicate well the dataset memorisation
patterns of the target model, likely due to only the last layer being
trained on the dataset while the lower layers are maintained frozen.

Impact of defenses.We finally experiment with models trained
with defenses: regularisation and differential privacy [12]. It is in-
deed possible that defenses that are effective in the black-box setting
remain vulnerable to white-box attacks leveraging new informa-
tion. Our results in Appendix A.9 show that implementing these
defenses reduces the risk of MIAs to close to random performance,
albeit at a cost in accuracy.

7 FUTUREWORK AND CONCLUSION
In this paper, we identify shadow model misalignment as a poten-
tial reason for the sub-optimal performance of white-box MIAs.
We systematically investigate its causes, extend and evaluate the
effectiveness of re-alignment methods proposed in the model fusion
literature to the shadow modelling context, and perform a compre-
hensive evaluation of white-box MIAs. We show that re-alignment
techniques can improve MIA accuracy, sometimes by a large mar-
gin, while they come at no cost to the adversary. Indeed, they are
inexpensive to run and across experiments, we do not find a single
instance where re-alignment decreases performance compared to
no re-alignment. This strongly suggests that, at worst, re-alignment
does not affect the performance of attacks and at best improves per-
formance. We conclude that they should be incorporated in privacy
assessments of ML models, and more generally that MIAs should
be designed taking into account the symmetries of DNNs. We now
highlight potential avenues for extending our work.

Our work focuses on permutation equivalence-type symmetries,
using standard re-alignment techniques from the model fusion liter-
ature. Future work could develop re-alignment techniques dealing
with all known symmetries. As we observe from the distance met-
rics of the re-aligned models, there is scope for designing better
re-alignment techniques that will further reduce the distance be-
tween the shadow models and the target model. Future work could
further analyse the symmetries present in other architectures, such
as transformers.

The white-box MIAs considered in this work rely on a common
meta-classifier for all the target records. Targeted attacks using a
record-dependent decision boundary have been shown to perform
even better in the black-box setting [6, 56]. We believe that targeted
white-box attacks combined with our re-aligned shadow models
are likely to further increase the risk. A potential and yet untapped
advantage is the use of weights as attack features. Weights would
be available since hundreds of models would typically be trained
with or without the target record [6]. Whether weights contain
new membership signal that is not redundant with the activations
and gradients is an open question.
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A APPENDIX
A.1 Misalignment trends using different

hyperparameters and metrics
Other datasets. Table 9 reports the weight misalignment scores
(WMS) using CNN4 but computed in the CIFAR100 dataset, with
similar results as the ones obtained on the CIFAR10 dataset (Ta-
bles 1 and 2). Table 10 reports the WMS for MLP4 trained on the
Purchase100 dataset. We again observe a similar trend, but we no-
tice that for the MLP, the gap between (a) models trained with
a different batch ordering or dropout selection and (b) the target
model is higher than for the CNN (Tables 1 and 9). We attribute
this behaviour to fully connected layers being larger (in our ex-
periments) than convolutional layers, making them less stable to
differences in randomness.

Impact of hyperparameters. To understand the impact of the
training hyperparameters on the WMS, we retrain the CNN4 archi-
tecture on CIFAR10 using different hyperparameters for the target
model (propagating them to the shadow models). More specifically,
we study the impact of the learning rate 𝜂, as it is proportional

to changes applied to the weights in each gradient update, and of
the early stopping patience 𝐸, as larger values can lead to longer
training and therefore increase model overfitting. Table 12 shows
that although numbers vary, the trends of WMS are similar to the
ones identified previously. To minimise the impact of overfitting, in
this experiment we trained the models on 50000 records, the largest
training dataset size considered in the work. Note that changing the
dataset sizes impacts the magnitude of the scores, but the trends re-
main the same. For completeness, we report in Table 11 theWMS for
various training dataset sizes and illustrate in Fig. 6 the activation
maps in the first convolutional layer.

Other metrics. In addition to the WMS described in the main
paper, we explore two other metrics computed using the output
activation of a neuron (the 2-D activation map of a filter):

• Activation misalignment score (AMS): In a layer 𝑙 and a
record 𝑥 , the AMS is defined as | |𝑥𝑙 (M𝑇 )−𝑥𝑙 (M)||2, i.e., the
Euclidean distance between the output activations computed
on the target model and shadow model. For an FC layer, 𝑥𝑙

is a vector of size 𝐷𝑙 . For a convolutional layer, 𝑥𝑙 is a 3-D
tensor, consisting of 𝐶𝑙 activation maps, that we flatten. We
compute the average AMS over 𝑅 records.

• Correlation between activations (CBA). We complement
the two metrics with a third one [32], which measures how
correlated neurons (filters) in the same position are across
two models. In an FC layer 𝑙 , given a neuron position 𝑑 ,
we consider the random variable 𝑥𝑙

𝑑
, where the random-

ness is taken over input records 𝑥 ∼ 𝐷A. We pass 𝑅 records
through a model to obtain a series of 𝑅 activation values
𝑆𝑑 := ((𝑥1)𝑙𝑑 , . . . , (𝑥𝑅)

𝑙
𝑑
). We compute the CBA 𝜌 as the av-

erage (over all the positions 𝑑) of the Pearson correlation
coefficient 𝜌𝑑 between the two series 𝑆𝑑 (M𝑇 ) and 𝑆𝑑 (M):
𝜌 = (∑𝐷𝑙

𝑑=1 𝜌𝑑 )/𝐷
𝑙 . In a convolutional layer, activation maps

replace the activation values. We randomly select 𝑃 pixel co-
ordinates from the activation map. We compute the Pearson
correlation coefficient 𝜌 between the two series extracted
fromM andM𝑇 , respectively, for pixel 𝑝 and the activation
map located in position 𝑓 (i.e., corresponding to the 𝑓 -th
filter). We then compute the CBA as the average correlation
over the 𝑃 pixels and 𝐶𝑙 filters.

The AMS ranges from 0 to∞, is equal to 0 for two identical mod-
els, with lower values indicating a larger similarity between the
internal representations of the models at layer 𝑙 . The CBA ranges
between -1 and 1. A value close to 0 indicates low correlation be-
tween the internal representations, while a value close to 1 indicates
a high similarity. Additionally, the correlation is scale-invariant,
which allows to compare different layers.

We compute the activation misalignment score on 𝑅 = 500
validation records (the same for all the models). We compute the
correlation score on the same records and 𝑃 = 50 pixels.

Table 13A shows the AMS to follow the same trends as the WMS.
There is one exception: the fourth layer, whose output activations
are always aligned, as they are trained to encode per-class prob-
abilities. For this reason, any difference between shadow models
and M𝑇 yields a much lower score compared to randomly per-
muting this layer. The results on the fourth layer suggest that the
input-output behaviours of shadow models deviate from the target
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Table 9: Weight misalignment scores for CNN4 trained on the CIFAR100 dataset.

Difference w.r.t. target model M𝑇
First layer Second layer Third layer Fourth layer
(20 filters) (50 filters) (500 neurons) (100 neurons)

Weight misalignment scores (↓ indicates better alignment)

Random permutation 12.62 (0.53) 17.28 (0.18) 37.02 (0.03) 24.75 (0.13)

≠ Weight initialisation (WI) 12.82 (0.45) 17.87 (0.48) 38.11 (1.29) 25.12 (0.60)
≠ Batch ordering (BO) 3.82 (0.30) 9.95 (0.17) 29.13 (0.58) 16.83 (0.24)
≠ Dropout selection (DS) 3.52 (0.43) 9.52 (0.49) 28.33 (1.44) 16.39 (0.59)

Overlapping datasets 4.24 (0.54) 11.00 (0.48) 31.21 (0.89) 18.93 (0.43)
Disjoint datasets (DD) 4.23 (0.03) 11.43 (0.19) 31.63 (0.37) 19.43 (0.22)

≠ BO, ≠ DS, and DD 4.36 (0.14) 11.36 (0.39) 31.78 (1.52) 19.48 (0.68)
≠ MI, ≠ BO, and ≠ DS 12.54 (0.63) 17.57 (0.58) 37.56 (1.39) 24.89 (0.77)
All ≠ (≠WI, ≠ BO, ≠ DS, and DD) 12.90 (0.20) 17.31 (0.29) 36.78 (0.50) 24.49 (0.23)

(A3) Bottom-up weight-based re-alignment 8.46 (0.51) 14.61 (0.22) 34.70 (0.44) 23.29 (0.33)
(A4) Top-down weight-based re-alignment 9.37 (0.77) 15.46 (0.39) 36.07 (0.48) 20.00 (0.24)
(A5) Activation-based re-alignment 8.80 (0.63) 15.03 (0.24) 35.84 (0.44) 22.91 (0.22)
(A6) Correlation-based re-alignment [32] 8.88 (0.41) 15.04 (0.25) 35.85 (0.46) 22.99 (0.24)

Table 10: Weight misalignment scores for MLP4 trained on the Purchase100 dataset.

Difference w.r.t. target modelM𝑇
First layer Second layer Third layer Fourth layer

(512 neurons) (256 neurons) (128 neurons) (100 neurons)

Weight misalignment scores (↓ indicates better alignment)

Random permutation 57.18 (0.26) 36.46 (0.14) 17.79 (0.13) 18.80 (0.19)

≠Weight initialisation (WI) 56.30 (0.82) 35.95 (0.91) 17.68 (0.42) 19.72 (0.23)
≠ Batch ordering (BO) 47.61 (1.69) 31.98 (1.01) 13.82 (0.45) 14.66 (0.64)
≠ Dropout selection (DS) 45.02 (0.72) 30.86 (0.70) 13.18 (0.28) 13.83 (0.39)

Overlapping datasets 50.26 (0.67) 32.25 90.56) 13.89 (0.17) 14.94 (0.29)
Disjoint datasets (DD) 49.96 (1.28) 32.31 (0.50) 13.76 (0.36) 14.93 (0.42)

≠ BO, ≠ DS, and DD 49.17 (0.89) 31.70 (0.43) 13.67 (0.23) 14.73 (0.32)
≠MI, ≠ BO, and ≠ DS 57.24 (0.91) 36.54 (0.65) 17.74 (0.19) 19.67 (0.30)
All ≠ (≠ WI, ≠ BO, ≠ DS, and DD) 56.67 (1.04) 36.37 (0.78) 17.81 (0.34) 19.58 (0.47)

(A3) Bottom-up weight-based re-alignment 47.26 (1.01) 28.79 (0.78) 14.36 (0.33) 14.17 (0.41)
(A4) Top-down weight-based re-alignment 49.91 (1.05) 28.49 (0.75) 14.33 (0.30) 12.71 (0.30)
(A5) Activation-based re-alignment 48.84 (1.03) 30.42 (0.70) 15.11 (0.34) 14.04 (0.37)
(A6) Correlation-based re-alignment [32] 48.80 (1.14) 36.09 (1.12) 17.58 (0.35) 19.18 (0.71)

model more when using ≠ WI (0.32) or a disjoint dataset (0.41)
compared to applying other changes, e.g., ≠ BO (0.28). We conclude
that shadow models always learn a different classifier compared to
the target model.

Table 13B reports similar trends for the CBA. We again observe
that changing the weight initialisation has a very large impact
on the correlation, across all internal layers. This result explains
the low AUC of the MIA reported in Sec. 2: the outputs of the
third (second to last) layer in shadow models are uncorrelated
with the target model (𝜌 = 0.01, All ≠). The positive correlation
between the first layer and its permuted self (𝜌 = 0.15), suggests
the existence of redundancies in features learnt in the first layer.

The CBA metric also allows us to directly compare the levels of
misalignment in different layers. For all the factors considered, the
correlation decreases as we move from lower to upper layers.

A.2 Visualisation of activation maps
We consider, as before, the CNN4 architecture trained on the CI-
FAR10 dataset. The figures below compare the activation maps of
the first layer of the target modelM𝑇 with activation maps of:

Fig. 3: CNN4 shadow models trained on the same dataset as the
target model M𝑇 , but using a different seed for the batch order-
ing (Fig. 3b), dropout selection (Fig. 3c), and weight initialisation
(Fig. 3d). Changing the weight initialisation results in mismatch
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Table 11: Weight misalignment scores on CNN4 trained on CIFAR10 subsets of different sizes.

Training size Difference w.r.t. First layer Second layer Third layer Fourth layer
target model M𝑇 (20 filters) (50 filters) (500 neurons) (10 neurons)

Random permutation 11.81 (0.51) 16.58 (0.15) 31.87 (0.06) 12.80 (0.66)
≠Weight initialisation (WI) 12.09 (0.34) 16.24 (0.20) 30.46 (0.45) 12.54 (0.14)

12500 ≠ Batch ordering (BO) 3.42 (0.34) 8.88 (0.26) 21.51 (0.85) 6.62 (0.15)
≠ Dropout selection (DS) 3.52 (0.30) 8.72 (0.23) 21.25 (0.46) 6.47 (0.16)
≠WI, ≠ BO, and ≠ DS 12.05 (0.43) 16.30 (0.21) 30.53 (0.34) 12.65 (0.18)

Random permutation 13.94 (0.58) 19.08 (0.29) 35.49 (0.06) 14.14 (0.74)
≠Weight initialisation (WI) 14.58 (0.32) 19.56 (0.51) 36.02 (1.30) 14.25 (0.16)

25000 ≠ Batch ordering (BO) 5.62 (1.89) 12.27 (0.53) 28.66 (1.03) 7.87 (0.15)
≠ Dropout selection (DS) 5.63 (0.12) 12.05 (0.23) 28.64 (0.39) 7.80 (0.11)
≠WI, ≠ BO, and ≠ DS 14.48 (0.32) 19.39 (0.22) 35.63 (0.31) 14.31 (0.10)

Random permutation 16.74 (0.52) 24.50 (0.41) 48.78 (0.07) 15.60 (0.87)
≠Weight initialisation (WI) 17.23 (0.19) 24.23 (0.19) 47.19 (0.45) 15.51 (0.13)

50000 ≠ Batch ordering (BO) 8.01 (0.77) 16.66 (0.61) 41.41 (1.60) 9.29 (0.08)
≠ Dropout selection (DS) 6.54 (1.25) 15.41 (0.38) 40.51 (0.71) 9.19 (0.06)
≠WI, ≠ BO, and ≠ DS 17.33 (0.29) 24.53 (0.37) 48.09 (1.02) 15.75 (0.20)

Table 12: Weight misalignment scores on CNN4 (CIFAR10) using various learning rates 𝜂 and early stopping patience 𝐸.

Difference w.r.t. First layer Second layer Third layer Fourth layer
target modelM𝑇 (20 filters) (50 filters) (500 neurons) (10 neurons)

Random permutation 16.74 (0.52) 24.50 (0.41) 48.78 (0.07) 15.60 (0.87)
𝜂 = 0.01, 𝐸 = 5 ≠Weight initialisation 17.23 (0.19) 24.23 (0.19) 47.19 (0.45) 15.51 (0.13)

≠ Batch ordering 8.01 (0.77) 16.66 (0.61) 41.41 (1.60) 9.29 (0.08)

Random permutation 9.37 (0.34) 11.19 (0.14) 21.25 (0.03) 9.31 (0.47)
𝜂 = 0.001, 𝐸 = 5 ≠Weight initialisation 9.86 (0.28) 11.38 (0.15) 21.31 (0.08) 9.48 (0.13)

≠ Batch ordering 1.02 (0.10) 2.62 (0.08) 5.97 (0.20) 2.26 (0.05)

Random permutation 10.27 (0.36) 12.13 (0.14) 22.04 (0.03) 10.27 (0.51)
𝜂 = 0.001, 𝐸 = 10 ≠Weight initialisation 10.96 (0.29) 12.50 (0.14) 22.25 (0.08) 10.63 (0.07)

≠ Batch ordering 1.24 (0.12) 3.16 (0.09) 7.75 (0.12) 2.75 (0.07)

between the features located in the same position across the models.
Changing the seeds controlling the other sources of randomness
does not, although some of the feature maps are slightly different.

Fig. 4: CNN4 shadow models trained using the same weight ini-
tialisation as the target modelM𝑇 , but on an overlappping (Fig. 4b)
or disjoint (Fig. 4c) dataset. Changing the dataset slightly impact
the activation maps but does not result in misalignment, even when
using disjoint datasets.

Fig. 5: CNN4 shadow models trained using different seeds as
the target model M𝑇 for the batch ordering, dropout selection,
and a disjoint dataset, but the same weight initialisation (Fig. 5).
The activation maps are broadly (visually) aligned although we see
some differences, e.g., in columns 1 and 7.

Fig 6: CNN4 shadow models trained on datasets of increasing
sizes and same training randomness (Fig. 6). Increasing the size of
the dataset gradually changes the activation maps. As the model be-
comes less overfitted and learns more robust features, the activation
maps stabilise and remain broadly (visually) aligned.

A.3 Misalignment between models trained on
different distributions

How does the adversary’s knowledge about the target model’s train-
ing distribution affect misalignment? In a small experiment, we
train shadow models to solve the same task as the target model, but
on a different distribution. We use the CelebA dataset [35] contain-
ing 202599 faces of celebrities together with 40 attributes. We select
smile prediction as the task and simulate two different distribu-
tions for the target and shadow models, respectively: 1) the target
model’s data distribution consists only of “older” faces (i.e., faces
with negative label for the “young” attribute) and 2) the shadow
models’ data distribution consists of both “young” and “older” faces,
in a proportion of 77.4/22.6% as found in the CelebA dataset. This
experiment simulates an adversary targeting a model trained on
a user-specific distribution (e.g., an older person’s device having
pictures of similarly-aged individuals), such that the adversary does
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Table 13: Misalignment results using other metrics for CNN4 (CIFAR10). We highlight in bold the classical adversary (All ≠)
and the adversary having knowledge of the target model’s weight initialisation (≠ BO, ≠ DS, and DD).

Difference w.r.t. target modelM𝑇
First layer Second layer Third layer Fourth layer
(20 filters) (50 filters) (500 neurons) (10 neurons)

A. Activation misalignment scores (↓ indicates better alignment)

Random permutation 68.59 (3.10) 72.70 (0.65) 28.60 (0.05) 1.02 (0.12)

≠Weight initialisation (WI) 68.31 (1.96) 70.99 (1.46) 27.34 (0.53) 0.32 (0.01)
≠ Batch ordering (BO) 20.87 (2.21) 37.37 (1.27) 22.35 (0.50) 0.28 (0.01)
≠ Dropout selection (DS) 21.88 (2.45) 36.13 (1.01) 21.88 (0.52) 0.27 (0.01)

Overlapping datasets 25.28 (2.06) 44.51 (0.67) 23.73 (0.46) 0.39 (0.01)
Disjoint datasets (DD) 28.41 (2.79) 46.49 (0.49) 24.66 (0.35) 0.41 (0.01)

≠ BO, ≠ DS, and DD 30.54 (4.15) 47.73 (1.40) 24.85 (0.29) 0.41 (0.02)
≠WI, ≠ BO, and ≠ DS 68.90 (1.99) 71.45 (1.72) 27.59 (0.70) 0.32 (0.01)
All ≠ (≠WI, ≠ BO, ≠ DS, and DD) 68.64 (1.93) 72.13 (0.29) 27.90 (0.45) 0.42 (0.03)

B. Correlation between activations (↑ indicates better alignment)

Random permutation 0.15 (0.07) 0.04 (0.02) 0.01 (0.00) 0.04 (0.05)

≠Weight initialisation (WI) 0.13 (0.03) 0.03 (0.01) 0.01 (0.00) 0.28 (0.07)
≠ Batch ordering (BO) 0.74 (0.06) 0.67 (0.02) 0.28 (0.02) 0.29 (0.07)
≠ Dropout selection (DS) 0.73 (0.04) 0.68 (0.01) 0.29 (0.01) 0.29 (0.07)

Overlapping datasets 0.71 (0.06) 0.56 (0.02) 0.20 (0.02) 0.26 (0.06)
Disjoint datasets (DD) 0.71 (0.06) 0.55 (0.02) 0.18 (0.01) 0.28 (0.07)

≠ BO, ≠ DS, and ≠ DD 0.70 (0.05) 0.53 (0.02) 0.18 (0.01) 0.28 (0.08)
≠WI, ≠ BO, and ≠ DS 0.13 (0.03) 0.04 (0.01) 0.01 (0.00) 0.28 (0.07)
All ≠ (≠WI, ≠ BO, ≠ DS, and DD) 0.14 (0.03) 0.02 (0.01) 0.01 (0.00) 0.28 (0.08)

not know that the distribution only contains “older” faces. The ad-
versary thus trains shadow models on a random distribution as
found in the wild (e.g., in the CelebA dataset).

We use the CNN4 architecture to train models on 20000 samples
resized to 32 × 32. To simulate Adversary 1 who knows the target
model’s training distribution, we first train one shadow model on
a subset of “older” faces disjoint from the target model’s training
dataset. Note that we cannot train more than one shadow model on
mutually disjoint subsets consisting of 100% older faces, because
CelebA contains only 45865 samples of older faces. To simulate
Adversary 2 who does not know the target model’s training distri-
bution, we train five shadow models on mutually disjoint subsets of
faces from CelebA, such that the proportion of older faces roughly
follows the naturally occurring proportion in the dataset (22.6%
older faces). Both adversaries use different training randomness
compared to the target model, where “randomness” encompasses all
the seeds (weight initialisation, batch ordering, dropout sampling).

Table 14 shows similar WMS for Adversaries 1 and 2. This sug-
gests that shadow models trained on a different distribution w.r.t.
the target model are not more misaligned to the target model than
shadow models trained on the same distribution.

To understand whether the features learned from different dis-
tributions are different rather than just misaligned, we isolated
the impact of the data distribution from the impact of the train-
ing randomness. More specifically, we use the same randomness

for all the models and train shadow models either on datasets of
the same distribution as the target model (Ablation 1) or from a
different distribution (Ablation 2). We do not observe a difference
in misalignment between the two settings, i.e., we do not see the
features of shadow models trained on predominantly young faces
differ substantially from those of shadow models trained on 100%
older faces. Fig. 2 confirms this with a visualisation.

A.4 Re-alignment results for other metrics
Table 15 reports the AMS and CBA for the CNN4 architecture
trained on CIFAR10 after applying different re-alignment tech-
niques. We observe similar trends to the ones obtained using the
weight-based misalignment score (Table 1).

A.5 Re-aligning ResNet architectures
ResNet architectures differ from the standard CNNs we have con-
sidered so far because they consist of blocks of convolutional layers,
where a block is a sequence of layers 𝐵 = 𝑏𝑛2 ◦ 𝑐𝑜𝑛𝑣2 ◦ 𝑟𝑒𝑙𝑢 ◦𝑏𝑛1 ◦
𝑐𝑜𝑛𝑣1 with a skip connection (identity or projection). Here, 𝑏𝑛 de-
notes a batch normalisation layer parameterised by the mean, the
variance, the weight and the bias of size equal to the number of
output channels of the previous layer. The identity skip connection
means that instead of forwarding the output of the block 𝐵(𝑥) to
the next block, 𝐵(𝑥) + 𝑥 is forwarded instead. The project skip con-
nection means that instead of forwarding 𝐵(𝑥) to the next block,
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Table 14: CelebA (CNN4): Weight misalignment scores for shadow models trained on the same/different distribution as the
target model. The target model is trained on 100% older faces.

Difference w.r.t. target modelM𝑇
First layer Second layer Third layer Fourth layer
(20 filters) (50 filters) (500 neurons) (10 neurons)

Weight misalignment scores (↓ indicates better alignment)

Random permutation 6.93 (0.10) 9.55 (0.09) 19.09 (0.02) 0.92 (2.06)

(Adversary 1) Disjoint dataset of 100% older faces, ≠ randomness 6.89 10.09 19.19 3.34
(Adversary 2) Random faces (22.6% older), ≠ randomness 6.88 (0.32) 9.58 (0.18) 19.07 (0.05) 3.28 (0.11)

(Ablation 1) Disjoint dataset of 100% older faces, same randomness 2.87 7.26 4.86 1.33
(Ablation 2) Random faces (22.6% older), same randomness 2.96 (0.15) 6.90 (0.19) 4.51 (0.12) 1.17 (0.10)

(a)

Figure 2: First layer activation maps for CNN4 shadow models trained on CelebA subsets having the same/different distribution
resp. to the target model. The activation maps are computed on a random image shown at the top (a).

𝐵(𝑥) + 𝑃 (𝑥) is forwarded, where 𝑃 (𝑥) (also implemented through a
convolutional layer followed by a batch normalisation layer) maps
𝑥 to a space of same size as 𝐵(𝑥).

ResNet18 [18] consists of one convolutional layer (followed by
batch normalisation, ReLU non-linearity and max pooling), eight
blocks alternating between shortcut and skip connections 𝐵1 to
𝐵8, an average pooling layer and an FC layer 𝑔 of input size 512
and output size 200 (number of classes in the Tiny-ImageNet-200
dataset). For computational reasons (every additional re-alignment
technique requires running the MIAs many times on multiple layers
and feature types), and because of better re-alignment performance
in the top layers which contain most of the MIA signal [37], we here
focus on implementing the top-down weight-based re-alignment
in the last layer 𝑔.

We start by re-aligning the top FC layer as described in Sec. 5
using the optimal permutation 𝜋 , i.e., apply 𝜋 to the columns of
this layer’s weight matrix. The permutation needs to be propagated
to the block below, 𝐵8 = 𝑏𝑛82 ◦ 𝑐𝑜𝑛𝑣

8
2 ◦ 𝑟𝑒𝑙𝑢 ◦ 𝑏𝑛81 ◦ 𝑐𝑜𝑛𝑣

8
1 . First, we

apply 𝜋 to the parameters of 𝑏𝑛82. Second, we apply 𝜋 to the output
channels of 𝑐𝑜𝑛𝑣82 . Third, to ensure consistency between 𝐵8 (𝑥)
and 𝑥 , we also apply 𝜋 to the input channels of 𝑐𝑜𝑛𝑣81 . Fourth and
finally, as we have modified the order of input channels of 𝑐𝑜𝑛𝑣81 ,
we have to propagate the permutation to the block further below,
𝐵7 = 𝑏𝑛72 ◦𝑐𝑜𝑛𝑣

7
2 ◦𝑟𝑒𝑙𝑢 ◦𝑏𝑛

7
1 ◦𝑐𝑜𝑛𝑣

7
1 and projection 𝑃 = 𝑏𝑛7𝑝 ◦𝑐𝑜𝑛𝑣7𝑝 .

Indeed, the (summed) outputs of 𝐵7 and 𝑃 feed into 𝑐𝑜𝑛𝑣81 , whose
input order we have modified. Consequently, we have to apply 𝜋
to 𝑏𝑛72, to the output channels of 𝑐𝑜𝑛𝑣72 , to 𝑏𝑛

7
𝑝 , and to the output

channels of 𝑐𝑜𝑛𝑣7𝑝 . The algorithm stops here: we no longer need to
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Table 15: Misalignment results using other metrics when re-aligning CNN4 (CIFAR10) shadow models trained by the classical
adversary.

Re-alignment technique First layer Second layer Third layer Fourth layer
(20 filters) (50 filters) (500 neurons) (10 neurons)

A. Activation misalignment scores (↓ indicates better alignment)

(A0) No re-alignment 68.64 (1.93) 72.13 (0.29) 27.90 (0.45) 0.42 (0.03)

(A1) Weight sorting [15] 60.64 (0.73) 70.19 (0.58) 27.81 (0.36) 0.42 (0.03)
(A2) Re-alignment after initialisation 69.92 (1.64) 70.66 (0.26) 26.95 (0.25) 0.42 (0.02)
(A3) Bottom-up weight-based re-alignment 43.22 (4.73) 59.10 (0.82) 25.79 (0.22) 0.42 (0.03)
(A4) Top-down weight-based re-alignment 48.07 (4.26) 62.30 (0.81) 26.26 (0.34) 0.42 (0.03)
(A5) Activation-based re-alignment 40.57 (3.01) 55.62 (0.50) 24.07 (0.27) 0.42 (0.03)
(A6) Correlation-based re-alignment [32] 40.57 (3.02) 55.63 (0.57) 24.36 (0.28) 0.42 (0.03)

B. Correlation between activations (↑ indicates better alignment)

(A0) No re-alignment 0.14 (0.03) 0.02 (0.01) 0.01 (0.00) 0.28 (0.08)

(A1) Weight sorting [15] 0.29 (0.02) 0.07 (0.01) 0.01 (0.00) 0.28 (0.08)
(A2) Re-alignment after initialisation 0.08 (0.01) 0.05 (0.01) 0.06 (0.01) 0.28 (0.08)
(A3) Bottom-up weight-based re-alignment 0.52 (0.07) 0.31 (0.02) 0.12 (0.01) 0.28 (0.08)
(A5) Top-down weight-based re-alignment 0.45 (0.07) 0.25 (0.01) 0.08 (0.00) 0.28 (0.08)
(A5) Activation-based re-alignment 0.56 (0.05) 0.39 (0.02) 0.20 (0.01) 0.28 (0.08)
(A6) Correlation-based re-alignment [32] 0.57 (0.05) 0.29 (0.02) 0.20 (0.01) 0.28 (0.08)

propagate 𝜋 to the blocks below, since we only aimed to re-align
the top layer as described above.

Our re-alignment schema can be easily extended to other ResNet
architectures (e.g., having more layers) and to the bottom-up direc-
tion. We leave this for future work.

A.6 Meta-classifier architecture
We use a meta-classifier (MC) architecture similar to the one pro-
posed by Nasr et al. [37]. It consists of multiple modules, each used
to separately embed the different types of features sets in a layer,
and a label embedding module. The outputs of the modules are
concatenated together and given as input to a membership classi-
fier module. We embed gradient features separately in each layer
using a CNN architecture [37], consisting of a convolutional layer
with kernel size equal to 100. The CNN is followed by a dropout
layer with probability 0.2 and an MLP with a hidden layer of size
128, ReLU non-linearity, and an output layer of size 64. We em-
bed activation features separately in each layer using the same
MLP architecture as described above. We embed each class label
using a vector of learnable weights of size 16. Finally, we use an
MLP architecture as the membership classifier module. The MLP
has two hidden layers of sizes 128 and 64, each followed by ReLU
non-linearity, and an output layer of size 2.

We train the MC using mini-batch gradient descent, the binary
cross-entropy loss, the Adam optimiser [25], and a learning rate
of 𝜂 ′ = 0.001, for a maximum of 100 epochs. We divide 𝜂 ′ by 2 at
the end of an epoch if the validation accuracy does not improve
compared to the best found so far, and stop the training when 𝜂 ′ <
0.0001. The records used to compute the MC’s validation accuracy
are passed through the target modelM𝑇 in setup (S1) and through a
validation shadow model in setups (S2)-(S9). The MC is thus trained

on feature vectors derived from 𝐾 − 1 shadow models and early
stopped based on the performance on the 𝐾-th shadow model.
For better performance, each mini-batch only contains features
computed from a single shadow model. The validation shadow
model is, by default, the first among the𝐾 trained for all the datasets
with one exception. On Texas100, we observe a high variability
between shadow models in terms of the number of completed
training epochs 𝑁best before the best model is found. Thus, we
select the shadow model having the median value of 𝑁best as the
validation shadow model.

We sample mini-batches differently depending on whether 𝐷𝐴 ∩
𝐷target = ∅ or 𝐷𝐴 = 𝐷target (see Table 3 for an overview of the
experiment settings). In the first case, for every epoch we shuffle
the order of records in the MC’s training dataset (which is a random
subset of 𝐷𝐴 of size 𝑁train) and select, for every mini-batch, a
random shadow model (reshuffling the shadow models every 𝐾 − 1
mini-batches). An epoch consists of one pass over the 𝑁train records
in the MC’s training dataset. Since each shadow model is trained on
half of𝐷𝐴 , it follows that batches are balancedw.r.t. themembership
label. In the second case, since 𝐷𝑇 and 𝐷𝐴 have comparable sizes,
if we were to use the same procedure the mini-batches would be
heavily imbalanced w.r.t. the membership label. We thus use a
different procedure: for every batch we randomly select a shadow
model M𝑘 and then we randomly select a balanced set of member
and non-member records of M𝑘 ’s training dataset. We count as
epoch one pass over 𝑁train records.

A.7 Additional results
We report additional MIA results on CIFAR10 (VGG16), Purchase
100, and Tiny-ImageNet-200 (ResNet18) datasets (Tables 19, 20
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and 21, respectively) and the ROC curves on CIFAR10 (CNN4),
Texas100 and Purchase 100 datasets (Table 7).

A.8 Comparison with other baselines
A.8.1 Set-based classifiers. We here describe how we extend set-
based classifiers to white-box MIAs. More specifically, we restrict to
neurons in the last layer 𝐿, which contain most of the membership
signal [37]. For 𝑑 = 1, . . . , 𝐷𝐿−1, we represent how the 𝑑th neuron
acts on a record (𝑥,𝑦) using the following feature vector 𝑣𝑑 (𝑥) ∈
R𝐷

𝐿+3: (1) the output activation 𝑥𝐿−1
𝑑

, (2) the input activation enter-
ing the neuron of the correct label𝑊 𝐿

𝑦,𝑑
𝑥𝐿−1
𝑑

, (3) the gradients of the

weights coming out the neuron 𝜕L/𝜕𝑊 𝐿
𝑖,𝑑

(𝑥,𝑦), 𝑖 = 1, . . . , 𝐷𝐿 , and
(4) the gradient of the bias term 𝜕L/𝜕𝑏𝐿−1

𝑑
(𝑥,𝑦). We embed 𝑣𝑑 (𝑥)

using an MLP 𝜙 with one hidden layer of size 128 and an output size
of 64. We train a meta-classifier (MC) on the concatenation of the
set representation

∑𝐷𝐿−1

𝑑=1 𝜙 (𝑣𝑑 (𝑥)), the embedding of the output
activations of the last layer 𝑥𝐿 , and the embedding of the label 𝑦,
with all other details the same as before.

A.8.2 White-box MIA of Leino and Fredrikson [30]. We compare
our approach with the Bayes-WB approach of Leino and Fredrik-
son [30]. This approach trains proxy models whose goal is to repli-
cate the “semantic meaning” of the target model features in an
internal layer 𝑙 . To this end, the proxy model is initialised using
the target model weights in all the layers up to 𝑙 . These layers are
then frozen, while the remaining layers are trained from scratch
on shadow data. Then, for each target record (𝑥,𝑦), the method
computes local linear approximations (𝑊 𝑥

𝑇
, 𝑏𝑥
𝑇
), (𝑊 𝑥

1 , 𝐵
𝑥
1 ) of how

the remaining layers restricted to the output class𝑦 act on the input
𝑥 , in the target and proxy model, respectively. Finally, a Bayesian
approach exploiting the differences between the behaviour of the
linear approximations on the target record is used to produce a
membership score: 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ((𝑊 𝑥

𝑇
−𝑊 𝑥

1 )
𝑡𝑥 + (𝑏𝑥

𝑇
− 𝑏𝑥1 )). This is

shown to be optimal on binary logistic regression under specific
assumptions on the data distribution D.

We re-implement their approach using the last layer 𝑙 = 𝐿, which
is linear, meaning that we can use the pure signal, without the
need to compute local approximations. Indeed, we were unable to
replicate the influence-based linear approximators. In this scenario,
the Bayes-WB approach uses as features the IAs. We train 𝐾 = 10
proxy models and use their average weights as recommended by
the authors. For a fair comparison, we also run our alignment-based
attack using the same features. To minimise the alignment error in
the top layer, we choose top-down weight matching (S6).

A.8.3 Black-box LiRA attack [6]. We present results of the black-
box LiRA attack proposed by Carlini et al. [6]. More specifically,
we implement the offline LiRA attack using the same number of
shadow models as our attacks. We perform a fair comparison with
Shokri et al.’s method [45] on the same datasets and models un-
der scenarios (S2) and (S3). We report the mean Area Under the
Curve over 10 repetitions with 95% confidence interval. Our results
show that the two approaches perform on par. We attribute this
to the small number of shadow models used (𝐾 = 10), as the LiRA
method requires hundreds of shadow models to achieve its best
performance [6]. For computational reasons, we cannot in this work

Table 16: Results of MIAs using a set-based classifier.

CIFAR10 (CNN4) Texas100 (MLP5) Purchase100 (MLP4)

0.840 ± 0.014 0.873 ± 0.025 0.747 ± 0.013

Table 17: CIFAR10 (CNN4): Comparison with [30].

Method MIA AUC

Bayes-WB (Leino et al. [30]) 0.708 ± 0.005
IA only, not re-aligned (S3) 0.726 ± 0.006
IA only, re-aligned (S6) 0.805 ± 0.014

Table 18: Comparison between black-box attacks.

CIFAR10 Texas100 Purchase100

(S2) Shokri et al. [45] 0.810±0.011 0.843±0.023 0.736±0.010
(S2) LiRA [6] 0.815±0.017 0.835±0.059 0.734±0.016
(S3) Shokri et al. [45] 0.815±0.011 0.859±0.015 0.733±0.012
(S3) LiRA [6] 0.803±0.018 0.829±0.055 0.731±0.015

train hundreds of shadow models. However, if we could, fairly eval-
uating white-box MIAs against LIRA would also require adapting
the former to the targeted setting, by learning a record-dependent
decision boundary. We leave this very interesting idea for future
work, as discussed in Sec. 7.

A.9 Defenses
We here describe our experiments with models trained using de-
fenses: regularisation and differential privacy [12]. First, we train
the same VGG16 network as before, on CIFAR10, using the largest
weight decay which still allows the model to converge (3 × 10−3
as opposed to 5 × 10−4 in the previous experiments). As upon con-
vergence this model is highly overfitted (a known source of MIA
vulnerability [57]), we stop the training when the gap between
validation and train accuracy exceeds 5%, at a small cost in utility
(78.4% instead of 82.6%). We observe no gap between black-box
and white-box attacks in the (S1) setting (0.531 vs 0.535), suggest-
ing that there would be no benefit in re-alignment and that this
model is overall robust to MIAs. Second, we trained VGG16 using
the DP-SGD algorithm implemented in the opacus library [58],
however values of 𝜖 ≤ 100 lead to very low model accuracy. We
switched to the smaller CNN4 network and tried the recommended
small epsilon values, which gave poor utility. For completeness,
we trained a model using 𝜖 = 50 until it converged to 49% (48.6%)
test (train) accuracy. Such large 𝜖 values can still provide empirical
privacy protection as suggested by [24]. We indeed found this net-
work to be robust to both black-box and white-box MIAs, which
achieve an AUC of 0.506. Third, we train an MLP on 50000 samples
of Purchase100 (instead of 20000 as before) using 𝜖 = 50 to achieve
69.2% (72.1%) test (train) accuracy. As before, both black-box and
white-box attacks are mitigated as they achieve close to random
performance (0.504). We conclude that implementing these defenses
effectively reduces the risk of MIAs albeit at a cost in accuracy.
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(a) Target model M𝑇

(b) Shadow models trained using different batch ordering

(c) Shadow models trained using different dropout selection

(d) Shadow models trained using different weight initialisation

Figure 3: First layer activation maps for CNN4 models trained on CIFAR10, when changing the seeds controlling the training
randomness.

Table 19: CIFAR10 (VGG16): Results of white-box MIAs using features from multiple layers.

Source of meta-classifier training features Black-box White-box

Last layer Last layer Last two layers

(S1) Target model (auditor) 0.637 ± 0.013 0.686 ± 0.005 0.689 ± 0.009

(S2) Shadow models (same WI) 0.640 ± 0.009 0.689 ± 0.004 0.691 ± 0.005

(S3) Shadow models (all seeds ≠) 0.630 ± 0.013 0.678 ± 0.006 0.679 ± 0.005
(S5) Shadow models (all seeds ≠) + bottom-up weight re-al. - 0.672 ± 0.015 0.686 ± 0.005
(S6) Shadow models (all seeds ≠) + top-down weight re-al. - 0.681 ± 0.008 0.680 ± 0.011
(S7) Shadow models (all seeds ≠) + activation re-al. - 0.684 ± 0.008 0.686 ± 0.009
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(a) Target model M𝑇

(b) Shadow models trained on overlapping datasets

(c) Shadow models trained on disjoint datasets

Figure 4: First layer activation maps for CNN4 models trained on different subsets of CIFAR10.

(a) Target model M𝑇

(b) Shadow models trained using the same weight initialisation, but disjoint dataset and different batch ordering and dropout sampling seeds

Figure 5: First layer activation maps for CNN4 models trained on CIFAR10 using the same weight initialisation.

Table 20: Purchase100 (MLP4): Results of MIAs using different features of the last layer.

Source of meta-classifier training features Black-box (OA) White-box (OA + IA + G) White-box (G)

(S1) Target model (auditor) 0.733 ± 0.010 0.757 ± 0.013 0.734 ± 0.013

(S2) Shadow models (same WI) 0.736 ± 0.010 0.745 ± 0.012 0.729 ± 0.013

(S3) Shadow models (all seeds ≠) 0.733 ± 0.012 0.746 ± 0.011 0.727 ± 0.014
(S4) Shadow models (all seeds ≠) + weight sorting [15] - 0.745 ± 0.012 0.724 ± 0.014
(S5) Shadow models (all seeds ≠) + bottom-up weight re-al. - 0.750 ± 0.013 0.726 ± 0.014
(S6) Shadow models (all seeds ≠) + top-down weight re-al. - 0.749 ± 0.013 0.730 ± 0.013
(S7) Shadow models (all seeds ≠) + activation re-al. - 0.746 ± 0.014 0.730 ± 0.014
(S8) Shadow models (all seeds ≠) + correlation re-al. - 0.744 ± 0.013 0.729 ± 0.014
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Figure 6: First layer activation maps for CNN4 models trained on CIFAR10 subsets of different sizes.

Table 21: Tiny-ImageNet-200 (ResNet18): Results of MIAs using different features of the layset layer.

Source of meta-classifier training features Black-box White-box

OA OA + IA + G G IA

(S1) Target model (auditor) 0.597 ± 0.010 0.693 ± 0.008 0.669 ± 0.005 0.688 ± 0.012

(S2) Shadow models (same WI) 0.586 ± 0.002 0.694 ± 0.005 0.669 ± 0.007 0.682 ± 0.010

(S3) Shadow models (all seeds ≠) 0.585 ± 0.002 0.689 ± 0.007 0.671 ± 0.008 0.667 ± 0.002
(S7) Shadow models (all seeds ≠) + top-down weight re-al. - 0.691 ± 0.008 0.670 ± 0.006 0.675 ± 0.009

(a) CIFAR10 (b) Texas100 (c) Purchase100

Figure 7: ROC curves of attacks. The white-box MIAs use features extracted from the last layer (a-left, b, and c) or from the last
two layers (a-right). We also report results for the black-box MIA using the output activations of the last layer.
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